Expr.cpp revision d20254f2875d0004c57ee766f258dbcee29f4841
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         ValueDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  if (Qualifier) {
122    NameQualifier *NQ = getNameQualifier();
123    NQ->NNS = Qualifier;
124    NQ->Range = QualifierRange;
125  }
126
127  if (TemplateArgs)
128    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
129
130  computeDependence();
131}
132
133DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
134                                 NestedNameSpecifier *Qualifier,
135                                 SourceRange QualifierRange,
136                                 ValueDecl *D,
137                                 SourceLocation NameLoc,
138                                 QualType T,
139                                 const TemplateArgumentListInfo *TemplateArgs) {
140  std::size_t Size = sizeof(DeclRefExpr);
141  if (Qualifier != 0)
142    Size += sizeof(NameQualifier);
143
144  if (TemplateArgs)
145    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
146
147  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
148  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
149                               TemplateArgs, T);
150}
151
152SourceRange DeclRefExpr::getSourceRange() const {
153  // FIXME: Does not handle multi-token names well, e.g., operator[].
154  SourceRange R(Loc);
155
156  if (hasQualifier())
157    R.setBegin(getQualifierRange().getBegin());
158  if (hasExplicitTemplateArgumentList())
159    R.setEnd(getRAngleLoc());
160  return R;
161}
162
163// FIXME: Maybe this should use DeclPrinter with a special "print predefined
164// expr" policy instead.
165std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
166                                        const Decl *CurrentDecl) {
167  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
168    if (IT != PrettyFunction)
169      return FD->getNameAsString();
170
171    llvm::SmallString<256> Name;
172    llvm::raw_svector_ostream Out(Name);
173
174    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
175      if (MD->isVirtual())
176        Out << "virtual ";
177    }
178
179    PrintingPolicy Policy(Context.getLangOptions());
180    Policy.SuppressTagKind = true;
181
182    std::string Proto = FD->getQualifiedNameAsString(Policy);
183
184    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
185    const FunctionProtoType *FT = 0;
186    if (FD->hasWrittenPrototype())
187      FT = dyn_cast<FunctionProtoType>(AFT);
188
189    Proto += "(";
190    if (FT) {
191      llvm::raw_string_ostream POut(Proto);
192      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
193        if (i) POut << ", ";
194        std::string Param;
195        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
196        POut << Param;
197      }
198
199      if (FT->isVariadic()) {
200        if (FD->getNumParams()) POut << ", ";
201        POut << "...";
202      }
203    }
204    Proto += ")";
205
206    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
207      AFT->getResultType().getAsStringInternal(Proto, Policy);
208
209    Out << Proto;
210
211    Out.flush();
212    return Name.str().str();
213  }
214  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
215    llvm::SmallString<256> Name;
216    llvm::raw_svector_ostream Out(Name);
217    Out << (MD->isInstanceMethod() ? '-' : '+');
218    Out << '[';
219    Out << MD->getClassInterface()->getNameAsString();
220    if (const ObjCCategoryImplDecl *CID =
221        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
222      Out << '(';
223      Out <<  CID->getNameAsString();
224      Out <<  ')';
225    }
226    Out <<  ' ';
227    Out << MD->getSelector().getAsString();
228    Out <<  ']';
229
230    Out.flush();
231    return Name.str().str();
232  }
233  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
234    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
235    return "top level";
236  }
237  return "";
238}
239
240/// getValueAsApproximateDouble - This returns the value as an inaccurate
241/// double.  Note that this may cause loss of precision, but is useful for
242/// debugging dumps, etc.
243double FloatingLiteral::getValueAsApproximateDouble() const {
244  llvm::APFloat V = getValue();
245  bool ignored;
246  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
247            &ignored);
248  return V.convertToDouble();
249}
250
251StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
252                                     unsigned ByteLength, bool Wide,
253                                     QualType Ty,
254                                     const SourceLocation *Loc,
255                                     unsigned NumStrs) {
256  // Allocate enough space for the StringLiteral plus an array of locations for
257  // any concatenated string tokens.
258  void *Mem = C.Allocate(sizeof(StringLiteral)+
259                         sizeof(SourceLocation)*(NumStrs-1),
260                         llvm::alignof<StringLiteral>());
261  StringLiteral *SL = new (Mem) StringLiteral(Ty);
262
263  // OPTIMIZE: could allocate this appended to the StringLiteral.
264  char *AStrData = new (C, 1) char[ByteLength];
265  memcpy(AStrData, StrData, ByteLength);
266  SL->StrData = AStrData;
267  SL->ByteLength = ByteLength;
268  SL->IsWide = Wide;
269  SL->TokLocs[0] = Loc[0];
270  SL->NumConcatenated = NumStrs;
271
272  if (NumStrs != 1)
273    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
274  return SL;
275}
276
277StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
278  void *Mem = C.Allocate(sizeof(StringLiteral)+
279                         sizeof(SourceLocation)*(NumStrs-1),
280                         llvm::alignof<StringLiteral>());
281  StringLiteral *SL = new (Mem) StringLiteral(QualType());
282  SL->StrData = 0;
283  SL->ByteLength = 0;
284  SL->NumConcatenated = NumStrs;
285  return SL;
286}
287
288void StringLiteral::DoDestroy(ASTContext &C) {
289  C.Deallocate(const_cast<char*>(StrData));
290  Expr::DoDestroy(C);
291}
292
293void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
294  if (StrData)
295    C.Deallocate(const_cast<char*>(StrData));
296
297  char *AStrData = new (C, 1) char[Str.size()];
298  memcpy(AStrData, Str.data(), Str.size());
299  StrData = AStrData;
300  ByteLength = Str.size();
301}
302
303/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
304/// corresponds to, e.g. "sizeof" or "[pre]++".
305const char *UnaryOperator::getOpcodeStr(Opcode Op) {
306  switch (Op) {
307  default: assert(0 && "Unknown unary operator");
308  case PostInc: return "++";
309  case PostDec: return "--";
310  case PreInc:  return "++";
311  case PreDec:  return "--";
312  case AddrOf:  return "&";
313  case Deref:   return "*";
314  case Plus:    return "+";
315  case Minus:   return "-";
316  case Not:     return "~";
317  case LNot:    return "!";
318  case Real:    return "__real";
319  case Imag:    return "__imag";
320  case Extension: return "__extension__";
321  case OffsetOf: return "__builtin_offsetof";
322  }
323}
324
325UnaryOperator::Opcode
326UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
327  switch (OO) {
328  default: assert(false && "No unary operator for overloaded function");
329  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
330  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
331  case OO_Amp:        return AddrOf;
332  case OO_Star:       return Deref;
333  case OO_Plus:       return Plus;
334  case OO_Minus:      return Minus;
335  case OO_Tilde:      return Not;
336  case OO_Exclaim:    return LNot;
337  }
338}
339
340OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
341  switch (Opc) {
342  case PostInc: case PreInc: return OO_PlusPlus;
343  case PostDec: case PreDec: return OO_MinusMinus;
344  case AddrOf: return OO_Amp;
345  case Deref: return OO_Star;
346  case Plus: return OO_Plus;
347  case Minus: return OO_Minus;
348  case Not: return OO_Tilde;
349  case LNot: return OO_Exclaim;
350  default: return OO_None;
351  }
352}
353
354
355//===----------------------------------------------------------------------===//
356// Postfix Operators.
357//===----------------------------------------------------------------------===//
358
359CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
360                   unsigned numargs, QualType t, SourceLocation rparenloc)
361  : Expr(SC, t,
362         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
363         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
364    NumArgs(numargs) {
365
366  SubExprs = new (C) Stmt*[numargs+1];
367  SubExprs[FN] = fn;
368  for (unsigned i = 0; i != numargs; ++i)
369    SubExprs[i+ARGS_START] = args[i];
370
371  RParenLoc = rparenloc;
372}
373
374CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
375                   QualType t, SourceLocation rparenloc)
376  : Expr(CallExprClass, t,
377         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
378         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
379    NumArgs(numargs) {
380
381  SubExprs = new (C) Stmt*[numargs+1];
382  SubExprs[FN] = fn;
383  for (unsigned i = 0; i != numargs; ++i)
384    SubExprs[i+ARGS_START] = args[i];
385
386  RParenLoc = rparenloc;
387}
388
389CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
390  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
391  SubExprs = new (C) Stmt*[1];
392}
393
394void CallExpr::DoDestroy(ASTContext& C) {
395  DestroyChildren(C);
396  if (SubExprs) C.Deallocate(SubExprs);
397  this->~CallExpr();
398  C.Deallocate(this);
399}
400
401Decl *CallExpr::getCalleeDecl() {
402  Expr *CEE = getCallee()->IgnoreParenCasts();
403  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
404    return DRE->getDecl();
405
406  return 0;
407}
408
409FunctionDecl *CallExpr::getDirectCallee() {
410    return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
411}
412
413/// setNumArgs - This changes the number of arguments present in this call.
414/// Any orphaned expressions are deleted by this, and any new operands are set
415/// to null.
416void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
417  // No change, just return.
418  if (NumArgs == getNumArgs()) return;
419
420  // If shrinking # arguments, just delete the extras and forgot them.
421  if (NumArgs < getNumArgs()) {
422    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
423      getArg(i)->Destroy(C);
424    this->NumArgs = NumArgs;
425    return;
426  }
427
428  // Otherwise, we are growing the # arguments.  New an bigger argument array.
429  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
430  // Copy over args.
431  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
432    NewSubExprs[i] = SubExprs[i];
433  // Null out new args.
434  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
435    NewSubExprs[i] = 0;
436
437  if (SubExprs) C.Deallocate(SubExprs);
438  SubExprs = NewSubExprs;
439  this->NumArgs = NumArgs;
440}
441
442/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
443/// not, return 0.
444unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
445  // All simple function calls (e.g. func()) are implicitly cast to pointer to
446  // function. As a result, we try and obtain the DeclRefExpr from the
447  // ImplicitCastExpr.
448  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
449  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
450    return 0;
451
452  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
453  if (!DRE)
454    return 0;
455
456  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
457  if (!FDecl)
458    return 0;
459
460  if (!FDecl->getIdentifier())
461    return 0;
462
463  return FDecl->getBuiltinID();
464}
465
466QualType CallExpr::getCallReturnType() const {
467  QualType CalleeType = getCallee()->getType();
468  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
469    CalleeType = FnTypePtr->getPointeeType();
470  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
471    CalleeType = BPT->getPointeeType();
472
473  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
474  return FnType->getResultType();
475}
476
477MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
478                       SourceRange qualrange, ValueDecl *memberdecl,
479                       SourceLocation l, const TemplateArgumentListInfo *targs,
480                       QualType ty)
481  : Expr(MemberExprClass, ty,
482         base->isTypeDependent() || (qual && qual->isDependent()),
483         base->isValueDependent() || (qual && qual->isDependent())),
484    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
485    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
486  // Initialize the qualifier, if any.
487  if (HasQualifier) {
488    NameQualifier *NQ = getMemberQualifier();
489    NQ->NNS = qual;
490    NQ->Range = qualrange;
491  }
492
493  // Initialize the explicit template argument list, if any.
494  if (targs)
495    getExplicitTemplateArgumentList()->initializeFrom(*targs);
496}
497
498MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
499                               NestedNameSpecifier *qual,
500                               SourceRange qualrange,
501                               ValueDecl *memberdecl,
502                               SourceLocation l,
503                               const TemplateArgumentListInfo *targs,
504                               QualType ty) {
505  std::size_t Size = sizeof(MemberExpr);
506  if (qual != 0)
507    Size += sizeof(NameQualifier);
508
509  if (targs)
510    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
511
512  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
513  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
514                              targs, ty);
515}
516
517const char *CastExpr::getCastKindName() const {
518  switch (getCastKind()) {
519  case CastExpr::CK_Unknown:
520    return "Unknown";
521  case CastExpr::CK_BitCast:
522    return "BitCast";
523  case CastExpr::CK_NoOp:
524    return "NoOp";
525  case CastExpr::CK_BaseToDerived:
526    return "BaseToDerived";
527  case CastExpr::CK_DerivedToBase:
528    return "DerivedToBase";
529  case CastExpr::CK_Dynamic:
530    return "Dynamic";
531  case CastExpr::CK_ToUnion:
532    return "ToUnion";
533  case CastExpr::CK_ArrayToPointerDecay:
534    return "ArrayToPointerDecay";
535  case CastExpr::CK_FunctionToPointerDecay:
536    return "FunctionToPointerDecay";
537  case CastExpr::CK_NullToMemberPointer:
538    return "NullToMemberPointer";
539  case CastExpr::CK_BaseToDerivedMemberPointer:
540    return "BaseToDerivedMemberPointer";
541  case CastExpr::CK_DerivedToBaseMemberPointer:
542    return "DerivedToBaseMemberPointer";
543  case CastExpr::CK_UserDefinedConversion:
544    return "UserDefinedConversion";
545  case CastExpr::CK_ConstructorConversion:
546    return "ConstructorConversion";
547  case CastExpr::CK_IntegralToPointer:
548    return "IntegralToPointer";
549  case CastExpr::CK_PointerToIntegral:
550    return "PointerToIntegral";
551  case CastExpr::CK_ToVoid:
552    return "ToVoid";
553  case CastExpr::CK_VectorSplat:
554    return "VectorSplat";
555  case CastExpr::CK_IntegralCast:
556    return "IntegralCast";
557  case CastExpr::CK_IntegralToFloating:
558    return "IntegralToFloating";
559  case CastExpr::CK_FloatingToIntegral:
560    return "FloatingToIntegral";
561  case CastExpr::CK_FloatingCast:
562    return "FloatingCast";
563  case CastExpr::CK_MemberPointerToBoolean:
564    return "MemberPointerToBoolean";
565  case CastExpr::CK_AnyPointerToObjCPointerCast:
566    return "AnyPointerToObjCPointerCast";
567  case CastExpr::CK_AnyPointerToBlockPointerCast:
568    return "AnyPointerToBlockPointerCast";
569  }
570
571  assert(0 && "Unhandled cast kind!");
572  return 0;
573}
574
575Expr *CastExpr::getSubExprAsWritten() {
576  Expr *SubExpr = 0;
577  CastExpr *E = this;
578  do {
579    SubExpr = E->getSubExpr();
580
581    // Skip any temporary bindings; they're implicit.
582    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
583      SubExpr = Binder->getSubExpr();
584
585    // Conversions by constructor and conversion functions have a
586    // subexpression describing the call; strip it off.
587    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
588      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
589    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
590      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
591
592    // If the subexpression we're left with is an implicit cast, look
593    // through that, too.
594  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
595
596  return SubExpr;
597}
598
599/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
600/// corresponds to, e.g. "<<=".
601const char *BinaryOperator::getOpcodeStr(Opcode Op) {
602  switch (Op) {
603  case PtrMemD:   return ".*";
604  case PtrMemI:   return "->*";
605  case Mul:       return "*";
606  case Div:       return "/";
607  case Rem:       return "%";
608  case Add:       return "+";
609  case Sub:       return "-";
610  case Shl:       return "<<";
611  case Shr:       return ">>";
612  case LT:        return "<";
613  case GT:        return ">";
614  case LE:        return "<=";
615  case GE:        return ">=";
616  case EQ:        return "==";
617  case NE:        return "!=";
618  case And:       return "&";
619  case Xor:       return "^";
620  case Or:        return "|";
621  case LAnd:      return "&&";
622  case LOr:       return "||";
623  case Assign:    return "=";
624  case MulAssign: return "*=";
625  case DivAssign: return "/=";
626  case RemAssign: return "%=";
627  case AddAssign: return "+=";
628  case SubAssign: return "-=";
629  case ShlAssign: return "<<=";
630  case ShrAssign: return ">>=";
631  case AndAssign: return "&=";
632  case XorAssign: return "^=";
633  case OrAssign:  return "|=";
634  case Comma:     return ",";
635  }
636
637  return "";
638}
639
640BinaryOperator::Opcode
641BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
642  switch (OO) {
643  default: assert(false && "Not an overloadable binary operator");
644  case OO_Plus: return Add;
645  case OO_Minus: return Sub;
646  case OO_Star: return Mul;
647  case OO_Slash: return Div;
648  case OO_Percent: return Rem;
649  case OO_Caret: return Xor;
650  case OO_Amp: return And;
651  case OO_Pipe: return Or;
652  case OO_Equal: return Assign;
653  case OO_Less: return LT;
654  case OO_Greater: return GT;
655  case OO_PlusEqual: return AddAssign;
656  case OO_MinusEqual: return SubAssign;
657  case OO_StarEqual: return MulAssign;
658  case OO_SlashEqual: return DivAssign;
659  case OO_PercentEqual: return RemAssign;
660  case OO_CaretEqual: return XorAssign;
661  case OO_AmpEqual: return AndAssign;
662  case OO_PipeEqual: return OrAssign;
663  case OO_LessLess: return Shl;
664  case OO_GreaterGreater: return Shr;
665  case OO_LessLessEqual: return ShlAssign;
666  case OO_GreaterGreaterEqual: return ShrAssign;
667  case OO_EqualEqual: return EQ;
668  case OO_ExclaimEqual: return NE;
669  case OO_LessEqual: return LE;
670  case OO_GreaterEqual: return GE;
671  case OO_AmpAmp: return LAnd;
672  case OO_PipePipe: return LOr;
673  case OO_Comma: return Comma;
674  case OO_ArrowStar: return PtrMemI;
675  }
676}
677
678OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
679  static const OverloadedOperatorKind OverOps[] = {
680    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
681    OO_Star, OO_Slash, OO_Percent,
682    OO_Plus, OO_Minus,
683    OO_LessLess, OO_GreaterGreater,
684    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
685    OO_EqualEqual, OO_ExclaimEqual,
686    OO_Amp,
687    OO_Caret,
688    OO_Pipe,
689    OO_AmpAmp,
690    OO_PipePipe,
691    OO_Equal, OO_StarEqual,
692    OO_SlashEqual, OO_PercentEqual,
693    OO_PlusEqual, OO_MinusEqual,
694    OO_LessLessEqual, OO_GreaterGreaterEqual,
695    OO_AmpEqual, OO_CaretEqual,
696    OO_PipeEqual,
697    OO_Comma
698  };
699  return OverOps[Opc];
700}
701
702InitListExpr::InitListExpr(SourceLocation lbraceloc,
703                           Expr **initExprs, unsigned numInits,
704                           SourceLocation rbraceloc)
705  : Expr(InitListExprClass, QualType(), false, false),
706    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
707    UnionFieldInit(0), HadArrayRangeDesignator(false)
708{
709  for (unsigned I = 0; I != numInits; ++I) {
710    if (initExprs[I]->isTypeDependent())
711      TypeDependent = true;
712    if (initExprs[I]->isValueDependent())
713      ValueDependent = true;
714  }
715
716  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
717}
718
719void InitListExpr::reserveInits(unsigned NumInits) {
720  if (NumInits > InitExprs.size())
721    InitExprs.reserve(NumInits);
722}
723
724void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
725  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
726       Idx < LastIdx; ++Idx)
727    InitExprs[Idx]->Destroy(Context);
728  InitExprs.resize(NumInits, 0);
729}
730
731Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
732  if (Init >= InitExprs.size()) {
733    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
734    InitExprs.back() = expr;
735    return 0;
736  }
737
738  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
739  InitExprs[Init] = expr;
740  return Result;
741}
742
743/// getFunctionType - Return the underlying function type for this block.
744///
745const FunctionType *BlockExpr::getFunctionType() const {
746  return getType()->getAs<BlockPointerType>()->
747                    getPointeeType()->getAs<FunctionType>();
748}
749
750SourceLocation BlockExpr::getCaretLocation() const {
751  return TheBlock->getCaretLocation();
752}
753const Stmt *BlockExpr::getBody() const {
754  return TheBlock->getBody();
755}
756Stmt *BlockExpr::getBody() {
757  return TheBlock->getBody();
758}
759
760
761//===----------------------------------------------------------------------===//
762// Generic Expression Routines
763//===----------------------------------------------------------------------===//
764
765/// isUnusedResultAWarning - Return true if this immediate expression should
766/// be warned about if the result is unused.  If so, fill in Loc and Ranges
767/// with location to warn on and the source range[s] to report with the
768/// warning.
769bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
770                                  SourceRange &R2, ASTContext &Ctx) const {
771  // Don't warn if the expr is type dependent. The type could end up
772  // instantiating to void.
773  if (isTypeDependent())
774    return false;
775
776  switch (getStmtClass()) {
777  default:
778    Loc = getExprLoc();
779    R1 = getSourceRange();
780    return true;
781  case ParenExprClass:
782    return cast<ParenExpr>(this)->getSubExpr()->
783      isUnusedResultAWarning(Loc, R1, R2, Ctx);
784  case UnaryOperatorClass: {
785    const UnaryOperator *UO = cast<UnaryOperator>(this);
786
787    switch (UO->getOpcode()) {
788    default: break;
789    case UnaryOperator::PostInc:
790    case UnaryOperator::PostDec:
791    case UnaryOperator::PreInc:
792    case UnaryOperator::PreDec:                 // ++/--
793      return false;  // Not a warning.
794    case UnaryOperator::Deref:
795      // Dereferencing a volatile pointer is a side-effect.
796      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
797        return false;
798      break;
799    case UnaryOperator::Real:
800    case UnaryOperator::Imag:
801      // accessing a piece of a volatile complex is a side-effect.
802      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
803          .isVolatileQualified())
804        return false;
805      break;
806    case UnaryOperator::Extension:
807      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
808    }
809    Loc = UO->getOperatorLoc();
810    R1 = UO->getSubExpr()->getSourceRange();
811    return true;
812  }
813  case BinaryOperatorClass: {
814    const BinaryOperator *BO = cast<BinaryOperator>(this);
815    // Consider comma to have side effects if the LHS or RHS does.
816    if (BO->getOpcode() == BinaryOperator::Comma)
817      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
818              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
819
820    if (BO->isAssignmentOp())
821      return false;
822    Loc = BO->getOperatorLoc();
823    R1 = BO->getLHS()->getSourceRange();
824    R2 = BO->getRHS()->getSourceRange();
825    return true;
826  }
827  case CompoundAssignOperatorClass:
828    return false;
829
830  case ConditionalOperatorClass: {
831    // The condition must be evaluated, but if either the LHS or RHS is a
832    // warning, warn about them.
833    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
834    if (Exp->getLHS() &&
835        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
836      return true;
837    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
838  }
839
840  case MemberExprClass:
841    // If the base pointer or element is to a volatile pointer/field, accessing
842    // it is a side effect.
843    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
844      return false;
845    Loc = cast<MemberExpr>(this)->getMemberLoc();
846    R1 = SourceRange(Loc, Loc);
847    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
848    return true;
849
850  case ArraySubscriptExprClass:
851    // If the base pointer or element is to a volatile pointer/field, accessing
852    // it is a side effect.
853    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
854      return false;
855    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
856    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
857    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
858    return true;
859
860  case CallExprClass:
861  case CXXOperatorCallExprClass:
862  case CXXMemberCallExprClass: {
863    // If this is a direct call, get the callee.
864    const CallExpr *CE = cast<CallExpr>(this);
865    if (const Decl *FD = CE->getCalleeDecl()) {
866      // If the callee has attribute pure, const, or warn_unused_result, warn
867      // about it. void foo() { strlen("bar"); } should warn.
868      //
869      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
870      // updated to match for QoI.
871      if (FD->getAttr<WarnUnusedResultAttr>() ||
872          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
873        Loc = CE->getCallee()->getLocStart();
874        R1 = CE->getCallee()->getSourceRange();
875
876        if (unsigned NumArgs = CE->getNumArgs())
877          R2 = SourceRange(CE->getArg(0)->getLocStart(),
878                           CE->getArg(NumArgs-1)->getLocEnd());
879        return true;
880      }
881    }
882    return false;
883  }
884
885  case CXXTemporaryObjectExprClass:
886  case CXXConstructExprClass:
887    return false;
888
889  case ObjCMessageExprClass:
890    return false;
891
892  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
893#if 0
894    const ObjCImplicitSetterGetterRefExpr *Ref =
895      cast<ObjCImplicitSetterGetterRefExpr>(this);
896    // FIXME: We really want the location of the '.' here.
897    Loc = Ref->getLocation();
898    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
899    if (Ref->getBase())
900      R2 = Ref->getBase()->getSourceRange();
901#else
902    Loc = getExprLoc();
903    R1 = getSourceRange();
904#endif
905    return true;
906  }
907  case StmtExprClass: {
908    // Statement exprs don't logically have side effects themselves, but are
909    // sometimes used in macros in ways that give them a type that is unused.
910    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
911    // however, if the result of the stmt expr is dead, we don't want to emit a
912    // warning.
913    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
914    if (!CS->body_empty())
915      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
916        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
917
918    Loc = cast<StmtExpr>(this)->getLParenLoc();
919    R1 = getSourceRange();
920    return true;
921  }
922  case CStyleCastExprClass:
923    // If this is an explicit cast to void, allow it.  People do this when they
924    // think they know what they're doing :).
925    if (getType()->isVoidType())
926      return false;
927    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
928    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
929    return true;
930  case CXXFunctionalCastExprClass: {
931    const CastExpr *CE = cast<CastExpr>(this);
932
933    // If this is a cast to void or a constructor conversion, check the operand.
934    // Otherwise, the result of the cast is unused.
935    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
936        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
937      return (cast<CastExpr>(this)->getSubExpr()
938              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
939    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
940    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
941    return true;
942  }
943
944  case ImplicitCastExprClass:
945    // Check the operand, since implicit casts are inserted by Sema
946    return (cast<ImplicitCastExpr>(this)
947            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
948
949  case CXXDefaultArgExprClass:
950    return (cast<CXXDefaultArgExpr>(this)
951            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
952
953  case CXXNewExprClass:
954    // FIXME: In theory, there might be new expressions that don't have side
955    // effects (e.g. a placement new with an uninitialized POD).
956  case CXXDeleteExprClass:
957    return false;
958  case CXXBindTemporaryExprClass:
959    return (cast<CXXBindTemporaryExpr>(this)
960            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
961  case CXXExprWithTemporariesClass:
962    return (cast<CXXExprWithTemporaries>(this)
963            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
964  }
965}
966
967/// DeclCanBeLvalue - Determine whether the given declaration can be
968/// an lvalue. This is a helper routine for isLvalue.
969static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
970  // C++ [temp.param]p6:
971  //   A non-type non-reference template-parameter is not an lvalue.
972  if (const NonTypeTemplateParmDecl *NTTParm
973        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
974    return NTTParm->getType()->isReferenceType();
975
976  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
977    // C++ 3.10p2: An lvalue refers to an object or function.
978    (Ctx.getLangOptions().CPlusPlus &&
979     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
980}
981
982/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
983/// incomplete type other than void. Nonarray expressions that can be lvalues:
984///  - name, where name must be a variable
985///  - e[i]
986///  - (e), where e must be an lvalue
987///  - e.name, where e must be an lvalue
988///  - e->name
989///  - *e, the type of e cannot be a function type
990///  - string-constant
991///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
992///  - reference type [C++ [expr]]
993///
994Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
995  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
996
997  isLvalueResult Res = isLvalueInternal(Ctx);
998  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
999    return Res;
1000
1001  // first, check the type (C99 6.3.2.1). Expressions with function
1002  // type in C are not lvalues, but they can be lvalues in C++.
1003  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1004    return LV_NotObjectType;
1005
1006  // Allow qualified void which is an incomplete type other than void (yuck).
1007  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1008    return LV_IncompleteVoidType;
1009
1010  return LV_Valid;
1011}
1012
1013// Check whether the expression can be sanely treated like an l-value
1014Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1015  switch (getStmtClass()) {
1016  case ObjCIsaExprClass:
1017  case StringLiteralClass:  // C99 6.5.1p4
1018  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1019    return LV_Valid;
1020  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1021    // For vectors, make sure base is an lvalue (i.e. not a function call).
1022    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1023      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1024    return LV_Valid;
1025  case DeclRefExprClass: { // C99 6.5.1p2
1026    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1027    if (DeclCanBeLvalue(RefdDecl, Ctx))
1028      return LV_Valid;
1029    break;
1030  }
1031  case BlockDeclRefExprClass: {
1032    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1033    if (isa<VarDecl>(BDR->getDecl()))
1034      return LV_Valid;
1035    break;
1036  }
1037  case MemberExprClass: {
1038    const MemberExpr *m = cast<MemberExpr>(this);
1039    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1040      NamedDecl *Member = m->getMemberDecl();
1041      // C++ [expr.ref]p4:
1042      //   If E2 is declared to have type "reference to T", then E1.E2
1043      //   is an lvalue.
1044      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1045        if (Value->getType()->isReferenceType())
1046          return LV_Valid;
1047
1048      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1049      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1050        return LV_Valid;
1051
1052      //   -- If E2 is a non-static data member [...]. If E1 is an
1053      //      lvalue, then E1.E2 is an lvalue.
1054      if (isa<FieldDecl>(Member)) {
1055        if (m->isArrow())
1056          return LV_Valid;
1057        Expr *BaseExp = m->getBase();
1058        return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1059                 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1060      }
1061
1062      //   -- If it refers to a static member function [...], then
1063      //      E1.E2 is an lvalue.
1064      //   -- Otherwise, if E1.E2 refers to a non-static member
1065      //      function [...], then E1.E2 is not an lvalue.
1066      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1067        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1068
1069      //   -- If E2 is a member enumerator [...], the expression E1.E2
1070      //      is not an lvalue.
1071      if (isa<EnumConstantDecl>(Member))
1072        return LV_InvalidExpression;
1073
1074        // Not an lvalue.
1075      return LV_InvalidExpression;
1076    }
1077
1078    // C99 6.5.2.3p4
1079    if (m->isArrow())
1080      return LV_Valid;
1081    Expr *BaseExp = m->getBase();
1082    return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1083             LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1084  }
1085  case UnaryOperatorClass:
1086    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1087      return LV_Valid; // C99 6.5.3p4
1088
1089    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1090        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1091        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1092      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1093
1094    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1095        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1096         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1097      return LV_Valid;
1098    break;
1099  case ImplicitCastExprClass:
1100    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1101                                                       : LV_InvalidExpression;
1102  case ParenExprClass: // C99 6.5.1p5
1103    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1104  case BinaryOperatorClass:
1105  case CompoundAssignOperatorClass: {
1106    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1107
1108    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1109        BinOp->getOpcode() == BinaryOperator::Comma)
1110      return BinOp->getRHS()->isLvalue(Ctx);
1111
1112    // C++ [expr.mptr.oper]p6
1113    // The result of a .* expression is an lvalue only if its first operand is
1114    // an lvalue and its second operand is a pointer to data member.
1115    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1116        !BinOp->getType()->isFunctionType())
1117      return BinOp->getLHS()->isLvalue(Ctx);
1118
1119    // The result of an ->* expression is an lvalue only if its second operand
1120    // is a pointer to data member.
1121    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1122        !BinOp->getType()->isFunctionType()) {
1123      QualType Ty = BinOp->getRHS()->getType();
1124      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1125        return LV_Valid;
1126    }
1127
1128    if (!BinOp->isAssignmentOp())
1129      return LV_InvalidExpression;
1130
1131    if (Ctx.getLangOptions().CPlusPlus)
1132      // C++ [expr.ass]p1:
1133      //   The result of an assignment operation [...] is an lvalue.
1134      return LV_Valid;
1135
1136
1137    // C99 6.5.16:
1138    //   An assignment expression [...] is not an lvalue.
1139    return LV_InvalidExpression;
1140  }
1141  case CallExprClass:
1142  case CXXOperatorCallExprClass:
1143  case CXXMemberCallExprClass: {
1144    // C++0x [expr.call]p10
1145    //   A function call is an lvalue if and only if the result type
1146    //   is an lvalue reference.
1147    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1148    if (ReturnType->isLValueReferenceType())
1149      return LV_Valid;
1150
1151    break;
1152  }
1153  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1154    return LV_Valid;
1155  case ChooseExprClass:
1156    // __builtin_choose_expr is an lvalue if the selected operand is.
1157    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1158  case ExtVectorElementExprClass:
1159    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1160      return LV_DuplicateVectorComponents;
1161    return LV_Valid;
1162  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1163    return LV_Valid;
1164  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1165    return LV_Valid;
1166  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1167    return LV_Valid;
1168  case PredefinedExprClass:
1169    return LV_Valid;
1170  case UnresolvedLookupExprClass:
1171    return LV_Valid;
1172  case CXXDefaultArgExprClass:
1173    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1174  case CStyleCastExprClass:
1175  case CXXFunctionalCastExprClass:
1176  case CXXStaticCastExprClass:
1177  case CXXDynamicCastExprClass:
1178  case CXXReinterpretCastExprClass:
1179  case CXXConstCastExprClass:
1180    // The result of an explicit cast is an lvalue if the type we are
1181    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1182    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1183    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1184    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1185          isLValueReferenceType())
1186      return LV_Valid;
1187    break;
1188  case CXXTypeidExprClass:
1189    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1190    return LV_Valid;
1191  case CXXBindTemporaryExprClass:
1192    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1193      isLvalueInternal(Ctx);
1194  case ConditionalOperatorClass: {
1195    // Complicated handling is only for C++.
1196    if (!Ctx.getLangOptions().CPlusPlus)
1197      return LV_InvalidExpression;
1198
1199    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1200    // everywhere there's an object converted to an rvalue. Also, any other
1201    // casts should be wrapped by ImplicitCastExprs. There's just the special
1202    // case involving throws to work out.
1203    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1204    Expr *True = Cond->getTrueExpr();
1205    Expr *False = Cond->getFalseExpr();
1206    // C++0x 5.16p2
1207    //   If either the second or the third operand has type (cv) void, [...]
1208    //   the result [...] is an rvalue.
1209    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1210      return LV_InvalidExpression;
1211
1212    // Both sides must be lvalues for the result to be an lvalue.
1213    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1214      return LV_InvalidExpression;
1215
1216    // That's it.
1217    return LV_Valid;
1218  }
1219
1220  case Expr::CXXExprWithTemporariesClass:
1221    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1222
1223  case Expr::ObjCMessageExprClass:
1224    if (const ObjCMethodDecl *Method
1225          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1226      if (Method->getResultType()->isLValueReferenceType())
1227        return LV_Valid;
1228    break;
1229
1230  default:
1231    break;
1232  }
1233  return LV_InvalidExpression;
1234}
1235
1236/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1237/// does not have an incomplete type, does not have a const-qualified type, and
1238/// if it is a structure or union, does not have any member (including,
1239/// recursively, any member or element of all contained aggregates or unions)
1240/// with a const-qualified type.
1241Expr::isModifiableLvalueResult
1242Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1243  isLvalueResult lvalResult = isLvalue(Ctx);
1244
1245  switch (lvalResult) {
1246  case LV_Valid:
1247    // C++ 3.10p11: Functions cannot be modified, but pointers to
1248    // functions can be modifiable.
1249    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1250      return MLV_NotObjectType;
1251    break;
1252
1253  case LV_NotObjectType: return MLV_NotObjectType;
1254  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1255  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1256  case LV_InvalidExpression:
1257    // If the top level is a C-style cast, and the subexpression is a valid
1258    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1259    // GCC extension.  We don't support it, but we want to produce good
1260    // diagnostics when it happens so that the user knows why.
1261    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1262      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1263        if (Loc)
1264          *Loc = CE->getLParenLoc();
1265        return MLV_LValueCast;
1266      }
1267    }
1268    return MLV_InvalidExpression;
1269  case LV_MemberFunction: return MLV_MemberFunction;
1270    case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1271  }
1272
1273  // The following is illegal:
1274  //   void takeclosure(void (^C)(void));
1275  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1276  //
1277  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1278    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1279      return MLV_NotBlockQualified;
1280  }
1281
1282  // Assigning to an 'implicit' property?
1283  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1284        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1285    if (Expr->getSetterMethod() == 0)
1286      return MLV_NoSetterProperty;
1287  }
1288
1289  QualType CT = Ctx.getCanonicalType(getType());
1290
1291  if (CT.isConstQualified())
1292    return MLV_ConstQualified;
1293  if (CT->isArrayType())
1294    return MLV_ArrayType;
1295  if (CT->isIncompleteType())
1296    return MLV_IncompleteType;
1297
1298  if (const RecordType *r = CT->getAs<RecordType>()) {
1299    if (r->hasConstFields())
1300      return MLV_ConstQualified;
1301  }
1302
1303  return MLV_Valid;
1304}
1305
1306/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1307/// returns true, if it is; false otherwise.
1308bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1309  switch (getStmtClass()) {
1310  default:
1311    return false;
1312  case ObjCIvarRefExprClass:
1313    return true;
1314  case Expr::UnaryOperatorClass:
1315    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1316  case ParenExprClass:
1317    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1318  case ImplicitCastExprClass:
1319    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1320  case CStyleCastExprClass:
1321    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1322  case DeclRefExprClass: {
1323    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1324    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1325      if (VD->hasGlobalStorage())
1326        return true;
1327      QualType T = VD->getType();
1328      // dereferencing to a  pointer is always a gc'able candidate,
1329      // unless it is __weak.
1330      return T->isPointerType() &&
1331             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1332    }
1333    return false;
1334  }
1335  case MemberExprClass: {
1336    const MemberExpr *M = cast<MemberExpr>(this);
1337    return M->getBase()->isOBJCGCCandidate(Ctx);
1338  }
1339  case ArraySubscriptExprClass:
1340    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1341  }
1342}
1343Expr* Expr::IgnoreParens() {
1344  Expr* E = this;
1345  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1346    E = P->getSubExpr();
1347
1348  return E;
1349}
1350
1351/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1352/// or CastExprs or ImplicitCastExprs, returning their operand.
1353Expr *Expr::IgnoreParenCasts() {
1354  Expr *E = this;
1355  while (true) {
1356    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1357      E = P->getSubExpr();
1358    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1359      E = P->getSubExpr();
1360    else
1361      return E;
1362  }
1363}
1364
1365/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1366/// value (including ptr->int casts of the same size).  Strip off any
1367/// ParenExpr or CastExprs, returning their operand.
1368Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1369  Expr *E = this;
1370  while (true) {
1371    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1372      E = P->getSubExpr();
1373      continue;
1374    }
1375
1376    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1377      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1378      // ptr<->int casts of the same width.  We also ignore all identify casts.
1379      Expr *SE = P->getSubExpr();
1380
1381      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1382        E = SE;
1383        continue;
1384      }
1385
1386      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1387          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1388          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1389        E = SE;
1390        continue;
1391      }
1392    }
1393
1394    return E;
1395  }
1396}
1397
1398bool Expr::isDefaultArgument() const {
1399  const Expr *E = this;
1400  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1401    E = ICE->getSubExprAsWritten();
1402
1403  return isa<CXXDefaultArgExpr>(E);
1404}
1405
1406/// hasAnyTypeDependentArguments - Determines if any of the expressions
1407/// in Exprs is type-dependent.
1408bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1409  for (unsigned I = 0; I < NumExprs; ++I)
1410    if (Exprs[I]->isTypeDependent())
1411      return true;
1412
1413  return false;
1414}
1415
1416/// hasAnyValueDependentArguments - Determines if any of the expressions
1417/// in Exprs is value-dependent.
1418bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1419  for (unsigned I = 0; I < NumExprs; ++I)
1420    if (Exprs[I]->isValueDependent())
1421      return true;
1422
1423  return false;
1424}
1425
1426bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1427  // This function is attempting whether an expression is an initializer
1428  // which can be evaluated at compile-time.  isEvaluatable handles most
1429  // of the cases, but it can't deal with some initializer-specific
1430  // expressions, and it can't deal with aggregates; we deal with those here,
1431  // and fall back to isEvaluatable for the other cases.
1432
1433  // FIXME: This function assumes the variable being assigned to
1434  // isn't a reference type!
1435
1436  switch (getStmtClass()) {
1437  default: break;
1438  case StringLiteralClass:
1439  case ObjCStringLiteralClass:
1440  case ObjCEncodeExprClass:
1441    return true;
1442  case CompoundLiteralExprClass: {
1443    // This handles gcc's extension that allows global initializers like
1444    // "struct x {int x;} x = (struct x) {};".
1445    // FIXME: This accepts other cases it shouldn't!
1446    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1447    return Exp->isConstantInitializer(Ctx);
1448  }
1449  case InitListExprClass: {
1450    // FIXME: This doesn't deal with fields with reference types correctly.
1451    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1452    // to bitfields.
1453    const InitListExpr *Exp = cast<InitListExpr>(this);
1454    unsigned numInits = Exp->getNumInits();
1455    for (unsigned i = 0; i < numInits; i++) {
1456      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1457        return false;
1458    }
1459    return true;
1460  }
1461  case ImplicitValueInitExprClass:
1462    return true;
1463  case ParenExprClass:
1464    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1465  case UnaryOperatorClass: {
1466    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1467    if (Exp->getOpcode() == UnaryOperator::Extension)
1468      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1469    break;
1470  }
1471  case BinaryOperatorClass: {
1472    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1473    // but this handles the common case.
1474    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1475    if (Exp->getOpcode() == BinaryOperator::Sub &&
1476        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1477        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1478      return true;
1479    break;
1480  }
1481  case ImplicitCastExprClass:
1482  case CStyleCastExprClass:
1483    // Handle casts with a destination that's a struct or union; this
1484    // deals with both the gcc no-op struct cast extension and the
1485    // cast-to-union extension.
1486    if (getType()->isRecordType())
1487      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1488
1489    // Integer->integer casts can be handled here, which is important for
1490    // things like (int)(&&x-&&y).  Scary but true.
1491    if (getType()->isIntegerType() &&
1492        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1493      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1494
1495    break;
1496  }
1497  return isEvaluatable(Ctx);
1498}
1499
1500/// isIntegerConstantExpr - this recursive routine will test if an expression is
1501/// an integer constant expression.
1502
1503/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1504/// comma, etc
1505///
1506/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1507/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1508/// cast+dereference.
1509
1510// CheckICE - This function does the fundamental ICE checking: the returned
1511// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1512// Note that to reduce code duplication, this helper does no evaluation
1513// itself; the caller checks whether the expression is evaluatable, and
1514// in the rare cases where CheckICE actually cares about the evaluated
1515// value, it calls into Evalute.
1516//
1517// Meanings of Val:
1518// 0: This expression is an ICE if it can be evaluated by Evaluate.
1519// 1: This expression is not an ICE, but if it isn't evaluated, it's
1520//    a legal subexpression for an ICE. This return value is used to handle
1521//    the comma operator in C99 mode.
1522// 2: This expression is not an ICE, and is not a legal subexpression for one.
1523
1524struct ICEDiag {
1525  unsigned Val;
1526  SourceLocation Loc;
1527
1528  public:
1529  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1530  ICEDiag() : Val(0) {}
1531};
1532
1533ICEDiag NoDiag() { return ICEDiag(); }
1534
1535static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1536  Expr::EvalResult EVResult;
1537  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1538      !EVResult.Val.isInt()) {
1539    return ICEDiag(2, E->getLocStart());
1540  }
1541  return NoDiag();
1542}
1543
1544static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1545  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1546  if (!E->getType()->isIntegralType()) {
1547    return ICEDiag(2, E->getLocStart());
1548  }
1549
1550  switch (E->getStmtClass()) {
1551#define STMT(Node, Base) case Expr::Node##Class:
1552#define EXPR(Node, Base)
1553#include "clang/AST/StmtNodes.def"
1554  case Expr::PredefinedExprClass:
1555  case Expr::FloatingLiteralClass:
1556  case Expr::ImaginaryLiteralClass:
1557  case Expr::StringLiteralClass:
1558  case Expr::ArraySubscriptExprClass:
1559  case Expr::MemberExprClass:
1560  case Expr::CompoundAssignOperatorClass:
1561  case Expr::CompoundLiteralExprClass:
1562  case Expr::ExtVectorElementExprClass:
1563  case Expr::InitListExprClass:
1564  case Expr::DesignatedInitExprClass:
1565  case Expr::ImplicitValueInitExprClass:
1566  case Expr::ParenListExprClass:
1567  case Expr::VAArgExprClass:
1568  case Expr::AddrLabelExprClass:
1569  case Expr::StmtExprClass:
1570  case Expr::CXXMemberCallExprClass:
1571  case Expr::CXXDynamicCastExprClass:
1572  case Expr::CXXTypeidExprClass:
1573  case Expr::CXXNullPtrLiteralExprClass:
1574  case Expr::CXXThisExprClass:
1575  case Expr::CXXThrowExprClass:
1576  case Expr::CXXNewExprClass:
1577  case Expr::CXXDeleteExprClass:
1578  case Expr::CXXPseudoDestructorExprClass:
1579  case Expr::UnresolvedLookupExprClass:
1580  case Expr::DependentScopeDeclRefExprClass:
1581  case Expr::CXXConstructExprClass:
1582  case Expr::CXXBindTemporaryExprClass:
1583  case Expr::CXXExprWithTemporariesClass:
1584  case Expr::CXXTemporaryObjectExprClass:
1585  case Expr::CXXUnresolvedConstructExprClass:
1586  case Expr::CXXDependentScopeMemberExprClass:
1587  case Expr::UnresolvedMemberExprClass:
1588  case Expr::ObjCStringLiteralClass:
1589  case Expr::ObjCEncodeExprClass:
1590  case Expr::ObjCMessageExprClass:
1591  case Expr::ObjCSelectorExprClass:
1592  case Expr::ObjCProtocolExprClass:
1593  case Expr::ObjCIvarRefExprClass:
1594  case Expr::ObjCPropertyRefExprClass:
1595  case Expr::ObjCImplicitSetterGetterRefExprClass:
1596  case Expr::ObjCSuperExprClass:
1597  case Expr::ObjCIsaExprClass:
1598  case Expr::ShuffleVectorExprClass:
1599  case Expr::BlockExprClass:
1600  case Expr::BlockDeclRefExprClass:
1601  case Expr::NoStmtClass:
1602  case Expr::ExprClass:
1603    return ICEDiag(2, E->getLocStart());
1604
1605  case Expr::GNUNullExprClass:
1606    // GCC considers the GNU __null value to be an integral constant expression.
1607    return NoDiag();
1608
1609  case Expr::ParenExprClass:
1610    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1611  case Expr::IntegerLiteralClass:
1612  case Expr::CharacterLiteralClass:
1613  case Expr::CXXBoolLiteralExprClass:
1614  case Expr::CXXZeroInitValueExprClass:
1615  case Expr::TypesCompatibleExprClass:
1616  case Expr::UnaryTypeTraitExprClass:
1617    return NoDiag();
1618  case Expr::CallExprClass:
1619  case Expr::CXXOperatorCallExprClass: {
1620    const CallExpr *CE = cast<CallExpr>(E);
1621    if (CE->isBuiltinCall(Ctx))
1622      return CheckEvalInICE(E, Ctx);
1623    return ICEDiag(2, E->getLocStart());
1624  }
1625  case Expr::DeclRefExprClass:
1626    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1627      return NoDiag();
1628    if (Ctx.getLangOptions().CPlusPlus &&
1629        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1630      // C++ 7.1.5.1p2
1631      //   A variable of non-volatile const-qualified integral or enumeration
1632      //   type initialized by an ICE can be used in ICEs.
1633      if (const VarDecl *Dcl =
1634              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1635        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1636        if (Quals.hasVolatile() || !Quals.hasConst())
1637          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1638
1639        // Look for the definition of this variable, which will actually have
1640        // an initializer.
1641        const VarDecl *Def = 0;
1642        const Expr *Init = Dcl->getDefinition(Def);
1643        if (Init) {
1644          if (Def->isInitKnownICE()) {
1645            // We have already checked whether this subexpression is an
1646            // integral constant expression.
1647            if (Def->isInitICE())
1648              return NoDiag();
1649            else
1650              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1651          }
1652
1653          // C++ [class.static.data]p4:
1654          //   If a static data member is of const integral or const
1655          //   enumeration type, its declaration in the class definition can
1656          //   specify a constant-initializer which shall be an integral
1657          //   constant expression (5.19). In that case, the member can appear
1658          //   in integral constant expressions.
1659          if (Def->isOutOfLine()) {
1660            Dcl->setInitKnownICE(false);
1661            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1662          }
1663
1664          if (Dcl->isCheckingICE()) {
1665            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1666          }
1667
1668          Dcl->setCheckingICE();
1669          ICEDiag Result = CheckICE(Init, Ctx);
1670          // Cache the result of the ICE test.
1671          Dcl->setInitKnownICE(Result.Val == 0);
1672          return Result;
1673        }
1674      }
1675    }
1676    return ICEDiag(2, E->getLocStart());
1677  case Expr::UnaryOperatorClass: {
1678    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1679    switch (Exp->getOpcode()) {
1680    case UnaryOperator::PostInc:
1681    case UnaryOperator::PostDec:
1682    case UnaryOperator::PreInc:
1683    case UnaryOperator::PreDec:
1684    case UnaryOperator::AddrOf:
1685    case UnaryOperator::Deref:
1686      return ICEDiag(2, E->getLocStart());
1687
1688    case UnaryOperator::Extension:
1689    case UnaryOperator::LNot:
1690    case UnaryOperator::Plus:
1691    case UnaryOperator::Minus:
1692    case UnaryOperator::Not:
1693    case UnaryOperator::Real:
1694    case UnaryOperator::Imag:
1695      return CheckICE(Exp->getSubExpr(), Ctx);
1696    case UnaryOperator::OffsetOf:
1697      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1698      // Evaluate matches the proposed gcc behavior for cases like
1699      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1700      // compliance: we should warn earlier for offsetof expressions with
1701      // array subscripts that aren't ICEs, and if the array subscripts
1702      // are ICEs, the value of the offsetof must be an integer constant.
1703      return CheckEvalInICE(E, Ctx);
1704    }
1705  }
1706  case Expr::SizeOfAlignOfExprClass: {
1707    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1708    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1709      return ICEDiag(2, E->getLocStart());
1710    return NoDiag();
1711  }
1712  case Expr::BinaryOperatorClass: {
1713    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1714    switch (Exp->getOpcode()) {
1715    case BinaryOperator::PtrMemD:
1716    case BinaryOperator::PtrMemI:
1717    case BinaryOperator::Assign:
1718    case BinaryOperator::MulAssign:
1719    case BinaryOperator::DivAssign:
1720    case BinaryOperator::RemAssign:
1721    case BinaryOperator::AddAssign:
1722    case BinaryOperator::SubAssign:
1723    case BinaryOperator::ShlAssign:
1724    case BinaryOperator::ShrAssign:
1725    case BinaryOperator::AndAssign:
1726    case BinaryOperator::XorAssign:
1727    case BinaryOperator::OrAssign:
1728      return ICEDiag(2, E->getLocStart());
1729
1730    case BinaryOperator::Mul:
1731    case BinaryOperator::Div:
1732    case BinaryOperator::Rem:
1733    case BinaryOperator::Add:
1734    case BinaryOperator::Sub:
1735    case BinaryOperator::Shl:
1736    case BinaryOperator::Shr:
1737    case BinaryOperator::LT:
1738    case BinaryOperator::GT:
1739    case BinaryOperator::LE:
1740    case BinaryOperator::GE:
1741    case BinaryOperator::EQ:
1742    case BinaryOperator::NE:
1743    case BinaryOperator::And:
1744    case BinaryOperator::Xor:
1745    case BinaryOperator::Or:
1746    case BinaryOperator::Comma: {
1747      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1748      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1749      if (Exp->getOpcode() == BinaryOperator::Div ||
1750          Exp->getOpcode() == BinaryOperator::Rem) {
1751        // Evaluate gives an error for undefined Div/Rem, so make sure
1752        // we don't evaluate one.
1753        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1754          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1755          if (REval == 0)
1756            return ICEDiag(1, E->getLocStart());
1757          if (REval.isSigned() && REval.isAllOnesValue()) {
1758            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1759            if (LEval.isMinSignedValue())
1760              return ICEDiag(1, E->getLocStart());
1761          }
1762        }
1763      }
1764      if (Exp->getOpcode() == BinaryOperator::Comma) {
1765        if (Ctx.getLangOptions().C99) {
1766          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1767          // if it isn't evaluated.
1768          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1769            return ICEDiag(1, E->getLocStart());
1770        } else {
1771          // In both C89 and C++, commas in ICEs are illegal.
1772          return ICEDiag(2, E->getLocStart());
1773        }
1774      }
1775      if (LHSResult.Val >= RHSResult.Val)
1776        return LHSResult;
1777      return RHSResult;
1778    }
1779    case BinaryOperator::LAnd:
1780    case BinaryOperator::LOr: {
1781      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1782      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1783      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1784        // Rare case where the RHS has a comma "side-effect"; we need
1785        // to actually check the condition to see whether the side
1786        // with the comma is evaluated.
1787        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1788            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1789          return RHSResult;
1790        return NoDiag();
1791      }
1792
1793      if (LHSResult.Val >= RHSResult.Val)
1794        return LHSResult;
1795      return RHSResult;
1796    }
1797    }
1798  }
1799  case Expr::CastExprClass:
1800  case Expr::ImplicitCastExprClass:
1801  case Expr::ExplicitCastExprClass:
1802  case Expr::CStyleCastExprClass:
1803  case Expr::CXXFunctionalCastExprClass:
1804  case Expr::CXXNamedCastExprClass:
1805  case Expr::CXXStaticCastExprClass:
1806  case Expr::CXXReinterpretCastExprClass:
1807  case Expr::CXXConstCastExprClass: {
1808    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1809    if (SubExpr->getType()->isIntegralType())
1810      return CheckICE(SubExpr, Ctx);
1811    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1812      return NoDiag();
1813    return ICEDiag(2, E->getLocStart());
1814  }
1815  case Expr::ConditionalOperatorClass: {
1816    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1817    // If the condition (ignoring parens) is a __builtin_constant_p call,
1818    // then only the true side is actually considered in an integer constant
1819    // expression, and it is fully evaluated.  This is an important GNU
1820    // extension.  See GCC PR38377 for discussion.
1821    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1822      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1823        Expr::EvalResult EVResult;
1824        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1825            !EVResult.Val.isInt()) {
1826          return ICEDiag(2, E->getLocStart());
1827        }
1828        return NoDiag();
1829      }
1830    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1831    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1832    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1833    if (CondResult.Val == 2)
1834      return CondResult;
1835    if (TrueResult.Val == 2)
1836      return TrueResult;
1837    if (FalseResult.Val == 2)
1838      return FalseResult;
1839    if (CondResult.Val == 1)
1840      return CondResult;
1841    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1842      return NoDiag();
1843    // Rare case where the diagnostics depend on which side is evaluated
1844    // Note that if we get here, CondResult is 0, and at least one of
1845    // TrueResult and FalseResult is non-zero.
1846    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1847      return FalseResult;
1848    }
1849    return TrueResult;
1850  }
1851  case Expr::CXXDefaultArgExprClass:
1852    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1853  case Expr::ChooseExprClass: {
1854    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1855  }
1856  }
1857
1858  // Silence a GCC warning
1859  return ICEDiag(2, E->getLocStart());
1860}
1861
1862bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1863                                 SourceLocation *Loc, bool isEvaluated) const {
1864  ICEDiag d = CheckICE(this, Ctx);
1865  if (d.Val != 0) {
1866    if (Loc) *Loc = d.Loc;
1867    return false;
1868  }
1869  EvalResult EvalResult;
1870  if (!Evaluate(EvalResult, Ctx))
1871    llvm_unreachable("ICE cannot be evaluated!");
1872  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1873  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1874  Result = EvalResult.Val.getInt();
1875  return true;
1876}
1877
1878/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1879/// integer constant expression with the value zero, or if this is one that is
1880/// cast to void*.
1881bool Expr::isNullPointerConstant(ASTContext &Ctx,
1882                                 NullPointerConstantValueDependence NPC) const {
1883  if (isValueDependent()) {
1884    switch (NPC) {
1885    case NPC_NeverValueDependent:
1886      assert(false && "Unexpected value dependent expression!");
1887      // If the unthinkable happens, fall through to the safest alternative.
1888
1889    case NPC_ValueDependentIsNull:
1890      return isTypeDependent() || getType()->isIntegralType();
1891
1892    case NPC_ValueDependentIsNotNull:
1893      return false;
1894    }
1895  }
1896
1897  // Strip off a cast to void*, if it exists. Except in C++.
1898  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1899    if (!Ctx.getLangOptions().CPlusPlus) {
1900      // Check that it is a cast to void*.
1901      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1902        QualType Pointee = PT->getPointeeType();
1903        if (!Pointee.hasQualifiers() &&
1904            Pointee->isVoidType() &&                              // to void*
1905            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1906          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1907      }
1908    }
1909  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1910    // Ignore the ImplicitCastExpr type entirely.
1911    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1912  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1913    // Accept ((void*)0) as a null pointer constant, as many other
1914    // implementations do.
1915    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1916  } else if (const CXXDefaultArgExpr *DefaultArg
1917               = dyn_cast<CXXDefaultArgExpr>(this)) {
1918    // See through default argument expressions
1919    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1920  } else if (isa<GNUNullExpr>(this)) {
1921    // The GNU __null extension is always a null pointer constant.
1922    return true;
1923  }
1924
1925  // C++0x nullptr_t is always a null pointer constant.
1926  if (getType()->isNullPtrType())
1927    return true;
1928
1929  // This expression must be an integer type.
1930  if (!getType()->isIntegerType() ||
1931      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1932    return false;
1933
1934  // If we have an integer constant expression, we need to *evaluate* it and
1935  // test for the value 0.
1936  llvm::APSInt Result;
1937  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1938}
1939
1940FieldDecl *Expr::getBitField() {
1941  Expr *E = this->IgnoreParens();
1942
1943  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1944    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1945      if (Field->isBitField())
1946        return Field;
1947
1948  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1949    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1950      return BinOp->getLHS()->getBitField();
1951
1952  return 0;
1953}
1954
1955/// isArrow - Return true if the base expression is a pointer to vector,
1956/// return false if the base expression is a vector.
1957bool ExtVectorElementExpr::isArrow() const {
1958  return getBase()->getType()->isPointerType();
1959}
1960
1961unsigned ExtVectorElementExpr::getNumElements() const {
1962  if (const VectorType *VT = getType()->getAs<VectorType>())
1963    return VT->getNumElements();
1964  return 1;
1965}
1966
1967/// containsDuplicateElements - Return true if any element access is repeated.
1968bool ExtVectorElementExpr::containsDuplicateElements() const {
1969  // FIXME: Refactor this code to an accessor on the AST node which returns the
1970  // "type" of component access, and share with code below and in Sema.
1971  llvm::StringRef Comp = Accessor->getName();
1972
1973  // Halving swizzles do not contain duplicate elements.
1974  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1975    return false;
1976
1977  // Advance past s-char prefix on hex swizzles.
1978  if (Comp[0] == 's' || Comp[0] == 'S')
1979    Comp = Comp.substr(1);
1980
1981  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1982    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1983        return true;
1984
1985  return false;
1986}
1987
1988/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1989void ExtVectorElementExpr::getEncodedElementAccess(
1990                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1991  llvm::StringRef Comp = Accessor->getName();
1992  if (Comp[0] == 's' || Comp[0] == 'S')
1993    Comp = Comp.substr(1);
1994
1995  bool isHi =   Comp == "hi";
1996  bool isLo =   Comp == "lo";
1997  bool isEven = Comp == "even";
1998  bool isOdd  = Comp == "odd";
1999
2000  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2001    uint64_t Index;
2002
2003    if (isHi)
2004      Index = e + i;
2005    else if (isLo)
2006      Index = i;
2007    else if (isEven)
2008      Index = 2 * i;
2009    else if (isOdd)
2010      Index = 2 * i + 1;
2011    else
2012      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2013
2014    Elts.push_back(Index);
2015  }
2016}
2017
2018// constructor for instance messages.
2019ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2020                QualType retType, ObjCMethodDecl *mproto,
2021                SourceLocation LBrac, SourceLocation RBrac,
2022                Expr **ArgExprs, unsigned nargs)
2023  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2024    MethodProto(mproto) {
2025  NumArgs = nargs;
2026  SubExprs = new Stmt*[NumArgs+1];
2027  SubExprs[RECEIVER] = receiver;
2028  if (NumArgs) {
2029    for (unsigned i = 0; i != NumArgs; ++i)
2030      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2031  }
2032  LBracloc = LBrac;
2033  RBracloc = RBrac;
2034}
2035
2036// constructor for class messages.
2037// FIXME: clsName should be typed to ObjCInterfaceType
2038ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2039                QualType retType, ObjCMethodDecl *mproto,
2040                SourceLocation LBrac, SourceLocation RBrac,
2041                Expr **ArgExprs, unsigned nargs)
2042  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2043    MethodProto(mproto) {
2044  NumArgs = nargs;
2045  SubExprs = new Stmt*[NumArgs+1];
2046  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2047  if (NumArgs) {
2048    for (unsigned i = 0; i != NumArgs; ++i)
2049      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2050  }
2051  LBracloc = LBrac;
2052  RBracloc = RBrac;
2053}
2054
2055// constructor for class messages.
2056ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2057                                 QualType retType, ObjCMethodDecl *mproto,
2058                                 SourceLocation LBrac, SourceLocation RBrac,
2059                                 Expr **ArgExprs, unsigned nargs)
2060: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2061MethodProto(mproto) {
2062  NumArgs = nargs;
2063  SubExprs = new Stmt*[NumArgs+1];
2064  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2065  if (NumArgs) {
2066    for (unsigned i = 0; i != NumArgs; ++i)
2067      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2068  }
2069  LBracloc = LBrac;
2070  RBracloc = RBrac;
2071}
2072
2073ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2074  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2075  switch (x & Flags) {
2076    default:
2077      assert(false && "Invalid ObjCMessageExpr.");
2078    case IsInstMeth:
2079      return ClassInfo(0, 0);
2080    case IsClsMethDeclUnknown:
2081      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2082    case IsClsMethDeclKnown: {
2083      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2084      return ClassInfo(D, D->getIdentifier());
2085    }
2086  }
2087}
2088
2089void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2090  if (CI.first == 0 && CI.second == 0)
2091    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2092  else if (CI.first == 0)
2093    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2094  else
2095    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2096}
2097
2098
2099bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2100  return getCond()->EvaluateAsInt(C) != 0;
2101}
2102
2103void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2104                                 unsigned NumExprs) {
2105  if (SubExprs) C.Deallocate(SubExprs);
2106
2107  SubExprs = new (C) Stmt* [NumExprs];
2108  this->NumExprs = NumExprs;
2109  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2110}
2111
2112void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2113  DestroyChildren(C);
2114  if (SubExprs) C.Deallocate(SubExprs);
2115  this->~ShuffleVectorExpr();
2116  C.Deallocate(this);
2117}
2118
2119void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2120  // Override default behavior of traversing children. If this has a type
2121  // operand and the type is a variable-length array, the child iteration
2122  // will iterate over the size expression. However, this expression belongs
2123  // to the type, not to this, so we don't want to delete it.
2124  // We still want to delete this expression.
2125  if (isArgumentType()) {
2126    this->~SizeOfAlignOfExpr();
2127    C.Deallocate(this);
2128  }
2129  else
2130    Expr::DoDestroy(C);
2131}
2132
2133//===----------------------------------------------------------------------===//
2134//  DesignatedInitExpr
2135//===----------------------------------------------------------------------===//
2136
2137IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2138  assert(Kind == FieldDesignator && "Only valid on a field designator");
2139  if (Field.NameOrField & 0x01)
2140    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2141  else
2142    return getField()->getIdentifier();
2143}
2144
2145DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2146                                       const Designator *Designators,
2147                                       SourceLocation EqualOrColonLoc,
2148                                       bool GNUSyntax,
2149                                       Expr **IndexExprs,
2150                                       unsigned NumIndexExprs,
2151                                       Expr *Init)
2152  : Expr(DesignatedInitExprClass, Ty,
2153         Init->isTypeDependent(), Init->isValueDependent()),
2154    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2155    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2156  this->Designators = new Designator[NumDesignators];
2157
2158  // Record the initializer itself.
2159  child_iterator Child = child_begin();
2160  *Child++ = Init;
2161
2162  // Copy the designators and their subexpressions, computing
2163  // value-dependence along the way.
2164  unsigned IndexIdx = 0;
2165  for (unsigned I = 0; I != NumDesignators; ++I) {
2166    this->Designators[I] = Designators[I];
2167
2168    if (this->Designators[I].isArrayDesignator()) {
2169      // Compute type- and value-dependence.
2170      Expr *Index = IndexExprs[IndexIdx];
2171      ValueDependent = ValueDependent ||
2172        Index->isTypeDependent() || Index->isValueDependent();
2173
2174      // Copy the index expressions into permanent storage.
2175      *Child++ = IndexExprs[IndexIdx++];
2176    } else if (this->Designators[I].isArrayRangeDesignator()) {
2177      // Compute type- and value-dependence.
2178      Expr *Start = IndexExprs[IndexIdx];
2179      Expr *End = IndexExprs[IndexIdx + 1];
2180      ValueDependent = ValueDependent ||
2181        Start->isTypeDependent() || Start->isValueDependent() ||
2182        End->isTypeDependent() || End->isValueDependent();
2183
2184      // Copy the start/end expressions into permanent storage.
2185      *Child++ = IndexExprs[IndexIdx++];
2186      *Child++ = IndexExprs[IndexIdx++];
2187    }
2188  }
2189
2190  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2191}
2192
2193DesignatedInitExpr *
2194DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2195                           unsigned NumDesignators,
2196                           Expr **IndexExprs, unsigned NumIndexExprs,
2197                           SourceLocation ColonOrEqualLoc,
2198                           bool UsesColonSyntax, Expr *Init) {
2199  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2200                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2201  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2202                                      ColonOrEqualLoc, UsesColonSyntax,
2203                                      IndexExprs, NumIndexExprs, Init);
2204}
2205
2206DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2207                                                    unsigned NumIndexExprs) {
2208  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2209                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2210  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2211}
2212
2213void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2214                                        unsigned NumDesigs) {
2215  if (Designators)
2216    delete [] Designators;
2217
2218  Designators = new Designator[NumDesigs];
2219  NumDesignators = NumDesigs;
2220  for (unsigned I = 0; I != NumDesigs; ++I)
2221    Designators[I] = Desigs[I];
2222}
2223
2224SourceRange DesignatedInitExpr::getSourceRange() const {
2225  SourceLocation StartLoc;
2226  Designator &First =
2227    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2228  if (First.isFieldDesignator()) {
2229    if (GNUSyntax)
2230      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2231    else
2232      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2233  } else
2234    StartLoc =
2235      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2236  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2237}
2238
2239Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2240  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2241  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2242  Ptr += sizeof(DesignatedInitExpr);
2243  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2244  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2245}
2246
2247Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2248  assert(D.Kind == Designator::ArrayRangeDesignator &&
2249         "Requires array range designator");
2250  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2251  Ptr += sizeof(DesignatedInitExpr);
2252  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2253  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2254}
2255
2256Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2257  assert(D.Kind == Designator::ArrayRangeDesignator &&
2258         "Requires array range designator");
2259  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2260  Ptr += sizeof(DesignatedInitExpr);
2261  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2262  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2263}
2264
2265/// \brief Replaces the designator at index @p Idx with the series
2266/// of designators in [First, Last).
2267void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2268                                          const Designator *First,
2269                                          const Designator *Last) {
2270  unsigned NumNewDesignators = Last - First;
2271  if (NumNewDesignators == 0) {
2272    std::copy_backward(Designators + Idx + 1,
2273                       Designators + NumDesignators,
2274                       Designators + Idx);
2275    --NumNewDesignators;
2276    return;
2277  } else if (NumNewDesignators == 1) {
2278    Designators[Idx] = *First;
2279    return;
2280  }
2281
2282  Designator *NewDesignators
2283    = new Designator[NumDesignators - 1 + NumNewDesignators];
2284  std::copy(Designators, Designators + Idx, NewDesignators);
2285  std::copy(First, Last, NewDesignators + Idx);
2286  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2287            NewDesignators + Idx + NumNewDesignators);
2288  delete [] Designators;
2289  Designators = NewDesignators;
2290  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2291}
2292
2293void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2294  delete [] Designators;
2295  Expr::DoDestroy(C);
2296}
2297
2298ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2299                             Expr **exprs, unsigned nexprs,
2300                             SourceLocation rparenloc)
2301: Expr(ParenListExprClass, QualType(),
2302       hasAnyTypeDependentArguments(exprs, nexprs),
2303       hasAnyValueDependentArguments(exprs, nexprs)),
2304  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2305
2306  Exprs = new (C) Stmt*[nexprs];
2307  for (unsigned i = 0; i != nexprs; ++i)
2308    Exprs[i] = exprs[i];
2309}
2310
2311void ParenListExpr::DoDestroy(ASTContext& C) {
2312  DestroyChildren(C);
2313  if (Exprs) C.Deallocate(Exprs);
2314  this->~ParenListExpr();
2315  C.Deallocate(this);
2316}
2317
2318//===----------------------------------------------------------------------===//
2319//  ExprIterator.
2320//===----------------------------------------------------------------------===//
2321
2322Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2323Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2324Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2325const Expr* ConstExprIterator::operator[](size_t idx) const {
2326  return cast<Expr>(I[idx]);
2327}
2328const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2329const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2330
2331//===----------------------------------------------------------------------===//
2332//  Child Iterators for iterating over subexpressions/substatements
2333//===----------------------------------------------------------------------===//
2334
2335// DeclRefExpr
2336Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2337Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2338
2339// ObjCIvarRefExpr
2340Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2341Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2342
2343// ObjCPropertyRefExpr
2344Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2345Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2346
2347// ObjCImplicitSetterGetterRefExpr
2348Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2349  return &Base;
2350}
2351Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2352  return &Base+1;
2353}
2354
2355// ObjCSuperExpr
2356Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2357Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2358
2359// ObjCIsaExpr
2360Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2361Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2362
2363// PredefinedExpr
2364Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2365Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2366
2367// IntegerLiteral
2368Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2369Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2370
2371// CharacterLiteral
2372Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2373Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2374
2375// FloatingLiteral
2376Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2377Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2378
2379// ImaginaryLiteral
2380Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2381Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2382
2383// StringLiteral
2384Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2385Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2386
2387// ParenExpr
2388Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2389Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2390
2391// UnaryOperator
2392Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2393Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2394
2395// SizeOfAlignOfExpr
2396Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2397  // If this is of a type and the type is a VLA type (and not a typedef), the
2398  // size expression of the VLA needs to be treated as an executable expression.
2399  // Why isn't this weirdness documented better in StmtIterator?
2400  if (isArgumentType()) {
2401    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2402                                   getArgumentType().getTypePtr()))
2403      return child_iterator(T);
2404    return child_iterator();
2405  }
2406  return child_iterator(&Argument.Ex);
2407}
2408Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2409  if (isArgumentType())
2410    return child_iterator();
2411  return child_iterator(&Argument.Ex + 1);
2412}
2413
2414// ArraySubscriptExpr
2415Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2416  return &SubExprs[0];
2417}
2418Stmt::child_iterator ArraySubscriptExpr::child_end() {
2419  return &SubExprs[0]+END_EXPR;
2420}
2421
2422// CallExpr
2423Stmt::child_iterator CallExpr::child_begin() {
2424  return &SubExprs[0];
2425}
2426Stmt::child_iterator CallExpr::child_end() {
2427  return &SubExprs[0]+NumArgs+ARGS_START;
2428}
2429
2430// MemberExpr
2431Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2432Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2433
2434// ExtVectorElementExpr
2435Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2436Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2437
2438// CompoundLiteralExpr
2439Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2440Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2441
2442// CastExpr
2443Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2444Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2445
2446// BinaryOperator
2447Stmt::child_iterator BinaryOperator::child_begin() {
2448  return &SubExprs[0];
2449}
2450Stmt::child_iterator BinaryOperator::child_end() {
2451  return &SubExprs[0]+END_EXPR;
2452}
2453
2454// ConditionalOperator
2455Stmt::child_iterator ConditionalOperator::child_begin() {
2456  return &SubExprs[0];
2457}
2458Stmt::child_iterator ConditionalOperator::child_end() {
2459  return &SubExprs[0]+END_EXPR;
2460}
2461
2462// AddrLabelExpr
2463Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2464Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2465
2466// StmtExpr
2467Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2468Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2469
2470// TypesCompatibleExpr
2471Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2472  return child_iterator();
2473}
2474
2475Stmt::child_iterator TypesCompatibleExpr::child_end() {
2476  return child_iterator();
2477}
2478
2479// ChooseExpr
2480Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2481Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2482
2483// GNUNullExpr
2484Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2485Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2486
2487// ShuffleVectorExpr
2488Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2489  return &SubExprs[0];
2490}
2491Stmt::child_iterator ShuffleVectorExpr::child_end() {
2492  return &SubExprs[0]+NumExprs;
2493}
2494
2495// VAArgExpr
2496Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2497Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2498
2499// InitListExpr
2500Stmt::child_iterator InitListExpr::child_begin() {
2501  return InitExprs.size() ? &InitExprs[0] : 0;
2502}
2503Stmt::child_iterator InitListExpr::child_end() {
2504  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2505}
2506
2507// DesignatedInitExpr
2508Stmt::child_iterator DesignatedInitExpr::child_begin() {
2509  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2510  Ptr += sizeof(DesignatedInitExpr);
2511  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2512}
2513Stmt::child_iterator DesignatedInitExpr::child_end() {
2514  return child_iterator(&*child_begin() + NumSubExprs);
2515}
2516
2517// ImplicitValueInitExpr
2518Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2519  return child_iterator();
2520}
2521
2522Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2523  return child_iterator();
2524}
2525
2526// ParenListExpr
2527Stmt::child_iterator ParenListExpr::child_begin() {
2528  return &Exprs[0];
2529}
2530Stmt::child_iterator ParenListExpr::child_end() {
2531  return &Exprs[0]+NumExprs;
2532}
2533
2534// ObjCStringLiteral
2535Stmt::child_iterator ObjCStringLiteral::child_begin() {
2536  return &String;
2537}
2538Stmt::child_iterator ObjCStringLiteral::child_end() {
2539  return &String+1;
2540}
2541
2542// ObjCEncodeExpr
2543Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2544Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2545
2546// ObjCSelectorExpr
2547Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2548  return child_iterator();
2549}
2550Stmt::child_iterator ObjCSelectorExpr::child_end() {
2551  return child_iterator();
2552}
2553
2554// ObjCProtocolExpr
2555Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2556  return child_iterator();
2557}
2558Stmt::child_iterator ObjCProtocolExpr::child_end() {
2559  return child_iterator();
2560}
2561
2562// ObjCMessageExpr
2563Stmt::child_iterator ObjCMessageExpr::child_begin() {
2564  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2565}
2566Stmt::child_iterator ObjCMessageExpr::child_end() {
2567  return &SubExprs[0]+ARGS_START+getNumArgs();
2568}
2569
2570// Blocks
2571Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2572Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2573
2574Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2575Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2576