Expr.cpp revision e883d27dfdf59eeac18f9276bf2460a549e68d31
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         NamedDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  if (Qualifier) {
122    NameQualifier *NQ = getNameQualifier();
123    NQ->NNS = Qualifier;
124    NQ->Range = QualifierRange;
125  }
126
127  if (TemplateArgs)
128    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
129
130  computeDependence();
131}
132
133DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
134                                 NestedNameSpecifier *Qualifier,
135                                 SourceRange QualifierRange,
136                                 NamedDecl *D,
137                                 SourceLocation NameLoc,
138                                 QualType T,
139                                 const TemplateArgumentListInfo *TemplateArgs) {
140  std::size_t Size = sizeof(DeclRefExpr);
141  if (Qualifier != 0)
142    Size += sizeof(NameQualifier);
143
144  if (TemplateArgs)
145    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
146
147  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
148  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
149                               TemplateArgs, T);
150}
151
152SourceRange DeclRefExpr::getSourceRange() const {
153  // FIXME: Does not handle multi-token names well, e.g., operator[].
154  SourceRange R(Loc);
155
156  if (hasQualifier())
157    R.setBegin(getQualifierRange().getBegin());
158  if (hasExplicitTemplateArgumentList())
159    R.setEnd(getRAngleLoc());
160  return R;
161}
162
163// FIXME: Maybe this should use DeclPrinter with a special "print predefined
164// expr" policy instead.
165std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
166                                        const Decl *CurrentDecl) {
167  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
168    if (IT != PrettyFunction)
169      return FD->getNameAsString();
170
171    llvm::SmallString<256> Name;
172    llvm::raw_svector_ostream Out(Name);
173
174    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
175      if (MD->isVirtual())
176        Out << "virtual ";
177    }
178
179    PrintingPolicy Policy(Context.getLangOptions());
180    Policy.SuppressTagKind = true;
181
182    std::string Proto = FD->getQualifiedNameAsString(Policy);
183
184    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
185    const FunctionProtoType *FT = 0;
186    if (FD->hasWrittenPrototype())
187      FT = dyn_cast<FunctionProtoType>(AFT);
188
189    Proto += "(";
190    if (FT) {
191      llvm::raw_string_ostream POut(Proto);
192      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
193        if (i) POut << ", ";
194        std::string Param;
195        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
196        POut << Param;
197      }
198
199      if (FT->isVariadic()) {
200        if (FD->getNumParams()) POut << ", ";
201        POut << "...";
202      }
203    }
204    Proto += ")";
205
206    AFT->getResultType().getAsStringInternal(Proto, Policy);
207
208    Out << Proto;
209
210    Out.flush();
211    return Name.str().str();
212  }
213  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
214    llvm::SmallString<256> Name;
215    llvm::raw_svector_ostream Out(Name);
216    Out << (MD->isInstanceMethod() ? '-' : '+');
217    Out << '[';
218    Out << MD->getClassInterface()->getNameAsString();
219    if (const ObjCCategoryImplDecl *CID =
220        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
221      Out << '(';
222      Out <<  CID->getNameAsString();
223      Out <<  ')';
224    }
225    Out <<  ' ';
226    Out << MD->getSelector().getAsString();
227    Out <<  ']';
228
229    Out.flush();
230    return Name.str().str();
231  }
232  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
233    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
234    return "top level";
235  }
236  return "";
237}
238
239/// getValueAsApproximateDouble - This returns the value as an inaccurate
240/// double.  Note that this may cause loss of precision, but is useful for
241/// debugging dumps, etc.
242double FloatingLiteral::getValueAsApproximateDouble() const {
243  llvm::APFloat V = getValue();
244  bool ignored;
245  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
246            &ignored);
247  return V.convertToDouble();
248}
249
250StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
251                                     unsigned ByteLength, bool Wide,
252                                     QualType Ty,
253                                     const SourceLocation *Loc,
254                                     unsigned NumStrs) {
255  // Allocate enough space for the StringLiteral plus an array of locations for
256  // any concatenated string tokens.
257  void *Mem = C.Allocate(sizeof(StringLiteral)+
258                         sizeof(SourceLocation)*(NumStrs-1),
259                         llvm::alignof<StringLiteral>());
260  StringLiteral *SL = new (Mem) StringLiteral(Ty);
261
262  // OPTIMIZE: could allocate this appended to the StringLiteral.
263  char *AStrData = new (C, 1) char[ByteLength];
264  memcpy(AStrData, StrData, ByteLength);
265  SL->StrData = AStrData;
266  SL->ByteLength = ByteLength;
267  SL->IsWide = Wide;
268  SL->TokLocs[0] = Loc[0];
269  SL->NumConcatenated = NumStrs;
270
271  if (NumStrs != 1)
272    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
273  return SL;
274}
275
276StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
277  void *Mem = C.Allocate(sizeof(StringLiteral)+
278                         sizeof(SourceLocation)*(NumStrs-1),
279                         llvm::alignof<StringLiteral>());
280  StringLiteral *SL = new (Mem) StringLiteral(QualType());
281  SL->StrData = 0;
282  SL->ByteLength = 0;
283  SL->NumConcatenated = NumStrs;
284  return SL;
285}
286
287void StringLiteral::DoDestroy(ASTContext &C) {
288  C.Deallocate(const_cast<char*>(StrData));
289  Expr::DoDestroy(C);
290}
291
292void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
293  if (StrData)
294    C.Deallocate(const_cast<char*>(StrData));
295
296  char *AStrData = new (C, 1) char[Str.size()];
297  memcpy(AStrData, Str.data(), Str.size());
298  StrData = AStrData;
299  ByteLength = Str.size();
300}
301
302/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
303/// corresponds to, e.g. "sizeof" or "[pre]++".
304const char *UnaryOperator::getOpcodeStr(Opcode Op) {
305  switch (Op) {
306  default: assert(0 && "Unknown unary operator");
307  case PostInc: return "++";
308  case PostDec: return "--";
309  case PreInc:  return "++";
310  case PreDec:  return "--";
311  case AddrOf:  return "&";
312  case Deref:   return "*";
313  case Plus:    return "+";
314  case Minus:   return "-";
315  case Not:     return "~";
316  case LNot:    return "!";
317  case Real:    return "__real";
318  case Imag:    return "__imag";
319  case Extension: return "__extension__";
320  case OffsetOf: return "__builtin_offsetof";
321  }
322}
323
324UnaryOperator::Opcode
325UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
326  switch (OO) {
327  default: assert(false && "No unary operator for overloaded function");
328  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
329  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
330  case OO_Amp:        return AddrOf;
331  case OO_Star:       return Deref;
332  case OO_Plus:       return Plus;
333  case OO_Minus:      return Minus;
334  case OO_Tilde:      return Not;
335  case OO_Exclaim:    return LNot;
336  }
337}
338
339OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
340  switch (Opc) {
341  case PostInc: case PreInc: return OO_PlusPlus;
342  case PostDec: case PreDec: return OO_MinusMinus;
343  case AddrOf: return OO_Amp;
344  case Deref: return OO_Star;
345  case Plus: return OO_Plus;
346  case Minus: return OO_Minus;
347  case Not: return OO_Tilde;
348  case LNot: return OO_Exclaim;
349  default: return OO_None;
350  }
351}
352
353
354//===----------------------------------------------------------------------===//
355// Postfix Operators.
356//===----------------------------------------------------------------------===//
357
358CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
359                   unsigned numargs, QualType t, SourceLocation rparenloc)
360  : Expr(SC, t,
361         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
362         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
363    NumArgs(numargs) {
364
365  SubExprs = new (C) Stmt*[numargs+1];
366  SubExprs[FN] = fn;
367  for (unsigned i = 0; i != numargs; ++i)
368    SubExprs[i+ARGS_START] = args[i];
369
370  RParenLoc = rparenloc;
371}
372
373CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
374                   QualType t, SourceLocation rparenloc)
375  : Expr(CallExprClass, t,
376         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
377         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
378    NumArgs(numargs) {
379
380  SubExprs = new (C) Stmt*[numargs+1];
381  SubExprs[FN] = fn;
382  for (unsigned i = 0; i != numargs; ++i)
383    SubExprs[i+ARGS_START] = args[i];
384
385  RParenLoc = rparenloc;
386}
387
388CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
389  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
390  SubExprs = new (C) Stmt*[1];
391}
392
393void CallExpr::DoDestroy(ASTContext& C) {
394  DestroyChildren(C);
395  if (SubExprs) C.Deallocate(SubExprs);
396  this->~CallExpr();
397  C.Deallocate(this);
398}
399
400FunctionDecl *CallExpr::getDirectCallee() {
401  Expr *CEE = getCallee()->IgnoreParenCasts();
402  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
403    return dyn_cast<FunctionDecl>(DRE->getDecl());
404
405  return 0;
406}
407
408/// setNumArgs - This changes the number of arguments present in this call.
409/// Any orphaned expressions are deleted by this, and any new operands are set
410/// to null.
411void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
412  // No change, just return.
413  if (NumArgs == getNumArgs()) return;
414
415  // If shrinking # arguments, just delete the extras and forgot them.
416  if (NumArgs < getNumArgs()) {
417    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
418      getArg(i)->Destroy(C);
419    this->NumArgs = NumArgs;
420    return;
421  }
422
423  // Otherwise, we are growing the # arguments.  New an bigger argument array.
424  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
425  // Copy over args.
426  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
427    NewSubExprs[i] = SubExprs[i];
428  // Null out new args.
429  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
430    NewSubExprs[i] = 0;
431
432  if (SubExprs) C.Deallocate(SubExprs);
433  SubExprs = NewSubExprs;
434  this->NumArgs = NumArgs;
435}
436
437/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
438/// not, return 0.
439unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
440  // All simple function calls (e.g. func()) are implicitly cast to pointer to
441  // function. As a result, we try and obtain the DeclRefExpr from the
442  // ImplicitCastExpr.
443  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
444  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
445    return 0;
446
447  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
448  if (!DRE)
449    return 0;
450
451  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
452  if (!FDecl)
453    return 0;
454
455  if (!FDecl->getIdentifier())
456    return 0;
457
458  return FDecl->getBuiltinID();
459}
460
461QualType CallExpr::getCallReturnType() const {
462  QualType CalleeType = getCallee()->getType();
463  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
464    CalleeType = FnTypePtr->getPointeeType();
465  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
466    CalleeType = BPT->getPointeeType();
467
468  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
469  return FnType->getResultType();
470}
471
472MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
473                       SourceRange qualrange, NamedDecl *memberdecl,
474                       SourceLocation l, const TemplateArgumentListInfo *targs,
475                       QualType ty)
476  : Expr(MemberExprClass, ty,
477         base->isTypeDependent() || (qual && qual->isDependent()),
478         base->isValueDependent() || (qual && qual->isDependent())),
479    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
480    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
481  // Initialize the qualifier, if any.
482  if (HasQualifier) {
483    NameQualifier *NQ = getMemberQualifier();
484    NQ->NNS = qual;
485    NQ->Range = qualrange;
486  }
487
488  // Initialize the explicit template argument list, if any.
489  if (targs)
490    getExplicitTemplateArgumentList()->initializeFrom(*targs);
491}
492
493MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
494                               NestedNameSpecifier *qual,
495                               SourceRange qualrange,
496                               NamedDecl *memberdecl,
497                               SourceLocation l,
498                               const TemplateArgumentListInfo *targs,
499                               QualType ty) {
500  std::size_t Size = sizeof(MemberExpr);
501  if (qual != 0)
502    Size += sizeof(NameQualifier);
503
504  if (targs)
505    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
506
507  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
508  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
509                              targs, ty);
510}
511
512const char *CastExpr::getCastKindName() const {
513  switch (getCastKind()) {
514  case CastExpr::CK_Unknown:
515    return "Unknown";
516  case CastExpr::CK_BitCast:
517    return "BitCast";
518  case CastExpr::CK_NoOp:
519    return "NoOp";
520  case CastExpr::CK_BaseToDerived:
521    return "BaseToDerived";
522  case CastExpr::CK_DerivedToBase:
523    return "DerivedToBase";
524  case CastExpr::CK_Dynamic:
525    return "Dynamic";
526  case CastExpr::CK_ToUnion:
527    return "ToUnion";
528  case CastExpr::CK_ArrayToPointerDecay:
529    return "ArrayToPointerDecay";
530  case CastExpr::CK_FunctionToPointerDecay:
531    return "FunctionToPointerDecay";
532  case CastExpr::CK_NullToMemberPointer:
533    return "NullToMemberPointer";
534  case CastExpr::CK_BaseToDerivedMemberPointer:
535    return "BaseToDerivedMemberPointer";
536  case CastExpr::CK_DerivedToBaseMemberPointer:
537    return "DerivedToBaseMemberPointer";
538  case CastExpr::CK_UserDefinedConversion:
539    return "UserDefinedConversion";
540  case CastExpr::CK_ConstructorConversion:
541    return "ConstructorConversion";
542  case CastExpr::CK_IntegralToPointer:
543    return "IntegralToPointer";
544  case CastExpr::CK_PointerToIntegral:
545    return "PointerToIntegral";
546  case CastExpr::CK_ToVoid:
547    return "ToVoid";
548  case CastExpr::CK_VectorSplat:
549    return "VectorSplat";
550  case CastExpr::CK_IntegralCast:
551    return "IntegralCast";
552  case CastExpr::CK_IntegralToFloating:
553    return "IntegralToFloating";
554  case CastExpr::CK_FloatingToIntegral:
555    return "FloatingToIntegral";
556  case CastExpr::CK_FloatingCast:
557    return "FloatingCast";
558  case CastExpr::CK_MemberPointerToBoolean:
559    return "MemberPointerToBoolean";
560  }
561
562  assert(0 && "Unhandled cast kind!");
563  return 0;
564}
565
566/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
567/// corresponds to, e.g. "<<=".
568const char *BinaryOperator::getOpcodeStr(Opcode Op) {
569  switch (Op) {
570  case PtrMemD:   return ".*";
571  case PtrMemI:   return "->*";
572  case Mul:       return "*";
573  case Div:       return "/";
574  case Rem:       return "%";
575  case Add:       return "+";
576  case Sub:       return "-";
577  case Shl:       return "<<";
578  case Shr:       return ">>";
579  case LT:        return "<";
580  case GT:        return ">";
581  case LE:        return "<=";
582  case GE:        return ">=";
583  case EQ:        return "==";
584  case NE:        return "!=";
585  case And:       return "&";
586  case Xor:       return "^";
587  case Or:        return "|";
588  case LAnd:      return "&&";
589  case LOr:       return "||";
590  case Assign:    return "=";
591  case MulAssign: return "*=";
592  case DivAssign: return "/=";
593  case RemAssign: return "%=";
594  case AddAssign: return "+=";
595  case SubAssign: return "-=";
596  case ShlAssign: return "<<=";
597  case ShrAssign: return ">>=";
598  case AndAssign: return "&=";
599  case XorAssign: return "^=";
600  case OrAssign:  return "|=";
601  case Comma:     return ",";
602  }
603
604  return "";
605}
606
607BinaryOperator::Opcode
608BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
609  switch (OO) {
610  default: assert(false && "Not an overloadable binary operator");
611  case OO_Plus: return Add;
612  case OO_Minus: return Sub;
613  case OO_Star: return Mul;
614  case OO_Slash: return Div;
615  case OO_Percent: return Rem;
616  case OO_Caret: return Xor;
617  case OO_Amp: return And;
618  case OO_Pipe: return Or;
619  case OO_Equal: return Assign;
620  case OO_Less: return LT;
621  case OO_Greater: return GT;
622  case OO_PlusEqual: return AddAssign;
623  case OO_MinusEqual: return SubAssign;
624  case OO_StarEqual: return MulAssign;
625  case OO_SlashEqual: return DivAssign;
626  case OO_PercentEqual: return RemAssign;
627  case OO_CaretEqual: return XorAssign;
628  case OO_AmpEqual: return AndAssign;
629  case OO_PipeEqual: return OrAssign;
630  case OO_LessLess: return Shl;
631  case OO_GreaterGreater: return Shr;
632  case OO_LessLessEqual: return ShlAssign;
633  case OO_GreaterGreaterEqual: return ShrAssign;
634  case OO_EqualEqual: return EQ;
635  case OO_ExclaimEqual: return NE;
636  case OO_LessEqual: return LE;
637  case OO_GreaterEqual: return GE;
638  case OO_AmpAmp: return LAnd;
639  case OO_PipePipe: return LOr;
640  case OO_Comma: return Comma;
641  case OO_ArrowStar: return PtrMemI;
642  }
643}
644
645OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
646  static const OverloadedOperatorKind OverOps[] = {
647    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
648    OO_Star, OO_Slash, OO_Percent,
649    OO_Plus, OO_Minus,
650    OO_LessLess, OO_GreaterGreater,
651    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
652    OO_EqualEqual, OO_ExclaimEqual,
653    OO_Amp,
654    OO_Caret,
655    OO_Pipe,
656    OO_AmpAmp,
657    OO_PipePipe,
658    OO_Equal, OO_StarEqual,
659    OO_SlashEqual, OO_PercentEqual,
660    OO_PlusEqual, OO_MinusEqual,
661    OO_LessLessEqual, OO_GreaterGreaterEqual,
662    OO_AmpEqual, OO_CaretEqual,
663    OO_PipeEqual,
664    OO_Comma
665  };
666  return OverOps[Opc];
667}
668
669InitListExpr::InitListExpr(SourceLocation lbraceloc,
670                           Expr **initExprs, unsigned numInits,
671                           SourceLocation rbraceloc)
672  : Expr(InitListExprClass, QualType(), false, false),
673    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
674    UnionFieldInit(0), HadArrayRangeDesignator(false)
675{
676  for (unsigned I = 0; I != numInits; ++I) {
677    if (initExprs[I]->isTypeDependent())
678      TypeDependent = true;
679    if (initExprs[I]->isValueDependent())
680      ValueDependent = true;
681  }
682
683  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
684}
685
686void InitListExpr::reserveInits(unsigned NumInits) {
687  if (NumInits > InitExprs.size())
688    InitExprs.reserve(NumInits);
689}
690
691void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
692  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
693       Idx < LastIdx; ++Idx)
694    InitExprs[Idx]->Destroy(Context);
695  InitExprs.resize(NumInits, 0);
696}
697
698Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
699  if (Init >= InitExprs.size()) {
700    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
701    InitExprs.back() = expr;
702    return 0;
703  }
704
705  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
706  InitExprs[Init] = expr;
707  return Result;
708}
709
710/// getFunctionType - Return the underlying function type for this block.
711///
712const FunctionType *BlockExpr::getFunctionType() const {
713  return getType()->getAs<BlockPointerType>()->
714                    getPointeeType()->getAs<FunctionType>();
715}
716
717SourceLocation BlockExpr::getCaretLocation() const {
718  return TheBlock->getCaretLocation();
719}
720const Stmt *BlockExpr::getBody() const {
721  return TheBlock->getBody();
722}
723Stmt *BlockExpr::getBody() {
724  return TheBlock->getBody();
725}
726
727
728//===----------------------------------------------------------------------===//
729// Generic Expression Routines
730//===----------------------------------------------------------------------===//
731
732/// isUnusedResultAWarning - Return true if this immediate expression should
733/// be warned about if the result is unused.  If so, fill in Loc and Ranges
734/// with location to warn on and the source range[s] to report with the
735/// warning.
736bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
737                                  SourceRange &R2, ASTContext &Ctx) const {
738  // Don't warn if the expr is type dependent. The type could end up
739  // instantiating to void.
740  if (isTypeDependent())
741    return false;
742
743  switch (getStmtClass()) {
744  default:
745    Loc = getExprLoc();
746    R1 = getSourceRange();
747    return true;
748  case ParenExprClass:
749    return cast<ParenExpr>(this)->getSubExpr()->
750      isUnusedResultAWarning(Loc, R1, R2, Ctx);
751  case UnaryOperatorClass: {
752    const UnaryOperator *UO = cast<UnaryOperator>(this);
753
754    switch (UO->getOpcode()) {
755    default: break;
756    case UnaryOperator::PostInc:
757    case UnaryOperator::PostDec:
758    case UnaryOperator::PreInc:
759    case UnaryOperator::PreDec:                 // ++/--
760      return false;  // Not a warning.
761    case UnaryOperator::Deref:
762      // Dereferencing a volatile pointer is a side-effect.
763      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
764        return false;
765      break;
766    case UnaryOperator::Real:
767    case UnaryOperator::Imag:
768      // accessing a piece of a volatile complex is a side-effect.
769      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
770          .isVolatileQualified())
771        return false;
772      break;
773    case UnaryOperator::Extension:
774      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
775    }
776    Loc = UO->getOperatorLoc();
777    R1 = UO->getSubExpr()->getSourceRange();
778    return true;
779  }
780  case BinaryOperatorClass: {
781    const BinaryOperator *BO = cast<BinaryOperator>(this);
782    // Consider comma to have side effects if the LHS or RHS does.
783    if (BO->getOpcode() == BinaryOperator::Comma)
784      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
785              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
786
787    if (BO->isAssignmentOp())
788      return false;
789    Loc = BO->getOperatorLoc();
790    R1 = BO->getLHS()->getSourceRange();
791    R2 = BO->getRHS()->getSourceRange();
792    return true;
793  }
794  case CompoundAssignOperatorClass:
795    return false;
796
797  case ConditionalOperatorClass: {
798    // The condition must be evaluated, but if either the LHS or RHS is a
799    // warning, warn about them.
800    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
801    if (Exp->getLHS() &&
802        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
803      return true;
804    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
805  }
806
807  case MemberExprClass:
808    // If the base pointer or element is to a volatile pointer/field, accessing
809    // it is a side effect.
810    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
811      return false;
812    Loc = cast<MemberExpr>(this)->getMemberLoc();
813    R1 = SourceRange(Loc, Loc);
814    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
815    return true;
816
817  case ArraySubscriptExprClass:
818    // If the base pointer or element is to a volatile pointer/field, accessing
819    // it is a side effect.
820    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
821      return false;
822    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
823    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
824    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
825    return true;
826
827  case CallExprClass:
828  case CXXOperatorCallExprClass:
829  case CXXMemberCallExprClass: {
830    // If this is a direct call, get the callee.
831    const CallExpr *CE = cast<CallExpr>(this);
832    if (const FunctionDecl *FD = CE->getDirectCallee()) {
833      // If the callee has attribute pure, const, or warn_unused_result, warn
834      // about it. void foo() { strlen("bar"); } should warn.
835      //
836      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
837      // updated to match for QoI.
838      if (FD->getAttr<WarnUnusedResultAttr>() ||
839          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
840        Loc = CE->getCallee()->getLocStart();
841        R1 = CE->getCallee()->getSourceRange();
842
843        if (unsigned NumArgs = CE->getNumArgs())
844          R2 = SourceRange(CE->getArg(0)->getLocStart(),
845                           CE->getArg(NumArgs-1)->getLocEnd());
846        return true;
847      }
848    }
849    return false;
850  }
851
852  case CXXTemporaryObjectExprClass:
853  case CXXConstructExprClass:
854    return false;
855
856  case ObjCMessageExprClass:
857    return false;
858
859  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
860#if 0
861    const ObjCImplicitSetterGetterRefExpr *Ref =
862      cast<ObjCImplicitSetterGetterRefExpr>(this);
863    // FIXME: We really want the location of the '.' here.
864    Loc = Ref->getLocation();
865    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
866    if (Ref->getBase())
867      R2 = Ref->getBase()->getSourceRange();
868#else
869    Loc = getExprLoc();
870    R1 = getSourceRange();
871#endif
872    return true;
873  }
874  case StmtExprClass: {
875    // Statement exprs don't logically have side effects themselves, but are
876    // sometimes used in macros in ways that give them a type that is unused.
877    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
878    // however, if the result of the stmt expr is dead, we don't want to emit a
879    // warning.
880    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
881    if (!CS->body_empty())
882      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
883        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
884
885    Loc = cast<StmtExpr>(this)->getLParenLoc();
886    R1 = getSourceRange();
887    return true;
888  }
889  case CStyleCastExprClass:
890    // If this is an explicit cast to void, allow it.  People do this when they
891    // think they know what they're doing :).
892    if (getType()->isVoidType())
893      return false;
894    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
895    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
896    return true;
897  case CXXFunctionalCastExprClass: {
898    const CastExpr *CE = cast<CastExpr>(this);
899
900    // If this is a cast to void or a constructor conversion, check the operand.
901    // Otherwise, the result of the cast is unused.
902    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
903        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
904      return (cast<CastExpr>(this)->getSubExpr()
905              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
906    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
907    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
908    return true;
909  }
910
911  case ImplicitCastExprClass:
912    // Check the operand, since implicit casts are inserted by Sema
913    return (cast<ImplicitCastExpr>(this)
914            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
915
916  case CXXDefaultArgExprClass:
917    return (cast<CXXDefaultArgExpr>(this)
918            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
919
920  case CXXNewExprClass:
921    // FIXME: In theory, there might be new expressions that don't have side
922    // effects (e.g. a placement new with an uninitialized POD).
923  case CXXDeleteExprClass:
924    return false;
925  case CXXBindTemporaryExprClass:
926    return (cast<CXXBindTemporaryExpr>(this)
927            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
928  case CXXExprWithTemporariesClass:
929    return (cast<CXXExprWithTemporaries>(this)
930            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
931  }
932}
933
934/// DeclCanBeLvalue - Determine whether the given declaration can be
935/// an lvalue. This is a helper routine for isLvalue.
936static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
937  // C++ [temp.param]p6:
938  //   A non-type non-reference template-parameter is not an lvalue.
939  if (const NonTypeTemplateParmDecl *NTTParm
940        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
941    return NTTParm->getType()->isReferenceType();
942
943  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
944    // C++ 3.10p2: An lvalue refers to an object or function.
945    (Ctx.getLangOptions().CPlusPlus &&
946     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
947}
948
949/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
950/// incomplete type other than void. Nonarray expressions that can be lvalues:
951///  - name, where name must be a variable
952///  - e[i]
953///  - (e), where e must be an lvalue
954///  - e.name, where e must be an lvalue
955///  - e->name
956///  - *e, the type of e cannot be a function type
957///  - string-constant
958///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
959///  - reference type [C++ [expr]]
960///
961Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
962  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
963
964  isLvalueResult Res = isLvalueInternal(Ctx);
965  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
966    return Res;
967
968  // first, check the type (C99 6.3.2.1). Expressions with function
969  // type in C are not lvalues, but they can be lvalues in C++.
970  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
971    return LV_NotObjectType;
972
973  // Allow qualified void which is an incomplete type other than void (yuck).
974  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
975    return LV_IncompleteVoidType;
976
977  return LV_Valid;
978}
979
980// Check whether the expression can be sanely treated like an l-value
981Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
982  switch (getStmtClass()) {
983  case StringLiteralClass:  // C99 6.5.1p4
984  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
985    return LV_Valid;
986  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
987    // For vectors, make sure base is an lvalue (i.e. not a function call).
988    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
989      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
990    return LV_Valid;
991  case DeclRefExprClass: { // C99 6.5.1p2
992    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
993    if (DeclCanBeLvalue(RefdDecl, Ctx))
994      return LV_Valid;
995    break;
996  }
997  case BlockDeclRefExprClass: {
998    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
999    if (isa<VarDecl>(BDR->getDecl()))
1000      return LV_Valid;
1001    break;
1002  }
1003  case MemberExprClass: {
1004    const MemberExpr *m = cast<MemberExpr>(this);
1005    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1006      NamedDecl *Member = m->getMemberDecl();
1007      // C++ [expr.ref]p4:
1008      //   If E2 is declared to have type "reference to T", then E1.E2
1009      //   is an lvalue.
1010      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1011        if (Value->getType()->isReferenceType())
1012          return LV_Valid;
1013
1014      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1015      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1016        return LV_Valid;
1017
1018      //   -- If E2 is a non-static data member [...]. If E1 is an
1019      //      lvalue, then E1.E2 is an lvalue.
1020      if (isa<FieldDecl>(Member))
1021        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1022
1023      //   -- If it refers to a static member function [...], then
1024      //      E1.E2 is an lvalue.
1025      //   -- Otherwise, if E1.E2 refers to a non-static member
1026      //      function [...], then E1.E2 is not an lvalue.
1027      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1028        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1029
1030      //   -- If E2 is a member enumerator [...], the expression E1.E2
1031      //      is not an lvalue.
1032      if (isa<EnumConstantDecl>(Member))
1033        return LV_InvalidExpression;
1034
1035        // Not an lvalue.
1036      return LV_InvalidExpression;
1037    }
1038
1039    // C99 6.5.2.3p4
1040    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1041  }
1042  case UnaryOperatorClass:
1043    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1044      return LV_Valid; // C99 6.5.3p4
1045
1046    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1047        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1048        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1049      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1050
1051    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1052        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1053         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1054      return LV_Valid;
1055    break;
1056  case ImplicitCastExprClass:
1057    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1058                                                       : LV_InvalidExpression;
1059  case ParenExprClass: // C99 6.5.1p5
1060    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1061  case BinaryOperatorClass:
1062  case CompoundAssignOperatorClass: {
1063    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1064
1065    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1066        BinOp->getOpcode() == BinaryOperator::Comma)
1067      return BinOp->getRHS()->isLvalue(Ctx);
1068
1069    // C++ [expr.mptr.oper]p6
1070    // The result of a .* expression is an lvalue only if its first operand is
1071    // an lvalue and its second operand is a pointer to data member.
1072    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1073        !BinOp->getType()->isFunctionType())
1074      return BinOp->getLHS()->isLvalue(Ctx);
1075
1076    // The result of an ->* expression is an lvalue only if its second operand
1077    // is a pointer to data member.
1078    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1079        !BinOp->getType()->isFunctionType()) {
1080      QualType Ty = BinOp->getRHS()->getType();
1081      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1082        return LV_Valid;
1083    }
1084
1085    if (!BinOp->isAssignmentOp())
1086      return LV_InvalidExpression;
1087
1088    if (Ctx.getLangOptions().CPlusPlus)
1089      // C++ [expr.ass]p1:
1090      //   The result of an assignment operation [...] is an lvalue.
1091      return LV_Valid;
1092
1093
1094    // C99 6.5.16:
1095    //   An assignment expression [...] is not an lvalue.
1096    return LV_InvalidExpression;
1097  }
1098  case CallExprClass:
1099  case CXXOperatorCallExprClass:
1100  case CXXMemberCallExprClass: {
1101    // C++0x [expr.call]p10
1102    //   A function call is an lvalue if and only if the result type
1103    //   is an lvalue reference.
1104    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1105    if (ReturnType->isLValueReferenceType())
1106      return LV_Valid;
1107
1108    break;
1109  }
1110  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1111    return LV_Valid;
1112  case ChooseExprClass:
1113    // __builtin_choose_expr is an lvalue if the selected operand is.
1114    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1115  case ExtVectorElementExprClass:
1116    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1117      return LV_DuplicateVectorComponents;
1118    return LV_Valid;
1119  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1120    return LV_Valid;
1121  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1122    return LV_Valid;
1123  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1124    return LV_Valid;
1125  case PredefinedExprClass:
1126    return LV_Valid;
1127  case UnresolvedLookupExprClass:
1128    return LV_Valid;
1129  case CXXDefaultArgExprClass:
1130    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1131  case CStyleCastExprClass:
1132  case CXXFunctionalCastExprClass:
1133  case CXXStaticCastExprClass:
1134  case CXXDynamicCastExprClass:
1135  case CXXReinterpretCastExprClass:
1136  case CXXConstCastExprClass:
1137    // The result of an explicit cast is an lvalue if the type we are
1138    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1139    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1140    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1141    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1142          isLValueReferenceType())
1143      return LV_Valid;
1144    break;
1145  case CXXTypeidExprClass:
1146    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1147    return LV_Valid;
1148  case CXXBindTemporaryExprClass:
1149    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1150      isLvalueInternal(Ctx);
1151  case ConditionalOperatorClass: {
1152    // Complicated handling is only for C++.
1153    if (!Ctx.getLangOptions().CPlusPlus)
1154      return LV_InvalidExpression;
1155
1156    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1157    // everywhere there's an object converted to an rvalue. Also, any other
1158    // casts should be wrapped by ImplicitCastExprs. There's just the special
1159    // case involving throws to work out.
1160    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1161    Expr *True = Cond->getTrueExpr();
1162    Expr *False = Cond->getFalseExpr();
1163    // C++0x 5.16p2
1164    //   If either the second or the third operand has type (cv) void, [...]
1165    //   the result [...] is an rvalue.
1166    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1167      return LV_InvalidExpression;
1168
1169    // Both sides must be lvalues for the result to be an lvalue.
1170    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1171      return LV_InvalidExpression;
1172
1173    // That's it.
1174    return LV_Valid;
1175  }
1176
1177  default:
1178    break;
1179  }
1180  return LV_InvalidExpression;
1181}
1182
1183/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1184/// does not have an incomplete type, does not have a const-qualified type, and
1185/// if it is a structure or union, does not have any member (including,
1186/// recursively, any member or element of all contained aggregates or unions)
1187/// with a const-qualified type.
1188Expr::isModifiableLvalueResult
1189Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1190  isLvalueResult lvalResult = isLvalue(Ctx);
1191
1192  switch (lvalResult) {
1193  case LV_Valid:
1194    // C++ 3.10p11: Functions cannot be modified, but pointers to
1195    // functions can be modifiable.
1196    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1197      return MLV_NotObjectType;
1198    break;
1199
1200  case LV_NotObjectType: return MLV_NotObjectType;
1201  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1202  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1203  case LV_InvalidExpression:
1204    // If the top level is a C-style cast, and the subexpression is a valid
1205    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1206    // GCC extension.  We don't support it, but we want to produce good
1207    // diagnostics when it happens so that the user knows why.
1208    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1209      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1210        if (Loc)
1211          *Loc = CE->getLParenLoc();
1212        return MLV_LValueCast;
1213      }
1214    }
1215    return MLV_InvalidExpression;
1216  case LV_MemberFunction: return MLV_MemberFunction;
1217  }
1218
1219  // The following is illegal:
1220  //   void takeclosure(void (^C)(void));
1221  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1222  //
1223  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1224    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1225      return MLV_NotBlockQualified;
1226  }
1227
1228  // Assigning to an 'implicit' property?
1229  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1230        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1231    if (Expr->getSetterMethod() == 0)
1232      return MLV_NoSetterProperty;
1233  }
1234
1235  QualType CT = Ctx.getCanonicalType(getType());
1236
1237  if (CT.isConstQualified())
1238    return MLV_ConstQualified;
1239  if (CT->isArrayType())
1240    return MLV_ArrayType;
1241  if (CT->isIncompleteType())
1242    return MLV_IncompleteType;
1243
1244  if (const RecordType *r = CT->getAs<RecordType>()) {
1245    if (r->hasConstFields())
1246      return MLV_ConstQualified;
1247  }
1248
1249  return MLV_Valid;
1250}
1251
1252/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1253/// returns true, if it is; false otherwise.
1254bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1255  switch (getStmtClass()) {
1256  default:
1257    return false;
1258  case ObjCIvarRefExprClass:
1259    return true;
1260  case Expr::UnaryOperatorClass:
1261    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1262  case ParenExprClass:
1263    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1264  case ImplicitCastExprClass:
1265    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1266  case CStyleCastExprClass:
1267    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1268  case DeclRefExprClass: {
1269    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1270    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1271      if (VD->hasGlobalStorage())
1272        return true;
1273      QualType T = VD->getType();
1274      // dereferencing to a  pointer is always a gc'able candidate,
1275      // unless it is __weak.
1276      return T->isPointerType() &&
1277             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1278    }
1279    return false;
1280  }
1281  case MemberExprClass: {
1282    const MemberExpr *M = cast<MemberExpr>(this);
1283    return M->getBase()->isOBJCGCCandidate(Ctx);
1284  }
1285  case ArraySubscriptExprClass:
1286    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1287  }
1288}
1289Expr* Expr::IgnoreParens() {
1290  Expr* E = this;
1291  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1292    E = P->getSubExpr();
1293
1294  return E;
1295}
1296
1297/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1298/// or CastExprs or ImplicitCastExprs, returning their operand.
1299Expr *Expr::IgnoreParenCasts() {
1300  Expr *E = this;
1301  while (true) {
1302    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1303      E = P->getSubExpr();
1304    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1305      E = P->getSubExpr();
1306    else
1307      return E;
1308  }
1309}
1310
1311/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1312/// value (including ptr->int casts of the same size).  Strip off any
1313/// ParenExpr or CastExprs, returning their operand.
1314Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1315  Expr *E = this;
1316  while (true) {
1317    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1318      E = P->getSubExpr();
1319      continue;
1320    }
1321
1322    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1323      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1324      // ptr<->int casts of the same width.  We also ignore all identify casts.
1325      Expr *SE = P->getSubExpr();
1326
1327      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1328        E = SE;
1329        continue;
1330      }
1331
1332      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1333          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1334          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1335        E = SE;
1336        continue;
1337      }
1338    }
1339
1340    return E;
1341  }
1342}
1343
1344
1345/// hasAnyTypeDependentArguments - Determines if any of the expressions
1346/// in Exprs is type-dependent.
1347bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1348  for (unsigned I = 0; I < NumExprs; ++I)
1349    if (Exprs[I]->isTypeDependent())
1350      return true;
1351
1352  return false;
1353}
1354
1355/// hasAnyValueDependentArguments - Determines if any of the expressions
1356/// in Exprs is value-dependent.
1357bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1358  for (unsigned I = 0; I < NumExprs; ++I)
1359    if (Exprs[I]->isValueDependent())
1360      return true;
1361
1362  return false;
1363}
1364
1365bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1366  // This function is attempting whether an expression is an initializer
1367  // which can be evaluated at compile-time.  isEvaluatable handles most
1368  // of the cases, but it can't deal with some initializer-specific
1369  // expressions, and it can't deal with aggregates; we deal with those here,
1370  // and fall back to isEvaluatable for the other cases.
1371
1372  // FIXME: This function assumes the variable being assigned to
1373  // isn't a reference type!
1374
1375  switch (getStmtClass()) {
1376  default: break;
1377  case StringLiteralClass:
1378  case ObjCStringLiteralClass:
1379  case ObjCEncodeExprClass:
1380    return true;
1381  case CompoundLiteralExprClass: {
1382    // This handles gcc's extension that allows global initializers like
1383    // "struct x {int x;} x = (struct x) {};".
1384    // FIXME: This accepts other cases it shouldn't!
1385    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1386    return Exp->isConstantInitializer(Ctx);
1387  }
1388  case InitListExprClass: {
1389    // FIXME: This doesn't deal with fields with reference types correctly.
1390    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1391    // to bitfields.
1392    const InitListExpr *Exp = cast<InitListExpr>(this);
1393    unsigned numInits = Exp->getNumInits();
1394    for (unsigned i = 0; i < numInits; i++) {
1395      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1396        return false;
1397    }
1398    return true;
1399  }
1400  case ImplicitValueInitExprClass:
1401    return true;
1402  case ParenExprClass:
1403    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1404  case UnaryOperatorClass: {
1405    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1406    if (Exp->getOpcode() == UnaryOperator::Extension)
1407      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1408    break;
1409  }
1410  case BinaryOperatorClass: {
1411    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1412    // but this handles the common case.
1413    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1414    if (Exp->getOpcode() == BinaryOperator::Sub &&
1415        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1416        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1417      return true;
1418    break;
1419  }
1420  case ImplicitCastExprClass:
1421  case CStyleCastExprClass:
1422    // Handle casts with a destination that's a struct or union; this
1423    // deals with both the gcc no-op struct cast extension and the
1424    // cast-to-union extension.
1425    if (getType()->isRecordType())
1426      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1427
1428    // Integer->integer casts can be handled here, which is important for
1429    // things like (int)(&&x-&&y).  Scary but true.
1430    if (getType()->isIntegerType() &&
1431        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1432      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1433
1434    break;
1435  }
1436  return isEvaluatable(Ctx);
1437}
1438
1439/// isIntegerConstantExpr - this recursive routine will test if an expression is
1440/// an integer constant expression.
1441
1442/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1443/// comma, etc
1444///
1445/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1446/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1447/// cast+dereference.
1448
1449// CheckICE - This function does the fundamental ICE checking: the returned
1450// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1451// Note that to reduce code duplication, this helper does no evaluation
1452// itself; the caller checks whether the expression is evaluatable, and
1453// in the rare cases where CheckICE actually cares about the evaluated
1454// value, it calls into Evalute.
1455//
1456// Meanings of Val:
1457// 0: This expression is an ICE if it can be evaluated by Evaluate.
1458// 1: This expression is not an ICE, but if it isn't evaluated, it's
1459//    a legal subexpression for an ICE. This return value is used to handle
1460//    the comma operator in C99 mode.
1461// 2: This expression is not an ICE, and is not a legal subexpression for one.
1462
1463struct ICEDiag {
1464  unsigned Val;
1465  SourceLocation Loc;
1466
1467  public:
1468  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1469  ICEDiag() : Val(0) {}
1470};
1471
1472ICEDiag NoDiag() { return ICEDiag(); }
1473
1474static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1475  Expr::EvalResult EVResult;
1476  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1477      !EVResult.Val.isInt()) {
1478    return ICEDiag(2, E->getLocStart());
1479  }
1480  return NoDiag();
1481}
1482
1483static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1484  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1485  if (!E->getType()->isIntegralType()) {
1486    return ICEDiag(2, E->getLocStart());
1487  }
1488
1489  switch (E->getStmtClass()) {
1490#define STMT(Node, Base) case Expr::Node##Class:
1491#define EXPR(Node, Base)
1492#include "clang/AST/StmtNodes.def"
1493  case Expr::PredefinedExprClass:
1494  case Expr::FloatingLiteralClass:
1495  case Expr::ImaginaryLiteralClass:
1496  case Expr::StringLiteralClass:
1497  case Expr::ArraySubscriptExprClass:
1498  case Expr::MemberExprClass:
1499  case Expr::CompoundAssignOperatorClass:
1500  case Expr::CompoundLiteralExprClass:
1501  case Expr::ExtVectorElementExprClass:
1502  case Expr::InitListExprClass:
1503  case Expr::DesignatedInitExprClass:
1504  case Expr::ImplicitValueInitExprClass:
1505  case Expr::ParenListExprClass:
1506  case Expr::VAArgExprClass:
1507  case Expr::AddrLabelExprClass:
1508  case Expr::StmtExprClass:
1509  case Expr::CXXMemberCallExprClass:
1510  case Expr::CXXDynamicCastExprClass:
1511  case Expr::CXXTypeidExprClass:
1512  case Expr::CXXNullPtrLiteralExprClass:
1513  case Expr::CXXThisExprClass:
1514  case Expr::CXXThrowExprClass:
1515  case Expr::CXXNewExprClass:
1516  case Expr::CXXDeleteExprClass:
1517  case Expr::CXXPseudoDestructorExprClass:
1518  case Expr::UnresolvedLookupExprClass:
1519  case Expr::DependentScopeDeclRefExprClass:
1520  case Expr::CXXConstructExprClass:
1521  case Expr::CXXBindTemporaryExprClass:
1522  case Expr::CXXExprWithTemporariesClass:
1523  case Expr::CXXTemporaryObjectExprClass:
1524  case Expr::CXXUnresolvedConstructExprClass:
1525  case Expr::CXXDependentScopeMemberExprClass:
1526  case Expr::UnresolvedMemberExprClass:
1527  case Expr::ObjCStringLiteralClass:
1528  case Expr::ObjCEncodeExprClass:
1529  case Expr::ObjCMessageExprClass:
1530  case Expr::ObjCSelectorExprClass:
1531  case Expr::ObjCProtocolExprClass:
1532  case Expr::ObjCIvarRefExprClass:
1533  case Expr::ObjCPropertyRefExprClass:
1534  case Expr::ObjCImplicitSetterGetterRefExprClass:
1535  case Expr::ObjCSuperExprClass:
1536  case Expr::ObjCIsaExprClass:
1537  case Expr::ShuffleVectorExprClass:
1538  case Expr::BlockExprClass:
1539  case Expr::BlockDeclRefExprClass:
1540  case Expr::NoStmtClass:
1541  case Expr::ExprClass:
1542    return ICEDiag(2, E->getLocStart());
1543
1544  case Expr::GNUNullExprClass:
1545    // GCC considers the GNU __null value to be an integral constant expression.
1546    return NoDiag();
1547
1548  case Expr::ParenExprClass:
1549    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1550  case Expr::IntegerLiteralClass:
1551  case Expr::CharacterLiteralClass:
1552  case Expr::CXXBoolLiteralExprClass:
1553  case Expr::CXXZeroInitValueExprClass:
1554  case Expr::TypesCompatibleExprClass:
1555  case Expr::UnaryTypeTraitExprClass:
1556    return NoDiag();
1557  case Expr::CallExprClass:
1558  case Expr::CXXOperatorCallExprClass: {
1559    const CallExpr *CE = cast<CallExpr>(E);
1560    if (CE->isBuiltinCall(Ctx))
1561      return CheckEvalInICE(E, Ctx);
1562    return ICEDiag(2, E->getLocStart());
1563  }
1564  case Expr::DeclRefExprClass:
1565    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1566      return NoDiag();
1567    if (Ctx.getLangOptions().CPlusPlus &&
1568        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1569      // C++ 7.1.5.1p2
1570      //   A variable of non-volatile const-qualified integral or enumeration
1571      //   type initialized by an ICE can be used in ICEs.
1572      if (const VarDecl *Dcl =
1573              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1574        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1575        if (Quals.hasVolatile() || !Quals.hasConst())
1576          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1577
1578        // Look for the definition of this variable, which will actually have
1579        // an initializer.
1580        const VarDecl *Def = 0;
1581        const Expr *Init = Dcl->getDefinition(Def);
1582        if (Init) {
1583          if (Def->isInitKnownICE()) {
1584            // We have already checked whether this subexpression is an
1585            // integral constant expression.
1586            if (Def->isInitICE())
1587              return NoDiag();
1588            else
1589              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1590          }
1591
1592          // C++ [class.static.data]p4:
1593          //   If a static data member is of const integral or const
1594          //   enumeration type, its declaration in the class definition can
1595          //   specify a constant-initializer which shall be an integral
1596          //   constant expression (5.19). In that case, the member can appear
1597          //   in integral constant expressions.
1598          if (Def->isOutOfLine()) {
1599            Dcl->setInitKnownICE(false);
1600            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1601          }
1602
1603          if (Dcl->isCheckingICE()) {
1604            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1605          }
1606
1607          Dcl->setCheckingICE();
1608          ICEDiag Result = CheckICE(Init, Ctx);
1609          // Cache the result of the ICE test.
1610          Dcl->setInitKnownICE(Result.Val == 0);
1611          return Result;
1612        }
1613      }
1614    }
1615    return ICEDiag(2, E->getLocStart());
1616  case Expr::UnaryOperatorClass: {
1617    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1618    switch (Exp->getOpcode()) {
1619    case UnaryOperator::PostInc:
1620    case UnaryOperator::PostDec:
1621    case UnaryOperator::PreInc:
1622    case UnaryOperator::PreDec:
1623    case UnaryOperator::AddrOf:
1624    case UnaryOperator::Deref:
1625      return ICEDiag(2, E->getLocStart());
1626
1627    case UnaryOperator::Extension:
1628    case UnaryOperator::LNot:
1629    case UnaryOperator::Plus:
1630    case UnaryOperator::Minus:
1631    case UnaryOperator::Not:
1632    case UnaryOperator::Real:
1633    case UnaryOperator::Imag:
1634      return CheckICE(Exp->getSubExpr(), Ctx);
1635    case UnaryOperator::OffsetOf:
1636      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1637      // Evaluate matches the proposed gcc behavior for cases like
1638      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1639      // compliance: we should warn earlier for offsetof expressions with
1640      // array subscripts that aren't ICEs, and if the array subscripts
1641      // are ICEs, the value of the offsetof must be an integer constant.
1642      return CheckEvalInICE(E, Ctx);
1643    }
1644  }
1645  case Expr::SizeOfAlignOfExprClass: {
1646    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1647    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1648      return ICEDiag(2, E->getLocStart());
1649    return NoDiag();
1650  }
1651  case Expr::BinaryOperatorClass: {
1652    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1653    switch (Exp->getOpcode()) {
1654    case BinaryOperator::PtrMemD:
1655    case BinaryOperator::PtrMemI:
1656    case BinaryOperator::Assign:
1657    case BinaryOperator::MulAssign:
1658    case BinaryOperator::DivAssign:
1659    case BinaryOperator::RemAssign:
1660    case BinaryOperator::AddAssign:
1661    case BinaryOperator::SubAssign:
1662    case BinaryOperator::ShlAssign:
1663    case BinaryOperator::ShrAssign:
1664    case BinaryOperator::AndAssign:
1665    case BinaryOperator::XorAssign:
1666    case BinaryOperator::OrAssign:
1667      return ICEDiag(2, E->getLocStart());
1668
1669    case BinaryOperator::Mul:
1670    case BinaryOperator::Div:
1671    case BinaryOperator::Rem:
1672    case BinaryOperator::Add:
1673    case BinaryOperator::Sub:
1674    case BinaryOperator::Shl:
1675    case BinaryOperator::Shr:
1676    case BinaryOperator::LT:
1677    case BinaryOperator::GT:
1678    case BinaryOperator::LE:
1679    case BinaryOperator::GE:
1680    case BinaryOperator::EQ:
1681    case BinaryOperator::NE:
1682    case BinaryOperator::And:
1683    case BinaryOperator::Xor:
1684    case BinaryOperator::Or:
1685    case BinaryOperator::Comma: {
1686      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1687      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1688      if (Exp->getOpcode() == BinaryOperator::Div ||
1689          Exp->getOpcode() == BinaryOperator::Rem) {
1690        // Evaluate gives an error for undefined Div/Rem, so make sure
1691        // we don't evaluate one.
1692        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1693          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1694          if (REval == 0)
1695            return ICEDiag(1, E->getLocStart());
1696          if (REval.isSigned() && REval.isAllOnesValue()) {
1697            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1698            if (LEval.isMinSignedValue())
1699              return ICEDiag(1, E->getLocStart());
1700          }
1701        }
1702      }
1703      if (Exp->getOpcode() == BinaryOperator::Comma) {
1704        if (Ctx.getLangOptions().C99) {
1705          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1706          // if it isn't evaluated.
1707          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1708            return ICEDiag(1, E->getLocStart());
1709        } else {
1710          // In both C89 and C++, commas in ICEs are illegal.
1711          return ICEDiag(2, E->getLocStart());
1712        }
1713      }
1714      if (LHSResult.Val >= RHSResult.Val)
1715        return LHSResult;
1716      return RHSResult;
1717    }
1718    case BinaryOperator::LAnd:
1719    case BinaryOperator::LOr: {
1720      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1721      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1722      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1723        // Rare case where the RHS has a comma "side-effect"; we need
1724        // to actually check the condition to see whether the side
1725        // with the comma is evaluated.
1726        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1727            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1728          return RHSResult;
1729        return NoDiag();
1730      }
1731
1732      if (LHSResult.Val >= RHSResult.Val)
1733        return LHSResult;
1734      return RHSResult;
1735    }
1736    }
1737  }
1738  case Expr::CastExprClass:
1739  case Expr::ImplicitCastExprClass:
1740  case Expr::ExplicitCastExprClass:
1741  case Expr::CStyleCastExprClass:
1742  case Expr::CXXFunctionalCastExprClass:
1743  case Expr::CXXNamedCastExprClass:
1744  case Expr::CXXStaticCastExprClass:
1745  case Expr::CXXReinterpretCastExprClass:
1746  case Expr::CXXConstCastExprClass: {
1747    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1748    if (SubExpr->getType()->isIntegralType())
1749      return CheckICE(SubExpr, Ctx);
1750    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1751      return NoDiag();
1752    return ICEDiag(2, E->getLocStart());
1753  }
1754  case Expr::ConditionalOperatorClass: {
1755    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1756    // If the condition (ignoring parens) is a __builtin_constant_p call,
1757    // then only the true side is actually considered in an integer constant
1758    // expression, and it is fully evaluated.  This is an important GNU
1759    // extension.  See GCC PR38377 for discussion.
1760    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1761      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1762        Expr::EvalResult EVResult;
1763        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1764            !EVResult.Val.isInt()) {
1765          return ICEDiag(2, E->getLocStart());
1766        }
1767        return NoDiag();
1768      }
1769    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1770    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1771    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1772    if (CondResult.Val == 2)
1773      return CondResult;
1774    if (TrueResult.Val == 2)
1775      return TrueResult;
1776    if (FalseResult.Val == 2)
1777      return FalseResult;
1778    if (CondResult.Val == 1)
1779      return CondResult;
1780    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1781      return NoDiag();
1782    // Rare case where the diagnostics depend on which side is evaluated
1783    // Note that if we get here, CondResult is 0, and at least one of
1784    // TrueResult and FalseResult is non-zero.
1785    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1786      return FalseResult;
1787    }
1788    return TrueResult;
1789  }
1790  case Expr::CXXDefaultArgExprClass:
1791    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1792  case Expr::ChooseExprClass: {
1793    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1794  }
1795  }
1796
1797  // Silence a GCC warning
1798  return ICEDiag(2, E->getLocStart());
1799}
1800
1801bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1802                                 SourceLocation *Loc, bool isEvaluated) const {
1803  ICEDiag d = CheckICE(this, Ctx);
1804  if (d.Val != 0) {
1805    if (Loc) *Loc = d.Loc;
1806    return false;
1807  }
1808  EvalResult EvalResult;
1809  if (!Evaluate(EvalResult, Ctx))
1810    llvm::llvm_unreachable("ICE cannot be evaluated!");
1811  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1812  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1813  Result = EvalResult.Val.getInt();
1814  return true;
1815}
1816
1817/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1818/// integer constant expression with the value zero, or if this is one that is
1819/// cast to void*.
1820bool Expr::isNullPointerConstant(ASTContext &Ctx,
1821                                 NullPointerConstantValueDependence NPC) const {
1822  if (isValueDependent()) {
1823    switch (NPC) {
1824    case NPC_NeverValueDependent:
1825      assert(false && "Unexpected value dependent expression!");
1826      // If the unthinkable happens, fall through to the safest alternative.
1827
1828    case NPC_ValueDependentIsNull:
1829      return isTypeDependent() || getType()->isIntegralType();
1830
1831    case NPC_ValueDependentIsNotNull:
1832      return false;
1833    }
1834  }
1835
1836  // Strip off a cast to void*, if it exists. Except in C++.
1837  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1838    if (!Ctx.getLangOptions().CPlusPlus) {
1839      // Check that it is a cast to void*.
1840      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1841        QualType Pointee = PT->getPointeeType();
1842        if (!Pointee.hasQualifiers() &&
1843            Pointee->isVoidType() &&                              // to void*
1844            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1845          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1846      }
1847    }
1848  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1849    // Ignore the ImplicitCastExpr type entirely.
1850    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1851  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1852    // Accept ((void*)0) as a null pointer constant, as many other
1853    // implementations do.
1854    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1855  } else if (const CXXDefaultArgExpr *DefaultArg
1856               = dyn_cast<CXXDefaultArgExpr>(this)) {
1857    // See through default argument expressions
1858    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1859  } else if (isa<GNUNullExpr>(this)) {
1860    // The GNU __null extension is always a null pointer constant.
1861    return true;
1862  }
1863
1864  // C++0x nullptr_t is always a null pointer constant.
1865  if (getType()->isNullPtrType())
1866    return true;
1867
1868  // This expression must be an integer type.
1869  if (!getType()->isIntegerType() ||
1870      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1871    return false;
1872
1873  // If we have an integer constant expression, we need to *evaluate* it and
1874  // test for the value 0.
1875  llvm::APSInt Result;
1876  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1877}
1878
1879FieldDecl *Expr::getBitField() {
1880  Expr *E = this->IgnoreParens();
1881
1882  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1883    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1884      if (Field->isBitField())
1885        return Field;
1886
1887  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1888    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1889      return BinOp->getLHS()->getBitField();
1890
1891  return 0;
1892}
1893
1894/// isArrow - Return true if the base expression is a pointer to vector,
1895/// return false if the base expression is a vector.
1896bool ExtVectorElementExpr::isArrow() const {
1897  return getBase()->getType()->isPointerType();
1898}
1899
1900unsigned ExtVectorElementExpr::getNumElements() const {
1901  if (const VectorType *VT = getType()->getAs<VectorType>())
1902    return VT->getNumElements();
1903  return 1;
1904}
1905
1906/// containsDuplicateElements - Return true if any element access is repeated.
1907bool ExtVectorElementExpr::containsDuplicateElements() const {
1908  // FIXME: Refactor this code to an accessor on the AST node which returns the
1909  // "type" of component access, and share with code below and in Sema.
1910  llvm::StringRef Comp = Accessor->getName();
1911
1912  // Halving swizzles do not contain duplicate elements.
1913  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1914    return false;
1915
1916  // Advance past s-char prefix on hex swizzles.
1917  if (Comp[0] == 's' || Comp[0] == 'S')
1918    Comp = Comp.substr(1);
1919
1920  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1921    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1922        return true;
1923
1924  return false;
1925}
1926
1927/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1928void ExtVectorElementExpr::getEncodedElementAccess(
1929                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1930  llvm::StringRef Comp = Accessor->getName();
1931  if (Comp[0] == 's' || Comp[0] == 'S')
1932    Comp = Comp.substr(1);
1933
1934  bool isHi =   Comp == "hi";
1935  bool isLo =   Comp == "lo";
1936  bool isEven = Comp == "even";
1937  bool isOdd  = Comp == "odd";
1938
1939  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1940    uint64_t Index;
1941
1942    if (isHi)
1943      Index = e + i;
1944    else if (isLo)
1945      Index = i;
1946    else if (isEven)
1947      Index = 2 * i;
1948    else if (isOdd)
1949      Index = 2 * i + 1;
1950    else
1951      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1952
1953    Elts.push_back(Index);
1954  }
1955}
1956
1957// constructor for instance messages.
1958ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1959                QualType retType, ObjCMethodDecl *mproto,
1960                SourceLocation LBrac, SourceLocation RBrac,
1961                Expr **ArgExprs, unsigned nargs)
1962  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1963    MethodProto(mproto) {
1964  NumArgs = nargs;
1965  SubExprs = new Stmt*[NumArgs+1];
1966  SubExprs[RECEIVER] = receiver;
1967  if (NumArgs) {
1968    for (unsigned i = 0; i != NumArgs; ++i)
1969      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1970  }
1971  LBracloc = LBrac;
1972  RBracloc = RBrac;
1973}
1974
1975// constructor for class messages.
1976// FIXME: clsName should be typed to ObjCInterfaceType
1977ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1978                QualType retType, ObjCMethodDecl *mproto,
1979                SourceLocation LBrac, SourceLocation RBrac,
1980                Expr **ArgExprs, unsigned nargs)
1981  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1982    MethodProto(mproto) {
1983  NumArgs = nargs;
1984  SubExprs = new Stmt*[NumArgs+1];
1985  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1986  if (NumArgs) {
1987    for (unsigned i = 0; i != NumArgs; ++i)
1988      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1989  }
1990  LBracloc = LBrac;
1991  RBracloc = RBrac;
1992}
1993
1994// constructor for class messages.
1995ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1996                                 QualType retType, ObjCMethodDecl *mproto,
1997                                 SourceLocation LBrac, SourceLocation RBrac,
1998                                 Expr **ArgExprs, unsigned nargs)
1999: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2000MethodProto(mproto) {
2001  NumArgs = nargs;
2002  SubExprs = new Stmt*[NumArgs+1];
2003  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2004  if (NumArgs) {
2005    for (unsigned i = 0; i != NumArgs; ++i)
2006      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2007  }
2008  LBracloc = LBrac;
2009  RBracloc = RBrac;
2010}
2011
2012ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2013  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2014  switch (x & Flags) {
2015    default:
2016      assert(false && "Invalid ObjCMessageExpr.");
2017    case IsInstMeth:
2018      return ClassInfo(0, 0);
2019    case IsClsMethDeclUnknown:
2020      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2021    case IsClsMethDeclKnown: {
2022      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2023      return ClassInfo(D, D->getIdentifier());
2024    }
2025  }
2026}
2027
2028void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2029  if (CI.first == 0 && CI.second == 0)
2030    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2031  else if (CI.first == 0)
2032    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2033  else
2034    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2035}
2036
2037
2038bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2039  return getCond()->EvaluateAsInt(C) != 0;
2040}
2041
2042void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2043                                 unsigned NumExprs) {
2044  if (SubExprs) C.Deallocate(SubExprs);
2045
2046  SubExprs = new (C) Stmt* [NumExprs];
2047  this->NumExprs = NumExprs;
2048  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2049}
2050
2051void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2052  DestroyChildren(C);
2053  if (SubExprs) C.Deallocate(SubExprs);
2054  this->~ShuffleVectorExpr();
2055  C.Deallocate(this);
2056}
2057
2058void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2059  // Override default behavior of traversing children. If this has a type
2060  // operand and the type is a variable-length array, the child iteration
2061  // will iterate over the size expression. However, this expression belongs
2062  // to the type, not to this, so we don't want to delete it.
2063  // We still want to delete this expression.
2064  if (isArgumentType()) {
2065    this->~SizeOfAlignOfExpr();
2066    C.Deallocate(this);
2067  }
2068  else
2069    Expr::DoDestroy(C);
2070}
2071
2072//===----------------------------------------------------------------------===//
2073//  DesignatedInitExpr
2074//===----------------------------------------------------------------------===//
2075
2076IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2077  assert(Kind == FieldDesignator && "Only valid on a field designator");
2078  if (Field.NameOrField & 0x01)
2079    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2080  else
2081    return getField()->getIdentifier();
2082}
2083
2084DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2085                                       const Designator *Designators,
2086                                       SourceLocation EqualOrColonLoc,
2087                                       bool GNUSyntax,
2088                                       Expr **IndexExprs,
2089                                       unsigned NumIndexExprs,
2090                                       Expr *Init)
2091  : Expr(DesignatedInitExprClass, Ty,
2092         Init->isTypeDependent(), Init->isValueDependent()),
2093    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2094    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2095  this->Designators = new Designator[NumDesignators];
2096
2097  // Record the initializer itself.
2098  child_iterator Child = child_begin();
2099  *Child++ = Init;
2100
2101  // Copy the designators and their subexpressions, computing
2102  // value-dependence along the way.
2103  unsigned IndexIdx = 0;
2104  for (unsigned I = 0; I != NumDesignators; ++I) {
2105    this->Designators[I] = Designators[I];
2106
2107    if (this->Designators[I].isArrayDesignator()) {
2108      // Compute type- and value-dependence.
2109      Expr *Index = IndexExprs[IndexIdx];
2110      ValueDependent = ValueDependent ||
2111        Index->isTypeDependent() || Index->isValueDependent();
2112
2113      // Copy the index expressions into permanent storage.
2114      *Child++ = IndexExprs[IndexIdx++];
2115    } else if (this->Designators[I].isArrayRangeDesignator()) {
2116      // Compute type- and value-dependence.
2117      Expr *Start = IndexExprs[IndexIdx];
2118      Expr *End = IndexExprs[IndexIdx + 1];
2119      ValueDependent = ValueDependent ||
2120        Start->isTypeDependent() || Start->isValueDependent() ||
2121        End->isTypeDependent() || End->isValueDependent();
2122
2123      // Copy the start/end expressions into permanent storage.
2124      *Child++ = IndexExprs[IndexIdx++];
2125      *Child++ = IndexExprs[IndexIdx++];
2126    }
2127  }
2128
2129  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2130}
2131
2132DesignatedInitExpr *
2133DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2134                           unsigned NumDesignators,
2135                           Expr **IndexExprs, unsigned NumIndexExprs,
2136                           SourceLocation ColonOrEqualLoc,
2137                           bool UsesColonSyntax, Expr *Init) {
2138  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2139                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2140  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2141                                      ColonOrEqualLoc, UsesColonSyntax,
2142                                      IndexExprs, NumIndexExprs, Init);
2143}
2144
2145DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2146                                                    unsigned NumIndexExprs) {
2147  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2148                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2149  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2150}
2151
2152void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2153                                        unsigned NumDesigs) {
2154  if (Designators)
2155    delete [] Designators;
2156
2157  Designators = new Designator[NumDesigs];
2158  NumDesignators = NumDesigs;
2159  for (unsigned I = 0; I != NumDesigs; ++I)
2160    Designators[I] = Desigs[I];
2161}
2162
2163SourceRange DesignatedInitExpr::getSourceRange() const {
2164  SourceLocation StartLoc;
2165  Designator &First =
2166    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2167  if (First.isFieldDesignator()) {
2168    if (GNUSyntax)
2169      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2170    else
2171      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2172  } else
2173    StartLoc =
2174      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2175  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2176}
2177
2178Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2179  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2180  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2181  Ptr += sizeof(DesignatedInitExpr);
2182  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2183  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2184}
2185
2186Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2187  assert(D.Kind == Designator::ArrayRangeDesignator &&
2188         "Requires array range designator");
2189  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2190  Ptr += sizeof(DesignatedInitExpr);
2191  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2192  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2193}
2194
2195Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2196  assert(D.Kind == Designator::ArrayRangeDesignator &&
2197         "Requires array range designator");
2198  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2199  Ptr += sizeof(DesignatedInitExpr);
2200  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2201  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2202}
2203
2204/// \brief Replaces the designator at index @p Idx with the series
2205/// of designators in [First, Last).
2206void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2207                                          const Designator *First,
2208                                          const Designator *Last) {
2209  unsigned NumNewDesignators = Last - First;
2210  if (NumNewDesignators == 0) {
2211    std::copy_backward(Designators + Idx + 1,
2212                       Designators + NumDesignators,
2213                       Designators + Idx);
2214    --NumNewDesignators;
2215    return;
2216  } else if (NumNewDesignators == 1) {
2217    Designators[Idx] = *First;
2218    return;
2219  }
2220
2221  Designator *NewDesignators
2222    = new Designator[NumDesignators - 1 + NumNewDesignators];
2223  std::copy(Designators, Designators + Idx, NewDesignators);
2224  std::copy(First, Last, NewDesignators + Idx);
2225  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2226            NewDesignators + Idx + NumNewDesignators);
2227  delete [] Designators;
2228  Designators = NewDesignators;
2229  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2230}
2231
2232void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2233  delete [] Designators;
2234  Expr::DoDestroy(C);
2235}
2236
2237ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2238                             Expr **exprs, unsigned nexprs,
2239                             SourceLocation rparenloc)
2240: Expr(ParenListExprClass, QualType(),
2241       hasAnyTypeDependentArguments(exprs, nexprs),
2242       hasAnyValueDependentArguments(exprs, nexprs)),
2243  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2244
2245  Exprs = new (C) Stmt*[nexprs];
2246  for (unsigned i = 0; i != nexprs; ++i)
2247    Exprs[i] = exprs[i];
2248}
2249
2250void ParenListExpr::DoDestroy(ASTContext& C) {
2251  DestroyChildren(C);
2252  if (Exprs) C.Deallocate(Exprs);
2253  this->~ParenListExpr();
2254  C.Deallocate(this);
2255}
2256
2257//===----------------------------------------------------------------------===//
2258//  ExprIterator.
2259//===----------------------------------------------------------------------===//
2260
2261Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2262Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2263Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2264const Expr* ConstExprIterator::operator[](size_t idx) const {
2265  return cast<Expr>(I[idx]);
2266}
2267const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2268const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2269
2270//===----------------------------------------------------------------------===//
2271//  Child Iterators for iterating over subexpressions/substatements
2272//===----------------------------------------------------------------------===//
2273
2274// DeclRefExpr
2275Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2276Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2277
2278// ObjCIvarRefExpr
2279Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2280Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2281
2282// ObjCPropertyRefExpr
2283Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2284Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2285
2286// ObjCImplicitSetterGetterRefExpr
2287Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2288  return &Base;
2289}
2290Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2291  return &Base+1;
2292}
2293
2294// ObjCSuperExpr
2295Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2296Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2297
2298// ObjCIsaExpr
2299Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2300Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2301
2302// PredefinedExpr
2303Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2304Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2305
2306// IntegerLiteral
2307Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2308Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2309
2310// CharacterLiteral
2311Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2312Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2313
2314// FloatingLiteral
2315Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2316Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2317
2318// ImaginaryLiteral
2319Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2320Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2321
2322// StringLiteral
2323Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2324Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2325
2326// ParenExpr
2327Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2328Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2329
2330// UnaryOperator
2331Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2332Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2333
2334// SizeOfAlignOfExpr
2335Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2336  // If this is of a type and the type is a VLA type (and not a typedef), the
2337  // size expression of the VLA needs to be treated as an executable expression.
2338  // Why isn't this weirdness documented better in StmtIterator?
2339  if (isArgumentType()) {
2340    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2341                                   getArgumentType().getTypePtr()))
2342      return child_iterator(T);
2343    return child_iterator();
2344  }
2345  return child_iterator(&Argument.Ex);
2346}
2347Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2348  if (isArgumentType())
2349    return child_iterator();
2350  return child_iterator(&Argument.Ex + 1);
2351}
2352
2353// ArraySubscriptExpr
2354Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2355  return &SubExprs[0];
2356}
2357Stmt::child_iterator ArraySubscriptExpr::child_end() {
2358  return &SubExprs[0]+END_EXPR;
2359}
2360
2361// CallExpr
2362Stmt::child_iterator CallExpr::child_begin() {
2363  return &SubExprs[0];
2364}
2365Stmt::child_iterator CallExpr::child_end() {
2366  return &SubExprs[0]+NumArgs+ARGS_START;
2367}
2368
2369// MemberExpr
2370Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2371Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2372
2373// ExtVectorElementExpr
2374Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2375Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2376
2377// CompoundLiteralExpr
2378Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2379Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2380
2381// CastExpr
2382Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2383Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2384
2385// BinaryOperator
2386Stmt::child_iterator BinaryOperator::child_begin() {
2387  return &SubExprs[0];
2388}
2389Stmt::child_iterator BinaryOperator::child_end() {
2390  return &SubExprs[0]+END_EXPR;
2391}
2392
2393// ConditionalOperator
2394Stmt::child_iterator ConditionalOperator::child_begin() {
2395  return &SubExprs[0];
2396}
2397Stmt::child_iterator ConditionalOperator::child_end() {
2398  return &SubExprs[0]+END_EXPR;
2399}
2400
2401// AddrLabelExpr
2402Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2403Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2404
2405// StmtExpr
2406Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2407Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2408
2409// TypesCompatibleExpr
2410Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2411  return child_iterator();
2412}
2413
2414Stmt::child_iterator TypesCompatibleExpr::child_end() {
2415  return child_iterator();
2416}
2417
2418// ChooseExpr
2419Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2420Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2421
2422// GNUNullExpr
2423Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2424Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2425
2426// ShuffleVectorExpr
2427Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2428  return &SubExprs[0];
2429}
2430Stmt::child_iterator ShuffleVectorExpr::child_end() {
2431  return &SubExprs[0]+NumExprs;
2432}
2433
2434// VAArgExpr
2435Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2436Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2437
2438// InitListExpr
2439Stmt::child_iterator InitListExpr::child_begin() {
2440  return InitExprs.size() ? &InitExprs[0] : 0;
2441}
2442Stmt::child_iterator InitListExpr::child_end() {
2443  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2444}
2445
2446// DesignatedInitExpr
2447Stmt::child_iterator DesignatedInitExpr::child_begin() {
2448  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2449  Ptr += sizeof(DesignatedInitExpr);
2450  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2451}
2452Stmt::child_iterator DesignatedInitExpr::child_end() {
2453  return child_iterator(&*child_begin() + NumSubExprs);
2454}
2455
2456// ImplicitValueInitExpr
2457Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2458  return child_iterator();
2459}
2460
2461Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2462  return child_iterator();
2463}
2464
2465// ParenListExpr
2466Stmt::child_iterator ParenListExpr::child_begin() {
2467  return &Exprs[0];
2468}
2469Stmt::child_iterator ParenListExpr::child_end() {
2470  return &Exprs[0]+NumExprs;
2471}
2472
2473// ObjCStringLiteral
2474Stmt::child_iterator ObjCStringLiteral::child_begin() {
2475  return &String;
2476}
2477Stmt::child_iterator ObjCStringLiteral::child_end() {
2478  return &String+1;
2479}
2480
2481// ObjCEncodeExpr
2482Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2483Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2484
2485// ObjCSelectorExpr
2486Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2487  return child_iterator();
2488}
2489Stmt::child_iterator ObjCSelectorExpr::child_end() {
2490  return child_iterator();
2491}
2492
2493// ObjCProtocolExpr
2494Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2495  return child_iterator();
2496}
2497Stmt::child_iterator ObjCProtocolExpr::child_end() {
2498  return child_iterator();
2499}
2500
2501// ObjCMessageExpr
2502Stmt::child_iterator ObjCMessageExpr::child_begin() {
2503  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2504}
2505Stmt::child_iterator ObjCMessageExpr::child_end() {
2506  return &SubExprs[0]+ARGS_START+getNumArgs();
2507}
2508
2509// Blocks
2510Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2511Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2512
2513Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2514Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2515