Type.cpp revision 21f18c4fda167dc5f72feddbd6a7ac1b63200a0d
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Attr.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/Type.h"
23#include "clang/AST/TypeVisitor.h"
24#include "clang/Basic/Specifiers.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29using namespace clang;
30
31bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
32  return (*this != Other) &&
33    // CVR qualifiers superset
34    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
35    // ObjC GC qualifiers superset
36    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
37     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
38    // Address space superset.
39    ((getAddressSpace() == Other.getAddressSpace()) ||
40     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
41    // Lifetime qualifier superset.
42    ((getObjCLifetime() == Other.getObjCLifetime()) ||
43     (hasObjCLifetime() && !Other.hasObjCLifetime()));
44}
45
46const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
47  const Type* ty = getTypePtr();
48  NamedDecl *ND = NULL;
49  if (ty->isPointerType() || ty->isReferenceType())
50    return ty->getPointeeType().getBaseTypeIdentifier();
51  else if (ty->isRecordType())
52    ND = ty->getAs<RecordType>()->getDecl();
53  else if (ty->isEnumeralType())
54    ND = ty->getAs<EnumType>()->getDecl();
55  else if (ty->getTypeClass() == Type::Typedef)
56    ND = ty->getAs<TypedefType>()->getDecl();
57  else if (ty->isArrayType())
58    return ty->castAsArrayTypeUnsafe()->
59        getElementType().getBaseTypeIdentifier();
60
61  if (ND)
62    return ND->getIdentifier();
63  return NULL;
64}
65
66bool QualType::isConstant(QualType T, ASTContext &Ctx) {
67  if (T.isConstQualified())
68    return true;
69
70  if (const ArrayType *AT = Ctx.getAsArrayType(T))
71    return AT->getElementType().isConstant(Ctx);
72
73  return false;
74}
75
76unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
77                                                 QualType ElementType,
78                                               const llvm::APInt &NumElements) {
79  llvm::APSInt SizeExtended(NumElements, true);
80  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
81  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
82                                              SizeExtended.getBitWidth()) * 2);
83
84  uint64_t ElementSize
85    = Context.getTypeSizeInChars(ElementType).getQuantity();
86  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
87  TotalSize *= SizeExtended;
88
89  return TotalSize.getActiveBits();
90}
91
92unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
93  unsigned Bits = Context.getTypeSize(Context.getSizeType());
94
95  // GCC appears to only allow 63 bits worth of address space when compiling
96  // for 64-bit, so we do the same.
97  if (Bits == 64)
98    --Bits;
99
100  return Bits;
101}
102
103DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
104                                                 QualType et, QualType can,
105                                                 Expr *e, ArraySizeModifier sm,
106                                                 unsigned tq,
107                                                 SourceRange brackets)
108    : ArrayType(DependentSizedArray, et, can, sm, tq,
109                (et->containsUnexpandedParameterPack() ||
110                 (e && e->containsUnexpandedParameterPack()))),
111      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
112{
113}
114
115void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
116                                      const ASTContext &Context,
117                                      QualType ET,
118                                      ArraySizeModifier SizeMod,
119                                      unsigned TypeQuals,
120                                      Expr *E) {
121  ID.AddPointer(ET.getAsOpaquePtr());
122  ID.AddInteger(SizeMod);
123  ID.AddInteger(TypeQuals);
124  E->Profile(ID, Context, true);
125}
126
127DependentSizedExtVectorType::DependentSizedExtVectorType(const
128                                                         ASTContext &Context,
129                                                         QualType ElementType,
130                                                         QualType can,
131                                                         Expr *SizeExpr,
132                                                         SourceLocation loc)
133    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
134           /*InstantiationDependent=*/true,
135           ElementType->isVariablyModifiedType(),
136           (ElementType->containsUnexpandedParameterPack() ||
137            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
138      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
139      loc(loc)
140{
141}
142
143void
144DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
145                                     const ASTContext &Context,
146                                     QualType ElementType, Expr *SizeExpr) {
147  ID.AddPointer(ElementType.getAsOpaquePtr());
148  SizeExpr->Profile(ID, Context, true);
149}
150
151VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
152                       VectorKind vecKind)
153  : Type(Vector, canonType, vecType->isDependentType(),
154         vecType->isInstantiationDependentType(),
155         vecType->isVariablyModifiedType(),
156         vecType->containsUnexpandedParameterPack()),
157    ElementType(vecType)
158{
159  VectorTypeBits.VecKind = vecKind;
160  VectorTypeBits.NumElements = nElements;
161}
162
163VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
164                       QualType canonType, VectorKind vecKind)
165  : Type(tc, canonType, vecType->isDependentType(),
166         vecType->isInstantiationDependentType(),
167         vecType->isVariablyModifiedType(),
168         vecType->containsUnexpandedParameterPack()),
169    ElementType(vecType)
170{
171  VectorTypeBits.VecKind = vecKind;
172  VectorTypeBits.NumElements = nElements;
173}
174
175/// getArrayElementTypeNoTypeQual - If this is an array type, return the
176/// element type of the array, potentially with type qualifiers missing.
177/// This method should never be used when type qualifiers are meaningful.
178const Type *Type::getArrayElementTypeNoTypeQual() const {
179  // If this is directly an array type, return it.
180  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
181    return ATy->getElementType().getTypePtr();
182
183  // If the canonical form of this type isn't the right kind, reject it.
184  if (!isa<ArrayType>(CanonicalType))
185    return 0;
186
187  // If this is a typedef for an array type, strip the typedef off without
188  // losing all typedef information.
189  return cast<ArrayType>(getUnqualifiedDesugaredType())
190    ->getElementType().getTypePtr();
191}
192
193/// getDesugaredType - Return the specified type with any "sugar" removed from
194/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
195/// the type is already concrete, it returns it unmodified.  This is similar
196/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
197/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
198/// concrete.
199QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
200  SplitQualType split = getSplitDesugaredType(T);
201  return Context.getQualifiedType(split.Ty, split.Quals);
202}
203
204QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
205                                                  const ASTContext &Context) {
206  SplitQualType split = type.split();
207  QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
208  return Context.getQualifiedType(desugar, split.Quals);
209}
210
211QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
212  switch (getTypeClass()) {
213#define ABSTRACT_TYPE(Class, Parent)
214#define TYPE(Class, Parent) \
215  case Type::Class: { \
216    const Class##Type *ty = cast<Class##Type>(this); \
217    if (!ty->isSugared()) return QualType(ty, 0); \
218    return ty->desugar(); \
219  }
220#include "clang/AST/TypeNodes.def"
221  }
222  llvm_unreachable("bad type kind!");
223}
224
225SplitQualType QualType::getSplitDesugaredType(QualType T) {
226  QualifierCollector Qs;
227
228  QualType Cur = T;
229  while (true) {
230    const Type *CurTy = Qs.strip(Cur);
231    switch (CurTy->getTypeClass()) {
232#define ABSTRACT_TYPE(Class, Parent)
233#define TYPE(Class, Parent) \
234    case Type::Class: { \
235      const Class##Type *Ty = cast<Class##Type>(CurTy); \
236      if (!Ty->isSugared()) \
237        return SplitQualType(Ty, Qs); \
238      Cur = Ty->desugar(); \
239      break; \
240    }
241#include "clang/AST/TypeNodes.def"
242    }
243  }
244}
245
246SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
247  SplitQualType split = type.split();
248
249  // All the qualifiers we've seen so far.
250  Qualifiers quals = split.Quals;
251
252  // The last type node we saw with any nodes inside it.
253  const Type *lastTypeWithQuals = split.Ty;
254
255  while (true) {
256    QualType next;
257
258    // Do a single-step desugar, aborting the loop if the type isn't
259    // sugared.
260    switch (split.Ty->getTypeClass()) {
261#define ABSTRACT_TYPE(Class, Parent)
262#define TYPE(Class, Parent) \
263    case Type::Class: { \
264      const Class##Type *ty = cast<Class##Type>(split.Ty); \
265      if (!ty->isSugared()) goto done; \
266      next = ty->desugar(); \
267      break; \
268    }
269#include "clang/AST/TypeNodes.def"
270    }
271
272    // Otherwise, split the underlying type.  If that yields qualifiers,
273    // update the information.
274    split = next.split();
275    if (!split.Quals.empty()) {
276      lastTypeWithQuals = split.Ty;
277      quals.addConsistentQualifiers(split.Quals);
278    }
279  }
280
281 done:
282  return SplitQualType(lastTypeWithQuals, quals);
283}
284
285QualType QualType::IgnoreParens(QualType T) {
286  // FIXME: this seems inherently un-qualifiers-safe.
287  while (const ParenType *PT = T->getAs<ParenType>())
288    T = PT->getInnerType();
289  return T;
290}
291
292/// \brief This will check for a T (which should be a Type which can act as
293/// sugar, such as a TypedefType) by removing any existing sugar until it
294/// reaches a T or a non-sugared type.
295template<typename T> static const T *getAsSugar(const Type *Cur) {
296  while (true) {
297    if (const T *Sugar = dyn_cast<T>(Cur))
298      return Sugar;
299    switch (Cur->getTypeClass()) {
300#define ABSTRACT_TYPE(Class, Parent)
301#define TYPE(Class, Parent) \
302    case Type::Class: { \
303      const Class##Type *Ty = cast<Class##Type>(Cur); \
304      if (!Ty->isSugared()) return 0; \
305      Cur = Ty->desugar().getTypePtr(); \
306      break; \
307    }
308#include "clang/AST/TypeNodes.def"
309    }
310  }
311}
312
313template <> const TypedefType *Type::getAs() const {
314  return getAsSugar<TypedefType>(this);
315}
316
317template <> const TemplateSpecializationType *Type::getAs() const {
318  return getAsSugar<TemplateSpecializationType>(this);
319}
320
321/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
322/// sugar off the given type.  This should produce an object of the
323/// same dynamic type as the canonical type.
324const Type *Type::getUnqualifiedDesugaredType() const {
325  const Type *Cur = this;
326
327  while (true) {
328    switch (Cur->getTypeClass()) {
329#define ABSTRACT_TYPE(Class, Parent)
330#define TYPE(Class, Parent) \
331    case Class: { \
332      const Class##Type *Ty = cast<Class##Type>(Cur); \
333      if (!Ty->isSugared()) return Cur; \
334      Cur = Ty->desugar().getTypePtr(); \
335      break; \
336    }
337#include "clang/AST/TypeNodes.def"
338    }
339  }
340}
341
342bool Type::isDerivedType() const {
343  switch (CanonicalType->getTypeClass()) {
344  case Pointer:
345  case VariableArray:
346  case ConstantArray:
347  case IncompleteArray:
348  case FunctionProto:
349  case FunctionNoProto:
350  case LValueReference:
351  case RValueReference:
352  case Record:
353    return true;
354  default:
355    return false;
356  }
357}
358bool Type::isClassType() const {
359  if (const RecordType *RT = getAs<RecordType>())
360    return RT->getDecl()->isClass();
361  return false;
362}
363bool Type::isStructureType() const {
364  if (const RecordType *RT = getAs<RecordType>())
365    return RT->getDecl()->isStruct();
366  return false;
367}
368bool Type::isInterfaceType() const {
369  if (const RecordType *RT = getAs<RecordType>())
370    return RT->getDecl()->isInterface();
371  return false;
372}
373bool Type::isStructureOrClassType() const {
374  if (const RecordType *RT = getAs<RecordType>())
375    return RT->getDecl()->isStruct() || RT->getDecl()->isClass() ||
376      RT->getDecl()->isInterface();
377  return false;
378}
379bool Type::isVoidPointerType() const {
380  if (const PointerType *PT = getAs<PointerType>())
381    return PT->getPointeeType()->isVoidType();
382  return false;
383}
384
385bool Type::isUnionType() const {
386  if (const RecordType *RT = getAs<RecordType>())
387    return RT->getDecl()->isUnion();
388  return false;
389}
390
391bool Type::isComplexType() const {
392  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
393    return CT->getElementType()->isFloatingType();
394  return false;
395}
396
397bool Type::isComplexIntegerType() const {
398  // Check for GCC complex integer extension.
399  return getAsComplexIntegerType();
400}
401
402const ComplexType *Type::getAsComplexIntegerType() const {
403  if (const ComplexType *Complex = getAs<ComplexType>())
404    if (Complex->getElementType()->isIntegerType())
405      return Complex;
406  return 0;
407}
408
409QualType Type::getPointeeType() const {
410  if (const PointerType *PT = getAs<PointerType>())
411    return PT->getPointeeType();
412  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
413    return OPT->getPointeeType();
414  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
415    return BPT->getPointeeType();
416  if (const ReferenceType *RT = getAs<ReferenceType>())
417    return RT->getPointeeType();
418  return QualType();
419}
420
421const RecordType *Type::getAsStructureType() const {
422  // If this is directly a structure type, return it.
423  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
424    if (RT->getDecl()->isStruct())
425      return RT;
426  }
427
428  // If the canonical form of this type isn't the right kind, reject it.
429  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
430    if (!RT->getDecl()->isStruct())
431      return 0;
432
433    // If this is a typedef for a structure type, strip the typedef off without
434    // losing all typedef information.
435    return cast<RecordType>(getUnqualifiedDesugaredType());
436  }
437  return 0;
438}
439
440const RecordType *Type::getAsUnionType() const {
441  // If this is directly a union type, return it.
442  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
443    if (RT->getDecl()->isUnion())
444      return RT;
445  }
446
447  // If the canonical form of this type isn't the right kind, reject it.
448  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
449    if (!RT->getDecl()->isUnion())
450      return 0;
451
452    // If this is a typedef for a union type, strip the typedef off without
453    // losing all typedef information.
454    return cast<RecordType>(getUnqualifiedDesugaredType());
455  }
456
457  return 0;
458}
459
460ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
461                               ObjCProtocolDecl * const *Protocols,
462                               unsigned NumProtocols)
463  : Type(ObjCObject, Canonical, false, false, false, false),
464    BaseType(Base)
465{
466  ObjCObjectTypeBits.NumProtocols = NumProtocols;
467  assert(getNumProtocols() == NumProtocols &&
468         "bitfield overflow in protocol count");
469  if (NumProtocols)
470    memcpy(getProtocolStorage(), Protocols,
471           NumProtocols * sizeof(ObjCProtocolDecl*));
472}
473
474const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
475  // There is no sugar for ObjCObjectType's, just return the canonical
476  // type pointer if it is the right class.  There is no typedef information to
477  // return and these cannot be Address-space qualified.
478  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
479    if (T->getNumProtocols() && T->getInterface())
480      return T;
481  return 0;
482}
483
484bool Type::isObjCQualifiedInterfaceType() const {
485  return getAsObjCQualifiedInterfaceType() != 0;
486}
487
488const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
489  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
490  // type pointer if it is the right class.
491  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
492    if (OPT->isObjCQualifiedIdType())
493      return OPT;
494  }
495  return 0;
496}
497
498const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
499  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
500  // type pointer if it is the right class.
501  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
502    if (OPT->isObjCQualifiedClassType())
503      return OPT;
504  }
505  return 0;
506}
507
508const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
509  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
510    if (OPT->getInterfaceType())
511      return OPT;
512  }
513  return 0;
514}
515
516const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
517  QualType PointeeType;
518  if (const PointerType *PT = getAs<PointerType>())
519    PointeeType = PT->getPointeeType();
520  else if (const ReferenceType *RT = getAs<ReferenceType>())
521    PointeeType = RT->getPointeeType();
522  else
523    return 0;
524
525  if (const RecordType *RT = PointeeType->getAs<RecordType>())
526    return dyn_cast<CXXRecordDecl>(RT->getDecl());
527
528  return 0;
529}
530
531CXXRecordDecl *Type::getAsCXXRecordDecl() const {
532  if (const RecordType *RT = getAs<RecordType>())
533    return dyn_cast<CXXRecordDecl>(RT->getDecl());
534  else if (const InjectedClassNameType *Injected
535                                  = getAs<InjectedClassNameType>())
536    return Injected->getDecl();
537
538  return 0;
539}
540
541namespace {
542  class GetContainedAutoVisitor :
543    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
544  public:
545    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
546    AutoType *Visit(QualType T) {
547      if (T.isNull())
548        return 0;
549      return Visit(T.getTypePtr());
550    }
551
552    // The 'auto' type itself.
553    AutoType *VisitAutoType(const AutoType *AT) {
554      return const_cast<AutoType*>(AT);
555    }
556
557    // Only these types can contain the desired 'auto' type.
558    AutoType *VisitPointerType(const PointerType *T) {
559      return Visit(T->getPointeeType());
560    }
561    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
562      return Visit(T->getPointeeType());
563    }
564    AutoType *VisitReferenceType(const ReferenceType *T) {
565      return Visit(T->getPointeeTypeAsWritten());
566    }
567    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
568      return Visit(T->getPointeeType());
569    }
570    AutoType *VisitArrayType(const ArrayType *T) {
571      return Visit(T->getElementType());
572    }
573    AutoType *VisitDependentSizedExtVectorType(
574      const DependentSizedExtVectorType *T) {
575      return Visit(T->getElementType());
576    }
577    AutoType *VisitVectorType(const VectorType *T) {
578      return Visit(T->getElementType());
579    }
580    AutoType *VisitFunctionType(const FunctionType *T) {
581      return Visit(T->getResultType());
582    }
583    AutoType *VisitParenType(const ParenType *T) {
584      return Visit(T->getInnerType());
585    }
586    AutoType *VisitAttributedType(const AttributedType *T) {
587      return Visit(T->getModifiedType());
588    }
589  };
590}
591
592AutoType *Type::getContainedAutoType() const {
593  return GetContainedAutoVisitor().Visit(this);
594}
595
596bool Type::hasIntegerRepresentation() const {
597  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
598    return VT->getElementType()->isIntegerType();
599  else
600    return isIntegerType();
601}
602
603/// \brief Determine whether this type is an integral type.
604///
605/// This routine determines whether the given type is an integral type per
606/// C++ [basic.fundamental]p7. Although the C standard does not define the
607/// term "integral type", it has a similar term "integer type", and in C++
608/// the two terms are equivalent. However, C's "integer type" includes
609/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
610/// parameter is used to determine whether we should be following the C or
611/// C++ rules when determining whether this type is an integral/integer type.
612///
613/// For cases where C permits "an integer type" and C++ permits "an integral
614/// type", use this routine.
615///
616/// For cases where C permits "an integer type" and C++ permits "an integral
617/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
618///
619/// \param Ctx The context in which this type occurs.
620///
621/// \returns true if the type is considered an integral type, false otherwise.
622bool Type::isIntegralType(ASTContext &Ctx) const {
623  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
624    return BT->getKind() >= BuiltinType::Bool &&
625    BT->getKind() <= BuiltinType::Int128;
626
627  if (!Ctx.getLangOpts().CPlusPlus)
628    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
629      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
630
631  return false;
632}
633
634
635bool Type::isIntegralOrUnscopedEnumerationType() const {
636  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
637    return BT->getKind() >= BuiltinType::Bool &&
638           BT->getKind() <= BuiltinType::Int128;
639
640  // Check for a complete enum type; incomplete enum types are not properly an
641  // enumeration type in the sense required here.
642  // C++0x: However, if the underlying type of the enum is fixed, it is
643  // considered complete.
644  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
645    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
646
647  return false;
648}
649
650
651
652bool Type::isCharType() const {
653  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
654    return BT->getKind() == BuiltinType::Char_U ||
655           BT->getKind() == BuiltinType::UChar ||
656           BT->getKind() == BuiltinType::Char_S ||
657           BT->getKind() == BuiltinType::SChar;
658  return false;
659}
660
661bool Type::isWideCharType() const {
662  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
663    return BT->getKind() == BuiltinType::WChar_S ||
664           BT->getKind() == BuiltinType::WChar_U;
665  return false;
666}
667
668bool Type::isChar16Type() const {
669  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
670    return BT->getKind() == BuiltinType::Char16;
671  return false;
672}
673
674bool Type::isChar32Type() const {
675  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
676    return BT->getKind() == BuiltinType::Char32;
677  return false;
678}
679
680/// \brief Determine whether this type is any of the built-in character
681/// types.
682bool Type::isAnyCharacterType() const {
683  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
684  if (BT == 0) return false;
685  switch (BT->getKind()) {
686  default: return false;
687  case BuiltinType::Char_U:
688  case BuiltinType::UChar:
689  case BuiltinType::WChar_U:
690  case BuiltinType::Char16:
691  case BuiltinType::Char32:
692  case BuiltinType::Char_S:
693  case BuiltinType::SChar:
694  case BuiltinType::WChar_S:
695    return true;
696  }
697}
698
699/// isSignedIntegerType - Return true if this is an integer type that is
700/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
701/// an enum decl which has a signed representation
702bool Type::isSignedIntegerType() const {
703  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
704    return BT->getKind() >= BuiltinType::Char_S &&
705           BT->getKind() <= BuiltinType::Int128;
706  }
707
708  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
709    // Incomplete enum types are not treated as integer types.
710    // FIXME: In C++, enum types are never integer types.
711    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
712      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
713  }
714
715  return false;
716}
717
718bool Type::isSignedIntegerOrEnumerationType() const {
719  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
720    return BT->getKind() >= BuiltinType::Char_S &&
721    BT->getKind() <= BuiltinType::Int128;
722  }
723
724  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
725    if (ET->getDecl()->isComplete())
726      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
727  }
728
729  return false;
730}
731
732bool Type::hasSignedIntegerRepresentation() const {
733  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
734    return VT->getElementType()->isSignedIntegerType();
735  else
736    return isSignedIntegerType();
737}
738
739/// isUnsignedIntegerType - Return true if this is an integer type that is
740/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
741/// decl which has an unsigned representation
742bool Type::isUnsignedIntegerType() const {
743  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
744    return BT->getKind() >= BuiltinType::Bool &&
745           BT->getKind() <= BuiltinType::UInt128;
746  }
747
748  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
749    // Incomplete enum types are not treated as integer types.
750    // FIXME: In C++, enum types are never integer types.
751    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
752      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
753  }
754
755  return false;
756}
757
758bool Type::isUnsignedIntegerOrEnumerationType() const {
759  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
760    return BT->getKind() >= BuiltinType::Bool &&
761    BT->getKind() <= BuiltinType::UInt128;
762  }
763
764  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
765    if (ET->getDecl()->isComplete())
766      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
767  }
768
769  return false;
770}
771
772bool Type::hasUnsignedIntegerRepresentation() const {
773  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
774    return VT->getElementType()->isUnsignedIntegerType();
775  else
776    return isUnsignedIntegerType();
777}
778
779bool Type::isFloatingType() const {
780  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
781    return BT->getKind() >= BuiltinType::Half &&
782           BT->getKind() <= BuiltinType::LongDouble;
783  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
784    return CT->getElementType()->isFloatingType();
785  return false;
786}
787
788bool Type::hasFloatingRepresentation() const {
789  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
790    return VT->getElementType()->isFloatingType();
791  else
792    return isFloatingType();
793}
794
795bool Type::isRealFloatingType() const {
796  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
797    return BT->isFloatingPoint();
798  return false;
799}
800
801bool Type::isRealType() const {
802  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
803    return BT->getKind() >= BuiltinType::Bool &&
804           BT->getKind() <= BuiltinType::LongDouble;
805  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
806      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
807  return false;
808}
809
810bool Type::isArithmeticType() const {
811  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
812    return BT->getKind() >= BuiltinType::Bool &&
813           BT->getKind() <= BuiltinType::LongDouble;
814  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
815    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
816    // If a body isn't seen by the time we get here, return false.
817    //
818    // C++0x: Enumerations are not arithmetic types. For now, just return
819    // false for scoped enumerations since that will disable any
820    // unwanted implicit conversions.
821    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
822  return isa<ComplexType>(CanonicalType);
823}
824
825Type::ScalarTypeKind Type::getScalarTypeKind() const {
826  assert(isScalarType());
827
828  const Type *T = CanonicalType.getTypePtr();
829  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
830    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
831    if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
832    if (BT->isInteger()) return STK_Integral;
833    if (BT->isFloatingPoint()) return STK_Floating;
834    llvm_unreachable("unknown scalar builtin type");
835  } else if (isa<PointerType>(T)) {
836    return STK_CPointer;
837  } else if (isa<BlockPointerType>(T)) {
838    return STK_BlockPointer;
839  } else if (isa<ObjCObjectPointerType>(T)) {
840    return STK_ObjCObjectPointer;
841  } else if (isa<MemberPointerType>(T)) {
842    return STK_MemberPointer;
843  } else if (isa<EnumType>(T)) {
844    assert(cast<EnumType>(T)->getDecl()->isComplete());
845    return STK_Integral;
846  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
847    if (CT->getElementType()->isRealFloatingType())
848      return STK_FloatingComplex;
849    return STK_IntegralComplex;
850  }
851
852  llvm_unreachable("unknown scalar type");
853}
854
855/// \brief Determines whether the type is a C++ aggregate type or C
856/// aggregate or union type.
857///
858/// An aggregate type is an array or a class type (struct, union, or
859/// class) that has no user-declared constructors, no private or
860/// protected non-static data members, no base classes, and no virtual
861/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
862/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
863/// includes union types.
864bool Type::isAggregateType() const {
865  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
866    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
867      return ClassDecl->isAggregate();
868
869    return true;
870  }
871
872  return isa<ArrayType>(CanonicalType);
873}
874
875/// isConstantSizeType - Return true if this is not a variable sized type,
876/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
877/// incomplete types or dependent types.
878bool Type::isConstantSizeType() const {
879  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
880  assert(!isDependentType() && "This doesn't make sense for dependent types");
881  // The VAT must have a size, as it is known to be complete.
882  return !isa<VariableArrayType>(CanonicalType);
883}
884
885/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
886/// - a type that can describe objects, but which lacks information needed to
887/// determine its size.
888bool Type::isIncompleteType(NamedDecl **Def) const {
889  if (Def)
890    *Def = 0;
891
892  switch (CanonicalType->getTypeClass()) {
893  default: return false;
894  case Builtin:
895    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
896    // be completed.
897    return isVoidType();
898  case Enum: {
899    EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
900    if (Def)
901      *Def = EnumD;
902
903    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
904    if (EnumD->isFixed())
905      return false;
906
907    return !EnumD->isCompleteDefinition();
908  }
909  case Record: {
910    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
911    // forward declaration, but not a full definition (C99 6.2.5p22).
912    RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
913    if (Def)
914      *Def = Rec;
915    return !Rec->isCompleteDefinition();
916  }
917  case ConstantArray:
918    // An array is incomplete if its element type is incomplete
919    // (C++ [dcl.array]p1).
920    // We don't handle variable arrays (they're not allowed in C++) or
921    // dependent-sized arrays (dependent types are never treated as incomplete).
922    return cast<ArrayType>(CanonicalType)->getElementType()
923             ->isIncompleteType(Def);
924  case IncompleteArray:
925    // An array of unknown size is an incomplete type (C99 6.2.5p22).
926    return true;
927  case ObjCObject:
928    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
929             ->isIncompleteType(Def);
930  case ObjCInterface: {
931    // ObjC interfaces are incomplete if they are @class, not @interface.
932    ObjCInterfaceDecl *Interface
933      = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
934    if (Def)
935      *Def = Interface;
936    return !Interface->hasDefinition();
937  }
938  }
939}
940
941bool QualType::isPODType(ASTContext &Context) const {
942  // C++11 has a more relaxed definition of POD.
943  if (Context.getLangOpts().CPlusPlus11)
944    return isCXX11PODType(Context);
945
946  return isCXX98PODType(Context);
947}
948
949bool QualType::isCXX98PODType(ASTContext &Context) const {
950  // The compiler shouldn't query this for incomplete types, but the user might.
951  // We return false for that case. Except for incomplete arrays of PODs, which
952  // are PODs according to the standard.
953  if (isNull())
954    return 0;
955
956  if ((*this)->isIncompleteArrayType())
957    return Context.getBaseElementType(*this).isCXX98PODType(Context);
958
959  if ((*this)->isIncompleteType())
960    return false;
961
962  if (Context.getLangOpts().ObjCAutoRefCount) {
963    switch (getObjCLifetime()) {
964    case Qualifiers::OCL_ExplicitNone:
965      return true;
966
967    case Qualifiers::OCL_Strong:
968    case Qualifiers::OCL_Weak:
969    case Qualifiers::OCL_Autoreleasing:
970      return false;
971
972    case Qualifiers::OCL_None:
973      break;
974    }
975  }
976
977  QualType CanonicalType = getTypePtr()->CanonicalType;
978  switch (CanonicalType->getTypeClass()) {
979    // Everything not explicitly mentioned is not POD.
980  default: return false;
981  case Type::VariableArray:
982  case Type::ConstantArray:
983    // IncompleteArray is handled above.
984    return Context.getBaseElementType(*this).isCXX98PODType(Context);
985
986  case Type::ObjCObjectPointer:
987  case Type::BlockPointer:
988  case Type::Builtin:
989  case Type::Complex:
990  case Type::Pointer:
991  case Type::MemberPointer:
992  case Type::Vector:
993  case Type::ExtVector:
994    return true;
995
996  case Type::Enum:
997    return true;
998
999  case Type::Record:
1000    if (CXXRecordDecl *ClassDecl
1001          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
1002      return ClassDecl->isPOD();
1003
1004    // C struct/union is POD.
1005    return true;
1006  }
1007}
1008
1009bool QualType::isTrivialType(ASTContext &Context) const {
1010  // The compiler shouldn't query this for incomplete types, but the user might.
1011  // We return false for that case. Except for incomplete arrays of PODs, which
1012  // are PODs according to the standard.
1013  if (isNull())
1014    return 0;
1015
1016  if ((*this)->isArrayType())
1017    return Context.getBaseElementType(*this).isTrivialType(Context);
1018
1019  // Return false for incomplete types after skipping any incomplete array
1020  // types which are expressly allowed by the standard and thus our API.
1021  if ((*this)->isIncompleteType())
1022    return false;
1023
1024  if (Context.getLangOpts().ObjCAutoRefCount) {
1025    switch (getObjCLifetime()) {
1026    case Qualifiers::OCL_ExplicitNone:
1027      return true;
1028
1029    case Qualifiers::OCL_Strong:
1030    case Qualifiers::OCL_Weak:
1031    case Qualifiers::OCL_Autoreleasing:
1032      return false;
1033
1034    case Qualifiers::OCL_None:
1035      if ((*this)->isObjCLifetimeType())
1036        return false;
1037      break;
1038    }
1039  }
1040
1041  QualType CanonicalType = getTypePtr()->CanonicalType;
1042  if (CanonicalType->isDependentType())
1043    return false;
1044
1045  // C++0x [basic.types]p9:
1046  //   Scalar types, trivial class types, arrays of such types, and
1047  //   cv-qualified versions of these types are collectively called trivial
1048  //   types.
1049
1050  // As an extension, Clang treats vector types as Scalar types.
1051  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1052    return true;
1053  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1054    if (const CXXRecordDecl *ClassDecl =
1055        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1056      // C++11 [class]p6:
1057      //   A trivial class is a class that has a default constructor,
1058      //   has no non-trivial default constructors, and is trivially
1059      //   copyable.
1060      return ClassDecl->hasDefaultConstructor() &&
1061             !ClassDecl->hasNonTrivialDefaultConstructor() &&
1062             ClassDecl->isTriviallyCopyable();
1063    }
1064
1065    return true;
1066  }
1067
1068  // No other types can match.
1069  return false;
1070}
1071
1072bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1073  if ((*this)->isArrayType())
1074    return Context.getBaseElementType(*this).isTrivialType(Context);
1075
1076  if (Context.getLangOpts().ObjCAutoRefCount) {
1077    switch (getObjCLifetime()) {
1078    case Qualifiers::OCL_ExplicitNone:
1079      return true;
1080
1081    case Qualifiers::OCL_Strong:
1082    case Qualifiers::OCL_Weak:
1083    case Qualifiers::OCL_Autoreleasing:
1084      return false;
1085
1086    case Qualifiers::OCL_None:
1087      if ((*this)->isObjCLifetimeType())
1088        return false;
1089      break;
1090    }
1091  }
1092
1093  // C++0x [basic.types]p9
1094  //   Scalar types, trivially copyable class types, arrays of such types, and
1095  //   cv-qualified versions of these types are collectively called trivial
1096  //   types.
1097
1098  QualType CanonicalType = getCanonicalType();
1099  if (CanonicalType->isDependentType())
1100    return false;
1101
1102  // Return false for incomplete types after skipping any incomplete array types
1103  // which are expressly allowed by the standard and thus our API.
1104  if (CanonicalType->isIncompleteType())
1105    return false;
1106
1107  // As an extension, Clang treats vector types as Scalar types.
1108  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1109    return true;
1110
1111  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1112    if (const CXXRecordDecl *ClassDecl =
1113          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1114      if (!ClassDecl->isTriviallyCopyable()) return false;
1115    }
1116
1117    return true;
1118  }
1119
1120  // No other types can match.
1121  return false;
1122}
1123
1124
1125
1126bool Type::isLiteralType() const {
1127  if (isDependentType())
1128    return false;
1129
1130  // C++0x [basic.types]p10:
1131  //   A type is a literal type if it is:
1132  //   [...]
1133  //   -- an array of literal type.
1134  // Extension: variable arrays cannot be literal types, since they're
1135  // runtime-sized.
1136  if (isVariableArrayType())
1137    return false;
1138  const Type *BaseTy = getBaseElementTypeUnsafe();
1139  assert(BaseTy && "NULL element type");
1140
1141  // Return false for incomplete types after skipping any incomplete array
1142  // types; those are expressly allowed by the standard and thus our API.
1143  if (BaseTy->isIncompleteType())
1144    return false;
1145
1146  // C++0x [basic.types]p10:
1147  //   A type is a literal type if it is:
1148  //    -- a scalar type; or
1149  // As an extension, Clang treats vector types and complex types as
1150  // literal types.
1151  if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
1152      BaseTy->isAnyComplexType())
1153    return true;
1154  //    -- a reference type; or
1155  if (BaseTy->isReferenceType())
1156    return true;
1157  //    -- a class type that has all of the following properties:
1158  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1159    //    -- a trivial destructor,
1160    //    -- every constructor call and full-expression in the
1161    //       brace-or-equal-initializers for non-static data members (if any)
1162    //       is a constant expression,
1163    //    -- it is an aggregate type or has at least one constexpr
1164    //       constructor or constructor template that is not a copy or move
1165    //       constructor, and
1166    //    -- all non-static data members and base classes of literal types
1167    //
1168    // We resolve DR1361 by ignoring the second bullet.
1169    if (const CXXRecordDecl *ClassDecl =
1170        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1171      return ClassDecl->isLiteral();
1172
1173    return true;
1174  }
1175
1176  return false;
1177}
1178
1179bool Type::isStandardLayoutType() const {
1180  if (isDependentType())
1181    return false;
1182
1183  // C++0x [basic.types]p9:
1184  //   Scalar types, standard-layout class types, arrays of such types, and
1185  //   cv-qualified versions of these types are collectively called
1186  //   standard-layout types.
1187  const Type *BaseTy = getBaseElementTypeUnsafe();
1188  assert(BaseTy && "NULL element type");
1189
1190  // Return false for incomplete types after skipping any incomplete array
1191  // types which are expressly allowed by the standard and thus our API.
1192  if (BaseTy->isIncompleteType())
1193    return false;
1194
1195  // As an extension, Clang treats vector types as Scalar types.
1196  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1197  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1198    if (const CXXRecordDecl *ClassDecl =
1199        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1200      if (!ClassDecl->isStandardLayout())
1201        return false;
1202
1203    // Default to 'true' for non-C++ class types.
1204    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1205    // all the requirements of standard layout classes.
1206    return true;
1207  }
1208
1209  // No other types can match.
1210  return false;
1211}
1212
1213// This is effectively the intersection of isTrivialType and
1214// isStandardLayoutType. We implement it directly to avoid redundant
1215// conversions from a type to a CXXRecordDecl.
1216bool QualType::isCXX11PODType(ASTContext &Context) const {
1217  const Type *ty = getTypePtr();
1218  if (ty->isDependentType())
1219    return false;
1220
1221  if (Context.getLangOpts().ObjCAutoRefCount) {
1222    switch (getObjCLifetime()) {
1223    case Qualifiers::OCL_ExplicitNone:
1224      return true;
1225
1226    case Qualifiers::OCL_Strong:
1227    case Qualifiers::OCL_Weak:
1228    case Qualifiers::OCL_Autoreleasing:
1229      return false;
1230
1231    case Qualifiers::OCL_None:
1232      break;
1233    }
1234  }
1235
1236  // C++11 [basic.types]p9:
1237  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1238  //   versions of these types are collectively called trivial types.
1239  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1240  assert(BaseTy && "NULL element type");
1241
1242  // Return false for incomplete types after skipping any incomplete array
1243  // types which are expressly allowed by the standard and thus our API.
1244  if (BaseTy->isIncompleteType())
1245    return false;
1246
1247  // As an extension, Clang treats vector types as Scalar types.
1248  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1249  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1250    if (const CXXRecordDecl *ClassDecl =
1251        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1252      // C++11 [class]p10:
1253      //   A POD struct is a non-union class that is both a trivial class [...]
1254      if (!ClassDecl->isTrivial()) return false;
1255
1256      // C++11 [class]p10:
1257      //   A POD struct is a non-union class that is both a trivial class and
1258      //   a standard-layout class [...]
1259      if (!ClassDecl->isStandardLayout()) return false;
1260
1261      // C++11 [class]p10:
1262      //   A POD struct is a non-union class that is both a trivial class and
1263      //   a standard-layout class, and has no non-static data members of type
1264      //   non-POD struct, non-POD union (or array of such types). [...]
1265      //
1266      // We don't directly query the recursive aspect as the requiremets for
1267      // both standard-layout classes and trivial classes apply recursively
1268      // already.
1269    }
1270
1271    return true;
1272  }
1273
1274  // No other types can match.
1275  return false;
1276}
1277
1278bool Type::isPromotableIntegerType() const {
1279  if (const BuiltinType *BT = getAs<BuiltinType>())
1280    switch (BT->getKind()) {
1281    case BuiltinType::Bool:
1282    case BuiltinType::Char_S:
1283    case BuiltinType::Char_U:
1284    case BuiltinType::SChar:
1285    case BuiltinType::UChar:
1286    case BuiltinType::Short:
1287    case BuiltinType::UShort:
1288    case BuiltinType::WChar_S:
1289    case BuiltinType::WChar_U:
1290    case BuiltinType::Char16:
1291    case BuiltinType::Char32:
1292      return true;
1293    default:
1294      return false;
1295    }
1296
1297  // Enumerated types are promotable to their compatible integer types
1298  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1299  if (const EnumType *ET = getAs<EnumType>()){
1300    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1301        || ET->getDecl()->isScoped())
1302      return false;
1303
1304    return true;
1305  }
1306
1307  return false;
1308}
1309
1310bool Type::isSpecifierType() const {
1311  // Note that this intentionally does not use the canonical type.
1312  switch (getTypeClass()) {
1313  case Builtin:
1314  case Record:
1315  case Enum:
1316  case Typedef:
1317  case Complex:
1318  case TypeOfExpr:
1319  case TypeOf:
1320  case TemplateTypeParm:
1321  case SubstTemplateTypeParm:
1322  case TemplateSpecialization:
1323  case Elaborated:
1324  case DependentName:
1325  case DependentTemplateSpecialization:
1326  case ObjCInterface:
1327  case ObjCObject:
1328  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1329    return true;
1330  default:
1331    return false;
1332  }
1333}
1334
1335ElaboratedTypeKeyword
1336TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1337  switch (TypeSpec) {
1338  default: return ETK_None;
1339  case TST_typename: return ETK_Typename;
1340  case TST_class: return ETK_Class;
1341  case TST_struct: return ETK_Struct;
1342  case TST_interface: return ETK_Interface;
1343  case TST_union: return ETK_Union;
1344  case TST_enum: return ETK_Enum;
1345  }
1346}
1347
1348TagTypeKind
1349TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1350  switch(TypeSpec) {
1351  case TST_class: return TTK_Class;
1352  case TST_struct: return TTK_Struct;
1353  case TST_interface: return TTK_Interface;
1354  case TST_union: return TTK_Union;
1355  case TST_enum: return TTK_Enum;
1356  }
1357
1358  llvm_unreachable("Type specifier is not a tag type kind.");
1359}
1360
1361ElaboratedTypeKeyword
1362TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1363  switch (Kind) {
1364  case TTK_Class: return ETK_Class;
1365  case TTK_Struct: return ETK_Struct;
1366  case TTK_Interface: return ETK_Interface;
1367  case TTK_Union: return ETK_Union;
1368  case TTK_Enum: return ETK_Enum;
1369  }
1370  llvm_unreachable("Unknown tag type kind.");
1371}
1372
1373TagTypeKind
1374TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1375  switch (Keyword) {
1376  case ETK_Class: return TTK_Class;
1377  case ETK_Struct: return TTK_Struct;
1378  case ETK_Interface: return TTK_Interface;
1379  case ETK_Union: return TTK_Union;
1380  case ETK_Enum: return TTK_Enum;
1381  case ETK_None: // Fall through.
1382  case ETK_Typename:
1383    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1384  }
1385  llvm_unreachable("Unknown elaborated type keyword.");
1386}
1387
1388bool
1389TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1390  switch (Keyword) {
1391  case ETK_None:
1392  case ETK_Typename:
1393    return false;
1394  case ETK_Class:
1395  case ETK_Struct:
1396  case ETK_Interface:
1397  case ETK_Union:
1398  case ETK_Enum:
1399    return true;
1400  }
1401  llvm_unreachable("Unknown elaborated type keyword.");
1402}
1403
1404const char*
1405TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1406  switch (Keyword) {
1407  case ETK_None: return "";
1408  case ETK_Typename: return "typename";
1409  case ETK_Class:  return "class";
1410  case ETK_Struct: return "struct";
1411  case ETK_Interface: return "__interface";
1412  case ETK_Union:  return "union";
1413  case ETK_Enum:   return "enum";
1414  }
1415
1416  llvm_unreachable("Unknown elaborated type keyword.");
1417}
1418
1419DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1420                         ElaboratedTypeKeyword Keyword,
1421                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1422                         unsigned NumArgs, const TemplateArgument *Args,
1423                         QualType Canon)
1424  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1425                    /*VariablyModified=*/false,
1426                    NNS && NNS->containsUnexpandedParameterPack()),
1427    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1428  assert((!NNS || NNS->isDependent()) &&
1429         "DependentTemplateSpecializatonType requires dependent qualifier");
1430  for (unsigned I = 0; I != NumArgs; ++I) {
1431    if (Args[I].containsUnexpandedParameterPack())
1432      setContainsUnexpandedParameterPack();
1433
1434    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1435  }
1436}
1437
1438void
1439DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1440                                             const ASTContext &Context,
1441                                             ElaboratedTypeKeyword Keyword,
1442                                             NestedNameSpecifier *Qualifier,
1443                                             const IdentifierInfo *Name,
1444                                             unsigned NumArgs,
1445                                             const TemplateArgument *Args) {
1446  ID.AddInteger(Keyword);
1447  ID.AddPointer(Qualifier);
1448  ID.AddPointer(Name);
1449  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1450    Args[Idx].Profile(ID, Context);
1451}
1452
1453bool Type::isElaboratedTypeSpecifier() const {
1454  ElaboratedTypeKeyword Keyword;
1455  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1456    Keyword = Elab->getKeyword();
1457  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1458    Keyword = DepName->getKeyword();
1459  else if (const DependentTemplateSpecializationType *DepTST =
1460             dyn_cast<DependentTemplateSpecializationType>(this))
1461    Keyword = DepTST->getKeyword();
1462  else
1463    return false;
1464
1465  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1466}
1467
1468const char *Type::getTypeClassName() const {
1469  switch (TypeBits.TC) {
1470#define ABSTRACT_TYPE(Derived, Base)
1471#define TYPE(Derived, Base) case Derived: return #Derived;
1472#include "clang/AST/TypeNodes.def"
1473  }
1474
1475  llvm_unreachable("Invalid type class.");
1476}
1477
1478StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
1479  switch (getKind()) {
1480  case Void:              return "void";
1481  case Bool:              return Policy.Bool ? "bool" : "_Bool";
1482  case Char_S:            return "char";
1483  case Char_U:            return "char";
1484  case SChar:             return "signed char";
1485  case Short:             return "short";
1486  case Int:               return "int";
1487  case Long:              return "long";
1488  case LongLong:          return "long long";
1489  case Int128:            return "__int128";
1490  case UChar:             return "unsigned char";
1491  case UShort:            return "unsigned short";
1492  case UInt:              return "unsigned int";
1493  case ULong:             return "unsigned long";
1494  case ULongLong:         return "unsigned long long";
1495  case UInt128:           return "unsigned __int128";
1496  case Half:              return "half";
1497  case Float:             return "float";
1498  case Double:            return "double";
1499  case LongDouble:        return "long double";
1500  case WChar_S:
1501  case WChar_U:           return "wchar_t";
1502  case Char16:            return "char16_t";
1503  case Char32:            return "char32_t";
1504  case NullPtr:           return "nullptr_t";
1505  case Overload:          return "<overloaded function type>";
1506  case BoundMember:       return "<bound member function type>";
1507  case PseudoObject:      return "<pseudo-object type>";
1508  case Dependent:         return "<dependent type>";
1509  case UnknownAny:        return "<unknown type>";
1510  case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
1511  case BuiltinFn:         return "<builtin fn type>";
1512  case ObjCId:            return "id";
1513  case ObjCClass:         return "Class";
1514  case ObjCSel:           return "SEL";
1515  case OCLImage1d:        return "image1d_t";
1516  case OCLImage1dArray:   return "image1d_array_t";
1517  case OCLImage1dBuffer:  return "image1d_buffer_t";
1518  case OCLImage2d:        return "image2d_t";
1519  case OCLImage2dArray:   return "image2d_array_t";
1520  case OCLImage3d:        return "image3d_t";
1521  case OCLSampler:        return "sampler_t";
1522  case OCLEvent:          return "event_t";
1523  }
1524
1525  llvm_unreachable("Invalid builtin type.");
1526}
1527
1528QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1529  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1530    return RefType->getPointeeType();
1531
1532  // C++0x [basic.lval]:
1533  //   Class prvalues can have cv-qualified types; non-class prvalues always
1534  //   have cv-unqualified types.
1535  //
1536  // See also C99 6.3.2.1p2.
1537  if (!Context.getLangOpts().CPlusPlus ||
1538      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1539    return getUnqualifiedType();
1540
1541  return *this;
1542}
1543
1544StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1545  switch (CC) {
1546  case CC_Default:
1547    llvm_unreachable("no name for default cc");
1548
1549  case CC_C: return "cdecl";
1550  case CC_X86StdCall: return "stdcall";
1551  case CC_X86FastCall: return "fastcall";
1552  case CC_X86ThisCall: return "thiscall";
1553  case CC_X86Pascal: return "pascal";
1554  case CC_AAPCS: return "aapcs";
1555  case CC_AAPCS_VFP: return "aapcs-vfp";
1556  case CC_PnaclCall: return "pnaclcall";
1557  case CC_IntelOclBicc: return "intel_ocl_bicc";
1558  }
1559
1560  llvm_unreachable("Invalid calling convention.");
1561}
1562
1563FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1564                                     unsigned numArgs, QualType canonical,
1565                                     const ExtProtoInfo &epi)
1566  : FunctionType(FunctionProto, result, epi.TypeQuals,
1567                 canonical,
1568                 result->isDependentType(),
1569                 result->isInstantiationDependentType(),
1570                 result->isVariablyModifiedType(),
1571                 result->containsUnexpandedParameterPack(),
1572                 epi.ExtInfo),
1573    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1574    ExceptionSpecType(epi.ExceptionSpecType),
1575    HasAnyConsumedArgs(epi.ConsumedArguments != 0),
1576    Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn),
1577    RefQualifier(epi.RefQualifier)
1578{
1579  assert(NumArgs == numArgs && "function has too many parameters");
1580
1581  // Fill in the trailing argument array.
1582  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1583  for (unsigned i = 0; i != numArgs; ++i) {
1584    if (args[i]->isDependentType())
1585      setDependent();
1586    else if (args[i]->isInstantiationDependentType())
1587      setInstantiationDependent();
1588
1589    if (args[i]->containsUnexpandedParameterPack())
1590      setContainsUnexpandedParameterPack();
1591
1592    argSlot[i] = args[i];
1593  }
1594
1595  if (getExceptionSpecType() == EST_Dynamic) {
1596    // Fill in the exception array.
1597    QualType *exnSlot = argSlot + numArgs;
1598    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1599      if (epi.Exceptions[i]->isDependentType())
1600        setDependent();
1601      else if (epi.Exceptions[i]->isInstantiationDependentType())
1602        setInstantiationDependent();
1603
1604      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1605        setContainsUnexpandedParameterPack();
1606
1607      exnSlot[i] = epi.Exceptions[i];
1608    }
1609  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1610    // Store the noexcept expression and context.
1611    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1612    *noexSlot = epi.NoexceptExpr;
1613
1614    if (epi.NoexceptExpr) {
1615      if (epi.NoexceptExpr->isValueDependent()
1616          || epi.NoexceptExpr->isTypeDependent())
1617        setDependent();
1618      else if (epi.NoexceptExpr->isInstantiationDependent())
1619        setInstantiationDependent();
1620    }
1621  } else if (getExceptionSpecType() == EST_Uninstantiated) {
1622    // Store the function decl from which we will resolve our
1623    // exception specification.
1624    FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
1625    slot[0] = epi.ExceptionSpecDecl;
1626    slot[1] = epi.ExceptionSpecTemplate;
1627    // This exception specification doesn't make the type dependent, because
1628    // it's not instantiated as part of instantiating the type.
1629  } else if (getExceptionSpecType() == EST_Unevaluated) {
1630    // Store the function decl from which we will resolve our
1631    // exception specification.
1632    FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
1633    slot[0] = epi.ExceptionSpecDecl;
1634  }
1635
1636  if (epi.ConsumedArguments) {
1637    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1638    for (unsigned i = 0; i != numArgs; ++i)
1639      consumedArgs[i] = epi.ConsumedArguments[i];
1640  }
1641}
1642
1643FunctionProtoType::NoexceptResult
1644FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1645  ExceptionSpecificationType est = getExceptionSpecType();
1646  if (est == EST_BasicNoexcept)
1647    return NR_Nothrow;
1648
1649  if (est != EST_ComputedNoexcept)
1650    return NR_NoNoexcept;
1651
1652  Expr *noexceptExpr = getNoexceptExpr();
1653  if (!noexceptExpr)
1654    return NR_BadNoexcept;
1655  if (noexceptExpr->isValueDependent())
1656    return NR_Dependent;
1657
1658  llvm::APSInt value;
1659  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1660                                                   /*evaluated*/false);
1661  (void)isICE;
1662  assert(isICE && "AST should not contain bad noexcept expressions.");
1663
1664  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1665}
1666
1667bool FunctionProtoType::isTemplateVariadic() const {
1668  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1669    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1670      return true;
1671
1672  return false;
1673}
1674
1675void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1676                                const QualType *ArgTys, unsigned NumArgs,
1677                                const ExtProtoInfo &epi,
1678                                const ASTContext &Context) {
1679
1680  // We have to be careful not to get ambiguous profile encodings.
1681  // Note that valid type pointers are never ambiguous with anything else.
1682  //
1683  // The encoding grammar begins:
1684  //      type type* bool int bool
1685  // If that final bool is true, then there is a section for the EH spec:
1686  //      bool type*
1687  // This is followed by an optional "consumed argument" section of the
1688  // same length as the first type sequence:
1689  //      bool*
1690  // Finally, we have the ext info and trailing return type flag:
1691  //      int bool
1692  //
1693  // There is no ambiguity between the consumed arguments and an empty EH
1694  // spec because of the leading 'bool' which unambiguously indicates
1695  // whether the following bool is the EH spec or part of the arguments.
1696
1697  ID.AddPointer(Result.getAsOpaquePtr());
1698  for (unsigned i = 0; i != NumArgs; ++i)
1699    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1700  // This method is relatively performance sensitive, so as a performance
1701  // shortcut, use one AddInteger call instead of four for the next four
1702  // fields.
1703  assert(!(unsigned(epi.Variadic) & ~1) &&
1704         !(unsigned(epi.TypeQuals) & ~255) &&
1705         !(unsigned(epi.RefQualifier) & ~3) &&
1706         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1707         "Values larger than expected.");
1708  ID.AddInteger(unsigned(epi.Variadic) +
1709                (epi.TypeQuals << 1) +
1710                (epi.RefQualifier << 9) +
1711                (epi.ExceptionSpecType << 11));
1712  if (epi.ExceptionSpecType == EST_Dynamic) {
1713    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1714      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1715  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1716    epi.NoexceptExpr->Profile(ID, Context, false);
1717  } else if (epi.ExceptionSpecType == EST_Uninstantiated ||
1718             epi.ExceptionSpecType == EST_Unevaluated) {
1719    ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
1720  }
1721  if (epi.ConsumedArguments) {
1722    for (unsigned i = 0; i != NumArgs; ++i)
1723      ID.AddBoolean(epi.ConsumedArguments[i]);
1724  }
1725  epi.ExtInfo.Profile(ID);
1726  ID.AddBoolean(epi.HasTrailingReturn);
1727}
1728
1729void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1730                                const ASTContext &Ctx) {
1731  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1732          Ctx);
1733}
1734
1735QualType TypedefType::desugar() const {
1736  return getDecl()->getUnderlyingType();
1737}
1738
1739TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1740  : Type(TypeOfExpr, can, E->isTypeDependent(),
1741         E->isInstantiationDependent(),
1742         E->getType()->isVariablyModifiedType(),
1743         E->containsUnexpandedParameterPack()),
1744    TOExpr(E) {
1745}
1746
1747bool TypeOfExprType::isSugared() const {
1748  return !TOExpr->isTypeDependent();
1749}
1750
1751QualType TypeOfExprType::desugar() const {
1752  if (isSugared())
1753    return getUnderlyingExpr()->getType();
1754
1755  return QualType(this, 0);
1756}
1757
1758void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1759                                      const ASTContext &Context, Expr *E) {
1760  E->Profile(ID, Context, true);
1761}
1762
1763DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1764  // C++11 [temp.type]p2: "If an expression e involves a template parameter,
1765  // decltype(e) denotes a unique dependent type." Hence a decltype type is
1766  // type-dependent even if its expression is only instantiation-dependent.
1767  : Type(Decltype, can, E->isInstantiationDependent(),
1768         E->isInstantiationDependent(),
1769         E->getType()->isVariablyModifiedType(),
1770         E->containsUnexpandedParameterPack()),
1771    E(E),
1772  UnderlyingType(underlyingType) {
1773}
1774
1775bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1776
1777QualType DecltypeType::desugar() const {
1778  if (isSugared())
1779    return getUnderlyingType();
1780
1781  return QualType(this, 0);
1782}
1783
1784DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1785  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1786
1787void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1788                                    const ASTContext &Context, Expr *E) {
1789  E->Profile(ID, Context, true);
1790}
1791
1792TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1793  : Type(TC, can, D->isDependentType(),
1794         /*InstantiationDependent=*/D->isDependentType(),
1795         /*VariablyModified=*/false,
1796         /*ContainsUnexpandedParameterPack=*/false),
1797    decl(const_cast<TagDecl*>(D)) {}
1798
1799static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1800  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1801                                E = decl->redecls_end();
1802       I != E; ++I) {
1803    if (I->isCompleteDefinition() || I->isBeingDefined())
1804      return *I;
1805  }
1806  // If there's no definition (not even in progress), return what we have.
1807  return decl;
1808}
1809
1810UnaryTransformType::UnaryTransformType(QualType BaseType,
1811                                       QualType UnderlyingType,
1812                                       UTTKind UKind,
1813                                       QualType CanonicalType)
1814  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1815         UnderlyingType->isInstantiationDependentType(),
1816         UnderlyingType->isVariablyModifiedType(),
1817         BaseType->containsUnexpandedParameterPack())
1818  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1819{}
1820
1821TagDecl *TagType::getDecl() const {
1822  return getInterestingTagDecl(decl);
1823}
1824
1825bool TagType::isBeingDefined() const {
1826  return getDecl()->isBeingDefined();
1827}
1828
1829CXXRecordDecl *InjectedClassNameType::getDecl() const {
1830  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1831}
1832
1833IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1834  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1835}
1836
1837SubstTemplateTypeParmPackType::
1838SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1839                              QualType Canon,
1840                              const TemplateArgument &ArgPack)
1841  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1842    Replaced(Param),
1843    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1844{
1845}
1846
1847TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1848  return TemplateArgument(Arguments, NumArguments);
1849}
1850
1851void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1852  Profile(ID, getReplacedParameter(), getArgumentPack());
1853}
1854
1855void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1856                                           const TemplateTypeParmType *Replaced,
1857                                            const TemplateArgument &ArgPack) {
1858  ID.AddPointer(Replaced);
1859  ID.AddInteger(ArgPack.pack_size());
1860  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1861                                    PEnd = ArgPack.pack_end();
1862       P != PEnd; ++P)
1863    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1864}
1865
1866bool TemplateSpecializationType::
1867anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1868                              bool &InstantiationDependent) {
1869  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1870                                       InstantiationDependent);
1871}
1872
1873bool TemplateSpecializationType::
1874anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1875                              bool &InstantiationDependent) {
1876  for (unsigned i = 0; i != N; ++i) {
1877    if (Args[i].getArgument().isDependent()) {
1878      InstantiationDependent = true;
1879      return true;
1880    }
1881
1882    if (Args[i].getArgument().isInstantiationDependent())
1883      InstantiationDependent = true;
1884  }
1885  return false;
1886}
1887
1888bool TemplateSpecializationType::
1889anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1890                              bool &InstantiationDependent) {
1891  for (unsigned i = 0; i != N; ++i) {
1892    if (Args[i].isDependent()) {
1893      InstantiationDependent = true;
1894      return true;
1895    }
1896
1897    if (Args[i].isInstantiationDependent())
1898      InstantiationDependent = true;
1899  }
1900  return false;
1901}
1902
1903TemplateSpecializationType::
1904TemplateSpecializationType(TemplateName T,
1905                           const TemplateArgument *Args, unsigned NumArgs,
1906                           QualType Canon, QualType AliasedType)
1907  : Type(TemplateSpecialization,
1908         Canon.isNull()? QualType(this, 0) : Canon,
1909         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1910         Canon.isNull()? T.isDependent()
1911                       : Canon->isInstantiationDependentType(),
1912         false,
1913         T.containsUnexpandedParameterPack()),
1914    Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
1915  assert(!T.getAsDependentTemplateName() &&
1916         "Use DependentTemplateSpecializationType for dependent template-name");
1917  assert((T.getKind() == TemplateName::Template ||
1918          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1919          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1920         "Unexpected template name for TemplateSpecializationType");
1921  bool InstantiationDependent;
1922  (void)InstantiationDependent;
1923  assert((!Canon.isNull() ||
1924          T.isDependent() ||
1925          anyDependentTemplateArguments(Args, NumArgs,
1926                                        InstantiationDependent)) &&
1927         "No canonical type for non-dependent class template specialization");
1928
1929  TemplateArgument *TemplateArgs
1930    = reinterpret_cast<TemplateArgument *>(this + 1);
1931  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1932    // Update dependent and variably-modified bits.
1933    // If the canonical type exists and is non-dependent, the template
1934    // specialization type can be non-dependent even if one of the type
1935    // arguments is. Given:
1936    //   template<typename T> using U = int;
1937    // U<T> is always non-dependent, irrespective of the type T.
1938    // However, U<Ts> contains an unexpanded parameter pack, even though
1939    // its expansion (and thus its desugared type) doesn't.
1940    if (Canon.isNull() && Args[Arg].isDependent())
1941      setDependent();
1942    else if (Args[Arg].isInstantiationDependent())
1943      setInstantiationDependent();
1944
1945    if (Args[Arg].getKind() == TemplateArgument::Type &&
1946        Args[Arg].getAsType()->isVariablyModifiedType())
1947      setVariablyModified();
1948    if (Args[Arg].containsUnexpandedParameterPack())
1949      setContainsUnexpandedParameterPack();
1950
1951    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1952  }
1953
1954  // Store the aliased type if this is a type alias template specialization.
1955  if (TypeAlias) {
1956    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1957    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1958  }
1959}
1960
1961void
1962TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1963                                    TemplateName T,
1964                                    const TemplateArgument *Args,
1965                                    unsigned NumArgs,
1966                                    const ASTContext &Context) {
1967  T.Profile(ID);
1968  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1969    Args[Idx].Profile(ID, Context);
1970}
1971
1972QualType
1973QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1974  if (!hasNonFastQualifiers())
1975    return QT.withFastQualifiers(getFastQualifiers());
1976
1977  return Context.getQualifiedType(QT, *this);
1978}
1979
1980QualType
1981QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1982  if (!hasNonFastQualifiers())
1983    return QualType(T, getFastQualifiers());
1984
1985  return Context.getQualifiedType(T, *this);
1986}
1987
1988void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1989                                 QualType BaseType,
1990                                 ObjCProtocolDecl * const *Protocols,
1991                                 unsigned NumProtocols) {
1992  ID.AddPointer(BaseType.getAsOpaquePtr());
1993  for (unsigned i = 0; i != NumProtocols; i++)
1994    ID.AddPointer(Protocols[i]);
1995}
1996
1997void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1998  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1999}
2000
2001namespace {
2002
2003/// \brief The cached properties of a type.
2004class CachedProperties {
2005  NamedDecl::LinkageInfo LV;
2006  bool local;
2007
2008public:
2009  CachedProperties(NamedDecl::LinkageInfo LV, bool local)
2010    : LV(LV), local(local) {}
2011
2012  Linkage getLinkage() const { return LV.linkage(); }
2013  Visibility getVisibility() const { return LV.visibility(); }
2014  bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
2015  bool hasLocalOrUnnamedType() const { return local; }
2016
2017  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
2018    NamedDecl::LinkageInfo MergedLV = L.LV;
2019    MergedLV.merge(R.LV);
2020    return CachedProperties(MergedLV,
2021                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
2022  }
2023};
2024}
2025
2026static CachedProperties computeCachedProperties(const Type *T);
2027
2028namespace clang {
2029/// The type-property cache.  This is templated so as to be
2030/// instantiated at an internal type to prevent unnecessary symbol
2031/// leakage.
2032template <class Private> class TypePropertyCache {
2033public:
2034  static CachedProperties get(QualType T) {
2035    return get(T.getTypePtr());
2036  }
2037
2038  static CachedProperties get(const Type *T) {
2039    ensure(T);
2040    NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
2041                              T->TypeBits.getVisibility(),
2042                              T->TypeBits.isVisibilityExplicit());
2043    return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
2044  }
2045
2046  static void ensure(const Type *T) {
2047    // If the cache is valid, we're okay.
2048    if (T->TypeBits.isCacheValid()) return;
2049
2050    // If this type is non-canonical, ask its canonical type for the
2051    // relevant information.
2052    if (!T->isCanonicalUnqualified()) {
2053      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2054      ensure(CT);
2055      T->TypeBits.CacheValidAndVisibility =
2056        CT->TypeBits.CacheValidAndVisibility;
2057      T->TypeBits.CachedExplicitVisibility =
2058        CT->TypeBits.CachedExplicitVisibility;
2059      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2060      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2061      return;
2062    }
2063
2064    // Compute the cached properties and then set the cache.
2065    CachedProperties Result = computeCachedProperties(T);
2066    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2067    T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
2068    assert(T->TypeBits.isCacheValid() &&
2069           T->TypeBits.getVisibility() == Result.getVisibility());
2070    T->TypeBits.CachedLinkage = Result.getLinkage();
2071    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2072  }
2073};
2074}
2075
2076// Instantiate the friend template at a private class.  In a
2077// reasonable implementation, these symbols will be internal.
2078// It is terrible that this is the best way to accomplish this.
2079namespace { class Private {}; }
2080typedef TypePropertyCache<Private> Cache;
2081
2082static CachedProperties computeCachedProperties(const Type *T) {
2083  switch (T->getTypeClass()) {
2084#define TYPE(Class,Base)
2085#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2086#include "clang/AST/TypeNodes.def"
2087    llvm_unreachable("didn't expect a non-canonical type here");
2088
2089#define TYPE(Class,Base)
2090#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2091#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2092#include "clang/AST/TypeNodes.def"
2093    // Treat instantiation-dependent types as external.
2094    assert(T->isInstantiationDependentType());
2095    return CachedProperties(NamedDecl::LinkageInfo(), false);
2096
2097  case Type::Builtin:
2098    // C++ [basic.link]p8:
2099    //   A type is said to have linkage if and only if:
2100    //     - it is a fundamental type (3.9.1); or
2101    return CachedProperties(NamedDecl::LinkageInfo(), false);
2102
2103  case Type::Record:
2104  case Type::Enum: {
2105    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2106
2107    // C++ [basic.link]p8:
2108    //     - it is a class or enumeration type that is named (or has a name
2109    //       for linkage purposes (7.1.3)) and the name has linkage; or
2110    //     -  it is a specialization of a class template (14); or
2111    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2112    bool IsLocalOrUnnamed =
2113      Tag->getDeclContext()->isFunctionOrMethod() ||
2114      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2115    return CachedProperties(LV, IsLocalOrUnnamed);
2116  }
2117
2118    // C++ [basic.link]p8:
2119    //   - it is a compound type (3.9.2) other than a class or enumeration,
2120    //     compounded exclusively from types that have linkage; or
2121  case Type::Complex:
2122    return Cache::get(cast<ComplexType>(T)->getElementType());
2123  case Type::Pointer:
2124    return Cache::get(cast<PointerType>(T)->getPointeeType());
2125  case Type::BlockPointer:
2126    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2127  case Type::LValueReference:
2128  case Type::RValueReference:
2129    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2130  case Type::MemberPointer: {
2131    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2132    return merge(Cache::get(MPT->getClass()),
2133                 Cache::get(MPT->getPointeeType()));
2134  }
2135  case Type::ConstantArray:
2136  case Type::IncompleteArray:
2137  case Type::VariableArray:
2138    return Cache::get(cast<ArrayType>(T)->getElementType());
2139  case Type::Vector:
2140  case Type::ExtVector:
2141    return Cache::get(cast<VectorType>(T)->getElementType());
2142  case Type::FunctionNoProto:
2143    return Cache::get(cast<FunctionType>(T)->getResultType());
2144  case Type::FunctionProto: {
2145    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2146    CachedProperties result = Cache::get(FPT->getResultType());
2147    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2148           ae = FPT->arg_type_end(); ai != ae; ++ai)
2149      result = merge(result, Cache::get(*ai));
2150    return result;
2151  }
2152  case Type::ObjCInterface: {
2153    NamedDecl::LinkageInfo LV =
2154      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2155    return CachedProperties(LV, false);
2156  }
2157  case Type::ObjCObject:
2158    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2159  case Type::ObjCObjectPointer:
2160    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2161  case Type::Atomic:
2162    return Cache::get(cast<AtomicType>(T)->getValueType());
2163  }
2164
2165  llvm_unreachable("unhandled type class");
2166}
2167
2168/// \brief Determine the linkage of this type.
2169Linkage Type::getLinkage() const {
2170  Cache::ensure(this);
2171  return TypeBits.getLinkage();
2172}
2173
2174/// \brief Determine the linkage of this type.
2175Visibility Type::getVisibility() const {
2176  Cache::ensure(this);
2177  return TypeBits.getVisibility();
2178}
2179
2180bool Type::isVisibilityExplicit() const {
2181  Cache::ensure(this);
2182  return TypeBits.isVisibilityExplicit();
2183}
2184
2185bool Type::hasUnnamedOrLocalType() const {
2186  Cache::ensure(this);
2187  return TypeBits.hasLocalOrUnnamedType();
2188}
2189
2190std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2191  Cache::ensure(this);
2192  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2193}
2194
2195void Type::ClearLinkageCache() {
2196  TypeBits.CacheValidAndVisibility = 0;
2197  if (QualType(this, 0) != CanonicalType)
2198    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2199}
2200
2201Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2202  if (isObjCARCImplicitlyUnretainedType())
2203    return Qualifiers::OCL_ExplicitNone;
2204  return Qualifiers::OCL_Strong;
2205}
2206
2207bool Type::isObjCARCImplicitlyUnretainedType() const {
2208  assert(isObjCLifetimeType() &&
2209         "cannot query implicit lifetime for non-inferrable type");
2210
2211  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2212
2213  // Walk down to the base type.  We don't care about qualifiers for this.
2214  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2215    canon = array->getElementType().getTypePtr();
2216
2217  if (const ObjCObjectPointerType *opt
2218        = dyn_cast<ObjCObjectPointerType>(canon)) {
2219    // Class and Class<Protocol> don't require retension.
2220    if (opt->getObjectType()->isObjCClass())
2221      return true;
2222  }
2223
2224  return false;
2225}
2226
2227bool Type::isObjCNSObjectType() const {
2228  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2229    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2230  return false;
2231}
2232bool Type::isObjCRetainableType() const {
2233  return isObjCObjectPointerType() ||
2234         isBlockPointerType() ||
2235         isObjCNSObjectType();
2236}
2237bool Type::isObjCIndirectLifetimeType() const {
2238  if (isObjCLifetimeType())
2239    return true;
2240  if (const PointerType *OPT = getAs<PointerType>())
2241    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2242  if (const ReferenceType *Ref = getAs<ReferenceType>())
2243    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2244  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2245    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2246  return false;
2247}
2248
2249/// Returns true if objects of this type have lifetime semantics under
2250/// ARC.
2251bool Type::isObjCLifetimeType() const {
2252  const Type *type = this;
2253  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2254    type = array->getElementType().getTypePtr();
2255  return type->isObjCRetainableType();
2256}
2257
2258/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2259/// which is either an Objective-C object pointer type or an
2260bool Type::isObjCARCBridgableType() const {
2261  return isObjCObjectPointerType() || isBlockPointerType();
2262}
2263
2264/// \brief Determine whether the given type T is a "bridgeable" C type.
2265bool Type::isCARCBridgableType() const {
2266  const PointerType *Pointer = getAs<PointerType>();
2267  if (!Pointer)
2268    return false;
2269
2270  QualType Pointee = Pointer->getPointeeType();
2271  return Pointee->isVoidType() || Pointee->isRecordType();
2272}
2273
2274bool Type::hasSizedVLAType() const {
2275  if (!isVariablyModifiedType()) return false;
2276
2277  if (const PointerType *ptr = getAs<PointerType>())
2278    return ptr->getPointeeType()->hasSizedVLAType();
2279  if (const ReferenceType *ref = getAs<ReferenceType>())
2280    return ref->getPointeeType()->hasSizedVLAType();
2281  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2282    if (isa<VariableArrayType>(arr) &&
2283        cast<VariableArrayType>(arr)->getSizeExpr())
2284      return true;
2285
2286    return arr->getElementType()->hasSizedVLAType();
2287  }
2288
2289  return false;
2290}
2291
2292QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2293  switch (type.getObjCLifetime()) {
2294  case Qualifiers::OCL_None:
2295  case Qualifiers::OCL_ExplicitNone:
2296  case Qualifiers::OCL_Autoreleasing:
2297    break;
2298
2299  case Qualifiers::OCL_Strong:
2300    return DK_objc_strong_lifetime;
2301  case Qualifiers::OCL_Weak:
2302    return DK_objc_weak_lifetime;
2303  }
2304
2305  /// Currently, the only destruction kind we recognize is C++ objects
2306  /// with non-trivial destructors.
2307  const CXXRecordDecl *record =
2308    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2309  if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2310    return DK_cxx_destructor;
2311
2312  return DK_none;
2313}
2314