Type.cpp revision 51201882382fb40c9456a06c7f93d6ddd4a57712
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31  return (*this != Other) &&
32    // CVR qualifiers superset
33    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34    // ObjC GC qualifiers superset
35    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37    // Address space superset.
38    ((getAddressSpace() == Other.getAddressSpace()) ||
39     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40    // Lifetime qualifier superset.
41    ((getObjCLifetime() == Other.getObjCLifetime()) ||
42     (hasObjCLifetime() && !Other.hasObjCLifetime()));
43}
44
45const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46  const Type* ty = getTypePtr();
47  NamedDecl *ND = NULL;
48  if (ty->isPointerType() || ty->isReferenceType())
49    return ty->getPointeeType().getBaseTypeIdentifier();
50  else if (ty->isRecordType())
51    ND = ty->getAs<RecordType>()->getDecl();
52  else if (ty->isEnumeralType())
53    ND = ty->getAs<EnumType>()->getDecl();
54  else if (ty->getTypeClass() == Type::Typedef)
55    ND = ty->getAs<TypedefType>()->getDecl();
56  else if (ty->isArrayType())
57    return ty->castAsArrayTypeUnsafe()->
58        getElementType().getBaseTypeIdentifier();
59
60  if (ND)
61    return ND->getIdentifier();
62  return NULL;
63}
64
65bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66  if (T.isConstQualified())
67    return true;
68
69  if (const ArrayType *AT = Ctx.getAsArrayType(T))
70    return AT->getElementType().isConstant(Ctx);
71
72  return false;
73}
74
75unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                 QualType ElementType,
77                                               const llvm::APInt &NumElements) {
78  llvm::APSInt SizeExtended(NumElements, true);
79  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                              SizeExtended.getBitWidth()) * 2);
82
83  uint64_t ElementSize
84    = Context.getTypeSizeInChars(ElementType).getQuantity();
85  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86  TotalSize *= SizeExtended;
87
88  return TotalSize.getActiveBits();
89}
90
91unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92  unsigned Bits = Context.getTypeSize(Context.getSizeType());
93
94  // GCC appears to only allow 63 bits worth of address space when compiling
95  // for 64-bit, so we do the same.
96  if (Bits == 64)
97    --Bits;
98
99  return Bits;
100}
101
102DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
103                                                 QualType et, QualType can,
104                                                 Expr *e, ArraySizeModifier sm,
105                                                 unsigned tq,
106                                                 SourceRange brackets)
107    : ArrayType(DependentSizedArray, et, can, sm, tq,
108                (et->containsUnexpandedParameterPack() ||
109                 (e && e->containsUnexpandedParameterPack()))),
110      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
111{
112}
113
114void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                      const ASTContext &Context,
116                                      QualType ET,
117                                      ArraySizeModifier SizeMod,
118                                      unsigned TypeQuals,
119                                      Expr *E) {
120  ID.AddPointer(ET.getAsOpaquePtr());
121  ID.AddInteger(SizeMod);
122  ID.AddInteger(TypeQuals);
123  E->Profile(ID, Context, true);
124}
125
126DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                         ASTContext &Context,
128                                                         QualType ElementType,
129                                                         QualType can,
130                                                         Expr *SizeExpr,
131                                                         SourceLocation loc)
132    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133           /*InstantiationDependent=*/true,
134           ElementType->isVariablyModifiedType(),
135           (ElementType->containsUnexpandedParameterPack() ||
136            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138      loc(loc)
139{
140}
141
142void
143DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                     const ASTContext &Context,
145                                     QualType ElementType, Expr *SizeExpr) {
146  ID.AddPointer(ElementType.getAsOpaquePtr());
147  SizeExpr->Profile(ID, Context, true);
148}
149
150VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                       VectorKind vecKind)
152  : Type(Vector, canonType, vecType->isDependentType(),
153         vecType->isInstantiationDependentType(),
154         vecType->isVariablyModifiedType(),
155         vecType->containsUnexpandedParameterPack()),
156    ElementType(vecType)
157{
158  VectorTypeBits.VecKind = vecKind;
159  VectorTypeBits.NumElements = nElements;
160}
161
162VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                       QualType canonType, VectorKind vecKind)
164  : Type(tc, canonType, vecType->isDependentType(),
165         vecType->isInstantiationDependentType(),
166         vecType->isVariablyModifiedType(),
167         vecType->containsUnexpandedParameterPack()),
168    ElementType(vecType)
169{
170  VectorTypeBits.VecKind = vecKind;
171  VectorTypeBits.NumElements = nElements;
172}
173
174/// getArrayElementTypeNoTypeQual - If this is an array type, return the
175/// element type of the array, potentially with type qualifiers missing.
176/// This method should never be used when type qualifiers are meaningful.
177const Type *Type::getArrayElementTypeNoTypeQual() const {
178  // If this is directly an array type, return it.
179  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180    return ATy->getElementType().getTypePtr();
181
182  // If the canonical form of this type isn't the right kind, reject it.
183  if (!isa<ArrayType>(CanonicalType))
184    return 0;
185
186  // If this is a typedef for an array type, strip the typedef off without
187  // losing all typedef information.
188  return cast<ArrayType>(getUnqualifiedDesugaredType())
189    ->getElementType().getTypePtr();
190}
191
192/// getDesugaredType - Return the specified type with any "sugar" removed from
193/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194/// the type is already concrete, it returns it unmodified.  This is similar
195/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197/// concrete.
198QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199  SplitQualType split = getSplitDesugaredType(T);
200  return Context.getQualifiedType(split.first, split.second);
201}
202
203QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
204  QualifierCollector Qs;
205
206  const Type *CurTy = Qs.strip(*this);
207  switch (CurTy->getTypeClass()) {
208#define ABSTRACT_TYPE(Class, Parent)
209#define TYPE(Class, Parent) \
210  case Type::Class: { \
211    const Class##Type *Ty = cast<Class##Type>(CurTy); \
212    if (!Ty->isSugared()) \
213      return *this; \
214    return Context.getQualifiedType(Ty->desugar(), Qs); \
215    break; \
216  }
217#include "clang/AST/TypeNodes.def"
218  }
219
220  return *this;
221}
222
223SplitQualType QualType::getSplitDesugaredType(QualType T) {
224  QualifierCollector Qs;
225
226  QualType Cur = T;
227  while (true) {
228    const Type *CurTy = Qs.strip(Cur);
229    switch (CurTy->getTypeClass()) {
230#define ABSTRACT_TYPE(Class, Parent)
231#define TYPE(Class, Parent) \
232    case Type::Class: { \
233      const Class##Type *Ty = cast<Class##Type>(CurTy); \
234      if (!Ty->isSugared()) \
235        return SplitQualType(Ty, Qs); \
236      Cur = Ty->desugar(); \
237      break; \
238    }
239#include "clang/AST/TypeNodes.def"
240    }
241  }
242}
243
244SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
245  SplitQualType split = type.split();
246
247  // All the qualifiers we've seen so far.
248  Qualifiers quals = split.second;
249
250  // The last type node we saw with any nodes inside it.
251  const Type *lastTypeWithQuals = split.first;
252
253  while (true) {
254    QualType next;
255
256    // Do a single-step desugar, aborting the loop if the type isn't
257    // sugared.
258    switch (split.first->getTypeClass()) {
259#define ABSTRACT_TYPE(Class, Parent)
260#define TYPE(Class, Parent) \
261    case Type::Class: { \
262      const Class##Type *ty = cast<Class##Type>(split.first); \
263      if (!ty->isSugared()) goto done; \
264      next = ty->desugar(); \
265      break; \
266    }
267#include "clang/AST/TypeNodes.def"
268    }
269
270    // Otherwise, split the underlying type.  If that yields qualifiers,
271    // update the information.
272    split = next.split();
273    if (!split.second.empty()) {
274      lastTypeWithQuals = split.first;
275      quals.addConsistentQualifiers(split.second);
276    }
277  }
278
279 done:
280  return SplitQualType(lastTypeWithQuals, quals);
281}
282
283QualType QualType::IgnoreParens(QualType T) {
284  // FIXME: this seems inherently un-qualifiers-safe.
285  while (const ParenType *PT = T->getAs<ParenType>())
286    T = PT->getInnerType();
287  return T;
288}
289
290/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
291/// sugar off the given type.  This should produce an object of the
292/// same dynamic type as the canonical type.
293const Type *Type::getUnqualifiedDesugaredType() const {
294  const Type *Cur = this;
295
296  while (true) {
297    switch (Cur->getTypeClass()) {
298#define ABSTRACT_TYPE(Class, Parent)
299#define TYPE(Class, Parent) \
300    case Class: { \
301      const Class##Type *Ty = cast<Class##Type>(Cur); \
302      if (!Ty->isSugared()) return Cur; \
303      Cur = Ty->desugar().getTypePtr(); \
304      break; \
305    }
306#include "clang/AST/TypeNodes.def"
307    }
308  }
309}
310
311/// isVoidType - Helper method to determine if this is the 'void' type.
312bool Type::isVoidType() const {
313  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
314    return BT->getKind() == BuiltinType::Void;
315  return false;
316}
317
318bool Type::isDerivedType() const {
319  switch (CanonicalType->getTypeClass()) {
320  case Pointer:
321  case VariableArray:
322  case ConstantArray:
323  case IncompleteArray:
324  case FunctionProto:
325  case FunctionNoProto:
326  case LValueReference:
327  case RValueReference:
328  case Record:
329    return true;
330  default:
331    return false;
332  }
333}
334bool Type::isClassType() const {
335  if (const RecordType *RT = getAs<RecordType>())
336    return RT->getDecl()->isClass();
337  return false;
338}
339bool Type::isStructureType() const {
340  if (const RecordType *RT = getAs<RecordType>())
341    return RT->getDecl()->isStruct();
342  return false;
343}
344bool Type::isStructureOrClassType() const {
345  if (const RecordType *RT = getAs<RecordType>())
346    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
347  return false;
348}
349bool Type::isVoidPointerType() const {
350  if (const PointerType *PT = getAs<PointerType>())
351    return PT->getPointeeType()->isVoidType();
352  return false;
353}
354
355bool Type::isUnionType() const {
356  if (const RecordType *RT = getAs<RecordType>())
357    return RT->getDecl()->isUnion();
358  return false;
359}
360
361bool Type::isComplexType() const {
362  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
363    return CT->getElementType()->isFloatingType();
364  return false;
365}
366
367bool Type::isComplexIntegerType() const {
368  // Check for GCC complex integer extension.
369  return getAsComplexIntegerType();
370}
371
372const ComplexType *Type::getAsComplexIntegerType() const {
373  if (const ComplexType *Complex = getAs<ComplexType>())
374    if (Complex->getElementType()->isIntegerType())
375      return Complex;
376  return 0;
377}
378
379QualType Type::getPointeeType() const {
380  if (const PointerType *PT = getAs<PointerType>())
381    return PT->getPointeeType();
382  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
383    return OPT->getPointeeType();
384  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
385    return BPT->getPointeeType();
386  if (const ReferenceType *RT = getAs<ReferenceType>())
387    return RT->getPointeeType();
388  return QualType();
389}
390
391const RecordType *Type::getAsStructureType() const {
392  // If this is directly a structure type, return it.
393  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
394    if (RT->getDecl()->isStruct())
395      return RT;
396  }
397
398  // If the canonical form of this type isn't the right kind, reject it.
399  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
400    if (!RT->getDecl()->isStruct())
401      return 0;
402
403    // If this is a typedef for a structure type, strip the typedef off without
404    // losing all typedef information.
405    return cast<RecordType>(getUnqualifiedDesugaredType());
406  }
407  return 0;
408}
409
410const RecordType *Type::getAsUnionType() const {
411  // If this is directly a union type, return it.
412  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
413    if (RT->getDecl()->isUnion())
414      return RT;
415  }
416
417  // If the canonical form of this type isn't the right kind, reject it.
418  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
419    if (!RT->getDecl()->isUnion())
420      return 0;
421
422    // If this is a typedef for a union type, strip the typedef off without
423    // losing all typedef information.
424    return cast<RecordType>(getUnqualifiedDesugaredType());
425  }
426
427  return 0;
428}
429
430ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
431                               ObjCProtocolDecl * const *Protocols,
432                               unsigned NumProtocols)
433  : Type(ObjCObject, Canonical, false, false, false, false),
434    BaseType(Base)
435{
436  ObjCObjectTypeBits.NumProtocols = NumProtocols;
437  assert(getNumProtocols() == NumProtocols &&
438         "bitfield overflow in protocol count");
439  if (NumProtocols)
440    memcpy(getProtocolStorage(), Protocols,
441           NumProtocols * sizeof(ObjCProtocolDecl*));
442}
443
444const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
445  // There is no sugar for ObjCObjectType's, just return the canonical
446  // type pointer if it is the right class.  There is no typedef information to
447  // return and these cannot be Address-space qualified.
448  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
449    if (T->getNumProtocols() && T->getInterface())
450      return T;
451  return 0;
452}
453
454bool Type::isObjCQualifiedInterfaceType() const {
455  return getAsObjCQualifiedInterfaceType() != 0;
456}
457
458const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
459  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
460  // type pointer if it is the right class.
461  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
462    if (OPT->isObjCQualifiedIdType())
463      return OPT;
464  }
465  return 0;
466}
467
468const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
469  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
470  // type pointer if it is the right class.
471  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
472    if (OPT->isObjCQualifiedClassType())
473      return OPT;
474  }
475  return 0;
476}
477
478const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
479  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
480    if (OPT->getInterfaceType())
481      return OPT;
482  }
483  return 0;
484}
485
486const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
487  if (const PointerType *PT = getAs<PointerType>())
488    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
489      return dyn_cast<CXXRecordDecl>(RT->getDecl());
490  return 0;
491}
492
493CXXRecordDecl *Type::getAsCXXRecordDecl() const {
494  if (const RecordType *RT = getAs<RecordType>())
495    return dyn_cast<CXXRecordDecl>(RT->getDecl());
496  else if (const InjectedClassNameType *Injected
497                                  = getAs<InjectedClassNameType>())
498    return Injected->getDecl();
499
500  return 0;
501}
502
503namespace {
504  class GetContainedAutoVisitor :
505    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
506  public:
507    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
508    AutoType *Visit(QualType T) {
509      if (T.isNull())
510        return 0;
511      return Visit(T.getTypePtr());
512    }
513
514    // The 'auto' type itself.
515    AutoType *VisitAutoType(const AutoType *AT) {
516      return const_cast<AutoType*>(AT);
517    }
518
519    // Only these types can contain the desired 'auto' type.
520    AutoType *VisitPointerType(const PointerType *T) {
521      return Visit(T->getPointeeType());
522    }
523    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
524      return Visit(T->getPointeeType());
525    }
526    AutoType *VisitReferenceType(const ReferenceType *T) {
527      return Visit(T->getPointeeTypeAsWritten());
528    }
529    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
530      return Visit(T->getPointeeType());
531    }
532    AutoType *VisitArrayType(const ArrayType *T) {
533      return Visit(T->getElementType());
534    }
535    AutoType *VisitDependentSizedExtVectorType(
536      const DependentSizedExtVectorType *T) {
537      return Visit(T->getElementType());
538    }
539    AutoType *VisitVectorType(const VectorType *T) {
540      return Visit(T->getElementType());
541    }
542    AutoType *VisitFunctionType(const FunctionType *T) {
543      return Visit(T->getResultType());
544    }
545    AutoType *VisitParenType(const ParenType *T) {
546      return Visit(T->getInnerType());
547    }
548    AutoType *VisitAttributedType(const AttributedType *T) {
549      return Visit(T->getModifiedType());
550    }
551  };
552}
553
554AutoType *Type::getContainedAutoType() const {
555  return GetContainedAutoVisitor().Visit(this);
556}
557
558bool Type::isIntegerType() const {
559  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
560    return BT->getKind() >= BuiltinType::Bool &&
561           BT->getKind() <= BuiltinType::Int128;
562  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
563    // Incomplete enum types are not treated as integer types.
564    // FIXME: In C++, enum types are never integer types.
565    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
566  return false;
567}
568
569bool Type::hasIntegerRepresentation() const {
570  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
571    return VT->getElementType()->isIntegerType();
572  else
573    return isIntegerType();
574}
575
576/// \brief Determine whether this type is an integral type.
577///
578/// This routine determines whether the given type is an integral type per
579/// C++ [basic.fundamental]p7. Although the C standard does not define the
580/// term "integral type", it has a similar term "integer type", and in C++
581/// the two terms are equivalent. However, C's "integer type" includes
582/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
583/// parameter is used to determine whether we should be following the C or
584/// C++ rules when determining whether this type is an integral/integer type.
585///
586/// For cases where C permits "an integer type" and C++ permits "an integral
587/// type", use this routine.
588///
589/// For cases where C permits "an integer type" and C++ permits "an integral
590/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
591///
592/// \param Ctx The context in which this type occurs.
593///
594/// \returns true if the type is considered an integral type, false otherwise.
595bool Type::isIntegralType(ASTContext &Ctx) const {
596  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
597    return BT->getKind() >= BuiltinType::Bool &&
598    BT->getKind() <= BuiltinType::Int128;
599
600  if (!Ctx.getLangOptions().CPlusPlus)
601    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
602      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
603
604  return false;
605}
606
607bool Type::isIntegralOrEnumerationType() const {
608  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
609    return BT->getKind() >= BuiltinType::Bool &&
610           BT->getKind() <= BuiltinType::Int128;
611
612  // Check for a complete enum type; incomplete enum types are not properly an
613  // enumeration type in the sense required here.
614  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
615    return ET->getDecl()->isComplete();
616
617  return false;
618}
619
620bool Type::isIntegralOrUnscopedEnumerationType() const {
621  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
622    return BT->getKind() >= BuiltinType::Bool &&
623           BT->getKind() <= BuiltinType::Int128;
624
625  // Check for a complete enum type; incomplete enum types are not properly an
626  // enumeration type in the sense required here.
627  // C++0x: However, if the underlying type of the enum is fixed, it is
628  // considered complete.
629  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
630    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
631
632  return false;
633}
634
635
636bool Type::isBooleanType() const {
637  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
638    return BT->getKind() == BuiltinType::Bool;
639  return false;
640}
641
642bool Type::isCharType() const {
643  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
644    return BT->getKind() == BuiltinType::Char_U ||
645           BT->getKind() == BuiltinType::UChar ||
646           BT->getKind() == BuiltinType::Char_S ||
647           BT->getKind() == BuiltinType::SChar;
648  return false;
649}
650
651bool Type::isWideCharType() const {
652  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
653    return BT->getKind() == BuiltinType::WChar_S ||
654           BT->getKind() == BuiltinType::WChar_U;
655  return false;
656}
657
658bool Type::isChar16Type() const {
659  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
660    return BT->getKind() == BuiltinType::Char16;
661  return false;
662}
663
664bool Type::isChar32Type() const {
665  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
666    return BT->getKind() == BuiltinType::Char32;
667  return false;
668}
669
670/// \brief Determine whether this type is any of the built-in character
671/// types.
672bool Type::isAnyCharacterType() const {
673  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
674  if (BT == 0) return false;
675  switch (BT->getKind()) {
676  default: return false;
677  case BuiltinType::Char_U:
678  case BuiltinType::UChar:
679  case BuiltinType::WChar_U:
680  case BuiltinType::Char16:
681  case BuiltinType::Char32:
682  case BuiltinType::Char_S:
683  case BuiltinType::SChar:
684  case BuiltinType::WChar_S:
685    return true;
686  }
687}
688
689/// isSignedIntegerType - Return true if this is an integer type that is
690/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
691/// an enum decl which has a signed representation
692bool Type::isSignedIntegerType() const {
693  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
694    return BT->getKind() >= BuiltinType::Char_S &&
695           BT->getKind() <= BuiltinType::Int128;
696  }
697
698  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
699    // Incomplete enum types are not treated as integer types.
700    // FIXME: In C++, enum types are never integer types.
701    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
702      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
703  }
704
705  return false;
706}
707
708bool Type::isSignedIntegerOrEnumerationType() const {
709  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
710    return BT->getKind() >= BuiltinType::Char_S &&
711    BT->getKind() <= BuiltinType::Int128;
712  }
713
714  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
715    if (ET->getDecl()->isComplete())
716      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
717  }
718
719  return false;
720}
721
722bool Type::hasSignedIntegerRepresentation() const {
723  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
724    return VT->getElementType()->isSignedIntegerType();
725  else
726    return isSignedIntegerType();
727}
728
729/// isUnsignedIntegerType - Return true if this is an integer type that is
730/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
731/// decl which has an unsigned representation
732bool Type::isUnsignedIntegerType() const {
733  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
734    return BT->getKind() >= BuiltinType::Bool &&
735           BT->getKind() <= BuiltinType::UInt128;
736  }
737
738  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
739    // Incomplete enum types are not treated as integer types.
740    // FIXME: In C++, enum types are never integer types.
741    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
742      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
743  }
744
745  return false;
746}
747
748bool Type::isUnsignedIntegerOrEnumerationType() const {
749  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
750    return BT->getKind() >= BuiltinType::Bool &&
751    BT->getKind() <= BuiltinType::UInt128;
752  }
753
754  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
755    if (ET->getDecl()->isComplete())
756      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
757  }
758
759  return false;
760}
761
762bool Type::hasUnsignedIntegerRepresentation() const {
763  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
764    return VT->getElementType()->isUnsignedIntegerType();
765  else
766    return isUnsignedIntegerType();
767}
768
769bool Type::isHalfType() const {
770  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
771    return BT->getKind() == BuiltinType::Half;
772  // FIXME: Should we allow complex __fp16? Probably not.
773  return false;
774}
775
776bool Type::isFloatingType() const {
777  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
778    return BT->getKind() >= BuiltinType::Half &&
779           BT->getKind() <= BuiltinType::LongDouble;
780  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
781    return CT->getElementType()->isFloatingType();
782  return false;
783}
784
785bool Type::hasFloatingRepresentation() const {
786  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
787    return VT->getElementType()->isFloatingType();
788  else
789    return isFloatingType();
790}
791
792bool Type::isRealFloatingType() const {
793  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
794    return BT->isFloatingPoint();
795  return false;
796}
797
798bool Type::isRealType() const {
799  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
800    return BT->getKind() >= BuiltinType::Bool &&
801           BT->getKind() <= BuiltinType::LongDouble;
802  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
803      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
804  return false;
805}
806
807bool Type::isArithmeticType() const {
808  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
809    return BT->getKind() >= BuiltinType::Bool &&
810           BT->getKind() <= BuiltinType::LongDouble;
811  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
812    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
813    // If a body isn't seen by the time we get here, return false.
814    //
815    // C++0x: Enumerations are not arithmetic types. For now, just return
816    // false for scoped enumerations since that will disable any
817    // unwanted implicit conversions.
818    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
819  return isa<ComplexType>(CanonicalType);
820}
821
822bool Type::isScalarType() const {
823  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
824    return BT->getKind() > BuiltinType::Void &&
825           BT->getKind() <= BuiltinType::NullPtr;
826  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
827    // Enums are scalar types, but only if they are defined.  Incomplete enums
828    // are not treated as scalar types.
829    return ET->getDecl()->isComplete();
830  return isa<PointerType>(CanonicalType) ||
831         isa<BlockPointerType>(CanonicalType) ||
832         isa<MemberPointerType>(CanonicalType) ||
833         isa<ComplexType>(CanonicalType) ||
834         isa<ObjCObjectPointerType>(CanonicalType);
835}
836
837Type::ScalarTypeKind Type::getScalarTypeKind() const {
838  assert(isScalarType());
839
840  const Type *T = CanonicalType.getTypePtr();
841  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
842    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
843    if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
844    if (BT->isInteger()) return STK_Integral;
845    if (BT->isFloatingPoint()) return STK_Floating;
846    llvm_unreachable("unknown scalar builtin type");
847  } else if (isa<PointerType>(T)) {
848    return STK_CPointer;
849  } else if (isa<BlockPointerType>(T)) {
850    return STK_BlockPointer;
851  } else if (isa<ObjCObjectPointerType>(T)) {
852    return STK_ObjCObjectPointer;
853  } else if (isa<MemberPointerType>(T)) {
854    return STK_MemberPointer;
855  } else if (isa<EnumType>(T)) {
856    assert(cast<EnumType>(T)->getDecl()->isComplete());
857    return STK_Integral;
858  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
859    if (CT->getElementType()->isRealFloatingType())
860      return STK_FloatingComplex;
861    return STK_IntegralComplex;
862  }
863
864  llvm_unreachable("unknown scalar type");
865}
866
867/// \brief Determines whether the type is a C++ aggregate type or C
868/// aggregate or union type.
869///
870/// An aggregate type is an array or a class type (struct, union, or
871/// class) that has no user-declared constructors, no private or
872/// protected non-static data members, no base classes, and no virtual
873/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
874/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
875/// includes union types.
876bool Type::isAggregateType() const {
877  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
878    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
879      return ClassDecl->isAggregate();
880
881    return true;
882  }
883
884  return isa<ArrayType>(CanonicalType);
885}
886
887/// isConstantSizeType - Return true if this is not a variable sized type,
888/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
889/// incomplete types or dependent types.
890bool Type::isConstantSizeType() const {
891  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
892  assert(!isDependentType() && "This doesn't make sense for dependent types");
893  // The VAT must have a size, as it is known to be complete.
894  return !isa<VariableArrayType>(CanonicalType);
895}
896
897/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
898/// - a type that can describe objects, but which lacks information needed to
899/// determine its size.
900bool Type::isIncompleteType() const {
901  switch (CanonicalType->getTypeClass()) {
902  default: return false;
903  case Builtin:
904    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
905    // be completed.
906    return isVoidType();
907  case Enum:
908    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
909    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
910        return false;
911    // Fall through.
912  case Record:
913    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
914    // forward declaration, but not a full definition (C99 6.2.5p22).
915    return !cast<TagType>(CanonicalType)->getDecl()->isCompleteDefinition();
916  case ConstantArray:
917    // An array is incomplete if its element type is incomplete
918    // (C++ [dcl.array]p1).
919    // We don't handle variable arrays (they're not allowed in C++) or
920    // dependent-sized arrays (dependent types are never treated as incomplete).
921    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
922  case IncompleteArray:
923    // An array of unknown size is an incomplete type (C99 6.2.5p22).
924    return true;
925  case ObjCObject:
926    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
927                                                         ->isIncompleteType();
928  case ObjCInterface:
929    // ObjC interfaces are incomplete if they are @class, not @interface.
930    return !cast<ObjCInterfaceType>(CanonicalType)->getDecl()->hasDefinition();
931  }
932}
933
934bool QualType::isPODType(ASTContext &Context) const {
935  // The compiler shouldn't query this for incomplete types, but the user might.
936  // We return false for that case. Except for incomplete arrays of PODs, which
937  // are PODs according to the standard.
938  if (isNull())
939    return 0;
940
941  if ((*this)->isIncompleteArrayType())
942    return Context.getBaseElementType(*this).isPODType(Context);
943
944  if ((*this)->isIncompleteType())
945    return false;
946
947  if (Context.getLangOptions().ObjCAutoRefCount) {
948    switch (getObjCLifetime()) {
949    case Qualifiers::OCL_ExplicitNone:
950      return true;
951
952    case Qualifiers::OCL_Strong:
953    case Qualifiers::OCL_Weak:
954    case Qualifiers::OCL_Autoreleasing:
955      return false;
956
957    case Qualifiers::OCL_None:
958      break;
959    }
960  }
961
962  QualType CanonicalType = getTypePtr()->CanonicalType;
963  switch (CanonicalType->getTypeClass()) {
964    // Everything not explicitly mentioned is not POD.
965  default: return false;
966  case Type::VariableArray:
967  case Type::ConstantArray:
968    // IncompleteArray is handled above.
969    return Context.getBaseElementType(*this).isPODType(Context);
970
971  case Type::ObjCObjectPointer:
972  case Type::BlockPointer:
973  case Type::Builtin:
974  case Type::Complex:
975  case Type::Pointer:
976  case Type::MemberPointer:
977  case Type::Vector:
978  case Type::ExtVector:
979    return true;
980
981  case Type::Enum:
982    return true;
983
984  case Type::Record:
985    if (CXXRecordDecl *ClassDecl
986          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
987      return ClassDecl->isPOD();
988
989    // C struct/union is POD.
990    return true;
991  }
992}
993
994bool QualType::isTrivialType(ASTContext &Context) const {
995  // The compiler shouldn't query this for incomplete types, but the user might.
996  // We return false for that case. Except for incomplete arrays of PODs, which
997  // are PODs according to the standard.
998  if (isNull())
999    return 0;
1000
1001  if ((*this)->isArrayType())
1002    return Context.getBaseElementType(*this).isTrivialType(Context);
1003
1004  // Return false for incomplete types after skipping any incomplete array
1005  // types which are expressly allowed by the standard and thus our API.
1006  if ((*this)->isIncompleteType())
1007    return false;
1008
1009  if (Context.getLangOptions().ObjCAutoRefCount) {
1010    switch (getObjCLifetime()) {
1011    case Qualifiers::OCL_ExplicitNone:
1012      return true;
1013
1014    case Qualifiers::OCL_Strong:
1015    case Qualifiers::OCL_Weak:
1016    case Qualifiers::OCL_Autoreleasing:
1017      return false;
1018
1019    case Qualifiers::OCL_None:
1020      if ((*this)->isObjCLifetimeType())
1021        return false;
1022      break;
1023    }
1024  }
1025
1026  QualType CanonicalType = getTypePtr()->CanonicalType;
1027  if (CanonicalType->isDependentType())
1028    return false;
1029
1030  // C++0x [basic.types]p9:
1031  //   Scalar types, trivial class types, arrays of such types, and
1032  //   cv-qualified versions of these types are collectively called trivial
1033  //   types.
1034
1035  // As an extension, Clang treats vector types as Scalar types.
1036  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1037    return true;
1038  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1039    if (const CXXRecordDecl *ClassDecl =
1040        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1041      // C++0x [class]p5:
1042      //   A trivial class is a class that has a trivial default constructor
1043      if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1044      //   and is trivially copyable.
1045      if (!ClassDecl->isTriviallyCopyable()) return false;
1046    }
1047
1048    return true;
1049  }
1050
1051  // No other types can match.
1052  return false;
1053}
1054
1055bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1056  if ((*this)->isArrayType())
1057    return Context.getBaseElementType(*this).isTrivialType(Context);
1058
1059  if (Context.getLangOptions().ObjCAutoRefCount) {
1060    switch (getObjCLifetime()) {
1061    case Qualifiers::OCL_ExplicitNone:
1062      return true;
1063
1064    case Qualifiers::OCL_Strong:
1065    case Qualifiers::OCL_Weak:
1066    case Qualifiers::OCL_Autoreleasing:
1067      return false;
1068
1069    case Qualifiers::OCL_None:
1070      if ((*this)->isObjCLifetimeType())
1071        return false;
1072      break;
1073    }
1074  }
1075
1076  // C++0x [basic.types]p9
1077  //   Scalar types, trivially copyable class types, arrays of such types, and
1078  //   cv-qualified versions of these types are collectively called trivial
1079  //   types.
1080
1081  QualType CanonicalType = getCanonicalType();
1082  if (CanonicalType->isDependentType())
1083    return false;
1084
1085  // Return false for incomplete types after skipping any incomplete array types
1086  // which are expressly allowed by the standard and thus our API.
1087  if (CanonicalType->isIncompleteType())
1088    return false;
1089
1090  // As an extension, Clang treats vector types as Scalar types.
1091  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1092    return true;
1093
1094  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1095    if (const CXXRecordDecl *ClassDecl =
1096          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1097      if (!ClassDecl->isTriviallyCopyable()) return false;
1098    }
1099
1100    return true;
1101  }
1102
1103  // No other types can match.
1104  return false;
1105}
1106
1107
1108
1109bool Type::isLiteralType() const {
1110  if (isDependentType())
1111    return false;
1112
1113  // C++0x [basic.types]p10:
1114  //   A type is a literal type if it is:
1115  //   [...]
1116  //   -- an array of literal type.
1117  // Extension: variable arrays cannot be literal types, since they're
1118  // runtime-sized.
1119  if (isVariableArrayType())
1120    return false;
1121  const Type *BaseTy = getBaseElementTypeUnsafe();
1122  assert(BaseTy && "NULL element type");
1123
1124  // Return false for incomplete types after skipping any incomplete array
1125  // types; those are expressly allowed by the standard and thus our API.
1126  if (BaseTy->isIncompleteType())
1127    return false;
1128
1129  // C++0x [basic.types]p10:
1130  //   A type is a literal type if it is:
1131  //    -- a scalar type; or
1132  // As an extension, Clang treats vector types as literal types.
1133  if (BaseTy->isScalarType() || BaseTy->isVectorType())
1134    return true;
1135  //    -- a reference type; or
1136  if (BaseTy->isReferenceType())
1137    return true;
1138  //    -- a class type that has all of the following properties:
1139  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1140    //    -- a trivial destructor,
1141    //    -- every constructor call and full-expression in the
1142    //       brace-or-equal-initializers for non-static data members (if any)
1143    //       is a constant expression,
1144    //    -- it is an aggregate type or has at least one constexpr
1145    //       constructor or constructor template that is not a copy or move
1146    //       constructor, and
1147    //    -- all non-static data members and base classes of literal types
1148    //
1149    // We resolve DR1361 by ignoring the second bullet.
1150    if (const CXXRecordDecl *ClassDecl =
1151        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1152      return ClassDecl->isLiteral();
1153
1154    return true;
1155  }
1156
1157  return false;
1158}
1159
1160bool Type::isStandardLayoutType() const {
1161  if (isDependentType())
1162    return false;
1163
1164  // C++0x [basic.types]p9:
1165  //   Scalar types, standard-layout class types, arrays of such types, and
1166  //   cv-qualified versions of these types are collectively called
1167  //   standard-layout types.
1168  const Type *BaseTy = getBaseElementTypeUnsafe();
1169  assert(BaseTy && "NULL element type");
1170
1171  // Return false for incomplete types after skipping any incomplete array
1172  // types which are expressly allowed by the standard and thus our API.
1173  if (BaseTy->isIncompleteType())
1174    return false;
1175
1176  // As an extension, Clang treats vector types as Scalar types.
1177  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1178  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1179    if (const CXXRecordDecl *ClassDecl =
1180        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1181      if (!ClassDecl->isStandardLayout())
1182        return false;
1183
1184    // Default to 'true' for non-C++ class types.
1185    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1186    // all the requirements of standard layout classes.
1187    return true;
1188  }
1189
1190  // No other types can match.
1191  return false;
1192}
1193
1194// This is effectively the intersection of isTrivialType and
1195// isStandardLayoutType. We implement it directly to avoid redundant
1196// conversions from a type to a CXXRecordDecl.
1197bool QualType::isCXX11PODType(ASTContext &Context) const {
1198  const Type *ty = getTypePtr();
1199  if (ty->isDependentType())
1200    return false;
1201
1202  if (Context.getLangOptions().ObjCAutoRefCount) {
1203    switch (getObjCLifetime()) {
1204    case Qualifiers::OCL_ExplicitNone:
1205      return true;
1206
1207    case Qualifiers::OCL_Strong:
1208    case Qualifiers::OCL_Weak:
1209    case Qualifiers::OCL_Autoreleasing:
1210      return false;
1211
1212    case Qualifiers::OCL_None:
1213      if (ty->isObjCLifetimeType())
1214        return false;
1215      break;
1216    }
1217  }
1218
1219  // C++11 [basic.types]p9:
1220  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1221  //   versions of these types are collectively called trivial types.
1222  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1223  assert(BaseTy && "NULL element type");
1224
1225  // Return false for incomplete types after skipping any incomplete array
1226  // types which are expressly allowed by the standard and thus our API.
1227  if (BaseTy->isIncompleteType())
1228    return false;
1229
1230  // As an extension, Clang treats vector types as Scalar types.
1231  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1232  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1233    if (const CXXRecordDecl *ClassDecl =
1234        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1235      // C++11 [class]p10:
1236      //   A POD struct is a non-union class that is both a trivial class [...]
1237      if (!ClassDecl->isTrivial()) return false;
1238
1239      // C++11 [class]p10:
1240      //   A POD struct is a non-union class that is both a trivial class and
1241      //   a standard-layout class [...]
1242      if (!ClassDecl->isStandardLayout()) return false;
1243
1244      // C++11 [class]p10:
1245      //   A POD struct is a non-union class that is both a trivial class and
1246      //   a standard-layout class, and has no non-static data members of type
1247      //   non-POD struct, non-POD union (or array of such types). [...]
1248      //
1249      // We don't directly query the recursive aspect as the requiremets for
1250      // both standard-layout classes and trivial classes apply recursively
1251      // already.
1252    }
1253
1254    return true;
1255  }
1256
1257  // No other types can match.
1258  return false;
1259}
1260
1261bool Type::isPromotableIntegerType() const {
1262  if (const BuiltinType *BT = getAs<BuiltinType>())
1263    switch (BT->getKind()) {
1264    case BuiltinType::Bool:
1265    case BuiltinType::Char_S:
1266    case BuiltinType::Char_U:
1267    case BuiltinType::SChar:
1268    case BuiltinType::UChar:
1269    case BuiltinType::Short:
1270    case BuiltinType::UShort:
1271    case BuiltinType::WChar_S:
1272    case BuiltinType::WChar_U:
1273    case BuiltinType::Char16:
1274    case BuiltinType::Char32:
1275      return true;
1276    default:
1277      return false;
1278    }
1279
1280  // Enumerated types are promotable to their compatible integer types
1281  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1282  if (const EnumType *ET = getAs<EnumType>()){
1283    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1284        || ET->getDecl()->isScoped())
1285      return false;
1286
1287    return true;
1288  }
1289
1290  return false;
1291}
1292
1293bool Type::isNullPtrType() const {
1294  if (const BuiltinType *BT = getAs<BuiltinType>())
1295    return BT->getKind() == BuiltinType::NullPtr;
1296  return false;
1297}
1298
1299bool Type::isSpecifierType() const {
1300  // Note that this intentionally does not use the canonical type.
1301  switch (getTypeClass()) {
1302  case Builtin:
1303  case Record:
1304  case Enum:
1305  case Typedef:
1306  case Complex:
1307  case TypeOfExpr:
1308  case TypeOf:
1309  case TemplateTypeParm:
1310  case SubstTemplateTypeParm:
1311  case TemplateSpecialization:
1312  case Elaborated:
1313  case DependentName:
1314  case DependentTemplateSpecialization:
1315  case ObjCInterface:
1316  case ObjCObject:
1317  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1318    return true;
1319  default:
1320    return false;
1321  }
1322}
1323
1324ElaboratedTypeKeyword
1325TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1326  switch (TypeSpec) {
1327  default: return ETK_None;
1328  case TST_typename: return ETK_Typename;
1329  case TST_class: return ETK_Class;
1330  case TST_struct: return ETK_Struct;
1331  case TST_union: return ETK_Union;
1332  case TST_enum: return ETK_Enum;
1333  }
1334}
1335
1336TagTypeKind
1337TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1338  switch(TypeSpec) {
1339  case TST_class: return TTK_Class;
1340  case TST_struct: return TTK_Struct;
1341  case TST_union: return TTK_Union;
1342  case TST_enum: return TTK_Enum;
1343  }
1344
1345  llvm_unreachable("Type specifier is not a tag type kind.");
1346  return TTK_Union;
1347}
1348
1349ElaboratedTypeKeyword
1350TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1351  switch (Kind) {
1352  case TTK_Class: return ETK_Class;
1353  case TTK_Struct: return ETK_Struct;
1354  case TTK_Union: return ETK_Union;
1355  case TTK_Enum: return ETK_Enum;
1356  }
1357  llvm_unreachable("Unknown tag type kind.");
1358}
1359
1360TagTypeKind
1361TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1362  switch (Keyword) {
1363  case ETK_Class: return TTK_Class;
1364  case ETK_Struct: return TTK_Struct;
1365  case ETK_Union: return TTK_Union;
1366  case ETK_Enum: return TTK_Enum;
1367  case ETK_None: // Fall through.
1368  case ETK_Typename:
1369    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1370  }
1371  llvm_unreachable("Unknown elaborated type keyword.");
1372}
1373
1374bool
1375TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1376  switch (Keyword) {
1377  case ETK_None:
1378  case ETK_Typename:
1379    return false;
1380  case ETK_Class:
1381  case ETK_Struct:
1382  case ETK_Union:
1383  case ETK_Enum:
1384    return true;
1385  }
1386  llvm_unreachable("Unknown elaborated type keyword.");
1387}
1388
1389const char*
1390TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1391  switch (Keyword) {
1392  case ETK_None: return "";
1393  case ETK_Typename: return "typename";
1394  case ETK_Class:  return "class";
1395  case ETK_Struct: return "struct";
1396  case ETK_Union:  return "union";
1397  case ETK_Enum:   return "enum";
1398  }
1399
1400  llvm_unreachable("Unknown elaborated type keyword.");
1401  return "";
1402}
1403
1404DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1405                         ElaboratedTypeKeyword Keyword,
1406                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1407                         unsigned NumArgs, const TemplateArgument *Args,
1408                         QualType Canon)
1409  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1410                    /*VariablyModified=*/false,
1411                    NNS && NNS->containsUnexpandedParameterPack()),
1412    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1413  assert((!NNS || NNS->isDependent()) &&
1414         "DependentTemplateSpecializatonType requires dependent qualifier");
1415  for (unsigned I = 0; I != NumArgs; ++I) {
1416    if (Args[I].containsUnexpandedParameterPack())
1417      setContainsUnexpandedParameterPack();
1418
1419    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1420  }
1421}
1422
1423void
1424DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1425                                             const ASTContext &Context,
1426                                             ElaboratedTypeKeyword Keyword,
1427                                             NestedNameSpecifier *Qualifier,
1428                                             const IdentifierInfo *Name,
1429                                             unsigned NumArgs,
1430                                             const TemplateArgument *Args) {
1431  ID.AddInteger(Keyword);
1432  ID.AddPointer(Qualifier);
1433  ID.AddPointer(Name);
1434  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1435    Args[Idx].Profile(ID, Context);
1436}
1437
1438bool Type::isElaboratedTypeSpecifier() const {
1439  ElaboratedTypeKeyword Keyword;
1440  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1441    Keyword = Elab->getKeyword();
1442  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1443    Keyword = DepName->getKeyword();
1444  else if (const DependentTemplateSpecializationType *DepTST =
1445             dyn_cast<DependentTemplateSpecializationType>(this))
1446    Keyword = DepTST->getKeyword();
1447  else
1448    return false;
1449
1450  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1451}
1452
1453const char *Type::getTypeClassName() const {
1454  switch (TypeBits.TC) {
1455#define ABSTRACT_TYPE(Derived, Base)
1456#define TYPE(Derived, Base) case Derived: return #Derived;
1457#include "clang/AST/TypeNodes.def"
1458  }
1459
1460  llvm_unreachable("Invalid type class.");
1461  return 0;
1462}
1463
1464const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
1465  switch (getKind()) {
1466  case Void:              return "void";
1467  case Bool:              return Policy.Bool ? "bool" : "_Bool";
1468  case Char_S:            return "char";
1469  case Char_U:            return "char";
1470  case SChar:             return "signed char";
1471  case Short:             return "short";
1472  case Int:               return "int";
1473  case Long:              return "long";
1474  case LongLong:          return "long long";
1475  case Int128:            return "__int128_t";
1476  case UChar:             return "unsigned char";
1477  case UShort:            return "unsigned short";
1478  case UInt:              return "unsigned int";
1479  case ULong:             return "unsigned long";
1480  case ULongLong:         return "unsigned long long";
1481  case UInt128:           return "__uint128_t";
1482  case Half:              return "half";
1483  case Float:             return "float";
1484  case Double:            return "double";
1485  case LongDouble:        return "long double";
1486  case WChar_S:
1487  case WChar_U:           return "wchar_t";
1488  case Char16:            return "char16_t";
1489  case Char32:            return "char32_t";
1490  case NullPtr:           return "nullptr_t";
1491  case Overload:          return "<overloaded function type>";
1492  case BoundMember:       return "<bound member function type>";
1493  case PseudoObject:      return "<pseudo-object type>";
1494  case Dependent:         return "<dependent type>";
1495  case UnknownAny:        return "<unknown type>";
1496  case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
1497  case ObjCId:            return "id";
1498  case ObjCClass:         return "Class";
1499  case ObjCSel:           return "SEL";
1500  }
1501
1502  llvm_unreachable("Invalid builtin type.");
1503  return 0;
1504}
1505
1506QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1507  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1508    return RefType->getPointeeType();
1509
1510  // C++0x [basic.lval]:
1511  //   Class prvalues can have cv-qualified types; non-class prvalues always
1512  //   have cv-unqualified types.
1513  //
1514  // See also C99 6.3.2.1p2.
1515  if (!Context.getLangOptions().CPlusPlus ||
1516      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1517    return getUnqualifiedType();
1518
1519  return *this;
1520}
1521
1522StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1523  switch (CC) {
1524  case CC_Default:
1525    llvm_unreachable("no name for default cc");
1526    return "";
1527
1528  case CC_C: return "cdecl";
1529  case CC_X86StdCall: return "stdcall";
1530  case CC_X86FastCall: return "fastcall";
1531  case CC_X86ThisCall: return "thiscall";
1532  case CC_X86Pascal: return "pascal";
1533  case CC_AAPCS: return "aapcs";
1534  case CC_AAPCS_VFP: return "aapcs-vfp";
1535  }
1536
1537  llvm_unreachable("Invalid calling convention.");
1538  return "";
1539}
1540
1541FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1542                                     unsigned numArgs, QualType canonical,
1543                                     const ExtProtoInfo &epi)
1544  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1545                 epi.RefQualifier, canonical,
1546                 result->isDependentType(),
1547                 result->isInstantiationDependentType(),
1548                 result->isVariablyModifiedType(),
1549                 result->containsUnexpandedParameterPack(),
1550                 epi.ExtInfo),
1551    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1552    ExceptionSpecType(epi.ExceptionSpecType),
1553    HasAnyConsumedArgs(epi.ConsumedArguments != 0)
1554{
1555  // Fill in the trailing argument array.
1556  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1557  for (unsigned i = 0; i != numArgs; ++i) {
1558    if (args[i]->isDependentType())
1559      setDependent();
1560    else if (args[i]->isInstantiationDependentType())
1561      setInstantiationDependent();
1562
1563    if (args[i]->containsUnexpandedParameterPack())
1564      setContainsUnexpandedParameterPack();
1565
1566    argSlot[i] = args[i];
1567  }
1568
1569  if (getExceptionSpecType() == EST_Dynamic) {
1570    // Fill in the exception array.
1571    QualType *exnSlot = argSlot + numArgs;
1572    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1573      if (epi.Exceptions[i]->isDependentType())
1574        setDependent();
1575      else if (epi.Exceptions[i]->isInstantiationDependentType())
1576        setInstantiationDependent();
1577
1578      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1579        setContainsUnexpandedParameterPack();
1580
1581      exnSlot[i] = epi.Exceptions[i];
1582    }
1583  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1584    // Store the noexcept expression and context.
1585    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1586    *noexSlot = epi.NoexceptExpr;
1587
1588    if (epi.NoexceptExpr) {
1589      if (epi.NoexceptExpr->isValueDependent()
1590          || epi.NoexceptExpr->isTypeDependent())
1591        setDependent();
1592      else if (epi.NoexceptExpr->isInstantiationDependent())
1593        setInstantiationDependent();
1594    }
1595  }
1596
1597  if (epi.ConsumedArguments) {
1598    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1599    for (unsigned i = 0; i != numArgs; ++i)
1600      consumedArgs[i] = epi.ConsumedArguments[i];
1601  }
1602}
1603
1604FunctionProtoType::NoexceptResult
1605FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1606  ExceptionSpecificationType est = getExceptionSpecType();
1607  if (est == EST_BasicNoexcept)
1608    return NR_Nothrow;
1609
1610  if (est != EST_ComputedNoexcept)
1611    return NR_NoNoexcept;
1612
1613  Expr *noexceptExpr = getNoexceptExpr();
1614  if (!noexceptExpr)
1615    return NR_BadNoexcept;
1616  if (noexceptExpr->isValueDependent())
1617    return NR_Dependent;
1618
1619  llvm::APSInt value;
1620  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1621                                                   /*evaluated*/false);
1622  (void)isICE;
1623  assert(isICE && "AST should not contain bad noexcept expressions.");
1624
1625  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1626}
1627
1628bool FunctionProtoType::isTemplateVariadic() const {
1629  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1630    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1631      return true;
1632
1633  return false;
1634}
1635
1636void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1637                                const QualType *ArgTys, unsigned NumArgs,
1638                                const ExtProtoInfo &epi,
1639                                const ASTContext &Context) {
1640
1641  // We have to be careful not to get ambiguous profile encodings.
1642  // Note that valid type pointers are never ambiguous with anything else.
1643  //
1644  // The encoding grammar begins:
1645  //      type type* bool int bool
1646  // If that final bool is true, then there is a section for the EH spec:
1647  //      bool type*
1648  // This is followed by an optional "consumed argument" section of the
1649  // same length as the first type sequence:
1650  //      bool*
1651  // Finally, we have the ext info:
1652  //      int
1653  //
1654  // There is no ambiguity between the consumed arguments and an empty EH
1655  // spec because of the leading 'bool' which unambiguously indicates
1656  // whether the following bool is the EH spec or part of the arguments.
1657
1658  ID.AddPointer(Result.getAsOpaquePtr());
1659  for (unsigned i = 0; i != NumArgs; ++i)
1660    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1661  // This method is relatively performance sensitive, so as a performance
1662  // shortcut, use one AddInteger call instead of four for the next four
1663  // fields.
1664  assert(!(unsigned(epi.Variadic) & ~1) &&
1665         !(unsigned(epi.TypeQuals) & ~255) &&
1666         !(unsigned(epi.RefQualifier) & ~3) &&
1667         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1668         "Values larger than expected.");
1669  ID.AddInteger(unsigned(epi.Variadic) +
1670                (epi.TypeQuals << 1) +
1671                (epi.RefQualifier << 9) +
1672                (epi.ExceptionSpecType << 11));
1673  if (epi.ExceptionSpecType == EST_Dynamic) {
1674    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1675      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1676  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1677    epi.NoexceptExpr->Profile(ID, Context, false);
1678  }
1679  if (epi.ConsumedArguments) {
1680    for (unsigned i = 0; i != NumArgs; ++i)
1681      ID.AddBoolean(epi.ConsumedArguments[i]);
1682  }
1683  epi.ExtInfo.Profile(ID);
1684}
1685
1686void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1687                                const ASTContext &Ctx) {
1688  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1689          Ctx);
1690}
1691
1692QualType TypedefType::desugar() const {
1693  return getDecl()->getUnderlyingType();
1694}
1695
1696TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1697  : Type(TypeOfExpr, can, E->isTypeDependent(),
1698         E->isInstantiationDependent(),
1699         E->getType()->isVariablyModifiedType(),
1700         E->containsUnexpandedParameterPack()),
1701    TOExpr(E) {
1702}
1703
1704bool TypeOfExprType::isSugared() const {
1705  return !TOExpr->isTypeDependent();
1706}
1707
1708QualType TypeOfExprType::desugar() const {
1709  if (isSugared())
1710    return getUnderlyingExpr()->getType();
1711
1712  return QualType(this, 0);
1713}
1714
1715void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1716                                      const ASTContext &Context, Expr *E) {
1717  E->Profile(ID, Context, true);
1718}
1719
1720DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1721  : Type(Decltype, can, E->isTypeDependent(),
1722         E->isInstantiationDependent(),
1723         E->getType()->isVariablyModifiedType(),
1724         E->containsUnexpandedParameterPack()),
1725    E(E),
1726  UnderlyingType(underlyingType) {
1727}
1728
1729bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1730
1731QualType DecltypeType::desugar() const {
1732  if (isSugared())
1733    return getUnderlyingType();
1734
1735  return QualType(this, 0);
1736}
1737
1738DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1739  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1740
1741void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1742                                    const ASTContext &Context, Expr *E) {
1743  E->Profile(ID, Context, true);
1744}
1745
1746TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1747  : Type(TC, can, D->isDependentType(),
1748         /*InstantiationDependent=*/D->isDependentType(),
1749         /*VariablyModified=*/false,
1750         /*ContainsUnexpandedParameterPack=*/false),
1751    decl(const_cast<TagDecl*>(D)) {}
1752
1753static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1754  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1755                                E = decl->redecls_end();
1756       I != E; ++I) {
1757    if (I->isCompleteDefinition() || I->isBeingDefined())
1758      return *I;
1759  }
1760  // If there's no definition (not even in progress), return what we have.
1761  return decl;
1762}
1763
1764UnaryTransformType::UnaryTransformType(QualType BaseType,
1765                                       QualType UnderlyingType,
1766                                       UTTKind UKind,
1767                                       QualType CanonicalType)
1768  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1769         UnderlyingType->isInstantiationDependentType(),
1770         UnderlyingType->isVariablyModifiedType(),
1771         BaseType->containsUnexpandedParameterPack())
1772  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1773{}
1774
1775TagDecl *TagType::getDecl() const {
1776  return getInterestingTagDecl(decl);
1777}
1778
1779bool TagType::isBeingDefined() const {
1780  return getDecl()->isBeingDefined();
1781}
1782
1783CXXRecordDecl *InjectedClassNameType::getDecl() const {
1784  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1785}
1786
1787bool RecordType::classof(const TagType *TT) {
1788  return isa<RecordDecl>(TT->getDecl());
1789}
1790
1791bool EnumType::classof(const TagType *TT) {
1792  return isa<EnumDecl>(TT->getDecl());
1793}
1794
1795IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1796  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1797}
1798
1799SubstTemplateTypeParmPackType::
1800SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1801                              QualType Canon,
1802                              const TemplateArgument &ArgPack)
1803  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1804    Replaced(Param),
1805    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1806{
1807}
1808
1809TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1810  return TemplateArgument(Arguments, NumArguments);
1811}
1812
1813void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1814  Profile(ID, getReplacedParameter(), getArgumentPack());
1815}
1816
1817void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1818                                           const TemplateTypeParmType *Replaced,
1819                                            const TemplateArgument &ArgPack) {
1820  ID.AddPointer(Replaced);
1821  ID.AddInteger(ArgPack.pack_size());
1822  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1823                                    PEnd = ArgPack.pack_end();
1824       P != PEnd; ++P)
1825    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1826}
1827
1828bool TemplateSpecializationType::
1829anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1830                              bool &InstantiationDependent) {
1831  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1832                                       InstantiationDependent);
1833}
1834
1835bool TemplateSpecializationType::
1836anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1837                              bool &InstantiationDependent) {
1838  for (unsigned i = 0; i != N; ++i) {
1839    if (Args[i].getArgument().isDependent()) {
1840      InstantiationDependent = true;
1841      return true;
1842    }
1843
1844    if (Args[i].getArgument().isInstantiationDependent())
1845      InstantiationDependent = true;
1846  }
1847  return false;
1848}
1849
1850bool TemplateSpecializationType::
1851anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1852                              bool &InstantiationDependent) {
1853  for (unsigned i = 0; i != N; ++i) {
1854    if (Args[i].isDependent()) {
1855      InstantiationDependent = true;
1856      return true;
1857    }
1858
1859    if (Args[i].isInstantiationDependent())
1860      InstantiationDependent = true;
1861  }
1862  return false;
1863}
1864
1865TemplateSpecializationType::
1866TemplateSpecializationType(TemplateName T,
1867                           const TemplateArgument *Args, unsigned NumArgs,
1868                           QualType Canon, QualType AliasedType)
1869  : Type(TemplateSpecialization,
1870         Canon.isNull()? QualType(this, 0) : Canon,
1871         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1872         Canon.isNull()? T.isDependent()
1873                       : Canon->isInstantiationDependentType(),
1874         false, T.containsUnexpandedParameterPack()),
1875    Template(T), NumArgs(NumArgs) {
1876  assert(!T.getAsDependentTemplateName() &&
1877         "Use DependentTemplateSpecializationType for dependent template-name");
1878  assert((T.getKind() == TemplateName::Template ||
1879          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1880          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1881         "Unexpected template name for TemplateSpecializationType");
1882  bool InstantiationDependent;
1883  (void)InstantiationDependent;
1884  assert((!Canon.isNull() ||
1885          T.isDependent() ||
1886          anyDependentTemplateArguments(Args, NumArgs,
1887                                        InstantiationDependent)) &&
1888         "No canonical type for non-dependent class template specialization");
1889
1890  TemplateArgument *TemplateArgs
1891    = reinterpret_cast<TemplateArgument *>(this + 1);
1892  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1893    // Update dependent and variably-modified bits.
1894    // If the canonical type exists and is non-dependent, the template
1895    // specialization type can be non-dependent even if one of the type
1896    // arguments is. Given:
1897    //   template<typename T> using U = int;
1898    // U<T> is always non-dependent, irrespective of the type T.
1899    if (Canon.isNull() && Args[Arg].isDependent())
1900      setDependent();
1901    else if (Args[Arg].isInstantiationDependent())
1902      setInstantiationDependent();
1903
1904    if (Args[Arg].getKind() == TemplateArgument::Type &&
1905        Args[Arg].getAsType()->isVariablyModifiedType())
1906      setVariablyModified();
1907    if (Args[Arg].containsUnexpandedParameterPack())
1908      setContainsUnexpandedParameterPack();
1909
1910    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1911  }
1912
1913  // Store the aliased type if this is a type alias template specialization.
1914  bool IsTypeAlias = !AliasedType.isNull();
1915  assert(IsTypeAlias == isTypeAlias() &&
1916         "allocated wrong size for type alias");
1917  if (IsTypeAlias) {
1918    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1919    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1920  }
1921}
1922
1923void
1924TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1925                                    TemplateName T,
1926                                    const TemplateArgument *Args,
1927                                    unsigned NumArgs,
1928                                    const ASTContext &Context) {
1929  T.Profile(ID);
1930  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1931    Args[Idx].Profile(ID, Context);
1932}
1933
1934bool TemplateSpecializationType::isTypeAlias() const {
1935  TemplateDecl *D = Template.getAsTemplateDecl();
1936  return D && isa<TypeAliasTemplateDecl>(D);
1937}
1938
1939QualType
1940QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1941  if (!hasNonFastQualifiers())
1942    return QT.withFastQualifiers(getFastQualifiers());
1943
1944  return Context.getQualifiedType(QT, *this);
1945}
1946
1947QualType
1948QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1949  if (!hasNonFastQualifiers())
1950    return QualType(T, getFastQualifiers());
1951
1952  return Context.getQualifiedType(T, *this);
1953}
1954
1955void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1956                                 QualType BaseType,
1957                                 ObjCProtocolDecl * const *Protocols,
1958                                 unsigned NumProtocols) {
1959  ID.AddPointer(BaseType.getAsOpaquePtr());
1960  for (unsigned i = 0; i != NumProtocols; i++)
1961    ID.AddPointer(Protocols[i]);
1962}
1963
1964void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1965  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1966}
1967
1968namespace {
1969
1970/// \brief The cached properties of a type.
1971class CachedProperties {
1972  char linkage;
1973  char visibility;
1974  bool local;
1975
1976public:
1977  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1978    : linkage(linkage), visibility(visibility), local(local) {}
1979
1980  Linkage getLinkage() const { return (Linkage) linkage; }
1981  Visibility getVisibility() const { return (Visibility) visibility; }
1982  bool hasLocalOrUnnamedType() const { return local; }
1983
1984  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1985    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1986                            minVisibility(L.getVisibility(), R.getVisibility()),
1987                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1988  }
1989};
1990}
1991
1992static CachedProperties computeCachedProperties(const Type *T);
1993
1994namespace clang {
1995/// The type-property cache.  This is templated so as to be
1996/// instantiated at an internal type to prevent unnecessary symbol
1997/// leakage.
1998template <class Private> class TypePropertyCache {
1999public:
2000  static CachedProperties get(QualType T) {
2001    return get(T.getTypePtr());
2002  }
2003
2004  static CachedProperties get(const Type *T) {
2005    ensure(T);
2006    return CachedProperties(T->TypeBits.getLinkage(),
2007                            T->TypeBits.getVisibility(),
2008                            T->TypeBits.hasLocalOrUnnamedType());
2009  }
2010
2011  static void ensure(const Type *T) {
2012    // If the cache is valid, we're okay.
2013    if (T->TypeBits.isCacheValid()) return;
2014
2015    // If this type is non-canonical, ask its canonical type for the
2016    // relevant information.
2017    if (!T->isCanonicalUnqualified()) {
2018      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2019      ensure(CT);
2020      T->TypeBits.CacheValidAndVisibility =
2021        CT->TypeBits.CacheValidAndVisibility;
2022      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2023      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2024      return;
2025    }
2026
2027    // Compute the cached properties and then set the cache.
2028    CachedProperties Result = computeCachedProperties(T);
2029    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2030    assert(T->TypeBits.isCacheValid() &&
2031           T->TypeBits.getVisibility() == Result.getVisibility());
2032    T->TypeBits.CachedLinkage = Result.getLinkage();
2033    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2034  }
2035};
2036}
2037
2038// Instantiate the friend template at a private class.  In a
2039// reasonable implementation, these symbols will be internal.
2040// It is terrible that this is the best way to accomplish this.
2041namespace { class Private {}; }
2042typedef TypePropertyCache<Private> Cache;
2043
2044static CachedProperties computeCachedProperties(const Type *T) {
2045  switch (T->getTypeClass()) {
2046#define TYPE(Class,Base)
2047#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2048#include "clang/AST/TypeNodes.def"
2049    llvm_unreachable("didn't expect a non-canonical type here");
2050
2051#define TYPE(Class,Base)
2052#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2053#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2054#include "clang/AST/TypeNodes.def"
2055    // Treat instantiation-dependent types as external.
2056    assert(T->isInstantiationDependentType());
2057    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2058
2059  case Type::Builtin:
2060    // C++ [basic.link]p8:
2061    //   A type is said to have linkage if and only if:
2062    //     - it is a fundamental type (3.9.1); or
2063    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2064
2065  case Type::Record:
2066  case Type::Enum: {
2067    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2068
2069    // C++ [basic.link]p8:
2070    //     - it is a class or enumeration type that is named (or has a name
2071    //       for linkage purposes (7.1.3)) and the name has linkage; or
2072    //     -  it is a specialization of a class template (14); or
2073    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2074    bool IsLocalOrUnnamed =
2075      Tag->getDeclContext()->isFunctionOrMethod() ||
2076      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2077    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
2078  }
2079
2080    // C++ [basic.link]p8:
2081    //   - it is a compound type (3.9.2) other than a class or enumeration,
2082    //     compounded exclusively from types that have linkage; or
2083  case Type::Complex:
2084    return Cache::get(cast<ComplexType>(T)->getElementType());
2085  case Type::Pointer:
2086    return Cache::get(cast<PointerType>(T)->getPointeeType());
2087  case Type::BlockPointer:
2088    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2089  case Type::LValueReference:
2090  case Type::RValueReference:
2091    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2092  case Type::MemberPointer: {
2093    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2094    return merge(Cache::get(MPT->getClass()),
2095                 Cache::get(MPT->getPointeeType()));
2096  }
2097  case Type::ConstantArray:
2098  case Type::IncompleteArray:
2099  case Type::VariableArray:
2100    return Cache::get(cast<ArrayType>(T)->getElementType());
2101  case Type::Vector:
2102  case Type::ExtVector:
2103    return Cache::get(cast<VectorType>(T)->getElementType());
2104  case Type::FunctionNoProto:
2105    return Cache::get(cast<FunctionType>(T)->getResultType());
2106  case Type::FunctionProto: {
2107    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2108    CachedProperties result = Cache::get(FPT->getResultType());
2109    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2110           ae = FPT->arg_type_end(); ai != ae; ++ai)
2111      result = merge(result, Cache::get(*ai));
2112    return result;
2113  }
2114  case Type::ObjCInterface: {
2115    NamedDecl::LinkageInfo LV =
2116      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2117    return CachedProperties(LV.linkage(), LV.visibility(), false);
2118  }
2119  case Type::ObjCObject:
2120    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2121  case Type::ObjCObjectPointer:
2122    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2123  case Type::Atomic:
2124    return Cache::get(cast<AtomicType>(T)->getValueType());
2125  }
2126
2127  llvm_unreachable("unhandled type class");
2128
2129  // C++ [basic.link]p8:
2130  //   Names not covered by these rules have no linkage.
2131  return CachedProperties(NoLinkage, DefaultVisibility, false);
2132}
2133
2134/// \brief Determine the linkage of this type.
2135Linkage Type::getLinkage() const {
2136  Cache::ensure(this);
2137  return TypeBits.getLinkage();
2138}
2139
2140/// \brief Determine the linkage of this type.
2141Visibility Type::getVisibility() const {
2142  Cache::ensure(this);
2143  return TypeBits.getVisibility();
2144}
2145
2146bool Type::hasUnnamedOrLocalType() const {
2147  Cache::ensure(this);
2148  return TypeBits.hasLocalOrUnnamedType();
2149}
2150
2151std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2152  Cache::ensure(this);
2153  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2154}
2155
2156void Type::ClearLinkageCache() {
2157  TypeBits.CacheValidAndVisibility = 0;
2158  if (QualType(this, 0) != CanonicalType)
2159    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2160}
2161
2162Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2163  if (isObjCARCImplicitlyUnretainedType())
2164    return Qualifiers::OCL_ExplicitNone;
2165  return Qualifiers::OCL_Strong;
2166}
2167
2168bool Type::isObjCARCImplicitlyUnretainedType() const {
2169  assert(isObjCLifetimeType() &&
2170         "cannot query implicit lifetime for non-inferrable type");
2171
2172  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2173
2174  // Walk down to the base type.  We don't care about qualifiers for this.
2175  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2176    canon = array->getElementType().getTypePtr();
2177
2178  if (const ObjCObjectPointerType *opt
2179        = dyn_cast<ObjCObjectPointerType>(canon)) {
2180    // Class and Class<Protocol> don't require retension.
2181    if (opt->getObjectType()->isObjCClass())
2182      return true;
2183  }
2184
2185  return false;
2186}
2187
2188bool Type::isObjCNSObjectType() const {
2189  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2190    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2191  return false;
2192}
2193bool Type::isObjCRetainableType() const {
2194  return isObjCObjectPointerType() ||
2195         isBlockPointerType() ||
2196         isObjCNSObjectType();
2197}
2198bool Type::isObjCIndirectLifetimeType() const {
2199  if (isObjCLifetimeType())
2200    return true;
2201  if (const PointerType *OPT = getAs<PointerType>())
2202    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2203  if (const ReferenceType *Ref = getAs<ReferenceType>())
2204    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2205  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2206    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2207  return false;
2208}
2209
2210/// Returns true if objects of this type have lifetime semantics under
2211/// ARC.
2212bool Type::isObjCLifetimeType() const {
2213  const Type *type = this;
2214  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2215    type = array->getElementType().getTypePtr();
2216  return type->isObjCRetainableType();
2217}
2218
2219/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2220/// which is either an Objective-C object pointer type or an
2221bool Type::isObjCARCBridgableType() const {
2222  return isObjCObjectPointerType() || isBlockPointerType();
2223}
2224
2225/// \brief Determine whether the given type T is a "bridgeable" C type.
2226bool Type::isCARCBridgableType() const {
2227  const PointerType *Pointer = getAs<PointerType>();
2228  if (!Pointer)
2229    return false;
2230
2231  QualType Pointee = Pointer->getPointeeType();
2232  return Pointee->isVoidType() || Pointee->isRecordType();
2233}
2234
2235bool Type::hasSizedVLAType() const {
2236  if (!isVariablyModifiedType()) return false;
2237
2238  if (const PointerType *ptr = getAs<PointerType>())
2239    return ptr->getPointeeType()->hasSizedVLAType();
2240  if (const ReferenceType *ref = getAs<ReferenceType>())
2241    return ref->getPointeeType()->hasSizedVLAType();
2242  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2243    if (isa<VariableArrayType>(arr) &&
2244        cast<VariableArrayType>(arr)->getSizeExpr())
2245      return true;
2246
2247    return arr->getElementType()->hasSizedVLAType();
2248  }
2249
2250  return false;
2251}
2252
2253QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2254  switch (type.getObjCLifetime()) {
2255  case Qualifiers::OCL_None:
2256  case Qualifiers::OCL_ExplicitNone:
2257  case Qualifiers::OCL_Autoreleasing:
2258    break;
2259
2260  case Qualifiers::OCL_Strong:
2261    return DK_objc_strong_lifetime;
2262  case Qualifiers::OCL_Weak:
2263    return DK_objc_weak_lifetime;
2264  }
2265
2266  /// Currently, the only destruction kind we recognize is C++ objects
2267  /// with non-trivial destructors.
2268  const CXXRecordDecl *record =
2269    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2270  if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2271    return DK_cxx_destructor;
2272
2273  return DK_none;
2274}
2275
2276bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
2277  switch (getObjCLifetime()) {
2278  case Qualifiers::OCL_None:
2279    break;
2280
2281  case Qualifiers::OCL_ExplicitNone:
2282    return true;
2283
2284  case Qualifiers::OCL_Autoreleasing:
2285  case Qualifiers::OCL_Strong:
2286  case Qualifiers::OCL_Weak:
2287    return !Context.getLangOptions().ObjCAutoRefCount;
2288  }
2289
2290  if (const CXXRecordDecl *Record
2291            = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2292    return Copying ? Record->hasTrivialCopyAssignment() :
2293                     Record->hasTrivialMoveAssignment();
2294
2295  return true;
2296}
2297