CFG.cpp revision 13fc08a323b29dd97a46def1e3a15bf082476efa
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/PrettyPrinter.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Streams.h"
22#include "llvm/Support/Compiler.h"
23#include <llvm/Support/Allocator.h>
24#include <llvm/Support/Format.h>
25
26using namespace clang;
27
28namespace {
29
30// SaveAndRestore - A utility class that uses RIIA to save and restore
31//  the value of a variable.
32template<typename T>
33struct VISIBILITY_HIDDEN SaveAndRestore {
34  SaveAndRestore(T& x) : X(x), old_value(x) {}
35  ~SaveAndRestore() { X = old_value; }
36  T get() { return old_value; }
37
38  T& X;
39  T old_value;
40};
41
42static SourceLocation GetEndLoc(Decl* D) {
43  if (VarDecl* VD = dyn_cast<VarDecl>(D))
44    if (Expr* Ex = VD->getInit())
45      return Ex->getSourceRange().getEnd();
46
47  return D->getLocation();
48}
49
50/// CFGBuilder - This class implements CFG construction from an AST.
51///   The builder is stateful: an instance of the builder should be used to only
52///   construct a single CFG.
53///
54///   Example usage:
55///
56///     CFGBuilder builder;
57///     CFG* cfg = builder.BuildAST(stmt1);
58///
59///  CFG construction is done via a recursive walk of an AST.  We actually parse
60///  the AST in reverse order so that the successor of a basic block is
61///  constructed prior to its predecessor.  This allows us to nicely capture
62///  implicit fall-throughs without extra basic blocks.
63///
64class VISIBILITY_HIDDEN CFGBuilder {
65  CFG* cfg;
66  CFGBlock* Block;
67  CFGBlock* Succ;
68  CFGBlock* ContinueTargetBlock;
69  CFGBlock* BreakTargetBlock;
70  CFGBlock* SwitchTerminatedBlock;
71  CFGBlock* DefaultCaseBlock;
72
73  // LabelMap records the mapping from Label expressions to their blocks.
74  typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
75  LabelMapTy LabelMap;
76
77  // A list of blocks that end with a "goto" that must be backpatched to their
78  // resolved targets upon completion of CFG construction.
79  typedef std::vector<CFGBlock*> BackpatchBlocksTy;
80  BackpatchBlocksTy BackpatchBlocks;
81
82  // A list of labels whose address has been taken (for indirect gotos).
83  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
84  LabelSetTy AddressTakenLabels;
85
86public:
87  explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL),
88                          ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
89                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) {
90    // Create an empty CFG.
91    cfg = new CFG();
92  }
93
94  ~CFGBuilder() { delete cfg; }
95
96  // buildCFG - Used by external clients to construct the CFG.
97  CFG* buildCFG(Stmt* Statement);
98
99private:
100  // Visitors to walk an AST and construct the CFG.
101  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd);
102  CFGBlock *VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd);
103  CFGBlock *VisitBlockExpr(BlockExpr* E, bool alwaysAdd);
104  CFGBlock *VisitBlockDeclRefExpr(BlockDeclRefExpr* E, bool alwaysAdd);
105  CFGBlock *VisitBreakStmt(BreakStmt *B);
106  CFGBlock *VisitCallExpr(CallExpr *C, bool alwaysAdd);
107  CFGBlock *VisitCaseStmt(CaseStmt *C);
108  CFGBlock *VisitChooseExpr(ChooseExpr *C);
109  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
110  CFGBlock *VisitConditionalOperator(ConditionalOperator *C);
111  CFGBlock *VisitContinueStmt(ContinueStmt *C);
112  CFGBlock *VisitDeclStmt(DeclStmt *DS);
113  CFGBlock *VisitDeclSubExpr(Decl* D);
114  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
115  CFGBlock *VisitDoStmt(DoStmt *D);
116  CFGBlock *VisitForStmt(ForStmt *F);
117  CFGBlock *VisitGotoStmt(GotoStmt* G);
118  CFGBlock *VisitIfStmt(IfStmt *I);
119  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
120  CFGBlock *VisitLabelStmt(LabelStmt *L);
121  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
122  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
123  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
124  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
125  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
126  CFGBlock *VisitReturnStmt(ReturnStmt* R);
127  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, bool alwaysAdd);
128  CFGBlock *VisitStmtExpr(StmtExpr *S, bool alwaysAdd);
129  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
130  CFGBlock *VisitWhileStmt(WhileStmt *W);
131
132  CFGBlock *Visit(Stmt *S, bool alwaysAdd = false);
133  CFGBlock *VisitStmt(Stmt *S, bool alwaysAdd);
134  CFGBlock *VisitChildren(Stmt* S);
135
136  // NYS == Not Yet Supported
137  CFGBlock* NYS() {
138    badCFG = true;
139    return Block;
140  }
141
142  void autoCreateBlock() { if (!Block) Block = createBlock(); }
143  CFGBlock *createBlock(bool add_successor = true);
144  bool FinishBlock(CFGBlock* B);
145  CFGBlock *addStmt(Stmt *S) { return Visit(S, true); }
146
147  bool badCFG;
148};
149
150// FIXME: Add support for dependent-sized array types in C++?
151// Does it even make sense to build a CFG for an uninstantiated template?
152static VariableArrayType* FindVA(Type* t) {
153  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
154    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
155      if (vat->getSizeExpr())
156        return vat;
157
158    t = vt->getElementType().getTypePtr();
159  }
160
161  return 0;
162}
163
164/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
165///  arbitrary statement.  Examples include a single expression or a function
166///  body (compound statement).  The ownership of the returned CFG is
167///  transferred to the caller.  If CFG construction fails, this method returns
168///  NULL.
169CFG* CFGBuilder::buildCFG(Stmt* Statement) {
170  assert(cfg);
171  if (!Statement)
172    return NULL;
173
174  badCFG = false;
175
176  // Create an empty block that will serve as the exit block for the CFG.  Since
177  // this is the first block added to the CFG, it will be implicitly registered
178  // as the exit block.
179  Succ = createBlock();
180  assert (Succ == &cfg->getExit());
181  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
182
183  // Visit the statements and create the CFG.
184  CFGBlock* B = addStmt(Statement);
185  if (!B) B = Succ;
186
187  if (B) {
188    // Finalize the last constructed block.  This usually involves reversing the
189    // order of the statements in the block.
190    if (Block) FinishBlock(B);
191
192    // Backpatch the gotos whose label -> block mappings we didn't know when we
193    // encountered them.
194    for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
195         E = BackpatchBlocks.end(); I != E; ++I ) {
196
197      CFGBlock* B = *I;
198      GotoStmt* G = cast<GotoStmt>(B->getTerminator());
199      LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
200
201      // If there is no target for the goto, then we are looking at an
202      // incomplete AST.  Handle this by not registering a successor.
203      if (LI == LabelMap.end()) continue;
204
205      B->addSuccessor(LI->second);
206    }
207
208    // Add successors to the Indirect Goto Dispatch block (if we have one).
209    if (CFGBlock* B = cfg->getIndirectGotoBlock())
210      for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
211           E = AddressTakenLabels.end(); I != E; ++I ) {
212
213        // Lookup the target block.
214        LabelMapTy::iterator LI = LabelMap.find(*I);
215
216        // If there is no target block that contains label, then we are looking
217        // at an incomplete AST.  Handle this by not registering a successor.
218        if (LI == LabelMap.end()) continue;
219
220        B->addSuccessor(LI->second);
221      }
222
223    Succ = B;
224  }
225
226  // Create an empty entry block that has no predecessors.
227  cfg->setEntry(createBlock());
228
229  if (badCFG) {
230    delete cfg;
231    cfg = NULL;
232    return NULL;
233  }
234
235  // NULL out cfg so that repeated calls to the builder will fail and that the
236  // ownership of the constructed CFG is passed to the caller.
237  CFG* t = cfg;
238  cfg = NULL;
239  return t;
240}
241
242/// createBlock - Used to lazily create blocks that are connected
243///  to the current (global) succcessor.
244CFGBlock* CFGBuilder::createBlock(bool add_successor) {
245  CFGBlock* B = cfg->createBlock();
246  if (add_successor && Succ)
247    B->addSuccessor(Succ);
248  return B;
249}
250
251/// FinishBlock - When the last statement has been added to the block, we must
252///  reverse the statements because they have been inserted in reverse order.
253bool CFGBuilder::FinishBlock(CFGBlock* B) {
254  if (badCFG)
255    return false;
256
257  assert(B);
258  B->reverseStmts();
259  return true;
260}
261
262/// Visit - Walk the subtree of a statement and add extra
263///   blocks for ternary operators, &&, and ||.  We also process "," and
264///   DeclStmts (which may contain nested control-flow).
265CFGBlock* CFGBuilder::Visit(Stmt * S, bool alwaysAdd) {
266tryAgain:
267  switch (S->getStmtClass()) {
268    default:
269      return VisitStmt(S, alwaysAdd);
270
271    case Stmt::AddrLabelExprClass:
272      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), alwaysAdd);
273
274    case Stmt::BinaryOperatorClass:
275      return VisitBinaryOperator(cast<BinaryOperator>(S), alwaysAdd);
276
277    case Stmt::BlockExprClass:
278      return VisitBlockExpr(cast<BlockExpr>(S), alwaysAdd);
279
280    case Stmt::BlockDeclRefExprClass:
281      return VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), alwaysAdd);
282
283    case Stmt::BreakStmtClass:
284      return VisitBreakStmt(cast<BreakStmt>(S));
285
286    case Stmt::CallExprClass:
287      return VisitCallExpr(cast<CallExpr>(S), alwaysAdd);
288
289    case Stmt::CaseStmtClass:
290      return VisitCaseStmt(cast<CaseStmt>(S));
291
292    case Stmt::ChooseExprClass:
293      return VisitChooseExpr(cast<ChooseExpr>(S));
294
295    case Stmt::CompoundStmtClass:
296      return VisitCompoundStmt(cast<CompoundStmt>(S));
297
298    case Stmt::ConditionalOperatorClass:
299      return VisitConditionalOperator(cast<ConditionalOperator>(S));
300
301    case Stmt::ContinueStmtClass:
302      return VisitContinueStmt(cast<ContinueStmt>(S));
303
304    case Stmt::DeclStmtClass:
305      return VisitDeclStmt(cast<DeclStmt>(S));
306
307    case Stmt::DefaultStmtClass:
308      return VisitDefaultStmt(cast<DefaultStmt>(S));
309
310    case Stmt::DoStmtClass:
311      return VisitDoStmt(cast<DoStmt>(S));
312
313    case Stmt::ForStmtClass:
314      return VisitForStmt(cast<ForStmt>(S));
315
316    case Stmt::GotoStmtClass:
317      return VisitGotoStmt(cast<GotoStmt>(S));
318
319    case Stmt::IfStmtClass:
320      return VisitIfStmt(cast<IfStmt>(S));
321
322    case Stmt::IndirectGotoStmtClass:
323      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
324
325    case Stmt::LabelStmtClass:
326      return VisitLabelStmt(cast<LabelStmt>(S));
327
328    case Stmt::ObjCAtCatchStmtClass:
329      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
330
331    case Stmt::ObjCAtSynchronizedStmtClass:
332      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
333
334    case Stmt::ObjCAtThrowStmtClass:
335      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
336
337    case Stmt::ObjCAtTryStmtClass:
338      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
339
340    case Stmt::ObjCForCollectionStmtClass:
341      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
342
343    case Stmt::ParenExprClass:
344      S = cast<ParenExpr>(S)->getSubExpr();
345      goto tryAgain;
346
347    case Stmt::NullStmtClass:
348      return Block;
349
350    case Stmt::ReturnStmtClass:
351      return VisitReturnStmt(cast<ReturnStmt>(S));
352
353    case Stmt::SizeOfAlignOfExprClass:
354      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), alwaysAdd);
355
356    case Stmt::StmtExprClass:
357      return VisitStmtExpr(cast<StmtExpr>(S), alwaysAdd);
358
359    case Stmt::SwitchStmtClass:
360      return VisitSwitchStmt(cast<SwitchStmt>(S));
361
362    case Stmt::WhileStmtClass:
363      return VisitWhileStmt(cast<WhileStmt>(S));
364  }
365}
366
367CFGBlock *CFGBuilder::VisitStmt(Stmt *S, bool alwaysAdd) {
368  if (alwaysAdd) {
369    autoCreateBlock();
370    Block->appendStmt(S);
371  }
372
373  return VisitChildren(S);
374}
375
376/// VisitChildren - Visit the children of a Stmt.
377CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
378  CFGBlock *B = Block;
379  for (Stmt::child_iterator I = Terminator->child_begin(),
380         E = Terminator->child_end(); I != E; ++I) {
381    if (*I) B = Visit(*I);
382  }
383  return B;
384}
385
386CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd) {
387  AddressTakenLabels.insert(A->getLabel());
388
389  if (alwaysAdd) {
390    autoCreateBlock();
391    Block->appendStmt(A);
392  }
393
394  return Block;
395}
396
397CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd) {
398  if (B->isLogicalOp()) { // && or ||
399
400    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
401    ConfluenceBlock->appendStmt(B);
402
403    if (!FinishBlock(ConfluenceBlock))
404      return 0;
405
406    // create the block evaluating the LHS
407    CFGBlock* LHSBlock = createBlock(false);
408    LHSBlock->setTerminator(B);
409
410    // create the block evaluating the RHS
411    Succ = ConfluenceBlock;
412    Block = NULL;
413    CFGBlock* RHSBlock = addStmt(B->getRHS());
414    if (!FinishBlock(RHSBlock))
415      return 0;
416
417    // Now link the LHSBlock with RHSBlock.
418    if (B->getOpcode() == BinaryOperator::LOr) {
419      LHSBlock->addSuccessor(ConfluenceBlock);
420      LHSBlock->addSuccessor(RHSBlock);
421    } else {
422      assert (B->getOpcode() == BinaryOperator::LAnd);
423      LHSBlock->addSuccessor(RHSBlock);
424      LHSBlock->addSuccessor(ConfluenceBlock);
425    }
426
427    // Generate the blocks for evaluating the LHS.
428    Block = LHSBlock;
429    return addStmt(B->getLHS());
430  }
431  else if (B->getOpcode() == BinaryOperator::Comma) { // ,
432    autoCreateBlock();
433    Block->appendStmt(B);
434    addStmt(B->getRHS());
435    return addStmt(B->getLHS());
436  }
437
438  return VisitStmt(B, alwaysAdd);
439}
440
441CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr* E, bool alwaysAdd) {
442  // FIXME
443  return NYS();
444}
445
446CFGBlock *CFGBuilder::VisitBlockDeclRefExpr(BlockDeclRefExpr* E,
447                                            bool alwaysAdd) {
448  // FIXME
449  return NYS();
450}
451
452CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
453  // "break" is a control-flow statement.  Thus we stop processing the current
454  // block.
455  if (Block && !FinishBlock(Block))
456      return 0;
457
458  // Now create a new block that ends with the break statement.
459  Block = createBlock(false);
460  Block->setTerminator(B);
461
462  // If there is no target for the break, then we are looking at an incomplete
463  // AST.  This means that the CFG cannot be constructed.
464  if (BreakTargetBlock)
465    Block->addSuccessor(BreakTargetBlock);
466  else
467    badCFG = true;
468
469
470  return Block;
471}
472
473CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, bool alwaysAdd) {
474  // If this is a call to a no-return function, this stops the block here.
475  if (FunctionDecl *FD = C->getDirectCallee()) {
476
477    if (!FD->hasAttr<NoReturnAttr>())
478      return VisitStmt(C, alwaysAdd);
479
480    if (Block && !FinishBlock(Block))
481      return 0;
482
483    // Create new block with no successor for the remaining pieces.
484    Block = createBlock(false);
485    Block->appendStmt(C);
486
487    // Wire this to the exit block directly.
488    Block->addSuccessor(&cfg->getExit());
489
490    return VisitChildren(C);
491  }
492
493  return VisitStmt(C, alwaysAdd);
494}
495
496CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C) {
497  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
498  ConfluenceBlock->appendStmt(C);
499  if (!FinishBlock(ConfluenceBlock))
500    return 0;
501
502  Succ = ConfluenceBlock;
503  Block = NULL;
504  CFGBlock* LHSBlock = addStmt(C->getLHS());
505  if (!FinishBlock(LHSBlock))
506    return 0;
507
508  Succ = ConfluenceBlock;
509  Block = NULL;
510  CFGBlock* RHSBlock = addStmt(C->getRHS());
511  if (!FinishBlock(RHSBlock))
512    return 0;
513
514  Block = createBlock(false);
515  Block->addSuccessor(LHSBlock);
516  Block->addSuccessor(RHSBlock);
517  Block->setTerminator(C);
518  return addStmt(C->getCond());
519}
520
521
522CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
523  CFGBlock* LastBlock = Block;
524
525  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
526       I != E; ++I ) {
527    LastBlock = addStmt(*I);
528  }
529  return LastBlock;
530}
531
532CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C) {
533  // Create the confluence block that will "merge" the results of the ternary
534  // expression.
535  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
536  ConfluenceBlock->appendStmt(C);
537  if (!FinishBlock(ConfluenceBlock))
538    return 0;
539
540  // Create a block for the LHS expression if there is an LHS expression.  A
541  // GCC extension allows LHS to be NULL, causing the condition to be the
542  // value that is returned instead.
543  //  e.g: x ?: y is shorthand for: x ? x : y;
544  Succ = ConfluenceBlock;
545  Block = NULL;
546  CFGBlock* LHSBlock = NULL;
547  if (C->getLHS()) {
548    LHSBlock = addStmt(C->getLHS());
549    if (!FinishBlock(LHSBlock))
550      return 0;
551    Block = NULL;
552  }
553
554  // Create the block for the RHS expression.
555  Succ = ConfluenceBlock;
556  CFGBlock* RHSBlock = addStmt(C->getRHS());
557  if (!FinishBlock(RHSBlock))
558    return 0;
559
560  // Create the block that will contain the condition.
561  Block = createBlock(false);
562
563  if (LHSBlock)
564    Block->addSuccessor(LHSBlock);
565  else {
566    // If we have no LHS expression, add the ConfluenceBlock as a direct
567    // successor for the block containing the condition.  Moreover, we need to
568    // reverse the order of the predecessors in the ConfluenceBlock because
569    // the RHSBlock will have been added to the succcessors already, and we
570    // want the first predecessor to the the block containing the expression
571    // for the case when the ternary expression evaluates to true.
572    Block->addSuccessor(ConfluenceBlock);
573    assert (ConfluenceBlock->pred_size() == 2);
574    std::reverse(ConfluenceBlock->pred_begin(),
575                 ConfluenceBlock->pred_end());
576  }
577
578  Block->addSuccessor(RHSBlock);
579
580  Block->setTerminator(C);
581  return addStmt(C->getCond());
582}
583
584CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
585  autoCreateBlock();
586
587  if (DS->isSingleDecl()) {
588    Block->appendStmt(DS);
589    return VisitDeclSubExpr(DS->getSingleDecl());
590  }
591
592  CFGBlock *B = 0;
593
594  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
595  typedef llvm::SmallVector<Decl*,10> BufTy;
596  BufTy Buf(DS->decl_begin(), DS->decl_end());
597
598  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
599    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
600    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
601               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
602
603    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
604    // automatically freed with the CFG.
605    DeclGroupRef DG(*I);
606    Decl *D = *I;
607    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
608    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
609
610    // Append the fake DeclStmt to block.
611    Block->appendStmt(DSNew);
612    B = VisitDeclSubExpr(D);
613  }
614
615  return B;
616}
617
618/// VisitDeclSubExpr - Utility method to add block-level expressions for
619///  initializers in Decls.
620CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
621  assert(Block);
622
623  VarDecl *VD = dyn_cast<VarDecl>(D);
624
625  if (!VD)
626    return Block;
627
628  Expr *Init = VD->getInit();
629
630  if (Init) {
631    // Optimization: Don't create separate block-level statements for literals.
632    switch (Init->getStmtClass()) {
633      case Stmt::IntegerLiteralClass:
634      case Stmt::CharacterLiteralClass:
635      case Stmt::StringLiteralClass:
636        break;
637      default:
638        Block = addStmt(Init);
639    }
640  }
641
642  // If the type of VD is a VLA, then we must process its size expressions.
643  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
644       VA = FindVA(VA->getElementType().getTypePtr()))
645    Block = addStmt(VA->getSizeExpr());
646
647  return Block;
648}
649
650CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
651  // We may see an if statement in the middle of a basic block, or it may be the
652  // first statement we are processing.  In either case, we create a new basic
653  // block.  First, we create the blocks for the then...else statements, and
654  // then we create the block containing the if statement.  If we were in the
655  // middle of a block, we stop processing that block and reverse its
656  // statements.  That block is then the implicit successor for the "then" and
657  // "else" clauses.
658
659  // The block we were proccessing is now finished.  Make it the successor
660  // block.
661  if (Block) {
662    Succ = Block;
663    if (!FinishBlock(Block))
664      return 0;
665  }
666
667  // Process the false branch.
668  CFGBlock* ElseBlock = Succ;
669
670  if (Stmt* Else = I->getElse()) {
671    SaveAndRestore<CFGBlock*> sv(Succ);
672
673    // NULL out Block so that the recursive call to Visit will
674    // create a new basic block.
675    Block = NULL;
676    ElseBlock = addStmt(Else);
677
678    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
679      ElseBlock = sv.get();
680    else if (Block) {
681      if (!FinishBlock(ElseBlock))
682        return 0;
683    }
684  }
685
686  // Process the true branch.
687  CFGBlock* ThenBlock;
688  {
689    Stmt* Then = I->getThen();
690    assert (Then);
691    SaveAndRestore<CFGBlock*> sv(Succ);
692    Block = NULL;
693    ThenBlock = addStmt(Then);
694
695    if (!ThenBlock) {
696      // We can reach here if the "then" body has all NullStmts.
697      // Create an empty block so we can distinguish between true and false
698      // branches in path-sensitive analyses.
699      ThenBlock = createBlock(false);
700      ThenBlock->addSuccessor(sv.get());
701    } else if (Block) {
702      if (!FinishBlock(ThenBlock))
703        return 0;
704    }
705  }
706
707  // Now create a new block containing the if statement.
708  Block = createBlock(false);
709
710  // Set the terminator of the new block to the If statement.
711  Block->setTerminator(I);
712
713  // Now add the successors.
714  Block->addSuccessor(ThenBlock);
715  Block->addSuccessor(ElseBlock);
716
717  // Add the condition as the last statement in the new block.  This may create
718  // new blocks as the condition may contain control-flow.  Any newly created
719  // blocks will be pointed to be "Block".
720  return addStmt(I->getCond());
721}
722
723
724CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
725  // If we were in the middle of a block we stop processing that block and
726  // reverse its statements.
727  //
728  // NOTE: If a "return" appears in the middle of a block, this means that the
729  //       code afterwards is DEAD (unreachable).  We still keep a basic block
730  //       for that code; a simple "mark-and-sweep" from the entry block will be
731  //       able to report such dead blocks.
732  if (Block) FinishBlock(Block);
733
734  // Create the new block.
735  Block = createBlock(false);
736
737  // The Exit block is the only successor.
738  Block->addSuccessor(&cfg->getExit());
739
740  // Add the return statement to the block.  This may create new blocks if R
741  // contains control-flow (short-circuit operations).
742  return VisitStmt(R, true);
743}
744
745CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
746  // Get the block of the labeled statement.  Add it to our map.
747  addStmt(L->getSubStmt());
748  CFGBlock* LabelBlock = Block;
749
750  if (!LabelBlock)              // This can happen when the body is empty, i.e.
751    LabelBlock = createBlock(); // scopes that only contains NullStmts.
752
753  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
754  LabelMap[ L ] = LabelBlock;
755
756  // Labels partition blocks, so this is the end of the basic block we were
757  // processing (L is the block's label).  Because this is label (and we have
758  // already processed the substatement) there is no extra control-flow to worry
759  // about.
760  LabelBlock->setLabel(L);
761  if (!FinishBlock(LabelBlock))
762    return 0;
763
764  // We set Block to NULL to allow lazy creation of a new block (if necessary);
765  Block = NULL;
766
767  // This block is now the implicit successor of other blocks.
768  Succ = LabelBlock;
769
770  return LabelBlock;
771}
772
773CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
774  // Goto is a control-flow statement.  Thus we stop processing the current
775  // block and create a new one.
776  if (Block)
777    FinishBlock(Block);
778
779  Block = createBlock(false);
780  Block->setTerminator(G);
781
782  // If we already know the mapping to the label block add the successor now.
783  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
784
785  if (I == LabelMap.end())
786    // We will need to backpatch this block later.
787    BackpatchBlocks.push_back(Block);
788  else
789    Block->addSuccessor(I->second);
790
791  return Block;
792}
793
794CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
795  // "for" is a control-flow statement.  Thus we stop processing the current
796  // block.
797  CFGBlock* LoopSuccessor = NULL;
798
799  if (Block) {
800    if (!FinishBlock(Block))
801      return 0;
802    LoopSuccessor = Block;
803  } else
804    LoopSuccessor = Succ;
805
806  // Because of short-circuit evaluation, the condition of the loop can span
807  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
808  // evaluate the condition.
809  CFGBlock* ExitConditionBlock = createBlock(false);
810  CFGBlock* EntryConditionBlock = ExitConditionBlock;
811
812  // Set the terminator for the "exit" condition block.
813  ExitConditionBlock->setTerminator(F);
814
815  // Now add the actual condition to the condition block.  Because the condition
816  // itself may contain control-flow, new blocks may be created.
817  if (Stmt* C = F->getCond()) {
818    Block = ExitConditionBlock;
819    EntryConditionBlock = addStmt(C);
820    if (Block) {
821      if (!FinishBlock(EntryConditionBlock))
822        return 0;
823    }
824  }
825
826  // The condition block is the implicit successor for the loop body as well as
827  // any code above the loop.
828  Succ = EntryConditionBlock;
829
830  // Now create the loop body.
831  {
832    assert (F->getBody());
833
834    // Save the current values for Block, Succ, and continue and break targets
835    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
836    save_continue(ContinueTargetBlock),
837    save_break(BreakTargetBlock);
838
839    // Create a new block to contain the (bottom) of the loop body.
840    Block = NULL;
841
842    if (Stmt* I = F->getInc()) {
843      // Generate increment code in its own basic block.  This is the target of
844      // continue statements.
845      Succ = addStmt(I);
846    } else {
847      // No increment code.  Create a special, empty, block that is used as the
848      // target block for "looping back" to the start of the loop.
849      assert(Succ == EntryConditionBlock);
850      Succ = createBlock();
851    }
852
853    // Finish up the increment (or empty) block if it hasn't been already.
854    if (Block) {
855      assert(Block == Succ);
856      if (!FinishBlock(Block))
857        return 0;
858      Block = 0;
859    }
860
861    ContinueTargetBlock = Succ;
862
863    // The starting block for the loop increment is the block that should
864    // represent the 'loop target' for looping back to the start of the loop.
865    ContinueTargetBlock->setLoopTarget(F);
866
867    // All breaks should go to the code following the loop.
868    BreakTargetBlock = LoopSuccessor;
869
870    // Now populate the body block, and in the process create new blocks as we
871    // walk the body of the loop.
872    CFGBlock* BodyBlock = addStmt(F->getBody());
873
874    if (!BodyBlock)
875      BodyBlock = EntryConditionBlock; // can happen for "for (...;...; ) ;"
876    else if (Block) {
877      if (!FinishBlock(BodyBlock))
878        return 0;
879    }
880
881    // This new body block is a successor to our "exit" condition block.
882    ExitConditionBlock->addSuccessor(BodyBlock);
883  }
884
885  // Link up the condition block with the code that follows the loop.  (the
886  // false branch).
887  ExitConditionBlock->addSuccessor(LoopSuccessor);
888
889  // If the loop contains initialization, create a new block for those
890  // statements.  This block can also contain statements that precede the loop.
891  if (Stmt* I = F->getInit()) {
892    Block = createBlock();
893    return addStmt(I);
894  } else {
895    // There is no loop initialization.  We are thus basically a while loop.
896    // NULL out Block to force lazy block construction.
897    Block = NULL;
898    Succ = EntryConditionBlock;
899    return EntryConditionBlock;
900  }
901}
902
903CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
904  // Objective-C fast enumeration 'for' statements:
905  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
906  //
907  //  for ( Type newVariable in collection_expression ) { statements }
908  //
909  //  becomes:
910  //
911  //   prologue:
912  //     1. collection_expression
913  //     T. jump to loop_entry
914  //   loop_entry:
915  //     1. side-effects of element expression
916  //     1. ObjCForCollectionStmt [performs binding to newVariable]
917  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
918  //   TB:
919  //     statements
920  //     T. jump to loop_entry
921  //   FB:
922  //     what comes after
923  //
924  //  and
925  //
926  //  Type existingItem;
927  //  for ( existingItem in expression ) { statements }
928  //
929  //  becomes:
930  //
931  //   the same with newVariable replaced with existingItem; the binding works
932  //   the same except that for one ObjCForCollectionStmt::getElement() returns
933  //   a DeclStmt and the other returns a DeclRefExpr.
934  //
935
936  CFGBlock* LoopSuccessor = 0;
937
938  if (Block) {
939    if (!FinishBlock(Block))
940      return 0;
941    LoopSuccessor = Block;
942    Block = 0;
943  } else
944    LoopSuccessor = Succ;
945
946  // Build the condition blocks.
947  CFGBlock* ExitConditionBlock = createBlock(false);
948  CFGBlock* EntryConditionBlock = ExitConditionBlock;
949
950  // Set the terminator for the "exit" condition block.
951  ExitConditionBlock->setTerminator(S);
952
953  // The last statement in the block should be the ObjCForCollectionStmt, which
954  // performs the actual binding to 'element' and determines if there are any
955  // more items in the collection.
956  ExitConditionBlock->appendStmt(S);
957  Block = ExitConditionBlock;
958
959  // Walk the 'element' expression to see if there are any side-effects.  We
960  // generate new blocks as necesary.  We DON'T add the statement by default to
961  // the CFG unless it contains control-flow.
962  EntryConditionBlock = Visit(S->getElement(), false);
963  if (Block) {
964    if (!FinishBlock(EntryConditionBlock))
965      return 0;
966    Block = 0;
967  }
968
969  // The condition block is the implicit successor for the loop body as well as
970  // any code above the loop.
971  Succ = EntryConditionBlock;
972
973  // Now create the true branch.
974  {
975    // Save the current values for Succ, continue and break targets.
976    SaveAndRestore<CFGBlock*> save_Succ(Succ),
977      save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
978
979    BreakTargetBlock = LoopSuccessor;
980    ContinueTargetBlock = EntryConditionBlock;
981
982    CFGBlock* BodyBlock = addStmt(S->getBody());
983
984    if (!BodyBlock)
985      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
986    else if (Block) {
987      if (!FinishBlock(BodyBlock))
988        return 0;
989    }
990
991    // This new body block is a successor to our "exit" condition block.
992    ExitConditionBlock->addSuccessor(BodyBlock);
993  }
994
995  // Link up the condition block with the code that follows the loop.
996  // (the false branch).
997  ExitConditionBlock->addSuccessor(LoopSuccessor);
998
999  // Now create a prologue block to contain the collection expression.
1000  Block = createBlock();
1001  return addStmt(S->getCollection());
1002}
1003
1004CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1005  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1006
1007  // Inline the body.
1008  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1009
1010  // The sync body starts its own basic block.  This makes it a little easier
1011  // for diagnostic clients.
1012  if (SyncBlock) {
1013    if (!FinishBlock(SyncBlock))
1014      return 0;
1015
1016    Block = 0;
1017  }
1018
1019  Succ = SyncBlock;
1020
1021  // Inline the sync expression.
1022  return addStmt(S->getSynchExpr());
1023}
1024
1025CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1026  // FIXME
1027  return NYS();
1028}
1029
1030CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1031  // "while" is a control-flow statement.  Thus we stop processing the current
1032  // block.
1033
1034  CFGBlock* LoopSuccessor = NULL;
1035
1036  if (Block) {
1037    if (!FinishBlock(Block))
1038      return 0;
1039    LoopSuccessor = Block;
1040  } else
1041    LoopSuccessor = Succ;
1042
1043  // Because of short-circuit evaluation, the condition of the loop can span
1044  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1045  // evaluate the condition.
1046  CFGBlock* ExitConditionBlock = createBlock(false);
1047  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1048
1049  // Set the terminator for the "exit" condition block.
1050  ExitConditionBlock->setTerminator(W);
1051
1052  // Now add the actual condition to the condition block.  Because the condition
1053  // itself may contain control-flow, new blocks may be created.  Thus we update
1054  // "Succ" after adding the condition.
1055  if (Stmt* C = W->getCond()) {
1056    Block = ExitConditionBlock;
1057    EntryConditionBlock = addStmt(C);
1058    assert(Block == EntryConditionBlock);
1059    if (Block) {
1060      if (!FinishBlock(EntryConditionBlock))
1061        return 0;
1062    }
1063  }
1064
1065  // The condition block is the implicit successor for the loop body as well as
1066  // any code above the loop.
1067  Succ = EntryConditionBlock;
1068
1069  // Process the loop body.
1070  {
1071    assert(W->getBody());
1072
1073    // Save the current values for Block, Succ, and continue and break targets
1074    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1075                              save_continue(ContinueTargetBlock),
1076                              save_break(BreakTargetBlock);
1077
1078    // Create an empty block to represent the transition block for looping back
1079    // to the head of the loop.
1080    Block = 0;
1081    assert(Succ == EntryConditionBlock);
1082    Succ = createBlock();
1083    Succ->setLoopTarget(W);
1084    ContinueTargetBlock = Succ;
1085
1086    // All breaks should go to the code following the loop.
1087    BreakTargetBlock = LoopSuccessor;
1088
1089    // NULL out Block to force lazy instantiation of blocks for the body.
1090    Block = NULL;
1091
1092    // Create the body.  The returned block is the entry to the loop body.
1093    CFGBlock* BodyBlock = addStmt(W->getBody());
1094
1095    if (!BodyBlock)
1096      BodyBlock = EntryConditionBlock; // can happen for "while(...) ;"
1097    else if (Block) {
1098      if (!FinishBlock(BodyBlock))
1099        return 0;
1100    }
1101
1102    // Add the loop body entry as a successor to the condition.
1103    ExitConditionBlock->addSuccessor(BodyBlock);
1104  }
1105
1106  // Link up the condition block with the code that follows the loop.  (the
1107  // false branch).
1108  ExitConditionBlock->addSuccessor(LoopSuccessor);
1109
1110  // There can be no more statements in the condition block since we loop back
1111  // to this block.  NULL out Block to force lazy creation of another block.
1112  Block = NULL;
1113
1114  // Return the condition block, which is the dominating block for the loop.
1115  Succ = EntryConditionBlock;
1116  return EntryConditionBlock;
1117}
1118
1119
1120CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1121  // FIXME: For now we pretend that @catch and the code it contains does not
1122  //  exit.
1123  return Block;
1124}
1125
1126CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1127  // FIXME: This isn't complete.  We basically treat @throw like a return
1128  //  statement.
1129
1130  // If we were in the middle of a block we stop processing that block and
1131  // reverse its statements.
1132  if (Block && !FinishBlock(Block))
1133    return 0;
1134
1135  // Create the new block.
1136  Block = createBlock(false);
1137
1138  // The Exit block is the only successor.
1139  Block->addSuccessor(&cfg->getExit());
1140
1141  // Add the statement to the block.  This may create new blocks if S contains
1142  // control-flow (short-circuit operations).
1143  return VisitStmt(S, true);
1144}
1145
1146CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1147  // "do...while" is a control-flow statement.  Thus we stop processing the
1148  // current block.
1149
1150  CFGBlock* LoopSuccessor = NULL;
1151
1152  if (Block) {
1153    if (!FinishBlock(Block))
1154      return 0;
1155    LoopSuccessor = Block;
1156  } else
1157    LoopSuccessor = Succ;
1158
1159  // Because of short-circuit evaluation, the condition of the loop can span
1160  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1161  // evaluate the condition.
1162  CFGBlock* ExitConditionBlock = createBlock(false);
1163  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1164
1165  // Set the terminator for the "exit" condition block.
1166  ExitConditionBlock->setTerminator(D);
1167
1168  // Now add the actual condition to the condition block.  Because the condition
1169  // itself may contain control-flow, new blocks may be created.
1170  if (Stmt* C = D->getCond()) {
1171    Block = ExitConditionBlock;
1172    EntryConditionBlock = addStmt(C);
1173    if (Block) {
1174      if (!FinishBlock(EntryConditionBlock))
1175        return 0;
1176    }
1177  }
1178
1179  // The condition block is the implicit successor for the loop body.
1180  Succ = EntryConditionBlock;
1181
1182  // Process the loop body.
1183  CFGBlock* BodyBlock = NULL;
1184  {
1185    assert (D->getBody());
1186
1187    // Save the current values for Block, Succ, and continue and break targets
1188    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1189    save_continue(ContinueTargetBlock),
1190    save_break(BreakTargetBlock);
1191
1192    // All continues within this loop should go to the condition block
1193    ContinueTargetBlock = EntryConditionBlock;
1194
1195    // All breaks should go to the code following the loop.
1196    BreakTargetBlock = LoopSuccessor;
1197
1198    // NULL out Block to force lazy instantiation of blocks for the body.
1199    Block = NULL;
1200
1201    // Create the body.  The returned block is the entry to the loop body.
1202    BodyBlock = addStmt(D->getBody());
1203
1204    if (!BodyBlock)
1205      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1206    else if (Block) {
1207      if (!FinishBlock(BodyBlock))
1208        return 0;
1209    }
1210
1211    // Add an intermediate block between the BodyBlock and the
1212    // ExitConditionBlock to represent the "loop back" transition.  Create an
1213    // empty block to represent the transition block for looping back to the
1214    // head of the loop.
1215    // FIXME: Can we do this more efficiently without adding another block?
1216    Block = NULL;
1217    Succ = BodyBlock;
1218    CFGBlock *LoopBackBlock = createBlock();
1219    LoopBackBlock->setLoopTarget(D);
1220
1221    // Add the loop body entry as a successor to the condition.
1222    ExitConditionBlock->addSuccessor(LoopBackBlock);
1223  }
1224
1225  // Link up the condition block with the code that follows the loop.
1226  // (the false branch).
1227  ExitConditionBlock->addSuccessor(LoopSuccessor);
1228
1229  // There can be no more statements in the body block(s) since we loop back to
1230  // the body.  NULL out Block to force lazy creation of another block.
1231  Block = NULL;
1232
1233  // Return the loop body, which is the dominating block for the loop.
1234  Succ = BodyBlock;
1235  return BodyBlock;
1236}
1237
1238CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1239  // "continue" is a control-flow statement.  Thus we stop processing the
1240  // current block.
1241  if (Block && !FinishBlock(Block))
1242      return 0;
1243
1244  // Now create a new block that ends with the continue statement.
1245  Block = createBlock(false);
1246  Block->setTerminator(C);
1247
1248  // If there is no target for the continue, then we are looking at an
1249  // incomplete AST.  This means the CFG cannot be constructed.
1250  if (ContinueTargetBlock)
1251    Block->addSuccessor(ContinueTargetBlock);
1252  else
1253    badCFG = true;
1254
1255  return Block;
1256}
1257
1258CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1259                                             bool alwaysAdd) {
1260
1261  if (alwaysAdd) {
1262    autoCreateBlock();
1263    Block->appendStmt(E);
1264  }
1265
1266  // VLA types have expressions that must be evaluated.
1267  if (E->isArgumentType()) {
1268    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1269         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1270      addStmt(VA->getSizeExpr());
1271  }
1272
1273  return Block;
1274}
1275
1276/// VisitStmtExpr - Utility method to handle (nested) statement
1277///  expressions (a GCC extension).
1278CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, bool alwaysAdd) {
1279  if (alwaysAdd) {
1280    autoCreateBlock();
1281    Block->appendStmt(SE);
1282  }
1283  return VisitCompoundStmt(SE->getSubStmt());
1284}
1285
1286CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1287  // "switch" is a control-flow statement.  Thus we stop processing the current
1288  // block.
1289  CFGBlock* SwitchSuccessor = NULL;
1290
1291  if (Block) {
1292    if (!FinishBlock(Block))
1293      return 0;
1294    SwitchSuccessor = Block;
1295  } else SwitchSuccessor = Succ;
1296
1297  // Save the current "switch" context.
1298  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1299                            save_break(BreakTargetBlock),
1300                            save_default(DefaultCaseBlock);
1301
1302  // Set the "default" case to be the block after the switch statement.  If the
1303  // switch statement contains a "default:", this value will be overwritten with
1304  // the block for that code.
1305  DefaultCaseBlock = SwitchSuccessor;
1306
1307  // Create a new block that will contain the switch statement.
1308  SwitchTerminatedBlock = createBlock(false);
1309
1310  // Now process the switch body.  The code after the switch is the implicit
1311  // successor.
1312  Succ = SwitchSuccessor;
1313  BreakTargetBlock = SwitchSuccessor;
1314
1315  // When visiting the body, the case statements should automatically get linked
1316  // up to the switch.  We also don't keep a pointer to the body, since all
1317  // control-flow from the switch goes to case/default statements.
1318  assert (Terminator->getBody() && "switch must contain a non-NULL body");
1319  Block = NULL;
1320  CFGBlock *BodyBlock = addStmt(Terminator->getBody());
1321  if (Block) {
1322    if (!FinishBlock(BodyBlock))
1323      return 0;
1324  }
1325
1326  // If we have no "default:" case, the default transition is to the code
1327  // following the switch body.
1328  SwitchTerminatedBlock->addSuccessor(DefaultCaseBlock);
1329
1330  // Add the terminator and condition in the switch block.
1331  SwitchTerminatedBlock->setTerminator(Terminator);
1332  assert (Terminator->getCond() && "switch condition must be non-NULL");
1333  Block = SwitchTerminatedBlock;
1334
1335  return addStmt(Terminator->getCond());
1336}
1337
1338CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1339  // CaseStmts are essentially labels, so they are the first statement in a
1340  // block.
1341
1342  if (CS->getSubStmt())
1343    addStmt(CS->getSubStmt());
1344
1345  CFGBlock* CaseBlock = Block;
1346  if (!CaseBlock)
1347    CaseBlock = createBlock();
1348
1349  // Cases statements partition blocks, so this is the top of the basic block we
1350  // were processing (the "case XXX:" is the label).
1351  CaseBlock->setLabel(CS);
1352
1353  if (!FinishBlock(CaseBlock))
1354    return 0;
1355
1356  // Add this block to the list of successors for the block with the switch
1357  // statement.
1358  assert(SwitchTerminatedBlock);
1359  SwitchTerminatedBlock->addSuccessor(CaseBlock);
1360
1361  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1362  Block = NULL;
1363
1364  // This block is now the implicit successor of other blocks.
1365  Succ = CaseBlock;
1366
1367  return CaseBlock;
1368}
1369
1370CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1371  if (Terminator->getSubStmt())
1372    addStmt(Terminator->getSubStmt());
1373
1374  DefaultCaseBlock = Block;
1375
1376  if (!DefaultCaseBlock)
1377    DefaultCaseBlock = createBlock();
1378
1379  // Default statements partition blocks, so this is the top of the basic block
1380  // we were processing (the "default:" is the label).
1381  DefaultCaseBlock->setLabel(Terminator);
1382
1383  if (!FinishBlock(DefaultCaseBlock))
1384    return 0;
1385
1386  // Unlike case statements, we don't add the default block to the successors
1387  // for the switch statement immediately.  This is done when we finish
1388  // processing the switch statement.  This allows for the default case
1389  // (including a fall-through to the code after the switch statement) to always
1390  // be the last successor of a switch-terminated block.
1391
1392  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1393  Block = NULL;
1394
1395  // This block is now the implicit successor of other blocks.
1396  Succ = DefaultCaseBlock;
1397
1398  return DefaultCaseBlock;
1399}
1400
1401CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1402  // Lazily create the indirect-goto dispatch block if there isn't one already.
1403  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
1404
1405  if (!IBlock) {
1406    IBlock = createBlock(false);
1407    cfg->setIndirectGotoBlock(IBlock);
1408  }
1409
1410  // IndirectGoto is a control-flow statement.  Thus we stop processing the
1411  // current block and create a new one.
1412  if (Block && !FinishBlock(Block))
1413    return 0;
1414
1415  Block = createBlock(false);
1416  Block->setTerminator(I);
1417  Block->addSuccessor(IBlock);
1418  return addStmt(I->getTarget());
1419}
1420
1421} // end anonymous namespace
1422
1423/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
1424///  no successors or predecessors.  If this is the first block created in the
1425///  CFG, it is automatically set to be the Entry and Exit of the CFG.
1426CFGBlock* CFG::createBlock() {
1427  bool first_block = begin() == end();
1428
1429  // Create the block.
1430  Blocks.push_front(CFGBlock(NumBlockIDs++));
1431
1432  // If this is the first block, set it as the Entry and Exit.
1433  if (first_block) Entry = Exit = &front();
1434
1435  // Return the block.
1436  return &front();
1437}
1438
1439/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
1440///  CFG is returned to the caller.
1441CFG* CFG::buildCFG(Stmt* Statement) {
1442  CFGBuilder Builder;
1443  return Builder.buildCFG(Statement);
1444}
1445
1446/// reverseStmts - Reverses the orders of statements within a CFGBlock.
1447void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); }
1448
1449//===----------------------------------------------------------------------===//
1450// CFG: Queries for BlkExprs.
1451//===----------------------------------------------------------------------===//
1452
1453namespace {
1454  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
1455}
1456
1457static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) {
1458  if (!Terminator)
1459    return;
1460
1461  for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) {
1462    if (!*I) continue;
1463
1464    if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I))
1465      if (B->isAssignmentOp()) Set.insert(B);
1466
1467    FindSubExprAssignments(*I, Set);
1468  }
1469}
1470
1471static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
1472  BlkExprMapTy* M = new BlkExprMapTy();
1473
1474  // Look for assignments that are used as subexpressions.  These are the only
1475  // assignments that we want to *possibly* register as a block-level
1476  // expression.  Basically, if an assignment occurs both in a subexpression and
1477  // at the block-level, it is a block-level expression.
1478  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
1479
1480  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
1481    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
1482      FindSubExprAssignments(*BI, SubExprAssignments);
1483
1484  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
1485
1486    // Iterate over the statements again on identify the Expr* and Stmt* at the
1487    // block-level that are block-level expressions.
1488
1489    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
1490      if (Expr* Exp = dyn_cast<Expr>(*BI)) {
1491
1492        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
1493          // Assignment expressions that are not nested within another
1494          // expression are really "statements" whose value is never used by
1495          // another expression.
1496          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
1497            continue;
1498        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
1499          // Special handling for statement expressions.  The last statement in
1500          // the statement expression is also a block-level expr.
1501          const CompoundStmt* C = Terminator->getSubStmt();
1502          if (!C->body_empty()) {
1503            unsigned x = M->size();
1504            (*M)[C->body_back()] = x;
1505          }
1506        }
1507
1508        unsigned x = M->size();
1509        (*M)[Exp] = x;
1510      }
1511
1512    // Look at terminators.  The condition is a block-level expression.
1513
1514    Stmt* S = I->getTerminatorCondition();
1515
1516    if (S && M->find(S) == M->end()) {
1517        unsigned x = M->size();
1518        (*M)[S] = x;
1519    }
1520  }
1521
1522  return M;
1523}
1524
1525CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
1526  assert(S != NULL);
1527  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
1528
1529  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
1530  BlkExprMapTy::iterator I = M->find(S);
1531
1532  if (I == M->end()) return CFG::BlkExprNumTy();
1533  else return CFG::BlkExprNumTy(I->second);
1534}
1535
1536unsigned CFG::getNumBlkExprs() {
1537  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
1538    return M->size();
1539  else {
1540    // We assume callers interested in the number of BlkExprs will want
1541    // the map constructed if it doesn't already exist.
1542    BlkExprMap = (void*) PopulateBlkExprMap(*this);
1543    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
1544  }
1545}
1546
1547//===----------------------------------------------------------------------===//
1548// Cleanup: CFG dstor.
1549//===----------------------------------------------------------------------===//
1550
1551CFG::~CFG() {
1552  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
1553}
1554
1555//===----------------------------------------------------------------------===//
1556// CFG pretty printing
1557//===----------------------------------------------------------------------===//
1558
1559namespace {
1560
1561class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper  {
1562
1563  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
1564  StmtMapTy StmtMap;
1565  signed CurrentBlock;
1566  unsigned CurrentStmt;
1567  const LangOptions &LangOpts;
1568public:
1569
1570  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
1571    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
1572    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
1573      unsigned j = 1;
1574      for (CFGBlock::const_iterator BI = I->begin(), BEnd = I->end() ;
1575           BI != BEnd; ++BI, ++j )
1576        StmtMap[*BI] = std::make_pair(I->getBlockID(),j);
1577      }
1578  }
1579
1580  virtual ~StmtPrinterHelper() {}
1581
1582  const LangOptions &getLangOpts() const { return LangOpts; }
1583  void setBlockID(signed i) { CurrentBlock = i; }
1584  void setStmtID(unsigned i) { CurrentStmt = i; }
1585
1586  virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
1587
1588    StmtMapTy::iterator I = StmtMap.find(Terminator);
1589
1590    if (I == StmtMap.end())
1591      return false;
1592
1593    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
1594                          && I->second.second == CurrentStmt)
1595      return false;
1596
1597      OS << "[B" << I->second.first << "." << I->second.second << "]";
1598    return true;
1599  }
1600};
1601} // end anonymous namespace
1602
1603
1604namespace {
1605class VISIBILITY_HIDDEN CFGBlockTerminatorPrint
1606  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
1607
1608  llvm::raw_ostream& OS;
1609  StmtPrinterHelper* Helper;
1610  PrintingPolicy Policy;
1611
1612public:
1613  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
1614                          const PrintingPolicy &Policy)
1615    : OS(os), Helper(helper), Policy(Policy) {}
1616
1617  void VisitIfStmt(IfStmt* I) {
1618    OS << "if ";
1619    I->getCond()->printPretty(OS,Helper,Policy);
1620  }
1621
1622  // Default case.
1623  void VisitStmt(Stmt* Terminator) {
1624    Terminator->printPretty(OS, Helper, Policy);
1625  }
1626
1627  void VisitForStmt(ForStmt* F) {
1628    OS << "for (" ;
1629    if (F->getInit()) OS << "...";
1630    OS << "; ";
1631    if (Stmt* C = F->getCond()) C->printPretty(OS, Helper, Policy);
1632    OS << "; ";
1633    if (F->getInc()) OS << "...";
1634    OS << ")";
1635  }
1636
1637  void VisitWhileStmt(WhileStmt* W) {
1638    OS << "while " ;
1639    if (Stmt* C = W->getCond()) C->printPretty(OS, Helper, Policy);
1640  }
1641
1642  void VisitDoStmt(DoStmt* D) {
1643    OS << "do ... while ";
1644    if (Stmt* C = D->getCond()) C->printPretty(OS, Helper, Policy);
1645  }
1646
1647  void VisitSwitchStmt(SwitchStmt* Terminator) {
1648    OS << "switch ";
1649    Terminator->getCond()->printPretty(OS, Helper, Policy);
1650  }
1651
1652  void VisitConditionalOperator(ConditionalOperator* C) {
1653    C->getCond()->printPretty(OS, Helper, Policy);
1654    OS << " ? ... : ...";
1655  }
1656
1657  void VisitChooseExpr(ChooseExpr* C) {
1658    OS << "__builtin_choose_expr( ";
1659    C->getCond()->printPretty(OS, Helper, Policy);
1660    OS << " )";
1661  }
1662
1663  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1664    OS << "goto *";
1665    I->getTarget()->printPretty(OS, Helper, Policy);
1666  }
1667
1668  void VisitBinaryOperator(BinaryOperator* B) {
1669    if (!B->isLogicalOp()) {
1670      VisitExpr(B);
1671      return;
1672    }
1673
1674    B->getLHS()->printPretty(OS, Helper, Policy);
1675
1676    switch (B->getOpcode()) {
1677      case BinaryOperator::LOr:
1678        OS << " || ...";
1679        return;
1680      case BinaryOperator::LAnd:
1681        OS << " && ...";
1682        return;
1683      default:
1684        assert(false && "Invalid logical operator.");
1685    }
1686  }
1687
1688  void VisitExpr(Expr* E) {
1689    E->printPretty(OS, Helper, Policy);
1690  }
1691};
1692} // end anonymous namespace
1693
1694
1695static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
1696                       Stmt* Terminator) {
1697  if (Helper) {
1698    // special printing for statement-expressions.
1699    if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) {
1700      CompoundStmt* Sub = SE->getSubStmt();
1701
1702      if (Sub->child_begin() != Sub->child_end()) {
1703        OS << "({ ... ; ";
1704        Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
1705        OS << " })\n";
1706        return;
1707      }
1708    }
1709
1710    // special printing for comma expressions.
1711    if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) {
1712      if (B->getOpcode() == BinaryOperator::Comma) {
1713        OS << "... , ";
1714        Helper->handledStmt(B->getRHS(),OS);
1715        OS << '\n';
1716        return;
1717      }
1718    }
1719  }
1720
1721  Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
1722
1723  // Expressions need a newline.
1724  if (isa<Expr>(Terminator)) OS << '\n';
1725}
1726
1727static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
1728                        const CFGBlock& B,
1729                        StmtPrinterHelper* Helper, bool print_edges) {
1730
1731  if (Helper) Helper->setBlockID(B.getBlockID());
1732
1733  // Print the header.
1734  OS << "\n [ B" << B.getBlockID();
1735
1736  if (&B == &cfg->getEntry())
1737    OS << " (ENTRY) ]\n";
1738  else if (&B == &cfg->getExit())
1739    OS << " (EXIT) ]\n";
1740  else if (&B == cfg->getIndirectGotoBlock())
1741    OS << " (INDIRECT GOTO DISPATCH) ]\n";
1742  else
1743    OS << " ]\n";
1744
1745  // Print the label of this block.
1746  if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) {
1747
1748    if (print_edges)
1749      OS << "    ";
1750
1751    if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator))
1752      OS << L->getName();
1753    else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) {
1754      OS << "case ";
1755      C->getLHS()->printPretty(OS, Helper,
1756                               PrintingPolicy(Helper->getLangOpts()));
1757      if (C->getRHS()) {
1758        OS << " ... ";
1759        C->getRHS()->printPretty(OS, Helper,
1760                                 PrintingPolicy(Helper->getLangOpts()));
1761      }
1762    } else if (isa<DefaultStmt>(Terminator))
1763      OS << "default";
1764    else
1765      assert(false && "Invalid label statement in CFGBlock.");
1766
1767    OS << ":\n";
1768  }
1769
1770  // Iterate through the statements in the block and print them.
1771  unsigned j = 1;
1772
1773  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
1774       I != E ; ++I, ++j ) {
1775
1776    // Print the statement # in the basic block and the statement itself.
1777    if (print_edges)
1778      OS << "    ";
1779
1780    OS << llvm::format("%3d", j) << ": ";
1781
1782    if (Helper)
1783      Helper->setStmtID(j);
1784
1785    print_stmt(OS,Helper,*I);
1786  }
1787
1788  // Print the terminator of this block.
1789  if (B.getTerminator()) {
1790    if (print_edges)
1791      OS << "    ";
1792
1793    OS << "  T: ";
1794
1795    if (Helper) Helper->setBlockID(-1);
1796
1797    CFGBlockTerminatorPrint TPrinter(OS, Helper,
1798                                     PrintingPolicy(Helper->getLangOpts()));
1799    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
1800    OS << '\n';
1801  }
1802
1803  if (print_edges) {
1804    // Print the predecessors of this block.
1805    OS << "    Predecessors (" << B.pred_size() << "):";
1806    unsigned i = 0;
1807
1808    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
1809         I != E; ++I, ++i) {
1810
1811      if (i == 8 || (i-8) == 0)
1812        OS << "\n     ";
1813
1814      OS << " B" << (*I)->getBlockID();
1815    }
1816
1817    OS << '\n';
1818
1819    // Print the successors of this block.
1820    OS << "    Successors (" << B.succ_size() << "):";
1821    i = 0;
1822
1823    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
1824         I != E; ++I, ++i) {
1825
1826      if (i == 8 || (i-8) % 10 == 0)
1827        OS << "\n    ";
1828
1829      OS << " B" << (*I)->getBlockID();
1830    }
1831
1832    OS << '\n';
1833  }
1834}
1835
1836
1837/// dump - A simple pretty printer of a CFG that outputs to stderr.
1838void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
1839
1840/// print - A simple pretty printer of a CFG that outputs to an ostream.
1841void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
1842  StmtPrinterHelper Helper(this, LO);
1843
1844  // Print the entry block.
1845  print_block(OS, this, getEntry(), &Helper, true);
1846
1847  // Iterate through the CFGBlocks and print them one by one.
1848  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
1849    // Skip the entry block, because we already printed it.
1850    if (&(*I) == &getEntry() || &(*I) == &getExit())
1851      continue;
1852
1853    print_block(OS, this, *I, &Helper, true);
1854  }
1855
1856  // Print the exit block.
1857  print_block(OS, this, getExit(), &Helper, true);
1858  OS.flush();
1859}
1860
1861/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
1862void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
1863  print(llvm::errs(), cfg, LO);
1864}
1865
1866/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
1867///   Generally this will only be called from CFG::print.
1868void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
1869                     const LangOptions &LO) const {
1870  StmtPrinterHelper Helper(cfg, LO);
1871  print_block(OS, cfg, *this, &Helper, true);
1872}
1873
1874/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
1875void CFGBlock::printTerminator(llvm::raw_ostream &OS,
1876                               const LangOptions &LO) const {
1877  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
1878  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
1879}
1880
1881Stmt* CFGBlock::getTerminatorCondition() {
1882
1883  if (!Terminator)
1884    return NULL;
1885
1886  Expr* E = NULL;
1887
1888  switch (Terminator->getStmtClass()) {
1889    default:
1890      break;
1891
1892    case Stmt::ForStmtClass:
1893      E = cast<ForStmt>(Terminator)->getCond();
1894      break;
1895
1896    case Stmt::WhileStmtClass:
1897      E = cast<WhileStmt>(Terminator)->getCond();
1898      break;
1899
1900    case Stmt::DoStmtClass:
1901      E = cast<DoStmt>(Terminator)->getCond();
1902      break;
1903
1904    case Stmt::IfStmtClass:
1905      E = cast<IfStmt>(Terminator)->getCond();
1906      break;
1907
1908    case Stmt::ChooseExprClass:
1909      E = cast<ChooseExpr>(Terminator)->getCond();
1910      break;
1911
1912    case Stmt::IndirectGotoStmtClass:
1913      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
1914      break;
1915
1916    case Stmt::SwitchStmtClass:
1917      E = cast<SwitchStmt>(Terminator)->getCond();
1918      break;
1919
1920    case Stmt::ConditionalOperatorClass:
1921      E = cast<ConditionalOperator>(Terminator)->getCond();
1922      break;
1923
1924    case Stmt::BinaryOperatorClass: // '&&' and '||'
1925      E = cast<BinaryOperator>(Terminator)->getLHS();
1926      break;
1927
1928    case Stmt::ObjCForCollectionStmtClass:
1929      return Terminator;
1930  }
1931
1932  return E ? E->IgnoreParens() : NULL;
1933}
1934
1935bool CFGBlock::hasBinaryBranchTerminator() const {
1936
1937  if (!Terminator)
1938    return false;
1939
1940  Expr* E = NULL;
1941
1942  switch (Terminator->getStmtClass()) {
1943    default:
1944      return false;
1945
1946    case Stmt::ForStmtClass:
1947    case Stmt::WhileStmtClass:
1948    case Stmt::DoStmtClass:
1949    case Stmt::IfStmtClass:
1950    case Stmt::ChooseExprClass:
1951    case Stmt::ConditionalOperatorClass:
1952    case Stmt::BinaryOperatorClass:
1953      return true;
1954  }
1955
1956  return E ? E->IgnoreParens() : NULL;
1957}
1958
1959
1960//===----------------------------------------------------------------------===//
1961// CFG Graphviz Visualization
1962//===----------------------------------------------------------------------===//
1963
1964
1965#ifndef NDEBUG
1966static StmtPrinterHelper* GraphHelper;
1967#endif
1968
1969void CFG::viewCFG(const LangOptions &LO) const {
1970#ifndef NDEBUG
1971  StmtPrinterHelper H(this, LO);
1972  GraphHelper = &H;
1973  llvm::ViewGraph(this,"CFG");
1974  GraphHelper = NULL;
1975#endif
1976}
1977
1978namespace llvm {
1979template<>
1980struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
1981  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph,
1982                                  bool ShortNames) {
1983
1984#ifndef NDEBUG
1985    std::string OutSStr;
1986    llvm::raw_string_ostream Out(OutSStr);
1987    print_block(Out,Graph, *Node, GraphHelper, false);
1988    std::string& OutStr = Out.str();
1989
1990    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
1991
1992    // Process string output to make it nicer...
1993    for (unsigned i = 0; i != OutStr.length(); ++i)
1994      if (OutStr[i] == '\n') {                            // Left justify
1995        OutStr[i] = '\\';
1996        OutStr.insert(OutStr.begin()+i+1, 'l');
1997      }
1998
1999    return OutStr;
2000#else
2001    return "";
2002#endif
2003  }
2004};
2005} // end namespace llvm
2006