ExprConstant.cpp revision 3ed4d1cbaad763c103771bdefb8b986a08f165fc
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27//    too, why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/CharUnits.h"
40#include "clang/AST/Expr.h"
41#include "clang/AST/RecordLayout.h"
42#include "clang/AST/StmtVisitor.h"
43#include "clang/AST/TypeLoc.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using llvm::APSInt;
53using llvm::APFloat;
54
55static bool IsGlobalLValue(APValue::LValueBase B);
56
57namespace {
58  struct LValue;
59  struct CallStackFrame;
60  struct EvalInfo;
61
62  static QualType getType(APValue::LValueBase B) {
63    if (!B) return QualType();
64    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65      return D->getType();
66
67    const Expr *Base = B.get<const Expr*>();
68
69    // For a materialized temporary, the type of the temporary we materialized
70    // may not be the type of the expression.
71    if (const MaterializeTemporaryExpr *MTE =
72            dyn_cast<MaterializeTemporaryExpr>(Base)) {
73      SmallVector<const Expr *, 2> CommaLHSs;
74      SmallVector<SubobjectAdjustment, 2> Adjustments;
75      const Expr *Temp = MTE->GetTemporaryExpr();
76      const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                               Adjustments);
78      // Keep any cv-qualifiers from the reference if we generated a temporary
79      // for it.
80      if (Inner != Temp)
81        return Inner->getType();
82    }
83
84    return Base->getType();
85  }
86
87  /// Get an LValue path entry, which is known to not be an array index, as a
88  /// field or base class.
89  static
90  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91    APValue::BaseOrMemberType Value;
92    Value.setFromOpaqueValue(E.BaseOrMember);
93    return Value;
94  }
95
96  /// Get an LValue path entry, which is known to not be an array index, as a
97  /// field declaration.
98  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100  }
101  /// Get an LValue path entry, which is known to not be an array index, as a
102  /// base class declaration.
103  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105  }
106  /// Determine whether this LValue path entry for a base class names a virtual
107  /// base class.
108  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109    return getAsBaseOrMember(E).getInt();
110  }
111
112  /// Find the path length and type of the most-derived subobject in the given
113  /// path, and find the size of the containing array, if any.
114  static
115  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                    ArrayRef<APValue::LValuePathEntry> Path,
117                                    uint64_t &ArraySize, QualType &Type) {
118    unsigned MostDerivedLength = 0;
119    Type = Base;
120    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121      if (Type->isArrayType()) {
122        const ConstantArrayType *CAT =
123          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124        Type = CAT->getElementType();
125        ArraySize = CAT->getSize().getZExtValue();
126        MostDerivedLength = I + 1;
127      } else if (Type->isAnyComplexType()) {
128        const ComplexType *CT = Type->castAs<ComplexType>();
129        Type = CT->getElementType();
130        ArraySize = 2;
131        MostDerivedLength = I + 1;
132      } else if (const FieldDecl *FD = getAsField(Path[I])) {
133        Type = FD->getType();
134        ArraySize = 0;
135        MostDerivedLength = I + 1;
136      } else {
137        // Path[I] describes a base class.
138        ArraySize = 0;
139      }
140    }
141    return MostDerivedLength;
142  }
143
144  // The order of this enum is important for diagnostics.
145  enum CheckSubobjectKind {
146    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147    CSK_This, CSK_Real, CSK_Imag
148  };
149
150  /// A path from a glvalue to a subobject of that glvalue.
151  struct SubobjectDesignator {
152    /// True if the subobject was named in a manner not supported by C++11. Such
153    /// lvalues can still be folded, but they are not core constant expressions
154    /// and we cannot perform lvalue-to-rvalue conversions on them.
155    bool Invalid : 1;
156
157    /// Is this a pointer one past the end of an object?
158    bool IsOnePastTheEnd : 1;
159
160    /// The length of the path to the most-derived object of which this is a
161    /// subobject.
162    unsigned MostDerivedPathLength : 30;
163
164    /// The size of the array of which the most-derived object is an element, or
165    /// 0 if the most-derived object is not an array element.
166    uint64_t MostDerivedArraySize;
167
168    /// The type of the most derived object referred to by this address.
169    QualType MostDerivedType;
170
171    typedef APValue::LValuePathEntry PathEntry;
172
173    /// The entries on the path from the glvalue to the designated subobject.
174    SmallVector<PathEntry, 8> Entries;
175
176    SubobjectDesignator() : Invalid(true) {}
177
178    explicit SubobjectDesignator(QualType T)
179      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180        MostDerivedArraySize(0), MostDerivedType(T) {}
181
182    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184        MostDerivedPathLength(0), MostDerivedArraySize(0) {
185      if (!Invalid) {
186        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187        ArrayRef<PathEntry> VEntries = V.getLValuePath();
188        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189        if (V.getLValueBase())
190          MostDerivedPathLength =
191              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                       V.getLValuePath(), MostDerivedArraySize,
193                                       MostDerivedType);
194      }
195    }
196
197    void setInvalid() {
198      Invalid = true;
199      Entries.clear();
200    }
201
202    /// Determine whether this is a one-past-the-end pointer.
203    bool isOnePastTheEnd() const {
204      if (IsOnePastTheEnd)
205        return true;
206      if (MostDerivedArraySize &&
207          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208        return true;
209      return false;
210    }
211
212    /// Check that this refers to a valid subobject.
213    bool isValidSubobject() const {
214      if (Invalid)
215        return false;
216      return !isOnePastTheEnd();
217    }
218    /// Check that this refers to a valid subobject, and if not, produce a
219    /// relevant diagnostic and set the designator as invalid.
220    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221
222    /// Update this designator to refer to the first element within this array.
223    void addArrayUnchecked(const ConstantArrayType *CAT) {
224      PathEntry Entry;
225      Entry.ArrayIndex = 0;
226      Entries.push_back(Entry);
227
228      // This is a most-derived object.
229      MostDerivedType = CAT->getElementType();
230      MostDerivedArraySize = CAT->getSize().getZExtValue();
231      MostDerivedPathLength = Entries.size();
232    }
233    /// Update this designator to refer to the given base or member of this
234    /// object.
235    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236      PathEntry Entry;
237      APValue::BaseOrMemberType Value(D, Virtual);
238      Entry.BaseOrMember = Value.getOpaqueValue();
239      Entries.push_back(Entry);
240
241      // If this isn't a base class, it's a new most-derived object.
242      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243        MostDerivedType = FD->getType();
244        MostDerivedArraySize = 0;
245        MostDerivedPathLength = Entries.size();
246      }
247    }
248    /// Update this designator to refer to the given complex component.
249    void addComplexUnchecked(QualType EltTy, bool Imag) {
250      PathEntry Entry;
251      Entry.ArrayIndex = Imag;
252      Entries.push_back(Entry);
253
254      // This is technically a most-derived object, though in practice this
255      // is unlikely to matter.
256      MostDerivedType = EltTy;
257      MostDerivedArraySize = 2;
258      MostDerivedPathLength = Entries.size();
259    }
260    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261    /// Add N to the address of this subobject.
262    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263      if (Invalid) return;
264      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265        Entries.back().ArrayIndex += N;
266        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268          setInvalid();
269        }
270        return;
271      }
272      // [expr.add]p4: For the purposes of these operators, a pointer to a
273      // nonarray object behaves the same as a pointer to the first element of
274      // an array of length one with the type of the object as its element type.
275      if (IsOnePastTheEnd && N == (uint64_t)-1)
276        IsOnePastTheEnd = false;
277      else if (!IsOnePastTheEnd && N == 1)
278        IsOnePastTheEnd = true;
279      else if (N != 0) {
280        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281        setInvalid();
282      }
283    }
284  };
285
286  /// A stack frame in the constexpr call stack.
287  struct CallStackFrame {
288    EvalInfo &Info;
289
290    /// Parent - The caller of this stack frame.
291    CallStackFrame *Caller;
292
293    /// CallLoc - The location of the call expression for this call.
294    SourceLocation CallLoc;
295
296    /// Callee - The function which was called.
297    const FunctionDecl *Callee;
298
299    /// Index - The call index of this call.
300    unsigned Index;
301
302    /// This - The binding for the this pointer in this call, if any.
303    const LValue *This;
304
305    /// ParmBindings - Parameter bindings for this function call, indexed by
306    /// parameters' function scope indices.
307    APValue *Arguments;
308
309    // Note that we intentionally use std::map here so that references to
310    // values are stable.
311    typedef std::map<const void*, APValue> MapTy;
312    typedef MapTy::const_iterator temp_iterator;
313    /// Temporaries - Temporary lvalues materialized within this stack frame.
314    MapTy Temporaries;
315
316    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317                   const FunctionDecl *Callee, const LValue *This,
318                   APValue *Arguments);
319    ~CallStackFrame();
320  };
321
322  /// Temporarily override 'this'.
323  class ThisOverrideRAII {
324  public:
325    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
326        : Frame(Frame), OldThis(Frame.This) {
327      if (Enable)
328        Frame.This = NewThis;
329    }
330    ~ThisOverrideRAII() {
331      Frame.This = OldThis;
332    }
333  private:
334    CallStackFrame &Frame;
335    const LValue *OldThis;
336  };
337
338  /// A partial diagnostic which we might know in advance that we are not going
339  /// to emit.
340  class OptionalDiagnostic {
341    PartialDiagnostic *Diag;
342
343  public:
344    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
345
346    template<typename T>
347    OptionalDiagnostic &operator<<(const T &v) {
348      if (Diag)
349        *Diag << v;
350      return *this;
351    }
352
353    OptionalDiagnostic &operator<<(const APSInt &I) {
354      if (Diag) {
355        SmallVector<char, 32> Buffer;
356        I.toString(Buffer);
357        *Diag << StringRef(Buffer.data(), Buffer.size());
358      }
359      return *this;
360    }
361
362    OptionalDiagnostic &operator<<(const APFloat &F) {
363      if (Diag) {
364        SmallVector<char, 32> Buffer;
365        F.toString(Buffer);
366        *Diag << StringRef(Buffer.data(), Buffer.size());
367      }
368      return *this;
369    }
370  };
371
372  /// EvalInfo - This is a private struct used by the evaluator to capture
373  /// information about a subexpression as it is folded.  It retains information
374  /// about the AST context, but also maintains information about the folded
375  /// expression.
376  ///
377  /// If an expression could be evaluated, it is still possible it is not a C
378  /// "integer constant expression" or constant expression.  If not, this struct
379  /// captures information about how and why not.
380  ///
381  /// One bit of information passed *into* the request for constant folding
382  /// indicates whether the subexpression is "evaluated" or not according to C
383  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
384  /// evaluate the expression regardless of what the RHS is, but C only allows
385  /// certain things in certain situations.
386  struct EvalInfo {
387    ASTContext &Ctx;
388
389    /// EvalStatus - Contains information about the evaluation.
390    Expr::EvalStatus &EvalStatus;
391
392    /// CurrentCall - The top of the constexpr call stack.
393    CallStackFrame *CurrentCall;
394
395    /// CallStackDepth - The number of calls in the call stack right now.
396    unsigned CallStackDepth;
397
398    /// NextCallIndex - The next call index to assign.
399    unsigned NextCallIndex;
400
401    /// StepsLeft - The remaining number of evaluation steps we're permitted
402    /// to perform. This is essentially a limit for the number of statements
403    /// we will evaluate.
404    unsigned StepsLeft;
405
406    /// BottomFrame - The frame in which evaluation started. This must be
407    /// initialized after CurrentCall and CallStackDepth.
408    CallStackFrame BottomFrame;
409
410    /// EvaluatingDecl - This is the declaration whose initializer is being
411    /// evaluated, if any.
412    APValue::LValueBase EvaluatingDecl;
413
414    /// EvaluatingDeclValue - This is the value being constructed for the
415    /// declaration whose initializer is being evaluated, if any.
416    APValue *EvaluatingDeclValue;
417
418    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
419    /// notes attached to it will also be stored, otherwise they will not be.
420    bool HasActiveDiagnostic;
421
422    /// CheckingPotentialConstantExpression - Are we checking whether the
423    /// expression is a potential constant expression? If so, some diagnostics
424    /// are suppressed.
425    bool CheckingPotentialConstantExpression;
426
427    bool IntOverflowCheckMode;
428
429    EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
430             bool OverflowCheckMode = false)
431      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
432        CallStackDepth(0), NextCallIndex(1),
433        StepsLeft(getLangOpts().ConstexprStepLimit),
434        BottomFrame(*this, SourceLocation(), 0, 0, 0),
435        EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
436        HasActiveDiagnostic(false), CheckingPotentialConstantExpression(false),
437        IntOverflowCheckMode(OverflowCheckMode) {}
438
439    void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
440      EvaluatingDecl = Base;
441      EvaluatingDeclValue = &Value;
442    }
443
444    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
445
446    bool CheckCallLimit(SourceLocation Loc) {
447      // Don't perform any constexpr calls (other than the call we're checking)
448      // when checking a potential constant expression.
449      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
450        return false;
451      if (NextCallIndex == 0) {
452        // NextCallIndex has wrapped around.
453        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
454        return false;
455      }
456      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
457        return true;
458      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
459        << getLangOpts().ConstexprCallDepth;
460      return false;
461    }
462
463    CallStackFrame *getCallFrame(unsigned CallIndex) {
464      assert(CallIndex && "no call index in getCallFrame");
465      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
466      // be null in this loop.
467      CallStackFrame *Frame = CurrentCall;
468      while (Frame->Index > CallIndex)
469        Frame = Frame->Caller;
470      return (Frame->Index == CallIndex) ? Frame : 0;
471    }
472
473    bool nextStep(const Stmt *S) {
474      if (!StepsLeft) {
475        Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
476        return false;
477      }
478      --StepsLeft;
479      return true;
480    }
481
482  private:
483    /// Add a diagnostic to the diagnostics list.
484    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
485      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
486      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
487      return EvalStatus.Diag->back().second;
488    }
489
490    /// Add notes containing a call stack to the current point of evaluation.
491    void addCallStack(unsigned Limit);
492
493  public:
494    /// Diagnose that the evaluation cannot be folded.
495    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
496                              = diag::note_invalid_subexpr_in_const_expr,
497                            unsigned ExtraNotes = 0) {
498      // If we have a prior diagnostic, it will be noting that the expression
499      // isn't a constant expression. This diagnostic is more important.
500      // FIXME: We might want to show both diagnostics to the user.
501      if (EvalStatus.Diag) {
502        unsigned CallStackNotes = CallStackDepth - 1;
503        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
504        if (Limit)
505          CallStackNotes = std::min(CallStackNotes, Limit + 1);
506        if (CheckingPotentialConstantExpression)
507          CallStackNotes = 0;
508
509        HasActiveDiagnostic = true;
510        EvalStatus.Diag->clear();
511        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
512        addDiag(Loc, DiagId);
513        if (!CheckingPotentialConstantExpression)
514          addCallStack(Limit);
515        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
516      }
517      HasActiveDiagnostic = false;
518      return OptionalDiagnostic();
519    }
520
521    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
522                              = diag::note_invalid_subexpr_in_const_expr,
523                            unsigned ExtraNotes = 0) {
524      if (EvalStatus.Diag)
525        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
526      HasActiveDiagnostic = false;
527      return OptionalDiagnostic();
528    }
529
530    bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
531
532    /// Diagnose that the evaluation does not produce a C++11 core constant
533    /// expression.
534    template<typename LocArg>
535    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
536                                 = diag::note_invalid_subexpr_in_const_expr,
537                               unsigned ExtraNotes = 0) {
538      // Don't override a previous diagnostic.
539      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
540        HasActiveDiagnostic = false;
541        return OptionalDiagnostic();
542      }
543      return Diag(Loc, DiagId, ExtraNotes);
544    }
545
546    /// Add a note to a prior diagnostic.
547    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
548      if (!HasActiveDiagnostic)
549        return OptionalDiagnostic();
550      return OptionalDiagnostic(&addDiag(Loc, DiagId));
551    }
552
553    /// Add a stack of notes to a prior diagnostic.
554    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
555      if (HasActiveDiagnostic) {
556        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
557                                Diags.begin(), Diags.end());
558      }
559    }
560
561    /// Should we continue evaluation as much as possible after encountering a
562    /// construct which can't be folded?
563    bool keepEvaluatingAfterFailure() {
564      // Should return true in IntOverflowCheckMode, so that we check for
565      // overflow even if some subexpressions can't be evaluated as constants.
566      return StepsLeft && (IntOverflowCheckMode ||
567                           (CheckingPotentialConstantExpression &&
568                            EvalStatus.Diag && EvalStatus.Diag->empty()));
569    }
570  };
571
572  /// Object used to treat all foldable expressions as constant expressions.
573  struct FoldConstant {
574    bool Enabled;
575
576    explicit FoldConstant(EvalInfo &Info)
577      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
578                !Info.EvalStatus.HasSideEffects) {
579    }
580    // Treat the value we've computed since this object was created as constant.
581    void Fold(EvalInfo &Info) {
582      if (Enabled && !Info.EvalStatus.Diag->empty() &&
583          !Info.EvalStatus.HasSideEffects)
584        Info.EvalStatus.Diag->clear();
585    }
586  };
587
588  /// RAII object used to suppress diagnostics and side-effects from a
589  /// speculative evaluation.
590  class SpeculativeEvaluationRAII {
591    EvalInfo &Info;
592    Expr::EvalStatus Old;
593
594  public:
595    SpeculativeEvaluationRAII(EvalInfo &Info,
596                              SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
597      : Info(Info), Old(Info.EvalStatus) {
598      Info.EvalStatus.Diag = NewDiag;
599    }
600    ~SpeculativeEvaluationRAII() {
601      Info.EvalStatus = Old;
602    }
603  };
604}
605
606bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
607                                         CheckSubobjectKind CSK) {
608  if (Invalid)
609    return false;
610  if (isOnePastTheEnd()) {
611    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
612      << CSK;
613    setInvalid();
614    return false;
615  }
616  return true;
617}
618
619void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
620                                                    const Expr *E, uint64_t N) {
621  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
622    Info.CCEDiag(E, diag::note_constexpr_array_index)
623      << static_cast<int>(N) << /*array*/ 0
624      << static_cast<unsigned>(MostDerivedArraySize);
625  else
626    Info.CCEDiag(E, diag::note_constexpr_array_index)
627      << static_cast<int>(N) << /*non-array*/ 1;
628  setInvalid();
629}
630
631CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
632                               const FunctionDecl *Callee, const LValue *This,
633                               APValue *Arguments)
634    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
635      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
636  Info.CurrentCall = this;
637  ++Info.CallStackDepth;
638}
639
640CallStackFrame::~CallStackFrame() {
641  assert(Info.CurrentCall == this && "calls retired out of order");
642  --Info.CallStackDepth;
643  Info.CurrentCall = Caller;
644}
645
646static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
647
648void EvalInfo::addCallStack(unsigned Limit) {
649  // Determine which calls to skip, if any.
650  unsigned ActiveCalls = CallStackDepth - 1;
651  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
652  if (Limit && Limit < ActiveCalls) {
653    SkipStart = Limit / 2 + Limit % 2;
654    SkipEnd = ActiveCalls - Limit / 2;
655  }
656
657  // Walk the call stack and add the diagnostics.
658  unsigned CallIdx = 0;
659  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
660       Frame = Frame->Caller, ++CallIdx) {
661    // Skip this call?
662    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
663      if (CallIdx == SkipStart) {
664        // Note that we're skipping calls.
665        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
666          << unsigned(ActiveCalls - Limit);
667      }
668      continue;
669    }
670
671    SmallVector<char, 128> Buffer;
672    llvm::raw_svector_ostream Out(Buffer);
673    describeCall(Frame, Out);
674    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
675  }
676}
677
678namespace {
679  struct ComplexValue {
680  private:
681    bool IsInt;
682
683  public:
684    APSInt IntReal, IntImag;
685    APFloat FloatReal, FloatImag;
686
687    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
688
689    void makeComplexFloat() { IsInt = false; }
690    bool isComplexFloat() const { return !IsInt; }
691    APFloat &getComplexFloatReal() { return FloatReal; }
692    APFloat &getComplexFloatImag() { return FloatImag; }
693
694    void makeComplexInt() { IsInt = true; }
695    bool isComplexInt() const { return IsInt; }
696    APSInt &getComplexIntReal() { return IntReal; }
697    APSInt &getComplexIntImag() { return IntImag; }
698
699    void moveInto(APValue &v) const {
700      if (isComplexFloat())
701        v = APValue(FloatReal, FloatImag);
702      else
703        v = APValue(IntReal, IntImag);
704    }
705    void setFrom(const APValue &v) {
706      assert(v.isComplexFloat() || v.isComplexInt());
707      if (v.isComplexFloat()) {
708        makeComplexFloat();
709        FloatReal = v.getComplexFloatReal();
710        FloatImag = v.getComplexFloatImag();
711      } else {
712        makeComplexInt();
713        IntReal = v.getComplexIntReal();
714        IntImag = v.getComplexIntImag();
715      }
716    }
717  };
718
719  struct LValue {
720    APValue::LValueBase Base;
721    CharUnits Offset;
722    unsigned CallIndex;
723    SubobjectDesignator Designator;
724
725    const APValue::LValueBase getLValueBase() const { return Base; }
726    CharUnits &getLValueOffset() { return Offset; }
727    const CharUnits &getLValueOffset() const { return Offset; }
728    unsigned getLValueCallIndex() const { return CallIndex; }
729    SubobjectDesignator &getLValueDesignator() { return Designator; }
730    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
731
732    void moveInto(APValue &V) const {
733      if (Designator.Invalid)
734        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
735      else
736        V = APValue(Base, Offset, Designator.Entries,
737                    Designator.IsOnePastTheEnd, CallIndex);
738    }
739    void setFrom(ASTContext &Ctx, const APValue &V) {
740      assert(V.isLValue());
741      Base = V.getLValueBase();
742      Offset = V.getLValueOffset();
743      CallIndex = V.getLValueCallIndex();
744      Designator = SubobjectDesignator(Ctx, V);
745    }
746
747    void set(APValue::LValueBase B, unsigned I = 0) {
748      Base = B;
749      Offset = CharUnits::Zero();
750      CallIndex = I;
751      Designator = SubobjectDesignator(getType(B));
752    }
753
754    // Check that this LValue is not based on a null pointer. If it is, produce
755    // a diagnostic and mark the designator as invalid.
756    bool checkNullPointer(EvalInfo &Info, const Expr *E,
757                          CheckSubobjectKind CSK) {
758      if (Designator.Invalid)
759        return false;
760      if (!Base) {
761        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
762          << CSK;
763        Designator.setInvalid();
764        return false;
765      }
766      return true;
767    }
768
769    // Check this LValue refers to an object. If not, set the designator to be
770    // invalid and emit a diagnostic.
771    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
772      // Outside C++11, do not build a designator referring to a subobject of
773      // any object: we won't use such a designator for anything.
774      if (!Info.getLangOpts().CPlusPlus11)
775        Designator.setInvalid();
776      return checkNullPointer(Info, E, CSK) &&
777             Designator.checkSubobject(Info, E, CSK);
778    }
779
780    void addDecl(EvalInfo &Info, const Expr *E,
781                 const Decl *D, bool Virtual = false) {
782      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
783        Designator.addDeclUnchecked(D, Virtual);
784    }
785    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
786      if (checkSubobject(Info, E, CSK_ArrayToPointer))
787        Designator.addArrayUnchecked(CAT);
788    }
789    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
790      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
791        Designator.addComplexUnchecked(EltTy, Imag);
792    }
793    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
794      if (checkNullPointer(Info, E, CSK_ArrayIndex))
795        Designator.adjustIndex(Info, E, N);
796    }
797  };
798
799  struct MemberPtr {
800    MemberPtr() {}
801    explicit MemberPtr(const ValueDecl *Decl) :
802      DeclAndIsDerivedMember(Decl, false), Path() {}
803
804    /// The member or (direct or indirect) field referred to by this member
805    /// pointer, or 0 if this is a null member pointer.
806    const ValueDecl *getDecl() const {
807      return DeclAndIsDerivedMember.getPointer();
808    }
809    /// Is this actually a member of some type derived from the relevant class?
810    bool isDerivedMember() const {
811      return DeclAndIsDerivedMember.getInt();
812    }
813    /// Get the class which the declaration actually lives in.
814    const CXXRecordDecl *getContainingRecord() const {
815      return cast<CXXRecordDecl>(
816          DeclAndIsDerivedMember.getPointer()->getDeclContext());
817    }
818
819    void moveInto(APValue &V) const {
820      V = APValue(getDecl(), isDerivedMember(), Path);
821    }
822    void setFrom(const APValue &V) {
823      assert(V.isMemberPointer());
824      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
825      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
826      Path.clear();
827      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
828      Path.insert(Path.end(), P.begin(), P.end());
829    }
830
831    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
832    /// whether the member is a member of some class derived from the class type
833    /// of the member pointer.
834    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
835    /// Path - The path of base/derived classes from the member declaration's
836    /// class (exclusive) to the class type of the member pointer (inclusive).
837    SmallVector<const CXXRecordDecl*, 4> Path;
838
839    /// Perform a cast towards the class of the Decl (either up or down the
840    /// hierarchy).
841    bool castBack(const CXXRecordDecl *Class) {
842      assert(!Path.empty());
843      const CXXRecordDecl *Expected;
844      if (Path.size() >= 2)
845        Expected = Path[Path.size() - 2];
846      else
847        Expected = getContainingRecord();
848      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
849        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
850        // if B does not contain the original member and is not a base or
851        // derived class of the class containing the original member, the result
852        // of the cast is undefined.
853        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
854        // (D::*). We consider that to be a language defect.
855        return false;
856      }
857      Path.pop_back();
858      return true;
859    }
860    /// Perform a base-to-derived member pointer cast.
861    bool castToDerived(const CXXRecordDecl *Derived) {
862      if (!getDecl())
863        return true;
864      if (!isDerivedMember()) {
865        Path.push_back(Derived);
866        return true;
867      }
868      if (!castBack(Derived))
869        return false;
870      if (Path.empty())
871        DeclAndIsDerivedMember.setInt(false);
872      return true;
873    }
874    /// Perform a derived-to-base member pointer cast.
875    bool castToBase(const CXXRecordDecl *Base) {
876      if (!getDecl())
877        return true;
878      if (Path.empty())
879        DeclAndIsDerivedMember.setInt(true);
880      if (isDerivedMember()) {
881        Path.push_back(Base);
882        return true;
883      }
884      return castBack(Base);
885    }
886  };
887
888  /// Compare two member pointers, which are assumed to be of the same type.
889  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
890    if (!LHS.getDecl() || !RHS.getDecl())
891      return !LHS.getDecl() && !RHS.getDecl();
892    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
893      return false;
894    return LHS.Path == RHS.Path;
895  }
896}
897
898static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
899static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
900                            const LValue &This, const Expr *E,
901                            bool AllowNonLiteralTypes = false);
902static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
903static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
904static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
905                                  EvalInfo &Info);
906static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
907static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
908static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
909                                    EvalInfo &Info);
910static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
911static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
912static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
913
914//===----------------------------------------------------------------------===//
915// Misc utilities
916//===----------------------------------------------------------------------===//
917
918/// Produce a string describing the given constexpr call.
919static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
920  unsigned ArgIndex = 0;
921  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
922                      !isa<CXXConstructorDecl>(Frame->Callee) &&
923                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
924
925  if (!IsMemberCall)
926    Out << *Frame->Callee << '(';
927
928  if (Frame->This && IsMemberCall) {
929    APValue Val;
930    Frame->This->moveInto(Val);
931    Val.printPretty(Out, Frame->Info.Ctx,
932                    Frame->This->Designator.MostDerivedType);
933    // FIXME: Add parens around Val if needed.
934    Out << "->" << *Frame->Callee << '(';
935    IsMemberCall = false;
936  }
937
938  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
939       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
940    if (ArgIndex > (unsigned)IsMemberCall)
941      Out << ", ";
942
943    const ParmVarDecl *Param = *I;
944    const APValue &Arg = Frame->Arguments[ArgIndex];
945    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
946
947    if (ArgIndex == 0 && IsMemberCall)
948      Out << "->" << *Frame->Callee << '(';
949  }
950
951  Out << ')';
952}
953
954/// Evaluate an expression to see if it had side-effects, and discard its
955/// result.
956/// \return \c true if the caller should keep evaluating.
957static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
958  APValue Scratch;
959  if (!Evaluate(Scratch, Info, E)) {
960    Info.EvalStatus.HasSideEffects = true;
961    return Info.keepEvaluatingAfterFailure();
962  }
963  return true;
964}
965
966/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
967/// return its existing value.
968static int64_t getExtValue(const APSInt &Value) {
969  return Value.isSigned() ? Value.getSExtValue()
970                          : static_cast<int64_t>(Value.getZExtValue());
971}
972
973/// Should this call expression be treated as a string literal?
974static bool IsStringLiteralCall(const CallExpr *E) {
975  unsigned Builtin = E->isBuiltinCall();
976  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
977          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
978}
979
980static bool IsGlobalLValue(APValue::LValueBase B) {
981  // C++11 [expr.const]p3 An address constant expression is a prvalue core
982  // constant expression of pointer type that evaluates to...
983
984  // ... a null pointer value, or a prvalue core constant expression of type
985  // std::nullptr_t.
986  if (!B) return true;
987
988  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
989    // ... the address of an object with static storage duration,
990    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
991      return VD->hasGlobalStorage();
992    // ... the address of a function,
993    return isa<FunctionDecl>(D);
994  }
995
996  const Expr *E = B.get<const Expr*>();
997  switch (E->getStmtClass()) {
998  default:
999    return false;
1000  case Expr::CompoundLiteralExprClass: {
1001    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1002    return CLE->isFileScope() && CLE->isLValue();
1003  }
1004  case Expr::MaterializeTemporaryExprClass:
1005    // A materialized temporary might have been lifetime-extended to static
1006    // storage duration.
1007    return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1008  // A string literal has static storage duration.
1009  case Expr::StringLiteralClass:
1010  case Expr::PredefinedExprClass:
1011  case Expr::ObjCStringLiteralClass:
1012  case Expr::ObjCEncodeExprClass:
1013  case Expr::CXXTypeidExprClass:
1014  case Expr::CXXUuidofExprClass:
1015    return true;
1016  case Expr::CallExprClass:
1017    return IsStringLiteralCall(cast<CallExpr>(E));
1018  // For GCC compatibility, &&label has static storage duration.
1019  case Expr::AddrLabelExprClass:
1020    return true;
1021  // A Block literal expression may be used as the initialization value for
1022  // Block variables at global or local static scope.
1023  case Expr::BlockExprClass:
1024    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1025  case Expr::ImplicitValueInitExprClass:
1026    // FIXME:
1027    // We can never form an lvalue with an implicit value initialization as its
1028    // base through expression evaluation, so these only appear in one case: the
1029    // implicit variable declaration we invent when checking whether a constexpr
1030    // constructor can produce a constant expression. We must assume that such
1031    // an expression might be a global lvalue.
1032    return true;
1033  }
1034}
1035
1036static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1037  assert(Base && "no location for a null lvalue");
1038  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1039  if (VD)
1040    Info.Note(VD->getLocation(), diag::note_declared_at);
1041  else
1042    Info.Note(Base.get<const Expr*>()->getExprLoc(),
1043              diag::note_constexpr_temporary_here);
1044}
1045
1046/// Check that this reference or pointer core constant expression is a valid
1047/// value for an address or reference constant expression. Return true if we
1048/// can fold this expression, whether or not it's a constant expression.
1049static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1050                                          QualType Type, const LValue &LVal) {
1051  bool IsReferenceType = Type->isReferenceType();
1052
1053  APValue::LValueBase Base = LVal.getLValueBase();
1054  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1055
1056  // Check that the object is a global. Note that the fake 'this' object we
1057  // manufacture when checking potential constant expressions is conservatively
1058  // assumed to be global here.
1059  if (!IsGlobalLValue(Base)) {
1060    if (Info.getLangOpts().CPlusPlus11) {
1061      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1062      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1063        << IsReferenceType << !Designator.Entries.empty()
1064        << !!VD << VD;
1065      NoteLValueLocation(Info, Base);
1066    } else {
1067      Info.Diag(Loc);
1068    }
1069    // Don't allow references to temporaries to escape.
1070    return false;
1071  }
1072  assert((Info.CheckingPotentialConstantExpression ||
1073          LVal.getLValueCallIndex() == 0) &&
1074         "have call index for global lvalue");
1075
1076  // Check if this is a thread-local variable.
1077  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1078    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1079      if (Var->getTLSKind())
1080        return false;
1081    }
1082  }
1083
1084  // Allow address constant expressions to be past-the-end pointers. This is
1085  // an extension: the standard requires them to point to an object.
1086  if (!IsReferenceType)
1087    return true;
1088
1089  // A reference constant expression must refer to an object.
1090  if (!Base) {
1091    // FIXME: diagnostic
1092    Info.CCEDiag(Loc);
1093    return true;
1094  }
1095
1096  // Does this refer one past the end of some object?
1097  if (Designator.isOnePastTheEnd()) {
1098    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1099    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1100      << !Designator.Entries.empty() << !!VD << VD;
1101    NoteLValueLocation(Info, Base);
1102  }
1103
1104  return true;
1105}
1106
1107/// Check that this core constant expression is of literal type, and if not,
1108/// produce an appropriate diagnostic.
1109static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1110                             const LValue *This = 0) {
1111  if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1112    return true;
1113
1114  // C++1y: A constant initializer for an object o [...] may also invoke
1115  // constexpr constructors for o and its subobjects even if those objects
1116  // are of non-literal class types.
1117  if (Info.getLangOpts().CPlusPlus1y && This &&
1118      Info.EvaluatingDecl == This->getLValueBase())
1119    return true;
1120
1121  // Prvalue constant expressions must be of literal types.
1122  if (Info.getLangOpts().CPlusPlus11)
1123    Info.Diag(E, diag::note_constexpr_nonliteral)
1124      << E->getType();
1125  else
1126    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1127  return false;
1128}
1129
1130/// Check that this core constant expression value is a valid value for a
1131/// constant expression. If not, report an appropriate diagnostic. Does not
1132/// check that the expression is of literal type.
1133static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1134                                    QualType Type, const APValue &Value) {
1135  if (Value.isUninit()) {
1136    Info.Diag(DiagLoc, diag::note_constexpr_uninitialized) << Type;
1137    return false;
1138  }
1139
1140  // Core issue 1454: For a literal constant expression of array or class type,
1141  // each subobject of its value shall have been initialized by a constant
1142  // expression.
1143  if (Value.isArray()) {
1144    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1145    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1146      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1147                                   Value.getArrayInitializedElt(I)))
1148        return false;
1149    }
1150    if (!Value.hasArrayFiller())
1151      return true;
1152    return CheckConstantExpression(Info, DiagLoc, EltTy,
1153                                   Value.getArrayFiller());
1154  }
1155  if (Value.isUnion() && Value.getUnionField()) {
1156    return CheckConstantExpression(Info, DiagLoc,
1157                                   Value.getUnionField()->getType(),
1158                                   Value.getUnionValue());
1159  }
1160  if (Value.isStruct()) {
1161    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1162    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1163      unsigned BaseIndex = 0;
1164      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1165             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1166        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1167                                     Value.getStructBase(BaseIndex)))
1168          return false;
1169      }
1170    }
1171    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1172         I != E; ++I) {
1173      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1174                                   Value.getStructField(I->getFieldIndex())))
1175        return false;
1176    }
1177  }
1178
1179  if (Value.isLValue()) {
1180    LValue LVal;
1181    LVal.setFrom(Info.Ctx, Value);
1182    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1183  }
1184
1185  // Everything else is fine.
1186  return true;
1187}
1188
1189const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1190  return LVal.Base.dyn_cast<const ValueDecl*>();
1191}
1192
1193static bool IsLiteralLValue(const LValue &Value) {
1194  if (Value.CallIndex)
1195    return false;
1196  const Expr *E = Value.Base.dyn_cast<const Expr*>();
1197  return E && !isa<MaterializeTemporaryExpr>(E);
1198}
1199
1200static bool IsWeakLValue(const LValue &Value) {
1201  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1202  return Decl && Decl->isWeak();
1203}
1204
1205static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1206  // A null base expression indicates a null pointer.  These are always
1207  // evaluatable, and they are false unless the offset is zero.
1208  if (!Value.getLValueBase()) {
1209    Result = !Value.getLValueOffset().isZero();
1210    return true;
1211  }
1212
1213  // We have a non-null base.  These are generally known to be true, but if it's
1214  // a weak declaration it can be null at runtime.
1215  Result = true;
1216  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1217  return !Decl || !Decl->isWeak();
1218}
1219
1220static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1221  switch (Val.getKind()) {
1222  case APValue::Uninitialized:
1223    return false;
1224  case APValue::Int:
1225    Result = Val.getInt().getBoolValue();
1226    return true;
1227  case APValue::Float:
1228    Result = !Val.getFloat().isZero();
1229    return true;
1230  case APValue::ComplexInt:
1231    Result = Val.getComplexIntReal().getBoolValue() ||
1232             Val.getComplexIntImag().getBoolValue();
1233    return true;
1234  case APValue::ComplexFloat:
1235    Result = !Val.getComplexFloatReal().isZero() ||
1236             !Val.getComplexFloatImag().isZero();
1237    return true;
1238  case APValue::LValue:
1239    return EvalPointerValueAsBool(Val, Result);
1240  case APValue::MemberPointer:
1241    Result = Val.getMemberPointerDecl();
1242    return true;
1243  case APValue::Vector:
1244  case APValue::Array:
1245  case APValue::Struct:
1246  case APValue::Union:
1247  case APValue::AddrLabelDiff:
1248    return false;
1249  }
1250
1251  llvm_unreachable("unknown APValue kind");
1252}
1253
1254static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1255                                       EvalInfo &Info) {
1256  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1257  APValue Val;
1258  if (!Evaluate(Val, Info, E))
1259    return false;
1260  return HandleConversionToBool(Val, Result);
1261}
1262
1263template<typename T>
1264static void HandleOverflow(EvalInfo &Info, const Expr *E,
1265                           const T &SrcValue, QualType DestType) {
1266  Info.CCEDiag(E, diag::note_constexpr_overflow)
1267    << SrcValue << DestType;
1268}
1269
1270static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1271                                 QualType SrcType, const APFloat &Value,
1272                                 QualType DestType, APSInt &Result) {
1273  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1274  // Determine whether we are converting to unsigned or signed.
1275  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1276
1277  Result = APSInt(DestWidth, !DestSigned);
1278  bool ignored;
1279  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1280      & APFloat::opInvalidOp)
1281    HandleOverflow(Info, E, Value, DestType);
1282  return true;
1283}
1284
1285static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1286                                   QualType SrcType, QualType DestType,
1287                                   APFloat &Result) {
1288  APFloat Value = Result;
1289  bool ignored;
1290  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1291                     APFloat::rmNearestTiesToEven, &ignored)
1292      & APFloat::opOverflow)
1293    HandleOverflow(Info, E, Value, DestType);
1294  return true;
1295}
1296
1297static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1298                                 QualType DestType, QualType SrcType,
1299                                 APSInt &Value) {
1300  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1301  APSInt Result = Value;
1302  // Figure out if this is a truncate, extend or noop cast.
1303  // If the input is signed, do a sign extend, noop, or truncate.
1304  Result = Result.extOrTrunc(DestWidth);
1305  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1306  return Result;
1307}
1308
1309static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1310                                 QualType SrcType, const APSInt &Value,
1311                                 QualType DestType, APFloat &Result) {
1312  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1313  if (Result.convertFromAPInt(Value, Value.isSigned(),
1314                              APFloat::rmNearestTiesToEven)
1315      & APFloat::opOverflow)
1316    HandleOverflow(Info, E, Value, DestType);
1317  return true;
1318}
1319
1320static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1321                                  llvm::APInt &Res) {
1322  APValue SVal;
1323  if (!Evaluate(SVal, Info, E))
1324    return false;
1325  if (SVal.isInt()) {
1326    Res = SVal.getInt();
1327    return true;
1328  }
1329  if (SVal.isFloat()) {
1330    Res = SVal.getFloat().bitcastToAPInt();
1331    return true;
1332  }
1333  if (SVal.isVector()) {
1334    QualType VecTy = E->getType();
1335    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1336    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1337    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1338    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1339    Res = llvm::APInt::getNullValue(VecSize);
1340    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1341      APValue &Elt = SVal.getVectorElt(i);
1342      llvm::APInt EltAsInt;
1343      if (Elt.isInt()) {
1344        EltAsInt = Elt.getInt();
1345      } else if (Elt.isFloat()) {
1346        EltAsInt = Elt.getFloat().bitcastToAPInt();
1347      } else {
1348        // Don't try to handle vectors of anything other than int or float
1349        // (not sure if it's possible to hit this case).
1350        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1351        return false;
1352      }
1353      unsigned BaseEltSize = EltAsInt.getBitWidth();
1354      if (BigEndian)
1355        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1356      else
1357        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1358    }
1359    return true;
1360  }
1361  // Give up if the input isn't an int, float, or vector.  For example, we
1362  // reject "(v4i16)(intptr_t)&a".
1363  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1364  return false;
1365}
1366
1367/// Perform the given integer operation, which is known to need at most BitWidth
1368/// bits, and check for overflow in the original type (if that type was not an
1369/// unsigned type).
1370template<typename Operation>
1371static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1372                                   const APSInt &LHS, const APSInt &RHS,
1373                                   unsigned BitWidth, Operation Op) {
1374  if (LHS.isUnsigned())
1375    return Op(LHS, RHS);
1376
1377  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1378  APSInt Result = Value.trunc(LHS.getBitWidth());
1379  if (Result.extend(BitWidth) != Value) {
1380    if (Info.getIntOverflowCheckMode())
1381      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1382        diag::warn_integer_constant_overflow)
1383          << Result.toString(10) << E->getType();
1384    else
1385      HandleOverflow(Info, E, Value, E->getType());
1386  }
1387  return Result;
1388}
1389
1390/// Perform the given binary integer operation.
1391static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1392                              BinaryOperatorKind Opcode, APSInt RHS,
1393                              APSInt &Result) {
1394  switch (Opcode) {
1395  default:
1396    Info.Diag(E);
1397    return false;
1398  case BO_Mul:
1399    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1400                                  std::multiplies<APSInt>());
1401    return true;
1402  case BO_Add:
1403    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1404                                  std::plus<APSInt>());
1405    return true;
1406  case BO_Sub:
1407    Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1408                                  std::minus<APSInt>());
1409    return true;
1410  case BO_And: Result = LHS & RHS; return true;
1411  case BO_Xor: Result = LHS ^ RHS; return true;
1412  case BO_Or:  Result = LHS | RHS; return true;
1413  case BO_Div:
1414  case BO_Rem:
1415    if (RHS == 0) {
1416      Info.Diag(E, diag::note_expr_divide_by_zero);
1417      return false;
1418    }
1419    // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1420    if (RHS.isNegative() && RHS.isAllOnesValue() &&
1421        LHS.isSigned() && LHS.isMinSignedValue())
1422      HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1423    Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1424    return true;
1425  case BO_Shl: {
1426    if (Info.getLangOpts().OpenCL)
1427      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1428      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1429                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1430                    RHS.isUnsigned());
1431    else if (RHS.isSigned() && RHS.isNegative()) {
1432      // During constant-folding, a negative shift is an opposite shift. Such
1433      // a shift is not a constant expression.
1434      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1435      RHS = -RHS;
1436      goto shift_right;
1437    }
1438  shift_left:
1439    // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1440    // the shifted type.
1441    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1442    if (SA != RHS) {
1443      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1444        << RHS << E->getType() << LHS.getBitWidth();
1445    } else if (LHS.isSigned()) {
1446      // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1447      // operand, and must not overflow the corresponding unsigned type.
1448      if (LHS.isNegative())
1449        Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1450      else if (LHS.countLeadingZeros() < SA)
1451        Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1452    }
1453    Result = LHS << SA;
1454    return true;
1455  }
1456  case BO_Shr: {
1457    if (Info.getLangOpts().OpenCL)
1458      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1459      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1460                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1461                    RHS.isUnsigned());
1462    else if (RHS.isSigned() && RHS.isNegative()) {
1463      // During constant-folding, a negative shift is an opposite shift. Such a
1464      // shift is not a constant expression.
1465      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1466      RHS = -RHS;
1467      goto shift_left;
1468    }
1469  shift_right:
1470    // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1471    // shifted type.
1472    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1473    if (SA != RHS)
1474      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1475        << RHS << E->getType() << LHS.getBitWidth();
1476    Result = LHS >> SA;
1477    return true;
1478  }
1479
1480  case BO_LT: Result = LHS < RHS; return true;
1481  case BO_GT: Result = LHS > RHS; return true;
1482  case BO_LE: Result = LHS <= RHS; return true;
1483  case BO_GE: Result = LHS >= RHS; return true;
1484  case BO_EQ: Result = LHS == RHS; return true;
1485  case BO_NE: Result = LHS != RHS; return true;
1486  }
1487}
1488
1489/// Perform the given binary floating-point operation, in-place, on LHS.
1490static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1491                                  APFloat &LHS, BinaryOperatorKind Opcode,
1492                                  const APFloat &RHS) {
1493  switch (Opcode) {
1494  default:
1495    Info.Diag(E);
1496    return false;
1497  case BO_Mul:
1498    LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1499    break;
1500  case BO_Add:
1501    LHS.add(RHS, APFloat::rmNearestTiesToEven);
1502    break;
1503  case BO_Sub:
1504    LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1505    break;
1506  case BO_Div:
1507    LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1508    break;
1509  }
1510
1511  if (LHS.isInfinity() || LHS.isNaN())
1512    Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1513  return true;
1514}
1515
1516/// Cast an lvalue referring to a base subobject to a derived class, by
1517/// truncating the lvalue's path to the given length.
1518static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1519                               const RecordDecl *TruncatedType,
1520                               unsigned TruncatedElements) {
1521  SubobjectDesignator &D = Result.Designator;
1522
1523  // Check we actually point to a derived class object.
1524  if (TruncatedElements == D.Entries.size())
1525    return true;
1526  assert(TruncatedElements >= D.MostDerivedPathLength &&
1527         "not casting to a derived class");
1528  if (!Result.checkSubobject(Info, E, CSK_Derived))
1529    return false;
1530
1531  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1532  const RecordDecl *RD = TruncatedType;
1533  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1534    if (RD->isInvalidDecl()) return false;
1535    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1536    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1537    if (isVirtualBaseClass(D.Entries[I]))
1538      Result.Offset -= Layout.getVBaseClassOffset(Base);
1539    else
1540      Result.Offset -= Layout.getBaseClassOffset(Base);
1541    RD = Base;
1542  }
1543  D.Entries.resize(TruncatedElements);
1544  return true;
1545}
1546
1547static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1548                                   const CXXRecordDecl *Derived,
1549                                   const CXXRecordDecl *Base,
1550                                   const ASTRecordLayout *RL = 0) {
1551  if (!RL) {
1552    if (Derived->isInvalidDecl()) return false;
1553    RL = &Info.Ctx.getASTRecordLayout(Derived);
1554  }
1555
1556  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1557  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1558  return true;
1559}
1560
1561static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1562                             const CXXRecordDecl *DerivedDecl,
1563                             const CXXBaseSpecifier *Base) {
1564  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1565
1566  if (!Base->isVirtual())
1567    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1568
1569  SubobjectDesignator &D = Obj.Designator;
1570  if (D.Invalid)
1571    return false;
1572
1573  // Extract most-derived object and corresponding type.
1574  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1575  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1576    return false;
1577
1578  // Find the virtual base class.
1579  if (DerivedDecl->isInvalidDecl()) return false;
1580  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1581  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1582  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1583  return true;
1584}
1585
1586static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1587                                 QualType Type, LValue &Result) {
1588  for (CastExpr::path_const_iterator PathI = E->path_begin(),
1589                                     PathE = E->path_end();
1590       PathI != PathE; ++PathI) {
1591    if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1592                          *PathI))
1593      return false;
1594    Type = (*PathI)->getType();
1595  }
1596  return true;
1597}
1598
1599/// Update LVal to refer to the given field, which must be a member of the type
1600/// currently described by LVal.
1601static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1602                               const FieldDecl *FD,
1603                               const ASTRecordLayout *RL = 0) {
1604  if (!RL) {
1605    if (FD->getParent()->isInvalidDecl()) return false;
1606    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1607  }
1608
1609  unsigned I = FD->getFieldIndex();
1610  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1611  LVal.addDecl(Info, E, FD);
1612  return true;
1613}
1614
1615/// Update LVal to refer to the given indirect field.
1616static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1617                                       LValue &LVal,
1618                                       const IndirectFieldDecl *IFD) {
1619  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1620                                         CE = IFD->chain_end(); C != CE; ++C)
1621    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1622      return false;
1623  return true;
1624}
1625
1626/// Get the size of the given type in char units.
1627static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1628                         QualType Type, CharUnits &Size) {
1629  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1630  // extension.
1631  if (Type->isVoidType() || Type->isFunctionType()) {
1632    Size = CharUnits::One();
1633    return true;
1634  }
1635
1636  if (!Type->isConstantSizeType()) {
1637    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1638    // FIXME: Better diagnostic.
1639    Info.Diag(Loc);
1640    return false;
1641  }
1642
1643  Size = Info.Ctx.getTypeSizeInChars(Type);
1644  return true;
1645}
1646
1647/// Update a pointer value to model pointer arithmetic.
1648/// \param Info - Information about the ongoing evaluation.
1649/// \param E - The expression being evaluated, for diagnostic purposes.
1650/// \param LVal - The pointer value to be updated.
1651/// \param EltTy - The pointee type represented by LVal.
1652/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1653static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1654                                        LValue &LVal, QualType EltTy,
1655                                        int64_t Adjustment) {
1656  CharUnits SizeOfPointee;
1657  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1658    return false;
1659
1660  // Compute the new offset in the appropriate width.
1661  LVal.Offset += Adjustment * SizeOfPointee;
1662  LVal.adjustIndex(Info, E, Adjustment);
1663  return true;
1664}
1665
1666/// Update an lvalue to refer to a component of a complex number.
1667/// \param Info - Information about the ongoing evaluation.
1668/// \param LVal - The lvalue to be updated.
1669/// \param EltTy - The complex number's component type.
1670/// \param Imag - False for the real component, true for the imaginary.
1671static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1672                                       LValue &LVal, QualType EltTy,
1673                                       bool Imag) {
1674  if (Imag) {
1675    CharUnits SizeOfComponent;
1676    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1677      return false;
1678    LVal.Offset += SizeOfComponent;
1679  }
1680  LVal.addComplex(Info, E, EltTy, Imag);
1681  return true;
1682}
1683
1684/// Try to evaluate the initializer for a variable declaration.
1685///
1686/// \param Info   Information about the ongoing evaluation.
1687/// \param E      An expression to be used when printing diagnostics.
1688/// \param VD     The variable whose initializer should be obtained.
1689/// \param Frame  The frame in which the variable was created. Must be null
1690///               if this variable is not local to the evaluation.
1691/// \param Result Filled in with a pointer to the value of the variable.
1692static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1693                                const VarDecl *VD, CallStackFrame *Frame,
1694                                APValue *&Result) {
1695  // If this is a parameter to an active constexpr function call, perform
1696  // argument substitution.
1697  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1698    // Assume arguments of a potential constant expression are unknown
1699    // constant expressions.
1700    if (Info.CheckingPotentialConstantExpression)
1701      return false;
1702    if (!Frame || !Frame->Arguments) {
1703      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1704      return false;
1705    }
1706    Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1707    return true;
1708  }
1709
1710  // If this is a local variable, dig out its value.
1711  if (Frame) {
1712    Result = &Frame->Temporaries[VD];
1713    // If we've carried on past an unevaluatable local variable initializer,
1714    // we can't go any further. This can happen during potential constant
1715    // expression checking.
1716    return !Result->isUninit();
1717  }
1718
1719  // Dig out the initializer, and use the declaration which it's attached to.
1720  const Expr *Init = VD->getAnyInitializer(VD);
1721  if (!Init || Init->isValueDependent()) {
1722    // If we're checking a potential constant expression, the variable could be
1723    // initialized later.
1724    if (!Info.CheckingPotentialConstantExpression)
1725      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1726    return false;
1727  }
1728
1729  // If we're currently evaluating the initializer of this declaration, use that
1730  // in-flight value.
1731  if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1732    Result = Info.EvaluatingDeclValue;
1733    return !Result->isUninit();
1734  }
1735
1736  // Never evaluate the initializer of a weak variable. We can't be sure that
1737  // this is the definition which will be used.
1738  if (VD->isWeak()) {
1739    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1740    return false;
1741  }
1742
1743  // Check that we can fold the initializer. In C++, we will have already done
1744  // this in the cases where it matters for conformance.
1745  SmallVector<PartialDiagnosticAt, 8> Notes;
1746  if (!VD->evaluateValue(Notes)) {
1747    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1748              Notes.size() + 1) << VD;
1749    Info.Note(VD->getLocation(), diag::note_declared_at);
1750    Info.addNotes(Notes);
1751    return false;
1752  } else if (!VD->checkInitIsICE()) {
1753    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1754                 Notes.size() + 1) << VD;
1755    Info.Note(VD->getLocation(), diag::note_declared_at);
1756    Info.addNotes(Notes);
1757  }
1758
1759  Result = VD->getEvaluatedValue();
1760  return true;
1761}
1762
1763static bool IsConstNonVolatile(QualType T) {
1764  Qualifiers Quals = T.getQualifiers();
1765  return Quals.hasConst() && !Quals.hasVolatile();
1766}
1767
1768/// Get the base index of the given base class within an APValue representing
1769/// the given derived class.
1770static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1771                             const CXXRecordDecl *Base) {
1772  Base = Base->getCanonicalDecl();
1773  unsigned Index = 0;
1774  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1775         E = Derived->bases_end(); I != E; ++I, ++Index) {
1776    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1777      return Index;
1778  }
1779
1780  llvm_unreachable("base class missing from derived class's bases list");
1781}
1782
1783/// Extract the value of a character from a string literal.
1784static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1785                                            uint64_t Index) {
1786  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1787  const StringLiteral *S = cast<StringLiteral>(Lit);
1788  const ConstantArrayType *CAT =
1789      Info.Ctx.getAsConstantArrayType(S->getType());
1790  assert(CAT && "string literal isn't an array");
1791  QualType CharType = CAT->getElementType();
1792  assert(CharType->isIntegerType() && "unexpected character type");
1793
1794  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1795               CharType->isUnsignedIntegerType());
1796  if (Index < S->getLength())
1797    Value = S->getCodeUnit(Index);
1798  return Value;
1799}
1800
1801// Expand a string literal into an array of characters.
1802static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
1803                                APValue &Result) {
1804  const StringLiteral *S = cast<StringLiteral>(Lit);
1805  const ConstantArrayType *CAT =
1806      Info.Ctx.getAsConstantArrayType(S->getType());
1807  assert(CAT && "string literal isn't an array");
1808  QualType CharType = CAT->getElementType();
1809  assert(CharType->isIntegerType() && "unexpected character type");
1810
1811  unsigned Elts = CAT->getSize().getZExtValue();
1812  Result = APValue(APValue::UninitArray(),
1813                   std::min(S->getLength(), Elts), Elts);
1814  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1815               CharType->isUnsignedIntegerType());
1816  if (Result.hasArrayFiller())
1817    Result.getArrayFiller() = APValue(Value);
1818  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
1819    Value = S->getCodeUnit(I);
1820    Result.getArrayInitializedElt(I) = APValue(Value);
1821  }
1822}
1823
1824// Expand an array so that it has more than Index filled elements.
1825static void expandArray(APValue &Array, unsigned Index) {
1826  unsigned Size = Array.getArraySize();
1827  assert(Index < Size);
1828
1829  // Always at least double the number of elements for which we store a value.
1830  unsigned OldElts = Array.getArrayInitializedElts();
1831  unsigned NewElts = std::max(Index+1, OldElts * 2);
1832  NewElts = std::min(Size, std::max(NewElts, 8u));
1833
1834  // Copy the data across.
1835  APValue NewValue(APValue::UninitArray(), NewElts, Size);
1836  for (unsigned I = 0; I != OldElts; ++I)
1837    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
1838  for (unsigned I = OldElts; I != NewElts; ++I)
1839    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
1840  if (NewValue.hasArrayFiller())
1841    NewValue.getArrayFiller() = Array.getArrayFiller();
1842  Array.swap(NewValue);
1843}
1844
1845/// Kinds of access we can perform on an object, for diagnostics.
1846enum AccessKinds {
1847  AK_Read,
1848  AK_Assign,
1849  AK_Increment,
1850  AK_Decrement
1851};
1852
1853/// A handle to a complete object (an object that is not a subobject of
1854/// another object).
1855struct CompleteObject {
1856  /// The value of the complete object.
1857  APValue *Value;
1858  /// The type of the complete object.
1859  QualType Type;
1860
1861  CompleteObject() : Value(0) {}
1862  CompleteObject(APValue *Value, QualType Type)
1863      : Value(Value), Type(Type) {
1864    assert(Value && "missing value for complete object");
1865  }
1866
1867  LLVM_EXPLICIT operator bool() const { return Value; }
1868};
1869
1870/// Find the designated sub-object of an rvalue.
1871template<typename SubobjectHandler>
1872typename SubobjectHandler::result_type
1873findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
1874              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
1875  if (Sub.Invalid)
1876    // A diagnostic will have already been produced.
1877    return handler.failed();
1878  if (Sub.isOnePastTheEnd()) {
1879    if (Info.getLangOpts().CPlusPlus11)
1880      Info.Diag(E, diag::note_constexpr_access_past_end)
1881        << handler.AccessKind;
1882    else
1883      Info.Diag(E);
1884    return handler.failed();
1885  }
1886  if (Sub.Entries.empty())
1887    return handler.found(*Obj.Value, Obj.Type);
1888  if (Info.CheckingPotentialConstantExpression && Obj.Value->isUninit())
1889    // This object might be initialized later.
1890    return handler.failed();
1891
1892  APValue *O = Obj.Value;
1893  QualType ObjType = Obj.Type;
1894  // Walk the designator's path to find the subobject.
1895  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1896    if (ObjType->isArrayType()) {
1897      // Next subobject is an array element.
1898      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1899      assert(CAT && "vla in literal type?");
1900      uint64_t Index = Sub.Entries[I].ArrayIndex;
1901      if (CAT->getSize().ule(Index)) {
1902        // Note, it should not be possible to form a pointer with a valid
1903        // designator which points more than one past the end of the array.
1904        if (Info.getLangOpts().CPlusPlus11)
1905          Info.Diag(E, diag::note_constexpr_access_past_end)
1906            << handler.AccessKind;
1907        else
1908          Info.Diag(E);
1909        return handler.failed();
1910      }
1911
1912      ObjType = CAT->getElementType();
1913
1914      // An array object is represented as either an Array APValue or as an
1915      // LValue which refers to a string literal.
1916      if (O->isLValue()) {
1917        assert(I == N - 1 && "extracting subobject of character?");
1918        assert(!O->hasLValuePath() || O->getLValuePath().empty());
1919        if (handler.AccessKind != AK_Read)
1920          expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
1921                              *O);
1922        else
1923          return handler.foundString(*O, ObjType, Index);
1924      }
1925
1926      if (O->getArrayInitializedElts() > Index)
1927        O = &O->getArrayInitializedElt(Index);
1928      else if (handler.AccessKind != AK_Read) {
1929        expandArray(*O, Index);
1930        O = &O->getArrayInitializedElt(Index);
1931      } else
1932        O = &O->getArrayFiller();
1933    } else if (ObjType->isAnyComplexType()) {
1934      // Next subobject is a complex number.
1935      uint64_t Index = Sub.Entries[I].ArrayIndex;
1936      if (Index > 1) {
1937        if (Info.getLangOpts().CPlusPlus11)
1938          Info.Diag(E, diag::note_constexpr_access_past_end)
1939            << handler.AccessKind;
1940        else
1941          Info.Diag(E);
1942        return handler.failed();
1943      }
1944
1945      bool WasConstQualified = ObjType.isConstQualified();
1946      ObjType = ObjType->castAs<ComplexType>()->getElementType();
1947      if (WasConstQualified)
1948        ObjType.addConst();
1949
1950      assert(I == N - 1 && "extracting subobject of scalar?");
1951      if (O->isComplexInt()) {
1952        return handler.found(Index ? O->getComplexIntImag()
1953                                   : O->getComplexIntReal(), ObjType);
1954      } else {
1955        assert(O->isComplexFloat());
1956        return handler.found(Index ? O->getComplexFloatImag()
1957                                   : O->getComplexFloatReal(), ObjType);
1958      }
1959    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1960      if (Field->isMutable() && handler.AccessKind == AK_Read) {
1961        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1962          << Field;
1963        Info.Note(Field->getLocation(), diag::note_declared_at);
1964        return handler.failed();
1965      }
1966
1967      // Next subobject is a class, struct or union field.
1968      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1969      if (RD->isUnion()) {
1970        const FieldDecl *UnionField = O->getUnionField();
1971        if (!UnionField ||
1972            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1973          Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
1974            << handler.AccessKind << Field << !UnionField << UnionField;
1975          return handler.failed();
1976        }
1977        O = &O->getUnionValue();
1978      } else
1979        O = &O->getStructField(Field->getFieldIndex());
1980
1981      bool WasConstQualified = ObjType.isConstQualified();
1982      ObjType = Field->getType();
1983      if (WasConstQualified && !Field->isMutable())
1984        ObjType.addConst();
1985
1986      if (ObjType.isVolatileQualified()) {
1987        if (Info.getLangOpts().CPlusPlus) {
1988          // FIXME: Include a description of the path to the volatile subobject.
1989          Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
1990            << handler.AccessKind << 2 << Field;
1991          Info.Note(Field->getLocation(), diag::note_declared_at);
1992        } else {
1993          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1994        }
1995        return handler.failed();
1996      }
1997    } else {
1998      // Next subobject is a base class.
1999      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2000      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2001      O = &O->getStructBase(getBaseIndex(Derived, Base));
2002
2003      bool WasConstQualified = ObjType.isConstQualified();
2004      ObjType = Info.Ctx.getRecordType(Base);
2005      if (WasConstQualified)
2006        ObjType.addConst();
2007    }
2008
2009    if (O->isUninit()) {
2010      if (!Info.CheckingPotentialConstantExpression)
2011        Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2012      return handler.failed();
2013    }
2014  }
2015
2016  return handler.found(*O, ObjType);
2017}
2018
2019namespace {
2020struct ExtractSubobjectHandler {
2021  EvalInfo &Info;
2022  APValue &Result;
2023
2024  static const AccessKinds AccessKind = AK_Read;
2025
2026  typedef bool result_type;
2027  bool failed() { return false; }
2028  bool found(APValue &Subobj, QualType SubobjType) {
2029    Result = Subobj;
2030    return true;
2031  }
2032  bool found(APSInt &Value, QualType SubobjType) {
2033    Result = APValue(Value);
2034    return true;
2035  }
2036  bool found(APFloat &Value, QualType SubobjType) {
2037    Result = APValue(Value);
2038    return true;
2039  }
2040  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2041    Result = APValue(extractStringLiteralCharacter(
2042        Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2043    return true;
2044  }
2045};
2046} // end anonymous namespace
2047
2048const AccessKinds ExtractSubobjectHandler::AccessKind;
2049
2050/// Extract the designated sub-object of an rvalue.
2051static bool extractSubobject(EvalInfo &Info, const Expr *E,
2052                             const CompleteObject &Obj,
2053                             const SubobjectDesignator &Sub,
2054                             APValue &Result) {
2055  ExtractSubobjectHandler Handler = { Info, Result };
2056  return findSubobject(Info, E, Obj, Sub, Handler);
2057}
2058
2059namespace {
2060struct ModifySubobjectHandler {
2061  EvalInfo &Info;
2062  APValue &NewVal;
2063  const Expr *E;
2064
2065  typedef bool result_type;
2066  static const AccessKinds AccessKind = AK_Assign;
2067
2068  bool checkConst(QualType QT) {
2069    // Assigning to a const object has undefined behavior.
2070    if (QT.isConstQualified()) {
2071      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2072      return false;
2073    }
2074    return true;
2075  }
2076
2077  bool failed() { return false; }
2078  bool found(APValue &Subobj, QualType SubobjType) {
2079    if (!checkConst(SubobjType))
2080      return false;
2081    // We've been given ownership of NewVal, so just swap it in.
2082    Subobj.swap(NewVal);
2083    return true;
2084  }
2085  bool found(APSInt &Value, QualType SubobjType) {
2086    if (!checkConst(SubobjType))
2087      return false;
2088    if (!NewVal.isInt()) {
2089      // Maybe trying to write a cast pointer value into a complex?
2090      Info.Diag(E);
2091      return false;
2092    }
2093    Value = NewVal.getInt();
2094    return true;
2095  }
2096  bool found(APFloat &Value, QualType SubobjType) {
2097    if (!checkConst(SubobjType))
2098      return false;
2099    Value = NewVal.getFloat();
2100    return true;
2101  }
2102  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2103    llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2104  }
2105};
2106} // end anonymous namespace
2107
2108const AccessKinds ModifySubobjectHandler::AccessKind;
2109
2110/// Update the designated sub-object of an rvalue to the given value.
2111static bool modifySubobject(EvalInfo &Info, const Expr *E,
2112                            const CompleteObject &Obj,
2113                            const SubobjectDesignator &Sub,
2114                            APValue &NewVal) {
2115  ModifySubobjectHandler Handler = { Info, NewVal, E };
2116  return findSubobject(Info, E, Obj, Sub, Handler);
2117}
2118
2119/// Find the position where two subobject designators diverge, or equivalently
2120/// the length of the common initial subsequence.
2121static unsigned FindDesignatorMismatch(QualType ObjType,
2122                                       const SubobjectDesignator &A,
2123                                       const SubobjectDesignator &B,
2124                                       bool &WasArrayIndex) {
2125  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2126  for (/**/; I != N; ++I) {
2127    if (!ObjType.isNull() &&
2128        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2129      // Next subobject is an array element.
2130      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2131        WasArrayIndex = true;
2132        return I;
2133      }
2134      if (ObjType->isAnyComplexType())
2135        ObjType = ObjType->castAs<ComplexType>()->getElementType();
2136      else
2137        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2138    } else {
2139      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2140        WasArrayIndex = false;
2141        return I;
2142      }
2143      if (const FieldDecl *FD = getAsField(A.Entries[I]))
2144        // Next subobject is a field.
2145        ObjType = FD->getType();
2146      else
2147        // Next subobject is a base class.
2148        ObjType = QualType();
2149    }
2150  }
2151  WasArrayIndex = false;
2152  return I;
2153}
2154
2155/// Determine whether the given subobject designators refer to elements of the
2156/// same array object.
2157static bool AreElementsOfSameArray(QualType ObjType,
2158                                   const SubobjectDesignator &A,
2159                                   const SubobjectDesignator &B) {
2160  if (A.Entries.size() != B.Entries.size())
2161    return false;
2162
2163  bool IsArray = A.MostDerivedArraySize != 0;
2164  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2165    // A is a subobject of the array element.
2166    return false;
2167
2168  // If A (and B) designates an array element, the last entry will be the array
2169  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2170  // of length 1' case, and the entire path must match.
2171  bool WasArrayIndex;
2172  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2173  return CommonLength >= A.Entries.size() - IsArray;
2174}
2175
2176/// Find the complete object to which an LValue refers.
2177CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2178                                  const LValue &LVal, QualType LValType) {
2179  if (!LVal.Base) {
2180    Info.Diag(E, diag::note_constexpr_access_null) << AK;
2181    return CompleteObject();
2182  }
2183
2184  CallStackFrame *Frame = 0;
2185  if (LVal.CallIndex) {
2186    Frame = Info.getCallFrame(LVal.CallIndex);
2187    if (!Frame) {
2188      Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2189        << AK << LVal.Base.is<const ValueDecl*>();
2190      NoteLValueLocation(Info, LVal.Base);
2191      return CompleteObject();
2192    }
2193  }
2194
2195  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2196  // is not a constant expression (even if the object is non-volatile). We also
2197  // apply this rule to C++98, in order to conform to the expected 'volatile'
2198  // semantics.
2199  if (LValType.isVolatileQualified()) {
2200    if (Info.getLangOpts().CPlusPlus)
2201      Info.Diag(E, diag::note_constexpr_access_volatile_type)
2202        << AK << LValType;
2203    else
2204      Info.Diag(E);
2205    return CompleteObject();
2206  }
2207
2208  // Compute value storage location and type of base object.
2209  APValue *BaseVal = 0;
2210  QualType BaseType = getType(LVal.Base);
2211
2212  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2213    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2214    // In C++11, constexpr, non-volatile variables initialized with constant
2215    // expressions are constant expressions too. Inside constexpr functions,
2216    // parameters are constant expressions even if they're non-const.
2217    // In C++1y, objects local to a constant expression (those with a Frame) are
2218    // both readable and writable inside constant expressions.
2219    // In C, such things can also be folded, although they are not ICEs.
2220    const VarDecl *VD = dyn_cast<VarDecl>(D);
2221    if (VD) {
2222      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2223        VD = VDef;
2224    }
2225    if (!VD || VD->isInvalidDecl()) {
2226      Info.Diag(E);
2227      return CompleteObject();
2228    }
2229
2230    // Accesses of volatile-qualified objects are not allowed.
2231    if (BaseType.isVolatileQualified()) {
2232      if (Info.getLangOpts().CPlusPlus) {
2233        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2234          << AK << 1 << VD;
2235        Info.Note(VD->getLocation(), diag::note_declared_at);
2236      } else {
2237        Info.Diag(E);
2238      }
2239      return CompleteObject();
2240    }
2241
2242    // Unless we're looking at a local variable or argument in a constexpr call,
2243    // the variable we're reading must be const.
2244    if (!Frame) {
2245      if (Info.getLangOpts().CPlusPlus1y &&
2246          VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2247        // OK, we can read and modify an object if we're in the process of
2248        // evaluating its initializer, because its lifetime began in this
2249        // evaluation.
2250      } else if (AK != AK_Read) {
2251        // All the remaining cases only permit reading.
2252        Info.Diag(E, diag::note_constexpr_modify_global);
2253        return CompleteObject();
2254      } else if (VD->isConstexpr()) {
2255        // OK, we can read this variable.
2256      } else if (BaseType->isIntegralOrEnumerationType()) {
2257        if (!BaseType.isConstQualified()) {
2258          if (Info.getLangOpts().CPlusPlus) {
2259            Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2260            Info.Note(VD->getLocation(), diag::note_declared_at);
2261          } else {
2262            Info.Diag(E);
2263          }
2264          return CompleteObject();
2265        }
2266      } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2267        // We support folding of const floating-point types, in order to make
2268        // static const data members of such types (supported as an extension)
2269        // more useful.
2270        if (Info.getLangOpts().CPlusPlus11) {
2271          Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2272          Info.Note(VD->getLocation(), diag::note_declared_at);
2273        } else {
2274          Info.CCEDiag(E);
2275        }
2276      } else {
2277        // FIXME: Allow folding of values of any literal type in all languages.
2278        if (Info.getLangOpts().CPlusPlus11) {
2279          Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2280          Info.Note(VD->getLocation(), diag::note_declared_at);
2281        } else {
2282          Info.Diag(E);
2283        }
2284        return CompleteObject();
2285      }
2286    }
2287
2288    if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2289      return CompleteObject();
2290  } else {
2291    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2292
2293    if (!Frame) {
2294      if (const MaterializeTemporaryExpr *MTE =
2295              dyn_cast<MaterializeTemporaryExpr>(Base)) {
2296        assert(MTE->getStorageDuration() == SD_Static &&
2297               "should have a frame for a non-global materialized temporary");
2298
2299        // Per C++1y [expr.const]p2:
2300        //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2301        //   - a [...] glvalue of integral or enumeration type that refers to
2302        //     a non-volatile const object [...]
2303        //   [...]
2304        //   - a [...] glvalue of literal type that refers to a non-volatile
2305        //     object whose lifetime began within the evaluation of e.
2306        //
2307        // C++11 misses the 'began within the evaluation of e' check and
2308        // instead allows all temporaries, including things like:
2309        //   int &&r = 1;
2310        //   int x = ++r;
2311        //   constexpr int k = r;
2312        // Therefore we use the C++1y rules in C++11 too.
2313        const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2314        const ValueDecl *ED = MTE->getExtendingDecl();
2315        if (!(BaseType.isConstQualified() &&
2316              BaseType->isIntegralOrEnumerationType()) &&
2317            !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2318          Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2319          Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2320          return CompleteObject();
2321        }
2322
2323        BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2324        assert(BaseVal && "got reference to unevaluated temporary");
2325      } else {
2326        Info.Diag(E);
2327        return CompleteObject();
2328      }
2329    } else {
2330      BaseVal = &Frame->Temporaries[Base];
2331    }
2332
2333    // Volatile temporary objects cannot be accessed in constant expressions.
2334    if (BaseType.isVolatileQualified()) {
2335      if (Info.getLangOpts().CPlusPlus) {
2336        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2337          << AK << 0;
2338        Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2339      } else {
2340        Info.Diag(E);
2341      }
2342      return CompleteObject();
2343    }
2344  }
2345
2346  // During the construction of an object, it is not yet 'const'.
2347  // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2348  // and this doesn't do quite the right thing for const subobjects of the
2349  // object under construction.
2350  if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2351    BaseType = Info.Ctx.getCanonicalType(BaseType);
2352    BaseType.removeLocalConst();
2353  }
2354
2355  // In C++1y, we can't safely access any mutable state when checking a
2356  // potential constant expression.
2357  if (Frame && Info.getLangOpts().CPlusPlus1y &&
2358      Info.CheckingPotentialConstantExpression)
2359    return CompleteObject();
2360
2361  return CompleteObject(BaseVal, BaseType);
2362}
2363
2364/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2365/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2366/// glvalue referred to by an entity of reference type.
2367///
2368/// \param Info - Information about the ongoing evaluation.
2369/// \param Conv - The expression for which we are performing the conversion.
2370///               Used for diagnostics.
2371/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2372///               case of a non-class type).
2373/// \param LVal - The glvalue on which we are attempting to perform this action.
2374/// \param RVal - The produced value will be placed here.
2375static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2376                                           QualType Type,
2377                                           const LValue &LVal, APValue &RVal) {
2378  if (LVal.Designator.Invalid)
2379    return false;
2380
2381  // Check for special cases where there is no existing APValue to look at.
2382  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2383  if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2384      !Type.isVolatileQualified()) {
2385    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2386      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2387      // initializer until now for such expressions. Such an expression can't be
2388      // an ICE in C, so this only matters for fold.
2389      assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2390      if (Type.isVolatileQualified()) {
2391        Info.Diag(Conv);
2392        return false;
2393      }
2394      APValue Lit;
2395      if (!Evaluate(Lit, Info, CLE->getInitializer()))
2396        return false;
2397      CompleteObject LitObj(&Lit, Base->getType());
2398      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2399    } else if (isa<StringLiteral>(Base)) {
2400      // We represent a string literal array as an lvalue pointing at the
2401      // corresponding expression, rather than building an array of chars.
2402      // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2403      APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2404      CompleteObject StrObj(&Str, Base->getType());
2405      return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2406    }
2407  }
2408
2409  CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2410  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2411}
2412
2413/// Perform an assignment of Val to LVal. Takes ownership of Val.
2414static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2415                             QualType LValType, APValue &Val) {
2416  if (LVal.Designator.Invalid)
2417    return false;
2418
2419  if (!Info.getLangOpts().CPlusPlus1y) {
2420    Info.Diag(E);
2421    return false;
2422  }
2423
2424  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2425  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2426}
2427
2428static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2429  return T->isSignedIntegerType() &&
2430         Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2431}
2432
2433namespace {
2434struct CompoundAssignSubobjectHandler {
2435  EvalInfo &Info;
2436  const Expr *E;
2437  QualType PromotedLHSType;
2438  BinaryOperatorKind Opcode;
2439  const APValue &RHS;
2440
2441  static const AccessKinds AccessKind = AK_Assign;
2442
2443  typedef bool result_type;
2444
2445  bool checkConst(QualType QT) {
2446    // Assigning to a const object has undefined behavior.
2447    if (QT.isConstQualified()) {
2448      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2449      return false;
2450    }
2451    return true;
2452  }
2453
2454  bool failed() { return false; }
2455  bool found(APValue &Subobj, QualType SubobjType) {
2456    switch (Subobj.getKind()) {
2457    case APValue::Int:
2458      return found(Subobj.getInt(), SubobjType);
2459    case APValue::Float:
2460      return found(Subobj.getFloat(), SubobjType);
2461    case APValue::ComplexInt:
2462    case APValue::ComplexFloat:
2463      // FIXME: Implement complex compound assignment.
2464      Info.Diag(E);
2465      return false;
2466    case APValue::LValue:
2467      return foundPointer(Subobj, SubobjType);
2468    default:
2469      // FIXME: can this happen?
2470      Info.Diag(E);
2471      return false;
2472    }
2473  }
2474  bool found(APSInt &Value, QualType SubobjType) {
2475    if (!checkConst(SubobjType))
2476      return false;
2477
2478    if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2479      // We don't support compound assignment on integer-cast-to-pointer
2480      // values.
2481      Info.Diag(E);
2482      return false;
2483    }
2484
2485    APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2486                                    SubobjType, Value);
2487    if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2488      return false;
2489    Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2490    return true;
2491  }
2492  bool found(APFloat &Value, QualType SubobjType) {
2493    return checkConst(SubobjType) &&
2494           HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2495                                  Value) &&
2496           handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2497           HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2498  }
2499  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2500    if (!checkConst(SubobjType))
2501      return false;
2502
2503    QualType PointeeType;
2504    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2505      PointeeType = PT->getPointeeType();
2506
2507    if (PointeeType.isNull() || !RHS.isInt() ||
2508        (Opcode != BO_Add && Opcode != BO_Sub)) {
2509      Info.Diag(E);
2510      return false;
2511    }
2512
2513    int64_t Offset = getExtValue(RHS.getInt());
2514    if (Opcode == BO_Sub)
2515      Offset = -Offset;
2516
2517    LValue LVal;
2518    LVal.setFrom(Info.Ctx, Subobj);
2519    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2520      return false;
2521    LVal.moveInto(Subobj);
2522    return true;
2523  }
2524  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2525    llvm_unreachable("shouldn't encounter string elements here");
2526  }
2527};
2528} // end anonymous namespace
2529
2530const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2531
2532/// Perform a compound assignment of LVal <op>= RVal.
2533static bool handleCompoundAssignment(
2534    EvalInfo &Info, const Expr *E,
2535    const LValue &LVal, QualType LValType, QualType PromotedLValType,
2536    BinaryOperatorKind Opcode, const APValue &RVal) {
2537  if (LVal.Designator.Invalid)
2538    return false;
2539
2540  if (!Info.getLangOpts().CPlusPlus1y) {
2541    Info.Diag(E);
2542    return false;
2543  }
2544
2545  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2546  CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2547                                             RVal };
2548  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2549}
2550
2551namespace {
2552struct IncDecSubobjectHandler {
2553  EvalInfo &Info;
2554  const Expr *E;
2555  AccessKinds AccessKind;
2556  APValue *Old;
2557
2558  typedef bool result_type;
2559
2560  bool checkConst(QualType QT) {
2561    // Assigning to a const object has undefined behavior.
2562    if (QT.isConstQualified()) {
2563      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2564      return false;
2565    }
2566    return true;
2567  }
2568
2569  bool failed() { return false; }
2570  bool found(APValue &Subobj, QualType SubobjType) {
2571    // Stash the old value. Also clear Old, so we don't clobber it later
2572    // if we're post-incrementing a complex.
2573    if (Old) {
2574      *Old = Subobj;
2575      Old = 0;
2576    }
2577
2578    switch (Subobj.getKind()) {
2579    case APValue::Int:
2580      return found(Subobj.getInt(), SubobjType);
2581    case APValue::Float:
2582      return found(Subobj.getFloat(), SubobjType);
2583    case APValue::ComplexInt:
2584      return found(Subobj.getComplexIntReal(),
2585                   SubobjType->castAs<ComplexType>()->getElementType()
2586                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2587    case APValue::ComplexFloat:
2588      return found(Subobj.getComplexFloatReal(),
2589                   SubobjType->castAs<ComplexType>()->getElementType()
2590                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2591    case APValue::LValue:
2592      return foundPointer(Subobj, SubobjType);
2593    default:
2594      // FIXME: can this happen?
2595      Info.Diag(E);
2596      return false;
2597    }
2598  }
2599  bool found(APSInt &Value, QualType SubobjType) {
2600    if (!checkConst(SubobjType))
2601      return false;
2602
2603    if (!SubobjType->isIntegerType()) {
2604      // We don't support increment / decrement on integer-cast-to-pointer
2605      // values.
2606      Info.Diag(E);
2607      return false;
2608    }
2609
2610    if (Old) *Old = APValue(Value);
2611
2612    // bool arithmetic promotes to int, and the conversion back to bool
2613    // doesn't reduce mod 2^n, so special-case it.
2614    if (SubobjType->isBooleanType()) {
2615      if (AccessKind == AK_Increment)
2616        Value = 1;
2617      else
2618        Value = !Value;
2619      return true;
2620    }
2621
2622    bool WasNegative = Value.isNegative();
2623    if (AccessKind == AK_Increment) {
2624      ++Value;
2625
2626      if (!WasNegative && Value.isNegative() &&
2627          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2628        APSInt ActualValue(Value, /*IsUnsigned*/true);
2629        HandleOverflow(Info, E, ActualValue, SubobjType);
2630      }
2631    } else {
2632      --Value;
2633
2634      if (WasNegative && !Value.isNegative() &&
2635          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2636        unsigned BitWidth = Value.getBitWidth();
2637        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2638        ActualValue.setBit(BitWidth);
2639        HandleOverflow(Info, E, ActualValue, SubobjType);
2640      }
2641    }
2642    return true;
2643  }
2644  bool found(APFloat &Value, QualType SubobjType) {
2645    if (!checkConst(SubobjType))
2646      return false;
2647
2648    if (Old) *Old = APValue(Value);
2649
2650    APFloat One(Value.getSemantics(), 1);
2651    if (AccessKind == AK_Increment)
2652      Value.add(One, APFloat::rmNearestTiesToEven);
2653    else
2654      Value.subtract(One, APFloat::rmNearestTiesToEven);
2655    return true;
2656  }
2657  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2658    if (!checkConst(SubobjType))
2659      return false;
2660
2661    QualType PointeeType;
2662    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2663      PointeeType = PT->getPointeeType();
2664    else {
2665      Info.Diag(E);
2666      return false;
2667    }
2668
2669    LValue LVal;
2670    LVal.setFrom(Info.Ctx, Subobj);
2671    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2672                                     AccessKind == AK_Increment ? 1 : -1))
2673      return false;
2674    LVal.moveInto(Subobj);
2675    return true;
2676  }
2677  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2678    llvm_unreachable("shouldn't encounter string elements here");
2679  }
2680};
2681} // end anonymous namespace
2682
2683/// Perform an increment or decrement on LVal.
2684static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2685                         QualType LValType, bool IsIncrement, APValue *Old) {
2686  if (LVal.Designator.Invalid)
2687    return false;
2688
2689  if (!Info.getLangOpts().CPlusPlus1y) {
2690    Info.Diag(E);
2691    return false;
2692  }
2693
2694  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2695  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2696  IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2697  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2698}
2699
2700/// Build an lvalue for the object argument of a member function call.
2701static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2702                                   LValue &This) {
2703  if (Object->getType()->isPointerType())
2704    return EvaluatePointer(Object, This, Info);
2705
2706  if (Object->isGLValue())
2707    return EvaluateLValue(Object, This, Info);
2708
2709  if (Object->getType()->isLiteralType(Info.Ctx))
2710    return EvaluateTemporary(Object, This, Info);
2711
2712  return false;
2713}
2714
2715/// HandleMemberPointerAccess - Evaluate a member access operation and build an
2716/// lvalue referring to the result.
2717///
2718/// \param Info - Information about the ongoing evaluation.
2719/// \param LV - An lvalue referring to the base of the member pointer.
2720/// \param RHS - The member pointer expression.
2721/// \param IncludeMember - Specifies whether the member itself is included in
2722///        the resulting LValue subobject designator. This is not possible when
2723///        creating a bound member function.
2724/// \return The field or method declaration to which the member pointer refers,
2725///         or 0 if evaluation fails.
2726static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2727                                                  QualType LVType,
2728                                                  LValue &LV,
2729                                                  const Expr *RHS,
2730                                                  bool IncludeMember = true) {
2731  MemberPtr MemPtr;
2732  if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2733    return 0;
2734
2735  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2736  // member value, the behavior is undefined.
2737  if (!MemPtr.getDecl()) {
2738    // FIXME: Specific diagnostic.
2739    Info.Diag(RHS);
2740    return 0;
2741  }
2742
2743  if (MemPtr.isDerivedMember()) {
2744    // This is a member of some derived class. Truncate LV appropriately.
2745    // The end of the derived-to-base path for the base object must match the
2746    // derived-to-base path for the member pointer.
2747    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2748        LV.Designator.Entries.size()) {
2749      Info.Diag(RHS);
2750      return 0;
2751    }
2752    unsigned PathLengthToMember =
2753        LV.Designator.Entries.size() - MemPtr.Path.size();
2754    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
2755      const CXXRecordDecl *LVDecl = getAsBaseClass(
2756          LV.Designator.Entries[PathLengthToMember + I]);
2757      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
2758      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
2759        Info.Diag(RHS);
2760        return 0;
2761      }
2762    }
2763
2764    // Truncate the lvalue to the appropriate derived class.
2765    if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
2766                            PathLengthToMember))
2767      return 0;
2768  } else if (!MemPtr.Path.empty()) {
2769    // Extend the LValue path with the member pointer's path.
2770    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
2771                                  MemPtr.Path.size() + IncludeMember);
2772
2773    // Walk down to the appropriate base class.
2774    if (const PointerType *PT = LVType->getAs<PointerType>())
2775      LVType = PT->getPointeeType();
2776    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
2777    assert(RD && "member pointer access on non-class-type expression");
2778    // The first class in the path is that of the lvalue.
2779    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
2780      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
2781      if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
2782        return 0;
2783      RD = Base;
2784    }
2785    // Finally cast to the class containing the member.
2786    if (!HandleLValueDirectBase(Info, RHS, LV, RD,
2787                                MemPtr.getContainingRecord()))
2788      return 0;
2789  }
2790
2791  // Add the member. Note that we cannot build bound member functions here.
2792  if (IncludeMember) {
2793    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
2794      if (!HandleLValueMember(Info, RHS, LV, FD))
2795        return 0;
2796    } else if (const IndirectFieldDecl *IFD =
2797                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
2798      if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
2799        return 0;
2800    } else {
2801      llvm_unreachable("can't construct reference to bound member function");
2802    }
2803  }
2804
2805  return MemPtr.getDecl();
2806}
2807
2808static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2809                                                  const BinaryOperator *BO,
2810                                                  LValue &LV,
2811                                                  bool IncludeMember = true) {
2812  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
2813
2814  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
2815    if (Info.keepEvaluatingAfterFailure()) {
2816      MemberPtr MemPtr;
2817      EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
2818    }
2819    return 0;
2820  }
2821
2822  return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
2823                                   BO->getRHS(), IncludeMember);
2824}
2825
2826/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
2827/// the provided lvalue, which currently refers to the base object.
2828static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2829                                    LValue &Result) {
2830  SubobjectDesignator &D = Result.Designator;
2831  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2832    return false;
2833
2834  QualType TargetQT = E->getType();
2835  if (const PointerType *PT = TargetQT->getAs<PointerType>())
2836    TargetQT = PT->getPointeeType();
2837
2838  // Check this cast lands within the final derived-to-base subobject path.
2839  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2840    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2841      << D.MostDerivedType << TargetQT;
2842    return false;
2843  }
2844
2845  // Check the type of the final cast. We don't need to check the path,
2846  // since a cast can only be formed if the path is unique.
2847  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2848  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2849  const CXXRecordDecl *FinalType;
2850  if (NewEntriesSize == D.MostDerivedPathLength)
2851    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2852  else
2853    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2854  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2855    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2856      << D.MostDerivedType << TargetQT;
2857    return false;
2858  }
2859
2860  // Truncate the lvalue to the appropriate derived class.
2861  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2862}
2863
2864namespace {
2865enum EvalStmtResult {
2866  /// Evaluation failed.
2867  ESR_Failed,
2868  /// Hit a 'return' statement.
2869  ESR_Returned,
2870  /// Evaluation succeeded.
2871  ESR_Succeeded,
2872  /// Hit a 'continue' statement.
2873  ESR_Continue,
2874  /// Hit a 'break' statement.
2875  ESR_Break,
2876  /// Still scanning for 'case' or 'default' statement.
2877  ESR_CaseNotFound
2878};
2879}
2880
2881static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
2882  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2883    // We don't need to evaluate the initializer for a static local.
2884    if (!VD->hasLocalStorage())
2885      return true;
2886
2887    LValue Result;
2888    Result.set(VD, Info.CurrentCall->Index);
2889    APValue &Val = Info.CurrentCall->Temporaries[VD];
2890
2891    if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
2892      // Wipe out any partially-computed value, to allow tracking that this
2893      // evaluation failed.
2894      Val = APValue();
2895      return false;
2896    }
2897  }
2898
2899  return true;
2900}
2901
2902/// Evaluate a condition (either a variable declaration or an expression).
2903static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
2904                         const Expr *Cond, bool &Result) {
2905  if (CondDecl && !EvaluateDecl(Info, CondDecl))
2906    return false;
2907  return EvaluateAsBooleanCondition(Cond, Result, Info);
2908}
2909
2910static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2911                                   const Stmt *S, const SwitchCase *SC = 0);
2912
2913/// Evaluate the body of a loop, and translate the result as appropriate.
2914static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
2915                                       const Stmt *Body,
2916                                       const SwitchCase *Case = 0) {
2917  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
2918  case ESR_Break:
2919    return ESR_Succeeded;
2920  case ESR_Succeeded:
2921  case ESR_Continue:
2922    return ESR_Continue;
2923  case ESR_Failed:
2924  case ESR_Returned:
2925  case ESR_CaseNotFound:
2926    return ESR;
2927  }
2928  llvm_unreachable("Invalid EvalStmtResult!");
2929}
2930
2931/// Evaluate a switch statement.
2932static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
2933                                     const SwitchStmt *SS) {
2934  // Evaluate the switch condition.
2935  if (SS->getConditionVariable() &&
2936      !EvaluateDecl(Info, SS->getConditionVariable()))
2937    return ESR_Failed;
2938  APSInt Value;
2939  if (!EvaluateInteger(SS->getCond(), Value, Info))
2940    return ESR_Failed;
2941
2942  // Find the switch case corresponding to the value of the condition.
2943  // FIXME: Cache this lookup.
2944  const SwitchCase *Found = 0;
2945  for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
2946       SC = SC->getNextSwitchCase()) {
2947    if (isa<DefaultStmt>(SC)) {
2948      Found = SC;
2949      continue;
2950    }
2951
2952    const CaseStmt *CS = cast<CaseStmt>(SC);
2953    APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
2954    APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
2955                              : LHS;
2956    if (LHS <= Value && Value <= RHS) {
2957      Found = SC;
2958      break;
2959    }
2960  }
2961
2962  if (!Found)
2963    return ESR_Succeeded;
2964
2965  // Search the switch body for the switch case and evaluate it from there.
2966  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
2967  case ESR_Break:
2968    return ESR_Succeeded;
2969  case ESR_Succeeded:
2970  case ESR_Continue:
2971  case ESR_Failed:
2972  case ESR_Returned:
2973    return ESR;
2974  case ESR_CaseNotFound:
2975    llvm_unreachable("couldn't find switch case");
2976  }
2977  llvm_unreachable("Invalid EvalStmtResult!");
2978}
2979
2980// Evaluate a statement.
2981static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2982                                   const Stmt *S, const SwitchCase *Case) {
2983  if (!Info.nextStep(S))
2984    return ESR_Failed;
2985
2986  // If we're hunting down a 'case' or 'default' label, recurse through
2987  // substatements until we hit the label.
2988  if (Case) {
2989    // FIXME: We don't start the lifetime of objects whose initialization we
2990    // jump over. However, such objects must be of class type with a trivial
2991    // default constructor that initialize all subobjects, so must be empty,
2992    // so this almost never matters.
2993    switch (S->getStmtClass()) {
2994    case Stmt::CompoundStmtClass:
2995      // FIXME: Precompute which substatement of a compound statement we
2996      // would jump to, and go straight there rather than performing a
2997      // linear scan each time.
2998    case Stmt::LabelStmtClass:
2999    case Stmt::AttributedStmtClass:
3000    case Stmt::DoStmtClass:
3001      break;
3002
3003    case Stmt::CaseStmtClass:
3004    case Stmt::DefaultStmtClass:
3005      if (Case == S)
3006        Case = 0;
3007      break;
3008
3009    case Stmt::IfStmtClass: {
3010      // FIXME: Precompute which side of an 'if' we would jump to, and go
3011      // straight there rather than scanning both sides.
3012      const IfStmt *IS = cast<IfStmt>(S);
3013      EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3014      if (ESR != ESR_CaseNotFound || !IS->getElse())
3015        return ESR;
3016      return EvaluateStmt(Result, Info, IS->getElse(), Case);
3017    }
3018
3019    case Stmt::WhileStmtClass: {
3020      EvalStmtResult ESR =
3021          EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3022      if (ESR != ESR_Continue)
3023        return ESR;
3024      break;
3025    }
3026
3027    case Stmt::ForStmtClass: {
3028      const ForStmt *FS = cast<ForStmt>(S);
3029      EvalStmtResult ESR =
3030          EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3031      if (ESR != ESR_Continue)
3032        return ESR;
3033      if (FS->getInc() && !EvaluateIgnoredValue(Info, FS->getInc()))
3034        return ESR_Failed;
3035      break;
3036    }
3037
3038    case Stmt::DeclStmtClass:
3039      // FIXME: If the variable has initialization that can't be jumped over,
3040      // bail out of any immediately-surrounding compound-statement too.
3041    default:
3042      return ESR_CaseNotFound;
3043    }
3044  }
3045
3046  // FIXME: Mark all temporaries in the current frame as destroyed at
3047  // the end of each full-expression.
3048  switch (S->getStmtClass()) {
3049  default:
3050    if (const Expr *E = dyn_cast<Expr>(S)) {
3051      // Don't bother evaluating beyond an expression-statement which couldn't
3052      // be evaluated.
3053      if (!EvaluateIgnoredValue(Info, E))
3054        return ESR_Failed;
3055      return ESR_Succeeded;
3056    }
3057
3058    Info.Diag(S->getLocStart());
3059    return ESR_Failed;
3060
3061  case Stmt::NullStmtClass:
3062    return ESR_Succeeded;
3063
3064  case Stmt::DeclStmtClass: {
3065    const DeclStmt *DS = cast<DeclStmt>(S);
3066    for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
3067           DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt)
3068      if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
3069        return ESR_Failed;
3070    return ESR_Succeeded;
3071  }
3072
3073  case Stmt::ReturnStmtClass: {
3074    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3075    if (RetExpr && !Evaluate(Result, Info, RetExpr))
3076      return ESR_Failed;
3077    return ESR_Returned;
3078  }
3079
3080  case Stmt::CompoundStmtClass: {
3081    const CompoundStmt *CS = cast<CompoundStmt>(S);
3082    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
3083           BE = CS->body_end(); BI != BE; ++BI) {
3084      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
3085      if (ESR == ESR_Succeeded)
3086        Case = 0;
3087      else if (ESR != ESR_CaseNotFound)
3088        return ESR;
3089    }
3090    return Case ? ESR_CaseNotFound : ESR_Succeeded;
3091  }
3092
3093  case Stmt::IfStmtClass: {
3094    const IfStmt *IS = cast<IfStmt>(S);
3095
3096    // Evaluate the condition, as either a var decl or as an expression.
3097    bool Cond;
3098    if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3099      return ESR_Failed;
3100
3101    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3102      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3103      if (ESR != ESR_Succeeded)
3104        return ESR;
3105    }
3106    return ESR_Succeeded;
3107  }
3108
3109  case Stmt::WhileStmtClass: {
3110    const WhileStmt *WS = cast<WhileStmt>(S);
3111    while (true) {
3112      bool Continue;
3113      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3114                        Continue))
3115        return ESR_Failed;
3116      if (!Continue)
3117        break;
3118
3119      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3120      if (ESR != ESR_Continue)
3121        return ESR;
3122    }
3123    return ESR_Succeeded;
3124  }
3125
3126  case Stmt::DoStmtClass: {
3127    const DoStmt *DS = cast<DoStmt>(S);
3128    bool Continue;
3129    do {
3130      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3131      if (ESR != ESR_Continue)
3132        return ESR;
3133      Case = 0;
3134
3135      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3136        return ESR_Failed;
3137    } while (Continue);
3138    return ESR_Succeeded;
3139  }
3140
3141  case Stmt::ForStmtClass: {
3142    const ForStmt *FS = cast<ForStmt>(S);
3143    if (FS->getInit()) {
3144      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3145      if (ESR != ESR_Succeeded)
3146        return ESR;
3147    }
3148    while (true) {
3149      bool Continue = true;
3150      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3151                                         FS->getCond(), Continue))
3152        return ESR_Failed;
3153      if (!Continue)
3154        break;
3155
3156      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3157      if (ESR != ESR_Continue)
3158        return ESR;
3159
3160      if (FS->getInc() && !EvaluateIgnoredValue(Info, FS->getInc()))
3161        return ESR_Failed;
3162    }
3163    return ESR_Succeeded;
3164  }
3165
3166  case Stmt::CXXForRangeStmtClass: {
3167    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3168
3169    // Initialize the __range variable.
3170    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3171    if (ESR != ESR_Succeeded)
3172      return ESR;
3173
3174    // Create the __begin and __end iterators.
3175    ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3176    if (ESR != ESR_Succeeded)
3177      return ESR;
3178
3179    while (true) {
3180      // Condition: __begin != __end.
3181      bool Continue = true;
3182      if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3183        return ESR_Failed;
3184      if (!Continue)
3185        break;
3186
3187      // User's variable declaration, initialized by *__begin.
3188      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3189      if (ESR != ESR_Succeeded)
3190        return ESR;
3191
3192      // Loop body.
3193      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3194      if (ESR != ESR_Continue)
3195        return ESR;
3196
3197      // Increment: ++__begin
3198      if (!EvaluateIgnoredValue(Info, FS->getInc()))
3199        return ESR_Failed;
3200    }
3201
3202    return ESR_Succeeded;
3203  }
3204
3205  case Stmt::SwitchStmtClass:
3206    return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3207
3208  case Stmt::ContinueStmtClass:
3209    return ESR_Continue;
3210
3211  case Stmt::BreakStmtClass:
3212    return ESR_Break;
3213
3214  case Stmt::LabelStmtClass:
3215    return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3216
3217  case Stmt::AttributedStmtClass:
3218    // As a general principle, C++11 attributes can be ignored without
3219    // any semantic impact.
3220    return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3221                        Case);
3222
3223  case Stmt::CaseStmtClass:
3224  case Stmt::DefaultStmtClass:
3225    return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3226  }
3227}
3228
3229/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3230/// default constructor. If so, we'll fold it whether or not it's marked as
3231/// constexpr. If it is marked as constexpr, we will never implicitly define it,
3232/// so we need special handling.
3233static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3234                                           const CXXConstructorDecl *CD,
3235                                           bool IsValueInitialization) {
3236  if (!CD->isTrivial() || !CD->isDefaultConstructor())
3237    return false;
3238
3239  // Value-initialization does not call a trivial default constructor, so such a
3240  // call is a core constant expression whether or not the constructor is
3241  // constexpr.
3242  if (!CD->isConstexpr() && !IsValueInitialization) {
3243    if (Info.getLangOpts().CPlusPlus11) {
3244      // FIXME: If DiagDecl is an implicitly-declared special member function,
3245      // we should be much more explicit about why it's not constexpr.
3246      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3247        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3248      Info.Note(CD->getLocation(), diag::note_declared_at);
3249    } else {
3250      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3251    }
3252  }
3253  return true;
3254}
3255
3256/// CheckConstexprFunction - Check that a function can be called in a constant
3257/// expression.
3258static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3259                                   const FunctionDecl *Declaration,
3260                                   const FunctionDecl *Definition) {
3261  // Potential constant expressions can contain calls to declared, but not yet
3262  // defined, constexpr functions.
3263  if (Info.CheckingPotentialConstantExpression && !Definition &&
3264      Declaration->isConstexpr())
3265    return false;
3266
3267  // Bail out with no diagnostic if the function declaration itself is invalid.
3268  // We will have produced a relevant diagnostic while parsing it.
3269  if (Declaration->isInvalidDecl())
3270    return false;
3271
3272  // Can we evaluate this function call?
3273  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3274    return true;
3275
3276  if (Info.getLangOpts().CPlusPlus11) {
3277    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3278    // FIXME: If DiagDecl is an implicitly-declared special member function, we
3279    // should be much more explicit about why it's not constexpr.
3280    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3281      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3282      << DiagDecl;
3283    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3284  } else {
3285    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3286  }
3287  return false;
3288}
3289
3290namespace {
3291typedef SmallVector<APValue, 8> ArgVector;
3292}
3293
3294/// EvaluateArgs - Evaluate the arguments to a function call.
3295static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3296                         EvalInfo &Info) {
3297  bool Success = true;
3298  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3299       I != E; ++I) {
3300    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3301      // If we're checking for a potential constant expression, evaluate all
3302      // initializers even if some of them fail.
3303      if (!Info.keepEvaluatingAfterFailure())
3304        return false;
3305      Success = false;
3306    }
3307  }
3308  return Success;
3309}
3310
3311/// Evaluate a function call.
3312static bool HandleFunctionCall(SourceLocation CallLoc,
3313                               const FunctionDecl *Callee, const LValue *This,
3314                               ArrayRef<const Expr*> Args, const Stmt *Body,
3315                               EvalInfo &Info, APValue &Result) {
3316  ArgVector ArgValues(Args.size());
3317  if (!EvaluateArgs(Args, ArgValues, Info))
3318    return false;
3319
3320  if (!Info.CheckCallLimit(CallLoc))
3321    return false;
3322
3323  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3324
3325  // For a trivial copy or move assignment, perform an APValue copy. This is
3326  // essential for unions, where the operations performed by the assignment
3327  // operator cannot be represented as statements.
3328  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3329  if (MD && MD->isDefaulted() && MD->isTrivial()) {
3330    assert(This &&
3331           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3332    LValue RHS;
3333    RHS.setFrom(Info.Ctx, ArgValues[0]);
3334    APValue RHSValue;
3335    if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3336                                        RHS, RHSValue))
3337      return false;
3338    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3339                          RHSValue))
3340      return false;
3341    This->moveInto(Result);
3342    return true;
3343  }
3344
3345  EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3346  if (ESR == ESR_Succeeded) {
3347    if (Callee->getResultType()->isVoidType())
3348      return true;
3349    Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3350  }
3351  return ESR == ESR_Returned;
3352}
3353
3354/// Evaluate a constructor call.
3355static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3356                                  ArrayRef<const Expr*> Args,
3357                                  const CXXConstructorDecl *Definition,
3358                                  EvalInfo &Info, APValue &Result) {
3359  ArgVector ArgValues(Args.size());
3360  if (!EvaluateArgs(Args, ArgValues, Info))
3361    return false;
3362
3363  if (!Info.CheckCallLimit(CallLoc))
3364    return false;
3365
3366  const CXXRecordDecl *RD = Definition->getParent();
3367  if (RD->getNumVBases()) {
3368    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3369    return false;
3370  }
3371
3372  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3373
3374  // If it's a delegating constructor, just delegate.
3375  if (Definition->isDelegatingConstructor()) {
3376    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3377    if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3378      return false;
3379    return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3380  }
3381
3382  // For a trivial copy or move constructor, perform an APValue copy. This is
3383  // essential for unions, where the operations performed by the constructor
3384  // cannot be represented by ctor-initializers.
3385  if (Definition->isDefaulted() &&
3386      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3387       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3388    LValue RHS;
3389    RHS.setFrom(Info.Ctx, ArgValues[0]);
3390    return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3391                                          RHS, Result);
3392  }
3393
3394  // Reserve space for the struct members.
3395  if (!RD->isUnion() && Result.isUninit())
3396    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3397                     std::distance(RD->field_begin(), RD->field_end()));
3398
3399  if (RD->isInvalidDecl()) return false;
3400  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3401
3402  bool Success = true;
3403  unsigned BasesSeen = 0;
3404#ifndef NDEBUG
3405  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3406#endif
3407  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
3408       E = Definition->init_end(); I != E; ++I) {
3409    LValue Subobject = This;
3410    APValue *Value = &Result;
3411
3412    // Determine the subobject to initialize.
3413    if ((*I)->isBaseInitializer()) {
3414      QualType BaseType((*I)->getBaseClass(), 0);
3415#ifndef NDEBUG
3416      // Non-virtual base classes are initialized in the order in the class
3417      // definition. We have already checked for virtual base classes.
3418      assert(!BaseIt->isVirtual() && "virtual base for literal type");
3419      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3420             "base class initializers not in expected order");
3421      ++BaseIt;
3422#endif
3423      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
3424                                  BaseType->getAsCXXRecordDecl(), &Layout))
3425        return false;
3426      Value = &Result.getStructBase(BasesSeen++);
3427    } else if (FieldDecl *FD = (*I)->getMember()) {
3428      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
3429        return false;
3430      if (RD->isUnion()) {
3431        Result = APValue(FD);
3432        Value = &Result.getUnionValue();
3433      } else {
3434        Value = &Result.getStructField(FD->getFieldIndex());
3435      }
3436    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
3437      // Walk the indirect field decl's chain to find the object to initialize,
3438      // and make sure we've initialized every step along it.
3439      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
3440                                             CE = IFD->chain_end();
3441           C != CE; ++C) {
3442        FieldDecl *FD = cast<FieldDecl>(*C);
3443        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3444        // Switch the union field if it differs. This happens if we had
3445        // preceding zero-initialization, and we're now initializing a union
3446        // subobject other than the first.
3447        // FIXME: In this case, the values of the other subobjects are
3448        // specified, since zero-initialization sets all padding bits to zero.
3449        if (Value->isUninit() ||
3450            (Value->isUnion() && Value->getUnionField() != FD)) {
3451          if (CD->isUnion())
3452            *Value = APValue(FD);
3453          else
3454            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3455                             std::distance(CD->field_begin(), CD->field_end()));
3456        }
3457        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
3458          return false;
3459        if (CD->isUnion())
3460          Value = &Value->getUnionValue();
3461        else
3462          Value = &Value->getStructField(FD->getFieldIndex());
3463      }
3464    } else {
3465      llvm_unreachable("unknown base initializer kind");
3466    }
3467
3468    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit())) {
3469      // If we're checking for a potential constant expression, evaluate all
3470      // initializers even if some of them fail.
3471      if (!Info.keepEvaluatingAfterFailure())
3472        return false;
3473      Success = false;
3474    }
3475  }
3476
3477  return Success &&
3478         EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3479}
3480
3481//===----------------------------------------------------------------------===//
3482// Generic Evaluation
3483//===----------------------------------------------------------------------===//
3484namespace {
3485
3486// FIXME: RetTy is always bool. Remove it.
3487template <class Derived, typename RetTy=bool>
3488class ExprEvaluatorBase
3489  : public ConstStmtVisitor<Derived, RetTy> {
3490private:
3491  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
3492    return static_cast<Derived*>(this)->Success(V, E);
3493  }
3494  RetTy DerivedZeroInitialization(const Expr *E) {
3495    return static_cast<Derived*>(this)->ZeroInitialization(E);
3496  }
3497
3498  // Check whether a conditional operator with a non-constant condition is a
3499  // potential constant expression. If neither arm is a potential constant
3500  // expression, then the conditional operator is not either.
3501  template<typename ConditionalOperator>
3502  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3503    assert(Info.CheckingPotentialConstantExpression);
3504
3505    // Speculatively evaluate both arms.
3506    {
3507      SmallVector<PartialDiagnosticAt, 8> Diag;
3508      SpeculativeEvaluationRAII Speculate(Info, &Diag);
3509
3510      StmtVisitorTy::Visit(E->getFalseExpr());
3511      if (Diag.empty())
3512        return;
3513
3514      Diag.clear();
3515      StmtVisitorTy::Visit(E->getTrueExpr());
3516      if (Diag.empty())
3517        return;
3518    }
3519
3520    Error(E, diag::note_constexpr_conditional_never_const);
3521  }
3522
3523
3524  template<typename ConditionalOperator>
3525  bool HandleConditionalOperator(const ConditionalOperator *E) {
3526    bool BoolResult;
3527    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3528      if (Info.CheckingPotentialConstantExpression)
3529        CheckPotentialConstantConditional(E);
3530      return false;
3531    }
3532
3533    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3534    return StmtVisitorTy::Visit(EvalExpr);
3535  }
3536
3537protected:
3538  EvalInfo &Info;
3539  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
3540  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3541
3542  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3543    return Info.CCEDiag(E, D);
3544  }
3545
3546  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
3547
3548public:
3549  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3550
3551  EvalInfo &getEvalInfo() { return Info; }
3552
3553  /// Report an evaluation error. This should only be called when an error is
3554  /// first discovered. When propagating an error, just return false.
3555  bool Error(const Expr *E, diag::kind D) {
3556    Info.Diag(E, D);
3557    return false;
3558  }
3559  bool Error(const Expr *E) {
3560    return Error(E, diag::note_invalid_subexpr_in_const_expr);
3561  }
3562
3563  RetTy VisitStmt(const Stmt *) {
3564    llvm_unreachable("Expression evaluator should not be called on stmts");
3565  }
3566  RetTy VisitExpr(const Expr *E) {
3567    return Error(E);
3568  }
3569
3570  RetTy VisitParenExpr(const ParenExpr *E)
3571    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3572  RetTy VisitUnaryExtension(const UnaryOperator *E)
3573    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3574  RetTy VisitUnaryPlus(const UnaryOperator *E)
3575    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3576  RetTy VisitChooseExpr(const ChooseExpr *E)
3577    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
3578  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3579    { return StmtVisitorTy::Visit(E->getResultExpr()); }
3580  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3581    { return StmtVisitorTy::Visit(E->getReplacement()); }
3582  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3583    { return StmtVisitorTy::Visit(E->getExpr()); }
3584  RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
3585    { return StmtVisitorTy::Visit(E->getExpr()); }
3586  // We cannot create any objects for which cleanups are required, so there is
3587  // nothing to do here; all cleanups must come from unevaluated subexpressions.
3588  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
3589    { return StmtVisitorTy::Visit(E->getSubExpr()); }
3590
3591  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3592    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3593    return static_cast<Derived*>(this)->VisitCastExpr(E);
3594  }
3595  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3596    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3597    return static_cast<Derived*>(this)->VisitCastExpr(E);
3598  }
3599
3600  RetTy VisitBinaryOperator(const BinaryOperator *E) {
3601    switch (E->getOpcode()) {
3602    default:
3603      return Error(E);
3604
3605    case BO_Comma:
3606      VisitIgnoredValue(E->getLHS());
3607      return StmtVisitorTy::Visit(E->getRHS());
3608
3609    case BO_PtrMemD:
3610    case BO_PtrMemI: {
3611      LValue Obj;
3612      if (!HandleMemberPointerAccess(Info, E, Obj))
3613        return false;
3614      APValue Result;
3615      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3616        return false;
3617      return DerivedSuccess(Result, E);
3618    }
3619    }
3620  }
3621
3622  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3623    // Evaluate and cache the common expression. We treat it as a temporary,
3624    // even though it's not quite the same thing.
3625    if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
3626                  Info, E->getCommon()))
3627      return false;
3628
3629    return HandleConditionalOperator(E);
3630  }
3631
3632  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
3633    bool IsBcpCall = false;
3634    // If the condition (ignoring parens) is a __builtin_constant_p call,
3635    // the result is a constant expression if it can be folded without
3636    // side-effects. This is an important GNU extension. See GCC PR38377
3637    // for discussion.
3638    if (const CallExpr *CallCE =
3639          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3640      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
3641        IsBcpCall = true;
3642
3643    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3644    // constant expression; we can't check whether it's potentially foldable.
3645    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
3646      return false;
3647
3648    FoldConstant Fold(Info);
3649
3650    if (!HandleConditionalOperator(E))
3651      return false;
3652
3653    if (IsBcpCall)
3654      Fold.Fold(Info);
3655
3656    return true;
3657  }
3658
3659  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3660    APValue &Value = Info.CurrentCall->Temporaries[E];
3661    if (Value.isUninit()) {
3662      const Expr *Source = E->getSourceExpr();
3663      if (!Source)
3664        return Error(E);
3665      if (Source == E) { // sanity checking.
3666        assert(0 && "OpaqueValueExpr recursively refers to itself");
3667        return Error(E);
3668      }
3669      return StmtVisitorTy::Visit(Source);
3670    }
3671    return DerivedSuccess(Value, E);
3672  }
3673
3674  RetTy VisitCallExpr(const CallExpr *E) {
3675    const Expr *Callee = E->getCallee()->IgnoreParens();
3676    QualType CalleeType = Callee->getType();
3677
3678    const FunctionDecl *FD = 0;
3679    LValue *This = 0, ThisVal;
3680    ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3681    bool HasQualifier = false;
3682
3683    // Extract function decl and 'this' pointer from the callee.
3684    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3685      const ValueDecl *Member = 0;
3686      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3687        // Explicit bound member calls, such as x.f() or p->g();
3688        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3689          return false;
3690        Member = ME->getMemberDecl();
3691        This = &ThisVal;
3692        HasQualifier = ME->hasQualifier();
3693      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3694        // Indirect bound member calls ('.*' or '->*').
3695        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3696        if (!Member) return false;
3697        This = &ThisVal;
3698      } else
3699        return Error(Callee);
3700
3701      FD = dyn_cast<FunctionDecl>(Member);
3702      if (!FD)
3703        return Error(Callee);
3704    } else if (CalleeType->isFunctionPointerType()) {
3705      LValue Call;
3706      if (!EvaluatePointer(Callee, Call, Info))
3707        return false;
3708
3709      if (!Call.getLValueOffset().isZero())
3710        return Error(Callee);
3711      FD = dyn_cast_or_null<FunctionDecl>(
3712                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
3713      if (!FD)
3714        return Error(Callee);
3715
3716      // Overloaded operator calls to member functions are represented as normal
3717      // calls with '*this' as the first argument.
3718      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3719      if (MD && !MD->isStatic()) {
3720        // FIXME: When selecting an implicit conversion for an overloaded
3721        // operator delete, we sometimes try to evaluate calls to conversion
3722        // operators without a 'this' parameter!
3723        if (Args.empty())
3724          return Error(E);
3725
3726        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
3727          return false;
3728        This = &ThisVal;
3729        Args = Args.slice(1);
3730      }
3731
3732      // Don't call function pointers which have been cast to some other type.
3733      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
3734        return Error(E);
3735    } else
3736      return Error(E);
3737
3738    if (This && !This->checkSubobject(Info, E, CSK_This))
3739      return false;
3740
3741    // DR1358 allows virtual constexpr functions in some cases. Don't allow
3742    // calls to such functions in constant expressions.
3743    if (This && !HasQualifier &&
3744        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
3745      return Error(E, diag::note_constexpr_virtual_call);
3746
3747    const FunctionDecl *Definition = 0;
3748    Stmt *Body = FD->getBody(Definition);
3749    APValue Result;
3750
3751    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
3752        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
3753                            Info, Result))
3754      return false;
3755
3756    return DerivedSuccess(Result, E);
3757  }
3758
3759  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
3760    return StmtVisitorTy::Visit(E->getInitializer());
3761  }
3762  RetTy VisitInitListExpr(const InitListExpr *E) {
3763    if (E->getNumInits() == 0)
3764      return DerivedZeroInitialization(E);
3765    if (E->getNumInits() == 1)
3766      return StmtVisitorTy::Visit(E->getInit(0));
3767    return Error(E);
3768  }
3769  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
3770    return DerivedZeroInitialization(E);
3771  }
3772  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
3773    return DerivedZeroInitialization(E);
3774  }
3775  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
3776    return DerivedZeroInitialization(E);
3777  }
3778
3779  /// A member expression where the object is a prvalue is itself a prvalue.
3780  RetTy VisitMemberExpr(const MemberExpr *E) {
3781    assert(!E->isArrow() && "missing call to bound member function?");
3782
3783    APValue Val;
3784    if (!Evaluate(Val, Info, E->getBase()))
3785      return false;
3786
3787    QualType BaseTy = E->getBase()->getType();
3788
3789    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
3790    if (!FD) return Error(E);
3791    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
3792    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
3793           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
3794
3795    CompleteObject Obj(&Val, BaseTy);
3796    SubobjectDesignator Designator(BaseTy);
3797    Designator.addDeclUnchecked(FD);
3798
3799    APValue Result;
3800    return extractSubobject(Info, E, Obj, Designator, Result) &&
3801           DerivedSuccess(Result, E);
3802  }
3803
3804  RetTy VisitCastExpr(const CastExpr *E) {
3805    switch (E->getCastKind()) {
3806    default:
3807      break;
3808
3809    case CK_AtomicToNonAtomic: {
3810      APValue AtomicVal;
3811      if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
3812        return false;
3813      return DerivedSuccess(AtomicVal, E);
3814    }
3815
3816    case CK_NoOp:
3817    case CK_UserDefinedConversion:
3818      return StmtVisitorTy::Visit(E->getSubExpr());
3819
3820    case CK_LValueToRValue: {
3821      LValue LVal;
3822      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
3823        return false;
3824      APValue RVal;
3825      // Note, we use the subexpression's type in order to retain cv-qualifiers.
3826      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
3827                                          LVal, RVal))
3828        return false;
3829      return DerivedSuccess(RVal, E);
3830    }
3831    }
3832
3833    return Error(E);
3834  }
3835
3836  RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
3837    return VisitUnaryPostIncDec(UO);
3838  }
3839  RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
3840    return VisitUnaryPostIncDec(UO);
3841  }
3842  RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
3843    if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
3844      return Error(UO);
3845
3846    LValue LVal;
3847    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
3848      return false;
3849    APValue RVal;
3850    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
3851                      UO->isIncrementOp(), &RVal))
3852      return false;
3853    return DerivedSuccess(RVal, UO);
3854  }
3855
3856  /// Visit a value which is evaluated, but whose value is ignored.
3857  void VisitIgnoredValue(const Expr *E) {
3858    EvaluateIgnoredValue(Info, E);
3859  }
3860};
3861
3862}
3863
3864//===----------------------------------------------------------------------===//
3865// Common base class for lvalue and temporary evaluation.
3866//===----------------------------------------------------------------------===//
3867namespace {
3868template<class Derived>
3869class LValueExprEvaluatorBase
3870  : public ExprEvaluatorBase<Derived, bool> {
3871protected:
3872  LValue &Result;
3873  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
3874  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
3875
3876  bool Success(APValue::LValueBase B) {
3877    Result.set(B);
3878    return true;
3879  }
3880
3881public:
3882  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
3883    ExprEvaluatorBaseTy(Info), Result(Result) {}
3884
3885  bool Success(const APValue &V, const Expr *E) {
3886    Result.setFrom(this->Info.Ctx, V);
3887    return true;
3888  }
3889
3890  bool VisitMemberExpr(const MemberExpr *E) {
3891    // Handle non-static data members.
3892    QualType BaseTy;
3893    if (E->isArrow()) {
3894      if (!EvaluatePointer(E->getBase(), Result, this->Info))
3895        return false;
3896      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
3897    } else if (E->getBase()->isRValue()) {
3898      assert(E->getBase()->getType()->isRecordType());
3899      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
3900        return false;
3901      BaseTy = E->getBase()->getType();
3902    } else {
3903      if (!this->Visit(E->getBase()))
3904        return false;
3905      BaseTy = E->getBase()->getType();
3906    }
3907
3908    const ValueDecl *MD = E->getMemberDecl();
3909    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
3910      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
3911             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
3912      (void)BaseTy;
3913      if (!HandleLValueMember(this->Info, E, Result, FD))
3914        return false;
3915    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
3916      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
3917        return false;
3918    } else
3919      return this->Error(E);
3920
3921    if (MD->getType()->isReferenceType()) {
3922      APValue RefValue;
3923      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
3924                                          RefValue))
3925        return false;
3926      return Success(RefValue, E);
3927    }
3928    return true;
3929  }
3930
3931  bool VisitBinaryOperator(const BinaryOperator *E) {
3932    switch (E->getOpcode()) {
3933    default:
3934      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3935
3936    case BO_PtrMemD:
3937    case BO_PtrMemI:
3938      return HandleMemberPointerAccess(this->Info, E, Result);
3939    }
3940  }
3941
3942  bool VisitCastExpr(const CastExpr *E) {
3943    switch (E->getCastKind()) {
3944    default:
3945      return ExprEvaluatorBaseTy::VisitCastExpr(E);
3946
3947    case CK_DerivedToBase:
3948    case CK_UncheckedDerivedToBase:
3949      if (!this->Visit(E->getSubExpr()))
3950        return false;
3951
3952      // Now figure out the necessary offset to add to the base LV to get from
3953      // the derived class to the base class.
3954      return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
3955                                  Result);
3956    }
3957  }
3958};
3959}
3960
3961//===----------------------------------------------------------------------===//
3962// LValue Evaluation
3963//
3964// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
3965// function designators (in C), decl references to void objects (in C), and
3966// temporaries (if building with -Wno-address-of-temporary).
3967//
3968// LValue evaluation produces values comprising a base expression of one of the
3969// following types:
3970// - Declarations
3971//  * VarDecl
3972//  * FunctionDecl
3973// - Literals
3974//  * CompoundLiteralExpr in C
3975//  * StringLiteral
3976//  * CXXTypeidExpr
3977//  * PredefinedExpr
3978//  * ObjCStringLiteralExpr
3979//  * ObjCEncodeExpr
3980//  * AddrLabelExpr
3981//  * BlockExpr
3982//  * CallExpr for a MakeStringConstant builtin
3983// - Locals and temporaries
3984//  * MaterializeTemporaryExpr
3985//  * Any Expr, with a CallIndex indicating the function in which the temporary
3986//    was evaluated, for cases where the MaterializeTemporaryExpr is missing
3987//    from the AST (FIXME).
3988//  * A MaterializeTemporaryExpr that has static storage duration, with no
3989//    CallIndex, for a lifetime-extended temporary.
3990// plus an offset in bytes.
3991//===----------------------------------------------------------------------===//
3992namespace {
3993class LValueExprEvaluator
3994  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
3995public:
3996  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
3997    LValueExprEvaluatorBaseTy(Info, Result) {}
3998
3999  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4000  bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4001
4002  bool VisitDeclRefExpr(const DeclRefExpr *E);
4003  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4004  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4005  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4006  bool VisitMemberExpr(const MemberExpr *E);
4007  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
4008  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4009  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4010  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4011  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4012  bool VisitUnaryDeref(const UnaryOperator *E);
4013  bool VisitUnaryReal(const UnaryOperator *E);
4014  bool VisitUnaryImag(const UnaryOperator *E);
4015  bool VisitUnaryPreInc(const UnaryOperator *UO) {
4016    return VisitUnaryPreIncDec(UO);
4017  }
4018  bool VisitUnaryPreDec(const UnaryOperator *UO) {
4019    return VisitUnaryPreIncDec(UO);
4020  }
4021  bool VisitBinAssign(const BinaryOperator *BO);
4022  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4023
4024  bool VisitCastExpr(const CastExpr *E) {
4025    switch (E->getCastKind()) {
4026    default:
4027      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4028
4029    case CK_LValueBitCast:
4030      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4031      if (!Visit(E->getSubExpr()))
4032        return false;
4033      Result.Designator.setInvalid();
4034      return true;
4035
4036    case CK_BaseToDerived:
4037      if (!Visit(E->getSubExpr()))
4038        return false;
4039      return HandleBaseToDerivedCast(Info, E, Result);
4040    }
4041  }
4042};
4043} // end anonymous namespace
4044
4045/// Evaluate an expression as an lvalue. This can be legitimately called on
4046/// expressions which are not glvalues, in two cases:
4047///  * function designators in C, and
4048///  * "extern void" objects
4049static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4050  assert(E->isGLValue() || E->getType()->isFunctionType() ||
4051         E->getType()->isVoidType());
4052  return LValueExprEvaluator(Info, Result).Visit(E);
4053}
4054
4055bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4056  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4057    return Success(FD);
4058  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4059    return VisitVarDecl(E, VD);
4060  return Error(E);
4061}
4062
4063bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4064  CallStackFrame *Frame = 0;
4065  if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4066    Frame = Info.CurrentCall;
4067
4068  if (!VD->getType()->isReferenceType()) {
4069    if (Frame) {
4070      Result.set(VD, Frame->Index);
4071      return true;
4072    }
4073    return Success(VD);
4074  }
4075
4076  APValue *V;
4077  if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4078    return false;
4079  return Success(*V, E);
4080}
4081
4082bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4083    const MaterializeTemporaryExpr *E) {
4084  // Walk through the expression to find the materialized temporary itself.
4085  SmallVector<const Expr *, 2> CommaLHSs;
4086  SmallVector<SubobjectAdjustment, 2> Adjustments;
4087  const Expr *Inner = E->GetTemporaryExpr()->
4088      skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4089
4090  // If we passed any comma operators, evaluate their LHSs.
4091  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4092    if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4093      return false;
4094
4095  // A materialized temporary with static storage duration can appear within the
4096  // result of a constant expression evaluation, so we need to preserve its
4097  // value for use outside this evaluation.
4098  APValue *Value;
4099  if (E->getStorageDuration() == SD_Static) {
4100    Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4101    *Value = APValue();
4102    Result.set(E);
4103  } else {
4104    Value = &Info.CurrentCall->Temporaries[E];
4105    Result.set(E, Info.CurrentCall->Index);
4106  }
4107
4108  QualType Type = Inner->getType();
4109
4110  // Materialize the temporary itself.
4111  if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4112      (E->getStorageDuration() == SD_Static &&
4113       !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4114    *Value = APValue();
4115    return false;
4116  }
4117
4118  // Adjust our lvalue to refer to the desired subobject.
4119  for (unsigned I = Adjustments.size(); I != 0; /**/) {
4120    --I;
4121    switch (Adjustments[I].Kind) {
4122    case SubobjectAdjustment::DerivedToBaseAdjustment:
4123      if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4124                                Type, Result))
4125        return false;
4126      Type = Adjustments[I].DerivedToBase.BasePath->getType();
4127      break;
4128
4129    case SubobjectAdjustment::FieldAdjustment:
4130      if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4131        return false;
4132      Type = Adjustments[I].Field->getType();
4133      break;
4134
4135    case SubobjectAdjustment::MemberPointerAdjustment:
4136      if (!HandleMemberPointerAccess(this->Info, Type, Result,
4137                                     Adjustments[I].Ptr.RHS))
4138        return false;
4139      Type = Adjustments[I].Ptr.MPT->getPointeeType();
4140      break;
4141    }
4142  }
4143
4144  return true;
4145}
4146
4147bool
4148LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4149  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4150  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4151  // only see this when folding in C, so there's no standard to follow here.
4152  return Success(E);
4153}
4154
4155bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4156  if (!E->isPotentiallyEvaluated())
4157    return Success(E);
4158
4159  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4160    << E->getExprOperand()->getType()
4161    << E->getExprOperand()->getSourceRange();
4162  return false;
4163}
4164
4165bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4166  return Success(E);
4167}
4168
4169bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4170  // Handle static data members.
4171  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4172    VisitIgnoredValue(E->getBase());
4173    return VisitVarDecl(E, VD);
4174  }
4175
4176  // Handle static member functions.
4177  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4178    if (MD->isStatic()) {
4179      VisitIgnoredValue(E->getBase());
4180      return Success(MD);
4181    }
4182  }
4183
4184  // Handle non-static data members.
4185  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4186}
4187
4188bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4189  // FIXME: Deal with vectors as array subscript bases.
4190  if (E->getBase()->getType()->isVectorType())
4191    return Error(E);
4192
4193  if (!EvaluatePointer(E->getBase(), Result, Info))
4194    return false;
4195
4196  APSInt Index;
4197  if (!EvaluateInteger(E->getIdx(), Index, Info))
4198    return false;
4199
4200  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4201                                     getExtValue(Index));
4202}
4203
4204bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4205  return EvaluatePointer(E->getSubExpr(), Result, Info);
4206}
4207
4208bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4209  if (!Visit(E->getSubExpr()))
4210    return false;
4211  // __real is a no-op on scalar lvalues.
4212  if (E->getSubExpr()->getType()->isAnyComplexType())
4213    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4214  return true;
4215}
4216
4217bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4218  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4219         "lvalue __imag__ on scalar?");
4220  if (!Visit(E->getSubExpr()))
4221    return false;
4222  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4223  return true;
4224}
4225
4226bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4227  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4228    return Error(UO);
4229
4230  if (!this->Visit(UO->getSubExpr()))
4231    return false;
4232
4233  return handleIncDec(
4234      this->Info, UO, Result, UO->getSubExpr()->getType(),
4235      UO->isIncrementOp(), 0);
4236}
4237
4238bool LValueExprEvaluator::VisitCompoundAssignOperator(
4239    const CompoundAssignOperator *CAO) {
4240  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4241    return Error(CAO);
4242
4243  APValue RHS;
4244
4245  // The overall lvalue result is the result of evaluating the LHS.
4246  if (!this->Visit(CAO->getLHS())) {
4247    if (Info.keepEvaluatingAfterFailure())
4248      Evaluate(RHS, this->Info, CAO->getRHS());
4249    return false;
4250  }
4251
4252  if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4253    return false;
4254
4255  return handleCompoundAssignment(
4256      this->Info, CAO,
4257      Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4258      CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4259}
4260
4261bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4262  if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4263    return Error(E);
4264
4265  APValue NewVal;
4266
4267  if (!this->Visit(E->getLHS())) {
4268    if (Info.keepEvaluatingAfterFailure())
4269      Evaluate(NewVal, this->Info, E->getRHS());
4270    return false;
4271  }
4272
4273  if (!Evaluate(NewVal, this->Info, E->getRHS()))
4274    return false;
4275
4276  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4277                          NewVal);
4278}
4279
4280//===----------------------------------------------------------------------===//
4281// Pointer Evaluation
4282//===----------------------------------------------------------------------===//
4283
4284namespace {
4285class PointerExprEvaluator
4286  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
4287  LValue &Result;
4288
4289  bool Success(const Expr *E) {
4290    Result.set(E);
4291    return true;
4292  }
4293public:
4294
4295  PointerExprEvaluator(EvalInfo &info, LValue &Result)
4296    : ExprEvaluatorBaseTy(info), Result(Result) {}
4297
4298  bool Success(const APValue &V, const Expr *E) {
4299    Result.setFrom(Info.Ctx, V);
4300    return true;
4301  }
4302  bool ZeroInitialization(const Expr *E) {
4303    return Success((Expr*)0);
4304  }
4305
4306  bool VisitBinaryOperator(const BinaryOperator *E);
4307  bool VisitCastExpr(const CastExpr* E);
4308  bool VisitUnaryAddrOf(const UnaryOperator *E);
4309  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4310      { return Success(E); }
4311  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4312      { return Success(E); }
4313  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4314      { return Success(E); }
4315  bool VisitCallExpr(const CallExpr *E);
4316  bool VisitBlockExpr(const BlockExpr *E) {
4317    if (!E->getBlockDecl()->hasCaptures())
4318      return Success(E);
4319    return Error(E);
4320  }
4321  bool VisitCXXThisExpr(const CXXThisExpr *E) {
4322    // Can't look at 'this' when checking a potential constant expression.
4323    if (Info.CheckingPotentialConstantExpression)
4324      return false;
4325    if (!Info.CurrentCall->This)
4326      return Error(E);
4327    Result = *Info.CurrentCall->This;
4328    return true;
4329  }
4330
4331  // FIXME: Missing: @protocol, @selector
4332};
4333} // end anonymous namespace
4334
4335static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4336  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4337  return PointerExprEvaluator(Info, Result).Visit(E);
4338}
4339
4340bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4341  if (E->getOpcode() != BO_Add &&
4342      E->getOpcode() != BO_Sub)
4343    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4344
4345  const Expr *PExp = E->getLHS();
4346  const Expr *IExp = E->getRHS();
4347  if (IExp->getType()->isPointerType())
4348    std::swap(PExp, IExp);
4349
4350  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4351  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4352    return false;
4353
4354  llvm::APSInt Offset;
4355  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4356    return false;
4357
4358  int64_t AdditionalOffset = getExtValue(Offset);
4359  if (E->getOpcode() == BO_Sub)
4360    AdditionalOffset = -AdditionalOffset;
4361
4362  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4363  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4364                                     AdditionalOffset);
4365}
4366
4367bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4368  return EvaluateLValue(E->getSubExpr(), Result, Info);
4369}
4370
4371bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4372  const Expr* SubExpr = E->getSubExpr();
4373
4374  switch (E->getCastKind()) {
4375  default:
4376    break;
4377
4378  case CK_BitCast:
4379  case CK_CPointerToObjCPointerCast:
4380  case CK_BlockPointerToObjCPointerCast:
4381  case CK_AnyPointerToBlockPointerCast:
4382    if (!Visit(SubExpr))
4383      return false;
4384    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4385    // permitted in constant expressions in C++11. Bitcasts from cv void* are
4386    // also static_casts, but we disallow them as a resolution to DR1312.
4387    if (!E->getType()->isVoidPointerType()) {
4388      Result.Designator.setInvalid();
4389      if (SubExpr->getType()->isVoidPointerType())
4390        CCEDiag(E, diag::note_constexpr_invalid_cast)
4391          << 3 << SubExpr->getType();
4392      else
4393        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4394    }
4395    return true;
4396
4397  case CK_DerivedToBase:
4398  case CK_UncheckedDerivedToBase:
4399    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4400      return false;
4401    if (!Result.Base && Result.Offset.isZero())
4402      return true;
4403
4404    // Now figure out the necessary offset to add to the base LV to get from
4405    // the derived class to the base class.
4406    return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4407                                  castAs<PointerType>()->getPointeeType(),
4408                                Result);
4409
4410  case CK_BaseToDerived:
4411    if (!Visit(E->getSubExpr()))
4412      return false;
4413    if (!Result.Base && Result.Offset.isZero())
4414      return true;
4415    return HandleBaseToDerivedCast(Info, E, Result);
4416
4417  case CK_NullToPointer:
4418    VisitIgnoredValue(E->getSubExpr());
4419    return ZeroInitialization(E);
4420
4421  case CK_IntegralToPointer: {
4422    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4423
4424    APValue Value;
4425    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4426      break;
4427
4428    if (Value.isInt()) {
4429      unsigned Size = Info.Ctx.getTypeSize(E->getType());
4430      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4431      Result.Base = (Expr*)0;
4432      Result.Offset = CharUnits::fromQuantity(N);
4433      Result.CallIndex = 0;
4434      Result.Designator.setInvalid();
4435      return true;
4436    } else {
4437      // Cast is of an lvalue, no need to change value.
4438      Result.setFrom(Info.Ctx, Value);
4439      return true;
4440    }
4441  }
4442  case CK_ArrayToPointerDecay:
4443    if (SubExpr->isGLValue()) {
4444      if (!EvaluateLValue(SubExpr, Result, Info))
4445        return false;
4446    } else {
4447      Result.set(SubExpr, Info.CurrentCall->Index);
4448      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
4449                           Info, Result, SubExpr))
4450        return false;
4451    }
4452    // The result is a pointer to the first element of the array.
4453    if (const ConstantArrayType *CAT
4454          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4455      Result.addArray(Info, E, CAT);
4456    else
4457      Result.Designator.setInvalid();
4458    return true;
4459
4460  case CK_FunctionToPointerDecay:
4461    return EvaluateLValue(SubExpr, Result, Info);
4462  }
4463
4464  return ExprEvaluatorBaseTy::VisitCastExpr(E);
4465}
4466
4467bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4468  if (IsStringLiteralCall(E))
4469    return Success(E);
4470
4471  return ExprEvaluatorBaseTy::VisitCallExpr(E);
4472}
4473
4474//===----------------------------------------------------------------------===//
4475// Member Pointer Evaluation
4476//===----------------------------------------------------------------------===//
4477
4478namespace {
4479class MemberPointerExprEvaluator
4480  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
4481  MemberPtr &Result;
4482
4483  bool Success(const ValueDecl *D) {
4484    Result = MemberPtr(D);
4485    return true;
4486  }
4487public:
4488
4489  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4490    : ExprEvaluatorBaseTy(Info), Result(Result) {}
4491
4492  bool Success(const APValue &V, const Expr *E) {
4493    Result.setFrom(V);
4494    return true;
4495  }
4496  bool ZeroInitialization(const Expr *E) {
4497    return Success((const ValueDecl*)0);
4498  }
4499
4500  bool VisitCastExpr(const CastExpr *E);
4501  bool VisitUnaryAddrOf(const UnaryOperator *E);
4502};
4503} // end anonymous namespace
4504
4505static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4506                                  EvalInfo &Info) {
4507  assert(E->isRValue() && E->getType()->isMemberPointerType());
4508  return MemberPointerExprEvaluator(Info, Result).Visit(E);
4509}
4510
4511bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4512  switch (E->getCastKind()) {
4513  default:
4514    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4515
4516  case CK_NullToMemberPointer:
4517    VisitIgnoredValue(E->getSubExpr());
4518    return ZeroInitialization(E);
4519
4520  case CK_BaseToDerivedMemberPointer: {
4521    if (!Visit(E->getSubExpr()))
4522      return false;
4523    if (E->path_empty())
4524      return true;
4525    // Base-to-derived member pointer casts store the path in derived-to-base
4526    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4527    // the wrong end of the derived->base arc, so stagger the path by one class.
4528    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4529    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4530         PathI != PathE; ++PathI) {
4531      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4532      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4533      if (!Result.castToDerived(Derived))
4534        return Error(E);
4535    }
4536    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4537    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4538      return Error(E);
4539    return true;
4540  }
4541
4542  case CK_DerivedToBaseMemberPointer:
4543    if (!Visit(E->getSubExpr()))
4544      return false;
4545    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4546         PathE = E->path_end(); PathI != PathE; ++PathI) {
4547      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4548      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4549      if (!Result.castToBase(Base))
4550        return Error(E);
4551    }
4552    return true;
4553  }
4554}
4555
4556bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4557  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4558  // member can be formed.
4559  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4560}
4561
4562//===----------------------------------------------------------------------===//
4563// Record Evaluation
4564//===----------------------------------------------------------------------===//
4565
4566namespace {
4567  class RecordExprEvaluator
4568  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
4569    const LValue &This;
4570    APValue &Result;
4571  public:
4572
4573    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4574      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4575
4576    bool Success(const APValue &V, const Expr *E) {
4577      Result = V;
4578      return true;
4579    }
4580    bool ZeroInitialization(const Expr *E);
4581
4582    bool VisitCastExpr(const CastExpr *E);
4583    bool VisitInitListExpr(const InitListExpr *E);
4584    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4585    bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4586  };
4587}
4588
4589/// Perform zero-initialization on an object of non-union class type.
4590/// C++11 [dcl.init]p5:
4591///  To zero-initialize an object or reference of type T means:
4592///    [...]
4593///    -- if T is a (possibly cv-qualified) non-union class type,
4594///       each non-static data member and each base-class subobject is
4595///       zero-initialized
4596static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4597                                          const RecordDecl *RD,
4598                                          const LValue &This, APValue &Result) {
4599  assert(!RD->isUnion() && "Expected non-union class type");
4600  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4601  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4602                   std::distance(RD->field_begin(), RD->field_end()));
4603
4604  if (RD->isInvalidDecl()) return false;
4605  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4606
4607  if (CD) {
4608    unsigned Index = 0;
4609    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4610           End = CD->bases_end(); I != End; ++I, ++Index) {
4611      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4612      LValue Subobject = This;
4613      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4614        return false;
4615      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4616                                         Result.getStructBase(Index)))
4617        return false;
4618    }
4619  }
4620
4621  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
4622       I != End; ++I) {
4623    // -- if T is a reference type, no initialization is performed.
4624    if (I->getType()->isReferenceType())
4625      continue;
4626
4627    LValue Subobject = This;
4628    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
4629      return false;
4630
4631    ImplicitValueInitExpr VIE(I->getType());
4632    if (!EvaluateInPlace(
4633          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4634      return false;
4635  }
4636
4637  return true;
4638}
4639
4640bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4641  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4642  if (RD->isInvalidDecl()) return false;
4643  if (RD->isUnion()) {
4644    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4645    // object's first non-static named data member is zero-initialized
4646    RecordDecl::field_iterator I = RD->field_begin();
4647    if (I == RD->field_end()) {
4648      Result = APValue((const FieldDecl*)0);
4649      return true;
4650    }
4651
4652    LValue Subobject = This;
4653    if (!HandleLValueMember(Info, E, Subobject, *I))
4654      return false;
4655    Result = APValue(*I);
4656    ImplicitValueInitExpr VIE(I->getType());
4657    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
4658  }
4659
4660  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
4661    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
4662    return false;
4663  }
4664
4665  return HandleClassZeroInitialization(Info, E, RD, This, Result);
4666}
4667
4668bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
4669  switch (E->getCastKind()) {
4670  default:
4671    return ExprEvaluatorBaseTy::VisitCastExpr(E);
4672
4673  case CK_ConstructorConversion:
4674    return Visit(E->getSubExpr());
4675
4676  case CK_DerivedToBase:
4677  case CK_UncheckedDerivedToBase: {
4678    APValue DerivedObject;
4679    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
4680      return false;
4681    if (!DerivedObject.isStruct())
4682      return Error(E->getSubExpr());
4683
4684    // Derived-to-base rvalue conversion: just slice off the derived part.
4685    APValue *Value = &DerivedObject;
4686    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
4687    for (CastExpr::path_const_iterator PathI = E->path_begin(),
4688         PathE = E->path_end(); PathI != PathE; ++PathI) {
4689      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
4690      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4691      Value = &Value->getStructBase(getBaseIndex(RD, Base));
4692      RD = Base;
4693    }
4694    Result = *Value;
4695    return true;
4696  }
4697  }
4698}
4699
4700bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
4701  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4702  if (RD->isInvalidDecl()) return false;
4703  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4704
4705  if (RD->isUnion()) {
4706    const FieldDecl *Field = E->getInitializedFieldInUnion();
4707    Result = APValue(Field);
4708    if (!Field)
4709      return true;
4710
4711    // If the initializer list for a union does not contain any elements, the
4712    // first element of the union is value-initialized.
4713    // FIXME: The element should be initialized from an initializer list.
4714    //        Is this difference ever observable for initializer lists which
4715    //        we don't build?
4716    ImplicitValueInitExpr VIE(Field->getType());
4717    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
4718
4719    LValue Subobject = This;
4720    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
4721      return false;
4722
4723    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4724    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4725                                  isa<CXXDefaultInitExpr>(InitExpr));
4726
4727    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
4728  }
4729
4730  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
4731         "initializer list for class with base classes");
4732  Result = APValue(APValue::UninitStruct(), 0,
4733                   std::distance(RD->field_begin(), RD->field_end()));
4734  unsigned ElementNo = 0;
4735  bool Success = true;
4736  for (RecordDecl::field_iterator Field = RD->field_begin(),
4737       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
4738    // Anonymous bit-fields are not considered members of the class for
4739    // purposes of aggregate initialization.
4740    if (Field->isUnnamedBitfield())
4741      continue;
4742
4743    LValue Subobject = This;
4744
4745    bool HaveInit = ElementNo < E->getNumInits();
4746
4747    // FIXME: Diagnostics here should point to the end of the initializer
4748    // list, not the start.
4749    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
4750                            Subobject, *Field, &Layout))
4751      return false;
4752
4753    // Perform an implicit value-initialization for members beyond the end of
4754    // the initializer list.
4755    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
4756    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
4757
4758    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
4759    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
4760                                  isa<CXXDefaultInitExpr>(Init));
4761
4762    if (!EvaluateInPlace(Result.getStructField(Field->getFieldIndex()), Info,
4763                         Subobject, Init)) {
4764      if (!Info.keepEvaluatingAfterFailure())
4765        return false;
4766      Success = false;
4767    }
4768  }
4769
4770  return Success;
4771}
4772
4773bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
4774  const CXXConstructorDecl *FD = E->getConstructor();
4775  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
4776
4777  bool ZeroInit = E->requiresZeroInitialization();
4778  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
4779    // If we've already performed zero-initialization, we're already done.
4780    if (!Result.isUninit())
4781      return true;
4782
4783    if (ZeroInit)
4784      return ZeroInitialization(E);
4785
4786    const CXXRecordDecl *RD = FD->getParent();
4787    if (RD->isUnion())
4788      Result = APValue((FieldDecl*)0);
4789    else
4790      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4791                       std::distance(RD->field_begin(), RD->field_end()));
4792    return true;
4793  }
4794
4795  const FunctionDecl *Definition = 0;
4796  FD->getBody(Definition);
4797
4798  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
4799    return false;
4800
4801  // Avoid materializing a temporary for an elidable copy/move constructor.
4802  if (E->isElidable() && !ZeroInit)
4803    if (const MaterializeTemporaryExpr *ME
4804          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
4805      return Visit(ME->GetTemporaryExpr());
4806
4807  if (ZeroInit && !ZeroInitialization(E))
4808    return false;
4809
4810  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
4811  return HandleConstructorCall(E->getExprLoc(), This, Args,
4812                               cast<CXXConstructorDecl>(Definition), Info,
4813                               Result);
4814}
4815
4816bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
4817    const CXXStdInitializerListExpr *E) {
4818  const ConstantArrayType *ArrayType =
4819      Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
4820
4821  LValue Array;
4822  if (!EvaluateLValue(E->getSubExpr(), Array, Info))
4823    return false;
4824
4825  // Get a pointer to the first element of the array.
4826  Array.addArray(Info, E, ArrayType);
4827
4828  // FIXME: Perform the checks on the field types in SemaInit.
4829  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
4830  RecordDecl::field_iterator Field = Record->field_begin();
4831  if (Field == Record->field_end())
4832    return Error(E);
4833
4834  // Start pointer.
4835  if (!Field->getType()->isPointerType() ||
4836      !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
4837                            ArrayType->getElementType()))
4838    return Error(E);
4839
4840  // FIXME: What if the initializer_list type has base classes, etc?
4841  Result = APValue(APValue::UninitStruct(), 0, 2);
4842  Array.moveInto(Result.getStructField(0));
4843
4844  if (++Field == Record->field_end())
4845    return Error(E);
4846
4847  if (Field->getType()->isPointerType() &&
4848      Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
4849                           ArrayType->getElementType())) {
4850    // End pointer.
4851    if (!HandleLValueArrayAdjustment(Info, E, Array,
4852                                     ArrayType->getElementType(),
4853                                     ArrayType->getSize().getZExtValue()))
4854      return false;
4855    Array.moveInto(Result.getStructField(1));
4856  } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
4857    // Length.
4858    Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
4859  else
4860    return Error(E);
4861
4862  if (++Field != Record->field_end())
4863    return Error(E);
4864
4865  return true;
4866}
4867
4868static bool EvaluateRecord(const Expr *E, const LValue &This,
4869                           APValue &Result, EvalInfo &Info) {
4870  assert(E->isRValue() && E->getType()->isRecordType() &&
4871         "can't evaluate expression as a record rvalue");
4872  return RecordExprEvaluator(Info, This, Result).Visit(E);
4873}
4874
4875//===----------------------------------------------------------------------===//
4876// Temporary Evaluation
4877//
4878// Temporaries are represented in the AST as rvalues, but generally behave like
4879// lvalues. The full-object of which the temporary is a subobject is implicitly
4880// materialized so that a reference can bind to it.
4881//===----------------------------------------------------------------------===//
4882namespace {
4883class TemporaryExprEvaluator
4884  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
4885public:
4886  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
4887    LValueExprEvaluatorBaseTy(Info, Result) {}
4888
4889  /// Visit an expression which constructs the value of this temporary.
4890  bool VisitConstructExpr(const Expr *E) {
4891    Result.set(E, Info.CurrentCall->Index);
4892    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
4893  }
4894
4895  bool VisitCastExpr(const CastExpr *E) {
4896    switch (E->getCastKind()) {
4897    default:
4898      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4899
4900    case CK_ConstructorConversion:
4901      return VisitConstructExpr(E->getSubExpr());
4902    }
4903  }
4904  bool VisitInitListExpr(const InitListExpr *E) {
4905    return VisitConstructExpr(E);
4906  }
4907  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
4908    return VisitConstructExpr(E);
4909  }
4910  bool VisitCallExpr(const CallExpr *E) {
4911    return VisitConstructExpr(E);
4912  }
4913};
4914} // end anonymous namespace
4915
4916/// Evaluate an expression of record type as a temporary.
4917static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
4918  assert(E->isRValue() && E->getType()->isRecordType());
4919  return TemporaryExprEvaluator(Info, Result).Visit(E);
4920}
4921
4922//===----------------------------------------------------------------------===//
4923// Vector Evaluation
4924//===----------------------------------------------------------------------===//
4925
4926namespace {
4927  class VectorExprEvaluator
4928  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
4929    APValue &Result;
4930  public:
4931
4932    VectorExprEvaluator(EvalInfo &info, APValue &Result)
4933      : ExprEvaluatorBaseTy(info), Result(Result) {}
4934
4935    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
4936      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
4937      // FIXME: remove this APValue copy.
4938      Result = APValue(V.data(), V.size());
4939      return true;
4940    }
4941    bool Success(const APValue &V, const Expr *E) {
4942      assert(V.isVector());
4943      Result = V;
4944      return true;
4945    }
4946    bool ZeroInitialization(const Expr *E);
4947
4948    bool VisitUnaryReal(const UnaryOperator *E)
4949      { return Visit(E->getSubExpr()); }
4950    bool VisitCastExpr(const CastExpr* E);
4951    bool VisitInitListExpr(const InitListExpr *E);
4952    bool VisitUnaryImag(const UnaryOperator *E);
4953    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
4954    //                 binary comparisons, binary and/or/xor,
4955    //                 shufflevector, ExtVectorElementExpr
4956  };
4957} // end anonymous namespace
4958
4959static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
4960  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
4961  return VectorExprEvaluator(Info, Result).Visit(E);
4962}
4963
4964bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
4965  const VectorType *VTy = E->getType()->castAs<VectorType>();
4966  unsigned NElts = VTy->getNumElements();
4967
4968  const Expr *SE = E->getSubExpr();
4969  QualType SETy = SE->getType();
4970
4971  switch (E->getCastKind()) {
4972  case CK_VectorSplat: {
4973    APValue Val = APValue();
4974    if (SETy->isIntegerType()) {
4975      APSInt IntResult;
4976      if (!EvaluateInteger(SE, IntResult, Info))
4977         return false;
4978      Val = APValue(IntResult);
4979    } else if (SETy->isRealFloatingType()) {
4980       APFloat F(0.0);
4981       if (!EvaluateFloat(SE, F, Info))
4982         return false;
4983       Val = APValue(F);
4984    } else {
4985      return Error(E);
4986    }
4987
4988    // Splat and create vector APValue.
4989    SmallVector<APValue, 4> Elts(NElts, Val);
4990    return Success(Elts, E);
4991  }
4992  case CK_BitCast: {
4993    // Evaluate the operand into an APInt we can extract from.
4994    llvm::APInt SValInt;
4995    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
4996      return false;
4997    // Extract the elements
4998    QualType EltTy = VTy->getElementType();
4999    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5000    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5001    SmallVector<APValue, 4> Elts;
5002    if (EltTy->isRealFloatingType()) {
5003      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5004      unsigned FloatEltSize = EltSize;
5005      if (&Sem == &APFloat::x87DoubleExtended)
5006        FloatEltSize = 80;
5007      for (unsigned i = 0; i < NElts; i++) {
5008        llvm::APInt Elt;
5009        if (BigEndian)
5010          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5011        else
5012          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5013        Elts.push_back(APValue(APFloat(Sem, Elt)));
5014      }
5015    } else if (EltTy->isIntegerType()) {
5016      for (unsigned i = 0; i < NElts; i++) {
5017        llvm::APInt Elt;
5018        if (BigEndian)
5019          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5020        else
5021          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5022        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5023      }
5024    } else {
5025      return Error(E);
5026    }
5027    return Success(Elts, E);
5028  }
5029  default:
5030    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5031  }
5032}
5033
5034bool
5035VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5036  const VectorType *VT = E->getType()->castAs<VectorType>();
5037  unsigned NumInits = E->getNumInits();
5038  unsigned NumElements = VT->getNumElements();
5039
5040  QualType EltTy = VT->getElementType();
5041  SmallVector<APValue, 4> Elements;
5042
5043  // The number of initializers can be less than the number of
5044  // vector elements. For OpenCL, this can be due to nested vector
5045  // initialization. For GCC compatibility, missing trailing elements
5046  // should be initialized with zeroes.
5047  unsigned CountInits = 0, CountElts = 0;
5048  while (CountElts < NumElements) {
5049    // Handle nested vector initialization.
5050    if (CountInits < NumInits
5051        && E->getInit(CountInits)->getType()->isExtVectorType()) {
5052      APValue v;
5053      if (!EvaluateVector(E->getInit(CountInits), v, Info))
5054        return Error(E);
5055      unsigned vlen = v.getVectorLength();
5056      for (unsigned j = 0; j < vlen; j++)
5057        Elements.push_back(v.getVectorElt(j));
5058      CountElts += vlen;
5059    } else if (EltTy->isIntegerType()) {
5060      llvm::APSInt sInt(32);
5061      if (CountInits < NumInits) {
5062        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5063          return false;
5064      } else // trailing integer zero.
5065        sInt = Info.Ctx.MakeIntValue(0, EltTy);
5066      Elements.push_back(APValue(sInt));
5067      CountElts++;
5068    } else {
5069      llvm::APFloat f(0.0);
5070      if (CountInits < NumInits) {
5071        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5072          return false;
5073      } else // trailing float zero.
5074        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5075      Elements.push_back(APValue(f));
5076      CountElts++;
5077    }
5078    CountInits++;
5079  }
5080  return Success(Elements, E);
5081}
5082
5083bool
5084VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5085  const VectorType *VT = E->getType()->getAs<VectorType>();
5086  QualType EltTy = VT->getElementType();
5087  APValue ZeroElement;
5088  if (EltTy->isIntegerType())
5089    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5090  else
5091    ZeroElement =
5092        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5093
5094  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5095  return Success(Elements, E);
5096}
5097
5098bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5099  VisitIgnoredValue(E->getSubExpr());
5100  return ZeroInitialization(E);
5101}
5102
5103//===----------------------------------------------------------------------===//
5104// Array Evaluation
5105//===----------------------------------------------------------------------===//
5106
5107namespace {
5108  class ArrayExprEvaluator
5109  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
5110    const LValue &This;
5111    APValue &Result;
5112  public:
5113
5114    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5115      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5116
5117    bool Success(const APValue &V, const Expr *E) {
5118      assert((V.isArray() || V.isLValue()) &&
5119             "expected array or string literal");
5120      Result = V;
5121      return true;
5122    }
5123
5124    bool ZeroInitialization(const Expr *E) {
5125      const ConstantArrayType *CAT =
5126          Info.Ctx.getAsConstantArrayType(E->getType());
5127      if (!CAT)
5128        return Error(E);
5129
5130      Result = APValue(APValue::UninitArray(), 0,
5131                       CAT->getSize().getZExtValue());
5132      if (!Result.hasArrayFiller()) return true;
5133
5134      // Zero-initialize all elements.
5135      LValue Subobject = This;
5136      Subobject.addArray(Info, E, CAT);
5137      ImplicitValueInitExpr VIE(CAT->getElementType());
5138      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5139    }
5140
5141    bool VisitInitListExpr(const InitListExpr *E);
5142    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5143    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5144                               const LValue &Subobject,
5145                               APValue *Value, QualType Type);
5146  };
5147} // end anonymous namespace
5148
5149static bool EvaluateArray(const Expr *E, const LValue &This,
5150                          APValue &Result, EvalInfo &Info) {
5151  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5152  return ArrayExprEvaluator(Info, This, Result).Visit(E);
5153}
5154
5155bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5156  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5157  if (!CAT)
5158    return Error(E);
5159
5160  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5161  // an appropriately-typed string literal enclosed in braces.
5162  if (E->isStringLiteralInit()) {
5163    LValue LV;
5164    if (!EvaluateLValue(E->getInit(0), LV, Info))
5165      return false;
5166    APValue Val;
5167    LV.moveInto(Val);
5168    return Success(Val, E);
5169  }
5170
5171  bool Success = true;
5172
5173  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5174         "zero-initialized array shouldn't have any initialized elts");
5175  APValue Filler;
5176  if (Result.isArray() && Result.hasArrayFiller())
5177    Filler = Result.getArrayFiller();
5178
5179  unsigned NumEltsToInit = E->getNumInits();
5180  unsigned NumElts = CAT->getSize().getZExtValue();
5181  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
5182
5183  // If the initializer might depend on the array index, run it for each
5184  // array element. For now, just whitelist non-class value-initialization.
5185  if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5186    NumEltsToInit = NumElts;
5187
5188  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5189
5190  // If the array was previously zero-initialized, preserve the
5191  // zero-initialized values.
5192  if (!Filler.isUninit()) {
5193    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5194      Result.getArrayInitializedElt(I) = Filler;
5195    if (Result.hasArrayFiller())
5196      Result.getArrayFiller() = Filler;
5197  }
5198
5199  LValue Subobject = This;
5200  Subobject.addArray(Info, E, CAT);
5201  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5202    const Expr *Init =
5203        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5204    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5205                         Info, Subobject, Init) ||
5206        !HandleLValueArrayAdjustment(Info, Init, Subobject,
5207                                     CAT->getElementType(), 1)) {
5208      if (!Info.keepEvaluatingAfterFailure())
5209        return false;
5210      Success = false;
5211    }
5212  }
5213
5214  if (!Result.hasArrayFiller())
5215    return Success;
5216
5217  // If we get here, we have a trivial filler, which we can just evaluate
5218  // once and splat over the rest of the array elements.
5219  assert(FillerExpr && "no array filler for incomplete init list");
5220  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5221                         FillerExpr) && Success;
5222}
5223
5224bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5225  return VisitCXXConstructExpr(E, This, &Result, E->getType());
5226}
5227
5228bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5229                                               const LValue &Subobject,
5230                                               APValue *Value,
5231                                               QualType Type) {
5232  bool HadZeroInit = !Value->isUninit();
5233
5234  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5235    unsigned N = CAT->getSize().getZExtValue();
5236
5237    // Preserve the array filler if we had prior zero-initialization.
5238    APValue Filler =
5239      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5240                                             : APValue();
5241
5242    *Value = APValue(APValue::UninitArray(), N, N);
5243
5244    if (HadZeroInit)
5245      for (unsigned I = 0; I != N; ++I)
5246        Value->getArrayInitializedElt(I) = Filler;
5247
5248    // Initialize the elements.
5249    LValue ArrayElt = Subobject;
5250    ArrayElt.addArray(Info, E, CAT);
5251    for (unsigned I = 0; I != N; ++I)
5252      if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5253                                 CAT->getElementType()) ||
5254          !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5255                                       CAT->getElementType(), 1))
5256        return false;
5257
5258    return true;
5259  }
5260
5261  if (!Type->isRecordType())
5262    return Error(E);
5263
5264  const CXXConstructorDecl *FD = E->getConstructor();
5265
5266  bool ZeroInit = E->requiresZeroInitialization();
5267  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5268    if (HadZeroInit)
5269      return true;
5270
5271    if (ZeroInit) {
5272      ImplicitValueInitExpr VIE(Type);
5273      return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5274    }
5275
5276    const CXXRecordDecl *RD = FD->getParent();
5277    if (RD->isUnion())
5278      *Value = APValue((FieldDecl*)0);
5279    else
5280      *Value =
5281          APValue(APValue::UninitStruct(), RD->getNumBases(),
5282                  std::distance(RD->field_begin(), RD->field_end()));
5283    return true;
5284  }
5285
5286  const FunctionDecl *Definition = 0;
5287  FD->getBody(Definition);
5288
5289  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5290    return false;
5291
5292  if (ZeroInit && !HadZeroInit) {
5293    ImplicitValueInitExpr VIE(Type);
5294    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5295      return false;
5296  }
5297
5298  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5299  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5300                               cast<CXXConstructorDecl>(Definition),
5301                               Info, *Value);
5302}
5303
5304//===----------------------------------------------------------------------===//
5305// Integer Evaluation
5306//
5307// As a GNU extension, we support casting pointers to sufficiently-wide integer
5308// types and back in constant folding. Integer values are thus represented
5309// either as an integer-valued APValue, or as an lvalue-valued APValue.
5310//===----------------------------------------------------------------------===//
5311
5312namespace {
5313class IntExprEvaluator
5314  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
5315  APValue &Result;
5316public:
5317  IntExprEvaluator(EvalInfo &info, APValue &result)
5318    : ExprEvaluatorBaseTy(info), Result(result) {}
5319
5320  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5321    assert(E->getType()->isIntegralOrEnumerationType() &&
5322           "Invalid evaluation result.");
5323    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5324           "Invalid evaluation result.");
5325    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5326           "Invalid evaluation result.");
5327    Result = APValue(SI);
5328    return true;
5329  }
5330  bool Success(const llvm::APSInt &SI, const Expr *E) {
5331    return Success(SI, E, Result);
5332  }
5333
5334  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5335    assert(E->getType()->isIntegralOrEnumerationType() &&
5336           "Invalid evaluation result.");
5337    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5338           "Invalid evaluation result.");
5339    Result = APValue(APSInt(I));
5340    Result.getInt().setIsUnsigned(
5341                            E->getType()->isUnsignedIntegerOrEnumerationType());
5342    return true;
5343  }
5344  bool Success(const llvm::APInt &I, const Expr *E) {
5345    return Success(I, E, Result);
5346  }
5347
5348  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5349    assert(E->getType()->isIntegralOrEnumerationType() &&
5350           "Invalid evaluation result.");
5351    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5352    return true;
5353  }
5354  bool Success(uint64_t Value, const Expr *E) {
5355    return Success(Value, E, Result);
5356  }
5357
5358  bool Success(CharUnits Size, const Expr *E) {
5359    return Success(Size.getQuantity(), E);
5360  }
5361
5362  bool Success(const APValue &V, const Expr *E) {
5363    if (V.isLValue() || V.isAddrLabelDiff()) {
5364      Result = V;
5365      return true;
5366    }
5367    return Success(V.getInt(), E);
5368  }
5369
5370  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5371
5372  //===--------------------------------------------------------------------===//
5373  //                            Visitor Methods
5374  //===--------------------------------------------------------------------===//
5375
5376  bool VisitIntegerLiteral(const IntegerLiteral *E) {
5377    return Success(E->getValue(), E);
5378  }
5379  bool VisitCharacterLiteral(const CharacterLiteral *E) {
5380    return Success(E->getValue(), E);
5381  }
5382
5383  bool CheckReferencedDecl(const Expr *E, const Decl *D);
5384  bool VisitDeclRefExpr(const DeclRefExpr *E) {
5385    if (CheckReferencedDecl(E, E->getDecl()))
5386      return true;
5387
5388    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5389  }
5390  bool VisitMemberExpr(const MemberExpr *E) {
5391    if (CheckReferencedDecl(E, E->getMemberDecl())) {
5392      VisitIgnoredValue(E->getBase());
5393      return true;
5394    }
5395
5396    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5397  }
5398
5399  bool VisitCallExpr(const CallExpr *E);
5400  bool VisitBinaryOperator(const BinaryOperator *E);
5401  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5402  bool VisitUnaryOperator(const UnaryOperator *E);
5403
5404  bool VisitCastExpr(const CastExpr* E);
5405  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5406
5407  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5408    return Success(E->getValue(), E);
5409  }
5410
5411  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5412    return Success(E->getValue(), E);
5413  }
5414
5415  // Note, GNU defines __null as an integer, not a pointer.
5416  bool VisitGNUNullExpr(const GNUNullExpr *E) {
5417    return ZeroInitialization(E);
5418  }
5419
5420  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
5421    return Success(E->getValue(), E);
5422  }
5423
5424  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
5425    return Success(E->getValue(), E);
5426  }
5427
5428  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5429    return Success(E->getValue(), E);
5430  }
5431
5432  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5433    return Success(E->getValue(), E);
5434  }
5435
5436  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5437    return Success(E->getValue(), E);
5438  }
5439
5440  bool VisitUnaryReal(const UnaryOperator *E);
5441  bool VisitUnaryImag(const UnaryOperator *E);
5442
5443  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5444  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5445
5446private:
5447  CharUnits GetAlignOfExpr(const Expr *E);
5448  CharUnits GetAlignOfType(QualType T);
5449  static QualType GetObjectType(APValue::LValueBase B);
5450  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5451  // FIXME: Missing: array subscript of vector, member of vector
5452};
5453} // end anonymous namespace
5454
5455/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5456/// produce either the integer value or a pointer.
5457///
5458/// GCC has a heinous extension which folds casts between pointer types and
5459/// pointer-sized integral types. We support this by allowing the evaluation of
5460/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5461/// Some simple arithmetic on such values is supported (they are treated much
5462/// like char*).
5463static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5464                                    EvalInfo &Info) {
5465  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5466  return IntExprEvaluator(Info, Result).Visit(E);
5467}
5468
5469static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5470  APValue Val;
5471  if (!EvaluateIntegerOrLValue(E, Val, Info))
5472    return false;
5473  if (!Val.isInt()) {
5474    // FIXME: It would be better to produce the diagnostic for casting
5475    //        a pointer to an integer.
5476    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5477    return false;
5478  }
5479  Result = Val.getInt();
5480  return true;
5481}
5482
5483/// Check whether the given declaration can be directly converted to an integral
5484/// rvalue. If not, no diagnostic is produced; there are other things we can
5485/// try.
5486bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5487  // Enums are integer constant exprs.
5488  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5489    // Check for signedness/width mismatches between E type and ECD value.
5490    bool SameSign = (ECD->getInitVal().isSigned()
5491                     == E->getType()->isSignedIntegerOrEnumerationType());
5492    bool SameWidth = (ECD->getInitVal().getBitWidth()
5493                      == Info.Ctx.getIntWidth(E->getType()));
5494    if (SameSign && SameWidth)
5495      return Success(ECD->getInitVal(), E);
5496    else {
5497      // Get rid of mismatch (otherwise Success assertions will fail)
5498      // by computing a new value matching the type of E.
5499      llvm::APSInt Val = ECD->getInitVal();
5500      if (!SameSign)
5501        Val.setIsSigned(!ECD->getInitVal().isSigned());
5502      if (!SameWidth)
5503        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5504      return Success(Val, E);
5505    }
5506  }
5507  return false;
5508}
5509
5510/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5511/// as GCC.
5512static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5513  // The following enum mimics the values returned by GCC.
5514  // FIXME: Does GCC differ between lvalue and rvalue references here?
5515  enum gcc_type_class {
5516    no_type_class = -1,
5517    void_type_class, integer_type_class, char_type_class,
5518    enumeral_type_class, boolean_type_class,
5519    pointer_type_class, reference_type_class, offset_type_class,
5520    real_type_class, complex_type_class,
5521    function_type_class, method_type_class,
5522    record_type_class, union_type_class,
5523    array_type_class, string_type_class,
5524    lang_type_class
5525  };
5526
5527  // If no argument was supplied, default to "no_type_class". This isn't
5528  // ideal, however it is what gcc does.
5529  if (E->getNumArgs() == 0)
5530    return no_type_class;
5531
5532  QualType ArgTy = E->getArg(0)->getType();
5533  if (ArgTy->isVoidType())
5534    return void_type_class;
5535  else if (ArgTy->isEnumeralType())
5536    return enumeral_type_class;
5537  else if (ArgTy->isBooleanType())
5538    return boolean_type_class;
5539  else if (ArgTy->isCharType())
5540    return string_type_class; // gcc doesn't appear to use char_type_class
5541  else if (ArgTy->isIntegerType())
5542    return integer_type_class;
5543  else if (ArgTy->isPointerType())
5544    return pointer_type_class;
5545  else if (ArgTy->isReferenceType())
5546    return reference_type_class;
5547  else if (ArgTy->isRealType())
5548    return real_type_class;
5549  else if (ArgTy->isComplexType())
5550    return complex_type_class;
5551  else if (ArgTy->isFunctionType())
5552    return function_type_class;
5553  else if (ArgTy->isStructureOrClassType())
5554    return record_type_class;
5555  else if (ArgTy->isUnionType())
5556    return union_type_class;
5557  else if (ArgTy->isArrayType())
5558    return array_type_class;
5559  else if (ArgTy->isUnionType())
5560    return union_type_class;
5561  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
5562    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5563}
5564
5565/// EvaluateBuiltinConstantPForLValue - Determine the result of
5566/// __builtin_constant_p when applied to the given lvalue.
5567///
5568/// An lvalue is only "constant" if it is a pointer or reference to the first
5569/// character of a string literal.
5570template<typename LValue>
5571static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5572  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5573  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5574}
5575
5576/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5577/// GCC as we can manage.
5578static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5579  QualType ArgType = Arg->getType();
5580
5581  // __builtin_constant_p always has one operand. The rules which gcc follows
5582  // are not precisely documented, but are as follows:
5583  //
5584  //  - If the operand is of integral, floating, complex or enumeration type,
5585  //    and can be folded to a known value of that type, it returns 1.
5586  //  - If the operand and can be folded to a pointer to the first character
5587  //    of a string literal (or such a pointer cast to an integral type), it
5588  //    returns 1.
5589  //
5590  // Otherwise, it returns 0.
5591  //
5592  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5593  // its support for this does not currently work.
5594  if (ArgType->isIntegralOrEnumerationType()) {
5595    Expr::EvalResult Result;
5596    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5597      return false;
5598
5599    APValue &V = Result.Val;
5600    if (V.getKind() == APValue::Int)
5601      return true;
5602
5603    return EvaluateBuiltinConstantPForLValue(V);
5604  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5605    return Arg->isEvaluatable(Ctx);
5606  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5607    LValue LV;
5608    Expr::EvalStatus Status;
5609    EvalInfo Info(Ctx, Status);
5610    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5611                          : EvaluatePointer(Arg, LV, Info)) &&
5612        !Status.HasSideEffects)
5613      return EvaluateBuiltinConstantPForLValue(LV);
5614  }
5615
5616  // Anything else isn't considered to be sufficiently constant.
5617  return false;
5618}
5619
5620/// Retrieves the "underlying object type" of the given expression,
5621/// as used by __builtin_object_size.
5622QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5623  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5624    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5625      return VD->getType();
5626  } else if (const Expr *E = B.get<const Expr*>()) {
5627    if (isa<CompoundLiteralExpr>(E))
5628      return E->getType();
5629  }
5630
5631  return QualType();
5632}
5633
5634bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5635  LValue Base;
5636
5637  {
5638    // The operand of __builtin_object_size is never evaluated for side-effects.
5639    // If there are any, but we can determine the pointed-to object anyway, then
5640    // ignore the side-effects.
5641    SpeculativeEvaluationRAII SpeculativeEval(Info);
5642    if (!EvaluatePointer(E->getArg(0), Base, Info))
5643      return false;
5644  }
5645
5646  // If we can prove the base is null, lower to zero now.
5647  if (!Base.getLValueBase()) return Success(0, E);
5648
5649  QualType T = GetObjectType(Base.getLValueBase());
5650  if (T.isNull() ||
5651      T->isIncompleteType() ||
5652      T->isFunctionType() ||
5653      T->isVariablyModifiedType() ||
5654      T->isDependentType())
5655    return Error(E);
5656
5657  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5658  CharUnits Offset = Base.getLValueOffset();
5659
5660  if (!Offset.isNegative() && Offset <= Size)
5661    Size -= Offset;
5662  else
5663    Size = CharUnits::Zero();
5664  return Success(Size, E);
5665}
5666
5667bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
5668  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
5669  default:
5670    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5671
5672  case Builtin::BI__builtin_object_size: {
5673    if (TryEvaluateBuiltinObjectSize(E))
5674      return true;
5675
5676    // If evaluating the argument has side-effects, we can't determine the size
5677    // of the object, and so we lower it to unknown now. CodeGen relies on us to
5678    // handle all cases where the expression has side-effects.
5679    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
5680      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
5681        return Success(-1ULL, E);
5682      return Success(0, E);
5683    }
5684
5685    // Expression had no side effects, but we couldn't statically determine the
5686    // size of the referenced object.
5687    return Error(E);
5688  }
5689
5690  case Builtin::BI__builtin_bswap16:
5691  case Builtin::BI__builtin_bswap32:
5692  case Builtin::BI__builtin_bswap64: {
5693    APSInt Val;
5694    if (!EvaluateInteger(E->getArg(0), Val, Info))
5695      return false;
5696
5697    return Success(Val.byteSwap(), E);
5698  }
5699
5700  case Builtin::BI__builtin_classify_type:
5701    return Success(EvaluateBuiltinClassifyType(E), E);
5702
5703  // FIXME: BI__builtin_clrsb
5704  // FIXME: BI__builtin_clrsbl
5705  // FIXME: BI__builtin_clrsbll
5706
5707  case Builtin::BI__builtin_clz:
5708  case Builtin::BI__builtin_clzl:
5709  case Builtin::BI__builtin_clzll: {
5710    APSInt Val;
5711    if (!EvaluateInteger(E->getArg(0), Val, Info))
5712      return false;
5713    if (!Val)
5714      return Error(E);
5715
5716    return Success(Val.countLeadingZeros(), E);
5717  }
5718
5719  case Builtin::BI__builtin_constant_p:
5720    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
5721
5722  case Builtin::BI__builtin_ctz:
5723  case Builtin::BI__builtin_ctzl:
5724  case Builtin::BI__builtin_ctzll: {
5725    APSInt Val;
5726    if (!EvaluateInteger(E->getArg(0), Val, Info))
5727      return false;
5728    if (!Val)
5729      return Error(E);
5730
5731    return Success(Val.countTrailingZeros(), E);
5732  }
5733
5734  case Builtin::BI__builtin_eh_return_data_regno: {
5735    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
5736    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
5737    return Success(Operand, E);
5738  }
5739
5740  case Builtin::BI__builtin_expect:
5741    return Visit(E->getArg(0));
5742
5743  case Builtin::BI__builtin_ffs:
5744  case Builtin::BI__builtin_ffsl:
5745  case Builtin::BI__builtin_ffsll: {
5746    APSInt Val;
5747    if (!EvaluateInteger(E->getArg(0), Val, Info))
5748      return false;
5749
5750    unsigned N = Val.countTrailingZeros();
5751    return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
5752  }
5753
5754  case Builtin::BI__builtin_fpclassify: {
5755    APFloat Val(0.0);
5756    if (!EvaluateFloat(E->getArg(5), Val, Info))
5757      return false;
5758    unsigned Arg;
5759    switch (Val.getCategory()) {
5760    case APFloat::fcNaN: Arg = 0; break;
5761    case APFloat::fcInfinity: Arg = 1; break;
5762    case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
5763    case APFloat::fcZero: Arg = 4; break;
5764    }
5765    return Visit(E->getArg(Arg));
5766  }
5767
5768  case Builtin::BI__builtin_isinf_sign: {
5769    APFloat Val(0.0);
5770    return EvaluateFloat(E->getArg(0), Val, Info) &&
5771           Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
5772  }
5773
5774  case Builtin::BI__builtin_parity:
5775  case Builtin::BI__builtin_parityl:
5776  case Builtin::BI__builtin_parityll: {
5777    APSInt Val;
5778    if (!EvaluateInteger(E->getArg(0), Val, Info))
5779      return false;
5780
5781    return Success(Val.countPopulation() % 2, E);
5782  }
5783
5784  case Builtin::BI__builtin_popcount:
5785  case Builtin::BI__builtin_popcountl:
5786  case Builtin::BI__builtin_popcountll: {
5787    APSInt Val;
5788    if (!EvaluateInteger(E->getArg(0), Val, Info))
5789      return false;
5790
5791    return Success(Val.countPopulation(), E);
5792  }
5793
5794  case Builtin::BIstrlen:
5795    // A call to strlen is not a constant expression.
5796    if (Info.getLangOpts().CPlusPlus11)
5797      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
5798        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
5799    else
5800      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
5801    // Fall through.
5802  case Builtin::BI__builtin_strlen:
5803    // As an extension, we support strlen() and __builtin_strlen() as constant
5804    // expressions when the argument is a string literal.
5805    if (const StringLiteral *S
5806               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
5807      // The string literal may have embedded null characters. Find the first
5808      // one and truncate there.
5809      StringRef Str = S->getString();
5810      StringRef::size_type Pos = Str.find(0);
5811      if (Pos != StringRef::npos)
5812        Str = Str.substr(0, Pos);
5813
5814      return Success(Str.size(), E);
5815    }
5816
5817    return Error(E);
5818
5819  case Builtin::BI__atomic_always_lock_free:
5820  case Builtin::BI__atomic_is_lock_free:
5821  case Builtin::BI__c11_atomic_is_lock_free: {
5822    APSInt SizeVal;
5823    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
5824      return false;
5825
5826    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
5827    // of two less than the maximum inline atomic width, we know it is
5828    // lock-free.  If the size isn't a power of two, or greater than the
5829    // maximum alignment where we promote atomics, we know it is not lock-free
5830    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
5831    // the answer can only be determined at runtime; for example, 16-byte
5832    // atomics have lock-free implementations on some, but not all,
5833    // x86-64 processors.
5834
5835    // Check power-of-two.
5836    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
5837    if (Size.isPowerOfTwo()) {
5838      // Check against inlining width.
5839      unsigned InlineWidthBits =
5840          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
5841      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
5842        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
5843            Size == CharUnits::One() ||
5844            E->getArg(1)->isNullPointerConstant(Info.Ctx,
5845                                                Expr::NPC_NeverValueDependent))
5846          // OK, we will inline appropriately-aligned operations of this size,
5847          // and _Atomic(T) is appropriately-aligned.
5848          return Success(1, E);
5849
5850        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
5851          castAs<PointerType>()->getPointeeType();
5852        if (!PointeeType->isIncompleteType() &&
5853            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
5854          // OK, we will inline operations on this object.
5855          return Success(1, E);
5856        }
5857      }
5858    }
5859
5860    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
5861        Success(0, E) : Error(E);
5862  }
5863  }
5864}
5865
5866static bool HasSameBase(const LValue &A, const LValue &B) {
5867  if (!A.getLValueBase())
5868    return !B.getLValueBase();
5869  if (!B.getLValueBase())
5870    return false;
5871
5872  if (A.getLValueBase().getOpaqueValue() !=
5873      B.getLValueBase().getOpaqueValue()) {
5874    const Decl *ADecl = GetLValueBaseDecl(A);
5875    if (!ADecl)
5876      return false;
5877    const Decl *BDecl = GetLValueBaseDecl(B);
5878    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
5879      return false;
5880  }
5881
5882  return IsGlobalLValue(A.getLValueBase()) ||
5883         A.getLValueCallIndex() == B.getLValueCallIndex();
5884}
5885
5886namespace {
5887
5888/// \brief Data recursive integer evaluator of certain binary operators.
5889///
5890/// We use a data recursive algorithm for binary operators so that we are able
5891/// to handle extreme cases of chained binary operators without causing stack
5892/// overflow.
5893class DataRecursiveIntBinOpEvaluator {
5894  struct EvalResult {
5895    APValue Val;
5896    bool Failed;
5897
5898    EvalResult() : Failed(false) { }
5899
5900    void swap(EvalResult &RHS) {
5901      Val.swap(RHS.Val);
5902      Failed = RHS.Failed;
5903      RHS.Failed = false;
5904    }
5905  };
5906
5907  struct Job {
5908    const Expr *E;
5909    EvalResult LHSResult; // meaningful only for binary operator expression.
5910    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
5911
5912    Job() : StoredInfo(0) { }
5913    void startSpeculativeEval(EvalInfo &Info) {
5914      OldEvalStatus = Info.EvalStatus;
5915      Info.EvalStatus.Diag = 0;
5916      StoredInfo = &Info;
5917    }
5918    ~Job() {
5919      if (StoredInfo) {
5920        StoredInfo->EvalStatus = OldEvalStatus;
5921      }
5922    }
5923  private:
5924    EvalInfo *StoredInfo; // non-null if status changed.
5925    Expr::EvalStatus OldEvalStatus;
5926  };
5927
5928  SmallVector<Job, 16> Queue;
5929
5930  IntExprEvaluator &IntEval;
5931  EvalInfo &Info;
5932  APValue &FinalResult;
5933
5934public:
5935  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
5936    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
5937
5938  /// \brief True if \param E is a binary operator that we are going to handle
5939  /// data recursively.
5940  /// We handle binary operators that are comma, logical, or that have operands
5941  /// with integral or enumeration type.
5942  static bool shouldEnqueue(const BinaryOperator *E) {
5943    return E->getOpcode() == BO_Comma ||
5944           E->isLogicalOp() ||
5945           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
5946            E->getRHS()->getType()->isIntegralOrEnumerationType());
5947  }
5948
5949  bool Traverse(const BinaryOperator *E) {
5950    enqueue(E);
5951    EvalResult PrevResult;
5952    while (!Queue.empty())
5953      process(PrevResult);
5954
5955    if (PrevResult.Failed) return false;
5956
5957    FinalResult.swap(PrevResult.Val);
5958    return true;
5959  }
5960
5961private:
5962  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5963    return IntEval.Success(Value, E, Result);
5964  }
5965  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
5966    return IntEval.Success(Value, E, Result);
5967  }
5968  bool Error(const Expr *E) {
5969    return IntEval.Error(E);
5970  }
5971  bool Error(const Expr *E, diag::kind D) {
5972    return IntEval.Error(E, D);
5973  }
5974
5975  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
5976    return Info.CCEDiag(E, D);
5977  }
5978
5979  // \brief Returns true if visiting the RHS is necessary, false otherwise.
5980  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
5981                         bool &SuppressRHSDiags);
5982
5983  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
5984                  const BinaryOperator *E, APValue &Result);
5985
5986  void EvaluateExpr(const Expr *E, EvalResult &Result) {
5987    Result.Failed = !Evaluate(Result.Val, Info, E);
5988    if (Result.Failed)
5989      Result.Val = APValue();
5990  }
5991
5992  void process(EvalResult &Result);
5993
5994  void enqueue(const Expr *E) {
5995    E = E->IgnoreParens();
5996    Queue.resize(Queue.size()+1);
5997    Queue.back().E = E;
5998    Queue.back().Kind = Job::AnyExprKind;
5999  }
6000};
6001
6002}
6003
6004bool DataRecursiveIntBinOpEvaluator::
6005       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6006                         bool &SuppressRHSDiags) {
6007  if (E->getOpcode() == BO_Comma) {
6008    // Ignore LHS but note if we could not evaluate it.
6009    if (LHSResult.Failed)
6010      Info.EvalStatus.HasSideEffects = true;
6011    return true;
6012  }
6013
6014  if (E->isLogicalOp()) {
6015    bool lhsResult;
6016    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
6017      // We were able to evaluate the LHS, see if we can get away with not
6018      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6019      if (lhsResult == (E->getOpcode() == BO_LOr)) {
6020        Success(lhsResult, E, LHSResult.Val);
6021        return false; // Ignore RHS
6022      }
6023    } else {
6024      // Since we weren't able to evaluate the left hand side, it
6025      // must have had side effects.
6026      Info.EvalStatus.HasSideEffects = true;
6027
6028      // We can't evaluate the LHS; however, sometimes the result
6029      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6030      // Don't ignore RHS and suppress diagnostics from this arm.
6031      SuppressRHSDiags = true;
6032    }
6033
6034    return true;
6035  }
6036
6037  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6038         E->getRHS()->getType()->isIntegralOrEnumerationType());
6039
6040  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6041    return false; // Ignore RHS;
6042
6043  return true;
6044}
6045
6046bool DataRecursiveIntBinOpEvaluator::
6047       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6048                  const BinaryOperator *E, APValue &Result) {
6049  if (E->getOpcode() == BO_Comma) {
6050    if (RHSResult.Failed)
6051      return false;
6052    Result = RHSResult.Val;
6053    return true;
6054  }
6055
6056  if (E->isLogicalOp()) {
6057    bool lhsResult, rhsResult;
6058    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6059    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6060
6061    if (LHSIsOK) {
6062      if (RHSIsOK) {
6063        if (E->getOpcode() == BO_LOr)
6064          return Success(lhsResult || rhsResult, E, Result);
6065        else
6066          return Success(lhsResult && rhsResult, E, Result);
6067      }
6068    } else {
6069      if (RHSIsOK) {
6070        // We can't evaluate the LHS; however, sometimes the result
6071        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6072        if (rhsResult == (E->getOpcode() == BO_LOr))
6073          return Success(rhsResult, E, Result);
6074      }
6075    }
6076
6077    return false;
6078  }
6079
6080  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6081         E->getRHS()->getType()->isIntegralOrEnumerationType());
6082
6083  if (LHSResult.Failed || RHSResult.Failed)
6084    return false;
6085
6086  const APValue &LHSVal = LHSResult.Val;
6087  const APValue &RHSVal = RHSResult.Val;
6088
6089  // Handle cases like (unsigned long)&a + 4.
6090  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6091    Result = LHSVal;
6092    CharUnits AdditionalOffset = CharUnits::fromQuantity(
6093                                                         RHSVal.getInt().getZExtValue());
6094    if (E->getOpcode() == BO_Add)
6095      Result.getLValueOffset() += AdditionalOffset;
6096    else
6097      Result.getLValueOffset() -= AdditionalOffset;
6098    return true;
6099  }
6100
6101  // Handle cases like 4 + (unsigned long)&a
6102  if (E->getOpcode() == BO_Add &&
6103      RHSVal.isLValue() && LHSVal.isInt()) {
6104    Result = RHSVal;
6105    Result.getLValueOffset() += CharUnits::fromQuantity(
6106                                                        LHSVal.getInt().getZExtValue());
6107    return true;
6108  }
6109
6110  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6111    // Handle (intptr_t)&&A - (intptr_t)&&B.
6112    if (!LHSVal.getLValueOffset().isZero() ||
6113        !RHSVal.getLValueOffset().isZero())
6114      return false;
6115    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6116    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6117    if (!LHSExpr || !RHSExpr)
6118      return false;
6119    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6120    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6121    if (!LHSAddrExpr || !RHSAddrExpr)
6122      return false;
6123    // Make sure both labels come from the same function.
6124    if (LHSAddrExpr->getLabel()->getDeclContext() !=
6125        RHSAddrExpr->getLabel()->getDeclContext())
6126      return false;
6127    Result = APValue(LHSAddrExpr, RHSAddrExpr);
6128    return true;
6129  }
6130
6131  // All the remaining cases expect both operands to be an integer
6132  if (!LHSVal.isInt() || !RHSVal.isInt())
6133    return Error(E);
6134
6135  // Set up the width and signedness manually, in case it can't be deduced
6136  // from the operation we're performing.
6137  // FIXME: Don't do this in the cases where we can deduce it.
6138  APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6139               E->getType()->isUnsignedIntegerOrEnumerationType());
6140  if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6141                         RHSVal.getInt(), Value))
6142    return false;
6143  return Success(Value, E, Result);
6144}
6145
6146void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6147  Job &job = Queue.back();
6148
6149  switch (job.Kind) {
6150    case Job::AnyExprKind: {
6151      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6152        if (shouldEnqueue(Bop)) {
6153          job.Kind = Job::BinOpKind;
6154          enqueue(Bop->getLHS());
6155          return;
6156        }
6157      }
6158
6159      EvaluateExpr(job.E, Result);
6160      Queue.pop_back();
6161      return;
6162    }
6163
6164    case Job::BinOpKind: {
6165      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6166      bool SuppressRHSDiags = false;
6167      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6168        Queue.pop_back();
6169        return;
6170      }
6171      if (SuppressRHSDiags)
6172        job.startSpeculativeEval(Info);
6173      job.LHSResult.swap(Result);
6174      job.Kind = Job::BinOpVisitedLHSKind;
6175      enqueue(Bop->getRHS());
6176      return;
6177    }
6178
6179    case Job::BinOpVisitedLHSKind: {
6180      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6181      EvalResult RHS;
6182      RHS.swap(Result);
6183      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6184      Queue.pop_back();
6185      return;
6186    }
6187  }
6188
6189  llvm_unreachable("Invalid Job::Kind!");
6190}
6191
6192bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6193  if (E->isAssignmentOp())
6194    return Error(E);
6195
6196  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6197    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6198
6199  QualType LHSTy = E->getLHS()->getType();
6200  QualType RHSTy = E->getRHS()->getType();
6201
6202  if (LHSTy->isAnyComplexType()) {
6203    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6204    ComplexValue LHS, RHS;
6205
6206    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6207    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6208      return false;
6209
6210    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6211      return false;
6212
6213    if (LHS.isComplexFloat()) {
6214      APFloat::cmpResult CR_r =
6215        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6216      APFloat::cmpResult CR_i =
6217        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6218
6219      if (E->getOpcode() == BO_EQ)
6220        return Success((CR_r == APFloat::cmpEqual &&
6221                        CR_i == APFloat::cmpEqual), E);
6222      else {
6223        assert(E->getOpcode() == BO_NE &&
6224               "Invalid complex comparison.");
6225        return Success(((CR_r == APFloat::cmpGreaterThan ||
6226                         CR_r == APFloat::cmpLessThan ||
6227                         CR_r == APFloat::cmpUnordered) ||
6228                        (CR_i == APFloat::cmpGreaterThan ||
6229                         CR_i == APFloat::cmpLessThan ||
6230                         CR_i == APFloat::cmpUnordered)), E);
6231      }
6232    } else {
6233      if (E->getOpcode() == BO_EQ)
6234        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6235                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6236      else {
6237        assert(E->getOpcode() == BO_NE &&
6238               "Invalid compex comparison.");
6239        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6240                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6241      }
6242    }
6243  }
6244
6245  if (LHSTy->isRealFloatingType() &&
6246      RHSTy->isRealFloatingType()) {
6247    APFloat RHS(0.0), LHS(0.0);
6248
6249    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6250    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6251      return false;
6252
6253    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6254      return false;
6255
6256    APFloat::cmpResult CR = LHS.compare(RHS);
6257
6258    switch (E->getOpcode()) {
6259    default:
6260      llvm_unreachable("Invalid binary operator!");
6261    case BO_LT:
6262      return Success(CR == APFloat::cmpLessThan, E);
6263    case BO_GT:
6264      return Success(CR == APFloat::cmpGreaterThan, E);
6265    case BO_LE:
6266      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6267    case BO_GE:
6268      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6269                     E);
6270    case BO_EQ:
6271      return Success(CR == APFloat::cmpEqual, E);
6272    case BO_NE:
6273      return Success(CR == APFloat::cmpGreaterThan
6274                     || CR == APFloat::cmpLessThan
6275                     || CR == APFloat::cmpUnordered, E);
6276    }
6277  }
6278
6279  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6280    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6281      LValue LHSValue, RHSValue;
6282
6283      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6284      if (!LHSOK && Info.keepEvaluatingAfterFailure())
6285        return false;
6286
6287      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6288        return false;
6289
6290      // Reject differing bases from the normal codepath; we special-case
6291      // comparisons to null.
6292      if (!HasSameBase(LHSValue, RHSValue)) {
6293        if (E->getOpcode() == BO_Sub) {
6294          // Handle &&A - &&B.
6295          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6296            return false;
6297          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6298          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6299          if (!LHSExpr || !RHSExpr)
6300            return false;
6301          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6302          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6303          if (!LHSAddrExpr || !RHSAddrExpr)
6304            return false;
6305          // Make sure both labels come from the same function.
6306          if (LHSAddrExpr->getLabel()->getDeclContext() !=
6307              RHSAddrExpr->getLabel()->getDeclContext())
6308            return false;
6309          Result = APValue(LHSAddrExpr, RHSAddrExpr);
6310          return true;
6311        }
6312        // Inequalities and subtractions between unrelated pointers have
6313        // unspecified or undefined behavior.
6314        if (!E->isEqualityOp())
6315          return Error(E);
6316        // A constant address may compare equal to the address of a symbol.
6317        // The one exception is that address of an object cannot compare equal
6318        // to a null pointer constant.
6319        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6320            (!RHSValue.Base && !RHSValue.Offset.isZero()))
6321          return Error(E);
6322        // It's implementation-defined whether distinct literals will have
6323        // distinct addresses. In clang, the result of such a comparison is
6324        // unspecified, so it is not a constant expression. However, we do know
6325        // that the address of a literal will be non-null.
6326        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6327            LHSValue.Base && RHSValue.Base)
6328          return Error(E);
6329        // We can't tell whether weak symbols will end up pointing to the same
6330        // object.
6331        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6332          return Error(E);
6333        // Pointers with different bases cannot represent the same object.
6334        // (Note that clang defaults to -fmerge-all-constants, which can
6335        // lead to inconsistent results for comparisons involving the address
6336        // of a constant; this generally doesn't matter in practice.)
6337        return Success(E->getOpcode() == BO_NE, E);
6338      }
6339
6340      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6341      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6342
6343      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6344      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6345
6346      if (E->getOpcode() == BO_Sub) {
6347        // C++11 [expr.add]p6:
6348        //   Unless both pointers point to elements of the same array object, or
6349        //   one past the last element of the array object, the behavior is
6350        //   undefined.
6351        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6352            !AreElementsOfSameArray(getType(LHSValue.Base),
6353                                    LHSDesignator, RHSDesignator))
6354          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6355
6356        QualType Type = E->getLHS()->getType();
6357        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6358
6359        CharUnits ElementSize;
6360        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6361          return false;
6362
6363        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6364        // and produce incorrect results when it overflows. Such behavior
6365        // appears to be non-conforming, but is common, so perhaps we should
6366        // assume the standard intended for such cases to be undefined behavior
6367        // and check for them.
6368
6369        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6370        // overflow in the final conversion to ptrdiff_t.
6371        APSInt LHS(
6372          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6373        APSInt RHS(
6374          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6375        APSInt ElemSize(
6376          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6377        APSInt TrueResult = (LHS - RHS) / ElemSize;
6378        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6379
6380        if (Result.extend(65) != TrueResult)
6381          HandleOverflow(Info, E, TrueResult, E->getType());
6382        return Success(Result, E);
6383      }
6384
6385      // C++11 [expr.rel]p3:
6386      //   Pointers to void (after pointer conversions) can be compared, with a
6387      //   result defined as follows: If both pointers represent the same
6388      //   address or are both the null pointer value, the result is true if the
6389      //   operator is <= or >= and false otherwise; otherwise the result is
6390      //   unspecified.
6391      // We interpret this as applying to pointers to *cv* void.
6392      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6393          E->isRelationalOp())
6394        CCEDiag(E, diag::note_constexpr_void_comparison);
6395
6396      // C++11 [expr.rel]p2:
6397      // - If two pointers point to non-static data members of the same object,
6398      //   or to subobjects or array elements fo such members, recursively, the
6399      //   pointer to the later declared member compares greater provided the
6400      //   two members have the same access control and provided their class is
6401      //   not a union.
6402      //   [...]
6403      // - Otherwise pointer comparisons are unspecified.
6404      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6405          E->isRelationalOp()) {
6406        bool WasArrayIndex;
6407        unsigned Mismatch =
6408          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6409                                 RHSDesignator, WasArrayIndex);
6410        // At the point where the designators diverge, the comparison has a
6411        // specified value if:
6412        //  - we are comparing array indices
6413        //  - we are comparing fields of a union, or fields with the same access
6414        // Otherwise, the result is unspecified and thus the comparison is not a
6415        // constant expression.
6416        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6417            Mismatch < RHSDesignator.Entries.size()) {
6418          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6419          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6420          if (!LF && !RF)
6421            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6422          else if (!LF)
6423            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6424              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6425              << RF->getParent() << RF;
6426          else if (!RF)
6427            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6428              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6429              << LF->getParent() << LF;
6430          else if (!LF->getParent()->isUnion() &&
6431                   LF->getAccess() != RF->getAccess())
6432            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6433              << LF << LF->getAccess() << RF << RF->getAccess()
6434              << LF->getParent();
6435        }
6436      }
6437
6438      // The comparison here must be unsigned, and performed with the same
6439      // width as the pointer.
6440      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6441      uint64_t CompareLHS = LHSOffset.getQuantity();
6442      uint64_t CompareRHS = RHSOffset.getQuantity();
6443      assert(PtrSize <= 64 && "Unexpected pointer width");
6444      uint64_t Mask = ~0ULL >> (64 - PtrSize);
6445      CompareLHS &= Mask;
6446      CompareRHS &= Mask;
6447
6448      // If there is a base and this is a relational operator, we can only
6449      // compare pointers within the object in question; otherwise, the result
6450      // depends on where the object is located in memory.
6451      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6452        QualType BaseTy = getType(LHSValue.Base);
6453        if (BaseTy->isIncompleteType())
6454          return Error(E);
6455        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6456        uint64_t OffsetLimit = Size.getQuantity();
6457        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6458          return Error(E);
6459      }
6460
6461      switch (E->getOpcode()) {
6462      default: llvm_unreachable("missing comparison operator");
6463      case BO_LT: return Success(CompareLHS < CompareRHS, E);
6464      case BO_GT: return Success(CompareLHS > CompareRHS, E);
6465      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6466      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6467      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6468      case BO_NE: return Success(CompareLHS != CompareRHS, E);
6469      }
6470    }
6471  }
6472
6473  if (LHSTy->isMemberPointerType()) {
6474    assert(E->isEqualityOp() && "unexpected member pointer operation");
6475    assert(RHSTy->isMemberPointerType() && "invalid comparison");
6476
6477    MemberPtr LHSValue, RHSValue;
6478
6479    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6480    if (!LHSOK && Info.keepEvaluatingAfterFailure())
6481      return false;
6482
6483    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6484      return false;
6485
6486    // C++11 [expr.eq]p2:
6487    //   If both operands are null, they compare equal. Otherwise if only one is
6488    //   null, they compare unequal.
6489    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6490      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6491      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6492    }
6493
6494    //   Otherwise if either is a pointer to a virtual member function, the
6495    //   result is unspecified.
6496    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6497      if (MD->isVirtual())
6498        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6499    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6500      if (MD->isVirtual())
6501        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6502
6503    //   Otherwise they compare equal if and only if they would refer to the
6504    //   same member of the same most derived object or the same subobject if
6505    //   they were dereferenced with a hypothetical object of the associated
6506    //   class type.
6507    bool Equal = LHSValue == RHSValue;
6508    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6509  }
6510
6511  if (LHSTy->isNullPtrType()) {
6512    assert(E->isComparisonOp() && "unexpected nullptr operation");
6513    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6514    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6515    // are compared, the result is true of the operator is <=, >= or ==, and
6516    // false otherwise.
6517    BinaryOperator::Opcode Opcode = E->getOpcode();
6518    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6519  }
6520
6521  assert((!LHSTy->isIntegralOrEnumerationType() ||
6522          !RHSTy->isIntegralOrEnumerationType()) &&
6523         "DataRecursiveIntBinOpEvaluator should have handled integral types");
6524  // We can't continue from here for non-integral types.
6525  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6526}
6527
6528CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6529  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
6530  //   result shall be the alignment of the referenced type."
6531  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6532    T = Ref->getPointeeType();
6533
6534  // __alignof is defined to return the preferred alignment.
6535  return Info.Ctx.toCharUnitsFromBits(
6536    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6537}
6538
6539CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6540  E = E->IgnoreParens();
6541
6542  // The kinds of expressions that we have special-case logic here for
6543  // should be kept up to date with the special checks for those
6544  // expressions in Sema.
6545
6546  // alignof decl is always accepted, even if it doesn't make sense: we default
6547  // to 1 in those cases.
6548  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6549    return Info.Ctx.getDeclAlign(DRE->getDecl(),
6550                                 /*RefAsPointee*/true);
6551
6552  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6553    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6554                                 /*RefAsPointee*/true);
6555
6556  return GetAlignOfType(E->getType());
6557}
6558
6559
6560/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6561/// a result as the expression's type.
6562bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6563                                    const UnaryExprOrTypeTraitExpr *E) {
6564  switch(E->getKind()) {
6565  case UETT_AlignOf: {
6566    if (E->isArgumentType())
6567      return Success(GetAlignOfType(E->getArgumentType()), E);
6568    else
6569      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6570  }
6571
6572  case UETT_VecStep: {
6573    QualType Ty = E->getTypeOfArgument();
6574
6575    if (Ty->isVectorType()) {
6576      unsigned n = Ty->castAs<VectorType>()->getNumElements();
6577
6578      // The vec_step built-in functions that take a 3-component
6579      // vector return 4. (OpenCL 1.1 spec 6.11.12)
6580      if (n == 3)
6581        n = 4;
6582
6583      return Success(n, E);
6584    } else
6585      return Success(1, E);
6586  }
6587
6588  case UETT_SizeOf: {
6589    QualType SrcTy = E->getTypeOfArgument();
6590    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
6591    //   the result is the size of the referenced type."
6592    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
6593      SrcTy = Ref->getPointeeType();
6594
6595    CharUnits Sizeof;
6596    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
6597      return false;
6598    return Success(Sizeof, E);
6599  }
6600  }
6601
6602  llvm_unreachable("unknown expr/type trait");
6603}
6604
6605bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
6606  CharUnits Result;
6607  unsigned n = OOE->getNumComponents();
6608  if (n == 0)
6609    return Error(OOE);
6610  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
6611  for (unsigned i = 0; i != n; ++i) {
6612    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
6613    switch (ON.getKind()) {
6614    case OffsetOfExpr::OffsetOfNode::Array: {
6615      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
6616      APSInt IdxResult;
6617      if (!EvaluateInteger(Idx, IdxResult, Info))
6618        return false;
6619      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
6620      if (!AT)
6621        return Error(OOE);
6622      CurrentType = AT->getElementType();
6623      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
6624      Result += IdxResult.getSExtValue() * ElementSize;
6625      break;
6626    }
6627
6628    case OffsetOfExpr::OffsetOfNode::Field: {
6629      FieldDecl *MemberDecl = ON.getField();
6630      const RecordType *RT = CurrentType->getAs<RecordType>();
6631      if (!RT)
6632        return Error(OOE);
6633      RecordDecl *RD = RT->getDecl();
6634      if (RD->isInvalidDecl()) return false;
6635      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6636      unsigned i = MemberDecl->getFieldIndex();
6637      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
6638      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
6639      CurrentType = MemberDecl->getType().getNonReferenceType();
6640      break;
6641    }
6642
6643    case OffsetOfExpr::OffsetOfNode::Identifier:
6644      llvm_unreachable("dependent __builtin_offsetof");
6645
6646    case OffsetOfExpr::OffsetOfNode::Base: {
6647      CXXBaseSpecifier *BaseSpec = ON.getBase();
6648      if (BaseSpec->isVirtual())
6649        return Error(OOE);
6650
6651      // Find the layout of the class whose base we are looking into.
6652      const RecordType *RT = CurrentType->getAs<RecordType>();
6653      if (!RT)
6654        return Error(OOE);
6655      RecordDecl *RD = RT->getDecl();
6656      if (RD->isInvalidDecl()) return false;
6657      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
6658
6659      // Find the base class itself.
6660      CurrentType = BaseSpec->getType();
6661      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
6662      if (!BaseRT)
6663        return Error(OOE);
6664
6665      // Add the offset to the base.
6666      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
6667      break;
6668    }
6669    }
6670  }
6671  return Success(Result, OOE);
6672}
6673
6674bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6675  switch (E->getOpcode()) {
6676  default:
6677    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
6678    // See C99 6.6p3.
6679    return Error(E);
6680  case UO_Extension:
6681    // FIXME: Should extension allow i-c-e extension expressions in its scope?
6682    // If so, we could clear the diagnostic ID.
6683    return Visit(E->getSubExpr());
6684  case UO_Plus:
6685    // The result is just the value.
6686    return Visit(E->getSubExpr());
6687  case UO_Minus: {
6688    if (!Visit(E->getSubExpr()))
6689      return false;
6690    if (!Result.isInt()) return Error(E);
6691    const APSInt &Value = Result.getInt();
6692    if (Value.isSigned() && Value.isMinSignedValue())
6693      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
6694                     E->getType());
6695    return Success(-Value, E);
6696  }
6697  case UO_Not: {
6698    if (!Visit(E->getSubExpr()))
6699      return false;
6700    if (!Result.isInt()) return Error(E);
6701    return Success(~Result.getInt(), E);
6702  }
6703  case UO_LNot: {
6704    bool bres;
6705    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
6706      return false;
6707    return Success(!bres, E);
6708  }
6709  }
6710}
6711
6712/// HandleCast - This is used to evaluate implicit or explicit casts where the
6713/// result type is integer.
6714bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
6715  const Expr *SubExpr = E->getSubExpr();
6716  QualType DestType = E->getType();
6717  QualType SrcType = SubExpr->getType();
6718
6719  switch (E->getCastKind()) {
6720  case CK_BaseToDerived:
6721  case CK_DerivedToBase:
6722  case CK_UncheckedDerivedToBase:
6723  case CK_Dynamic:
6724  case CK_ToUnion:
6725  case CK_ArrayToPointerDecay:
6726  case CK_FunctionToPointerDecay:
6727  case CK_NullToPointer:
6728  case CK_NullToMemberPointer:
6729  case CK_BaseToDerivedMemberPointer:
6730  case CK_DerivedToBaseMemberPointer:
6731  case CK_ReinterpretMemberPointer:
6732  case CK_ConstructorConversion:
6733  case CK_IntegralToPointer:
6734  case CK_ToVoid:
6735  case CK_VectorSplat:
6736  case CK_IntegralToFloating:
6737  case CK_FloatingCast:
6738  case CK_CPointerToObjCPointerCast:
6739  case CK_BlockPointerToObjCPointerCast:
6740  case CK_AnyPointerToBlockPointerCast:
6741  case CK_ObjCObjectLValueCast:
6742  case CK_FloatingRealToComplex:
6743  case CK_FloatingComplexToReal:
6744  case CK_FloatingComplexCast:
6745  case CK_FloatingComplexToIntegralComplex:
6746  case CK_IntegralRealToComplex:
6747  case CK_IntegralComplexCast:
6748  case CK_IntegralComplexToFloatingComplex:
6749  case CK_BuiltinFnToFnPtr:
6750  case CK_ZeroToOCLEvent:
6751  case CK_NonAtomicToAtomic:
6752    llvm_unreachable("invalid cast kind for integral value");
6753
6754  case CK_BitCast:
6755  case CK_Dependent:
6756  case CK_LValueBitCast:
6757  case CK_ARCProduceObject:
6758  case CK_ARCConsumeObject:
6759  case CK_ARCReclaimReturnedObject:
6760  case CK_ARCExtendBlockObject:
6761  case CK_CopyAndAutoreleaseBlockObject:
6762    return Error(E);
6763
6764  case CK_UserDefinedConversion:
6765  case CK_LValueToRValue:
6766  case CK_AtomicToNonAtomic:
6767  case CK_NoOp:
6768    return ExprEvaluatorBaseTy::VisitCastExpr(E);
6769
6770  case CK_MemberPointerToBoolean:
6771  case CK_PointerToBoolean:
6772  case CK_IntegralToBoolean:
6773  case CK_FloatingToBoolean:
6774  case CK_FloatingComplexToBoolean:
6775  case CK_IntegralComplexToBoolean: {
6776    bool BoolResult;
6777    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
6778      return false;
6779    return Success(BoolResult, E);
6780  }
6781
6782  case CK_IntegralCast: {
6783    if (!Visit(SubExpr))
6784      return false;
6785
6786    if (!Result.isInt()) {
6787      // Allow casts of address-of-label differences if they are no-ops
6788      // or narrowing.  (The narrowing case isn't actually guaranteed to
6789      // be constant-evaluatable except in some narrow cases which are hard
6790      // to detect here.  We let it through on the assumption the user knows
6791      // what they are doing.)
6792      if (Result.isAddrLabelDiff())
6793        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
6794      // Only allow casts of lvalues if they are lossless.
6795      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
6796    }
6797
6798    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
6799                                      Result.getInt()), E);
6800  }
6801
6802  case CK_PointerToIntegral: {
6803    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
6804
6805    LValue LV;
6806    if (!EvaluatePointer(SubExpr, LV, Info))
6807      return false;
6808
6809    if (LV.getLValueBase()) {
6810      // Only allow based lvalue casts if they are lossless.
6811      // FIXME: Allow a larger integer size than the pointer size, and allow
6812      // narrowing back down to pointer width in subsequent integral casts.
6813      // FIXME: Check integer type's active bits, not its type size.
6814      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
6815        return Error(E);
6816
6817      LV.Designator.setInvalid();
6818      LV.moveInto(Result);
6819      return true;
6820    }
6821
6822    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
6823                                         SrcType);
6824    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
6825  }
6826
6827  case CK_IntegralComplexToReal: {
6828    ComplexValue C;
6829    if (!EvaluateComplex(SubExpr, C, Info))
6830      return false;
6831    return Success(C.getComplexIntReal(), E);
6832  }
6833
6834  case CK_FloatingToIntegral: {
6835    APFloat F(0.0);
6836    if (!EvaluateFloat(SubExpr, F, Info))
6837      return false;
6838
6839    APSInt Value;
6840    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
6841      return false;
6842    return Success(Value, E);
6843  }
6844  }
6845
6846  llvm_unreachable("unknown cast resulting in integral value");
6847}
6848
6849bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
6850  if (E->getSubExpr()->getType()->isAnyComplexType()) {
6851    ComplexValue LV;
6852    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
6853      return false;
6854    if (!LV.isComplexInt())
6855      return Error(E);
6856    return Success(LV.getComplexIntReal(), E);
6857  }
6858
6859  return Visit(E->getSubExpr());
6860}
6861
6862bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6863  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
6864    ComplexValue LV;
6865    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
6866      return false;
6867    if (!LV.isComplexInt())
6868      return Error(E);
6869    return Success(LV.getComplexIntImag(), E);
6870  }
6871
6872  VisitIgnoredValue(E->getSubExpr());
6873  return Success(0, E);
6874}
6875
6876bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
6877  return Success(E->getPackLength(), E);
6878}
6879
6880bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
6881  return Success(E->getValue(), E);
6882}
6883
6884//===----------------------------------------------------------------------===//
6885// Float Evaluation
6886//===----------------------------------------------------------------------===//
6887
6888namespace {
6889class FloatExprEvaluator
6890  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
6891  APFloat &Result;
6892public:
6893  FloatExprEvaluator(EvalInfo &info, APFloat &result)
6894    : ExprEvaluatorBaseTy(info), Result(result) {}
6895
6896  bool Success(const APValue &V, const Expr *e) {
6897    Result = V.getFloat();
6898    return true;
6899  }
6900
6901  bool ZeroInitialization(const Expr *E) {
6902    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
6903    return true;
6904  }
6905
6906  bool VisitCallExpr(const CallExpr *E);
6907
6908  bool VisitUnaryOperator(const UnaryOperator *E);
6909  bool VisitBinaryOperator(const BinaryOperator *E);
6910  bool VisitFloatingLiteral(const FloatingLiteral *E);
6911  bool VisitCastExpr(const CastExpr *E);
6912
6913  bool VisitUnaryReal(const UnaryOperator *E);
6914  bool VisitUnaryImag(const UnaryOperator *E);
6915
6916  // FIXME: Missing: array subscript of vector, member of vector
6917};
6918} // end anonymous namespace
6919
6920static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
6921  assert(E->isRValue() && E->getType()->isRealFloatingType());
6922  return FloatExprEvaluator(Info, Result).Visit(E);
6923}
6924
6925static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
6926                                  QualType ResultTy,
6927                                  const Expr *Arg,
6928                                  bool SNaN,
6929                                  llvm::APFloat &Result) {
6930  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
6931  if (!S) return false;
6932
6933  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
6934
6935  llvm::APInt fill;
6936
6937  // Treat empty strings as if they were zero.
6938  if (S->getString().empty())
6939    fill = llvm::APInt(32, 0);
6940  else if (S->getString().getAsInteger(0, fill))
6941    return false;
6942
6943  if (SNaN)
6944    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
6945  else
6946    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
6947  return true;
6948}
6949
6950bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
6951  switch (E->isBuiltinCall()) {
6952  default:
6953    return ExprEvaluatorBaseTy::VisitCallExpr(E);
6954
6955  case Builtin::BI__builtin_huge_val:
6956  case Builtin::BI__builtin_huge_valf:
6957  case Builtin::BI__builtin_huge_vall:
6958  case Builtin::BI__builtin_inf:
6959  case Builtin::BI__builtin_inff:
6960  case Builtin::BI__builtin_infl: {
6961    const llvm::fltSemantics &Sem =
6962      Info.Ctx.getFloatTypeSemantics(E->getType());
6963    Result = llvm::APFloat::getInf(Sem);
6964    return true;
6965  }
6966
6967  case Builtin::BI__builtin_nans:
6968  case Builtin::BI__builtin_nansf:
6969  case Builtin::BI__builtin_nansl:
6970    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
6971                               true, Result))
6972      return Error(E);
6973    return true;
6974
6975  case Builtin::BI__builtin_nan:
6976  case Builtin::BI__builtin_nanf:
6977  case Builtin::BI__builtin_nanl:
6978    // If this is __builtin_nan() turn this into a nan, otherwise we
6979    // can't constant fold it.
6980    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
6981                               false, Result))
6982      return Error(E);
6983    return true;
6984
6985  case Builtin::BI__builtin_fabs:
6986  case Builtin::BI__builtin_fabsf:
6987  case Builtin::BI__builtin_fabsl:
6988    if (!EvaluateFloat(E->getArg(0), Result, Info))
6989      return false;
6990
6991    if (Result.isNegative())
6992      Result.changeSign();
6993    return true;
6994
6995  // FIXME: Builtin::BI__builtin_powi
6996  // FIXME: Builtin::BI__builtin_powif
6997  // FIXME: Builtin::BI__builtin_powil
6998
6999  case Builtin::BI__builtin_copysign:
7000  case Builtin::BI__builtin_copysignf:
7001  case Builtin::BI__builtin_copysignl: {
7002    APFloat RHS(0.);
7003    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7004        !EvaluateFloat(E->getArg(1), RHS, Info))
7005      return false;
7006    Result.copySign(RHS);
7007    return true;
7008  }
7009  }
7010}
7011
7012bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7013  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7014    ComplexValue CV;
7015    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7016      return false;
7017    Result = CV.FloatReal;
7018    return true;
7019  }
7020
7021  return Visit(E->getSubExpr());
7022}
7023
7024bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7025  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7026    ComplexValue CV;
7027    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7028      return false;
7029    Result = CV.FloatImag;
7030    return true;
7031  }
7032
7033  VisitIgnoredValue(E->getSubExpr());
7034  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7035  Result = llvm::APFloat::getZero(Sem);
7036  return true;
7037}
7038
7039bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7040  switch (E->getOpcode()) {
7041  default: return Error(E);
7042  case UO_Plus:
7043    return EvaluateFloat(E->getSubExpr(), Result, Info);
7044  case UO_Minus:
7045    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7046      return false;
7047    Result.changeSign();
7048    return true;
7049  }
7050}
7051
7052bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7053  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7054    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7055
7056  APFloat RHS(0.0);
7057  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7058  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7059    return false;
7060  return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7061         handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7062}
7063
7064bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7065  Result = E->getValue();
7066  return true;
7067}
7068
7069bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7070  const Expr* SubExpr = E->getSubExpr();
7071
7072  switch (E->getCastKind()) {
7073  default:
7074    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7075
7076  case CK_IntegralToFloating: {
7077    APSInt IntResult;
7078    return EvaluateInteger(SubExpr, IntResult, Info) &&
7079           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7080                                E->getType(), Result);
7081  }
7082
7083  case CK_FloatingCast: {
7084    if (!Visit(SubExpr))
7085      return false;
7086    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7087                                  Result);
7088  }
7089
7090  case CK_FloatingComplexToReal: {
7091    ComplexValue V;
7092    if (!EvaluateComplex(SubExpr, V, Info))
7093      return false;
7094    Result = V.getComplexFloatReal();
7095    return true;
7096  }
7097  }
7098}
7099
7100//===----------------------------------------------------------------------===//
7101// Complex Evaluation (for float and integer)
7102//===----------------------------------------------------------------------===//
7103
7104namespace {
7105class ComplexExprEvaluator
7106  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
7107  ComplexValue &Result;
7108
7109public:
7110  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7111    : ExprEvaluatorBaseTy(info), Result(Result) {}
7112
7113  bool Success(const APValue &V, const Expr *e) {
7114    Result.setFrom(V);
7115    return true;
7116  }
7117
7118  bool ZeroInitialization(const Expr *E);
7119
7120  //===--------------------------------------------------------------------===//
7121  //                            Visitor Methods
7122  //===--------------------------------------------------------------------===//
7123
7124  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7125  bool VisitCastExpr(const CastExpr *E);
7126  bool VisitBinaryOperator(const BinaryOperator *E);
7127  bool VisitUnaryOperator(const UnaryOperator *E);
7128  bool VisitInitListExpr(const InitListExpr *E);
7129};
7130} // end anonymous namespace
7131
7132static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7133                            EvalInfo &Info) {
7134  assert(E->isRValue() && E->getType()->isAnyComplexType());
7135  return ComplexExprEvaluator(Info, Result).Visit(E);
7136}
7137
7138bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7139  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7140  if (ElemTy->isRealFloatingType()) {
7141    Result.makeComplexFloat();
7142    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7143    Result.FloatReal = Zero;
7144    Result.FloatImag = Zero;
7145  } else {
7146    Result.makeComplexInt();
7147    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7148    Result.IntReal = Zero;
7149    Result.IntImag = Zero;
7150  }
7151  return true;
7152}
7153
7154bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7155  const Expr* SubExpr = E->getSubExpr();
7156
7157  if (SubExpr->getType()->isRealFloatingType()) {
7158    Result.makeComplexFloat();
7159    APFloat &Imag = Result.FloatImag;
7160    if (!EvaluateFloat(SubExpr, Imag, Info))
7161      return false;
7162
7163    Result.FloatReal = APFloat(Imag.getSemantics());
7164    return true;
7165  } else {
7166    assert(SubExpr->getType()->isIntegerType() &&
7167           "Unexpected imaginary literal.");
7168
7169    Result.makeComplexInt();
7170    APSInt &Imag = Result.IntImag;
7171    if (!EvaluateInteger(SubExpr, Imag, Info))
7172      return false;
7173
7174    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7175    return true;
7176  }
7177}
7178
7179bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7180
7181  switch (E->getCastKind()) {
7182  case CK_BitCast:
7183  case CK_BaseToDerived:
7184  case CK_DerivedToBase:
7185  case CK_UncheckedDerivedToBase:
7186  case CK_Dynamic:
7187  case CK_ToUnion:
7188  case CK_ArrayToPointerDecay:
7189  case CK_FunctionToPointerDecay:
7190  case CK_NullToPointer:
7191  case CK_NullToMemberPointer:
7192  case CK_BaseToDerivedMemberPointer:
7193  case CK_DerivedToBaseMemberPointer:
7194  case CK_MemberPointerToBoolean:
7195  case CK_ReinterpretMemberPointer:
7196  case CK_ConstructorConversion:
7197  case CK_IntegralToPointer:
7198  case CK_PointerToIntegral:
7199  case CK_PointerToBoolean:
7200  case CK_ToVoid:
7201  case CK_VectorSplat:
7202  case CK_IntegralCast:
7203  case CK_IntegralToBoolean:
7204  case CK_IntegralToFloating:
7205  case CK_FloatingToIntegral:
7206  case CK_FloatingToBoolean:
7207  case CK_FloatingCast:
7208  case CK_CPointerToObjCPointerCast:
7209  case CK_BlockPointerToObjCPointerCast:
7210  case CK_AnyPointerToBlockPointerCast:
7211  case CK_ObjCObjectLValueCast:
7212  case CK_FloatingComplexToReal:
7213  case CK_FloatingComplexToBoolean:
7214  case CK_IntegralComplexToReal:
7215  case CK_IntegralComplexToBoolean:
7216  case CK_ARCProduceObject:
7217  case CK_ARCConsumeObject:
7218  case CK_ARCReclaimReturnedObject:
7219  case CK_ARCExtendBlockObject:
7220  case CK_CopyAndAutoreleaseBlockObject:
7221  case CK_BuiltinFnToFnPtr:
7222  case CK_ZeroToOCLEvent:
7223  case CK_NonAtomicToAtomic:
7224    llvm_unreachable("invalid cast kind for complex value");
7225
7226  case CK_LValueToRValue:
7227  case CK_AtomicToNonAtomic:
7228  case CK_NoOp:
7229    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7230
7231  case CK_Dependent:
7232  case CK_LValueBitCast:
7233  case CK_UserDefinedConversion:
7234    return Error(E);
7235
7236  case CK_FloatingRealToComplex: {
7237    APFloat &Real = Result.FloatReal;
7238    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7239      return false;
7240
7241    Result.makeComplexFloat();
7242    Result.FloatImag = APFloat(Real.getSemantics());
7243    return true;
7244  }
7245
7246  case CK_FloatingComplexCast: {
7247    if (!Visit(E->getSubExpr()))
7248      return false;
7249
7250    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7251    QualType From
7252      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7253
7254    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7255           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7256  }
7257
7258  case CK_FloatingComplexToIntegralComplex: {
7259    if (!Visit(E->getSubExpr()))
7260      return false;
7261
7262    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7263    QualType From
7264      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7265    Result.makeComplexInt();
7266    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7267                                To, Result.IntReal) &&
7268           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7269                                To, Result.IntImag);
7270  }
7271
7272  case CK_IntegralRealToComplex: {
7273    APSInt &Real = Result.IntReal;
7274    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7275      return false;
7276
7277    Result.makeComplexInt();
7278    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7279    return true;
7280  }
7281
7282  case CK_IntegralComplexCast: {
7283    if (!Visit(E->getSubExpr()))
7284      return false;
7285
7286    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7287    QualType From
7288      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7289
7290    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7291    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7292    return true;
7293  }
7294
7295  case CK_IntegralComplexToFloatingComplex: {
7296    if (!Visit(E->getSubExpr()))
7297      return false;
7298
7299    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7300    QualType From
7301      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7302    Result.makeComplexFloat();
7303    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7304                                To, Result.FloatReal) &&
7305           HandleIntToFloatCast(Info, E, From, Result.IntImag,
7306                                To, Result.FloatImag);
7307  }
7308  }
7309
7310  llvm_unreachable("unknown cast resulting in complex value");
7311}
7312
7313bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7314  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7315    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7316
7317  bool LHSOK = Visit(E->getLHS());
7318  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7319    return false;
7320
7321  ComplexValue RHS;
7322  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7323    return false;
7324
7325  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7326         "Invalid operands to binary operator.");
7327  switch (E->getOpcode()) {
7328  default: return Error(E);
7329  case BO_Add:
7330    if (Result.isComplexFloat()) {
7331      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7332                                       APFloat::rmNearestTiesToEven);
7333      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7334                                       APFloat::rmNearestTiesToEven);
7335    } else {
7336      Result.getComplexIntReal() += RHS.getComplexIntReal();
7337      Result.getComplexIntImag() += RHS.getComplexIntImag();
7338    }
7339    break;
7340  case BO_Sub:
7341    if (Result.isComplexFloat()) {
7342      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7343                                            APFloat::rmNearestTiesToEven);
7344      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7345                                            APFloat::rmNearestTiesToEven);
7346    } else {
7347      Result.getComplexIntReal() -= RHS.getComplexIntReal();
7348      Result.getComplexIntImag() -= RHS.getComplexIntImag();
7349    }
7350    break;
7351  case BO_Mul:
7352    if (Result.isComplexFloat()) {
7353      ComplexValue LHS = Result;
7354      APFloat &LHS_r = LHS.getComplexFloatReal();
7355      APFloat &LHS_i = LHS.getComplexFloatImag();
7356      APFloat &RHS_r = RHS.getComplexFloatReal();
7357      APFloat &RHS_i = RHS.getComplexFloatImag();
7358
7359      APFloat Tmp = LHS_r;
7360      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7361      Result.getComplexFloatReal() = Tmp;
7362      Tmp = LHS_i;
7363      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7364      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7365
7366      Tmp = LHS_r;
7367      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7368      Result.getComplexFloatImag() = Tmp;
7369      Tmp = LHS_i;
7370      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7371      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7372    } else {
7373      ComplexValue LHS = Result;
7374      Result.getComplexIntReal() =
7375        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7376         LHS.getComplexIntImag() * RHS.getComplexIntImag());
7377      Result.getComplexIntImag() =
7378        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7379         LHS.getComplexIntImag() * RHS.getComplexIntReal());
7380    }
7381    break;
7382  case BO_Div:
7383    if (Result.isComplexFloat()) {
7384      ComplexValue LHS = Result;
7385      APFloat &LHS_r = LHS.getComplexFloatReal();
7386      APFloat &LHS_i = LHS.getComplexFloatImag();
7387      APFloat &RHS_r = RHS.getComplexFloatReal();
7388      APFloat &RHS_i = RHS.getComplexFloatImag();
7389      APFloat &Res_r = Result.getComplexFloatReal();
7390      APFloat &Res_i = Result.getComplexFloatImag();
7391
7392      APFloat Den = RHS_r;
7393      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7394      APFloat Tmp = RHS_i;
7395      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7396      Den.add(Tmp, APFloat::rmNearestTiesToEven);
7397
7398      Res_r = LHS_r;
7399      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7400      Tmp = LHS_i;
7401      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7402      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7403      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7404
7405      Res_i = LHS_i;
7406      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7407      Tmp = LHS_r;
7408      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7409      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7410      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7411    } else {
7412      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7413        return Error(E, diag::note_expr_divide_by_zero);
7414
7415      ComplexValue LHS = Result;
7416      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7417        RHS.getComplexIntImag() * RHS.getComplexIntImag();
7418      Result.getComplexIntReal() =
7419        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7420         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7421      Result.getComplexIntImag() =
7422        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7423         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7424    }
7425    break;
7426  }
7427
7428  return true;
7429}
7430
7431bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7432  // Get the operand value into 'Result'.
7433  if (!Visit(E->getSubExpr()))
7434    return false;
7435
7436  switch (E->getOpcode()) {
7437  default:
7438    return Error(E);
7439  case UO_Extension:
7440    return true;
7441  case UO_Plus:
7442    // The result is always just the subexpr.
7443    return true;
7444  case UO_Minus:
7445    if (Result.isComplexFloat()) {
7446      Result.getComplexFloatReal().changeSign();
7447      Result.getComplexFloatImag().changeSign();
7448    }
7449    else {
7450      Result.getComplexIntReal() = -Result.getComplexIntReal();
7451      Result.getComplexIntImag() = -Result.getComplexIntImag();
7452    }
7453    return true;
7454  case UO_Not:
7455    if (Result.isComplexFloat())
7456      Result.getComplexFloatImag().changeSign();
7457    else
7458      Result.getComplexIntImag() = -Result.getComplexIntImag();
7459    return true;
7460  }
7461}
7462
7463bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7464  if (E->getNumInits() == 2) {
7465    if (E->getType()->isComplexType()) {
7466      Result.makeComplexFloat();
7467      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7468        return false;
7469      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7470        return false;
7471    } else {
7472      Result.makeComplexInt();
7473      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7474        return false;
7475      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7476        return false;
7477    }
7478    return true;
7479  }
7480  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7481}
7482
7483//===----------------------------------------------------------------------===//
7484// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7485// implicit conversion.
7486//===----------------------------------------------------------------------===//
7487
7488namespace {
7489class AtomicExprEvaluator :
7490    public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
7491  APValue &Result;
7492public:
7493  AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7494      : ExprEvaluatorBaseTy(Info), Result(Result) {}
7495
7496  bool Success(const APValue &V, const Expr *E) {
7497    Result = V;
7498    return true;
7499  }
7500
7501  bool ZeroInitialization(const Expr *E) {
7502    ImplicitValueInitExpr VIE(
7503        E->getType()->castAs<AtomicType>()->getValueType());
7504    return Evaluate(Result, Info, &VIE);
7505  }
7506
7507  bool VisitCastExpr(const CastExpr *E) {
7508    switch (E->getCastKind()) {
7509    default:
7510      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7511    case CK_NonAtomicToAtomic:
7512      return Evaluate(Result, Info, E->getSubExpr());
7513    }
7514  }
7515};
7516} // end anonymous namespace
7517
7518static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7519  assert(E->isRValue() && E->getType()->isAtomicType());
7520  return AtomicExprEvaluator(Info, Result).Visit(E);
7521}
7522
7523//===----------------------------------------------------------------------===//
7524// Void expression evaluation, primarily for a cast to void on the LHS of a
7525// comma operator
7526//===----------------------------------------------------------------------===//
7527
7528namespace {
7529class VoidExprEvaluator
7530  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
7531public:
7532  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7533
7534  bool Success(const APValue &V, const Expr *e) { return true; }
7535
7536  bool VisitCastExpr(const CastExpr *E) {
7537    switch (E->getCastKind()) {
7538    default:
7539      return ExprEvaluatorBaseTy::VisitCastExpr(E);
7540    case CK_ToVoid:
7541      VisitIgnoredValue(E->getSubExpr());
7542      return true;
7543    }
7544  }
7545};
7546} // end anonymous namespace
7547
7548static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7549  assert(E->isRValue() && E->getType()->isVoidType());
7550  return VoidExprEvaluator(Info).Visit(E);
7551}
7552
7553//===----------------------------------------------------------------------===//
7554// Top level Expr::EvaluateAsRValue method.
7555//===----------------------------------------------------------------------===//
7556
7557static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7558  // In C, function designators are not lvalues, but we evaluate them as if they
7559  // are.
7560  QualType T = E->getType();
7561  if (E->isGLValue() || T->isFunctionType()) {
7562    LValue LV;
7563    if (!EvaluateLValue(E, LV, Info))
7564      return false;
7565    LV.moveInto(Result);
7566  } else if (T->isVectorType()) {
7567    if (!EvaluateVector(E, Result, Info))
7568      return false;
7569  } else if (T->isIntegralOrEnumerationType()) {
7570    if (!IntExprEvaluator(Info, Result).Visit(E))
7571      return false;
7572  } else if (T->hasPointerRepresentation()) {
7573    LValue LV;
7574    if (!EvaluatePointer(E, LV, Info))
7575      return false;
7576    LV.moveInto(Result);
7577  } else if (T->isRealFloatingType()) {
7578    llvm::APFloat F(0.0);
7579    if (!EvaluateFloat(E, F, Info))
7580      return false;
7581    Result = APValue(F);
7582  } else if (T->isAnyComplexType()) {
7583    ComplexValue C;
7584    if (!EvaluateComplex(E, C, Info))
7585      return false;
7586    C.moveInto(Result);
7587  } else if (T->isMemberPointerType()) {
7588    MemberPtr P;
7589    if (!EvaluateMemberPointer(E, P, Info))
7590      return false;
7591    P.moveInto(Result);
7592    return true;
7593  } else if (T->isArrayType()) {
7594    LValue LV;
7595    LV.set(E, Info.CurrentCall->Index);
7596    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
7597      return false;
7598    Result = Info.CurrentCall->Temporaries[E];
7599  } else if (T->isRecordType()) {
7600    LValue LV;
7601    LV.set(E, Info.CurrentCall->Index);
7602    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
7603      return false;
7604    Result = Info.CurrentCall->Temporaries[E];
7605  } else if (T->isVoidType()) {
7606    if (!Info.getLangOpts().CPlusPlus11)
7607      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
7608        << E->getType();
7609    if (!EvaluateVoid(E, Info))
7610      return false;
7611  } else if (T->isAtomicType()) {
7612    if (!EvaluateAtomic(E, Result, Info))
7613      return false;
7614  } else if (Info.getLangOpts().CPlusPlus11) {
7615    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
7616    return false;
7617  } else {
7618    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
7619    return false;
7620  }
7621
7622  return true;
7623}
7624
7625/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
7626/// cases, the in-place evaluation is essential, since later initializers for
7627/// an object can indirectly refer to subobjects which were initialized earlier.
7628static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
7629                            const Expr *E, bool AllowNonLiteralTypes) {
7630  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
7631    return false;
7632
7633  if (E->isRValue()) {
7634    // Evaluate arrays and record types in-place, so that later initializers can
7635    // refer to earlier-initialized members of the object.
7636    if (E->getType()->isArrayType())
7637      return EvaluateArray(E, This, Result, Info);
7638    else if (E->getType()->isRecordType())
7639      return EvaluateRecord(E, This, Result, Info);
7640  }
7641
7642  // For any other type, in-place evaluation is unimportant.
7643  return Evaluate(Result, Info, E);
7644}
7645
7646/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
7647/// lvalue-to-rvalue cast if it is an lvalue.
7648static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
7649  if (!CheckLiteralType(Info, E))
7650    return false;
7651
7652  if (!::Evaluate(Result, Info, E))
7653    return false;
7654
7655  if (E->isGLValue()) {
7656    LValue LV;
7657    LV.setFrom(Info.Ctx, Result);
7658    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
7659      return false;
7660  }
7661
7662  // Check this core constant expression is a constant expression.
7663  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
7664}
7665
7666static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
7667                                 const ASTContext &Ctx, bool &IsConst) {
7668  // Fast-path evaluations of integer literals, since we sometimes see files
7669  // containing vast quantities of these.
7670  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
7671    Result.Val = APValue(APSInt(L->getValue(),
7672                                L->getType()->isUnsignedIntegerType()));
7673    IsConst = true;
7674    return true;
7675  }
7676
7677  // FIXME: Evaluating values of large array and record types can cause
7678  // performance problems. Only do so in C++11 for now.
7679  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
7680                          Exp->getType()->isRecordType()) &&
7681      !Ctx.getLangOpts().CPlusPlus11) {
7682    IsConst = false;
7683    return true;
7684  }
7685  return false;
7686}
7687
7688
7689/// EvaluateAsRValue - Return true if this is a constant which we can fold using
7690/// any crazy technique (that has nothing to do with language standards) that
7691/// we want to.  If this function returns true, it returns the folded constant
7692/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
7693/// will be applied to the result.
7694bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
7695  bool IsConst;
7696  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
7697    return IsConst;
7698
7699  EvalInfo Info(Ctx, Result);
7700  return ::EvaluateAsRValue(Info, this, Result.Val);
7701}
7702
7703bool Expr::EvaluateAsBooleanCondition(bool &Result,
7704                                      const ASTContext &Ctx) const {
7705  EvalResult Scratch;
7706  return EvaluateAsRValue(Scratch, Ctx) &&
7707         HandleConversionToBool(Scratch.Val, Result);
7708}
7709
7710bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
7711                         SideEffectsKind AllowSideEffects) const {
7712  if (!getType()->isIntegralOrEnumerationType())
7713    return false;
7714
7715  EvalResult ExprResult;
7716  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
7717      (!AllowSideEffects && ExprResult.HasSideEffects))
7718    return false;
7719
7720  Result = ExprResult.Val.getInt();
7721  return true;
7722}
7723
7724bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
7725  EvalInfo Info(Ctx, Result);
7726
7727  LValue LV;
7728  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
7729      !CheckLValueConstantExpression(Info, getExprLoc(),
7730                                     Ctx.getLValueReferenceType(getType()), LV))
7731    return false;
7732
7733  LV.moveInto(Result.Val);
7734  return true;
7735}
7736
7737bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
7738                                 const VarDecl *VD,
7739                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
7740  // FIXME: Evaluating initializers for large array and record types can cause
7741  // performance problems. Only do so in C++11 for now.
7742  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
7743      !Ctx.getLangOpts().CPlusPlus11)
7744    return false;
7745
7746  Expr::EvalStatus EStatus;
7747  EStatus.Diag = &Notes;
7748
7749  EvalInfo InitInfo(Ctx, EStatus);
7750  InitInfo.setEvaluatingDecl(VD, Value);
7751
7752  LValue LVal;
7753  LVal.set(VD);
7754
7755  // C++11 [basic.start.init]p2:
7756  //  Variables with static storage duration or thread storage duration shall be
7757  //  zero-initialized before any other initialization takes place.
7758  // This behavior is not present in C.
7759  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
7760      !VD->getType()->isReferenceType()) {
7761    ImplicitValueInitExpr VIE(VD->getType());
7762    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
7763                         /*AllowNonLiteralTypes=*/true))
7764      return false;
7765  }
7766
7767  if (!EvaluateInPlace(Value, InitInfo, LVal, this,
7768                       /*AllowNonLiteralTypes=*/true) ||
7769      EStatus.HasSideEffects)
7770    return false;
7771
7772  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
7773                                 Value);
7774}
7775
7776/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
7777/// constant folded, but discard the result.
7778bool Expr::isEvaluatable(const ASTContext &Ctx) const {
7779  EvalResult Result;
7780  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
7781}
7782
7783APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
7784                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
7785  EvalResult EvalResult;
7786  EvalResult.Diag = Diag;
7787  bool Result = EvaluateAsRValue(EvalResult, Ctx);
7788  (void)Result;
7789  assert(Result && "Could not evaluate expression");
7790  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
7791
7792  return EvalResult.Val.getInt();
7793}
7794
7795void Expr::EvaluateForOverflow(const ASTContext &Ctx,
7796                    SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
7797  bool IsConst;
7798  EvalResult EvalResult;
7799  EvalResult.Diag = Diags;
7800  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
7801    EvalInfo Info(Ctx, EvalResult, true);
7802    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
7803  }
7804}
7805
7806bool Expr::EvalResult::isGlobalLValue() const {
7807  assert(Val.isLValue());
7808  return IsGlobalLValue(Val.getLValueBase());
7809}
7810
7811
7812/// isIntegerConstantExpr - this recursive routine will test if an expression is
7813/// an integer constant expression.
7814
7815/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
7816/// comma, etc
7817
7818// CheckICE - This function does the fundamental ICE checking: the returned
7819// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
7820// and a (possibly null) SourceLocation indicating the location of the problem.
7821//
7822// Note that to reduce code duplication, this helper does no evaluation
7823// itself; the caller checks whether the expression is evaluatable, and
7824// in the rare cases where CheckICE actually cares about the evaluated
7825// value, it calls into Evalute.
7826
7827namespace {
7828
7829enum ICEKind {
7830  /// This expression is an ICE.
7831  IK_ICE,
7832  /// This expression is not an ICE, but if it isn't evaluated, it's
7833  /// a legal subexpression for an ICE. This return value is used to handle
7834  /// the comma operator in C99 mode, and non-constant subexpressions.
7835  IK_ICEIfUnevaluated,
7836  /// This expression is not an ICE, and is not a legal subexpression for one.
7837  IK_NotICE
7838};
7839
7840struct ICEDiag {
7841  ICEKind Kind;
7842  SourceLocation Loc;
7843
7844  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
7845};
7846
7847}
7848
7849static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
7850
7851static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
7852
7853static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
7854  Expr::EvalResult EVResult;
7855  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
7856      !EVResult.Val.isInt())
7857    return ICEDiag(IK_NotICE, E->getLocStart());
7858
7859  return NoDiag();
7860}
7861
7862static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
7863  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
7864  if (!E->getType()->isIntegralOrEnumerationType())
7865    return ICEDiag(IK_NotICE, E->getLocStart());
7866
7867  switch (E->getStmtClass()) {
7868#define ABSTRACT_STMT(Node)
7869#define STMT(Node, Base) case Expr::Node##Class:
7870#define EXPR(Node, Base)
7871#include "clang/AST/StmtNodes.inc"
7872  case Expr::PredefinedExprClass:
7873  case Expr::FloatingLiteralClass:
7874  case Expr::ImaginaryLiteralClass:
7875  case Expr::StringLiteralClass:
7876  case Expr::ArraySubscriptExprClass:
7877  case Expr::MemberExprClass:
7878  case Expr::CompoundAssignOperatorClass:
7879  case Expr::CompoundLiteralExprClass:
7880  case Expr::ExtVectorElementExprClass:
7881  case Expr::DesignatedInitExprClass:
7882  case Expr::ImplicitValueInitExprClass:
7883  case Expr::ParenListExprClass:
7884  case Expr::VAArgExprClass:
7885  case Expr::AddrLabelExprClass:
7886  case Expr::StmtExprClass:
7887  case Expr::CXXMemberCallExprClass:
7888  case Expr::CUDAKernelCallExprClass:
7889  case Expr::CXXDynamicCastExprClass:
7890  case Expr::CXXTypeidExprClass:
7891  case Expr::CXXUuidofExprClass:
7892  case Expr::MSPropertyRefExprClass:
7893  case Expr::CXXNullPtrLiteralExprClass:
7894  case Expr::UserDefinedLiteralClass:
7895  case Expr::CXXThisExprClass:
7896  case Expr::CXXThrowExprClass:
7897  case Expr::CXXNewExprClass:
7898  case Expr::CXXDeleteExprClass:
7899  case Expr::CXXPseudoDestructorExprClass:
7900  case Expr::UnresolvedLookupExprClass:
7901  case Expr::DependentScopeDeclRefExprClass:
7902  case Expr::CXXConstructExprClass:
7903  case Expr::CXXStdInitializerListExprClass:
7904  case Expr::CXXBindTemporaryExprClass:
7905  case Expr::ExprWithCleanupsClass:
7906  case Expr::CXXTemporaryObjectExprClass:
7907  case Expr::CXXUnresolvedConstructExprClass:
7908  case Expr::CXXDependentScopeMemberExprClass:
7909  case Expr::UnresolvedMemberExprClass:
7910  case Expr::ObjCStringLiteralClass:
7911  case Expr::ObjCBoxedExprClass:
7912  case Expr::ObjCArrayLiteralClass:
7913  case Expr::ObjCDictionaryLiteralClass:
7914  case Expr::ObjCEncodeExprClass:
7915  case Expr::ObjCMessageExprClass:
7916  case Expr::ObjCSelectorExprClass:
7917  case Expr::ObjCProtocolExprClass:
7918  case Expr::ObjCIvarRefExprClass:
7919  case Expr::ObjCPropertyRefExprClass:
7920  case Expr::ObjCSubscriptRefExprClass:
7921  case Expr::ObjCIsaExprClass:
7922  case Expr::ShuffleVectorExprClass:
7923  case Expr::BlockExprClass:
7924  case Expr::NoStmtClass:
7925  case Expr::OpaqueValueExprClass:
7926  case Expr::PackExpansionExprClass:
7927  case Expr::SubstNonTypeTemplateParmPackExprClass:
7928  case Expr::FunctionParmPackExprClass:
7929  case Expr::AsTypeExprClass:
7930  case Expr::ObjCIndirectCopyRestoreExprClass:
7931  case Expr::MaterializeTemporaryExprClass:
7932  case Expr::PseudoObjectExprClass:
7933  case Expr::AtomicExprClass:
7934  case Expr::InitListExprClass:
7935  case Expr::LambdaExprClass:
7936    return ICEDiag(IK_NotICE, E->getLocStart());
7937
7938  case Expr::SizeOfPackExprClass:
7939  case Expr::GNUNullExprClass:
7940    // GCC considers the GNU __null value to be an integral constant expression.
7941    return NoDiag();
7942
7943  case Expr::SubstNonTypeTemplateParmExprClass:
7944    return
7945      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
7946
7947  case Expr::ParenExprClass:
7948    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
7949  case Expr::GenericSelectionExprClass:
7950    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
7951  case Expr::IntegerLiteralClass:
7952  case Expr::CharacterLiteralClass:
7953  case Expr::ObjCBoolLiteralExprClass:
7954  case Expr::CXXBoolLiteralExprClass:
7955  case Expr::CXXScalarValueInitExprClass:
7956  case Expr::UnaryTypeTraitExprClass:
7957  case Expr::BinaryTypeTraitExprClass:
7958  case Expr::TypeTraitExprClass:
7959  case Expr::ArrayTypeTraitExprClass:
7960  case Expr::ExpressionTraitExprClass:
7961  case Expr::CXXNoexceptExprClass:
7962    return NoDiag();
7963  case Expr::CallExprClass:
7964  case Expr::CXXOperatorCallExprClass: {
7965    // C99 6.6/3 allows function calls within unevaluated subexpressions of
7966    // constant expressions, but they can never be ICEs because an ICE cannot
7967    // contain an operand of (pointer to) function type.
7968    const CallExpr *CE = cast<CallExpr>(E);
7969    if (CE->isBuiltinCall())
7970      return CheckEvalInICE(E, Ctx);
7971    return ICEDiag(IK_NotICE, E->getLocStart());
7972  }
7973  case Expr::DeclRefExprClass: {
7974    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
7975      return NoDiag();
7976    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
7977    if (Ctx.getLangOpts().CPlusPlus &&
7978        D && IsConstNonVolatile(D->getType())) {
7979      // Parameter variables are never constants.  Without this check,
7980      // getAnyInitializer() can find a default argument, which leads
7981      // to chaos.
7982      if (isa<ParmVarDecl>(D))
7983        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
7984
7985      // C++ 7.1.5.1p2
7986      //   A variable of non-volatile const-qualified integral or enumeration
7987      //   type initialized by an ICE can be used in ICEs.
7988      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
7989        if (!Dcl->getType()->isIntegralOrEnumerationType())
7990          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
7991
7992        const VarDecl *VD;
7993        // Look for a declaration of this variable that has an initializer, and
7994        // check whether it is an ICE.
7995        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
7996          return NoDiag();
7997        else
7998          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
7999      }
8000    }
8001    return ICEDiag(IK_NotICE, E->getLocStart());
8002  }
8003  case Expr::UnaryOperatorClass: {
8004    const UnaryOperator *Exp = cast<UnaryOperator>(E);
8005    switch (Exp->getOpcode()) {
8006    case UO_PostInc:
8007    case UO_PostDec:
8008    case UO_PreInc:
8009    case UO_PreDec:
8010    case UO_AddrOf:
8011    case UO_Deref:
8012      // C99 6.6/3 allows increment and decrement within unevaluated
8013      // subexpressions of constant expressions, but they can never be ICEs
8014      // because an ICE cannot contain an lvalue operand.
8015      return ICEDiag(IK_NotICE, E->getLocStart());
8016    case UO_Extension:
8017    case UO_LNot:
8018    case UO_Plus:
8019    case UO_Minus:
8020    case UO_Not:
8021    case UO_Real:
8022    case UO_Imag:
8023      return CheckICE(Exp->getSubExpr(), Ctx);
8024    }
8025
8026    // OffsetOf falls through here.
8027  }
8028  case Expr::OffsetOfExprClass: {
8029    // Note that per C99, offsetof must be an ICE. And AFAIK, using
8030    // EvaluateAsRValue matches the proposed gcc behavior for cases like
8031    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8032    // compliance: we should warn earlier for offsetof expressions with
8033    // array subscripts that aren't ICEs, and if the array subscripts
8034    // are ICEs, the value of the offsetof must be an integer constant.
8035    return CheckEvalInICE(E, Ctx);
8036  }
8037  case Expr::UnaryExprOrTypeTraitExprClass: {
8038    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8039    if ((Exp->getKind() ==  UETT_SizeOf) &&
8040        Exp->getTypeOfArgument()->isVariableArrayType())
8041      return ICEDiag(IK_NotICE, E->getLocStart());
8042    return NoDiag();
8043  }
8044  case Expr::BinaryOperatorClass: {
8045    const BinaryOperator *Exp = cast<BinaryOperator>(E);
8046    switch (Exp->getOpcode()) {
8047    case BO_PtrMemD:
8048    case BO_PtrMemI:
8049    case BO_Assign:
8050    case BO_MulAssign:
8051    case BO_DivAssign:
8052    case BO_RemAssign:
8053    case BO_AddAssign:
8054    case BO_SubAssign:
8055    case BO_ShlAssign:
8056    case BO_ShrAssign:
8057    case BO_AndAssign:
8058    case BO_XorAssign:
8059    case BO_OrAssign:
8060      // C99 6.6/3 allows assignments within unevaluated subexpressions of
8061      // constant expressions, but they can never be ICEs because an ICE cannot
8062      // contain an lvalue operand.
8063      return ICEDiag(IK_NotICE, E->getLocStart());
8064
8065    case BO_Mul:
8066    case BO_Div:
8067    case BO_Rem:
8068    case BO_Add:
8069    case BO_Sub:
8070    case BO_Shl:
8071    case BO_Shr:
8072    case BO_LT:
8073    case BO_GT:
8074    case BO_LE:
8075    case BO_GE:
8076    case BO_EQ:
8077    case BO_NE:
8078    case BO_And:
8079    case BO_Xor:
8080    case BO_Or:
8081    case BO_Comma: {
8082      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8083      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8084      if (Exp->getOpcode() == BO_Div ||
8085          Exp->getOpcode() == BO_Rem) {
8086        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8087        // we don't evaluate one.
8088        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8089          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8090          if (REval == 0)
8091            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8092          if (REval.isSigned() && REval.isAllOnesValue()) {
8093            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8094            if (LEval.isMinSignedValue())
8095              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8096          }
8097        }
8098      }
8099      if (Exp->getOpcode() == BO_Comma) {
8100        if (Ctx.getLangOpts().C99) {
8101          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8102          // if it isn't evaluated.
8103          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8104            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8105        } else {
8106          // In both C89 and C++, commas in ICEs are illegal.
8107          return ICEDiag(IK_NotICE, E->getLocStart());
8108        }
8109      }
8110      return Worst(LHSResult, RHSResult);
8111    }
8112    case BO_LAnd:
8113    case BO_LOr: {
8114      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8115      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8116      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8117        // Rare case where the RHS has a comma "side-effect"; we need
8118        // to actually check the condition to see whether the side
8119        // with the comma is evaluated.
8120        if ((Exp->getOpcode() == BO_LAnd) !=
8121            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8122          return RHSResult;
8123        return NoDiag();
8124      }
8125
8126      return Worst(LHSResult, RHSResult);
8127    }
8128    }
8129  }
8130  case Expr::ImplicitCastExprClass:
8131  case Expr::CStyleCastExprClass:
8132  case Expr::CXXFunctionalCastExprClass:
8133  case Expr::CXXStaticCastExprClass:
8134  case Expr::CXXReinterpretCastExprClass:
8135  case Expr::CXXConstCastExprClass:
8136  case Expr::ObjCBridgedCastExprClass: {
8137    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8138    if (isa<ExplicitCastExpr>(E)) {
8139      if (const FloatingLiteral *FL
8140            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8141        unsigned DestWidth = Ctx.getIntWidth(E->getType());
8142        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8143        APSInt IgnoredVal(DestWidth, !DestSigned);
8144        bool Ignored;
8145        // If the value does not fit in the destination type, the behavior is
8146        // undefined, so we are not required to treat it as a constant
8147        // expression.
8148        if (FL->getValue().convertToInteger(IgnoredVal,
8149                                            llvm::APFloat::rmTowardZero,
8150                                            &Ignored) & APFloat::opInvalidOp)
8151          return ICEDiag(IK_NotICE, E->getLocStart());
8152        return NoDiag();
8153      }
8154    }
8155    switch (cast<CastExpr>(E)->getCastKind()) {
8156    case CK_LValueToRValue:
8157    case CK_AtomicToNonAtomic:
8158    case CK_NonAtomicToAtomic:
8159    case CK_NoOp:
8160    case CK_IntegralToBoolean:
8161    case CK_IntegralCast:
8162      return CheckICE(SubExpr, Ctx);
8163    default:
8164      return ICEDiag(IK_NotICE, E->getLocStart());
8165    }
8166  }
8167  case Expr::BinaryConditionalOperatorClass: {
8168    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8169    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8170    if (CommonResult.Kind == IK_NotICE) return CommonResult;
8171    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8172    if (FalseResult.Kind == IK_NotICE) return FalseResult;
8173    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8174    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8175        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8176    return FalseResult;
8177  }
8178  case Expr::ConditionalOperatorClass: {
8179    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8180    // If the condition (ignoring parens) is a __builtin_constant_p call,
8181    // then only the true side is actually considered in an integer constant
8182    // expression, and it is fully evaluated.  This is an important GNU
8183    // extension.  See GCC PR38377 for discussion.
8184    if (const CallExpr *CallCE
8185        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8186      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
8187        return CheckEvalInICE(E, Ctx);
8188    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8189    if (CondResult.Kind == IK_NotICE)
8190      return CondResult;
8191
8192    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8193    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8194
8195    if (TrueResult.Kind == IK_NotICE)
8196      return TrueResult;
8197    if (FalseResult.Kind == IK_NotICE)
8198      return FalseResult;
8199    if (CondResult.Kind == IK_ICEIfUnevaluated)
8200      return CondResult;
8201    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8202      return NoDiag();
8203    // Rare case where the diagnostics depend on which side is evaluated
8204    // Note that if we get here, CondResult is 0, and at least one of
8205    // TrueResult and FalseResult is non-zero.
8206    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8207      return FalseResult;
8208    return TrueResult;
8209  }
8210  case Expr::CXXDefaultArgExprClass:
8211    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8212  case Expr::CXXDefaultInitExprClass:
8213    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8214  case Expr::ChooseExprClass: {
8215    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
8216  }
8217  }
8218
8219  llvm_unreachable("Invalid StmtClass!");
8220}
8221
8222/// Evaluate an expression as a C++11 integral constant expression.
8223static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
8224                                                    const Expr *E,
8225                                                    llvm::APSInt *Value,
8226                                                    SourceLocation *Loc) {
8227  if (!E->getType()->isIntegralOrEnumerationType()) {
8228    if (Loc) *Loc = E->getExprLoc();
8229    return false;
8230  }
8231
8232  APValue Result;
8233  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8234    return false;
8235
8236  assert(Result.isInt() && "pointer cast to int is not an ICE");
8237  if (Value) *Value = Result.getInt();
8238  return true;
8239}
8240
8241bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
8242  if (Ctx.getLangOpts().CPlusPlus11)
8243    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
8244
8245  ICEDiag D = CheckICE(this, Ctx);
8246  if (D.Kind != IK_ICE) {
8247    if (Loc) *Loc = D.Loc;
8248    return false;
8249  }
8250  return true;
8251}
8252
8253bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
8254                                 SourceLocation *Loc, bool isEvaluated) const {
8255  if (Ctx.getLangOpts().CPlusPlus11)
8256    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8257
8258  if (!isIntegerConstantExpr(Ctx, Loc))
8259    return false;
8260  if (!EvaluateAsInt(Value, Ctx))
8261    llvm_unreachable("ICE cannot be evaluated!");
8262  return true;
8263}
8264
8265bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
8266  return CheckICE(this, Ctx).Kind == IK_ICE;
8267}
8268
8269bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
8270                               SourceLocation *Loc) const {
8271  // We support this checking in C++98 mode in order to diagnose compatibility
8272  // issues.
8273  assert(Ctx.getLangOpts().CPlusPlus);
8274
8275  // Build evaluation settings.
8276  Expr::EvalStatus Status;
8277  SmallVector<PartialDiagnosticAt, 8> Diags;
8278  Status.Diag = &Diags;
8279  EvalInfo Info(Ctx, Status);
8280
8281  APValue Scratch;
8282  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8283
8284  if (!Diags.empty()) {
8285    IsConstExpr = false;
8286    if (Loc) *Loc = Diags[0].first;
8287  } else if (!IsConstExpr) {
8288    // FIXME: This shouldn't happen.
8289    if (Loc) *Loc = getExprLoc();
8290  }
8291
8292  return IsConstExpr;
8293}
8294
8295bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8296                                   SmallVectorImpl<
8297                                     PartialDiagnosticAt> &Diags) {
8298  // FIXME: It would be useful to check constexpr function templates, but at the
8299  // moment the constant expression evaluator cannot cope with the non-rigorous
8300  // ASTs which we build for dependent expressions.
8301  if (FD->isDependentContext())
8302    return true;
8303
8304  Expr::EvalStatus Status;
8305  Status.Diag = &Diags;
8306
8307  EvalInfo Info(FD->getASTContext(), Status);
8308  Info.CheckingPotentialConstantExpression = true;
8309
8310  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8311  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
8312
8313  // Fabricate an arbitrary expression on the stack and pretend that it
8314  // is a temporary being used as the 'this' pointer.
8315  LValue This;
8316  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8317  This.set(&VIE, Info.CurrentCall->Index);
8318
8319  ArrayRef<const Expr*> Args;
8320
8321  SourceLocation Loc = FD->getLocation();
8322
8323  APValue Scratch;
8324  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8325    // Evaluate the call as a constant initializer, to allow the construction
8326    // of objects of non-literal types.
8327    Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8328    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8329  } else
8330    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
8331                       Args, FD->getBody(), Info, Scratch);
8332
8333  return Diags.empty();
8334}
8335