ExprConstant.cpp revision 2c39d71bb7cefdfe6116fa52454f3b3dc5abd517
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 rules only, at the moment), or, if folding failed too,
27//    why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/CharUnits.h"
39#include "clang/AST/RecordLayout.h"
40#include "clang/AST/StmtVisitor.h"
41#include "clang/AST/TypeLoc.h"
42#include "clang/AST/ASTDiagnostic.h"
43#include "clang/AST/Expr.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include <cstring>
48#include <functional>
49
50using namespace clang;
51using llvm::APSInt;
52using llvm::APFloat;
53
54static bool IsGlobalLValue(APValue::LValueBase B);
55
56namespace {
57  struct LValue;
58  struct CallStackFrame;
59  struct EvalInfo;
60
61  static QualType getType(APValue::LValueBase B) {
62    if (!B) return QualType();
63    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
64      return D->getType();
65    return B.get<const Expr*>()->getType();
66  }
67
68  /// Get an LValue path entry, which is known to not be an array index, as a
69  /// field or base class.
70  static
71  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
72    APValue::BaseOrMemberType Value;
73    Value.setFromOpaqueValue(E.BaseOrMember);
74    return Value;
75  }
76
77  /// Get an LValue path entry, which is known to not be an array index, as a
78  /// field declaration.
79  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
80    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
81  }
82  /// Get an LValue path entry, which is known to not be an array index, as a
83  /// base class declaration.
84  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
85    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
86  }
87  /// Determine whether this LValue path entry for a base class names a virtual
88  /// base class.
89  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
90    return getAsBaseOrMember(E).getInt();
91  }
92
93  /// Find the path length and type of the most-derived subobject in the given
94  /// path, and find the size of the containing array, if any.
95  static
96  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
97                                    ArrayRef<APValue::LValuePathEntry> Path,
98                                    uint64_t &ArraySize, QualType &Type) {
99    unsigned MostDerivedLength = 0;
100    Type = Base;
101    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
102      if (Type->isArrayType()) {
103        const ConstantArrayType *CAT =
104          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
105        Type = CAT->getElementType();
106        ArraySize = CAT->getSize().getZExtValue();
107        MostDerivedLength = I + 1;
108      } else if (Type->isAnyComplexType()) {
109        const ComplexType *CT = Type->castAs<ComplexType>();
110        Type = CT->getElementType();
111        ArraySize = 2;
112        MostDerivedLength = I + 1;
113      } else if (const FieldDecl *FD = getAsField(Path[I])) {
114        Type = FD->getType();
115        ArraySize = 0;
116        MostDerivedLength = I + 1;
117      } else {
118        // Path[I] describes a base class.
119        ArraySize = 0;
120      }
121    }
122    return MostDerivedLength;
123  }
124
125  // The order of this enum is important for diagnostics.
126  enum CheckSubobjectKind {
127    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
128    CSK_This, CSK_Real, CSK_Imag
129  };
130
131  /// A path from a glvalue to a subobject of that glvalue.
132  struct SubobjectDesignator {
133    /// True if the subobject was named in a manner not supported by C++11. Such
134    /// lvalues can still be folded, but they are not core constant expressions
135    /// and we cannot perform lvalue-to-rvalue conversions on them.
136    bool Invalid : 1;
137
138    /// Is this a pointer one past the end of an object?
139    bool IsOnePastTheEnd : 1;
140
141    /// The length of the path to the most-derived object of which this is a
142    /// subobject.
143    unsigned MostDerivedPathLength : 30;
144
145    /// The size of the array of which the most-derived object is an element, or
146    /// 0 if the most-derived object is not an array element.
147    uint64_t MostDerivedArraySize;
148
149    /// The type of the most derived object referred to by this address.
150    QualType MostDerivedType;
151
152    typedef APValue::LValuePathEntry PathEntry;
153
154    /// The entries on the path from the glvalue to the designated subobject.
155    SmallVector<PathEntry, 8> Entries;
156
157    SubobjectDesignator() : Invalid(true) {}
158
159    explicit SubobjectDesignator(QualType T)
160      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
161        MostDerivedArraySize(0), MostDerivedType(T) {}
162
163    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
164      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
165        MostDerivedPathLength(0), MostDerivedArraySize(0) {
166      if (!Invalid) {
167        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
168        ArrayRef<PathEntry> VEntries = V.getLValuePath();
169        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
170        if (V.getLValueBase())
171          MostDerivedPathLength =
172              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
173                                       V.getLValuePath(), MostDerivedArraySize,
174                                       MostDerivedType);
175      }
176    }
177
178    void setInvalid() {
179      Invalid = true;
180      Entries.clear();
181    }
182
183    /// Determine whether this is a one-past-the-end pointer.
184    bool isOnePastTheEnd() const {
185      if (IsOnePastTheEnd)
186        return true;
187      if (MostDerivedArraySize &&
188          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
189        return true;
190      return false;
191    }
192
193    /// Check that this refers to a valid subobject.
194    bool isValidSubobject() const {
195      if (Invalid)
196        return false;
197      return !isOnePastTheEnd();
198    }
199    /// Check that this refers to a valid subobject, and if not, produce a
200    /// relevant diagnostic and set the designator as invalid.
201    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
202
203    /// Update this designator to refer to the first element within this array.
204    void addArrayUnchecked(const ConstantArrayType *CAT) {
205      PathEntry Entry;
206      Entry.ArrayIndex = 0;
207      Entries.push_back(Entry);
208
209      // This is a most-derived object.
210      MostDerivedType = CAT->getElementType();
211      MostDerivedArraySize = CAT->getSize().getZExtValue();
212      MostDerivedPathLength = Entries.size();
213    }
214    /// Update this designator to refer to the given base or member of this
215    /// object.
216    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
217      PathEntry Entry;
218      APValue::BaseOrMemberType Value(D, Virtual);
219      Entry.BaseOrMember = Value.getOpaqueValue();
220      Entries.push_back(Entry);
221
222      // If this isn't a base class, it's a new most-derived object.
223      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
224        MostDerivedType = FD->getType();
225        MostDerivedArraySize = 0;
226        MostDerivedPathLength = Entries.size();
227      }
228    }
229    /// Update this designator to refer to the given complex component.
230    void addComplexUnchecked(QualType EltTy, bool Imag) {
231      PathEntry Entry;
232      Entry.ArrayIndex = Imag;
233      Entries.push_back(Entry);
234
235      // This is technically a most-derived object, though in practice this
236      // is unlikely to matter.
237      MostDerivedType = EltTy;
238      MostDerivedArraySize = 2;
239      MostDerivedPathLength = Entries.size();
240    }
241    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
242    /// Add N to the address of this subobject.
243    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
244      if (Invalid) return;
245      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
246        Entries.back().ArrayIndex += N;
247        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
248          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
249          setInvalid();
250        }
251        return;
252      }
253      // [expr.add]p4: For the purposes of these operators, a pointer to a
254      // nonarray object behaves the same as a pointer to the first element of
255      // an array of length one with the type of the object as its element type.
256      if (IsOnePastTheEnd && N == (uint64_t)-1)
257        IsOnePastTheEnd = false;
258      else if (!IsOnePastTheEnd && N == 1)
259        IsOnePastTheEnd = true;
260      else if (N != 0) {
261        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
262        setInvalid();
263      }
264    }
265  };
266
267  /// A stack frame in the constexpr call stack.
268  struct CallStackFrame {
269    EvalInfo &Info;
270
271    /// Parent - The caller of this stack frame.
272    CallStackFrame *Caller;
273
274    /// CallLoc - The location of the call expression for this call.
275    SourceLocation CallLoc;
276
277    /// Callee - The function which was called.
278    const FunctionDecl *Callee;
279
280    /// Index - The call index of this call.
281    unsigned Index;
282
283    /// This - The binding for the this pointer in this call, if any.
284    const LValue *This;
285
286    /// ParmBindings - Parameter bindings for this function call, indexed by
287    /// parameters' function scope indices.
288    const APValue *Arguments;
289
290    typedef llvm::DenseMap<const Expr*, APValue> MapTy;
291    typedef MapTy::const_iterator temp_iterator;
292    /// Temporaries - Temporary lvalues materialized within this stack frame.
293    MapTy Temporaries;
294
295    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
296                   const FunctionDecl *Callee, const LValue *This,
297                   const APValue *Arguments);
298    ~CallStackFrame();
299  };
300
301  /// A partial diagnostic which we might know in advance that we are not going
302  /// to emit.
303  class OptionalDiagnostic {
304    PartialDiagnostic *Diag;
305
306  public:
307    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
308
309    template<typename T>
310    OptionalDiagnostic &operator<<(const T &v) {
311      if (Diag)
312        *Diag << v;
313      return *this;
314    }
315
316    OptionalDiagnostic &operator<<(const APSInt &I) {
317      if (Diag) {
318        llvm::SmallVector<char, 32> Buffer;
319        I.toString(Buffer);
320        *Diag << StringRef(Buffer.data(), Buffer.size());
321      }
322      return *this;
323    }
324
325    OptionalDiagnostic &operator<<(const APFloat &F) {
326      if (Diag) {
327        llvm::SmallVector<char, 32> Buffer;
328        F.toString(Buffer);
329        *Diag << StringRef(Buffer.data(), Buffer.size());
330      }
331      return *this;
332    }
333  };
334
335  /// EvalInfo - This is a private struct used by the evaluator to capture
336  /// information about a subexpression as it is folded.  It retains information
337  /// about the AST context, but also maintains information about the folded
338  /// expression.
339  ///
340  /// If an expression could be evaluated, it is still possible it is not a C
341  /// "integer constant expression" or constant expression.  If not, this struct
342  /// captures information about how and why not.
343  ///
344  /// One bit of information passed *into* the request for constant folding
345  /// indicates whether the subexpression is "evaluated" or not according to C
346  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
347  /// evaluate the expression regardless of what the RHS is, but C only allows
348  /// certain things in certain situations.
349  struct EvalInfo {
350    ASTContext &Ctx;
351
352    /// EvalStatus - Contains information about the evaluation.
353    Expr::EvalStatus &EvalStatus;
354
355    /// CurrentCall - The top of the constexpr call stack.
356    CallStackFrame *CurrentCall;
357
358    /// CallStackDepth - The number of calls in the call stack right now.
359    unsigned CallStackDepth;
360
361    /// NextCallIndex - The next call index to assign.
362    unsigned NextCallIndex;
363
364    typedef llvm::DenseMap<const OpaqueValueExpr*, APValue> MapTy;
365    /// OpaqueValues - Values used as the common expression in a
366    /// BinaryConditionalOperator.
367    MapTy OpaqueValues;
368
369    /// BottomFrame - The frame in which evaluation started. This must be
370    /// initialized after CurrentCall and CallStackDepth.
371    CallStackFrame BottomFrame;
372
373    /// EvaluatingDecl - This is the declaration whose initializer is being
374    /// evaluated, if any.
375    const VarDecl *EvaluatingDecl;
376
377    /// EvaluatingDeclValue - This is the value being constructed for the
378    /// declaration whose initializer is being evaluated, if any.
379    APValue *EvaluatingDeclValue;
380
381    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
382    /// notes attached to it will also be stored, otherwise they will not be.
383    bool HasActiveDiagnostic;
384
385    /// CheckingPotentialConstantExpression - Are we checking whether the
386    /// expression is a potential constant expression? If so, some diagnostics
387    /// are suppressed.
388    bool CheckingPotentialConstantExpression;
389
390    EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
391      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
392        CallStackDepth(0), NextCallIndex(1),
393        BottomFrame(*this, SourceLocation(), 0, 0, 0),
394        EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
395        CheckingPotentialConstantExpression(false) {}
396
397    const APValue *getOpaqueValue(const OpaqueValueExpr *e) const {
398      MapTy::const_iterator i = OpaqueValues.find(e);
399      if (i == OpaqueValues.end()) return 0;
400      return &i->second;
401    }
402
403    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
404      EvaluatingDecl = VD;
405      EvaluatingDeclValue = &Value;
406    }
407
408    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
409
410    bool CheckCallLimit(SourceLocation Loc) {
411      // Don't perform any constexpr calls (other than the call we're checking)
412      // when checking a potential constant expression.
413      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
414        return false;
415      if (NextCallIndex == 0) {
416        // NextCallIndex has wrapped around.
417        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
418        return false;
419      }
420      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
421        return true;
422      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
423        << getLangOpts().ConstexprCallDepth;
424      return false;
425    }
426
427    CallStackFrame *getCallFrame(unsigned CallIndex) {
428      assert(CallIndex && "no call index in getCallFrame");
429      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
430      // be null in this loop.
431      CallStackFrame *Frame = CurrentCall;
432      while (Frame->Index > CallIndex)
433        Frame = Frame->Caller;
434      return (Frame->Index == CallIndex) ? Frame : 0;
435    }
436
437  private:
438    /// Add a diagnostic to the diagnostics list.
439    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
440      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
441      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
442      return EvalStatus.Diag->back().second;
443    }
444
445    /// Add notes containing a call stack to the current point of evaluation.
446    void addCallStack(unsigned Limit);
447
448  public:
449    /// Diagnose that the evaluation cannot be folded.
450    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
451                              = diag::note_invalid_subexpr_in_const_expr,
452                            unsigned ExtraNotes = 0) {
453      // If we have a prior diagnostic, it will be noting that the expression
454      // isn't a constant expression. This diagnostic is more important.
455      // FIXME: We might want to show both diagnostics to the user.
456      if (EvalStatus.Diag) {
457        unsigned CallStackNotes = CallStackDepth - 1;
458        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
459        if (Limit)
460          CallStackNotes = std::min(CallStackNotes, Limit + 1);
461        if (CheckingPotentialConstantExpression)
462          CallStackNotes = 0;
463
464        HasActiveDiagnostic = true;
465        EvalStatus.Diag->clear();
466        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
467        addDiag(Loc, DiagId);
468        if (!CheckingPotentialConstantExpression)
469          addCallStack(Limit);
470        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
471      }
472      HasActiveDiagnostic = false;
473      return OptionalDiagnostic();
474    }
475
476    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
477                              = diag::note_invalid_subexpr_in_const_expr,
478                            unsigned ExtraNotes = 0) {
479      if (EvalStatus.Diag)
480        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
481      HasActiveDiagnostic = false;
482      return OptionalDiagnostic();
483    }
484
485    /// Diagnose that the evaluation does not produce a C++11 core constant
486    /// expression.
487    template<typename LocArg>
488    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
489                                 = diag::note_invalid_subexpr_in_const_expr,
490                               unsigned ExtraNotes = 0) {
491      // Don't override a previous diagnostic.
492      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
493        HasActiveDiagnostic = false;
494        return OptionalDiagnostic();
495      }
496      return Diag(Loc, DiagId, ExtraNotes);
497    }
498
499    /// Add a note to a prior diagnostic.
500    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
501      if (!HasActiveDiagnostic)
502        return OptionalDiagnostic();
503      return OptionalDiagnostic(&addDiag(Loc, DiagId));
504    }
505
506    /// Add a stack of notes to a prior diagnostic.
507    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
508      if (HasActiveDiagnostic) {
509        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
510                                Diags.begin(), Diags.end());
511      }
512    }
513
514    /// Should we continue evaluation as much as possible after encountering a
515    /// construct which can't be folded?
516    bool keepEvaluatingAfterFailure() {
517      return CheckingPotentialConstantExpression &&
518             EvalStatus.Diag && EvalStatus.Diag->empty();
519    }
520  };
521
522  /// Object used to treat all foldable expressions as constant expressions.
523  struct FoldConstant {
524    bool Enabled;
525
526    explicit FoldConstant(EvalInfo &Info)
527      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
528                !Info.EvalStatus.HasSideEffects) {
529    }
530    // Treat the value we've computed since this object was created as constant.
531    void Fold(EvalInfo &Info) {
532      if (Enabled && !Info.EvalStatus.Diag->empty() &&
533          !Info.EvalStatus.HasSideEffects)
534        Info.EvalStatus.Diag->clear();
535    }
536  };
537
538  /// RAII object used to suppress diagnostics and side-effects from a
539  /// speculative evaluation.
540  class SpeculativeEvaluationRAII {
541    EvalInfo &Info;
542    Expr::EvalStatus Old;
543
544  public:
545    SpeculativeEvaluationRAII(EvalInfo &Info,
546                              llvm::SmallVectorImpl<PartialDiagnosticAt>
547                                *NewDiag = 0)
548      : Info(Info), Old(Info.EvalStatus) {
549      Info.EvalStatus.Diag = NewDiag;
550    }
551    ~SpeculativeEvaluationRAII() {
552      Info.EvalStatus = Old;
553    }
554  };
555}
556
557bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
558                                         CheckSubobjectKind CSK) {
559  if (Invalid)
560    return false;
561  if (isOnePastTheEnd()) {
562    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
563      << CSK;
564    setInvalid();
565    return false;
566  }
567  return true;
568}
569
570void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
571                                                    const Expr *E, uint64_t N) {
572  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
573    Info.CCEDiag(E, diag::note_constexpr_array_index)
574      << static_cast<int>(N) << /*array*/ 0
575      << static_cast<unsigned>(MostDerivedArraySize);
576  else
577    Info.CCEDiag(E, diag::note_constexpr_array_index)
578      << static_cast<int>(N) << /*non-array*/ 1;
579  setInvalid();
580}
581
582CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
583                               const FunctionDecl *Callee, const LValue *This,
584                               const APValue *Arguments)
585    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
586      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
587  Info.CurrentCall = this;
588  ++Info.CallStackDepth;
589}
590
591CallStackFrame::~CallStackFrame() {
592  assert(Info.CurrentCall == this && "calls retired out of order");
593  --Info.CallStackDepth;
594  Info.CurrentCall = Caller;
595}
596
597/// Produce a string describing the given constexpr call.
598static void describeCall(CallStackFrame *Frame, llvm::raw_ostream &Out) {
599  unsigned ArgIndex = 0;
600  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
601                      !isa<CXXConstructorDecl>(Frame->Callee) &&
602                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
603
604  if (!IsMemberCall)
605    Out << *Frame->Callee << '(';
606
607  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
608       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
609    if (ArgIndex > (unsigned)IsMemberCall)
610      Out << ", ";
611
612    const ParmVarDecl *Param = *I;
613    const APValue &Arg = Frame->Arguments[ArgIndex];
614    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
615
616    if (ArgIndex == 0 && IsMemberCall)
617      Out << "->" << *Frame->Callee << '(';
618  }
619
620  Out << ')';
621}
622
623void EvalInfo::addCallStack(unsigned Limit) {
624  // Determine which calls to skip, if any.
625  unsigned ActiveCalls = CallStackDepth - 1;
626  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
627  if (Limit && Limit < ActiveCalls) {
628    SkipStart = Limit / 2 + Limit % 2;
629    SkipEnd = ActiveCalls - Limit / 2;
630  }
631
632  // Walk the call stack and add the diagnostics.
633  unsigned CallIdx = 0;
634  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
635       Frame = Frame->Caller, ++CallIdx) {
636    // Skip this call?
637    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
638      if (CallIdx == SkipStart) {
639        // Note that we're skipping calls.
640        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
641          << unsigned(ActiveCalls - Limit);
642      }
643      continue;
644    }
645
646    llvm::SmallVector<char, 128> Buffer;
647    llvm::raw_svector_ostream Out(Buffer);
648    describeCall(Frame, Out);
649    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
650  }
651}
652
653namespace {
654  struct ComplexValue {
655  private:
656    bool IsInt;
657
658  public:
659    APSInt IntReal, IntImag;
660    APFloat FloatReal, FloatImag;
661
662    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
663
664    void makeComplexFloat() { IsInt = false; }
665    bool isComplexFloat() const { return !IsInt; }
666    APFloat &getComplexFloatReal() { return FloatReal; }
667    APFloat &getComplexFloatImag() { return FloatImag; }
668
669    void makeComplexInt() { IsInt = true; }
670    bool isComplexInt() const { return IsInt; }
671    APSInt &getComplexIntReal() { return IntReal; }
672    APSInt &getComplexIntImag() { return IntImag; }
673
674    void moveInto(APValue &v) const {
675      if (isComplexFloat())
676        v = APValue(FloatReal, FloatImag);
677      else
678        v = APValue(IntReal, IntImag);
679    }
680    void setFrom(const APValue &v) {
681      assert(v.isComplexFloat() || v.isComplexInt());
682      if (v.isComplexFloat()) {
683        makeComplexFloat();
684        FloatReal = v.getComplexFloatReal();
685        FloatImag = v.getComplexFloatImag();
686      } else {
687        makeComplexInt();
688        IntReal = v.getComplexIntReal();
689        IntImag = v.getComplexIntImag();
690      }
691    }
692  };
693
694  struct LValue {
695    APValue::LValueBase Base;
696    CharUnits Offset;
697    unsigned CallIndex;
698    SubobjectDesignator Designator;
699
700    const APValue::LValueBase getLValueBase() const { return Base; }
701    CharUnits &getLValueOffset() { return Offset; }
702    const CharUnits &getLValueOffset() const { return Offset; }
703    unsigned getLValueCallIndex() const { return CallIndex; }
704    SubobjectDesignator &getLValueDesignator() { return Designator; }
705    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
706
707    void moveInto(APValue &V) const {
708      if (Designator.Invalid)
709        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
710      else
711        V = APValue(Base, Offset, Designator.Entries,
712                    Designator.IsOnePastTheEnd, CallIndex);
713    }
714    void setFrom(ASTContext &Ctx, const APValue &V) {
715      assert(V.isLValue());
716      Base = V.getLValueBase();
717      Offset = V.getLValueOffset();
718      CallIndex = V.getLValueCallIndex();
719      Designator = SubobjectDesignator(Ctx, V);
720    }
721
722    void set(APValue::LValueBase B, unsigned I = 0) {
723      Base = B;
724      Offset = CharUnits::Zero();
725      CallIndex = I;
726      Designator = SubobjectDesignator(getType(B));
727    }
728
729    // Check that this LValue is not based on a null pointer. If it is, produce
730    // a diagnostic and mark the designator as invalid.
731    bool checkNullPointer(EvalInfo &Info, const Expr *E,
732                          CheckSubobjectKind CSK) {
733      if (Designator.Invalid)
734        return false;
735      if (!Base) {
736        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
737          << CSK;
738        Designator.setInvalid();
739        return false;
740      }
741      return true;
742    }
743
744    // Check this LValue refers to an object. If not, set the designator to be
745    // invalid and emit a diagnostic.
746    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
747      // Outside C++11, do not build a designator referring to a subobject of
748      // any object: we won't use such a designator for anything.
749      if (!Info.getLangOpts().CPlusPlus0x)
750        Designator.setInvalid();
751      return checkNullPointer(Info, E, CSK) &&
752             Designator.checkSubobject(Info, E, CSK);
753    }
754
755    void addDecl(EvalInfo &Info, const Expr *E,
756                 const Decl *D, bool Virtual = false) {
757      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
758        Designator.addDeclUnchecked(D, Virtual);
759    }
760    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
761      if (checkSubobject(Info, E, CSK_ArrayToPointer))
762        Designator.addArrayUnchecked(CAT);
763    }
764    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
765      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
766        Designator.addComplexUnchecked(EltTy, Imag);
767    }
768    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
769      if (checkNullPointer(Info, E, CSK_ArrayIndex))
770        Designator.adjustIndex(Info, E, N);
771    }
772  };
773
774  struct MemberPtr {
775    MemberPtr() {}
776    explicit MemberPtr(const ValueDecl *Decl) :
777      DeclAndIsDerivedMember(Decl, false), Path() {}
778
779    /// The member or (direct or indirect) field referred to by this member
780    /// pointer, or 0 if this is a null member pointer.
781    const ValueDecl *getDecl() const {
782      return DeclAndIsDerivedMember.getPointer();
783    }
784    /// Is this actually a member of some type derived from the relevant class?
785    bool isDerivedMember() const {
786      return DeclAndIsDerivedMember.getInt();
787    }
788    /// Get the class which the declaration actually lives in.
789    const CXXRecordDecl *getContainingRecord() const {
790      return cast<CXXRecordDecl>(
791          DeclAndIsDerivedMember.getPointer()->getDeclContext());
792    }
793
794    void moveInto(APValue &V) const {
795      V = APValue(getDecl(), isDerivedMember(), Path);
796    }
797    void setFrom(const APValue &V) {
798      assert(V.isMemberPointer());
799      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
800      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
801      Path.clear();
802      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
803      Path.insert(Path.end(), P.begin(), P.end());
804    }
805
806    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
807    /// whether the member is a member of some class derived from the class type
808    /// of the member pointer.
809    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
810    /// Path - The path of base/derived classes from the member declaration's
811    /// class (exclusive) to the class type of the member pointer (inclusive).
812    SmallVector<const CXXRecordDecl*, 4> Path;
813
814    /// Perform a cast towards the class of the Decl (either up or down the
815    /// hierarchy).
816    bool castBack(const CXXRecordDecl *Class) {
817      assert(!Path.empty());
818      const CXXRecordDecl *Expected;
819      if (Path.size() >= 2)
820        Expected = Path[Path.size() - 2];
821      else
822        Expected = getContainingRecord();
823      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
824        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
825        // if B does not contain the original member and is not a base or
826        // derived class of the class containing the original member, the result
827        // of the cast is undefined.
828        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
829        // (D::*). We consider that to be a language defect.
830        return false;
831      }
832      Path.pop_back();
833      return true;
834    }
835    /// Perform a base-to-derived member pointer cast.
836    bool castToDerived(const CXXRecordDecl *Derived) {
837      if (!getDecl())
838        return true;
839      if (!isDerivedMember()) {
840        Path.push_back(Derived);
841        return true;
842      }
843      if (!castBack(Derived))
844        return false;
845      if (Path.empty())
846        DeclAndIsDerivedMember.setInt(false);
847      return true;
848    }
849    /// Perform a derived-to-base member pointer cast.
850    bool castToBase(const CXXRecordDecl *Base) {
851      if (!getDecl())
852        return true;
853      if (Path.empty())
854        DeclAndIsDerivedMember.setInt(true);
855      if (isDerivedMember()) {
856        Path.push_back(Base);
857        return true;
858      }
859      return castBack(Base);
860    }
861  };
862
863  /// Compare two member pointers, which are assumed to be of the same type.
864  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
865    if (!LHS.getDecl() || !RHS.getDecl())
866      return !LHS.getDecl() && !RHS.getDecl();
867    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
868      return false;
869    return LHS.Path == RHS.Path;
870  }
871
872  /// Kinds of constant expression checking, for diagnostics.
873  enum CheckConstantExpressionKind {
874    CCEK_Constant,    ///< A normal constant.
875    CCEK_ReturnValue, ///< A constexpr function return value.
876    CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
877  };
878}
879
880static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
881static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
882                            const LValue &This, const Expr *E,
883                            CheckConstantExpressionKind CCEK = CCEK_Constant,
884                            bool AllowNonLiteralTypes = false);
885static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
886static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
887static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
888                                  EvalInfo &Info);
889static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
890static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
891static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
892                                    EvalInfo &Info);
893static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
894static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
895
896//===----------------------------------------------------------------------===//
897// Misc utilities
898//===----------------------------------------------------------------------===//
899
900/// Should this call expression be treated as a string literal?
901static bool IsStringLiteralCall(const CallExpr *E) {
902  unsigned Builtin = E->isBuiltinCall();
903  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
904          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
905}
906
907static bool IsGlobalLValue(APValue::LValueBase B) {
908  // C++11 [expr.const]p3 An address constant expression is a prvalue core
909  // constant expression of pointer type that evaluates to...
910
911  // ... a null pointer value, or a prvalue core constant expression of type
912  // std::nullptr_t.
913  if (!B) return true;
914
915  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
916    // ... the address of an object with static storage duration,
917    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
918      return VD->hasGlobalStorage();
919    // ... the address of a function,
920    return isa<FunctionDecl>(D);
921  }
922
923  const Expr *E = B.get<const Expr*>();
924  switch (E->getStmtClass()) {
925  default:
926    return false;
927  case Expr::CompoundLiteralExprClass: {
928    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
929    return CLE->isFileScope() && CLE->isLValue();
930  }
931  // A string literal has static storage duration.
932  case Expr::StringLiteralClass:
933  case Expr::PredefinedExprClass:
934  case Expr::ObjCStringLiteralClass:
935  case Expr::ObjCEncodeExprClass:
936  case Expr::CXXTypeidExprClass:
937    return true;
938  case Expr::CallExprClass:
939    return IsStringLiteralCall(cast<CallExpr>(E));
940  // For GCC compatibility, &&label has static storage duration.
941  case Expr::AddrLabelExprClass:
942    return true;
943  // A Block literal expression may be used as the initialization value for
944  // Block variables at global or local static scope.
945  case Expr::BlockExprClass:
946    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
947  case Expr::ImplicitValueInitExprClass:
948    // FIXME:
949    // We can never form an lvalue with an implicit value initialization as its
950    // base through expression evaluation, so these only appear in one case: the
951    // implicit variable declaration we invent when checking whether a constexpr
952    // constructor can produce a constant expression. We must assume that such
953    // an expression might be a global lvalue.
954    return true;
955  }
956}
957
958static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
959  assert(Base && "no location for a null lvalue");
960  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
961  if (VD)
962    Info.Note(VD->getLocation(), diag::note_declared_at);
963  else
964    Info.Note(Base.dyn_cast<const Expr*>()->getExprLoc(),
965              diag::note_constexpr_temporary_here);
966}
967
968/// Check that this reference or pointer core constant expression is a valid
969/// value for an address or reference constant expression. Return true if we
970/// can fold this expression, whether or not it's a constant expression.
971static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
972                                          QualType Type, const LValue &LVal) {
973  bool IsReferenceType = Type->isReferenceType();
974
975  APValue::LValueBase Base = LVal.getLValueBase();
976  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
977
978  // Check that the object is a global. Note that the fake 'this' object we
979  // manufacture when checking potential constant expressions is conservatively
980  // assumed to be global here.
981  if (!IsGlobalLValue(Base)) {
982    if (Info.getLangOpts().CPlusPlus0x) {
983      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
984      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
985        << IsReferenceType << !Designator.Entries.empty()
986        << !!VD << VD;
987      NoteLValueLocation(Info, Base);
988    } else {
989      Info.Diag(Loc);
990    }
991    // Don't allow references to temporaries to escape.
992    return false;
993  }
994  assert((Info.CheckingPotentialConstantExpression ||
995          LVal.getLValueCallIndex() == 0) &&
996         "have call index for global lvalue");
997
998  // Allow address constant expressions to be past-the-end pointers. This is
999  // an extension: the standard requires them to point to an object.
1000  if (!IsReferenceType)
1001    return true;
1002
1003  // A reference constant expression must refer to an object.
1004  if (!Base) {
1005    // FIXME: diagnostic
1006    Info.CCEDiag(Loc);
1007    return true;
1008  }
1009
1010  // Does this refer one past the end of some object?
1011  if (Designator.isOnePastTheEnd()) {
1012    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1013    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1014      << !Designator.Entries.empty() << !!VD << VD;
1015    NoteLValueLocation(Info, Base);
1016  }
1017
1018  return true;
1019}
1020
1021/// Check that this core constant expression is of literal type, and if not,
1022/// produce an appropriate diagnostic.
1023static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1024  if (!E->isRValue() || E->getType()->isLiteralType())
1025    return true;
1026
1027  // Prvalue constant expressions must be of literal types.
1028  if (Info.getLangOpts().CPlusPlus0x)
1029    Info.Diag(E, diag::note_constexpr_nonliteral)
1030      << E->getType();
1031  else
1032    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1033  return false;
1034}
1035
1036/// Check that this core constant expression value is a valid value for a
1037/// constant expression. If not, report an appropriate diagnostic. Does not
1038/// check that the expression is of literal type.
1039static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1040                                    QualType Type, const APValue &Value) {
1041  // Core issue 1454: For a literal constant expression of array or class type,
1042  // each subobject of its value shall have been initialized by a constant
1043  // expression.
1044  if (Value.isArray()) {
1045    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1046    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1047      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1048                                   Value.getArrayInitializedElt(I)))
1049        return false;
1050    }
1051    if (!Value.hasArrayFiller())
1052      return true;
1053    return CheckConstantExpression(Info, DiagLoc, EltTy,
1054                                   Value.getArrayFiller());
1055  }
1056  if (Value.isUnion() && Value.getUnionField()) {
1057    return CheckConstantExpression(Info, DiagLoc,
1058                                   Value.getUnionField()->getType(),
1059                                   Value.getUnionValue());
1060  }
1061  if (Value.isStruct()) {
1062    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1063    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1064      unsigned BaseIndex = 0;
1065      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1066             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1067        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1068                                     Value.getStructBase(BaseIndex)))
1069          return false;
1070      }
1071    }
1072    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1073         I != E; ++I) {
1074      if (!CheckConstantExpression(Info, DiagLoc, (*I)->getType(),
1075                                   Value.getStructField((*I)->getFieldIndex())))
1076        return false;
1077    }
1078  }
1079
1080  if (Value.isLValue()) {
1081    LValue LVal;
1082    LVal.setFrom(Info.Ctx, Value);
1083    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1084  }
1085
1086  // Everything else is fine.
1087  return true;
1088}
1089
1090const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1091  return LVal.Base.dyn_cast<const ValueDecl*>();
1092}
1093
1094static bool IsLiteralLValue(const LValue &Value) {
1095  return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1096}
1097
1098static bool IsWeakLValue(const LValue &Value) {
1099  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1100  return Decl && Decl->isWeak();
1101}
1102
1103static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1104  // A null base expression indicates a null pointer.  These are always
1105  // evaluatable, and they are false unless the offset is zero.
1106  if (!Value.getLValueBase()) {
1107    Result = !Value.getLValueOffset().isZero();
1108    return true;
1109  }
1110
1111  // We have a non-null base.  These are generally known to be true, but if it's
1112  // a weak declaration it can be null at runtime.
1113  Result = true;
1114  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1115  return !Decl || !Decl->isWeak();
1116}
1117
1118static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1119  switch (Val.getKind()) {
1120  case APValue::Uninitialized:
1121    return false;
1122  case APValue::Int:
1123    Result = Val.getInt().getBoolValue();
1124    return true;
1125  case APValue::Float:
1126    Result = !Val.getFloat().isZero();
1127    return true;
1128  case APValue::ComplexInt:
1129    Result = Val.getComplexIntReal().getBoolValue() ||
1130             Val.getComplexIntImag().getBoolValue();
1131    return true;
1132  case APValue::ComplexFloat:
1133    Result = !Val.getComplexFloatReal().isZero() ||
1134             !Val.getComplexFloatImag().isZero();
1135    return true;
1136  case APValue::LValue:
1137    return EvalPointerValueAsBool(Val, Result);
1138  case APValue::MemberPointer:
1139    Result = Val.getMemberPointerDecl();
1140    return true;
1141  case APValue::Vector:
1142  case APValue::Array:
1143  case APValue::Struct:
1144  case APValue::Union:
1145  case APValue::AddrLabelDiff:
1146    return false;
1147  }
1148
1149  llvm_unreachable("unknown APValue kind");
1150}
1151
1152static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1153                                       EvalInfo &Info) {
1154  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1155  APValue Val;
1156  if (!Evaluate(Val, Info, E))
1157    return false;
1158  return HandleConversionToBool(Val, Result);
1159}
1160
1161template<typename T>
1162static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1163                           const T &SrcValue, QualType DestType) {
1164  Info.Diag(E, diag::note_constexpr_overflow)
1165    << SrcValue << DestType;
1166  return false;
1167}
1168
1169static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1170                                 QualType SrcType, const APFloat &Value,
1171                                 QualType DestType, APSInt &Result) {
1172  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1173  // Determine whether we are converting to unsigned or signed.
1174  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1175
1176  Result = APSInt(DestWidth, !DestSigned);
1177  bool ignored;
1178  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1179      & APFloat::opInvalidOp)
1180    return HandleOverflow(Info, E, Value, DestType);
1181  return true;
1182}
1183
1184static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1185                                   QualType SrcType, QualType DestType,
1186                                   APFloat &Result) {
1187  APFloat Value = Result;
1188  bool ignored;
1189  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1190                     APFloat::rmNearestTiesToEven, &ignored)
1191      & APFloat::opOverflow)
1192    return HandleOverflow(Info, E, Value, DestType);
1193  return true;
1194}
1195
1196static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1197                                 QualType DestType, QualType SrcType,
1198                                 APSInt &Value) {
1199  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1200  APSInt Result = Value;
1201  // Figure out if this is a truncate, extend or noop cast.
1202  // If the input is signed, do a sign extend, noop, or truncate.
1203  Result = Result.extOrTrunc(DestWidth);
1204  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1205  return Result;
1206}
1207
1208static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1209                                 QualType SrcType, const APSInt &Value,
1210                                 QualType DestType, APFloat &Result) {
1211  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1212  if (Result.convertFromAPInt(Value, Value.isSigned(),
1213                              APFloat::rmNearestTiesToEven)
1214      & APFloat::opOverflow)
1215    return HandleOverflow(Info, E, Value, DestType);
1216  return true;
1217}
1218
1219static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1220                                  llvm::APInt &Res) {
1221  APValue SVal;
1222  if (!Evaluate(SVal, Info, E))
1223    return false;
1224  if (SVal.isInt()) {
1225    Res = SVal.getInt();
1226    return true;
1227  }
1228  if (SVal.isFloat()) {
1229    Res = SVal.getFloat().bitcastToAPInt();
1230    return true;
1231  }
1232  if (SVal.isVector()) {
1233    QualType VecTy = E->getType();
1234    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1235    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1236    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1237    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1238    Res = llvm::APInt::getNullValue(VecSize);
1239    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1240      APValue &Elt = SVal.getVectorElt(i);
1241      llvm::APInt EltAsInt;
1242      if (Elt.isInt()) {
1243        EltAsInt = Elt.getInt();
1244      } else if (Elt.isFloat()) {
1245        EltAsInt = Elt.getFloat().bitcastToAPInt();
1246      } else {
1247        // Don't try to handle vectors of anything other than int or float
1248        // (not sure if it's possible to hit this case).
1249        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1250        return false;
1251      }
1252      unsigned BaseEltSize = EltAsInt.getBitWidth();
1253      if (BigEndian)
1254        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1255      else
1256        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1257    }
1258    return true;
1259  }
1260  // Give up if the input isn't an int, float, or vector.  For example, we
1261  // reject "(v4i16)(intptr_t)&a".
1262  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1263  return false;
1264}
1265
1266/// Cast an lvalue referring to a base subobject to a derived class, by
1267/// truncating the lvalue's path to the given length.
1268static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1269                               const RecordDecl *TruncatedType,
1270                               unsigned TruncatedElements) {
1271  SubobjectDesignator &D = Result.Designator;
1272
1273  // Check we actually point to a derived class object.
1274  if (TruncatedElements == D.Entries.size())
1275    return true;
1276  assert(TruncatedElements >= D.MostDerivedPathLength &&
1277         "not casting to a derived class");
1278  if (!Result.checkSubobject(Info, E, CSK_Derived))
1279    return false;
1280
1281  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1282  const RecordDecl *RD = TruncatedType;
1283  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1284    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1285    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1286    if (isVirtualBaseClass(D.Entries[I]))
1287      Result.Offset -= Layout.getVBaseClassOffset(Base);
1288    else
1289      Result.Offset -= Layout.getBaseClassOffset(Base);
1290    RD = Base;
1291  }
1292  D.Entries.resize(TruncatedElements);
1293  return true;
1294}
1295
1296static void HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1297                                   const CXXRecordDecl *Derived,
1298                                   const CXXRecordDecl *Base,
1299                                   const ASTRecordLayout *RL = 0) {
1300  if (!RL) RL = &Info.Ctx.getASTRecordLayout(Derived);
1301  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1302  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1303}
1304
1305static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1306                             const CXXRecordDecl *DerivedDecl,
1307                             const CXXBaseSpecifier *Base) {
1308  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1309
1310  if (!Base->isVirtual()) {
1311    HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1312    return true;
1313  }
1314
1315  SubobjectDesignator &D = Obj.Designator;
1316  if (D.Invalid)
1317    return false;
1318
1319  // Extract most-derived object and corresponding type.
1320  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1321  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1322    return false;
1323
1324  // Find the virtual base class.
1325  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1326  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1327  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1328  return true;
1329}
1330
1331/// Update LVal to refer to the given field, which must be a member of the type
1332/// currently described by LVal.
1333static void HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1334                               const FieldDecl *FD,
1335                               const ASTRecordLayout *RL = 0) {
1336  if (!RL)
1337    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1338
1339  unsigned I = FD->getFieldIndex();
1340  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1341  LVal.addDecl(Info, E, FD);
1342}
1343
1344/// Update LVal to refer to the given indirect field.
1345static void HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1346                                       LValue &LVal,
1347                                       const IndirectFieldDecl *IFD) {
1348  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1349                                         CE = IFD->chain_end(); C != CE; ++C)
1350    HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C));
1351}
1352
1353/// Get the size of the given type in char units.
1354static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1355                         QualType Type, CharUnits &Size) {
1356  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1357  // extension.
1358  if (Type->isVoidType() || Type->isFunctionType()) {
1359    Size = CharUnits::One();
1360    return true;
1361  }
1362
1363  if (!Type->isConstantSizeType()) {
1364    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1365    // FIXME: Better diagnostic.
1366    Info.Diag(Loc);
1367    return false;
1368  }
1369
1370  Size = Info.Ctx.getTypeSizeInChars(Type);
1371  return true;
1372}
1373
1374/// Update a pointer value to model pointer arithmetic.
1375/// \param Info - Information about the ongoing evaluation.
1376/// \param E - The expression being evaluated, for diagnostic purposes.
1377/// \param LVal - The pointer value to be updated.
1378/// \param EltTy - The pointee type represented by LVal.
1379/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1380static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1381                                        LValue &LVal, QualType EltTy,
1382                                        int64_t Adjustment) {
1383  CharUnits SizeOfPointee;
1384  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1385    return false;
1386
1387  // Compute the new offset in the appropriate width.
1388  LVal.Offset += Adjustment * SizeOfPointee;
1389  LVal.adjustIndex(Info, E, Adjustment);
1390  return true;
1391}
1392
1393/// Update an lvalue to refer to a component of a complex number.
1394/// \param Info - Information about the ongoing evaluation.
1395/// \param LVal - The lvalue to be updated.
1396/// \param EltTy - The complex number's component type.
1397/// \param Imag - False for the real component, true for the imaginary.
1398static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1399                                       LValue &LVal, QualType EltTy,
1400                                       bool Imag) {
1401  if (Imag) {
1402    CharUnits SizeOfComponent;
1403    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1404      return false;
1405    LVal.Offset += SizeOfComponent;
1406  }
1407  LVal.addComplex(Info, E, EltTy, Imag);
1408  return true;
1409}
1410
1411/// Try to evaluate the initializer for a variable declaration.
1412static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1413                                const VarDecl *VD,
1414                                CallStackFrame *Frame, APValue &Result) {
1415  // If this is a parameter to an active constexpr function call, perform
1416  // argument substitution.
1417  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1418    // Assume arguments of a potential constant expression are unknown
1419    // constant expressions.
1420    if (Info.CheckingPotentialConstantExpression)
1421      return false;
1422    if (!Frame || !Frame->Arguments) {
1423      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1424      return false;
1425    }
1426    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1427    return true;
1428  }
1429
1430  // Dig out the initializer, and use the declaration which it's attached to.
1431  const Expr *Init = VD->getAnyInitializer(VD);
1432  if (!Init || Init->isValueDependent()) {
1433    // If we're checking a potential constant expression, the variable could be
1434    // initialized later.
1435    if (!Info.CheckingPotentialConstantExpression)
1436      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1437    return false;
1438  }
1439
1440  // If we're currently evaluating the initializer of this declaration, use that
1441  // in-flight value.
1442  if (Info.EvaluatingDecl == VD) {
1443    Result = *Info.EvaluatingDeclValue;
1444    return !Result.isUninit();
1445  }
1446
1447  // Never evaluate the initializer of a weak variable. We can't be sure that
1448  // this is the definition which will be used.
1449  if (VD->isWeak()) {
1450    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1451    return false;
1452  }
1453
1454  // Check that we can fold the initializer. In C++, we will have already done
1455  // this in the cases where it matters for conformance.
1456  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1457  if (!VD->evaluateValue(Notes)) {
1458    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1459              Notes.size() + 1) << VD;
1460    Info.Note(VD->getLocation(), diag::note_declared_at);
1461    Info.addNotes(Notes);
1462    return false;
1463  } else if (!VD->checkInitIsICE()) {
1464    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1465                 Notes.size() + 1) << VD;
1466    Info.Note(VD->getLocation(), diag::note_declared_at);
1467    Info.addNotes(Notes);
1468  }
1469
1470  Result = *VD->getEvaluatedValue();
1471  return true;
1472}
1473
1474static bool IsConstNonVolatile(QualType T) {
1475  Qualifiers Quals = T.getQualifiers();
1476  return Quals.hasConst() && !Quals.hasVolatile();
1477}
1478
1479/// Get the base index of the given base class within an APValue representing
1480/// the given derived class.
1481static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1482                             const CXXRecordDecl *Base) {
1483  Base = Base->getCanonicalDecl();
1484  unsigned Index = 0;
1485  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1486         E = Derived->bases_end(); I != E; ++I, ++Index) {
1487    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1488      return Index;
1489  }
1490
1491  llvm_unreachable("base class missing from derived class's bases list");
1492}
1493
1494/// Extract the value of a character from a string literal.
1495static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1496                                            uint64_t Index) {
1497  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1498  const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1499  assert(S && "unexpected string literal expression kind");
1500
1501  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1502    Lit->getType()->getArrayElementTypeNoTypeQual()->isUnsignedIntegerType());
1503  if (Index < S->getLength())
1504    Value = S->getCodeUnit(Index);
1505  return Value;
1506}
1507
1508/// Extract the designated sub-object of an rvalue.
1509static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1510                             APValue &Obj, QualType ObjType,
1511                             const SubobjectDesignator &Sub, QualType SubType) {
1512  if (Sub.Invalid)
1513    // A diagnostic will have already been produced.
1514    return false;
1515  if (Sub.isOnePastTheEnd()) {
1516    Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1517                (unsigned)diag::note_constexpr_read_past_end :
1518                (unsigned)diag::note_invalid_subexpr_in_const_expr);
1519    return false;
1520  }
1521  if (Sub.Entries.empty())
1522    return true;
1523  if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1524    // This object might be initialized later.
1525    return false;
1526
1527  APValue *O = &Obj;
1528  // Walk the designator's path to find the subobject.
1529  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1530    if (ObjType->isArrayType()) {
1531      // Next subobject is an array element.
1532      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1533      assert(CAT && "vla in literal type?");
1534      uint64_t Index = Sub.Entries[I].ArrayIndex;
1535      if (CAT->getSize().ule(Index)) {
1536        // Note, it should not be possible to form a pointer with a valid
1537        // designator which points more than one past the end of the array.
1538        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1539                    (unsigned)diag::note_constexpr_read_past_end :
1540                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1541        return false;
1542      }
1543      // An array object is represented as either an Array APValue or as an
1544      // LValue which refers to a string literal.
1545      if (O->isLValue()) {
1546        assert(I == N - 1 && "extracting subobject of character?");
1547        assert(!O->hasLValuePath() || O->getLValuePath().empty());
1548        Obj = APValue(ExtractStringLiteralCharacter(
1549          Info, O->getLValueBase().get<const Expr*>(), Index));
1550        return true;
1551      } else if (O->getArrayInitializedElts() > Index)
1552        O = &O->getArrayInitializedElt(Index);
1553      else
1554        O = &O->getArrayFiller();
1555      ObjType = CAT->getElementType();
1556    } else if (ObjType->isAnyComplexType()) {
1557      // Next subobject is a complex number.
1558      uint64_t Index = Sub.Entries[I].ArrayIndex;
1559      if (Index > 1) {
1560        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1561                    (unsigned)diag::note_constexpr_read_past_end :
1562                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1563        return false;
1564      }
1565      assert(I == N - 1 && "extracting subobject of scalar?");
1566      if (O->isComplexInt()) {
1567        Obj = APValue(Index ? O->getComplexIntImag()
1568                            : O->getComplexIntReal());
1569      } else {
1570        assert(O->isComplexFloat());
1571        Obj = APValue(Index ? O->getComplexFloatImag()
1572                            : O->getComplexFloatReal());
1573      }
1574      return true;
1575    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1576      if (Field->isMutable()) {
1577        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1578          << Field;
1579        Info.Note(Field->getLocation(), diag::note_declared_at);
1580        return false;
1581      }
1582
1583      // Next subobject is a class, struct or union field.
1584      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1585      if (RD->isUnion()) {
1586        const FieldDecl *UnionField = O->getUnionField();
1587        if (!UnionField ||
1588            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1589          Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1590            << Field << !UnionField << UnionField;
1591          return false;
1592        }
1593        O = &O->getUnionValue();
1594      } else
1595        O = &O->getStructField(Field->getFieldIndex());
1596      ObjType = Field->getType();
1597
1598      if (ObjType.isVolatileQualified()) {
1599        if (Info.getLangOpts().CPlusPlus) {
1600          // FIXME: Include a description of the path to the volatile subobject.
1601          Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1602            << 2 << Field;
1603          Info.Note(Field->getLocation(), diag::note_declared_at);
1604        } else {
1605          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1606        }
1607        return false;
1608      }
1609    } else {
1610      // Next subobject is a base class.
1611      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1612      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1613      O = &O->getStructBase(getBaseIndex(Derived, Base));
1614      ObjType = Info.Ctx.getRecordType(Base);
1615    }
1616
1617    if (O->isUninit()) {
1618      if (!Info.CheckingPotentialConstantExpression)
1619        Info.Diag(E, diag::note_constexpr_read_uninit);
1620      return false;
1621    }
1622  }
1623
1624  // This may look super-stupid, but it serves an important purpose: if we just
1625  // swapped Obj and *O, we'd create an object which had itself as a subobject.
1626  // To avoid the leak, we ensure that Tmp ends up owning the original complete
1627  // object, which is destroyed by Tmp's destructor.
1628  APValue Tmp;
1629  O->swap(Tmp);
1630  Obj.swap(Tmp);
1631  return true;
1632}
1633
1634/// Find the position where two subobject designators diverge, or equivalently
1635/// the length of the common initial subsequence.
1636static unsigned FindDesignatorMismatch(QualType ObjType,
1637                                       const SubobjectDesignator &A,
1638                                       const SubobjectDesignator &B,
1639                                       bool &WasArrayIndex) {
1640  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1641  for (/**/; I != N; ++I) {
1642    if (!ObjType.isNull() &&
1643        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1644      // Next subobject is an array element.
1645      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1646        WasArrayIndex = true;
1647        return I;
1648      }
1649      if (ObjType->isAnyComplexType())
1650        ObjType = ObjType->castAs<ComplexType>()->getElementType();
1651      else
1652        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1653    } else {
1654      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1655        WasArrayIndex = false;
1656        return I;
1657      }
1658      if (const FieldDecl *FD = getAsField(A.Entries[I]))
1659        // Next subobject is a field.
1660        ObjType = FD->getType();
1661      else
1662        // Next subobject is a base class.
1663        ObjType = QualType();
1664    }
1665  }
1666  WasArrayIndex = false;
1667  return I;
1668}
1669
1670/// Determine whether the given subobject designators refer to elements of the
1671/// same array object.
1672static bool AreElementsOfSameArray(QualType ObjType,
1673                                   const SubobjectDesignator &A,
1674                                   const SubobjectDesignator &B) {
1675  if (A.Entries.size() != B.Entries.size())
1676    return false;
1677
1678  bool IsArray = A.MostDerivedArraySize != 0;
1679  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1680    // A is a subobject of the array element.
1681    return false;
1682
1683  // If A (and B) designates an array element, the last entry will be the array
1684  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1685  // of length 1' case, and the entire path must match.
1686  bool WasArrayIndex;
1687  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1688  return CommonLength >= A.Entries.size() - IsArray;
1689}
1690
1691/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1692/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1693/// for looking up the glvalue referred to by an entity of reference type.
1694///
1695/// \param Info - Information about the ongoing evaluation.
1696/// \param Conv - The expression for which we are performing the conversion.
1697///               Used for diagnostics.
1698/// \param Type - The type we expect this conversion to produce, before
1699///               stripping cv-qualifiers in the case of a non-clas type.
1700/// \param LVal - The glvalue on which we are attempting to perform this action.
1701/// \param RVal - The produced value will be placed here.
1702static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1703                                           QualType Type,
1704                                           const LValue &LVal, APValue &RVal) {
1705  if (LVal.Designator.Invalid)
1706    // A diagnostic will have already been produced.
1707    return false;
1708
1709  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1710
1711  if (!LVal.Base) {
1712    // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1713    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1714    return false;
1715  }
1716
1717  CallStackFrame *Frame = 0;
1718  if (LVal.CallIndex) {
1719    Frame = Info.getCallFrame(LVal.CallIndex);
1720    if (!Frame) {
1721      Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1722      NoteLValueLocation(Info, LVal.Base);
1723      return false;
1724    }
1725  }
1726
1727  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1728  // is not a constant expression (even if the object is non-volatile). We also
1729  // apply this rule to C++98, in order to conform to the expected 'volatile'
1730  // semantics.
1731  if (Type.isVolatileQualified()) {
1732    if (Info.getLangOpts().CPlusPlus)
1733      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1734    else
1735      Info.Diag(Conv);
1736    return false;
1737  }
1738
1739  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1740    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1741    // In C++11, constexpr, non-volatile variables initialized with constant
1742    // expressions are constant expressions too. Inside constexpr functions,
1743    // parameters are constant expressions even if they're non-const.
1744    // In C, such things can also be folded, although they are not ICEs.
1745    const VarDecl *VD = dyn_cast<VarDecl>(D);
1746    if (VD) {
1747      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1748        VD = VDef;
1749    }
1750    if (!VD || VD->isInvalidDecl()) {
1751      Info.Diag(Conv);
1752      return false;
1753    }
1754
1755    // DR1313: If the object is volatile-qualified but the glvalue was not,
1756    // behavior is undefined so the result is not a constant expression.
1757    QualType VT = VD->getType();
1758    if (VT.isVolatileQualified()) {
1759      if (Info.getLangOpts().CPlusPlus) {
1760        Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1761        Info.Note(VD->getLocation(), diag::note_declared_at);
1762      } else {
1763        Info.Diag(Conv);
1764      }
1765      return false;
1766    }
1767
1768    if (!isa<ParmVarDecl>(VD)) {
1769      if (VD->isConstexpr()) {
1770        // OK, we can read this variable.
1771      } else if (VT->isIntegralOrEnumerationType()) {
1772        if (!VT.isConstQualified()) {
1773          if (Info.getLangOpts().CPlusPlus) {
1774            Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1775            Info.Note(VD->getLocation(), diag::note_declared_at);
1776          } else {
1777            Info.Diag(Conv);
1778          }
1779          return false;
1780        }
1781      } else if (VT->isFloatingType() && VT.isConstQualified()) {
1782        // We support folding of const floating-point types, in order to make
1783        // static const data members of such types (supported as an extension)
1784        // more useful.
1785        if (Info.getLangOpts().CPlusPlus0x) {
1786          Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1787          Info.Note(VD->getLocation(), diag::note_declared_at);
1788        } else {
1789          Info.CCEDiag(Conv);
1790        }
1791      } else {
1792        // FIXME: Allow folding of values of any literal type in all languages.
1793        if (Info.getLangOpts().CPlusPlus0x) {
1794          Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1795          Info.Note(VD->getLocation(), diag::note_declared_at);
1796        } else {
1797          Info.Diag(Conv);
1798        }
1799        return false;
1800      }
1801    }
1802
1803    if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1804      return false;
1805
1806    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1807      return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1808
1809    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1810    // conversion. This happens when the declaration and the lvalue should be
1811    // considered synonymous, for instance when initializing an array of char
1812    // from a string literal. Continue as if the initializer lvalue was the
1813    // value we were originally given.
1814    assert(RVal.getLValueOffset().isZero() &&
1815           "offset for lvalue init of non-reference");
1816    Base = RVal.getLValueBase().get<const Expr*>();
1817
1818    if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1819      Frame = Info.getCallFrame(CallIndex);
1820      if (!Frame) {
1821        Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1822        NoteLValueLocation(Info, RVal.getLValueBase());
1823        return false;
1824      }
1825    } else {
1826      Frame = 0;
1827    }
1828  }
1829
1830  // Volatile temporary objects cannot be read in constant expressions.
1831  if (Base->getType().isVolatileQualified()) {
1832    if (Info.getLangOpts().CPlusPlus) {
1833      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1834      Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1835    } else {
1836      Info.Diag(Conv);
1837    }
1838    return false;
1839  }
1840
1841  if (Frame) {
1842    // If this is a temporary expression with a nontrivial initializer, grab the
1843    // value from the relevant stack frame.
1844    RVal = Frame->Temporaries[Base];
1845  } else if (const CompoundLiteralExpr *CLE
1846             = dyn_cast<CompoundLiteralExpr>(Base)) {
1847    // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1848    // initializer until now for such expressions. Such an expression can't be
1849    // an ICE in C, so this only matters for fold.
1850    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1851    if (!Evaluate(RVal, Info, CLE->getInitializer()))
1852      return false;
1853  } else if (isa<StringLiteral>(Base)) {
1854    // We represent a string literal array as an lvalue pointing at the
1855    // corresponding expression, rather than building an array of chars.
1856    // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1857    RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1858  } else {
1859    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1860    return false;
1861  }
1862
1863  return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1864                          Type);
1865}
1866
1867/// Build an lvalue for the object argument of a member function call.
1868static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1869                                   LValue &This) {
1870  if (Object->getType()->isPointerType())
1871    return EvaluatePointer(Object, This, Info);
1872
1873  if (Object->isGLValue())
1874    return EvaluateLValue(Object, This, Info);
1875
1876  if (Object->getType()->isLiteralType())
1877    return EvaluateTemporary(Object, This, Info);
1878
1879  return false;
1880}
1881
1882/// HandleMemberPointerAccess - Evaluate a member access operation and build an
1883/// lvalue referring to the result.
1884///
1885/// \param Info - Information about the ongoing evaluation.
1886/// \param BO - The member pointer access operation.
1887/// \param LV - Filled in with a reference to the resulting object.
1888/// \param IncludeMember - Specifies whether the member itself is included in
1889///        the resulting LValue subobject designator. This is not possible when
1890///        creating a bound member function.
1891/// \return The field or method declaration to which the member pointer refers,
1892///         or 0 if evaluation fails.
1893static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1894                                                  const BinaryOperator *BO,
1895                                                  LValue &LV,
1896                                                  bool IncludeMember = true) {
1897  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1898
1899  bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1900  if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1901    return 0;
1902
1903  MemberPtr MemPtr;
1904  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1905    return 0;
1906
1907  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1908  // member value, the behavior is undefined.
1909  if (!MemPtr.getDecl())
1910    return 0;
1911
1912  if (!EvalObjOK)
1913    return 0;
1914
1915  if (MemPtr.isDerivedMember()) {
1916    // This is a member of some derived class. Truncate LV appropriately.
1917    // The end of the derived-to-base path for the base object must match the
1918    // derived-to-base path for the member pointer.
1919    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1920        LV.Designator.Entries.size())
1921      return 0;
1922    unsigned PathLengthToMember =
1923        LV.Designator.Entries.size() - MemPtr.Path.size();
1924    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1925      const CXXRecordDecl *LVDecl = getAsBaseClass(
1926          LV.Designator.Entries[PathLengthToMember + I]);
1927      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1928      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1929        return 0;
1930    }
1931
1932    // Truncate the lvalue to the appropriate derived class.
1933    if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1934                            PathLengthToMember))
1935      return 0;
1936  } else if (!MemPtr.Path.empty()) {
1937    // Extend the LValue path with the member pointer's path.
1938    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1939                                  MemPtr.Path.size() + IncludeMember);
1940
1941    // Walk down to the appropriate base class.
1942    QualType LVType = BO->getLHS()->getType();
1943    if (const PointerType *PT = LVType->getAs<PointerType>())
1944      LVType = PT->getPointeeType();
1945    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1946    assert(RD && "member pointer access on non-class-type expression");
1947    // The first class in the path is that of the lvalue.
1948    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1949      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1950      HandleLValueDirectBase(Info, BO, LV, RD, Base);
1951      RD = Base;
1952    }
1953    // Finally cast to the class containing the member.
1954    HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord());
1955  }
1956
1957  // Add the member. Note that we cannot build bound member functions here.
1958  if (IncludeMember) {
1959    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl()))
1960      HandleLValueMember(Info, BO, LV, FD);
1961    else if (const IndirectFieldDecl *IFD =
1962               dyn_cast<IndirectFieldDecl>(MemPtr.getDecl()))
1963      HandleLValueIndirectMember(Info, BO, LV, IFD);
1964    else
1965      llvm_unreachable("can't construct reference to bound member function");
1966  }
1967
1968  return MemPtr.getDecl();
1969}
1970
1971/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1972/// the provided lvalue, which currently refers to the base object.
1973static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
1974                                    LValue &Result) {
1975  SubobjectDesignator &D = Result.Designator;
1976  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
1977    return false;
1978
1979  QualType TargetQT = E->getType();
1980  if (const PointerType *PT = TargetQT->getAs<PointerType>())
1981    TargetQT = PT->getPointeeType();
1982
1983  // Check this cast lands within the final derived-to-base subobject path.
1984  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
1985    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
1986      << D.MostDerivedType << TargetQT;
1987    return false;
1988  }
1989
1990  // Check the type of the final cast. We don't need to check the path,
1991  // since a cast can only be formed if the path is unique.
1992  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
1993  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
1994  const CXXRecordDecl *FinalType;
1995  if (NewEntriesSize == D.MostDerivedPathLength)
1996    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
1997  else
1998    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
1999  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2000    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2001      << D.MostDerivedType << TargetQT;
2002    return false;
2003  }
2004
2005  // Truncate the lvalue to the appropriate derived class.
2006  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2007}
2008
2009namespace {
2010enum EvalStmtResult {
2011  /// Evaluation failed.
2012  ESR_Failed,
2013  /// Hit a 'return' statement.
2014  ESR_Returned,
2015  /// Evaluation succeeded.
2016  ESR_Succeeded
2017};
2018}
2019
2020// Evaluate a statement.
2021static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2022                                   const Stmt *S) {
2023  switch (S->getStmtClass()) {
2024  default:
2025    return ESR_Failed;
2026
2027  case Stmt::NullStmtClass:
2028  case Stmt::DeclStmtClass:
2029    return ESR_Succeeded;
2030
2031  case Stmt::ReturnStmtClass: {
2032    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2033    if (!Evaluate(Result, Info, RetExpr))
2034      return ESR_Failed;
2035    return ESR_Returned;
2036  }
2037
2038  case Stmt::CompoundStmtClass: {
2039    const CompoundStmt *CS = cast<CompoundStmt>(S);
2040    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2041           BE = CS->body_end(); BI != BE; ++BI) {
2042      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2043      if (ESR != ESR_Succeeded)
2044        return ESR;
2045    }
2046    return ESR_Succeeded;
2047  }
2048  }
2049}
2050
2051/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2052/// default constructor. If so, we'll fold it whether or not it's marked as
2053/// constexpr. If it is marked as constexpr, we will never implicitly define it,
2054/// so we need special handling.
2055static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2056                                           const CXXConstructorDecl *CD,
2057                                           bool IsValueInitialization) {
2058  if (!CD->isTrivial() || !CD->isDefaultConstructor())
2059    return false;
2060
2061  // Value-initialization does not call a trivial default constructor, so such a
2062  // call is a core constant expression whether or not the constructor is
2063  // constexpr.
2064  if (!CD->isConstexpr() && !IsValueInitialization) {
2065    if (Info.getLangOpts().CPlusPlus0x) {
2066      // FIXME: If DiagDecl is an implicitly-declared special member function,
2067      // we should be much more explicit about why it's not constexpr.
2068      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2069        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2070      Info.Note(CD->getLocation(), diag::note_declared_at);
2071    } else {
2072      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2073    }
2074  }
2075  return true;
2076}
2077
2078/// CheckConstexprFunction - Check that a function can be called in a constant
2079/// expression.
2080static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2081                                   const FunctionDecl *Declaration,
2082                                   const FunctionDecl *Definition) {
2083  // Potential constant expressions can contain calls to declared, but not yet
2084  // defined, constexpr functions.
2085  if (Info.CheckingPotentialConstantExpression && !Definition &&
2086      Declaration->isConstexpr())
2087    return false;
2088
2089  // Can we evaluate this function call?
2090  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2091    return true;
2092
2093  if (Info.getLangOpts().CPlusPlus0x) {
2094    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2095    // FIXME: If DiagDecl is an implicitly-declared special member function, we
2096    // should be much more explicit about why it's not constexpr.
2097    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2098      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2099      << DiagDecl;
2100    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2101  } else {
2102    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2103  }
2104  return false;
2105}
2106
2107namespace {
2108typedef SmallVector<APValue, 8> ArgVector;
2109}
2110
2111/// EvaluateArgs - Evaluate the arguments to a function call.
2112static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2113                         EvalInfo &Info) {
2114  bool Success = true;
2115  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2116       I != E; ++I) {
2117    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2118      // If we're checking for a potential constant expression, evaluate all
2119      // initializers even if some of them fail.
2120      if (!Info.keepEvaluatingAfterFailure())
2121        return false;
2122      Success = false;
2123    }
2124  }
2125  return Success;
2126}
2127
2128/// Evaluate a function call.
2129static bool HandleFunctionCall(SourceLocation CallLoc,
2130                               const FunctionDecl *Callee, const LValue *This,
2131                               ArrayRef<const Expr*> Args, const Stmt *Body,
2132                               EvalInfo &Info, APValue &Result) {
2133  ArgVector ArgValues(Args.size());
2134  if (!EvaluateArgs(Args, ArgValues, Info))
2135    return false;
2136
2137  if (!Info.CheckCallLimit(CallLoc))
2138    return false;
2139
2140  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2141  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2142}
2143
2144/// Evaluate a constructor call.
2145static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2146                                  ArrayRef<const Expr*> Args,
2147                                  const CXXConstructorDecl *Definition,
2148                                  EvalInfo &Info, APValue &Result) {
2149  ArgVector ArgValues(Args.size());
2150  if (!EvaluateArgs(Args, ArgValues, Info))
2151    return false;
2152
2153  if (!Info.CheckCallLimit(CallLoc))
2154    return false;
2155
2156  const CXXRecordDecl *RD = Definition->getParent();
2157  if (RD->getNumVBases()) {
2158    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2159    return false;
2160  }
2161
2162  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2163
2164  // If it's a delegating constructor, just delegate.
2165  if (Definition->isDelegatingConstructor()) {
2166    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2167    return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2168  }
2169
2170  // For a trivial copy or move constructor, perform an APValue copy. This is
2171  // essential for unions, where the operations performed by the constructor
2172  // cannot be represented by ctor-initializers.
2173  if (Definition->isDefaulted() &&
2174      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2175       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2176    LValue RHS;
2177    RHS.setFrom(Info.Ctx, ArgValues[0]);
2178    return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2179                                          RHS, Result);
2180  }
2181
2182  // Reserve space for the struct members.
2183  if (!RD->isUnion() && Result.isUninit())
2184    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2185                     std::distance(RD->field_begin(), RD->field_end()));
2186
2187  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2188
2189  bool Success = true;
2190  unsigned BasesSeen = 0;
2191#ifndef NDEBUG
2192  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2193#endif
2194  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2195       E = Definition->init_end(); I != E; ++I) {
2196    LValue Subobject = This;
2197    APValue *Value = &Result;
2198
2199    // Determine the subobject to initialize.
2200    if ((*I)->isBaseInitializer()) {
2201      QualType BaseType((*I)->getBaseClass(), 0);
2202#ifndef NDEBUG
2203      // Non-virtual base classes are initialized in the order in the class
2204      // definition. We have already checked for virtual base classes.
2205      assert(!BaseIt->isVirtual() && "virtual base for literal type");
2206      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2207             "base class initializers not in expected order");
2208      ++BaseIt;
2209#endif
2210      HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2211                             BaseType->getAsCXXRecordDecl(), &Layout);
2212      Value = &Result.getStructBase(BasesSeen++);
2213    } else if (FieldDecl *FD = (*I)->getMember()) {
2214      HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout);
2215      if (RD->isUnion()) {
2216        Result = APValue(FD);
2217        Value = &Result.getUnionValue();
2218      } else {
2219        Value = &Result.getStructField(FD->getFieldIndex());
2220      }
2221    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2222      // Walk the indirect field decl's chain to find the object to initialize,
2223      // and make sure we've initialized every step along it.
2224      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2225                                             CE = IFD->chain_end();
2226           C != CE; ++C) {
2227        FieldDecl *FD = cast<FieldDecl>(*C);
2228        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2229        // Switch the union field if it differs. This happens if we had
2230        // preceding zero-initialization, and we're now initializing a union
2231        // subobject other than the first.
2232        // FIXME: In this case, the values of the other subobjects are
2233        // specified, since zero-initialization sets all padding bits to zero.
2234        if (Value->isUninit() ||
2235            (Value->isUnion() && Value->getUnionField() != FD)) {
2236          if (CD->isUnion())
2237            *Value = APValue(FD);
2238          else
2239            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2240                             std::distance(CD->field_begin(), CD->field_end()));
2241        }
2242        HandleLValueMember(Info, (*I)->getInit(), Subobject, FD);
2243        if (CD->isUnion())
2244          Value = &Value->getUnionValue();
2245        else
2246          Value = &Value->getStructField(FD->getFieldIndex());
2247      }
2248    } else {
2249      llvm_unreachable("unknown base initializer kind");
2250    }
2251
2252    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2253                         (*I)->isBaseInitializer()
2254                                      ? CCEK_Constant : CCEK_MemberInit)) {
2255      // If we're checking for a potential constant expression, evaluate all
2256      // initializers even if some of them fail.
2257      if (!Info.keepEvaluatingAfterFailure())
2258        return false;
2259      Success = false;
2260    }
2261  }
2262
2263  return Success;
2264}
2265
2266namespace {
2267class HasSideEffect
2268  : public ConstStmtVisitor<HasSideEffect, bool> {
2269  const ASTContext &Ctx;
2270public:
2271
2272  HasSideEffect(const ASTContext &C) : Ctx(C) {}
2273
2274  // Unhandled nodes conservatively default to having side effects.
2275  bool VisitStmt(const Stmt *S) {
2276    return true;
2277  }
2278
2279  bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
2280  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
2281    return Visit(E->getResultExpr());
2282  }
2283  bool VisitDeclRefExpr(const DeclRefExpr *E) {
2284    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2285      return true;
2286    return false;
2287  }
2288  bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
2289    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2290      return true;
2291    return false;
2292  }
2293
2294  // We don't want to evaluate BlockExprs multiple times, as they generate
2295  // a ton of code.
2296  bool VisitBlockExpr(const BlockExpr *E) { return true; }
2297  bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
2298  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
2299    { return Visit(E->getInitializer()); }
2300  bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
2301  bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
2302  bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
2303  bool VisitStringLiteral(const StringLiteral *E) { return false; }
2304  bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
2305  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
2306    { return false; }
2307  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
2308    { return Visit(E->getLHS()) || Visit(E->getRHS()); }
2309  bool VisitChooseExpr(const ChooseExpr *E)
2310    { return Visit(E->getChosenSubExpr(Ctx)); }
2311  bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
2312  bool VisitBinAssign(const BinaryOperator *E) { return true; }
2313  bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
2314  bool VisitBinaryOperator(const BinaryOperator *E)
2315  { return Visit(E->getLHS()) || Visit(E->getRHS()); }
2316  bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
2317  bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
2318  bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
2319  bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
2320  bool VisitUnaryDeref(const UnaryOperator *E) {
2321    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2322      return true;
2323    return Visit(E->getSubExpr());
2324  }
2325  bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
2326
2327  // Has side effects if any element does.
2328  bool VisitInitListExpr(const InitListExpr *E) {
2329    for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
2330      if (Visit(E->getInit(i))) return true;
2331    if (const Expr *filler = E->getArrayFiller())
2332      return Visit(filler);
2333    return false;
2334  }
2335
2336  bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
2337};
2338
2339class OpaqueValueEvaluation {
2340  EvalInfo &info;
2341  OpaqueValueExpr *opaqueValue;
2342
2343public:
2344  OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
2345                        Expr *value)
2346    : info(info), opaqueValue(opaqueValue) {
2347
2348    // If evaluation fails, fail immediately.
2349    if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
2350      this->opaqueValue = 0;
2351      return;
2352    }
2353  }
2354
2355  bool hasError() const { return opaqueValue == 0; }
2356
2357  ~OpaqueValueEvaluation() {
2358    // FIXME: For a recursive constexpr call, an outer stack frame might have
2359    // been using this opaque value too, and will now have to re-evaluate the
2360    // source expression.
2361    if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
2362  }
2363};
2364
2365} // end anonymous namespace
2366
2367//===----------------------------------------------------------------------===//
2368// Generic Evaluation
2369//===----------------------------------------------------------------------===//
2370namespace {
2371
2372// FIXME: RetTy is always bool. Remove it.
2373template <class Derived, typename RetTy=bool>
2374class ExprEvaluatorBase
2375  : public ConstStmtVisitor<Derived, RetTy> {
2376private:
2377  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2378    return static_cast<Derived*>(this)->Success(V, E);
2379  }
2380  RetTy DerivedZeroInitialization(const Expr *E) {
2381    return static_cast<Derived*>(this)->ZeroInitialization(E);
2382  }
2383
2384  // Check whether a conditional operator with a non-constant condition is a
2385  // potential constant expression. If neither arm is a potential constant
2386  // expression, then the conditional operator is not either.
2387  template<typename ConditionalOperator>
2388  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2389    assert(Info.CheckingPotentialConstantExpression);
2390
2391    // Speculatively evaluate both arms.
2392    {
2393      llvm::SmallVector<PartialDiagnosticAt, 8> Diag;
2394      SpeculativeEvaluationRAII Speculate(Info, &Diag);
2395
2396      StmtVisitorTy::Visit(E->getFalseExpr());
2397      if (Diag.empty())
2398        return;
2399
2400      Diag.clear();
2401      StmtVisitorTy::Visit(E->getTrueExpr());
2402      if (Diag.empty())
2403        return;
2404    }
2405
2406    Error(E, diag::note_constexpr_conditional_never_const);
2407  }
2408
2409
2410  template<typename ConditionalOperator>
2411  bool HandleConditionalOperator(const ConditionalOperator *E) {
2412    bool BoolResult;
2413    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2414      if (Info.CheckingPotentialConstantExpression)
2415        CheckPotentialConstantConditional(E);
2416      return false;
2417    }
2418
2419    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2420    return StmtVisitorTy::Visit(EvalExpr);
2421  }
2422
2423protected:
2424  EvalInfo &Info;
2425  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2426  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2427
2428  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2429    return Info.CCEDiag(E, D);
2430  }
2431
2432  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2433
2434public:
2435  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2436
2437  EvalInfo &getEvalInfo() { return Info; }
2438
2439  /// Report an evaluation error. This should only be called when an error is
2440  /// first discovered. When propagating an error, just return false.
2441  bool Error(const Expr *E, diag::kind D) {
2442    Info.Diag(E, D);
2443    return false;
2444  }
2445  bool Error(const Expr *E) {
2446    return Error(E, diag::note_invalid_subexpr_in_const_expr);
2447  }
2448
2449  RetTy VisitStmt(const Stmt *) {
2450    llvm_unreachable("Expression evaluator should not be called on stmts");
2451  }
2452  RetTy VisitExpr(const Expr *E) {
2453    return Error(E);
2454  }
2455
2456  RetTy VisitParenExpr(const ParenExpr *E)
2457    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2458  RetTy VisitUnaryExtension(const UnaryOperator *E)
2459    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2460  RetTy VisitUnaryPlus(const UnaryOperator *E)
2461    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2462  RetTy VisitChooseExpr(const ChooseExpr *E)
2463    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
2464  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2465    { return StmtVisitorTy::Visit(E->getResultExpr()); }
2466  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2467    { return StmtVisitorTy::Visit(E->getReplacement()); }
2468  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2469    { return StmtVisitorTy::Visit(E->getExpr()); }
2470  // We cannot create any objects for which cleanups are required, so there is
2471  // nothing to do here; all cleanups must come from unevaluated subexpressions.
2472  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2473    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2474
2475  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2476    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2477    return static_cast<Derived*>(this)->VisitCastExpr(E);
2478  }
2479  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2480    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2481    return static_cast<Derived*>(this)->VisitCastExpr(E);
2482  }
2483
2484  RetTy VisitBinaryOperator(const BinaryOperator *E) {
2485    switch (E->getOpcode()) {
2486    default:
2487      return Error(E);
2488
2489    case BO_Comma:
2490      VisitIgnoredValue(E->getLHS());
2491      return StmtVisitorTy::Visit(E->getRHS());
2492
2493    case BO_PtrMemD:
2494    case BO_PtrMemI: {
2495      LValue Obj;
2496      if (!HandleMemberPointerAccess(Info, E, Obj))
2497        return false;
2498      APValue Result;
2499      if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2500        return false;
2501      return DerivedSuccess(Result, E);
2502    }
2503    }
2504  }
2505
2506  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2507    // Cache the value of the common expression.
2508    OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
2509    if (opaque.hasError())
2510      return false;
2511
2512    return HandleConditionalOperator(E);
2513  }
2514
2515  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2516    bool IsBcpCall = false;
2517    // If the condition (ignoring parens) is a __builtin_constant_p call,
2518    // the result is a constant expression if it can be folded without
2519    // side-effects. This is an important GNU extension. See GCC PR38377
2520    // for discussion.
2521    if (const CallExpr *CallCE =
2522          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2523      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2524        IsBcpCall = true;
2525
2526    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2527    // constant expression; we can't check whether it's potentially foldable.
2528    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2529      return false;
2530
2531    FoldConstant Fold(Info);
2532
2533    if (!HandleConditionalOperator(E))
2534      return false;
2535
2536    if (IsBcpCall)
2537      Fold.Fold(Info);
2538
2539    return true;
2540  }
2541
2542  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2543    const APValue *Value = Info.getOpaqueValue(E);
2544    if (!Value) {
2545      const Expr *Source = E->getSourceExpr();
2546      if (!Source)
2547        return Error(E);
2548      if (Source == E) { // sanity checking.
2549        assert(0 && "OpaqueValueExpr recursively refers to itself");
2550        return Error(E);
2551      }
2552      return StmtVisitorTy::Visit(Source);
2553    }
2554    return DerivedSuccess(*Value, E);
2555  }
2556
2557  RetTy VisitCallExpr(const CallExpr *E) {
2558    const Expr *Callee = E->getCallee()->IgnoreParens();
2559    QualType CalleeType = Callee->getType();
2560
2561    const FunctionDecl *FD = 0;
2562    LValue *This = 0, ThisVal;
2563    llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
2564    bool HasQualifier = false;
2565
2566    // Extract function decl and 'this' pointer from the callee.
2567    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2568      const ValueDecl *Member = 0;
2569      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2570        // Explicit bound member calls, such as x.f() or p->g();
2571        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2572          return false;
2573        Member = ME->getMemberDecl();
2574        This = &ThisVal;
2575        HasQualifier = ME->hasQualifier();
2576      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2577        // Indirect bound member calls ('.*' or '->*').
2578        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2579        if (!Member) return false;
2580        This = &ThisVal;
2581      } else
2582        return Error(Callee);
2583
2584      FD = dyn_cast<FunctionDecl>(Member);
2585      if (!FD)
2586        return Error(Callee);
2587    } else if (CalleeType->isFunctionPointerType()) {
2588      LValue Call;
2589      if (!EvaluatePointer(Callee, Call, Info))
2590        return false;
2591
2592      if (!Call.getLValueOffset().isZero())
2593        return Error(Callee);
2594      FD = dyn_cast_or_null<FunctionDecl>(
2595                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
2596      if (!FD)
2597        return Error(Callee);
2598
2599      // Overloaded operator calls to member functions are represented as normal
2600      // calls with '*this' as the first argument.
2601      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2602      if (MD && !MD->isStatic()) {
2603        // FIXME: When selecting an implicit conversion for an overloaded
2604        // operator delete, we sometimes try to evaluate calls to conversion
2605        // operators without a 'this' parameter!
2606        if (Args.empty())
2607          return Error(E);
2608
2609        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2610          return false;
2611        This = &ThisVal;
2612        Args = Args.slice(1);
2613      }
2614
2615      // Don't call function pointers which have been cast to some other type.
2616      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2617        return Error(E);
2618    } else
2619      return Error(E);
2620
2621    if (This && !This->checkSubobject(Info, E, CSK_This))
2622      return false;
2623
2624    // DR1358 allows virtual constexpr functions in some cases. Don't allow
2625    // calls to such functions in constant expressions.
2626    if (This && !HasQualifier &&
2627        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2628      return Error(E, diag::note_constexpr_virtual_call);
2629
2630    const FunctionDecl *Definition = 0;
2631    Stmt *Body = FD->getBody(Definition);
2632    APValue Result;
2633
2634    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2635        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2636                            Info, Result))
2637      return false;
2638
2639    return DerivedSuccess(Result, E);
2640  }
2641
2642  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2643    return StmtVisitorTy::Visit(E->getInitializer());
2644  }
2645  RetTy VisitInitListExpr(const InitListExpr *E) {
2646    if (E->getNumInits() == 0)
2647      return DerivedZeroInitialization(E);
2648    if (E->getNumInits() == 1)
2649      return StmtVisitorTy::Visit(E->getInit(0));
2650    return Error(E);
2651  }
2652  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2653    return DerivedZeroInitialization(E);
2654  }
2655  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2656    return DerivedZeroInitialization(E);
2657  }
2658  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2659    return DerivedZeroInitialization(E);
2660  }
2661
2662  /// A member expression where the object is a prvalue is itself a prvalue.
2663  RetTy VisitMemberExpr(const MemberExpr *E) {
2664    assert(!E->isArrow() && "missing call to bound member function?");
2665
2666    APValue Val;
2667    if (!Evaluate(Val, Info, E->getBase()))
2668      return false;
2669
2670    QualType BaseTy = E->getBase()->getType();
2671
2672    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2673    if (!FD) return Error(E);
2674    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2675    assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2676           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2677
2678    SubobjectDesignator Designator(BaseTy);
2679    Designator.addDeclUnchecked(FD);
2680
2681    return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2682           DerivedSuccess(Val, E);
2683  }
2684
2685  RetTy VisitCastExpr(const CastExpr *E) {
2686    switch (E->getCastKind()) {
2687    default:
2688      break;
2689
2690    case CK_AtomicToNonAtomic:
2691    case CK_NonAtomicToAtomic:
2692    case CK_NoOp:
2693    case CK_UserDefinedConversion:
2694      return StmtVisitorTy::Visit(E->getSubExpr());
2695
2696    case CK_LValueToRValue: {
2697      LValue LVal;
2698      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2699        return false;
2700      APValue RVal;
2701      // Note, we use the subexpression's type in order to retain cv-qualifiers.
2702      if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2703                                          LVal, RVal))
2704        return false;
2705      return DerivedSuccess(RVal, E);
2706    }
2707    }
2708
2709    return Error(E);
2710  }
2711
2712  /// Visit a value which is evaluated, but whose value is ignored.
2713  void VisitIgnoredValue(const Expr *E) {
2714    APValue Scratch;
2715    if (!Evaluate(Scratch, Info, E))
2716      Info.EvalStatus.HasSideEffects = true;
2717  }
2718};
2719
2720}
2721
2722//===----------------------------------------------------------------------===//
2723// Common base class for lvalue and temporary evaluation.
2724//===----------------------------------------------------------------------===//
2725namespace {
2726template<class Derived>
2727class LValueExprEvaluatorBase
2728  : public ExprEvaluatorBase<Derived, bool> {
2729protected:
2730  LValue &Result;
2731  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2732  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2733
2734  bool Success(APValue::LValueBase B) {
2735    Result.set(B);
2736    return true;
2737  }
2738
2739public:
2740  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2741    ExprEvaluatorBaseTy(Info), Result(Result) {}
2742
2743  bool Success(const APValue &V, const Expr *E) {
2744    Result.setFrom(this->Info.Ctx, V);
2745    return true;
2746  }
2747
2748  bool VisitMemberExpr(const MemberExpr *E) {
2749    // Handle non-static data members.
2750    QualType BaseTy;
2751    if (E->isArrow()) {
2752      if (!EvaluatePointer(E->getBase(), Result, this->Info))
2753        return false;
2754      BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
2755    } else if (E->getBase()->isRValue()) {
2756      assert(E->getBase()->getType()->isRecordType());
2757      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2758        return false;
2759      BaseTy = E->getBase()->getType();
2760    } else {
2761      if (!this->Visit(E->getBase()))
2762        return false;
2763      BaseTy = E->getBase()->getType();
2764    }
2765
2766    const ValueDecl *MD = E->getMemberDecl();
2767    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2768      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2769             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2770      (void)BaseTy;
2771      HandleLValueMember(this->Info, E, Result, FD);
2772    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2773      HandleLValueIndirectMember(this->Info, E, Result, IFD);
2774    } else
2775      return this->Error(E);
2776
2777    if (MD->getType()->isReferenceType()) {
2778      APValue RefValue;
2779      if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2780                                          RefValue))
2781        return false;
2782      return Success(RefValue, E);
2783    }
2784    return true;
2785  }
2786
2787  bool VisitBinaryOperator(const BinaryOperator *E) {
2788    switch (E->getOpcode()) {
2789    default:
2790      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2791
2792    case BO_PtrMemD:
2793    case BO_PtrMemI:
2794      return HandleMemberPointerAccess(this->Info, E, Result);
2795    }
2796  }
2797
2798  bool VisitCastExpr(const CastExpr *E) {
2799    switch (E->getCastKind()) {
2800    default:
2801      return ExprEvaluatorBaseTy::VisitCastExpr(E);
2802
2803    case CK_DerivedToBase:
2804    case CK_UncheckedDerivedToBase: {
2805      if (!this->Visit(E->getSubExpr()))
2806        return false;
2807
2808      // Now figure out the necessary offset to add to the base LV to get from
2809      // the derived class to the base class.
2810      QualType Type = E->getSubExpr()->getType();
2811
2812      for (CastExpr::path_const_iterator PathI = E->path_begin(),
2813           PathE = E->path_end(); PathI != PathE; ++PathI) {
2814        if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2815                              *PathI))
2816          return false;
2817        Type = (*PathI)->getType();
2818      }
2819
2820      return true;
2821    }
2822    }
2823  }
2824};
2825}
2826
2827//===----------------------------------------------------------------------===//
2828// LValue Evaluation
2829//
2830// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2831// function designators (in C), decl references to void objects (in C), and
2832// temporaries (if building with -Wno-address-of-temporary).
2833//
2834// LValue evaluation produces values comprising a base expression of one of the
2835// following types:
2836// - Declarations
2837//  * VarDecl
2838//  * FunctionDecl
2839// - Literals
2840//  * CompoundLiteralExpr in C
2841//  * StringLiteral
2842//  * CXXTypeidExpr
2843//  * PredefinedExpr
2844//  * ObjCStringLiteralExpr
2845//  * ObjCEncodeExpr
2846//  * AddrLabelExpr
2847//  * BlockExpr
2848//  * CallExpr for a MakeStringConstant builtin
2849// - Locals and temporaries
2850//  * Any Expr, with a CallIndex indicating the function in which the temporary
2851//    was evaluated.
2852// plus an offset in bytes.
2853//===----------------------------------------------------------------------===//
2854namespace {
2855class LValueExprEvaluator
2856  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2857public:
2858  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2859    LValueExprEvaluatorBaseTy(Info, Result) {}
2860
2861  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2862
2863  bool VisitDeclRefExpr(const DeclRefExpr *E);
2864  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2865  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2866  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2867  bool VisitMemberExpr(const MemberExpr *E);
2868  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
2869  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2870  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2871  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2872  bool VisitUnaryDeref(const UnaryOperator *E);
2873  bool VisitUnaryReal(const UnaryOperator *E);
2874  bool VisitUnaryImag(const UnaryOperator *E);
2875
2876  bool VisitCastExpr(const CastExpr *E) {
2877    switch (E->getCastKind()) {
2878    default:
2879      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2880
2881    case CK_LValueBitCast:
2882      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2883      if (!Visit(E->getSubExpr()))
2884        return false;
2885      Result.Designator.setInvalid();
2886      return true;
2887
2888    case CK_BaseToDerived:
2889      if (!Visit(E->getSubExpr()))
2890        return false;
2891      return HandleBaseToDerivedCast(Info, E, Result);
2892    }
2893  }
2894};
2895} // end anonymous namespace
2896
2897/// Evaluate an expression as an lvalue. This can be legitimately called on
2898/// expressions which are not glvalues, in a few cases:
2899///  * function designators in C,
2900///  * "extern void" objects,
2901///  * temporaries, if building with -Wno-address-of-temporary.
2902static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2903  assert((E->isGLValue() || E->getType()->isFunctionType() ||
2904          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2905         "can't evaluate expression as an lvalue");
2906  return LValueExprEvaluator(Info, Result).Visit(E);
2907}
2908
2909bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2910  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2911    return Success(FD);
2912  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2913    return VisitVarDecl(E, VD);
2914  return Error(E);
2915}
2916
2917bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2918  if (!VD->getType()->isReferenceType()) {
2919    if (isa<ParmVarDecl>(VD)) {
2920      Result.set(VD, Info.CurrentCall->Index);
2921      return true;
2922    }
2923    return Success(VD);
2924  }
2925
2926  APValue V;
2927  if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2928    return false;
2929  return Success(V, E);
2930}
2931
2932bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2933    const MaterializeTemporaryExpr *E) {
2934  if (E->GetTemporaryExpr()->isRValue()) {
2935    if (E->getType()->isRecordType())
2936      return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2937
2938    Result.set(E, Info.CurrentCall->Index);
2939    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2940                           Result, E->GetTemporaryExpr());
2941  }
2942
2943  // Materialization of an lvalue temporary occurs when we need to force a copy
2944  // (for instance, if it's a bitfield).
2945  // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2946  if (!Visit(E->GetTemporaryExpr()))
2947    return false;
2948  if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2949                                      Info.CurrentCall->Temporaries[E]))
2950    return false;
2951  Result.set(E, Info.CurrentCall->Index);
2952  return true;
2953}
2954
2955bool
2956LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2957  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2958  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2959  // only see this when folding in C, so there's no standard to follow here.
2960  return Success(E);
2961}
2962
2963bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2964  if (E->isTypeOperand())
2965    return Success(E);
2966  CXXRecordDecl *RD = E->getExprOperand()->getType()->getAsCXXRecordDecl();
2967  if (RD && RD->isPolymorphic()) {
2968    Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2969      << E->getExprOperand()->getType()
2970      << E->getExprOperand()->getSourceRange();
2971    return false;
2972  }
2973  return Success(E);
2974}
2975
2976bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2977  // Handle static data members.
2978  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2979    VisitIgnoredValue(E->getBase());
2980    return VisitVarDecl(E, VD);
2981  }
2982
2983  // Handle static member functions.
2984  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2985    if (MD->isStatic()) {
2986      VisitIgnoredValue(E->getBase());
2987      return Success(MD);
2988    }
2989  }
2990
2991  // Handle non-static data members.
2992  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2993}
2994
2995bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2996  // FIXME: Deal with vectors as array subscript bases.
2997  if (E->getBase()->getType()->isVectorType())
2998    return Error(E);
2999
3000  if (!EvaluatePointer(E->getBase(), Result, Info))
3001    return false;
3002
3003  APSInt Index;
3004  if (!EvaluateInteger(E->getIdx(), Index, Info))
3005    return false;
3006  int64_t IndexValue
3007    = Index.isSigned() ? Index.getSExtValue()
3008                       : static_cast<int64_t>(Index.getZExtValue());
3009
3010  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
3011}
3012
3013bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
3014  return EvaluatePointer(E->getSubExpr(), Result, Info);
3015}
3016
3017bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
3018  if (!Visit(E->getSubExpr()))
3019    return false;
3020  // __real is a no-op on scalar lvalues.
3021  if (E->getSubExpr()->getType()->isAnyComplexType())
3022    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
3023  return true;
3024}
3025
3026bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3027  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
3028         "lvalue __imag__ on scalar?");
3029  if (!Visit(E->getSubExpr()))
3030    return false;
3031  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
3032  return true;
3033}
3034
3035//===----------------------------------------------------------------------===//
3036// Pointer Evaluation
3037//===----------------------------------------------------------------------===//
3038
3039namespace {
3040class PointerExprEvaluator
3041  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
3042  LValue &Result;
3043
3044  bool Success(const Expr *E) {
3045    Result.set(E);
3046    return true;
3047  }
3048public:
3049
3050  PointerExprEvaluator(EvalInfo &info, LValue &Result)
3051    : ExprEvaluatorBaseTy(info), Result(Result) {}
3052
3053  bool Success(const APValue &V, const Expr *E) {
3054    Result.setFrom(Info.Ctx, V);
3055    return true;
3056  }
3057  bool ZeroInitialization(const Expr *E) {
3058    return Success((Expr*)0);
3059  }
3060
3061  bool VisitBinaryOperator(const BinaryOperator *E);
3062  bool VisitCastExpr(const CastExpr* E);
3063  bool VisitUnaryAddrOf(const UnaryOperator *E);
3064  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
3065      { return Success(E); }
3066  bool VisitObjCNumericLiteral(const ObjCNumericLiteral *E)
3067      { return Success(E); }
3068  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3069      { return Success(E); }
3070  bool VisitCallExpr(const CallExpr *E);
3071  bool VisitBlockExpr(const BlockExpr *E) {
3072    if (!E->getBlockDecl()->hasCaptures())
3073      return Success(E);
3074    return Error(E);
3075  }
3076  bool VisitCXXThisExpr(const CXXThisExpr *E) {
3077    if (!Info.CurrentCall->This)
3078      return Error(E);
3079    Result = *Info.CurrentCall->This;
3080    return true;
3081  }
3082
3083  // FIXME: Missing: @protocol, @selector
3084};
3085} // end anonymous namespace
3086
3087static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3088  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3089  return PointerExprEvaluator(Info, Result).Visit(E);
3090}
3091
3092bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3093  if (E->getOpcode() != BO_Add &&
3094      E->getOpcode() != BO_Sub)
3095    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3096
3097  const Expr *PExp = E->getLHS();
3098  const Expr *IExp = E->getRHS();
3099  if (IExp->getType()->isPointerType())
3100    std::swap(PExp, IExp);
3101
3102  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3103  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3104    return false;
3105
3106  llvm::APSInt Offset;
3107  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3108    return false;
3109  int64_t AdditionalOffset
3110    = Offset.isSigned() ? Offset.getSExtValue()
3111                        : static_cast<int64_t>(Offset.getZExtValue());
3112  if (E->getOpcode() == BO_Sub)
3113    AdditionalOffset = -AdditionalOffset;
3114
3115  QualType Pointee = PExp->getType()->getAs<PointerType>()->getPointeeType();
3116  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3117                                     AdditionalOffset);
3118}
3119
3120bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3121  return EvaluateLValue(E->getSubExpr(), Result, Info);
3122}
3123
3124bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3125  const Expr* SubExpr = E->getSubExpr();
3126
3127  switch (E->getCastKind()) {
3128  default:
3129    break;
3130
3131  case CK_BitCast:
3132  case CK_CPointerToObjCPointerCast:
3133  case CK_BlockPointerToObjCPointerCast:
3134  case CK_AnyPointerToBlockPointerCast:
3135    if (!Visit(SubExpr))
3136      return false;
3137    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3138    // permitted in constant expressions in C++11. Bitcasts from cv void* are
3139    // also static_casts, but we disallow them as a resolution to DR1312.
3140    if (!E->getType()->isVoidPointerType()) {
3141      Result.Designator.setInvalid();
3142      if (SubExpr->getType()->isVoidPointerType())
3143        CCEDiag(E, diag::note_constexpr_invalid_cast)
3144          << 3 << SubExpr->getType();
3145      else
3146        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3147    }
3148    return true;
3149
3150  case CK_DerivedToBase:
3151  case CK_UncheckedDerivedToBase: {
3152    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3153      return false;
3154    if (!Result.Base && Result.Offset.isZero())
3155      return true;
3156
3157    // Now figure out the necessary offset to add to the base LV to get from
3158    // the derived class to the base class.
3159    QualType Type =
3160        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3161
3162    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3163         PathE = E->path_end(); PathI != PathE; ++PathI) {
3164      if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3165                            *PathI))
3166        return false;
3167      Type = (*PathI)->getType();
3168    }
3169
3170    return true;
3171  }
3172
3173  case CK_BaseToDerived:
3174    if (!Visit(E->getSubExpr()))
3175      return false;
3176    if (!Result.Base && Result.Offset.isZero())
3177      return true;
3178    return HandleBaseToDerivedCast(Info, E, Result);
3179
3180  case CK_NullToPointer:
3181    VisitIgnoredValue(E->getSubExpr());
3182    return ZeroInitialization(E);
3183
3184  case CK_IntegralToPointer: {
3185    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3186
3187    APValue Value;
3188    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3189      break;
3190
3191    if (Value.isInt()) {
3192      unsigned Size = Info.Ctx.getTypeSize(E->getType());
3193      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3194      Result.Base = (Expr*)0;
3195      Result.Offset = CharUnits::fromQuantity(N);
3196      Result.CallIndex = 0;
3197      Result.Designator.setInvalid();
3198      return true;
3199    } else {
3200      // Cast is of an lvalue, no need to change value.
3201      Result.setFrom(Info.Ctx, Value);
3202      return true;
3203    }
3204  }
3205  case CK_ArrayToPointerDecay:
3206    if (SubExpr->isGLValue()) {
3207      if (!EvaluateLValue(SubExpr, Result, Info))
3208        return false;
3209    } else {
3210      Result.set(SubExpr, Info.CurrentCall->Index);
3211      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3212                           Info, Result, SubExpr))
3213        return false;
3214    }
3215    // The result is a pointer to the first element of the array.
3216    if (const ConstantArrayType *CAT
3217          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3218      Result.addArray(Info, E, CAT);
3219    else
3220      Result.Designator.setInvalid();
3221    return true;
3222
3223  case CK_FunctionToPointerDecay:
3224    return EvaluateLValue(SubExpr, Result, Info);
3225  }
3226
3227  return ExprEvaluatorBaseTy::VisitCastExpr(E);
3228}
3229
3230bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3231  if (IsStringLiteralCall(E))
3232    return Success(E);
3233
3234  return ExprEvaluatorBaseTy::VisitCallExpr(E);
3235}
3236
3237//===----------------------------------------------------------------------===//
3238// Member Pointer Evaluation
3239//===----------------------------------------------------------------------===//
3240
3241namespace {
3242class MemberPointerExprEvaluator
3243  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3244  MemberPtr &Result;
3245
3246  bool Success(const ValueDecl *D) {
3247    Result = MemberPtr(D);
3248    return true;
3249  }
3250public:
3251
3252  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3253    : ExprEvaluatorBaseTy(Info), Result(Result) {}
3254
3255  bool Success(const APValue &V, const Expr *E) {
3256    Result.setFrom(V);
3257    return true;
3258  }
3259  bool ZeroInitialization(const Expr *E) {
3260    return Success((const ValueDecl*)0);
3261  }
3262
3263  bool VisitCastExpr(const CastExpr *E);
3264  bool VisitUnaryAddrOf(const UnaryOperator *E);
3265};
3266} // end anonymous namespace
3267
3268static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3269                                  EvalInfo &Info) {
3270  assert(E->isRValue() && E->getType()->isMemberPointerType());
3271  return MemberPointerExprEvaluator(Info, Result).Visit(E);
3272}
3273
3274bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3275  switch (E->getCastKind()) {
3276  default:
3277    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3278
3279  case CK_NullToMemberPointer:
3280    VisitIgnoredValue(E->getSubExpr());
3281    return ZeroInitialization(E);
3282
3283  case CK_BaseToDerivedMemberPointer: {
3284    if (!Visit(E->getSubExpr()))
3285      return false;
3286    if (E->path_empty())
3287      return true;
3288    // Base-to-derived member pointer casts store the path in derived-to-base
3289    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3290    // the wrong end of the derived->base arc, so stagger the path by one class.
3291    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3292    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3293         PathI != PathE; ++PathI) {
3294      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3295      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3296      if (!Result.castToDerived(Derived))
3297        return Error(E);
3298    }
3299    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3300    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3301      return Error(E);
3302    return true;
3303  }
3304
3305  case CK_DerivedToBaseMemberPointer:
3306    if (!Visit(E->getSubExpr()))
3307      return false;
3308    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3309         PathE = E->path_end(); PathI != PathE; ++PathI) {
3310      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3311      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3312      if (!Result.castToBase(Base))
3313        return Error(E);
3314    }
3315    return true;
3316  }
3317}
3318
3319bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3320  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3321  // member can be formed.
3322  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3323}
3324
3325//===----------------------------------------------------------------------===//
3326// Record Evaluation
3327//===----------------------------------------------------------------------===//
3328
3329namespace {
3330  class RecordExprEvaluator
3331  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3332    const LValue &This;
3333    APValue &Result;
3334  public:
3335
3336    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3337      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3338
3339    bool Success(const APValue &V, const Expr *E) {
3340      Result = V;
3341      return true;
3342    }
3343    bool ZeroInitialization(const Expr *E);
3344
3345    bool VisitCastExpr(const CastExpr *E);
3346    bool VisitInitListExpr(const InitListExpr *E);
3347    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3348  };
3349}
3350
3351/// Perform zero-initialization on an object of non-union class type.
3352/// C++11 [dcl.init]p5:
3353///  To zero-initialize an object or reference of type T means:
3354///    [...]
3355///    -- if T is a (possibly cv-qualified) non-union class type,
3356///       each non-static data member and each base-class subobject is
3357///       zero-initialized
3358static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3359                                          const RecordDecl *RD,
3360                                          const LValue &This, APValue &Result) {
3361  assert(!RD->isUnion() && "Expected non-union class type");
3362  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3363  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3364                   std::distance(RD->field_begin(), RD->field_end()));
3365
3366  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3367
3368  if (CD) {
3369    unsigned Index = 0;
3370    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3371           End = CD->bases_end(); I != End; ++I, ++Index) {
3372      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3373      LValue Subobject = This;
3374      HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout);
3375      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3376                                         Result.getStructBase(Index)))
3377        return false;
3378    }
3379  }
3380
3381  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3382       I != End; ++I) {
3383    // -- if T is a reference type, no initialization is performed.
3384    if ((*I)->getType()->isReferenceType())
3385      continue;
3386
3387    LValue Subobject = This;
3388    HandleLValueMember(Info, E, Subobject, *I, &Layout);
3389
3390    ImplicitValueInitExpr VIE((*I)->getType());
3391    if (!EvaluateInPlace(
3392          Result.getStructField((*I)->getFieldIndex()), Info, Subobject, &VIE))
3393      return false;
3394  }
3395
3396  return true;
3397}
3398
3399bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3400  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3401  if (RD->isUnion()) {
3402    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3403    // object's first non-static named data member is zero-initialized
3404    RecordDecl::field_iterator I = RD->field_begin();
3405    if (I == RD->field_end()) {
3406      Result = APValue((const FieldDecl*)0);
3407      return true;
3408    }
3409
3410    LValue Subobject = This;
3411    HandleLValueMember(Info, E, Subobject, *I);
3412    Result = APValue(*I);
3413    ImplicitValueInitExpr VIE((*I)->getType());
3414    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3415  }
3416
3417  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3418    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3419    return false;
3420  }
3421
3422  return HandleClassZeroInitialization(Info, E, RD, This, Result);
3423}
3424
3425bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3426  switch (E->getCastKind()) {
3427  default:
3428    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3429
3430  case CK_ConstructorConversion:
3431    return Visit(E->getSubExpr());
3432
3433  case CK_DerivedToBase:
3434  case CK_UncheckedDerivedToBase: {
3435    APValue DerivedObject;
3436    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3437      return false;
3438    if (!DerivedObject.isStruct())
3439      return Error(E->getSubExpr());
3440
3441    // Derived-to-base rvalue conversion: just slice off the derived part.
3442    APValue *Value = &DerivedObject;
3443    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3444    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3445         PathE = E->path_end(); PathI != PathE; ++PathI) {
3446      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3447      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3448      Value = &Value->getStructBase(getBaseIndex(RD, Base));
3449      RD = Base;
3450    }
3451    Result = *Value;
3452    return true;
3453  }
3454  }
3455}
3456
3457bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3458  // Cannot constant-evaluate std::initializer_list inits.
3459  if (E->initializesStdInitializerList())
3460    return false;
3461
3462  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3463  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3464
3465  if (RD->isUnion()) {
3466    const FieldDecl *Field = E->getInitializedFieldInUnion();
3467    Result = APValue(Field);
3468    if (!Field)
3469      return true;
3470
3471    // If the initializer list for a union does not contain any elements, the
3472    // first element of the union is value-initialized.
3473    ImplicitValueInitExpr VIE(Field->getType());
3474    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3475
3476    LValue Subobject = This;
3477    HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout);
3478    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3479  }
3480
3481  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3482         "initializer list for class with base classes");
3483  Result = APValue(APValue::UninitStruct(), 0,
3484                   std::distance(RD->field_begin(), RD->field_end()));
3485  unsigned ElementNo = 0;
3486  bool Success = true;
3487  for (RecordDecl::field_iterator Field = RD->field_begin(),
3488       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3489    // Anonymous bit-fields are not considered members of the class for
3490    // purposes of aggregate initialization.
3491    if (Field->isUnnamedBitfield())
3492      continue;
3493
3494    LValue Subobject = This;
3495
3496    bool HaveInit = ElementNo < E->getNumInits();
3497
3498    // FIXME: Diagnostics here should point to the end of the initializer
3499    // list, not the start.
3500    HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, Subobject,
3501                       *Field, &Layout);
3502
3503    // Perform an implicit value-initialization for members beyond the end of
3504    // the initializer list.
3505    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3506
3507    if (!EvaluateInPlace(
3508          Result.getStructField((*Field)->getFieldIndex()),
3509          Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3510      if (!Info.keepEvaluatingAfterFailure())
3511        return false;
3512      Success = false;
3513    }
3514  }
3515
3516  return Success;
3517}
3518
3519bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3520  const CXXConstructorDecl *FD = E->getConstructor();
3521  bool ZeroInit = E->requiresZeroInitialization();
3522  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3523    // If we've already performed zero-initialization, we're already done.
3524    if (!Result.isUninit())
3525      return true;
3526
3527    if (ZeroInit)
3528      return ZeroInitialization(E);
3529
3530    const CXXRecordDecl *RD = FD->getParent();
3531    if (RD->isUnion())
3532      Result = APValue((FieldDecl*)0);
3533    else
3534      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3535                       std::distance(RD->field_begin(), RD->field_end()));
3536    return true;
3537  }
3538
3539  const FunctionDecl *Definition = 0;
3540  FD->getBody(Definition);
3541
3542  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3543    return false;
3544
3545  // Avoid materializing a temporary for an elidable copy/move constructor.
3546  if (E->isElidable() && !ZeroInit)
3547    if (const MaterializeTemporaryExpr *ME
3548          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3549      return Visit(ME->GetTemporaryExpr());
3550
3551  if (ZeroInit && !ZeroInitialization(E))
3552    return false;
3553
3554  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3555  return HandleConstructorCall(E->getExprLoc(), This, Args,
3556                               cast<CXXConstructorDecl>(Definition), Info,
3557                               Result);
3558}
3559
3560static bool EvaluateRecord(const Expr *E, const LValue &This,
3561                           APValue &Result, EvalInfo &Info) {
3562  assert(E->isRValue() && E->getType()->isRecordType() &&
3563         "can't evaluate expression as a record rvalue");
3564  return RecordExprEvaluator(Info, This, Result).Visit(E);
3565}
3566
3567//===----------------------------------------------------------------------===//
3568// Temporary Evaluation
3569//
3570// Temporaries are represented in the AST as rvalues, but generally behave like
3571// lvalues. The full-object of which the temporary is a subobject is implicitly
3572// materialized so that a reference can bind to it.
3573//===----------------------------------------------------------------------===//
3574namespace {
3575class TemporaryExprEvaluator
3576  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3577public:
3578  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3579    LValueExprEvaluatorBaseTy(Info, Result) {}
3580
3581  /// Visit an expression which constructs the value of this temporary.
3582  bool VisitConstructExpr(const Expr *E) {
3583    Result.set(E, Info.CurrentCall->Index);
3584    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3585  }
3586
3587  bool VisitCastExpr(const CastExpr *E) {
3588    switch (E->getCastKind()) {
3589    default:
3590      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3591
3592    case CK_ConstructorConversion:
3593      return VisitConstructExpr(E->getSubExpr());
3594    }
3595  }
3596  bool VisitInitListExpr(const InitListExpr *E) {
3597    return VisitConstructExpr(E);
3598  }
3599  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3600    return VisitConstructExpr(E);
3601  }
3602  bool VisitCallExpr(const CallExpr *E) {
3603    return VisitConstructExpr(E);
3604  }
3605};
3606} // end anonymous namespace
3607
3608/// Evaluate an expression of record type as a temporary.
3609static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3610  assert(E->isRValue() && E->getType()->isRecordType());
3611  return TemporaryExprEvaluator(Info, Result).Visit(E);
3612}
3613
3614//===----------------------------------------------------------------------===//
3615// Vector Evaluation
3616//===----------------------------------------------------------------------===//
3617
3618namespace {
3619  class VectorExprEvaluator
3620  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3621    APValue &Result;
3622  public:
3623
3624    VectorExprEvaluator(EvalInfo &info, APValue &Result)
3625      : ExprEvaluatorBaseTy(info), Result(Result) {}
3626
3627    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3628      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3629      // FIXME: remove this APValue copy.
3630      Result = APValue(V.data(), V.size());
3631      return true;
3632    }
3633    bool Success(const APValue &V, const Expr *E) {
3634      assert(V.isVector());
3635      Result = V;
3636      return true;
3637    }
3638    bool ZeroInitialization(const Expr *E);
3639
3640    bool VisitUnaryReal(const UnaryOperator *E)
3641      { return Visit(E->getSubExpr()); }
3642    bool VisitCastExpr(const CastExpr* E);
3643    bool VisitInitListExpr(const InitListExpr *E);
3644    bool VisitUnaryImag(const UnaryOperator *E);
3645    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3646    //                 binary comparisons, binary and/or/xor,
3647    //                 shufflevector, ExtVectorElementExpr
3648  };
3649} // end anonymous namespace
3650
3651static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3652  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3653  return VectorExprEvaluator(Info, Result).Visit(E);
3654}
3655
3656bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3657  const VectorType *VTy = E->getType()->castAs<VectorType>();
3658  unsigned NElts = VTy->getNumElements();
3659
3660  const Expr *SE = E->getSubExpr();
3661  QualType SETy = SE->getType();
3662
3663  switch (E->getCastKind()) {
3664  case CK_VectorSplat: {
3665    APValue Val = APValue();
3666    if (SETy->isIntegerType()) {
3667      APSInt IntResult;
3668      if (!EvaluateInteger(SE, IntResult, Info))
3669         return false;
3670      Val = APValue(IntResult);
3671    } else if (SETy->isRealFloatingType()) {
3672       APFloat F(0.0);
3673       if (!EvaluateFloat(SE, F, Info))
3674         return false;
3675       Val = APValue(F);
3676    } else {
3677      return Error(E);
3678    }
3679
3680    // Splat and create vector APValue.
3681    SmallVector<APValue, 4> Elts(NElts, Val);
3682    return Success(Elts, E);
3683  }
3684  case CK_BitCast: {
3685    // Evaluate the operand into an APInt we can extract from.
3686    llvm::APInt SValInt;
3687    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3688      return false;
3689    // Extract the elements
3690    QualType EltTy = VTy->getElementType();
3691    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3692    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3693    SmallVector<APValue, 4> Elts;
3694    if (EltTy->isRealFloatingType()) {
3695      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3696      bool isIEESem = &Sem != &APFloat::PPCDoubleDouble;
3697      unsigned FloatEltSize = EltSize;
3698      if (&Sem == &APFloat::x87DoubleExtended)
3699        FloatEltSize = 80;
3700      for (unsigned i = 0; i < NElts; i++) {
3701        llvm::APInt Elt;
3702        if (BigEndian)
3703          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3704        else
3705          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3706        Elts.push_back(APValue(APFloat(Elt, isIEESem)));
3707      }
3708    } else if (EltTy->isIntegerType()) {
3709      for (unsigned i = 0; i < NElts; i++) {
3710        llvm::APInt Elt;
3711        if (BigEndian)
3712          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3713        else
3714          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3715        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3716      }
3717    } else {
3718      return Error(E);
3719    }
3720    return Success(Elts, E);
3721  }
3722  default:
3723    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3724  }
3725}
3726
3727bool
3728VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3729  const VectorType *VT = E->getType()->castAs<VectorType>();
3730  unsigned NumInits = E->getNumInits();
3731  unsigned NumElements = VT->getNumElements();
3732
3733  QualType EltTy = VT->getElementType();
3734  SmallVector<APValue, 4> Elements;
3735
3736  // The number of initializers can be less than the number of
3737  // vector elements. For OpenCL, this can be due to nested vector
3738  // initialization. For GCC compatibility, missing trailing elements
3739  // should be initialized with zeroes.
3740  unsigned CountInits = 0, CountElts = 0;
3741  while (CountElts < NumElements) {
3742    // Handle nested vector initialization.
3743    if (CountInits < NumInits
3744        && E->getInit(CountInits)->getType()->isExtVectorType()) {
3745      APValue v;
3746      if (!EvaluateVector(E->getInit(CountInits), v, Info))
3747        return Error(E);
3748      unsigned vlen = v.getVectorLength();
3749      for (unsigned j = 0; j < vlen; j++)
3750        Elements.push_back(v.getVectorElt(j));
3751      CountElts += vlen;
3752    } else if (EltTy->isIntegerType()) {
3753      llvm::APSInt sInt(32);
3754      if (CountInits < NumInits) {
3755        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3756          return false;
3757      } else // trailing integer zero.
3758        sInt = Info.Ctx.MakeIntValue(0, EltTy);
3759      Elements.push_back(APValue(sInt));
3760      CountElts++;
3761    } else {
3762      llvm::APFloat f(0.0);
3763      if (CountInits < NumInits) {
3764        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3765          return false;
3766      } else // trailing float zero.
3767        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3768      Elements.push_back(APValue(f));
3769      CountElts++;
3770    }
3771    CountInits++;
3772  }
3773  return Success(Elements, E);
3774}
3775
3776bool
3777VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3778  const VectorType *VT = E->getType()->getAs<VectorType>();
3779  QualType EltTy = VT->getElementType();
3780  APValue ZeroElement;
3781  if (EltTy->isIntegerType())
3782    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3783  else
3784    ZeroElement =
3785        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3786
3787  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3788  return Success(Elements, E);
3789}
3790
3791bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3792  VisitIgnoredValue(E->getSubExpr());
3793  return ZeroInitialization(E);
3794}
3795
3796//===----------------------------------------------------------------------===//
3797// Array Evaluation
3798//===----------------------------------------------------------------------===//
3799
3800namespace {
3801  class ArrayExprEvaluator
3802  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3803    const LValue &This;
3804    APValue &Result;
3805  public:
3806
3807    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3808      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3809
3810    bool Success(const APValue &V, const Expr *E) {
3811      assert((V.isArray() || V.isLValue()) &&
3812             "expected array or string literal");
3813      Result = V;
3814      return true;
3815    }
3816
3817    bool ZeroInitialization(const Expr *E) {
3818      const ConstantArrayType *CAT =
3819          Info.Ctx.getAsConstantArrayType(E->getType());
3820      if (!CAT)
3821        return Error(E);
3822
3823      Result = APValue(APValue::UninitArray(), 0,
3824                       CAT->getSize().getZExtValue());
3825      if (!Result.hasArrayFiller()) return true;
3826
3827      // Zero-initialize all elements.
3828      LValue Subobject = This;
3829      Subobject.addArray(Info, E, CAT);
3830      ImplicitValueInitExpr VIE(CAT->getElementType());
3831      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3832    }
3833
3834    bool VisitInitListExpr(const InitListExpr *E);
3835    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3836  };
3837} // end anonymous namespace
3838
3839static bool EvaluateArray(const Expr *E, const LValue &This,
3840                          APValue &Result, EvalInfo &Info) {
3841  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3842  return ArrayExprEvaluator(Info, This, Result).Visit(E);
3843}
3844
3845bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3846  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3847  if (!CAT)
3848    return Error(E);
3849
3850  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3851  // an appropriately-typed string literal enclosed in braces.
3852  if (E->getNumInits() == 1 && E->getInit(0)->isGLValue() &&
3853      Info.Ctx.hasSameUnqualifiedType(E->getType(), E->getInit(0)->getType())) {
3854    LValue LV;
3855    if (!EvaluateLValue(E->getInit(0), LV, Info))
3856      return false;
3857    APValue Val;
3858    LV.moveInto(Val);
3859    return Success(Val, E);
3860  }
3861
3862  bool Success = true;
3863
3864  Result = APValue(APValue::UninitArray(), E->getNumInits(),
3865                   CAT->getSize().getZExtValue());
3866  LValue Subobject = This;
3867  Subobject.addArray(Info, E, CAT);
3868  unsigned Index = 0;
3869  for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3870       I != End; ++I, ++Index) {
3871    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3872                         Info, Subobject, cast<Expr>(*I)) ||
3873        !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3874                                     CAT->getElementType(), 1)) {
3875      if (!Info.keepEvaluatingAfterFailure())
3876        return false;
3877      Success = false;
3878    }
3879  }
3880
3881  if (!Result.hasArrayFiller()) return Success;
3882  assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3883  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3884  // but sometimes does:
3885  //   struct S { constexpr S() : p(&p) {} void *p; };
3886  //   S s[10] = {};
3887  return EvaluateInPlace(Result.getArrayFiller(), Info,
3888                         Subobject, E->getArrayFiller()) && Success;
3889}
3890
3891bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3892  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3893  if (!CAT)
3894    return Error(E);
3895
3896  bool HadZeroInit = !Result.isUninit();
3897  if (!HadZeroInit)
3898    Result = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3899  if (!Result.hasArrayFiller())
3900    return true;
3901
3902  const CXXConstructorDecl *FD = E->getConstructor();
3903
3904  bool ZeroInit = E->requiresZeroInitialization();
3905  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3906    if (HadZeroInit)
3907      return true;
3908
3909    if (ZeroInit) {
3910      LValue Subobject = This;
3911      Subobject.addArray(Info, E, CAT);
3912      ImplicitValueInitExpr VIE(CAT->getElementType());
3913      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3914    }
3915
3916    const CXXRecordDecl *RD = FD->getParent();
3917    if (RD->isUnion())
3918      Result.getArrayFiller() = APValue((FieldDecl*)0);
3919    else
3920      Result.getArrayFiller() =
3921          APValue(APValue::UninitStruct(), RD->getNumBases(),
3922                  std::distance(RD->field_begin(), RD->field_end()));
3923    return true;
3924  }
3925
3926  const FunctionDecl *Definition = 0;
3927  FD->getBody(Definition);
3928
3929  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3930    return false;
3931
3932  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3933  // but sometimes does:
3934  //   struct S { constexpr S() : p(&p) {} void *p; };
3935  //   S s[10];
3936  LValue Subobject = This;
3937  Subobject.addArray(Info, E, CAT);
3938
3939  if (ZeroInit && !HadZeroInit) {
3940    ImplicitValueInitExpr VIE(CAT->getElementType());
3941    if (!EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE))
3942      return false;
3943  }
3944
3945  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3946  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3947                               cast<CXXConstructorDecl>(Definition),
3948                               Info, Result.getArrayFiller());
3949}
3950
3951//===----------------------------------------------------------------------===//
3952// Integer Evaluation
3953//
3954// As a GNU extension, we support casting pointers to sufficiently-wide integer
3955// types and back in constant folding. Integer values are thus represented
3956// either as an integer-valued APValue, or as an lvalue-valued APValue.
3957//===----------------------------------------------------------------------===//
3958
3959namespace {
3960class IntExprEvaluator
3961  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3962  APValue &Result;
3963public:
3964  IntExprEvaluator(EvalInfo &info, APValue &result)
3965    : ExprEvaluatorBaseTy(info), Result(result) {}
3966
3967  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3968    assert(E->getType()->isIntegralOrEnumerationType() &&
3969           "Invalid evaluation result.");
3970    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3971           "Invalid evaluation result.");
3972    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3973           "Invalid evaluation result.");
3974    Result = APValue(SI);
3975    return true;
3976  }
3977  bool Success(const llvm::APSInt &SI, const Expr *E) {
3978    return Success(SI, E, Result);
3979  }
3980
3981  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3982    assert(E->getType()->isIntegralOrEnumerationType() &&
3983           "Invalid evaluation result.");
3984    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3985           "Invalid evaluation result.");
3986    Result = APValue(APSInt(I));
3987    Result.getInt().setIsUnsigned(
3988                            E->getType()->isUnsignedIntegerOrEnumerationType());
3989    return true;
3990  }
3991  bool Success(const llvm::APInt &I, const Expr *E) {
3992    return Success(I, E, Result);
3993  }
3994
3995  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3996    assert(E->getType()->isIntegralOrEnumerationType() &&
3997           "Invalid evaluation result.");
3998    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3999    return true;
4000  }
4001  bool Success(uint64_t Value, const Expr *E) {
4002    return Success(Value, E, Result);
4003  }
4004
4005  bool Success(CharUnits Size, const Expr *E) {
4006    return Success(Size.getQuantity(), E);
4007  }
4008
4009  bool Success(const APValue &V, const Expr *E) {
4010    if (V.isLValue() || V.isAddrLabelDiff()) {
4011      Result = V;
4012      return true;
4013    }
4014    return Success(V.getInt(), E);
4015  }
4016
4017  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
4018
4019  //===--------------------------------------------------------------------===//
4020  //                            Visitor Methods
4021  //===--------------------------------------------------------------------===//
4022
4023  bool VisitIntegerLiteral(const IntegerLiteral *E) {
4024    return Success(E->getValue(), E);
4025  }
4026  bool VisitCharacterLiteral(const CharacterLiteral *E) {
4027    return Success(E->getValue(), E);
4028  }
4029
4030  bool CheckReferencedDecl(const Expr *E, const Decl *D);
4031  bool VisitDeclRefExpr(const DeclRefExpr *E) {
4032    if (CheckReferencedDecl(E, E->getDecl()))
4033      return true;
4034
4035    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
4036  }
4037  bool VisitMemberExpr(const MemberExpr *E) {
4038    if (CheckReferencedDecl(E, E->getMemberDecl())) {
4039      VisitIgnoredValue(E->getBase());
4040      return true;
4041    }
4042
4043    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4044  }
4045
4046  bool VisitCallExpr(const CallExpr *E);
4047  bool VisitBinaryOperator(const BinaryOperator *E);
4048  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4049  bool VisitUnaryOperator(const UnaryOperator *E);
4050
4051  bool VisitCastExpr(const CastExpr* E);
4052  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4053
4054  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4055    return Success(E->getValue(), E);
4056  }
4057
4058  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4059    return Success(E->getValue(), E);
4060  }
4061
4062  // Note, GNU defines __null as an integer, not a pointer.
4063  bool VisitGNUNullExpr(const GNUNullExpr *E) {
4064    return ZeroInitialization(E);
4065  }
4066
4067  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4068    return Success(E->getValue(), E);
4069  }
4070
4071  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4072    return Success(E->getValue(), E);
4073  }
4074
4075  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4076    return Success(E->getValue(), E);
4077  }
4078
4079  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4080    return Success(E->getValue(), E);
4081  }
4082
4083  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4084    return Success(E->getValue(), E);
4085  }
4086
4087  bool VisitUnaryReal(const UnaryOperator *E);
4088  bool VisitUnaryImag(const UnaryOperator *E);
4089
4090  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4091  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4092
4093private:
4094  CharUnits GetAlignOfExpr(const Expr *E);
4095  CharUnits GetAlignOfType(QualType T);
4096  static QualType GetObjectType(APValue::LValueBase B);
4097  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4098  // FIXME: Missing: array subscript of vector, member of vector
4099};
4100} // end anonymous namespace
4101
4102/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4103/// produce either the integer value or a pointer.
4104///
4105/// GCC has a heinous extension which folds casts between pointer types and
4106/// pointer-sized integral types. We support this by allowing the evaluation of
4107/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4108/// Some simple arithmetic on such values is supported (they are treated much
4109/// like char*).
4110static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4111                                    EvalInfo &Info) {
4112  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4113  return IntExprEvaluator(Info, Result).Visit(E);
4114}
4115
4116static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4117  APValue Val;
4118  if (!EvaluateIntegerOrLValue(E, Val, Info))
4119    return false;
4120  if (!Val.isInt()) {
4121    // FIXME: It would be better to produce the diagnostic for casting
4122    //        a pointer to an integer.
4123    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4124    return false;
4125  }
4126  Result = Val.getInt();
4127  return true;
4128}
4129
4130/// Check whether the given declaration can be directly converted to an integral
4131/// rvalue. If not, no diagnostic is produced; there are other things we can
4132/// try.
4133bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4134  // Enums are integer constant exprs.
4135  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4136    // Check for signedness/width mismatches between E type and ECD value.
4137    bool SameSign = (ECD->getInitVal().isSigned()
4138                     == E->getType()->isSignedIntegerOrEnumerationType());
4139    bool SameWidth = (ECD->getInitVal().getBitWidth()
4140                      == Info.Ctx.getIntWidth(E->getType()));
4141    if (SameSign && SameWidth)
4142      return Success(ECD->getInitVal(), E);
4143    else {
4144      // Get rid of mismatch (otherwise Success assertions will fail)
4145      // by computing a new value matching the type of E.
4146      llvm::APSInt Val = ECD->getInitVal();
4147      if (!SameSign)
4148        Val.setIsSigned(!ECD->getInitVal().isSigned());
4149      if (!SameWidth)
4150        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4151      return Success(Val, E);
4152    }
4153  }
4154  return false;
4155}
4156
4157/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4158/// as GCC.
4159static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4160  // The following enum mimics the values returned by GCC.
4161  // FIXME: Does GCC differ between lvalue and rvalue references here?
4162  enum gcc_type_class {
4163    no_type_class = -1,
4164    void_type_class, integer_type_class, char_type_class,
4165    enumeral_type_class, boolean_type_class,
4166    pointer_type_class, reference_type_class, offset_type_class,
4167    real_type_class, complex_type_class,
4168    function_type_class, method_type_class,
4169    record_type_class, union_type_class,
4170    array_type_class, string_type_class,
4171    lang_type_class
4172  };
4173
4174  // If no argument was supplied, default to "no_type_class". This isn't
4175  // ideal, however it is what gcc does.
4176  if (E->getNumArgs() == 0)
4177    return no_type_class;
4178
4179  QualType ArgTy = E->getArg(0)->getType();
4180  if (ArgTy->isVoidType())
4181    return void_type_class;
4182  else if (ArgTy->isEnumeralType())
4183    return enumeral_type_class;
4184  else if (ArgTy->isBooleanType())
4185    return boolean_type_class;
4186  else if (ArgTy->isCharType())
4187    return string_type_class; // gcc doesn't appear to use char_type_class
4188  else if (ArgTy->isIntegerType())
4189    return integer_type_class;
4190  else if (ArgTy->isPointerType())
4191    return pointer_type_class;
4192  else if (ArgTy->isReferenceType())
4193    return reference_type_class;
4194  else if (ArgTy->isRealType())
4195    return real_type_class;
4196  else if (ArgTy->isComplexType())
4197    return complex_type_class;
4198  else if (ArgTy->isFunctionType())
4199    return function_type_class;
4200  else if (ArgTy->isStructureOrClassType())
4201    return record_type_class;
4202  else if (ArgTy->isUnionType())
4203    return union_type_class;
4204  else if (ArgTy->isArrayType())
4205    return array_type_class;
4206  else if (ArgTy->isUnionType())
4207    return union_type_class;
4208  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4209    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4210}
4211
4212/// EvaluateBuiltinConstantPForLValue - Determine the result of
4213/// __builtin_constant_p when applied to the given lvalue.
4214///
4215/// An lvalue is only "constant" if it is a pointer or reference to the first
4216/// character of a string literal.
4217template<typename LValue>
4218static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4219  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4220  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4221}
4222
4223/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4224/// GCC as we can manage.
4225static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4226  QualType ArgType = Arg->getType();
4227
4228  // __builtin_constant_p always has one operand. The rules which gcc follows
4229  // are not precisely documented, but are as follows:
4230  //
4231  //  - If the operand is of integral, floating, complex or enumeration type,
4232  //    and can be folded to a known value of that type, it returns 1.
4233  //  - If the operand and can be folded to a pointer to the first character
4234  //    of a string literal (or such a pointer cast to an integral type), it
4235  //    returns 1.
4236  //
4237  // Otherwise, it returns 0.
4238  //
4239  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4240  // its support for this does not currently work.
4241  if (ArgType->isIntegralOrEnumerationType()) {
4242    Expr::EvalResult Result;
4243    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4244      return false;
4245
4246    APValue &V = Result.Val;
4247    if (V.getKind() == APValue::Int)
4248      return true;
4249
4250    return EvaluateBuiltinConstantPForLValue(V);
4251  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4252    return Arg->isEvaluatable(Ctx);
4253  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4254    LValue LV;
4255    Expr::EvalStatus Status;
4256    EvalInfo Info(Ctx, Status);
4257    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4258                          : EvaluatePointer(Arg, LV, Info)) &&
4259        !Status.HasSideEffects)
4260      return EvaluateBuiltinConstantPForLValue(LV);
4261  }
4262
4263  // Anything else isn't considered to be sufficiently constant.
4264  return false;
4265}
4266
4267/// Retrieves the "underlying object type" of the given expression,
4268/// as used by __builtin_object_size.
4269QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4270  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4271    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4272      return VD->getType();
4273  } else if (const Expr *E = B.get<const Expr*>()) {
4274    if (isa<CompoundLiteralExpr>(E))
4275      return E->getType();
4276  }
4277
4278  return QualType();
4279}
4280
4281bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4282  // TODO: Perhaps we should let LLVM lower this?
4283  LValue Base;
4284  if (!EvaluatePointer(E->getArg(0), Base, Info))
4285    return false;
4286
4287  // If we can prove the base is null, lower to zero now.
4288  if (!Base.getLValueBase()) return Success(0, E);
4289
4290  QualType T = GetObjectType(Base.getLValueBase());
4291  if (T.isNull() ||
4292      T->isIncompleteType() ||
4293      T->isFunctionType() ||
4294      T->isVariablyModifiedType() ||
4295      T->isDependentType())
4296    return Error(E);
4297
4298  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4299  CharUnits Offset = Base.getLValueOffset();
4300
4301  if (!Offset.isNegative() && Offset <= Size)
4302    Size -= Offset;
4303  else
4304    Size = CharUnits::Zero();
4305  return Success(Size, E);
4306}
4307
4308bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4309  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4310  default:
4311    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4312
4313  case Builtin::BI__builtin_object_size: {
4314    if (TryEvaluateBuiltinObjectSize(E))
4315      return true;
4316
4317    // If evaluating the argument has side-effects we can't determine
4318    // the size of the object and lower it to unknown now.
4319    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4320      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4321        return Success(-1ULL, E);
4322      return Success(0, E);
4323    }
4324
4325    return Error(E);
4326  }
4327
4328  case Builtin::BI__builtin_classify_type:
4329    return Success(EvaluateBuiltinClassifyType(E), E);
4330
4331  case Builtin::BI__builtin_constant_p:
4332    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4333
4334  case Builtin::BI__builtin_eh_return_data_regno: {
4335    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4336    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4337    return Success(Operand, E);
4338  }
4339
4340  case Builtin::BI__builtin_expect:
4341    return Visit(E->getArg(0));
4342
4343  case Builtin::BIstrlen:
4344    // A call to strlen is not a constant expression.
4345    if (Info.getLangOpts().CPlusPlus0x)
4346      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4347        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4348    else
4349      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4350    // Fall through.
4351  case Builtin::BI__builtin_strlen:
4352    // As an extension, we support strlen() and __builtin_strlen() as constant
4353    // expressions when the argument is a string literal.
4354    if (const StringLiteral *S
4355               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4356      // The string literal may have embedded null characters. Find the first
4357      // one and truncate there.
4358      StringRef Str = S->getString();
4359      StringRef::size_type Pos = Str.find(0);
4360      if (Pos != StringRef::npos)
4361        Str = Str.substr(0, Pos);
4362
4363      return Success(Str.size(), E);
4364    }
4365
4366    return Error(E);
4367
4368  case Builtin::BI__atomic_always_lock_free:
4369  case Builtin::BI__atomic_is_lock_free:
4370  case Builtin::BI__c11_atomic_is_lock_free: {
4371    APSInt SizeVal;
4372    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4373      return false;
4374
4375    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4376    // of two less than the maximum inline atomic width, we know it is
4377    // lock-free.  If the size isn't a power of two, or greater than the
4378    // maximum alignment where we promote atomics, we know it is not lock-free
4379    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4380    // the answer can only be determined at runtime; for example, 16-byte
4381    // atomics have lock-free implementations on some, but not all,
4382    // x86-64 processors.
4383
4384    // Check power-of-two.
4385    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4386    if (Size.isPowerOfTwo()) {
4387      // Check against inlining width.
4388      unsigned InlineWidthBits =
4389          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4390      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4391        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4392            Size == CharUnits::One() ||
4393            E->getArg(1)->isNullPointerConstant(Info.Ctx,
4394                                                Expr::NPC_NeverValueDependent))
4395          // OK, we will inline appropriately-aligned operations of this size,
4396          // and _Atomic(T) is appropriately-aligned.
4397          return Success(1, E);
4398
4399        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4400          castAs<PointerType>()->getPointeeType();
4401        if (!PointeeType->isIncompleteType() &&
4402            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4403          // OK, we will inline operations on this object.
4404          return Success(1, E);
4405        }
4406      }
4407    }
4408
4409    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4410        Success(0, E) : Error(E);
4411  }
4412  }
4413}
4414
4415static bool HasSameBase(const LValue &A, const LValue &B) {
4416  if (!A.getLValueBase())
4417    return !B.getLValueBase();
4418  if (!B.getLValueBase())
4419    return false;
4420
4421  if (A.getLValueBase().getOpaqueValue() !=
4422      B.getLValueBase().getOpaqueValue()) {
4423    const Decl *ADecl = GetLValueBaseDecl(A);
4424    if (!ADecl)
4425      return false;
4426    const Decl *BDecl = GetLValueBaseDecl(B);
4427    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4428      return false;
4429  }
4430
4431  return IsGlobalLValue(A.getLValueBase()) ||
4432         A.getLValueCallIndex() == B.getLValueCallIndex();
4433}
4434
4435/// Perform the given integer operation, which is known to need at most BitWidth
4436/// bits, and check for overflow in the original type (if that type was not an
4437/// unsigned type).
4438template<typename Operation>
4439static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4440                                   const APSInt &LHS, const APSInt &RHS,
4441                                   unsigned BitWidth, Operation Op) {
4442  if (LHS.isUnsigned())
4443    return Op(LHS, RHS);
4444
4445  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4446  APSInt Result = Value.trunc(LHS.getBitWidth());
4447  if (Result.extend(BitWidth) != Value)
4448    HandleOverflow(Info, E, Value, E->getType());
4449  return Result;
4450}
4451
4452namespace {
4453
4454/// \brief Data recursive integer evaluator of certain binary operators.
4455///
4456/// We use a data recursive algorithm for binary operators so that we are able
4457/// to handle extreme cases of chained binary operators without causing stack
4458/// overflow.
4459class DataRecursiveIntBinOpEvaluator {
4460  struct EvalResult {
4461    APValue Val;
4462    bool Failed;
4463
4464    EvalResult() : Failed(false) { }
4465
4466    void swap(EvalResult &RHS) {
4467      Val.swap(RHS.Val);
4468      Failed = RHS.Failed;
4469      RHS.Failed = false;
4470    }
4471  };
4472
4473  struct Job {
4474    const Expr *E;
4475    EvalResult LHSResult; // meaningful only for binary operator expression.
4476    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4477
4478    Job() : StoredInfo(0) { }
4479    void startSpeculativeEval(EvalInfo &Info) {
4480      OldEvalStatus = Info.EvalStatus;
4481      Info.EvalStatus.Diag = 0;
4482      StoredInfo = &Info;
4483    }
4484    ~Job() {
4485      if (StoredInfo) {
4486        StoredInfo->EvalStatus = OldEvalStatus;
4487      }
4488    }
4489  private:
4490    EvalInfo *StoredInfo; // non-null if status changed.
4491    Expr::EvalStatus OldEvalStatus;
4492  };
4493
4494  SmallVector<Job, 16> Queue;
4495
4496  IntExprEvaluator &IntEval;
4497  EvalInfo &Info;
4498  APValue &FinalResult;
4499
4500public:
4501  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4502    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4503
4504  /// \brief True if \param E is a binary operator that we are going to handle
4505  /// data recursively.
4506  /// We handle binary operators that are comma, logical, or that have operands
4507  /// with integral or enumeration type.
4508  static bool shouldEnqueue(const BinaryOperator *E) {
4509    return E->getOpcode() == BO_Comma ||
4510           E->isLogicalOp() ||
4511           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4512            E->getRHS()->getType()->isIntegralOrEnumerationType());
4513  }
4514
4515  bool Traverse(const BinaryOperator *E) {
4516    enqueue(E);
4517    EvalResult PrevResult;
4518    while (!Queue.empty())
4519      process(PrevResult);
4520
4521    if (PrevResult.Failed) return false;
4522
4523    FinalResult.swap(PrevResult.Val);
4524    return true;
4525  }
4526
4527private:
4528  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4529    return IntEval.Success(Value, E, Result);
4530  }
4531  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4532    return IntEval.Success(Value, E, Result);
4533  }
4534  bool Error(const Expr *E) {
4535    return IntEval.Error(E);
4536  }
4537  bool Error(const Expr *E, diag::kind D) {
4538    return IntEval.Error(E, D);
4539  }
4540
4541  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4542    return Info.CCEDiag(E, D);
4543  }
4544
4545  // \brief Returns true if visiting the RHS is necessary, false otherwise.
4546  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4547                         bool &SuppressRHSDiags);
4548
4549  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4550                  const BinaryOperator *E, APValue &Result);
4551
4552  void EvaluateExpr(const Expr *E, EvalResult &Result) {
4553    Result.Failed = !Evaluate(Result.Val, Info, E);
4554    if (Result.Failed)
4555      Result.Val = APValue();
4556  }
4557
4558  void process(EvalResult &Result);
4559
4560  void enqueue(const Expr *E) {
4561    E = E->IgnoreParens();
4562    Queue.resize(Queue.size()+1);
4563    Queue.back().E = E;
4564    Queue.back().Kind = Job::AnyExprKind;
4565  }
4566};
4567
4568}
4569
4570bool DataRecursiveIntBinOpEvaluator::
4571       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4572                         bool &SuppressRHSDiags) {
4573  if (E->getOpcode() == BO_Comma) {
4574    // Ignore LHS but note if we could not evaluate it.
4575    if (LHSResult.Failed)
4576      Info.EvalStatus.HasSideEffects = true;
4577    return true;
4578  }
4579
4580  if (E->isLogicalOp()) {
4581    bool lhsResult;
4582    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4583      // We were able to evaluate the LHS, see if we can get away with not
4584      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4585      if (lhsResult == (E->getOpcode() == BO_LOr)) {
4586        Success(lhsResult, E, LHSResult.Val);
4587        return false; // Ignore RHS
4588      }
4589    } else {
4590      // Since we weren't able to evaluate the left hand side, it
4591      // must have had side effects.
4592      Info.EvalStatus.HasSideEffects = true;
4593
4594      // We can't evaluate the LHS; however, sometimes the result
4595      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4596      // Don't ignore RHS and suppress diagnostics from this arm.
4597      SuppressRHSDiags = true;
4598    }
4599
4600    return true;
4601  }
4602
4603  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4604         E->getRHS()->getType()->isIntegralOrEnumerationType());
4605
4606  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4607    return false; // Ignore RHS;
4608
4609  return true;
4610}
4611
4612bool DataRecursiveIntBinOpEvaluator::
4613       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4614                  const BinaryOperator *E, APValue &Result) {
4615  if (E->getOpcode() == BO_Comma) {
4616    if (RHSResult.Failed)
4617      return false;
4618    Result = RHSResult.Val;
4619    return true;
4620  }
4621
4622  if (E->isLogicalOp()) {
4623    bool lhsResult, rhsResult;
4624    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4625    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4626
4627    if (LHSIsOK) {
4628      if (RHSIsOK) {
4629        if (E->getOpcode() == BO_LOr)
4630          return Success(lhsResult || rhsResult, E, Result);
4631        else
4632          return Success(lhsResult && rhsResult, E, Result);
4633      }
4634    } else {
4635      if (RHSIsOK) {
4636        // We can't evaluate the LHS; however, sometimes the result
4637        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4638        if (rhsResult == (E->getOpcode() == BO_LOr))
4639          return Success(rhsResult, E, Result);
4640      }
4641    }
4642
4643    return false;
4644  }
4645
4646  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4647         E->getRHS()->getType()->isIntegralOrEnumerationType());
4648
4649  if (LHSResult.Failed || RHSResult.Failed)
4650    return false;
4651
4652  const APValue &LHSVal = LHSResult.Val;
4653  const APValue &RHSVal = RHSResult.Val;
4654
4655  // Handle cases like (unsigned long)&a + 4.
4656  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4657    Result = LHSVal;
4658    CharUnits AdditionalOffset = CharUnits::fromQuantity(
4659                                                         RHSVal.getInt().getZExtValue());
4660    if (E->getOpcode() == BO_Add)
4661      Result.getLValueOffset() += AdditionalOffset;
4662    else
4663      Result.getLValueOffset() -= AdditionalOffset;
4664    return true;
4665  }
4666
4667  // Handle cases like 4 + (unsigned long)&a
4668  if (E->getOpcode() == BO_Add &&
4669      RHSVal.isLValue() && LHSVal.isInt()) {
4670    Result = RHSVal;
4671    Result.getLValueOffset() += CharUnits::fromQuantity(
4672                                                        LHSVal.getInt().getZExtValue());
4673    return true;
4674  }
4675
4676  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4677    // Handle (intptr_t)&&A - (intptr_t)&&B.
4678    if (!LHSVal.getLValueOffset().isZero() ||
4679        !RHSVal.getLValueOffset().isZero())
4680      return false;
4681    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4682    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4683    if (!LHSExpr || !RHSExpr)
4684      return false;
4685    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4686    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4687    if (!LHSAddrExpr || !RHSAddrExpr)
4688      return false;
4689    // Make sure both labels come from the same function.
4690    if (LHSAddrExpr->getLabel()->getDeclContext() !=
4691        RHSAddrExpr->getLabel()->getDeclContext())
4692      return false;
4693    Result = APValue(LHSAddrExpr, RHSAddrExpr);
4694    return true;
4695  }
4696
4697  // All the following cases expect both operands to be an integer
4698  if (!LHSVal.isInt() || !RHSVal.isInt())
4699    return Error(E);
4700
4701  const APSInt &LHS = LHSVal.getInt();
4702  APSInt RHS = RHSVal.getInt();
4703
4704  switch (E->getOpcode()) {
4705    default:
4706      return Error(E);
4707    case BO_Mul:
4708      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4709                                          LHS.getBitWidth() * 2,
4710                                          std::multiplies<APSInt>()), E,
4711                     Result);
4712    case BO_Add:
4713      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4714                                          LHS.getBitWidth() + 1,
4715                                          std::plus<APSInt>()), E, Result);
4716    case BO_Sub:
4717      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4718                                          LHS.getBitWidth() + 1,
4719                                          std::minus<APSInt>()), E, Result);
4720    case BO_And: return Success(LHS & RHS, E, Result);
4721    case BO_Xor: return Success(LHS ^ RHS, E, Result);
4722    case BO_Or:  return Success(LHS | RHS, E, Result);
4723    case BO_Div:
4724    case BO_Rem:
4725      if (RHS == 0)
4726        return Error(E, diag::note_expr_divide_by_zero);
4727      // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4728      // not actually undefined behavior in C++11 due to a language defect.
4729      if (RHS.isNegative() && RHS.isAllOnesValue() &&
4730          LHS.isSigned() && LHS.isMinSignedValue())
4731        HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4732      return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4733                     Result);
4734    case BO_Shl: {
4735      // During constant-folding, a negative shift is an opposite shift. Such
4736      // a shift is not a constant expression.
4737      if (RHS.isSigned() && RHS.isNegative()) {
4738        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4739        RHS = -RHS;
4740        goto shift_right;
4741      }
4742
4743    shift_left:
4744      // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4745      // the shifted type.
4746      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4747      if (SA != RHS) {
4748        CCEDiag(E, diag::note_constexpr_large_shift)
4749        << RHS << E->getType() << LHS.getBitWidth();
4750      } else if (LHS.isSigned()) {
4751        // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4752        // operand, and must not overflow the corresponding unsigned type.
4753        if (LHS.isNegative())
4754          CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4755        else if (LHS.countLeadingZeros() < SA)
4756          CCEDiag(E, diag::note_constexpr_lshift_discards);
4757      }
4758
4759      return Success(LHS << SA, E, Result);
4760    }
4761    case BO_Shr: {
4762      // During constant-folding, a negative shift is an opposite shift. Such a
4763      // shift is not a constant expression.
4764      if (RHS.isSigned() && RHS.isNegative()) {
4765        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4766        RHS = -RHS;
4767        goto shift_left;
4768      }
4769
4770    shift_right:
4771      // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4772      // shifted type.
4773      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4774      if (SA != RHS)
4775        CCEDiag(E, diag::note_constexpr_large_shift)
4776        << RHS << E->getType() << LHS.getBitWidth();
4777
4778      return Success(LHS >> SA, E, Result);
4779    }
4780
4781    case BO_LT: return Success(LHS < RHS, E, Result);
4782    case BO_GT: return Success(LHS > RHS, E, Result);
4783    case BO_LE: return Success(LHS <= RHS, E, Result);
4784    case BO_GE: return Success(LHS >= RHS, E, Result);
4785    case BO_EQ: return Success(LHS == RHS, E, Result);
4786    case BO_NE: return Success(LHS != RHS, E, Result);
4787  }
4788}
4789
4790void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4791  Job &job = Queue.back();
4792
4793  switch (job.Kind) {
4794    case Job::AnyExprKind: {
4795      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4796        if (shouldEnqueue(Bop)) {
4797          job.Kind = Job::BinOpKind;
4798          enqueue(Bop->getLHS());
4799          return;
4800        }
4801      }
4802
4803      EvaluateExpr(job.E, Result);
4804      Queue.pop_back();
4805      return;
4806    }
4807
4808    case Job::BinOpKind: {
4809      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4810      bool SuppressRHSDiags = false;
4811      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4812        Queue.pop_back();
4813        return;
4814      }
4815      if (SuppressRHSDiags)
4816        job.startSpeculativeEval(Info);
4817      job.LHSResult.swap(Result);
4818      job.Kind = Job::BinOpVisitedLHSKind;
4819      enqueue(Bop->getRHS());
4820      return;
4821    }
4822
4823    case Job::BinOpVisitedLHSKind: {
4824      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4825      EvalResult RHS;
4826      RHS.swap(Result);
4827      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4828      Queue.pop_back();
4829      return;
4830    }
4831  }
4832
4833  llvm_unreachable("Invalid Job::Kind!");
4834}
4835
4836bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4837  if (E->isAssignmentOp())
4838    return Error(E);
4839
4840  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4841    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4842
4843  QualType LHSTy = E->getLHS()->getType();
4844  QualType RHSTy = E->getRHS()->getType();
4845
4846  if (LHSTy->isAnyComplexType()) {
4847    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4848    ComplexValue LHS, RHS;
4849
4850    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4851    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4852      return false;
4853
4854    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4855      return false;
4856
4857    if (LHS.isComplexFloat()) {
4858      APFloat::cmpResult CR_r =
4859        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4860      APFloat::cmpResult CR_i =
4861        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4862
4863      if (E->getOpcode() == BO_EQ)
4864        return Success((CR_r == APFloat::cmpEqual &&
4865                        CR_i == APFloat::cmpEqual), E);
4866      else {
4867        assert(E->getOpcode() == BO_NE &&
4868               "Invalid complex comparison.");
4869        return Success(((CR_r == APFloat::cmpGreaterThan ||
4870                         CR_r == APFloat::cmpLessThan ||
4871                         CR_r == APFloat::cmpUnordered) ||
4872                        (CR_i == APFloat::cmpGreaterThan ||
4873                         CR_i == APFloat::cmpLessThan ||
4874                         CR_i == APFloat::cmpUnordered)), E);
4875      }
4876    } else {
4877      if (E->getOpcode() == BO_EQ)
4878        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4879                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4880      else {
4881        assert(E->getOpcode() == BO_NE &&
4882               "Invalid compex comparison.");
4883        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4884                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4885      }
4886    }
4887  }
4888
4889  if (LHSTy->isRealFloatingType() &&
4890      RHSTy->isRealFloatingType()) {
4891    APFloat RHS(0.0), LHS(0.0);
4892
4893    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4894    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4895      return false;
4896
4897    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4898      return false;
4899
4900    APFloat::cmpResult CR = LHS.compare(RHS);
4901
4902    switch (E->getOpcode()) {
4903    default:
4904      llvm_unreachable("Invalid binary operator!");
4905    case BO_LT:
4906      return Success(CR == APFloat::cmpLessThan, E);
4907    case BO_GT:
4908      return Success(CR == APFloat::cmpGreaterThan, E);
4909    case BO_LE:
4910      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4911    case BO_GE:
4912      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4913                     E);
4914    case BO_EQ:
4915      return Success(CR == APFloat::cmpEqual, E);
4916    case BO_NE:
4917      return Success(CR == APFloat::cmpGreaterThan
4918                     || CR == APFloat::cmpLessThan
4919                     || CR == APFloat::cmpUnordered, E);
4920    }
4921  }
4922
4923  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4924    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4925      LValue LHSValue, RHSValue;
4926
4927      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4928      if (!LHSOK && Info.keepEvaluatingAfterFailure())
4929        return false;
4930
4931      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4932        return false;
4933
4934      // Reject differing bases from the normal codepath; we special-case
4935      // comparisons to null.
4936      if (!HasSameBase(LHSValue, RHSValue)) {
4937        if (E->getOpcode() == BO_Sub) {
4938          // Handle &&A - &&B.
4939          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4940            return false;
4941          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4942          const Expr *RHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4943          if (!LHSExpr || !RHSExpr)
4944            return false;
4945          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4946          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4947          if (!LHSAddrExpr || !RHSAddrExpr)
4948            return false;
4949          // Make sure both labels come from the same function.
4950          if (LHSAddrExpr->getLabel()->getDeclContext() !=
4951              RHSAddrExpr->getLabel()->getDeclContext())
4952            return false;
4953          Result = APValue(LHSAddrExpr, RHSAddrExpr);
4954          return true;
4955        }
4956        // Inequalities and subtractions between unrelated pointers have
4957        // unspecified or undefined behavior.
4958        if (!E->isEqualityOp())
4959          return Error(E);
4960        // A constant address may compare equal to the address of a symbol.
4961        // The one exception is that address of an object cannot compare equal
4962        // to a null pointer constant.
4963        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4964            (!RHSValue.Base && !RHSValue.Offset.isZero()))
4965          return Error(E);
4966        // It's implementation-defined whether distinct literals will have
4967        // distinct addresses. In clang, the result of such a comparison is
4968        // unspecified, so it is not a constant expression. However, we do know
4969        // that the address of a literal will be non-null.
4970        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4971            LHSValue.Base && RHSValue.Base)
4972          return Error(E);
4973        // We can't tell whether weak symbols will end up pointing to the same
4974        // object.
4975        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4976          return Error(E);
4977        // Pointers with different bases cannot represent the same object.
4978        // (Note that clang defaults to -fmerge-all-constants, which can
4979        // lead to inconsistent results for comparisons involving the address
4980        // of a constant; this generally doesn't matter in practice.)
4981        return Success(E->getOpcode() == BO_NE, E);
4982      }
4983
4984      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4985      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4986
4987      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4988      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4989
4990      if (E->getOpcode() == BO_Sub) {
4991        // C++11 [expr.add]p6:
4992        //   Unless both pointers point to elements of the same array object, or
4993        //   one past the last element of the array object, the behavior is
4994        //   undefined.
4995        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4996            !AreElementsOfSameArray(getType(LHSValue.Base),
4997                                    LHSDesignator, RHSDesignator))
4998          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4999
5000        QualType Type = E->getLHS()->getType();
5001        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
5002
5003        CharUnits ElementSize;
5004        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
5005          return false;
5006
5007        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
5008        // and produce incorrect results when it overflows. Such behavior
5009        // appears to be non-conforming, but is common, so perhaps we should
5010        // assume the standard intended for such cases to be undefined behavior
5011        // and check for them.
5012
5013        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
5014        // overflow in the final conversion to ptrdiff_t.
5015        APSInt LHS(
5016          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
5017        APSInt RHS(
5018          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
5019        APSInt ElemSize(
5020          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
5021        APSInt TrueResult = (LHS - RHS) / ElemSize;
5022        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
5023
5024        if (Result.extend(65) != TrueResult)
5025          HandleOverflow(Info, E, TrueResult, E->getType());
5026        return Success(Result, E);
5027      }
5028
5029      // C++11 [expr.rel]p3:
5030      //   Pointers to void (after pointer conversions) can be compared, with a
5031      //   result defined as follows: If both pointers represent the same
5032      //   address or are both the null pointer value, the result is true if the
5033      //   operator is <= or >= and false otherwise; otherwise the result is
5034      //   unspecified.
5035      // We interpret this as applying to pointers to *cv* void.
5036      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5037          E->isRelationalOp())
5038        CCEDiag(E, diag::note_constexpr_void_comparison);
5039
5040      // C++11 [expr.rel]p2:
5041      // - If two pointers point to non-static data members of the same object,
5042      //   or to subobjects or array elements fo such members, recursively, the
5043      //   pointer to the later declared member compares greater provided the
5044      //   two members have the same access control and provided their class is
5045      //   not a union.
5046      //   [...]
5047      // - Otherwise pointer comparisons are unspecified.
5048      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5049          E->isRelationalOp()) {
5050        bool WasArrayIndex;
5051        unsigned Mismatch =
5052          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5053                                 RHSDesignator, WasArrayIndex);
5054        // At the point where the designators diverge, the comparison has a
5055        // specified value if:
5056        //  - we are comparing array indices
5057        //  - we are comparing fields of a union, or fields with the same access
5058        // Otherwise, the result is unspecified and thus the comparison is not a
5059        // constant expression.
5060        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5061            Mismatch < RHSDesignator.Entries.size()) {
5062          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5063          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5064          if (!LF && !RF)
5065            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5066          else if (!LF)
5067            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5068              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5069              << RF->getParent() << RF;
5070          else if (!RF)
5071            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5072              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5073              << LF->getParent() << LF;
5074          else if (!LF->getParent()->isUnion() &&
5075                   LF->getAccess() != RF->getAccess())
5076            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5077              << LF << LF->getAccess() << RF << RF->getAccess()
5078              << LF->getParent();
5079        }
5080      }
5081
5082      switch (E->getOpcode()) {
5083      default: llvm_unreachable("missing comparison operator");
5084      case BO_LT: return Success(LHSOffset < RHSOffset, E);
5085      case BO_GT: return Success(LHSOffset > RHSOffset, E);
5086      case BO_LE: return Success(LHSOffset <= RHSOffset, E);
5087      case BO_GE: return Success(LHSOffset >= RHSOffset, E);
5088      case BO_EQ: return Success(LHSOffset == RHSOffset, E);
5089      case BO_NE: return Success(LHSOffset != RHSOffset, E);
5090      }
5091    }
5092  }
5093
5094  if (LHSTy->isMemberPointerType()) {
5095    assert(E->isEqualityOp() && "unexpected member pointer operation");
5096    assert(RHSTy->isMemberPointerType() && "invalid comparison");
5097
5098    MemberPtr LHSValue, RHSValue;
5099
5100    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5101    if (!LHSOK && Info.keepEvaluatingAfterFailure())
5102      return false;
5103
5104    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5105      return false;
5106
5107    // C++11 [expr.eq]p2:
5108    //   If both operands are null, they compare equal. Otherwise if only one is
5109    //   null, they compare unequal.
5110    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5111      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5112      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5113    }
5114
5115    //   Otherwise if either is a pointer to a virtual member function, the
5116    //   result is unspecified.
5117    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5118      if (MD->isVirtual())
5119        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5120    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5121      if (MD->isVirtual())
5122        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5123
5124    //   Otherwise they compare equal if and only if they would refer to the
5125    //   same member of the same most derived object or the same subobject if
5126    //   they were dereferenced with a hypothetical object of the associated
5127    //   class type.
5128    bool Equal = LHSValue == RHSValue;
5129    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5130  }
5131
5132  if (LHSTy->isNullPtrType()) {
5133    assert(E->isComparisonOp() && "unexpected nullptr operation");
5134    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5135    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5136    // are compared, the result is true of the operator is <=, >= or ==, and
5137    // false otherwise.
5138    BinaryOperator::Opcode Opcode = E->getOpcode();
5139    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5140  }
5141
5142  assert((!LHSTy->isIntegralOrEnumerationType() ||
5143          !RHSTy->isIntegralOrEnumerationType()) &&
5144         "DataRecursiveIntBinOpEvaluator should have handled integral types");
5145  // We can't continue from here for non-integral types.
5146  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5147}
5148
5149CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5150  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5151  //   result shall be the alignment of the referenced type."
5152  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5153    T = Ref->getPointeeType();
5154
5155  // __alignof is defined to return the preferred alignment.
5156  return Info.Ctx.toCharUnitsFromBits(
5157    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5158}
5159
5160CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5161  E = E->IgnoreParens();
5162
5163  // alignof decl is always accepted, even if it doesn't make sense: we default
5164  // to 1 in those cases.
5165  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5166    return Info.Ctx.getDeclAlign(DRE->getDecl(),
5167                                 /*RefAsPointee*/true);
5168
5169  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5170    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5171                                 /*RefAsPointee*/true);
5172
5173  return GetAlignOfType(E->getType());
5174}
5175
5176
5177/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5178/// a result as the expression's type.
5179bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5180                                    const UnaryExprOrTypeTraitExpr *E) {
5181  switch(E->getKind()) {
5182  case UETT_AlignOf: {
5183    if (E->isArgumentType())
5184      return Success(GetAlignOfType(E->getArgumentType()), E);
5185    else
5186      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5187  }
5188
5189  case UETT_VecStep: {
5190    QualType Ty = E->getTypeOfArgument();
5191
5192    if (Ty->isVectorType()) {
5193      unsigned n = Ty->getAs<VectorType>()->getNumElements();
5194
5195      // The vec_step built-in functions that take a 3-component
5196      // vector return 4. (OpenCL 1.1 spec 6.11.12)
5197      if (n == 3)
5198        n = 4;
5199
5200      return Success(n, E);
5201    } else
5202      return Success(1, E);
5203  }
5204
5205  case UETT_SizeOf: {
5206    QualType SrcTy = E->getTypeOfArgument();
5207    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5208    //   the result is the size of the referenced type."
5209    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5210      SrcTy = Ref->getPointeeType();
5211
5212    CharUnits Sizeof;
5213    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5214      return false;
5215    return Success(Sizeof, E);
5216  }
5217  }
5218
5219  llvm_unreachable("unknown expr/type trait");
5220}
5221
5222bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5223  CharUnits Result;
5224  unsigned n = OOE->getNumComponents();
5225  if (n == 0)
5226    return Error(OOE);
5227  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5228  for (unsigned i = 0; i != n; ++i) {
5229    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5230    switch (ON.getKind()) {
5231    case OffsetOfExpr::OffsetOfNode::Array: {
5232      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5233      APSInt IdxResult;
5234      if (!EvaluateInteger(Idx, IdxResult, Info))
5235        return false;
5236      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5237      if (!AT)
5238        return Error(OOE);
5239      CurrentType = AT->getElementType();
5240      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5241      Result += IdxResult.getSExtValue() * ElementSize;
5242        break;
5243    }
5244
5245    case OffsetOfExpr::OffsetOfNode::Field: {
5246      FieldDecl *MemberDecl = ON.getField();
5247      const RecordType *RT = CurrentType->getAs<RecordType>();
5248      if (!RT)
5249        return Error(OOE);
5250      RecordDecl *RD = RT->getDecl();
5251      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5252      unsigned i = MemberDecl->getFieldIndex();
5253      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5254      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5255      CurrentType = MemberDecl->getType().getNonReferenceType();
5256      break;
5257    }
5258
5259    case OffsetOfExpr::OffsetOfNode::Identifier:
5260      llvm_unreachable("dependent __builtin_offsetof");
5261
5262    case OffsetOfExpr::OffsetOfNode::Base: {
5263      CXXBaseSpecifier *BaseSpec = ON.getBase();
5264      if (BaseSpec->isVirtual())
5265        return Error(OOE);
5266
5267      // Find the layout of the class whose base we are looking into.
5268      const RecordType *RT = CurrentType->getAs<RecordType>();
5269      if (!RT)
5270        return Error(OOE);
5271      RecordDecl *RD = RT->getDecl();
5272      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5273
5274      // Find the base class itself.
5275      CurrentType = BaseSpec->getType();
5276      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5277      if (!BaseRT)
5278        return Error(OOE);
5279
5280      // Add the offset to the base.
5281      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5282      break;
5283    }
5284    }
5285  }
5286  return Success(Result, OOE);
5287}
5288
5289bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5290  switch (E->getOpcode()) {
5291  default:
5292    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5293    // See C99 6.6p3.
5294    return Error(E);
5295  case UO_Extension:
5296    // FIXME: Should extension allow i-c-e extension expressions in its scope?
5297    // If so, we could clear the diagnostic ID.
5298    return Visit(E->getSubExpr());
5299  case UO_Plus:
5300    // The result is just the value.
5301    return Visit(E->getSubExpr());
5302  case UO_Minus: {
5303    if (!Visit(E->getSubExpr()))
5304      return false;
5305    if (!Result.isInt()) return Error(E);
5306    const APSInt &Value = Result.getInt();
5307    if (Value.isSigned() && Value.isMinSignedValue())
5308      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5309                     E->getType());
5310    return Success(-Value, E);
5311  }
5312  case UO_Not: {
5313    if (!Visit(E->getSubExpr()))
5314      return false;
5315    if (!Result.isInt()) return Error(E);
5316    return Success(~Result.getInt(), E);
5317  }
5318  case UO_LNot: {
5319    bool bres;
5320    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5321      return false;
5322    return Success(!bres, E);
5323  }
5324  }
5325}
5326
5327/// HandleCast - This is used to evaluate implicit or explicit casts where the
5328/// result type is integer.
5329bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5330  const Expr *SubExpr = E->getSubExpr();
5331  QualType DestType = E->getType();
5332  QualType SrcType = SubExpr->getType();
5333
5334  switch (E->getCastKind()) {
5335  case CK_BaseToDerived:
5336  case CK_DerivedToBase:
5337  case CK_UncheckedDerivedToBase:
5338  case CK_Dynamic:
5339  case CK_ToUnion:
5340  case CK_ArrayToPointerDecay:
5341  case CK_FunctionToPointerDecay:
5342  case CK_NullToPointer:
5343  case CK_NullToMemberPointer:
5344  case CK_BaseToDerivedMemberPointer:
5345  case CK_DerivedToBaseMemberPointer:
5346  case CK_ReinterpretMemberPointer:
5347  case CK_ConstructorConversion:
5348  case CK_IntegralToPointer:
5349  case CK_ToVoid:
5350  case CK_VectorSplat:
5351  case CK_IntegralToFloating:
5352  case CK_FloatingCast:
5353  case CK_CPointerToObjCPointerCast:
5354  case CK_BlockPointerToObjCPointerCast:
5355  case CK_AnyPointerToBlockPointerCast:
5356  case CK_ObjCObjectLValueCast:
5357  case CK_FloatingRealToComplex:
5358  case CK_FloatingComplexToReal:
5359  case CK_FloatingComplexCast:
5360  case CK_FloatingComplexToIntegralComplex:
5361  case CK_IntegralRealToComplex:
5362  case CK_IntegralComplexCast:
5363  case CK_IntegralComplexToFloatingComplex:
5364    llvm_unreachable("invalid cast kind for integral value");
5365
5366  case CK_BitCast:
5367  case CK_Dependent:
5368  case CK_LValueBitCast:
5369  case CK_ARCProduceObject:
5370  case CK_ARCConsumeObject:
5371  case CK_ARCReclaimReturnedObject:
5372  case CK_ARCExtendBlockObject:
5373  case CK_CopyAndAutoreleaseBlockObject:
5374    return Error(E);
5375
5376  case CK_UserDefinedConversion:
5377  case CK_LValueToRValue:
5378  case CK_AtomicToNonAtomic:
5379  case CK_NonAtomicToAtomic:
5380  case CK_NoOp:
5381    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5382
5383  case CK_MemberPointerToBoolean:
5384  case CK_PointerToBoolean:
5385  case CK_IntegralToBoolean:
5386  case CK_FloatingToBoolean:
5387  case CK_FloatingComplexToBoolean:
5388  case CK_IntegralComplexToBoolean: {
5389    bool BoolResult;
5390    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5391      return false;
5392    return Success(BoolResult, E);
5393  }
5394
5395  case CK_IntegralCast: {
5396    if (!Visit(SubExpr))
5397      return false;
5398
5399    if (!Result.isInt()) {
5400      // Allow casts of address-of-label differences if they are no-ops
5401      // or narrowing.  (The narrowing case isn't actually guaranteed to
5402      // be constant-evaluatable except in some narrow cases which are hard
5403      // to detect here.  We let it through on the assumption the user knows
5404      // what they are doing.)
5405      if (Result.isAddrLabelDiff())
5406        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5407      // Only allow casts of lvalues if they are lossless.
5408      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5409    }
5410
5411    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5412                                      Result.getInt()), E);
5413  }
5414
5415  case CK_PointerToIntegral: {
5416    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5417
5418    LValue LV;
5419    if (!EvaluatePointer(SubExpr, LV, Info))
5420      return false;
5421
5422    if (LV.getLValueBase()) {
5423      // Only allow based lvalue casts if they are lossless.
5424      // FIXME: Allow a larger integer size than the pointer size, and allow
5425      // narrowing back down to pointer width in subsequent integral casts.
5426      // FIXME: Check integer type's active bits, not its type size.
5427      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5428        return Error(E);
5429
5430      LV.Designator.setInvalid();
5431      LV.moveInto(Result);
5432      return true;
5433    }
5434
5435    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5436                                         SrcType);
5437    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5438  }
5439
5440  case CK_IntegralComplexToReal: {
5441    ComplexValue C;
5442    if (!EvaluateComplex(SubExpr, C, Info))
5443      return false;
5444    return Success(C.getComplexIntReal(), E);
5445  }
5446
5447  case CK_FloatingToIntegral: {
5448    APFloat F(0.0);
5449    if (!EvaluateFloat(SubExpr, F, Info))
5450      return false;
5451
5452    APSInt Value;
5453    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5454      return false;
5455    return Success(Value, E);
5456  }
5457  }
5458
5459  llvm_unreachable("unknown cast resulting in integral value");
5460}
5461
5462bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5463  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5464    ComplexValue LV;
5465    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5466      return false;
5467    if (!LV.isComplexInt())
5468      return Error(E);
5469    return Success(LV.getComplexIntReal(), E);
5470  }
5471
5472  return Visit(E->getSubExpr());
5473}
5474
5475bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5476  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5477    ComplexValue LV;
5478    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5479      return false;
5480    if (!LV.isComplexInt())
5481      return Error(E);
5482    return Success(LV.getComplexIntImag(), E);
5483  }
5484
5485  VisitIgnoredValue(E->getSubExpr());
5486  return Success(0, E);
5487}
5488
5489bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5490  return Success(E->getPackLength(), E);
5491}
5492
5493bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5494  return Success(E->getValue(), E);
5495}
5496
5497//===----------------------------------------------------------------------===//
5498// Float Evaluation
5499//===----------------------------------------------------------------------===//
5500
5501namespace {
5502class FloatExprEvaluator
5503  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5504  APFloat &Result;
5505public:
5506  FloatExprEvaluator(EvalInfo &info, APFloat &result)
5507    : ExprEvaluatorBaseTy(info), Result(result) {}
5508
5509  bool Success(const APValue &V, const Expr *e) {
5510    Result = V.getFloat();
5511    return true;
5512  }
5513
5514  bool ZeroInitialization(const Expr *E) {
5515    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5516    return true;
5517  }
5518
5519  bool VisitCallExpr(const CallExpr *E);
5520
5521  bool VisitUnaryOperator(const UnaryOperator *E);
5522  bool VisitBinaryOperator(const BinaryOperator *E);
5523  bool VisitFloatingLiteral(const FloatingLiteral *E);
5524  bool VisitCastExpr(const CastExpr *E);
5525
5526  bool VisitUnaryReal(const UnaryOperator *E);
5527  bool VisitUnaryImag(const UnaryOperator *E);
5528
5529  // FIXME: Missing: array subscript of vector, member of vector
5530};
5531} // end anonymous namespace
5532
5533static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5534  assert(E->isRValue() && E->getType()->isRealFloatingType());
5535  return FloatExprEvaluator(Info, Result).Visit(E);
5536}
5537
5538static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5539                                  QualType ResultTy,
5540                                  const Expr *Arg,
5541                                  bool SNaN,
5542                                  llvm::APFloat &Result) {
5543  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5544  if (!S) return false;
5545
5546  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5547
5548  llvm::APInt fill;
5549
5550  // Treat empty strings as if they were zero.
5551  if (S->getString().empty())
5552    fill = llvm::APInt(32, 0);
5553  else if (S->getString().getAsInteger(0, fill))
5554    return false;
5555
5556  if (SNaN)
5557    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5558  else
5559    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5560  return true;
5561}
5562
5563bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5564  switch (E->isBuiltinCall()) {
5565  default:
5566    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5567
5568  case Builtin::BI__builtin_huge_val:
5569  case Builtin::BI__builtin_huge_valf:
5570  case Builtin::BI__builtin_huge_vall:
5571  case Builtin::BI__builtin_inf:
5572  case Builtin::BI__builtin_inff:
5573  case Builtin::BI__builtin_infl: {
5574    const llvm::fltSemantics &Sem =
5575      Info.Ctx.getFloatTypeSemantics(E->getType());
5576    Result = llvm::APFloat::getInf(Sem);
5577    return true;
5578  }
5579
5580  case Builtin::BI__builtin_nans:
5581  case Builtin::BI__builtin_nansf:
5582  case Builtin::BI__builtin_nansl:
5583    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5584                               true, Result))
5585      return Error(E);
5586    return true;
5587
5588  case Builtin::BI__builtin_nan:
5589  case Builtin::BI__builtin_nanf:
5590  case Builtin::BI__builtin_nanl:
5591    // If this is __builtin_nan() turn this into a nan, otherwise we
5592    // can't constant fold it.
5593    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5594                               false, Result))
5595      return Error(E);
5596    return true;
5597
5598  case Builtin::BI__builtin_fabs:
5599  case Builtin::BI__builtin_fabsf:
5600  case Builtin::BI__builtin_fabsl:
5601    if (!EvaluateFloat(E->getArg(0), Result, Info))
5602      return false;
5603
5604    if (Result.isNegative())
5605      Result.changeSign();
5606    return true;
5607
5608  case Builtin::BI__builtin_copysign:
5609  case Builtin::BI__builtin_copysignf:
5610  case Builtin::BI__builtin_copysignl: {
5611    APFloat RHS(0.);
5612    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5613        !EvaluateFloat(E->getArg(1), RHS, Info))
5614      return false;
5615    Result.copySign(RHS);
5616    return true;
5617  }
5618  }
5619}
5620
5621bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5622  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5623    ComplexValue CV;
5624    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5625      return false;
5626    Result = CV.FloatReal;
5627    return true;
5628  }
5629
5630  return Visit(E->getSubExpr());
5631}
5632
5633bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5634  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5635    ComplexValue CV;
5636    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5637      return false;
5638    Result = CV.FloatImag;
5639    return true;
5640  }
5641
5642  VisitIgnoredValue(E->getSubExpr());
5643  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5644  Result = llvm::APFloat::getZero(Sem);
5645  return true;
5646}
5647
5648bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5649  switch (E->getOpcode()) {
5650  default: return Error(E);
5651  case UO_Plus:
5652    return EvaluateFloat(E->getSubExpr(), Result, Info);
5653  case UO_Minus:
5654    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5655      return false;
5656    Result.changeSign();
5657    return true;
5658  }
5659}
5660
5661bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5662  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5663    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5664
5665  APFloat RHS(0.0);
5666  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5667  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5668    return false;
5669  if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5670    return false;
5671
5672  switch (E->getOpcode()) {
5673  default: return Error(E);
5674  case BO_Mul:
5675    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5676    break;
5677  case BO_Add:
5678    Result.add(RHS, APFloat::rmNearestTiesToEven);
5679    break;
5680  case BO_Sub:
5681    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5682    break;
5683  case BO_Div:
5684    Result.divide(RHS, APFloat::rmNearestTiesToEven);
5685    break;
5686  }
5687
5688  if (Result.isInfinity() || Result.isNaN())
5689    CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5690  return true;
5691}
5692
5693bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5694  Result = E->getValue();
5695  return true;
5696}
5697
5698bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5699  const Expr* SubExpr = E->getSubExpr();
5700
5701  switch (E->getCastKind()) {
5702  default:
5703    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5704
5705  case CK_IntegralToFloating: {
5706    APSInt IntResult;
5707    return EvaluateInteger(SubExpr, IntResult, Info) &&
5708           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5709                                E->getType(), Result);
5710  }
5711
5712  case CK_FloatingCast: {
5713    if (!Visit(SubExpr))
5714      return false;
5715    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5716                                  Result);
5717  }
5718
5719  case CK_FloatingComplexToReal: {
5720    ComplexValue V;
5721    if (!EvaluateComplex(SubExpr, V, Info))
5722      return false;
5723    Result = V.getComplexFloatReal();
5724    return true;
5725  }
5726  }
5727}
5728
5729//===----------------------------------------------------------------------===//
5730// Complex Evaluation (for float and integer)
5731//===----------------------------------------------------------------------===//
5732
5733namespace {
5734class ComplexExprEvaluator
5735  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5736  ComplexValue &Result;
5737
5738public:
5739  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5740    : ExprEvaluatorBaseTy(info), Result(Result) {}
5741
5742  bool Success(const APValue &V, const Expr *e) {
5743    Result.setFrom(V);
5744    return true;
5745  }
5746
5747  bool ZeroInitialization(const Expr *E);
5748
5749  //===--------------------------------------------------------------------===//
5750  //                            Visitor Methods
5751  //===--------------------------------------------------------------------===//
5752
5753  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5754  bool VisitCastExpr(const CastExpr *E);
5755  bool VisitBinaryOperator(const BinaryOperator *E);
5756  bool VisitUnaryOperator(const UnaryOperator *E);
5757  bool VisitInitListExpr(const InitListExpr *E);
5758};
5759} // end anonymous namespace
5760
5761static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5762                            EvalInfo &Info) {
5763  assert(E->isRValue() && E->getType()->isAnyComplexType());
5764  return ComplexExprEvaluator(Info, Result).Visit(E);
5765}
5766
5767bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5768  QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
5769  if (ElemTy->isRealFloatingType()) {
5770    Result.makeComplexFloat();
5771    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5772    Result.FloatReal = Zero;
5773    Result.FloatImag = Zero;
5774  } else {
5775    Result.makeComplexInt();
5776    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5777    Result.IntReal = Zero;
5778    Result.IntImag = Zero;
5779  }
5780  return true;
5781}
5782
5783bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5784  const Expr* SubExpr = E->getSubExpr();
5785
5786  if (SubExpr->getType()->isRealFloatingType()) {
5787    Result.makeComplexFloat();
5788    APFloat &Imag = Result.FloatImag;
5789    if (!EvaluateFloat(SubExpr, Imag, Info))
5790      return false;
5791
5792    Result.FloatReal = APFloat(Imag.getSemantics());
5793    return true;
5794  } else {
5795    assert(SubExpr->getType()->isIntegerType() &&
5796           "Unexpected imaginary literal.");
5797
5798    Result.makeComplexInt();
5799    APSInt &Imag = Result.IntImag;
5800    if (!EvaluateInteger(SubExpr, Imag, Info))
5801      return false;
5802
5803    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5804    return true;
5805  }
5806}
5807
5808bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5809
5810  switch (E->getCastKind()) {
5811  case CK_BitCast:
5812  case CK_BaseToDerived:
5813  case CK_DerivedToBase:
5814  case CK_UncheckedDerivedToBase:
5815  case CK_Dynamic:
5816  case CK_ToUnion:
5817  case CK_ArrayToPointerDecay:
5818  case CK_FunctionToPointerDecay:
5819  case CK_NullToPointer:
5820  case CK_NullToMemberPointer:
5821  case CK_BaseToDerivedMemberPointer:
5822  case CK_DerivedToBaseMemberPointer:
5823  case CK_MemberPointerToBoolean:
5824  case CK_ReinterpretMemberPointer:
5825  case CK_ConstructorConversion:
5826  case CK_IntegralToPointer:
5827  case CK_PointerToIntegral:
5828  case CK_PointerToBoolean:
5829  case CK_ToVoid:
5830  case CK_VectorSplat:
5831  case CK_IntegralCast:
5832  case CK_IntegralToBoolean:
5833  case CK_IntegralToFloating:
5834  case CK_FloatingToIntegral:
5835  case CK_FloatingToBoolean:
5836  case CK_FloatingCast:
5837  case CK_CPointerToObjCPointerCast:
5838  case CK_BlockPointerToObjCPointerCast:
5839  case CK_AnyPointerToBlockPointerCast:
5840  case CK_ObjCObjectLValueCast:
5841  case CK_FloatingComplexToReal:
5842  case CK_FloatingComplexToBoolean:
5843  case CK_IntegralComplexToReal:
5844  case CK_IntegralComplexToBoolean:
5845  case CK_ARCProduceObject:
5846  case CK_ARCConsumeObject:
5847  case CK_ARCReclaimReturnedObject:
5848  case CK_ARCExtendBlockObject:
5849  case CK_CopyAndAutoreleaseBlockObject:
5850    llvm_unreachable("invalid cast kind for complex value");
5851
5852  case CK_LValueToRValue:
5853  case CK_AtomicToNonAtomic:
5854  case CK_NonAtomicToAtomic:
5855  case CK_NoOp:
5856    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5857
5858  case CK_Dependent:
5859  case CK_LValueBitCast:
5860  case CK_UserDefinedConversion:
5861    return Error(E);
5862
5863  case CK_FloatingRealToComplex: {
5864    APFloat &Real = Result.FloatReal;
5865    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5866      return false;
5867
5868    Result.makeComplexFloat();
5869    Result.FloatImag = APFloat(Real.getSemantics());
5870    return true;
5871  }
5872
5873  case CK_FloatingComplexCast: {
5874    if (!Visit(E->getSubExpr()))
5875      return false;
5876
5877    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5878    QualType From
5879      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5880
5881    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5882           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5883  }
5884
5885  case CK_FloatingComplexToIntegralComplex: {
5886    if (!Visit(E->getSubExpr()))
5887      return false;
5888
5889    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5890    QualType From
5891      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5892    Result.makeComplexInt();
5893    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5894                                To, Result.IntReal) &&
5895           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5896                                To, Result.IntImag);
5897  }
5898
5899  case CK_IntegralRealToComplex: {
5900    APSInt &Real = Result.IntReal;
5901    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5902      return false;
5903
5904    Result.makeComplexInt();
5905    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5906    return true;
5907  }
5908
5909  case CK_IntegralComplexCast: {
5910    if (!Visit(E->getSubExpr()))
5911      return false;
5912
5913    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5914    QualType From
5915      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5916
5917    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5918    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5919    return true;
5920  }
5921
5922  case CK_IntegralComplexToFloatingComplex: {
5923    if (!Visit(E->getSubExpr()))
5924      return false;
5925
5926    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5927    QualType From
5928      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5929    Result.makeComplexFloat();
5930    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5931                                To, Result.FloatReal) &&
5932           HandleIntToFloatCast(Info, E, From, Result.IntImag,
5933                                To, Result.FloatImag);
5934  }
5935  }
5936
5937  llvm_unreachable("unknown cast resulting in complex value");
5938}
5939
5940bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5941  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5942    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5943
5944  bool LHSOK = Visit(E->getLHS());
5945  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5946    return false;
5947
5948  ComplexValue RHS;
5949  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5950    return false;
5951
5952  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5953         "Invalid operands to binary operator.");
5954  switch (E->getOpcode()) {
5955  default: return Error(E);
5956  case BO_Add:
5957    if (Result.isComplexFloat()) {
5958      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5959                                       APFloat::rmNearestTiesToEven);
5960      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5961                                       APFloat::rmNearestTiesToEven);
5962    } else {
5963      Result.getComplexIntReal() += RHS.getComplexIntReal();
5964      Result.getComplexIntImag() += RHS.getComplexIntImag();
5965    }
5966    break;
5967  case BO_Sub:
5968    if (Result.isComplexFloat()) {
5969      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5970                                            APFloat::rmNearestTiesToEven);
5971      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
5972                                            APFloat::rmNearestTiesToEven);
5973    } else {
5974      Result.getComplexIntReal() -= RHS.getComplexIntReal();
5975      Result.getComplexIntImag() -= RHS.getComplexIntImag();
5976    }
5977    break;
5978  case BO_Mul:
5979    if (Result.isComplexFloat()) {
5980      ComplexValue LHS = Result;
5981      APFloat &LHS_r = LHS.getComplexFloatReal();
5982      APFloat &LHS_i = LHS.getComplexFloatImag();
5983      APFloat &RHS_r = RHS.getComplexFloatReal();
5984      APFloat &RHS_i = RHS.getComplexFloatImag();
5985
5986      APFloat Tmp = LHS_r;
5987      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5988      Result.getComplexFloatReal() = Tmp;
5989      Tmp = LHS_i;
5990      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5991      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
5992
5993      Tmp = LHS_r;
5994      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5995      Result.getComplexFloatImag() = Tmp;
5996      Tmp = LHS_i;
5997      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5998      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
5999    } else {
6000      ComplexValue LHS = Result;
6001      Result.getComplexIntReal() =
6002        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6003         LHS.getComplexIntImag() * RHS.getComplexIntImag());
6004      Result.getComplexIntImag() =
6005        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6006         LHS.getComplexIntImag() * RHS.getComplexIntReal());
6007    }
6008    break;
6009  case BO_Div:
6010    if (Result.isComplexFloat()) {
6011      ComplexValue LHS = Result;
6012      APFloat &LHS_r = LHS.getComplexFloatReal();
6013      APFloat &LHS_i = LHS.getComplexFloatImag();
6014      APFloat &RHS_r = RHS.getComplexFloatReal();
6015      APFloat &RHS_i = RHS.getComplexFloatImag();
6016      APFloat &Res_r = Result.getComplexFloatReal();
6017      APFloat &Res_i = Result.getComplexFloatImag();
6018
6019      APFloat Den = RHS_r;
6020      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6021      APFloat Tmp = RHS_i;
6022      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6023      Den.add(Tmp, APFloat::rmNearestTiesToEven);
6024
6025      Res_r = LHS_r;
6026      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6027      Tmp = LHS_i;
6028      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6029      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6030      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6031
6032      Res_i = LHS_i;
6033      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6034      Tmp = LHS_r;
6035      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6036      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6037      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6038    } else {
6039      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6040        return Error(E, diag::note_expr_divide_by_zero);
6041
6042      ComplexValue LHS = Result;
6043      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6044        RHS.getComplexIntImag() * RHS.getComplexIntImag();
6045      Result.getComplexIntReal() =
6046        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6047         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6048      Result.getComplexIntImag() =
6049        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6050         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6051    }
6052    break;
6053  }
6054
6055  return true;
6056}
6057
6058bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6059  // Get the operand value into 'Result'.
6060  if (!Visit(E->getSubExpr()))
6061    return false;
6062
6063  switch (E->getOpcode()) {
6064  default:
6065    return Error(E);
6066  case UO_Extension:
6067    return true;
6068  case UO_Plus:
6069    // The result is always just the subexpr.
6070    return true;
6071  case UO_Minus:
6072    if (Result.isComplexFloat()) {
6073      Result.getComplexFloatReal().changeSign();
6074      Result.getComplexFloatImag().changeSign();
6075    }
6076    else {
6077      Result.getComplexIntReal() = -Result.getComplexIntReal();
6078      Result.getComplexIntImag() = -Result.getComplexIntImag();
6079    }
6080    return true;
6081  case UO_Not:
6082    if (Result.isComplexFloat())
6083      Result.getComplexFloatImag().changeSign();
6084    else
6085      Result.getComplexIntImag() = -Result.getComplexIntImag();
6086    return true;
6087  }
6088}
6089
6090bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6091  if (E->getNumInits() == 2) {
6092    if (E->getType()->isComplexType()) {
6093      Result.makeComplexFloat();
6094      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6095        return false;
6096      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6097        return false;
6098    } else {
6099      Result.makeComplexInt();
6100      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6101        return false;
6102      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6103        return false;
6104    }
6105    return true;
6106  }
6107  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6108}
6109
6110//===----------------------------------------------------------------------===//
6111// Void expression evaluation, primarily for a cast to void on the LHS of a
6112// comma operator
6113//===----------------------------------------------------------------------===//
6114
6115namespace {
6116class VoidExprEvaluator
6117  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6118public:
6119  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6120
6121  bool Success(const APValue &V, const Expr *e) { return true; }
6122
6123  bool VisitCastExpr(const CastExpr *E) {
6124    switch (E->getCastKind()) {
6125    default:
6126      return ExprEvaluatorBaseTy::VisitCastExpr(E);
6127    case CK_ToVoid:
6128      VisitIgnoredValue(E->getSubExpr());
6129      return true;
6130    }
6131  }
6132};
6133} // end anonymous namespace
6134
6135static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6136  assert(E->isRValue() && E->getType()->isVoidType());
6137  return VoidExprEvaluator(Info).Visit(E);
6138}
6139
6140//===----------------------------------------------------------------------===//
6141// Top level Expr::EvaluateAsRValue method.
6142//===----------------------------------------------------------------------===//
6143
6144static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6145  // In C, function designators are not lvalues, but we evaluate them as if they
6146  // are.
6147  if (E->isGLValue() || E->getType()->isFunctionType()) {
6148    LValue LV;
6149    if (!EvaluateLValue(E, LV, Info))
6150      return false;
6151    LV.moveInto(Result);
6152  } else if (E->getType()->isVectorType()) {
6153    if (!EvaluateVector(E, Result, Info))
6154      return false;
6155  } else if (E->getType()->isIntegralOrEnumerationType()) {
6156    if (!IntExprEvaluator(Info, Result).Visit(E))
6157      return false;
6158  } else if (E->getType()->hasPointerRepresentation()) {
6159    LValue LV;
6160    if (!EvaluatePointer(E, LV, Info))
6161      return false;
6162    LV.moveInto(Result);
6163  } else if (E->getType()->isRealFloatingType()) {
6164    llvm::APFloat F(0.0);
6165    if (!EvaluateFloat(E, F, Info))
6166      return false;
6167    Result = APValue(F);
6168  } else if (E->getType()->isAnyComplexType()) {
6169    ComplexValue C;
6170    if (!EvaluateComplex(E, C, Info))
6171      return false;
6172    C.moveInto(Result);
6173  } else if (E->getType()->isMemberPointerType()) {
6174    MemberPtr P;
6175    if (!EvaluateMemberPointer(E, P, Info))
6176      return false;
6177    P.moveInto(Result);
6178    return true;
6179  } else if (E->getType()->isArrayType()) {
6180    LValue LV;
6181    LV.set(E, Info.CurrentCall->Index);
6182    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6183      return false;
6184    Result = Info.CurrentCall->Temporaries[E];
6185  } else if (E->getType()->isRecordType()) {
6186    LValue LV;
6187    LV.set(E, Info.CurrentCall->Index);
6188    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6189      return false;
6190    Result = Info.CurrentCall->Temporaries[E];
6191  } else if (E->getType()->isVoidType()) {
6192    if (Info.getLangOpts().CPlusPlus0x)
6193      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6194        << E->getType();
6195    else
6196      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6197    if (!EvaluateVoid(E, Info))
6198      return false;
6199  } else if (Info.getLangOpts().CPlusPlus0x) {
6200    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6201    return false;
6202  } else {
6203    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6204    return false;
6205  }
6206
6207  return true;
6208}
6209
6210/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6211/// cases, the in-place evaluation is essential, since later initializers for
6212/// an object can indirectly refer to subobjects which were initialized earlier.
6213static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6214                            const Expr *E, CheckConstantExpressionKind CCEK,
6215                            bool AllowNonLiteralTypes) {
6216  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6217    return false;
6218
6219  if (E->isRValue()) {
6220    // Evaluate arrays and record types in-place, so that later initializers can
6221    // refer to earlier-initialized members of the object.
6222    if (E->getType()->isArrayType())
6223      return EvaluateArray(E, This, Result, Info);
6224    else if (E->getType()->isRecordType())
6225      return EvaluateRecord(E, This, Result, Info);
6226  }
6227
6228  // For any other type, in-place evaluation is unimportant.
6229  return Evaluate(Result, Info, E);
6230}
6231
6232/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6233/// lvalue-to-rvalue cast if it is an lvalue.
6234static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6235  if (!CheckLiteralType(Info, E))
6236    return false;
6237
6238  if (!::Evaluate(Result, Info, E))
6239    return false;
6240
6241  if (E->isGLValue()) {
6242    LValue LV;
6243    LV.setFrom(Info.Ctx, Result);
6244    if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6245      return false;
6246  }
6247
6248  // Check this core constant expression is a constant expression.
6249  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6250}
6251
6252/// EvaluateAsRValue - Return true if this is a constant which we can fold using
6253/// any crazy technique (that has nothing to do with language standards) that
6254/// we want to.  If this function returns true, it returns the folded constant
6255/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6256/// will be applied to the result.
6257bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6258  // Fast-path evaluations of integer literals, since we sometimes see files
6259  // containing vast quantities of these.
6260  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
6261    Result.Val = APValue(APSInt(L->getValue(),
6262                                L->getType()->isUnsignedIntegerType()));
6263    return true;
6264  }
6265
6266  // FIXME: Evaluating values of large array and record types can cause
6267  // performance problems. Only do so in C++11 for now.
6268  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6269      !Ctx.getLangOpts().CPlusPlus0x)
6270    return false;
6271
6272  EvalInfo Info(Ctx, Result);
6273  return ::EvaluateAsRValue(Info, this, Result.Val);
6274}
6275
6276bool Expr::EvaluateAsBooleanCondition(bool &Result,
6277                                      const ASTContext &Ctx) const {
6278  EvalResult Scratch;
6279  return EvaluateAsRValue(Scratch, Ctx) &&
6280         HandleConversionToBool(Scratch.Val, Result);
6281}
6282
6283bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6284                         SideEffectsKind AllowSideEffects) const {
6285  if (!getType()->isIntegralOrEnumerationType())
6286    return false;
6287
6288  EvalResult ExprResult;
6289  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6290      (!AllowSideEffects && ExprResult.HasSideEffects))
6291    return false;
6292
6293  Result = ExprResult.Val.getInt();
6294  return true;
6295}
6296
6297bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6298  EvalInfo Info(Ctx, Result);
6299
6300  LValue LV;
6301  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6302      !CheckLValueConstantExpression(Info, getExprLoc(),
6303                                     Ctx.getLValueReferenceType(getType()), LV))
6304    return false;
6305
6306  LV.moveInto(Result.Val);
6307  return true;
6308}
6309
6310bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6311                                 const VarDecl *VD,
6312                      llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6313  // FIXME: Evaluating initializers for large array and record types can cause
6314  // performance problems. Only do so in C++11 for now.
6315  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6316      !Ctx.getLangOpts().CPlusPlus0x)
6317    return false;
6318
6319  Expr::EvalStatus EStatus;
6320  EStatus.Diag = &Notes;
6321
6322  EvalInfo InitInfo(Ctx, EStatus);
6323  InitInfo.setEvaluatingDecl(VD, Value);
6324
6325  LValue LVal;
6326  LVal.set(VD);
6327
6328  // C++11 [basic.start.init]p2:
6329  //  Variables with static storage duration or thread storage duration shall be
6330  //  zero-initialized before any other initialization takes place.
6331  // This behavior is not present in C.
6332  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6333      !VD->getType()->isReferenceType()) {
6334    ImplicitValueInitExpr VIE(VD->getType());
6335    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6336                         /*AllowNonLiteralTypes=*/true))
6337      return false;
6338  }
6339
6340  if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6341                         /*AllowNonLiteralTypes=*/true) ||
6342      EStatus.HasSideEffects)
6343    return false;
6344
6345  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6346                                 Value);
6347}
6348
6349/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6350/// constant folded, but discard the result.
6351bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6352  EvalResult Result;
6353  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6354}
6355
6356bool Expr::HasSideEffects(const ASTContext &Ctx) const {
6357  return HasSideEffect(Ctx).Visit(this);
6358}
6359
6360APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
6361  EvalResult EvalResult;
6362  bool Result = EvaluateAsRValue(EvalResult, Ctx);
6363  (void)Result;
6364  assert(Result && "Could not evaluate expression");
6365  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6366
6367  return EvalResult.Val.getInt();
6368}
6369
6370 bool Expr::EvalResult::isGlobalLValue() const {
6371   assert(Val.isLValue());
6372   return IsGlobalLValue(Val.getLValueBase());
6373 }
6374
6375
6376/// isIntegerConstantExpr - this recursive routine will test if an expression is
6377/// an integer constant expression.
6378
6379/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6380/// comma, etc
6381///
6382/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
6383/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
6384/// cast+dereference.
6385
6386// CheckICE - This function does the fundamental ICE checking: the returned
6387// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
6388// Note that to reduce code duplication, this helper does no evaluation
6389// itself; the caller checks whether the expression is evaluatable, and
6390// in the rare cases where CheckICE actually cares about the evaluated
6391// value, it calls into Evalute.
6392//
6393// Meanings of Val:
6394// 0: This expression is an ICE.
6395// 1: This expression is not an ICE, but if it isn't evaluated, it's
6396//    a legal subexpression for an ICE. This return value is used to handle
6397//    the comma operator in C99 mode.
6398// 2: This expression is not an ICE, and is not a legal subexpression for one.
6399
6400namespace {
6401
6402struct ICEDiag {
6403  unsigned Val;
6404  SourceLocation Loc;
6405
6406  public:
6407  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
6408  ICEDiag() : Val(0) {}
6409};
6410
6411}
6412
6413static ICEDiag NoDiag() { return ICEDiag(); }
6414
6415static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6416  Expr::EvalResult EVResult;
6417  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6418      !EVResult.Val.isInt()) {
6419    return ICEDiag(2, E->getLocStart());
6420  }
6421  return NoDiag();
6422}
6423
6424static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6425  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6426  if (!E->getType()->isIntegralOrEnumerationType()) {
6427    return ICEDiag(2, E->getLocStart());
6428  }
6429
6430  switch (E->getStmtClass()) {
6431#define ABSTRACT_STMT(Node)
6432#define STMT(Node, Base) case Expr::Node##Class:
6433#define EXPR(Node, Base)
6434#include "clang/AST/StmtNodes.inc"
6435  case Expr::PredefinedExprClass:
6436  case Expr::FloatingLiteralClass:
6437  case Expr::ImaginaryLiteralClass:
6438  case Expr::StringLiteralClass:
6439  case Expr::ArraySubscriptExprClass:
6440  case Expr::MemberExprClass:
6441  case Expr::CompoundAssignOperatorClass:
6442  case Expr::CompoundLiteralExprClass:
6443  case Expr::ExtVectorElementExprClass:
6444  case Expr::DesignatedInitExprClass:
6445  case Expr::ImplicitValueInitExprClass:
6446  case Expr::ParenListExprClass:
6447  case Expr::VAArgExprClass:
6448  case Expr::AddrLabelExprClass:
6449  case Expr::StmtExprClass:
6450  case Expr::CXXMemberCallExprClass:
6451  case Expr::CUDAKernelCallExprClass:
6452  case Expr::CXXDynamicCastExprClass:
6453  case Expr::CXXTypeidExprClass:
6454  case Expr::CXXUuidofExprClass:
6455  case Expr::CXXNullPtrLiteralExprClass:
6456  case Expr::UserDefinedLiteralClass:
6457  case Expr::CXXThisExprClass:
6458  case Expr::CXXThrowExprClass:
6459  case Expr::CXXNewExprClass:
6460  case Expr::CXXDeleteExprClass:
6461  case Expr::CXXPseudoDestructorExprClass:
6462  case Expr::UnresolvedLookupExprClass:
6463  case Expr::DependentScopeDeclRefExprClass:
6464  case Expr::CXXConstructExprClass:
6465  case Expr::CXXBindTemporaryExprClass:
6466  case Expr::ExprWithCleanupsClass:
6467  case Expr::CXXTemporaryObjectExprClass:
6468  case Expr::CXXUnresolvedConstructExprClass:
6469  case Expr::CXXDependentScopeMemberExprClass:
6470  case Expr::UnresolvedMemberExprClass:
6471  case Expr::ObjCStringLiteralClass:
6472  case Expr::ObjCNumericLiteralClass:
6473  case Expr::ObjCArrayLiteralClass:
6474  case Expr::ObjCDictionaryLiteralClass:
6475  case Expr::ObjCEncodeExprClass:
6476  case Expr::ObjCMessageExprClass:
6477  case Expr::ObjCSelectorExprClass:
6478  case Expr::ObjCProtocolExprClass:
6479  case Expr::ObjCIvarRefExprClass:
6480  case Expr::ObjCPropertyRefExprClass:
6481  case Expr::ObjCSubscriptRefExprClass:
6482  case Expr::ObjCIsaExprClass:
6483  case Expr::ShuffleVectorExprClass:
6484  case Expr::BlockExprClass:
6485  case Expr::NoStmtClass:
6486  case Expr::OpaqueValueExprClass:
6487  case Expr::PackExpansionExprClass:
6488  case Expr::SubstNonTypeTemplateParmPackExprClass:
6489  case Expr::AsTypeExprClass:
6490  case Expr::ObjCIndirectCopyRestoreExprClass:
6491  case Expr::MaterializeTemporaryExprClass:
6492  case Expr::PseudoObjectExprClass:
6493  case Expr::AtomicExprClass:
6494  case Expr::InitListExprClass:
6495  case Expr::LambdaExprClass:
6496    return ICEDiag(2, E->getLocStart());
6497
6498  case Expr::SizeOfPackExprClass:
6499  case Expr::GNUNullExprClass:
6500    // GCC considers the GNU __null value to be an integral constant expression.
6501    return NoDiag();
6502
6503  case Expr::SubstNonTypeTemplateParmExprClass:
6504    return
6505      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6506
6507  case Expr::ParenExprClass:
6508    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6509  case Expr::GenericSelectionExprClass:
6510    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6511  case Expr::IntegerLiteralClass:
6512  case Expr::CharacterLiteralClass:
6513  case Expr::ObjCBoolLiteralExprClass:
6514  case Expr::CXXBoolLiteralExprClass:
6515  case Expr::CXXScalarValueInitExprClass:
6516  case Expr::UnaryTypeTraitExprClass:
6517  case Expr::BinaryTypeTraitExprClass:
6518  case Expr::TypeTraitExprClass:
6519  case Expr::ArrayTypeTraitExprClass:
6520  case Expr::ExpressionTraitExprClass:
6521  case Expr::CXXNoexceptExprClass:
6522    return NoDiag();
6523  case Expr::CallExprClass:
6524  case Expr::CXXOperatorCallExprClass: {
6525    // C99 6.6/3 allows function calls within unevaluated subexpressions of
6526    // constant expressions, but they can never be ICEs because an ICE cannot
6527    // contain an operand of (pointer to) function type.
6528    const CallExpr *CE = cast<CallExpr>(E);
6529    if (CE->isBuiltinCall())
6530      return CheckEvalInICE(E, Ctx);
6531    return ICEDiag(2, E->getLocStart());
6532  }
6533  case Expr::DeclRefExprClass: {
6534    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6535      return NoDiag();
6536    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6537    if (Ctx.getLangOpts().CPlusPlus &&
6538        D && IsConstNonVolatile(D->getType())) {
6539      // Parameter variables are never constants.  Without this check,
6540      // getAnyInitializer() can find a default argument, which leads
6541      // to chaos.
6542      if (isa<ParmVarDecl>(D))
6543        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6544
6545      // C++ 7.1.5.1p2
6546      //   A variable of non-volatile const-qualified integral or enumeration
6547      //   type initialized by an ICE can be used in ICEs.
6548      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6549        if (!Dcl->getType()->isIntegralOrEnumerationType())
6550          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6551
6552        const VarDecl *VD;
6553        // Look for a declaration of this variable that has an initializer, and
6554        // check whether it is an ICE.
6555        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6556          return NoDiag();
6557        else
6558          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6559      }
6560    }
6561    return ICEDiag(2, E->getLocStart());
6562  }
6563  case Expr::UnaryOperatorClass: {
6564    const UnaryOperator *Exp = cast<UnaryOperator>(E);
6565    switch (Exp->getOpcode()) {
6566    case UO_PostInc:
6567    case UO_PostDec:
6568    case UO_PreInc:
6569    case UO_PreDec:
6570    case UO_AddrOf:
6571    case UO_Deref:
6572      // C99 6.6/3 allows increment and decrement within unevaluated
6573      // subexpressions of constant expressions, but they can never be ICEs
6574      // because an ICE cannot contain an lvalue operand.
6575      return ICEDiag(2, E->getLocStart());
6576    case UO_Extension:
6577    case UO_LNot:
6578    case UO_Plus:
6579    case UO_Minus:
6580    case UO_Not:
6581    case UO_Real:
6582    case UO_Imag:
6583      return CheckICE(Exp->getSubExpr(), Ctx);
6584    }
6585
6586    // OffsetOf falls through here.
6587  }
6588  case Expr::OffsetOfExprClass: {
6589      // Note that per C99, offsetof must be an ICE. And AFAIK, using
6590      // EvaluateAsRValue matches the proposed gcc behavior for cases like
6591      // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6592      // compliance: we should warn earlier for offsetof expressions with
6593      // array subscripts that aren't ICEs, and if the array subscripts
6594      // are ICEs, the value of the offsetof must be an integer constant.
6595      return CheckEvalInICE(E, Ctx);
6596  }
6597  case Expr::UnaryExprOrTypeTraitExprClass: {
6598    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6599    if ((Exp->getKind() ==  UETT_SizeOf) &&
6600        Exp->getTypeOfArgument()->isVariableArrayType())
6601      return ICEDiag(2, E->getLocStart());
6602    return NoDiag();
6603  }
6604  case Expr::BinaryOperatorClass: {
6605    const BinaryOperator *Exp = cast<BinaryOperator>(E);
6606    switch (Exp->getOpcode()) {
6607    case BO_PtrMemD:
6608    case BO_PtrMemI:
6609    case BO_Assign:
6610    case BO_MulAssign:
6611    case BO_DivAssign:
6612    case BO_RemAssign:
6613    case BO_AddAssign:
6614    case BO_SubAssign:
6615    case BO_ShlAssign:
6616    case BO_ShrAssign:
6617    case BO_AndAssign:
6618    case BO_XorAssign:
6619    case BO_OrAssign:
6620      // C99 6.6/3 allows assignments within unevaluated subexpressions of
6621      // constant expressions, but they can never be ICEs because an ICE cannot
6622      // contain an lvalue operand.
6623      return ICEDiag(2, E->getLocStart());
6624
6625    case BO_Mul:
6626    case BO_Div:
6627    case BO_Rem:
6628    case BO_Add:
6629    case BO_Sub:
6630    case BO_Shl:
6631    case BO_Shr:
6632    case BO_LT:
6633    case BO_GT:
6634    case BO_LE:
6635    case BO_GE:
6636    case BO_EQ:
6637    case BO_NE:
6638    case BO_And:
6639    case BO_Xor:
6640    case BO_Or:
6641    case BO_Comma: {
6642      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6643      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6644      if (Exp->getOpcode() == BO_Div ||
6645          Exp->getOpcode() == BO_Rem) {
6646        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6647        // we don't evaluate one.
6648        if (LHSResult.Val == 0 && RHSResult.Val == 0) {
6649          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6650          if (REval == 0)
6651            return ICEDiag(1, E->getLocStart());
6652          if (REval.isSigned() && REval.isAllOnesValue()) {
6653            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6654            if (LEval.isMinSignedValue())
6655              return ICEDiag(1, E->getLocStart());
6656          }
6657        }
6658      }
6659      if (Exp->getOpcode() == BO_Comma) {
6660        if (Ctx.getLangOpts().C99) {
6661          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6662          // if it isn't evaluated.
6663          if (LHSResult.Val == 0 && RHSResult.Val == 0)
6664            return ICEDiag(1, E->getLocStart());
6665        } else {
6666          // In both C89 and C++, commas in ICEs are illegal.
6667          return ICEDiag(2, E->getLocStart());
6668        }
6669      }
6670      if (LHSResult.Val >= RHSResult.Val)
6671        return LHSResult;
6672      return RHSResult;
6673    }
6674    case BO_LAnd:
6675    case BO_LOr: {
6676      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6677      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6678      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
6679        // Rare case where the RHS has a comma "side-effect"; we need
6680        // to actually check the condition to see whether the side
6681        // with the comma is evaluated.
6682        if ((Exp->getOpcode() == BO_LAnd) !=
6683            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6684          return RHSResult;
6685        return NoDiag();
6686      }
6687
6688      if (LHSResult.Val >= RHSResult.Val)
6689        return LHSResult;
6690      return RHSResult;
6691    }
6692    }
6693  }
6694  case Expr::ImplicitCastExprClass:
6695  case Expr::CStyleCastExprClass:
6696  case Expr::CXXFunctionalCastExprClass:
6697  case Expr::CXXStaticCastExprClass:
6698  case Expr::CXXReinterpretCastExprClass:
6699  case Expr::CXXConstCastExprClass:
6700  case Expr::ObjCBridgedCastExprClass: {
6701    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6702    if (isa<ExplicitCastExpr>(E)) {
6703      if (const FloatingLiteral *FL
6704            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6705        unsigned DestWidth = Ctx.getIntWidth(E->getType());
6706        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6707        APSInt IgnoredVal(DestWidth, !DestSigned);
6708        bool Ignored;
6709        // If the value does not fit in the destination type, the behavior is
6710        // undefined, so we are not required to treat it as a constant
6711        // expression.
6712        if (FL->getValue().convertToInteger(IgnoredVal,
6713                                            llvm::APFloat::rmTowardZero,
6714                                            &Ignored) & APFloat::opInvalidOp)
6715          return ICEDiag(2, E->getLocStart());
6716        return NoDiag();
6717      }
6718    }
6719    switch (cast<CastExpr>(E)->getCastKind()) {
6720    case CK_LValueToRValue:
6721    case CK_AtomicToNonAtomic:
6722    case CK_NonAtomicToAtomic:
6723    case CK_NoOp:
6724    case CK_IntegralToBoolean:
6725    case CK_IntegralCast:
6726      return CheckICE(SubExpr, Ctx);
6727    default:
6728      return ICEDiag(2, E->getLocStart());
6729    }
6730  }
6731  case Expr::BinaryConditionalOperatorClass: {
6732    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6733    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6734    if (CommonResult.Val == 2) return CommonResult;
6735    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6736    if (FalseResult.Val == 2) return FalseResult;
6737    if (CommonResult.Val == 1) return CommonResult;
6738    if (FalseResult.Val == 1 &&
6739        Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
6740    return FalseResult;
6741  }
6742  case Expr::ConditionalOperatorClass: {
6743    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6744    // If the condition (ignoring parens) is a __builtin_constant_p call,
6745    // then only the true side is actually considered in an integer constant
6746    // expression, and it is fully evaluated.  This is an important GNU
6747    // extension.  See GCC PR38377 for discussion.
6748    if (const CallExpr *CallCE
6749        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6750      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6751        return CheckEvalInICE(E, Ctx);
6752    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6753    if (CondResult.Val == 2)
6754      return CondResult;
6755
6756    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6757    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6758
6759    if (TrueResult.Val == 2)
6760      return TrueResult;
6761    if (FalseResult.Val == 2)
6762      return FalseResult;
6763    if (CondResult.Val == 1)
6764      return CondResult;
6765    if (TrueResult.Val == 0 && FalseResult.Val == 0)
6766      return NoDiag();
6767    // Rare case where the diagnostics depend on which side is evaluated
6768    // Note that if we get here, CondResult is 0, and at least one of
6769    // TrueResult and FalseResult is non-zero.
6770    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
6771      return FalseResult;
6772    }
6773    return TrueResult;
6774  }
6775  case Expr::CXXDefaultArgExprClass:
6776    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6777  case Expr::ChooseExprClass: {
6778    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6779  }
6780  }
6781
6782  llvm_unreachable("Invalid StmtClass!");
6783}
6784
6785/// Evaluate an expression as a C++11 integral constant expression.
6786static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6787                                                    const Expr *E,
6788                                                    llvm::APSInt *Value,
6789                                                    SourceLocation *Loc) {
6790  if (!E->getType()->isIntegralOrEnumerationType()) {
6791    if (Loc) *Loc = E->getExprLoc();
6792    return false;
6793  }
6794
6795  APValue Result;
6796  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6797    return false;
6798
6799  assert(Result.isInt() && "pointer cast to int is not an ICE");
6800  if (Value) *Value = Result.getInt();
6801  return true;
6802}
6803
6804bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6805  if (Ctx.getLangOpts().CPlusPlus0x)
6806    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6807
6808  ICEDiag d = CheckICE(this, Ctx);
6809  if (d.Val != 0) {
6810    if (Loc) *Loc = d.Loc;
6811    return false;
6812  }
6813  return true;
6814}
6815
6816bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6817                                 SourceLocation *Loc, bool isEvaluated) const {
6818  if (Ctx.getLangOpts().CPlusPlus0x)
6819    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6820
6821  if (!isIntegerConstantExpr(Ctx, Loc))
6822    return false;
6823  if (!EvaluateAsInt(Value, Ctx))
6824    llvm_unreachable("ICE cannot be evaluated!");
6825  return true;
6826}
6827
6828bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6829  return CheckICE(this, Ctx).Val == 0;
6830}
6831
6832bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6833                               SourceLocation *Loc) const {
6834  // We support this checking in C++98 mode in order to diagnose compatibility
6835  // issues.
6836  assert(Ctx.getLangOpts().CPlusPlus);
6837
6838  // Build evaluation settings.
6839  Expr::EvalStatus Status;
6840  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
6841  Status.Diag = &Diags;
6842  EvalInfo Info(Ctx, Status);
6843
6844  APValue Scratch;
6845  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6846
6847  if (!Diags.empty()) {
6848    IsConstExpr = false;
6849    if (Loc) *Loc = Diags[0].first;
6850  } else if (!IsConstExpr) {
6851    // FIXME: This shouldn't happen.
6852    if (Loc) *Loc = getExprLoc();
6853  }
6854
6855  return IsConstExpr;
6856}
6857
6858bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6859                                   llvm::SmallVectorImpl<
6860                                     PartialDiagnosticAt> &Diags) {
6861  // FIXME: It would be useful to check constexpr function templates, but at the
6862  // moment the constant expression evaluator cannot cope with the non-rigorous
6863  // ASTs which we build for dependent expressions.
6864  if (FD->isDependentContext())
6865    return true;
6866
6867  Expr::EvalStatus Status;
6868  Status.Diag = &Diags;
6869
6870  EvalInfo Info(FD->getASTContext(), Status);
6871  Info.CheckingPotentialConstantExpression = true;
6872
6873  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6874  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6875
6876  // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6877  // is a temporary being used as the 'this' pointer.
6878  LValue This;
6879  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6880  This.set(&VIE, Info.CurrentCall->Index);
6881
6882  ArrayRef<const Expr*> Args;
6883
6884  SourceLocation Loc = FD->getLocation();
6885
6886  APValue Scratch;
6887  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6888    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6889  else
6890    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6891                       Args, FD->getBody(), Info, Scratch);
6892
6893  return Diags.empty();
6894}
6895