CFG.cpp revision 1b3b7cb15cbd02b7283bbf3ce7c0e9b0da30ef9d
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// CFGBuilder - This class implements CFG construction from an AST.
56///   The builder is stateful: an instance of the builder should be used to only
57///   construct a single CFG.
58///
59///   Example usage:
60///
61///     CFGBuilder builder;
62///     CFG* cfg = builder.BuildAST(stmt1);
63///
64///  CFG construction is done via a recursive walk of an AST.  We actually parse
65///  the AST in reverse order so that the successor of a basic block is
66///  constructed prior to its predecessor.  This allows us to nicely capture
67///  implicit fall-throughs without extra basic blocks.
68///
69class CFGBuilder {
70  ASTContext *Context;
71  llvm::OwningPtr<CFG> cfg;
72
73  CFGBlock* Block;
74  CFGBlock* Succ;
75  CFGBlock* ContinueTargetBlock;
76  CFGBlock* BreakTargetBlock;
77  CFGBlock* SwitchTerminatedBlock;
78  CFGBlock* DefaultCaseBlock;
79  CFGBlock* TryTerminatedBlock;
80
81  // LabelMap records the mapping from Label expressions to their blocks.
82  typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
83  LabelMapTy LabelMap;
84
85  // A list of blocks that end with a "goto" that must be backpatched to their
86  // resolved targets upon completion of CFG construction.
87  typedef std::vector<CFGBlock*> BackpatchBlocksTy;
88  BackpatchBlocksTy BackpatchBlocks;
89
90  // A list of labels whose address has been taken (for indirect gotos).
91  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
92  LabelSetTy AddressTakenLabels;
93
94public:
95  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
96                          Block(NULL), Succ(NULL),
97                          ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
98                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
99                          TryTerminatedBlock(NULL) {}
100
101  // buildCFG - Used by external clients to construct the CFG.
102  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
103                bool pruneTriviallyFalseEdges, bool AddEHEdges,
104                bool AddScopes);
105
106private:
107  // Visitors to walk an AST and construct the CFG.
108  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
109  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
110  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
111  CFGBlock *VisitBreakStmt(BreakStmt *B);
112  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
113  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
114  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
115  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
116  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
117  CFGBlock *VisitCaseStmt(CaseStmt *C);
118  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
119  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
120  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
121  CFGBlock *VisitContinueStmt(ContinueStmt *C);
122  CFGBlock *VisitDeclStmt(DeclStmt *DS);
123  CFGBlock *VisitDeclSubExpr(Decl* D);
124  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
125  CFGBlock *VisitDoStmt(DoStmt *D);
126  CFGBlock *VisitForStmt(ForStmt *F);
127  CFGBlock *VisitGotoStmt(GotoStmt* G);
128  CFGBlock *VisitIfStmt(IfStmt *I);
129  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
130  CFGBlock *VisitLabelStmt(LabelStmt *L);
131  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
132  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
133  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
134  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
135  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
136  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
137  CFGBlock *VisitReturnStmt(ReturnStmt* R);
138  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
139  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
140  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
141  CFGBlock *VisitWhileStmt(WhileStmt *W);
142
143  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
144  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
145  CFGBlock *VisitChildren(Stmt* S);
146
147  // NYS == Not Yet Supported
148  CFGBlock* NYS() {
149    badCFG = true;
150    return Block;
151  }
152
153  CFGBlock *StartScope(Stmt *S, CFGBlock *B) {
154    if (!AddScopes)
155      return B;
156
157    if (B == 0)
158      B = createBlock();
159    B->StartScope(S, cfg->getBumpVectorContext());
160    return B;
161  }
162
163  void EndScope(Stmt *S) {
164    if (!AddScopes)
165      return;
166
167    if (Block == 0)
168      Block = createBlock();
169    Block->EndScope(S, cfg->getBumpVectorContext());
170  }
171
172  void autoCreateBlock() { if (!Block) Block = createBlock(); }
173  CFGBlock *createBlock(bool add_successor = true);
174  bool FinishBlock(CFGBlock* B);
175  CFGBlock *addStmt(Stmt *S) {
176    return Visit(S, AddStmtChoice::AlwaysAdd);
177  }
178
179  void AppendStmt(CFGBlock *B, Stmt *S,
180                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
181    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
182  }
183
184  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
185    B->addSuccessor(S, cfg->getBumpVectorContext());
186  }
187
188  /// TryResult - a class representing a variant over the values
189  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
190  ///  and is used by the CFGBuilder to decide if a branch condition
191  ///  can be decided up front during CFG construction.
192  class TryResult {
193    int X;
194  public:
195    TryResult(bool b) : X(b ? 1 : 0) {}
196    TryResult() : X(-1) {}
197
198    bool isTrue() const { return X == 1; }
199    bool isFalse() const { return X == 0; }
200    bool isKnown() const { return X >= 0; }
201    void negate() {
202      assert(isKnown());
203      X ^= 0x1;
204    }
205  };
206
207  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
208  /// if we can evaluate to a known value, otherwise return -1.
209  TryResult TryEvaluateBool(Expr *S) {
210    if (!PruneTriviallyFalseEdges)
211      return TryResult();
212
213    Expr::EvalResult Result;
214    if (!S->isTypeDependent() && !S->isValueDependent() &&
215        S->Evaluate(Result, *Context) && Result.Val.isInt())
216      return Result.Val.getInt().getBoolValue();
217
218    return TryResult();
219  }
220
221  bool badCFG;
222
223  // True iff trivially false edges should be pruned from the CFG.
224  bool PruneTriviallyFalseEdges;
225
226  // True iff EH edges on CallExprs should be added to the CFG.
227  bool AddEHEdges;
228
229  // True iff scope start and scope end notes should be added to the CFG.
230  bool AddScopes;
231};
232
233// FIXME: Add support for dependent-sized array types in C++?
234// Does it even make sense to build a CFG for an uninstantiated template?
235static VariableArrayType* FindVA(Type* t) {
236  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
237    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
238      if (vat->getSizeExpr())
239        return vat;
240
241    t = vt->getElementType().getTypePtr();
242  }
243
244  return 0;
245}
246
247/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
248///  arbitrary statement.  Examples include a single expression or a function
249///  body (compound statement).  The ownership of the returned CFG is
250///  transferred to the caller.  If CFG construction fails, this method returns
251///  NULL.
252CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
253                          bool pruneTriviallyFalseEdges,
254                          bool addehedges, bool AddScopes) {
255
256  AddEHEdges = addehedges;
257  PruneTriviallyFalseEdges = pruneTriviallyFalseEdges;
258
259  Context = C;
260  assert(cfg.get());
261  if (!Statement)
262    return NULL;
263
264  this->AddScopes = AddScopes;
265  badCFG = false;
266
267  // Create an empty block that will serve as the exit block for the CFG.  Since
268  // this is the first block added to the CFG, it will be implicitly registered
269  // as the exit block.
270  Succ = createBlock();
271  assert(Succ == &cfg->getExit());
272  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
273
274  // Visit the statements and create the CFG.
275  CFGBlock *B = addStmt(Statement);
276
277  if (badCFG)
278    return NULL;
279
280  if (B)
281    Succ = B;
282
283  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
284    // FIXME: Add code for base initializers and member initializers.
285    (void)CD;
286  }
287
288  // Backpatch the gotos whose label -> block mappings we didn't know when we
289  // encountered them.
290  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
291                                   E = BackpatchBlocks.end(); I != E; ++I ) {
292
293    CFGBlock* B = *I;
294    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
295    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
296
297    // If there is no target for the goto, then we are looking at an
298    // incomplete AST.  Handle this by not registering a successor.
299    if (LI == LabelMap.end()) continue;
300
301    AddSuccessor(B, LI->second);
302  }
303
304  // Add successors to the Indirect Goto Dispatch block (if we have one).
305  if (CFGBlock* B = cfg->getIndirectGotoBlock())
306    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
307                              E = AddressTakenLabels.end(); I != E; ++I ) {
308
309      // Lookup the target block.
310      LabelMapTy::iterator LI = LabelMap.find(*I);
311
312      // If there is no target block that contains label, then we are looking
313      // at an incomplete AST.  Handle this by not registering a successor.
314      if (LI == LabelMap.end()) continue;
315
316      AddSuccessor(B, LI->second);
317    }
318
319  // Create an empty entry block that has no predecessors.
320  cfg->setEntry(createBlock());
321
322  return cfg.take();
323}
324
325/// createBlock - Used to lazily create blocks that are connected
326///  to the current (global) succcessor.
327CFGBlock* CFGBuilder::createBlock(bool add_successor) {
328  CFGBlock* B = cfg->createBlock();
329  if (add_successor && Succ)
330    AddSuccessor(B, Succ);
331  return B;
332}
333
334/// FinishBlock - "Finalize" the block by checking if we have a bad CFG.
335bool CFGBuilder::FinishBlock(CFGBlock* B) {
336  if (badCFG)
337    return false;
338
339  assert(B);
340  return true;
341}
342
343/// Visit - Walk the subtree of a statement and add extra
344///   blocks for ternary operators, &&, and ||.  We also process "," and
345///   DeclStmts (which may contain nested control-flow).
346CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
347tryAgain:
348  if (!S) {
349    badCFG = true;
350    return 0;
351  }
352  switch (S->getStmtClass()) {
353    default:
354      return VisitStmt(S, asc);
355
356    case Stmt::AddrLabelExprClass:
357      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
358
359    case Stmt::BinaryOperatorClass:
360      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
361
362    case Stmt::BlockExprClass:
363      return VisitBlockExpr(cast<BlockExpr>(S), asc);
364
365    case Stmt::BreakStmtClass:
366      return VisitBreakStmt(cast<BreakStmt>(S));
367
368    case Stmt::CallExprClass:
369    case Stmt::CXXOperatorCallExprClass:
370      return VisitCallExpr(cast<CallExpr>(S), asc);
371
372    case Stmt::CaseStmtClass:
373      return VisitCaseStmt(cast<CaseStmt>(S));
374
375    case Stmt::ChooseExprClass:
376      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
377
378    case Stmt::CompoundStmtClass:
379      return VisitCompoundStmt(cast<CompoundStmt>(S));
380
381    case Stmt::ConditionalOperatorClass:
382      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
383
384    case Stmt::ContinueStmtClass:
385      return VisitContinueStmt(cast<ContinueStmt>(S));
386
387    case Stmt::CXXCatchStmtClass:
388      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
389
390    case Stmt::CXXExprWithTemporariesClass: {
391      // FIXME: Handle temporaries.  For now, just visit the subexpression
392      // so we don't artificially create extra blocks.
393      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
394    }
395
396    case Stmt::CXXMemberCallExprClass:
397      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
398
399    case Stmt::CXXThrowExprClass:
400      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
401
402    case Stmt::CXXTryStmtClass:
403      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
404
405    case Stmt::DeclStmtClass:
406      return VisitDeclStmt(cast<DeclStmt>(S));
407
408    case Stmt::DefaultStmtClass:
409      return VisitDefaultStmt(cast<DefaultStmt>(S));
410
411    case Stmt::DoStmtClass:
412      return VisitDoStmt(cast<DoStmt>(S));
413
414    case Stmt::ForStmtClass:
415      return VisitForStmt(cast<ForStmt>(S));
416
417    case Stmt::GotoStmtClass:
418      return VisitGotoStmt(cast<GotoStmt>(S));
419
420    case Stmt::IfStmtClass:
421      return VisitIfStmt(cast<IfStmt>(S));
422
423    case Stmt::IndirectGotoStmtClass:
424      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
425
426    case Stmt::LabelStmtClass:
427      return VisitLabelStmt(cast<LabelStmt>(S));
428
429    case Stmt::MemberExprClass:
430      return VisitMemberExpr(cast<MemberExpr>(S), asc);
431
432    case Stmt::ObjCAtCatchStmtClass:
433      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
434
435    case Stmt::ObjCAtSynchronizedStmtClass:
436      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
437
438    case Stmt::ObjCAtThrowStmtClass:
439      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
440
441    case Stmt::ObjCAtTryStmtClass:
442      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
443
444    case Stmt::ObjCForCollectionStmtClass:
445      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
446
447    case Stmt::ParenExprClass:
448      S = cast<ParenExpr>(S)->getSubExpr();
449      goto tryAgain;
450
451    case Stmt::NullStmtClass:
452      return Block;
453
454    case Stmt::ReturnStmtClass:
455      return VisitReturnStmt(cast<ReturnStmt>(S));
456
457    case Stmt::SizeOfAlignOfExprClass:
458      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
459
460    case Stmt::StmtExprClass:
461      return VisitStmtExpr(cast<StmtExpr>(S), asc);
462
463    case Stmt::SwitchStmtClass:
464      return VisitSwitchStmt(cast<SwitchStmt>(S));
465
466    case Stmt::WhileStmtClass:
467      return VisitWhileStmt(cast<WhileStmt>(S));
468  }
469}
470
471CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
472  if (asc.alwaysAdd()) {
473    autoCreateBlock();
474    AppendStmt(Block, S, asc);
475  }
476
477  return VisitChildren(S);
478}
479
480/// VisitChildren - Visit the children of a Stmt.
481CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
482  CFGBlock *B = Block;
483  for (Stmt::child_iterator I = Terminator->child_begin(),
484         E = Terminator->child_end(); I != E; ++I) {
485    if (*I) B = Visit(*I);
486  }
487  return B;
488}
489
490CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
491                                         AddStmtChoice asc) {
492  AddressTakenLabels.insert(A->getLabel());
493
494  if (asc.alwaysAdd()) {
495    autoCreateBlock();
496    AppendStmt(Block, A, asc);
497  }
498
499  return Block;
500}
501
502CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
503                                          AddStmtChoice asc) {
504  if (B->isLogicalOp()) { // && or ||
505    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
506    AppendStmt(ConfluenceBlock, B, asc);
507
508    if (!FinishBlock(ConfluenceBlock))
509      return 0;
510
511    // create the block evaluating the LHS
512    CFGBlock* LHSBlock = createBlock(false);
513    LHSBlock->setTerminator(B);
514
515    // create the block evaluating the RHS
516    Succ = ConfluenceBlock;
517    Block = NULL;
518    CFGBlock* RHSBlock = addStmt(B->getRHS());
519
520    if (RHSBlock) {
521      if (!FinishBlock(RHSBlock))
522        return 0;
523    }
524    else {
525      // Create an empty block for cases where the RHS doesn't require
526      // any explicit statements in the CFG.
527      RHSBlock = createBlock();
528    }
529
530    // See if this is a known constant.
531    TryResult KnownVal = TryEvaluateBool(B->getLHS());
532    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
533      KnownVal.negate();
534
535    // Now link the LHSBlock with RHSBlock.
536    if (B->getOpcode() == BO_LOr) {
537      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
538      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
539    } else {
540      assert(B->getOpcode() == BO_LAnd);
541      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
542      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
543    }
544
545    // Generate the blocks for evaluating the LHS.
546    Block = LHSBlock;
547    return addStmt(B->getLHS());
548  }
549  else if (B->getOpcode() == BO_Comma) { // ,
550    autoCreateBlock();
551    AppendStmt(Block, B, asc);
552    addStmt(B->getRHS());
553    return addStmt(B->getLHS());
554  }
555  else if (B->isAssignmentOp()) {
556    if (asc.alwaysAdd()) {
557      autoCreateBlock();
558      AppendStmt(Block, B, asc);
559    }
560
561    Visit(B->getRHS());
562    return Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
563  }
564
565  return VisitStmt(B, asc);
566}
567
568CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
569  if (asc.alwaysAdd()) {
570    autoCreateBlock();
571    AppendStmt(Block, E, asc);
572  }
573  return Block;
574}
575
576CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
577  // "break" is a control-flow statement.  Thus we stop processing the current
578  // block.
579  if (Block && !FinishBlock(Block))
580      return 0;
581
582  // Now create a new block that ends with the break statement.
583  Block = createBlock(false);
584  Block->setTerminator(B);
585
586  // If there is no target for the break, then we are looking at an incomplete
587  // AST.  This means that the CFG cannot be constructed.
588  if (BreakTargetBlock)
589    AddSuccessor(Block, BreakTargetBlock);
590  else
591    badCFG = true;
592
593
594  return Block;
595}
596
597static bool CanThrow(Expr *E) {
598  QualType Ty = E->getType();
599  if (Ty->isFunctionPointerType())
600    Ty = Ty->getAs<PointerType>()->getPointeeType();
601  else if (Ty->isBlockPointerType())
602    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
603
604  const FunctionType *FT = Ty->getAs<FunctionType>();
605  if (FT) {
606    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
607      if (Proto->hasEmptyExceptionSpec())
608        return false;
609  }
610  return true;
611}
612
613CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
614  // If this is a call to a no-return function, this stops the block here.
615  bool NoReturn = false;
616  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
617    NoReturn = true;
618  }
619
620  bool AddEHEdge = false;
621
622  // Languages without exceptions are assumed to not throw.
623  if (Context->getLangOptions().Exceptions) {
624    if (AddEHEdges)
625      AddEHEdge = true;
626  }
627
628  if (FunctionDecl *FD = C->getDirectCallee()) {
629    if (FD->hasAttr<NoReturnAttr>())
630      NoReturn = true;
631    if (FD->hasAttr<NoThrowAttr>())
632      AddEHEdge = false;
633  }
634
635  if (!CanThrow(C->getCallee()))
636    AddEHEdge = false;
637
638  if (!NoReturn && !AddEHEdge) {
639    if (asc.asLValue())
640      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
641    else
642      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
643  }
644
645  if (Block) {
646    Succ = Block;
647    if (!FinishBlock(Block))
648      return 0;
649  }
650
651  Block = createBlock(!NoReturn);
652  AppendStmt(Block, C, asc);
653
654  if (NoReturn) {
655    // Wire this to the exit block directly.
656    AddSuccessor(Block, &cfg->getExit());
657  }
658  if (AddEHEdge) {
659    // Add exceptional edges.
660    if (TryTerminatedBlock)
661      AddSuccessor(Block, TryTerminatedBlock);
662    else
663      AddSuccessor(Block, &cfg->getExit());
664  }
665
666  return VisitChildren(C);
667}
668
669CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
670                                      AddStmtChoice asc) {
671  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
672  AppendStmt(ConfluenceBlock, C, asc);
673  if (!FinishBlock(ConfluenceBlock))
674    return 0;
675
676  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
677                       : AddStmtChoice::AlwaysAdd;
678
679  Succ = ConfluenceBlock;
680  Block = NULL;
681  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
682  if (!FinishBlock(LHSBlock))
683    return 0;
684
685  Succ = ConfluenceBlock;
686  Block = NULL;
687  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
688  if (!FinishBlock(RHSBlock))
689    return 0;
690
691  Block = createBlock(false);
692  // See if this is a known constant.
693  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
694  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
695  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
696  Block->setTerminator(C);
697  return addStmt(C->getCond());
698}
699
700
701CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
702  EndScope(C);
703
704  CFGBlock* LastBlock = Block;
705
706  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
707       I != E; ++I ) {
708    // If we hit a segment of code just containing ';' (NullStmts), we can
709    // get a null block back.  In such cases, just use the LastBlock
710    if (CFGBlock *newBlock = addStmt(*I))
711      LastBlock = newBlock;
712
713    if (badCFG)
714      return NULL;
715  }
716
717  LastBlock = StartScope(C, LastBlock);
718
719  return LastBlock;
720}
721
722CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
723                                               AddStmtChoice asc) {
724  // Create the confluence block that will "merge" the results of the ternary
725  // expression.
726  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
727  AppendStmt(ConfluenceBlock, C, asc);
728  if (!FinishBlock(ConfluenceBlock))
729    return 0;
730
731  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
732                       : AddStmtChoice::AlwaysAdd;
733
734  // Create a block for the LHS expression if there is an LHS expression.  A
735  // GCC extension allows LHS to be NULL, causing the condition to be the
736  // value that is returned instead.
737  //  e.g: x ?: y is shorthand for: x ? x : y;
738  Succ = ConfluenceBlock;
739  Block = NULL;
740  CFGBlock* LHSBlock = NULL;
741  if (C->getLHS()) {
742    LHSBlock = Visit(C->getLHS(), asc);
743    if (!FinishBlock(LHSBlock))
744      return 0;
745    Block = NULL;
746  }
747
748  // Create the block for the RHS expression.
749  Succ = ConfluenceBlock;
750  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
751  if (!FinishBlock(RHSBlock))
752    return 0;
753
754  // Create the block that will contain the condition.
755  Block = createBlock(false);
756
757  // See if this is a known constant.
758  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
759  if (LHSBlock) {
760    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
761  } else {
762    if (KnownVal.isFalse()) {
763      // If we know the condition is false, add NULL as the successor for
764      // the block containing the condition.  In this case, the confluence
765      // block will have just one predecessor.
766      AddSuccessor(Block, 0);
767      assert(ConfluenceBlock->pred_size() == 1);
768    } else {
769      // If we have no LHS expression, add the ConfluenceBlock as a direct
770      // successor for the block containing the condition.  Moreover, we need to
771      // reverse the order of the predecessors in the ConfluenceBlock because
772      // the RHSBlock will have been added to the succcessors already, and we
773      // want the first predecessor to the the block containing the expression
774      // for the case when the ternary expression evaluates to true.
775      AddSuccessor(Block, ConfluenceBlock);
776      assert(ConfluenceBlock->pred_size() == 2);
777      std::reverse(ConfluenceBlock->pred_begin(),
778                   ConfluenceBlock->pred_end());
779    }
780  }
781
782  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
783  Block->setTerminator(C);
784  return addStmt(C->getCond());
785}
786
787CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
788  autoCreateBlock();
789
790  if (DS->isSingleDecl()) {
791    AppendStmt(Block, DS);
792    return VisitDeclSubExpr(DS->getSingleDecl());
793  }
794
795  CFGBlock *B = 0;
796
797  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
798  typedef llvm::SmallVector<Decl*,10> BufTy;
799  BufTy Buf(DS->decl_begin(), DS->decl_end());
800
801  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
802    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
803    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
804               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
805
806    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
807    // automatically freed with the CFG.
808    DeclGroupRef DG(*I);
809    Decl *D = *I;
810    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
811    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
812
813    // Append the fake DeclStmt to block.
814    AppendStmt(Block, DSNew);
815    B = VisitDeclSubExpr(D);
816  }
817
818  return B;
819}
820
821/// VisitDeclSubExpr - Utility method to add block-level expressions for
822///  initializers in Decls.
823CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
824  assert(Block);
825
826  VarDecl *VD = dyn_cast<VarDecl>(D);
827
828  if (!VD)
829    return Block;
830
831  Expr *Init = VD->getInit();
832
833  if (Init) {
834    AddStmtChoice::Kind k =
835      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
836                                       : AddStmtChoice::NotAlwaysAdd;
837    Visit(Init, AddStmtChoice(k));
838  }
839
840  // If the type of VD is a VLA, then we must process its size expressions.
841  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
842       VA = FindVA(VA->getElementType().getTypePtr()))
843    Block = addStmt(VA->getSizeExpr());
844
845  return Block;
846}
847
848CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
849  // We may see an if statement in the middle of a basic block, or it may be the
850  // first statement we are processing.  In either case, we create a new basic
851  // block.  First, we create the blocks for the then...else statements, and
852  // then we create the block containing the if statement.  If we were in the
853  // middle of a block, we stop processing that block.  That block is then the
854  // implicit successor for the "then" and "else" clauses.
855
856  // The block we were proccessing is now finished.  Make it the successor
857  // block.
858  if (Block) {
859    Succ = Block;
860    if (!FinishBlock(Block))
861      return 0;
862  }
863
864  // Process the false branch.
865  CFGBlock* ElseBlock = Succ;
866
867  if (Stmt* Else = I->getElse()) {
868    SaveAndRestore<CFGBlock*> sv(Succ);
869
870    // NULL out Block so that the recursive call to Visit will
871    // create a new basic block.
872    Block = NULL;
873    ElseBlock = addStmt(Else);
874
875    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
876      ElseBlock = sv.get();
877    else if (Block) {
878      if (!FinishBlock(ElseBlock))
879        return 0;
880    }
881  }
882
883  // Process the true branch.
884  CFGBlock* ThenBlock;
885  {
886    Stmt* Then = I->getThen();
887    assert(Then);
888    SaveAndRestore<CFGBlock*> sv(Succ);
889    Block = NULL;
890    ThenBlock = addStmt(Then);
891
892    if (!ThenBlock) {
893      // We can reach here if the "then" body has all NullStmts.
894      // Create an empty block so we can distinguish between true and false
895      // branches in path-sensitive analyses.
896      ThenBlock = createBlock(false);
897      AddSuccessor(ThenBlock, sv.get());
898    } else if (Block) {
899      if (!FinishBlock(ThenBlock))
900        return 0;
901    }
902  }
903
904  // Now create a new block containing the if statement.
905  Block = createBlock(false);
906
907  // Set the terminator of the new block to the If statement.
908  Block->setTerminator(I);
909
910  // See if this is a known constant.
911  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
912
913  // Now add the successors.
914  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
915  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
916
917  // Add the condition as the last statement in the new block.  This may create
918  // new blocks as the condition may contain control-flow.  Any newly created
919  // blocks will be pointed to be "Block".
920  Block = addStmt(I->getCond());
921
922  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
923  // and the condition variable initialization to the CFG.
924  if (VarDecl *VD = I->getConditionVariable()) {
925    if (Expr *Init = VD->getInit()) {
926      autoCreateBlock();
927      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
928      addStmt(Init);
929    }
930  }
931
932  return Block;
933}
934
935
936CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
937  // If we were in the middle of a block we stop processing that block.
938  //
939  // NOTE: If a "return" appears in the middle of a block, this means that the
940  //       code afterwards is DEAD (unreachable).  We still keep a basic block
941  //       for that code; a simple "mark-and-sweep" from the entry block will be
942  //       able to report such dead blocks.
943  if (Block)
944    FinishBlock(Block);
945
946  // Create the new block.
947  Block = createBlock(false);
948
949  // The Exit block is the only successor.
950  AddSuccessor(Block, &cfg->getExit());
951
952  // Add the return statement to the block.  This may create new blocks if R
953  // contains control-flow (short-circuit operations).
954  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
955}
956
957CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
958  // Get the block of the labeled statement.  Add it to our map.
959  addStmt(L->getSubStmt());
960  CFGBlock* LabelBlock = Block;
961
962  if (!LabelBlock)              // This can happen when the body is empty, i.e.
963    LabelBlock = createBlock(); // scopes that only contains NullStmts.
964
965  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
966  LabelMap[ L ] = LabelBlock;
967
968  // Labels partition blocks, so this is the end of the basic block we were
969  // processing (L is the block's label).  Because this is label (and we have
970  // already processed the substatement) there is no extra control-flow to worry
971  // about.
972  LabelBlock->setLabel(L);
973  if (!FinishBlock(LabelBlock))
974    return 0;
975
976  // We set Block to NULL to allow lazy creation of a new block (if necessary);
977  Block = NULL;
978
979  // This block is now the implicit successor of other blocks.
980  Succ = LabelBlock;
981
982  return LabelBlock;
983}
984
985CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
986  // Goto is a control-flow statement.  Thus we stop processing the current
987  // block and create a new one.
988  if (Block)
989    FinishBlock(Block);
990
991  Block = createBlock(false);
992  Block->setTerminator(G);
993
994  // If we already know the mapping to the label block add the successor now.
995  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
996
997  if (I == LabelMap.end())
998    // We will need to backpatch this block later.
999    BackpatchBlocks.push_back(Block);
1000  else
1001    AddSuccessor(Block, I->second);
1002
1003  return Block;
1004}
1005
1006CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1007  CFGBlock* LoopSuccessor = NULL;
1008
1009  // "for" is a control-flow statement.  Thus we stop processing the current
1010  // block.
1011  if (Block) {
1012    if (!FinishBlock(Block))
1013      return 0;
1014    LoopSuccessor = Block;
1015  } else
1016    LoopSuccessor = Succ;
1017
1018  // Save the current value for the break targets.
1019  // All breaks should go to the code following the loop.
1020  SaveAndRestore<CFGBlock*> save_break(BreakTargetBlock);
1021  BreakTargetBlock = LoopSuccessor;
1022
1023  // Because of short-circuit evaluation, the condition of the loop can span
1024  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1025  // evaluate the condition.
1026  CFGBlock* ExitConditionBlock = createBlock(false);
1027  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1028
1029  // Set the terminator for the "exit" condition block.
1030  ExitConditionBlock->setTerminator(F);
1031
1032  // Now add the actual condition to the condition block.  Because the condition
1033  // itself may contain control-flow, new blocks may be created.
1034  if (Stmt* C = F->getCond()) {
1035    Block = ExitConditionBlock;
1036    EntryConditionBlock = addStmt(C);
1037    assert(Block == EntryConditionBlock);
1038
1039    // If this block contains a condition variable, add both the condition
1040    // variable and initializer to the CFG.
1041    if (VarDecl *VD = F->getConditionVariable()) {
1042      if (Expr *Init = VD->getInit()) {
1043        autoCreateBlock();
1044        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1045        EntryConditionBlock = addStmt(Init);
1046        assert(Block == EntryConditionBlock);
1047      }
1048    }
1049
1050    if (Block) {
1051      if (!FinishBlock(EntryConditionBlock))
1052        return 0;
1053    }
1054  }
1055
1056  // The condition block is the implicit successor for the loop body as well as
1057  // any code above the loop.
1058  Succ = EntryConditionBlock;
1059
1060  // See if this is a known constant.
1061  TryResult KnownVal(true);
1062
1063  if (F->getCond())
1064    KnownVal = TryEvaluateBool(F->getCond());
1065
1066  // Now create the loop body.
1067  {
1068    assert(F->getBody());
1069
1070   // Save the current values for Block, Succ, and continue targets.
1071   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1072      save_continue(ContinueTargetBlock);
1073
1074    // Create a new block to contain the (bottom) of the loop body.
1075    Block = NULL;
1076
1077    if (Stmt* I = F->getInc()) {
1078      // Generate increment code in its own basic block.  This is the target of
1079      // continue statements.
1080      Succ = addStmt(I);
1081    } else {
1082      // No increment code.  Create a special, empty, block that is used as the
1083      // target block for "looping back" to the start of the loop.
1084      assert(Succ == EntryConditionBlock);
1085      Succ = createBlock();
1086    }
1087
1088    // Finish up the increment (or empty) block if it hasn't been already.
1089    if (Block) {
1090      assert(Block == Succ);
1091      if (!FinishBlock(Block))
1092        return 0;
1093      Block = 0;
1094    }
1095
1096    ContinueTargetBlock = Succ;
1097
1098    // The starting block for the loop increment is the block that should
1099    // represent the 'loop target' for looping back to the start of the loop.
1100    ContinueTargetBlock->setLoopTarget(F);
1101
1102    // Now populate the body block, and in the process create new blocks as we
1103    // walk the body of the loop.
1104    CFGBlock* BodyBlock = addStmt(F->getBody());
1105
1106    if (!BodyBlock)
1107      BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;"
1108    else if (Block && !FinishBlock(BodyBlock))
1109      return 0;
1110
1111    // This new body block is a successor to our "exit" condition block.
1112    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1113  }
1114
1115  // Link up the condition block with the code that follows the loop.  (the
1116  // false branch).
1117  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1118
1119  // If the loop contains initialization, create a new block for those
1120  // statements.  This block can also contain statements that precede the loop.
1121  if (Stmt* I = F->getInit()) {
1122    Block = createBlock();
1123    return addStmt(I);
1124  } else {
1125    // There is no loop initialization.  We are thus basically a while loop.
1126    // NULL out Block to force lazy block construction.
1127    Block = NULL;
1128    Succ = EntryConditionBlock;
1129    return EntryConditionBlock;
1130  }
1131}
1132
1133CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1134  if (asc.alwaysAdd()) {
1135    autoCreateBlock();
1136    AppendStmt(Block, M, asc);
1137  }
1138  return Visit(M->getBase(),
1139               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1140                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1141}
1142
1143CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1144  // Objective-C fast enumeration 'for' statements:
1145  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1146  //
1147  //  for ( Type newVariable in collection_expression ) { statements }
1148  //
1149  //  becomes:
1150  //
1151  //   prologue:
1152  //     1. collection_expression
1153  //     T. jump to loop_entry
1154  //   loop_entry:
1155  //     1. side-effects of element expression
1156  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1157  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1158  //   TB:
1159  //     statements
1160  //     T. jump to loop_entry
1161  //   FB:
1162  //     what comes after
1163  //
1164  //  and
1165  //
1166  //  Type existingItem;
1167  //  for ( existingItem in expression ) { statements }
1168  //
1169  //  becomes:
1170  //
1171  //   the same with newVariable replaced with existingItem; the binding works
1172  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1173  //   a DeclStmt and the other returns a DeclRefExpr.
1174  //
1175
1176  CFGBlock* LoopSuccessor = 0;
1177
1178  if (Block) {
1179    if (!FinishBlock(Block))
1180      return 0;
1181    LoopSuccessor = Block;
1182    Block = 0;
1183  } else
1184    LoopSuccessor = Succ;
1185
1186  // Build the condition blocks.
1187  CFGBlock* ExitConditionBlock = createBlock(false);
1188  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1189
1190  // Set the terminator for the "exit" condition block.
1191  ExitConditionBlock->setTerminator(S);
1192
1193  // The last statement in the block should be the ObjCForCollectionStmt, which
1194  // performs the actual binding to 'element' and determines if there are any
1195  // more items in the collection.
1196  AppendStmt(ExitConditionBlock, S);
1197  Block = ExitConditionBlock;
1198
1199  // Walk the 'element' expression to see if there are any side-effects.  We
1200  // generate new blocks as necesary.  We DON'T add the statement by default to
1201  // the CFG unless it contains control-flow.
1202  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1203  if (Block) {
1204    if (!FinishBlock(EntryConditionBlock))
1205      return 0;
1206    Block = 0;
1207  }
1208
1209  // The condition block is the implicit successor for the loop body as well as
1210  // any code above the loop.
1211  Succ = EntryConditionBlock;
1212
1213  // Now create the true branch.
1214  {
1215    // Save the current values for Succ, continue and break targets.
1216    SaveAndRestore<CFGBlock*> save_Succ(Succ),
1217      save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
1218
1219    BreakTargetBlock = LoopSuccessor;
1220    ContinueTargetBlock = EntryConditionBlock;
1221
1222    CFGBlock* BodyBlock = addStmt(S->getBody());
1223
1224    if (!BodyBlock)
1225      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1226    else if (Block) {
1227      if (!FinishBlock(BodyBlock))
1228        return 0;
1229    }
1230
1231    // This new body block is a successor to our "exit" condition block.
1232    AddSuccessor(ExitConditionBlock, BodyBlock);
1233  }
1234
1235  // Link up the condition block with the code that follows the loop.
1236  // (the false branch).
1237  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1238
1239  // Now create a prologue block to contain the collection expression.
1240  Block = createBlock();
1241  return addStmt(S->getCollection());
1242}
1243
1244CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1245  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1246
1247  // Inline the body.
1248  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1249
1250  // The sync body starts its own basic block.  This makes it a little easier
1251  // for diagnostic clients.
1252  if (SyncBlock) {
1253    if (!FinishBlock(SyncBlock))
1254      return 0;
1255
1256    Block = 0;
1257    Succ = SyncBlock;
1258  }
1259
1260  // Inline the sync expression.
1261  return addStmt(S->getSynchExpr());
1262}
1263
1264CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1265  // FIXME
1266  return NYS();
1267}
1268
1269CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1270  CFGBlock* LoopSuccessor = NULL;
1271
1272  // "while" is a control-flow statement.  Thus we stop processing the current
1273  // block.
1274  if (Block) {
1275    if (!FinishBlock(Block))
1276      return 0;
1277    LoopSuccessor = Block;
1278  } else
1279    LoopSuccessor = Succ;
1280
1281  // Because of short-circuit evaluation, the condition of the loop can span
1282  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1283  // evaluate the condition.
1284  CFGBlock* ExitConditionBlock = createBlock(false);
1285  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1286
1287  // Set the terminator for the "exit" condition block.
1288  ExitConditionBlock->setTerminator(W);
1289
1290  // Now add the actual condition to the condition block.  Because the condition
1291  // itself may contain control-flow, new blocks may be created.  Thus we update
1292  // "Succ" after adding the condition.
1293  if (Stmt* C = W->getCond()) {
1294    Block = ExitConditionBlock;
1295    EntryConditionBlock = addStmt(C);
1296    assert(Block == EntryConditionBlock);
1297
1298    // If this block contains a condition variable, add both the condition
1299    // variable and initializer to the CFG.
1300    if (VarDecl *VD = W->getConditionVariable()) {
1301      if (Expr *Init = VD->getInit()) {
1302        autoCreateBlock();
1303        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1304        EntryConditionBlock = addStmt(Init);
1305        assert(Block == EntryConditionBlock);
1306      }
1307    }
1308
1309    if (Block) {
1310      if (!FinishBlock(EntryConditionBlock))
1311        return 0;
1312    }
1313  }
1314
1315  // The condition block is the implicit successor for the loop body as well as
1316  // any code above the loop.
1317  Succ = EntryConditionBlock;
1318
1319  // See if this is a known constant.
1320  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1321
1322  // Process the loop body.
1323  {
1324    assert(W->getBody());
1325
1326    // Save the current values for Block, Succ, and continue and break targets
1327    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1328                              save_continue(ContinueTargetBlock),
1329                              save_break(BreakTargetBlock);
1330
1331    // Create an empty block to represent the transition block for looping back
1332    // to the head of the loop.
1333    Block = 0;
1334    assert(Succ == EntryConditionBlock);
1335    Succ = createBlock();
1336    Succ->setLoopTarget(W);
1337    ContinueTargetBlock = Succ;
1338
1339    // All breaks should go to the code following the loop.
1340    BreakTargetBlock = LoopSuccessor;
1341
1342    // NULL out Block to force lazy instantiation of blocks for the body.
1343    Block = NULL;
1344
1345    // Create the body.  The returned block is the entry to the loop body.
1346    CFGBlock* BodyBlock = addStmt(W->getBody());
1347
1348    if (!BodyBlock)
1349      BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;"
1350    else if (Block) {
1351      if (!FinishBlock(BodyBlock))
1352        return 0;
1353    }
1354
1355    // Add the loop body entry as a successor to the condition.
1356    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1357  }
1358
1359  // Link up the condition block with the code that follows the loop.  (the
1360  // false branch).
1361  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1362
1363  // There can be no more statements in the condition block since we loop back
1364  // to this block.  NULL out Block to force lazy creation of another block.
1365  Block = NULL;
1366
1367  // Return the condition block, which is the dominating block for the loop.
1368  Succ = EntryConditionBlock;
1369  return EntryConditionBlock;
1370}
1371
1372
1373CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1374  // FIXME: For now we pretend that @catch and the code it contains does not
1375  //  exit.
1376  return Block;
1377}
1378
1379CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1380  // FIXME: This isn't complete.  We basically treat @throw like a return
1381  //  statement.
1382
1383  // If we were in the middle of a block we stop processing that block.
1384  if (Block && !FinishBlock(Block))
1385    return 0;
1386
1387  // Create the new block.
1388  Block = createBlock(false);
1389
1390  // The Exit block is the only successor.
1391  AddSuccessor(Block, &cfg->getExit());
1392
1393  // Add the statement to the block.  This may create new blocks if S contains
1394  // control-flow (short-circuit operations).
1395  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1396}
1397
1398CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1399  // If we were in the middle of a block we stop processing that block.
1400  if (Block && !FinishBlock(Block))
1401    return 0;
1402
1403  // Create the new block.
1404  Block = createBlock(false);
1405
1406  if (TryTerminatedBlock)
1407    // The current try statement is the only successor.
1408    AddSuccessor(Block, TryTerminatedBlock);
1409  else
1410    // otherwise the Exit block is the only successor.
1411    AddSuccessor(Block, &cfg->getExit());
1412
1413  // Add the statement to the block.  This may create new blocks if S contains
1414  // control-flow (short-circuit operations).
1415  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1416}
1417
1418CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1419  CFGBlock* LoopSuccessor = NULL;
1420
1421  // "do...while" is a control-flow statement.  Thus we stop processing the
1422  // current block.
1423  if (Block) {
1424    if (!FinishBlock(Block))
1425      return 0;
1426    LoopSuccessor = Block;
1427  } else
1428    LoopSuccessor = Succ;
1429
1430  // Because of short-circuit evaluation, the condition of the loop can span
1431  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1432  // evaluate the condition.
1433  CFGBlock* ExitConditionBlock = createBlock(false);
1434  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1435
1436  // Set the terminator for the "exit" condition block.
1437  ExitConditionBlock->setTerminator(D);
1438
1439  // Now add the actual condition to the condition block.  Because the condition
1440  // itself may contain control-flow, new blocks may be created.
1441  if (Stmt* C = D->getCond()) {
1442    Block = ExitConditionBlock;
1443    EntryConditionBlock = addStmt(C);
1444    if (Block) {
1445      if (!FinishBlock(EntryConditionBlock))
1446        return 0;
1447    }
1448  }
1449
1450  // The condition block is the implicit successor for the loop body.
1451  Succ = EntryConditionBlock;
1452
1453  // See if this is a known constant.
1454  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1455
1456  // Process the loop body.
1457  CFGBlock* BodyBlock = NULL;
1458  {
1459    assert(D->getBody());
1460
1461    // Save the current values for Block, Succ, and continue and break targets
1462    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1463      save_continue(ContinueTargetBlock),
1464      save_break(BreakTargetBlock);
1465
1466    // All continues within this loop should go to the condition block
1467    ContinueTargetBlock = EntryConditionBlock;
1468
1469    // All breaks should go to the code following the loop.
1470    BreakTargetBlock = LoopSuccessor;
1471
1472    // NULL out Block to force lazy instantiation of blocks for the body.
1473    Block = NULL;
1474
1475    // Create the body.  The returned block is the entry to the loop body.
1476    BodyBlock = addStmt(D->getBody());
1477
1478    if (!BodyBlock)
1479      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1480    else if (Block) {
1481      if (!FinishBlock(BodyBlock))
1482        return 0;
1483    }
1484
1485    if (!KnownVal.isFalse()) {
1486      // Add an intermediate block between the BodyBlock and the
1487      // ExitConditionBlock to represent the "loop back" transition.  Create an
1488      // empty block to represent the transition block for looping back to the
1489      // head of the loop.
1490      // FIXME: Can we do this more efficiently without adding another block?
1491      Block = NULL;
1492      Succ = BodyBlock;
1493      CFGBlock *LoopBackBlock = createBlock();
1494      LoopBackBlock->setLoopTarget(D);
1495
1496      // Add the loop body entry as a successor to the condition.
1497      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1498    }
1499    else
1500      AddSuccessor(ExitConditionBlock, NULL);
1501  }
1502
1503  // Link up the condition block with the code that follows the loop.
1504  // (the false branch).
1505  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1506
1507  // There can be no more statements in the body block(s) since we loop back to
1508  // the body.  NULL out Block to force lazy creation of another block.
1509  Block = NULL;
1510
1511  // Return the loop body, which is the dominating block for the loop.
1512  Succ = BodyBlock;
1513  return BodyBlock;
1514}
1515
1516CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1517  // "continue" is a control-flow statement.  Thus we stop processing the
1518  // current block.
1519  if (Block && !FinishBlock(Block))
1520      return 0;
1521
1522  // Now create a new block that ends with the continue statement.
1523  Block = createBlock(false);
1524  Block->setTerminator(C);
1525
1526  // If there is no target for the continue, then we are looking at an
1527  // incomplete AST.  This means the CFG cannot be constructed.
1528  if (ContinueTargetBlock)
1529    AddSuccessor(Block, ContinueTargetBlock);
1530  else
1531    badCFG = true;
1532
1533  return Block;
1534}
1535
1536CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1537                                             AddStmtChoice asc) {
1538
1539  if (asc.alwaysAdd()) {
1540    autoCreateBlock();
1541    AppendStmt(Block, E);
1542  }
1543
1544  // VLA types have expressions that must be evaluated.
1545  if (E->isArgumentType()) {
1546    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1547         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1548      addStmt(VA->getSizeExpr());
1549  }
1550
1551  return Block;
1552}
1553
1554/// VisitStmtExpr - Utility method to handle (nested) statement
1555///  expressions (a GCC extension).
1556CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1557  if (asc.alwaysAdd()) {
1558    autoCreateBlock();
1559    AppendStmt(Block, SE);
1560  }
1561  return VisitCompoundStmt(SE->getSubStmt());
1562}
1563
1564CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1565  // "switch" is a control-flow statement.  Thus we stop processing the current
1566  // block.
1567  CFGBlock* SwitchSuccessor = NULL;
1568
1569  if (Block) {
1570    if (!FinishBlock(Block))
1571      return 0;
1572    SwitchSuccessor = Block;
1573  } else SwitchSuccessor = Succ;
1574
1575  // Save the current "switch" context.
1576  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1577                            save_break(BreakTargetBlock),
1578                            save_default(DefaultCaseBlock);
1579
1580  // Set the "default" case to be the block after the switch statement.  If the
1581  // switch statement contains a "default:", this value will be overwritten with
1582  // the block for that code.
1583  DefaultCaseBlock = SwitchSuccessor;
1584
1585  // Create a new block that will contain the switch statement.
1586  SwitchTerminatedBlock = createBlock(false);
1587
1588  // Now process the switch body.  The code after the switch is the implicit
1589  // successor.
1590  Succ = SwitchSuccessor;
1591  BreakTargetBlock = SwitchSuccessor;
1592
1593  // When visiting the body, the case statements should automatically get linked
1594  // up to the switch.  We also don't keep a pointer to the body, since all
1595  // control-flow from the switch goes to case/default statements.
1596  assert(Terminator->getBody() && "switch must contain a non-NULL body");
1597  Block = NULL;
1598  CFGBlock *BodyBlock = addStmt(Terminator->getBody());
1599  if (Block) {
1600    if (!FinishBlock(BodyBlock))
1601      return 0;
1602  }
1603
1604  // If we have no "default:" case, the default transition is to the code
1605  // following the switch body.
1606  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1607
1608  // Add the terminator and condition in the switch block.
1609  SwitchTerminatedBlock->setTerminator(Terminator);
1610  assert(Terminator->getCond() && "switch condition must be non-NULL");
1611  Block = SwitchTerminatedBlock;
1612  Block = addStmt(Terminator->getCond());
1613
1614  // Finally, if the SwitchStmt contains a condition variable, add both the
1615  // SwitchStmt and the condition variable initialization to the CFG.
1616  if (VarDecl *VD = Terminator->getConditionVariable()) {
1617    if (Expr *Init = VD->getInit()) {
1618      autoCreateBlock();
1619      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1620      addStmt(Init);
1621    }
1622  }
1623
1624  return Block;
1625}
1626
1627CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1628  // CaseStmts are essentially labels, so they are the first statement in a
1629  // block.
1630  CFGBlock *TopBlock = 0, *LastBlock = 0;
1631
1632  if (Stmt *Sub = CS->getSubStmt()) {
1633    // For deeply nested chains of CaseStmts, instead of doing a recursion
1634    // (which can blow out the stack), manually unroll and create blocks
1635    // along the way.
1636    while (isa<CaseStmt>(Sub)) {
1637      CFGBlock *CurrentBlock = createBlock(false);
1638      CurrentBlock->setLabel(CS);
1639
1640      if (TopBlock)
1641        AddSuccessor(LastBlock, CurrentBlock);
1642      else
1643        TopBlock = CurrentBlock;
1644
1645      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
1646      LastBlock = CurrentBlock;
1647
1648      CS = cast<CaseStmt>(Sub);
1649      Sub = CS->getSubStmt();
1650    }
1651
1652    addStmt(Sub);
1653  }
1654
1655  CFGBlock* CaseBlock = Block;
1656  if (!CaseBlock)
1657    CaseBlock = createBlock();
1658
1659  // Cases statements partition blocks, so this is the top of the basic block we
1660  // were processing (the "case XXX:" is the label).
1661  CaseBlock->setLabel(CS);
1662
1663  if (!FinishBlock(CaseBlock))
1664    return 0;
1665
1666  // Add this block to the list of successors for the block with the switch
1667  // statement.
1668  assert(SwitchTerminatedBlock);
1669  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1670
1671  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1672  Block = NULL;
1673
1674  if (TopBlock) {
1675    AddSuccessor(LastBlock, CaseBlock);
1676    Succ = TopBlock;
1677  }
1678  else {
1679    // This block is now the implicit successor of other blocks.
1680    Succ = CaseBlock;
1681  }
1682
1683  return Succ;
1684}
1685
1686CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1687  if (Terminator->getSubStmt())
1688    addStmt(Terminator->getSubStmt());
1689
1690  DefaultCaseBlock = Block;
1691
1692  if (!DefaultCaseBlock)
1693    DefaultCaseBlock = createBlock();
1694
1695  // Default statements partition blocks, so this is the top of the basic block
1696  // we were processing (the "default:" is the label).
1697  DefaultCaseBlock->setLabel(Terminator);
1698
1699  if (!FinishBlock(DefaultCaseBlock))
1700    return 0;
1701
1702  // Unlike case statements, we don't add the default block to the successors
1703  // for the switch statement immediately.  This is done when we finish
1704  // processing the switch statement.  This allows for the default case
1705  // (including a fall-through to the code after the switch statement) to always
1706  // be the last successor of a switch-terminated block.
1707
1708  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1709  Block = NULL;
1710
1711  // This block is now the implicit successor of other blocks.
1712  Succ = DefaultCaseBlock;
1713
1714  return DefaultCaseBlock;
1715}
1716
1717CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
1718  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
1719  // current block.
1720  CFGBlock* TrySuccessor = NULL;
1721
1722  if (Block) {
1723    if (!FinishBlock(Block))
1724      return 0;
1725    TrySuccessor = Block;
1726  } else TrySuccessor = Succ;
1727
1728  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
1729
1730  // Create a new block that will contain the try statement.
1731  CFGBlock *NewTryTerminatedBlock = createBlock(false);
1732  // Add the terminator in the try block.
1733  NewTryTerminatedBlock->setTerminator(Terminator);
1734
1735  bool HasCatchAll = false;
1736  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
1737    // The code after the try is the implicit successor.
1738    Succ = TrySuccessor;
1739    CXXCatchStmt *CS = Terminator->getHandler(h);
1740    if (CS->getExceptionDecl() == 0) {
1741      HasCatchAll = true;
1742    }
1743    Block = NULL;
1744    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
1745    if (CatchBlock == 0)
1746      return 0;
1747    // Add this block to the list of successors for the block with the try
1748    // statement.
1749    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
1750  }
1751  if (!HasCatchAll) {
1752    if (PrevTryTerminatedBlock)
1753      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
1754    else
1755      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
1756  }
1757
1758  // The code after the try is the implicit successor.
1759  Succ = TrySuccessor;
1760
1761  // Save the current "try" context.
1762  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
1763  TryTerminatedBlock = NewTryTerminatedBlock;
1764
1765  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
1766  Block = NULL;
1767  Block = addStmt(Terminator->getTryBlock());
1768  return Block;
1769}
1770
1771CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
1772  // CXXCatchStmt are treated like labels, so they are the first statement in a
1773  // block.
1774
1775  if (CS->getHandlerBlock())
1776    addStmt(CS->getHandlerBlock());
1777
1778  CFGBlock* CatchBlock = Block;
1779  if (!CatchBlock)
1780    CatchBlock = createBlock();
1781
1782  CatchBlock->setLabel(CS);
1783
1784  if (!FinishBlock(CatchBlock))
1785    return 0;
1786
1787  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1788  Block = NULL;
1789
1790  return CatchBlock;
1791}
1792
1793CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
1794                                             AddStmtChoice asc) {
1795  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1796                                         : AddStmtChoice::AlwaysAdd;
1797  autoCreateBlock();
1798  AppendStmt(Block, C, AddStmtChoice(K));
1799  return VisitChildren(C);
1800}
1801
1802CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1803  // Lazily create the indirect-goto dispatch block if there isn't one already.
1804  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
1805
1806  if (!IBlock) {
1807    IBlock = createBlock(false);
1808    cfg->setIndirectGotoBlock(IBlock);
1809  }
1810
1811  // IndirectGoto is a control-flow statement.  Thus we stop processing the
1812  // current block and create a new one.
1813  if (Block && !FinishBlock(Block))
1814    return 0;
1815
1816  Block = createBlock(false);
1817  Block->setTerminator(I);
1818  AddSuccessor(Block, IBlock);
1819  return addStmt(I->getTarget());
1820}
1821
1822} // end anonymous namespace
1823
1824/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
1825///  no successors or predecessors.  If this is the first block created in the
1826///  CFG, it is automatically set to be the Entry and Exit of the CFG.
1827CFGBlock* CFG::createBlock() {
1828  bool first_block = begin() == end();
1829
1830  // Create the block.
1831  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
1832  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
1833  Blocks.push_back(Mem, BlkBVC);
1834
1835  // If this is the first block, set it as the Entry and Exit.
1836  if (first_block)
1837    Entry = Exit = &back();
1838
1839  // Return the block.
1840  return &back();
1841}
1842
1843/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
1844///  CFG is returned to the caller.
1845CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
1846                   bool PruneTriviallyFalse,
1847                   bool AddEHEdges, bool AddScopes) {
1848  CFGBuilder Builder;
1849  return Builder.buildCFG(D, Statement, C, PruneTriviallyFalse,
1850                          AddEHEdges, AddScopes);
1851}
1852
1853//===----------------------------------------------------------------------===//
1854// CFG: Queries for BlkExprs.
1855//===----------------------------------------------------------------------===//
1856
1857namespace {
1858  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
1859}
1860
1861static void FindSubExprAssignments(Stmt *S,
1862                                   llvm::SmallPtrSet<Expr*,50>& Set) {
1863  if (!S)
1864    return;
1865
1866  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
1867    Stmt *child = *I;
1868    if (!child)
1869      continue;
1870
1871    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
1872      if (B->isAssignmentOp()) Set.insert(B);
1873
1874    FindSubExprAssignments(child, Set);
1875  }
1876}
1877
1878static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
1879  BlkExprMapTy* M = new BlkExprMapTy();
1880
1881  // Look for assignments that are used as subexpressions.  These are the only
1882  // assignments that we want to *possibly* register as a block-level
1883  // expression.  Basically, if an assignment occurs both in a subexpression and
1884  // at the block-level, it is a block-level expression.
1885  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
1886
1887  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
1888    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1889      FindSubExprAssignments(*BI, SubExprAssignments);
1890
1891  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
1892
1893    // Iterate over the statements again on identify the Expr* and Stmt* at the
1894    // block-level that are block-level expressions.
1895
1896    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1897      if (Expr* Exp = dyn_cast<Expr>(*BI)) {
1898
1899        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
1900          // Assignment expressions that are not nested within another
1901          // expression are really "statements" whose value is never used by
1902          // another expression.
1903          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
1904            continue;
1905        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
1906          // Special handling for statement expressions.  The last statement in
1907          // the statement expression is also a block-level expr.
1908          const CompoundStmt* C = Terminator->getSubStmt();
1909          if (!C->body_empty()) {
1910            unsigned x = M->size();
1911            (*M)[C->body_back()] = x;
1912          }
1913        }
1914
1915        unsigned x = M->size();
1916        (*M)[Exp] = x;
1917      }
1918
1919    // Look at terminators.  The condition is a block-level expression.
1920
1921    Stmt* S = (*I)->getTerminatorCondition();
1922
1923    if (S && M->find(S) == M->end()) {
1924        unsigned x = M->size();
1925        (*M)[S] = x;
1926    }
1927  }
1928
1929  return M;
1930}
1931
1932CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
1933  assert(S != NULL);
1934  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
1935
1936  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
1937  BlkExprMapTy::iterator I = M->find(S);
1938  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
1939}
1940
1941unsigned CFG::getNumBlkExprs() {
1942  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
1943    return M->size();
1944  else {
1945    // We assume callers interested in the number of BlkExprs will want
1946    // the map constructed if it doesn't already exist.
1947    BlkExprMap = (void*) PopulateBlkExprMap(*this);
1948    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
1949  }
1950}
1951
1952//===----------------------------------------------------------------------===//
1953// Cleanup: CFG dstor.
1954//===----------------------------------------------------------------------===//
1955
1956CFG::~CFG() {
1957  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
1958}
1959
1960//===----------------------------------------------------------------------===//
1961// CFG pretty printing
1962//===----------------------------------------------------------------------===//
1963
1964namespace {
1965
1966class StmtPrinterHelper : public PrinterHelper  {
1967  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
1968  StmtMapTy StmtMap;
1969  signed CurrentBlock;
1970  unsigned CurrentStmt;
1971  const LangOptions &LangOpts;
1972public:
1973
1974  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
1975    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
1976    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
1977      unsigned j = 1;
1978      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
1979           BI != BEnd; ++BI, ++j )
1980        StmtMap[*BI] = std::make_pair((*I)->getBlockID(),j);
1981      }
1982  }
1983
1984  virtual ~StmtPrinterHelper() {}
1985
1986  const LangOptions &getLangOpts() const { return LangOpts; }
1987  void setBlockID(signed i) { CurrentBlock = i; }
1988  void setStmtID(unsigned i) { CurrentStmt = i; }
1989
1990  virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
1991
1992    StmtMapTy::iterator I = StmtMap.find(Terminator);
1993
1994    if (I == StmtMap.end())
1995      return false;
1996
1997    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
1998                          && I->second.second == CurrentStmt) {
1999      return false;
2000    }
2001
2002    OS << "[B" << I->second.first << "." << I->second.second << "]";
2003    return true;
2004  }
2005};
2006} // end anonymous namespace
2007
2008
2009namespace {
2010class CFGBlockTerminatorPrint
2011  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2012
2013  llvm::raw_ostream& OS;
2014  StmtPrinterHelper* Helper;
2015  PrintingPolicy Policy;
2016public:
2017  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2018                          const PrintingPolicy &Policy)
2019    : OS(os), Helper(helper), Policy(Policy) {}
2020
2021  void VisitIfStmt(IfStmt* I) {
2022    OS << "if ";
2023    I->getCond()->printPretty(OS,Helper,Policy);
2024  }
2025
2026  // Default case.
2027  void VisitStmt(Stmt* Terminator) {
2028    Terminator->printPretty(OS, Helper, Policy);
2029  }
2030
2031  void VisitForStmt(ForStmt* F) {
2032    OS << "for (" ;
2033    if (F->getInit())
2034      OS << "...";
2035    OS << "; ";
2036    if (Stmt* C = F->getCond())
2037      C->printPretty(OS, Helper, Policy);
2038    OS << "; ";
2039    if (F->getInc())
2040      OS << "...";
2041    OS << ")";
2042  }
2043
2044  void VisitWhileStmt(WhileStmt* W) {
2045    OS << "while " ;
2046    if (Stmt* C = W->getCond())
2047      C->printPretty(OS, Helper, Policy);
2048  }
2049
2050  void VisitDoStmt(DoStmt* D) {
2051    OS << "do ... while ";
2052    if (Stmt* C = D->getCond())
2053      C->printPretty(OS, Helper, Policy);
2054  }
2055
2056  void VisitSwitchStmt(SwitchStmt* Terminator) {
2057    OS << "switch ";
2058    Terminator->getCond()->printPretty(OS, Helper, Policy);
2059  }
2060
2061  void VisitCXXTryStmt(CXXTryStmt* CS) {
2062    OS << "try ...";
2063  }
2064
2065  void VisitConditionalOperator(ConditionalOperator* C) {
2066    C->getCond()->printPretty(OS, Helper, Policy);
2067    OS << " ? ... : ...";
2068  }
2069
2070  void VisitChooseExpr(ChooseExpr* C) {
2071    OS << "__builtin_choose_expr( ";
2072    C->getCond()->printPretty(OS, Helper, Policy);
2073    OS << " )";
2074  }
2075
2076  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2077    OS << "goto *";
2078    I->getTarget()->printPretty(OS, Helper, Policy);
2079  }
2080
2081  void VisitBinaryOperator(BinaryOperator* B) {
2082    if (!B->isLogicalOp()) {
2083      VisitExpr(B);
2084      return;
2085    }
2086
2087    B->getLHS()->printPretty(OS, Helper, Policy);
2088
2089    switch (B->getOpcode()) {
2090      case BO_LOr:
2091        OS << " || ...";
2092        return;
2093      case BO_LAnd:
2094        OS << " && ...";
2095        return;
2096      default:
2097        assert(false && "Invalid logical operator.");
2098    }
2099  }
2100
2101  void VisitExpr(Expr* E) {
2102    E->printPretty(OS, Helper, Policy);
2103  }
2104};
2105} // end anonymous namespace
2106
2107
2108static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2109                       const CFGElement &E) {
2110
2111  if (E.asStartScope()) {
2112    OS << "start scope\n";
2113    return;
2114  }
2115  if (E.asEndScope()) {
2116    OS << "end scope\n";
2117    return;
2118  }
2119
2120  Stmt *S = E;
2121
2122  if (Helper) {
2123    // special printing for statement-expressions.
2124    if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2125      CompoundStmt* Sub = SE->getSubStmt();
2126
2127      if (Sub->child_begin() != Sub->child_end()) {
2128        OS << "({ ... ; ";
2129        Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2130        OS << " })\n";
2131        return;
2132      }
2133    }
2134
2135    // special printing for comma expressions.
2136    if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2137      if (B->getOpcode() == BO_Comma) {
2138        OS << "... , ";
2139        Helper->handledStmt(B->getRHS(),OS);
2140        OS << '\n';
2141        return;
2142      }
2143    }
2144  }
2145
2146  S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2147
2148  if (isa<CXXOperatorCallExpr>(S)) {
2149    OS << " (OperatorCall)";
2150  }
2151  else if (isa<CXXBindTemporaryExpr>(S)) {
2152    OS << " (BindTemporary)";
2153  }
2154
2155
2156  // Expressions need a newline.
2157  if (isa<Expr>(S))
2158    OS << '\n';
2159}
2160
2161static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2162                        const CFGBlock& B,
2163                        StmtPrinterHelper* Helper, bool print_edges) {
2164
2165  if (Helper) Helper->setBlockID(B.getBlockID());
2166
2167  // Print the header.
2168  OS << "\n [ B" << B.getBlockID();
2169
2170  if (&B == &cfg->getEntry())
2171    OS << " (ENTRY) ]\n";
2172  else if (&B == &cfg->getExit())
2173    OS << " (EXIT) ]\n";
2174  else if (&B == cfg->getIndirectGotoBlock())
2175    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2176  else
2177    OS << " ]\n";
2178
2179  // Print the label of this block.
2180  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2181
2182    if (print_edges)
2183      OS << "    ";
2184
2185    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2186      OS << L->getName();
2187    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2188      OS << "case ";
2189      C->getLHS()->printPretty(OS, Helper,
2190                               PrintingPolicy(Helper->getLangOpts()));
2191      if (C->getRHS()) {
2192        OS << " ... ";
2193        C->getRHS()->printPretty(OS, Helper,
2194                                 PrintingPolicy(Helper->getLangOpts()));
2195      }
2196    } else if (isa<DefaultStmt>(Label))
2197      OS << "default";
2198    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2199      OS << "catch (";
2200      if (CS->getExceptionDecl())
2201        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2202                                      0);
2203      else
2204        OS << "...";
2205      OS << ")";
2206
2207    } else
2208      assert(false && "Invalid label statement in CFGBlock.");
2209
2210    OS << ":\n";
2211  }
2212
2213  // Iterate through the statements in the block and print them.
2214  unsigned j = 1;
2215
2216  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2217       I != E ; ++I, ++j ) {
2218
2219    // Print the statement # in the basic block and the statement itself.
2220    if (print_edges)
2221      OS << "    ";
2222
2223    OS << llvm::format("%3d", j) << ": ";
2224
2225    if (Helper)
2226      Helper->setStmtID(j);
2227
2228    print_stmt(OS,Helper,*I);
2229  }
2230
2231  // Print the terminator of this block.
2232  if (B.getTerminator()) {
2233    if (print_edges)
2234      OS << "    ";
2235
2236    OS << "  T: ";
2237
2238    if (Helper) Helper->setBlockID(-1);
2239
2240    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2241                                     PrintingPolicy(Helper->getLangOpts()));
2242    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2243    OS << '\n';
2244  }
2245
2246  if (print_edges) {
2247    // Print the predecessors of this block.
2248    OS << "    Predecessors (" << B.pred_size() << "):";
2249    unsigned i = 0;
2250
2251    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2252         I != E; ++I, ++i) {
2253
2254      if (i == 8 || (i-8) == 0)
2255        OS << "\n     ";
2256
2257      OS << " B" << (*I)->getBlockID();
2258    }
2259
2260    OS << '\n';
2261
2262    // Print the successors of this block.
2263    OS << "    Successors (" << B.succ_size() << "):";
2264    i = 0;
2265
2266    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2267         I != E; ++I, ++i) {
2268
2269      if (i == 8 || (i-8) % 10 == 0)
2270        OS << "\n    ";
2271
2272      if (*I)
2273        OS << " B" << (*I)->getBlockID();
2274      else
2275        OS  << " NULL";
2276    }
2277
2278    OS << '\n';
2279  }
2280}
2281
2282
2283/// dump - A simple pretty printer of a CFG that outputs to stderr.
2284void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2285
2286/// print - A simple pretty printer of a CFG that outputs to an ostream.
2287void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2288  StmtPrinterHelper Helper(this, LO);
2289
2290  // Print the entry block.
2291  print_block(OS, this, getEntry(), &Helper, true);
2292
2293  // Iterate through the CFGBlocks and print them one by one.
2294  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2295    // Skip the entry block, because we already printed it.
2296    if (&(**I) == &getEntry() || &(**I) == &getExit())
2297      continue;
2298
2299    print_block(OS, this, **I, &Helper, true);
2300  }
2301
2302  // Print the exit block.
2303  print_block(OS, this, getExit(), &Helper, true);
2304  OS.flush();
2305}
2306
2307/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2308void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2309  print(llvm::errs(), cfg, LO);
2310}
2311
2312/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2313///   Generally this will only be called from CFG::print.
2314void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2315                     const LangOptions &LO) const {
2316  StmtPrinterHelper Helper(cfg, LO);
2317  print_block(OS, cfg, *this, &Helper, true);
2318}
2319
2320/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2321void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2322                               const LangOptions &LO) const {
2323  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2324  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2325}
2326
2327Stmt* CFGBlock::getTerminatorCondition() {
2328
2329  if (!Terminator)
2330    return NULL;
2331
2332  Expr* E = NULL;
2333
2334  switch (Terminator->getStmtClass()) {
2335    default:
2336      break;
2337
2338    case Stmt::ForStmtClass:
2339      E = cast<ForStmt>(Terminator)->getCond();
2340      break;
2341
2342    case Stmt::WhileStmtClass:
2343      E = cast<WhileStmt>(Terminator)->getCond();
2344      break;
2345
2346    case Stmt::DoStmtClass:
2347      E = cast<DoStmt>(Terminator)->getCond();
2348      break;
2349
2350    case Stmt::IfStmtClass:
2351      E = cast<IfStmt>(Terminator)->getCond();
2352      break;
2353
2354    case Stmt::ChooseExprClass:
2355      E = cast<ChooseExpr>(Terminator)->getCond();
2356      break;
2357
2358    case Stmt::IndirectGotoStmtClass:
2359      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2360      break;
2361
2362    case Stmt::SwitchStmtClass:
2363      E = cast<SwitchStmt>(Terminator)->getCond();
2364      break;
2365
2366    case Stmt::ConditionalOperatorClass:
2367      E = cast<ConditionalOperator>(Terminator)->getCond();
2368      break;
2369
2370    case Stmt::BinaryOperatorClass: // '&&' and '||'
2371      E = cast<BinaryOperator>(Terminator)->getLHS();
2372      break;
2373
2374    case Stmt::ObjCForCollectionStmtClass:
2375      return Terminator;
2376  }
2377
2378  return E ? E->IgnoreParens() : NULL;
2379}
2380
2381bool CFGBlock::hasBinaryBranchTerminator() const {
2382
2383  if (!Terminator)
2384    return false;
2385
2386  Expr* E = NULL;
2387
2388  switch (Terminator->getStmtClass()) {
2389    default:
2390      return false;
2391
2392    case Stmt::ForStmtClass:
2393    case Stmt::WhileStmtClass:
2394    case Stmt::DoStmtClass:
2395    case Stmt::IfStmtClass:
2396    case Stmt::ChooseExprClass:
2397    case Stmt::ConditionalOperatorClass:
2398    case Stmt::BinaryOperatorClass:
2399      return true;
2400  }
2401
2402  return E ? E->IgnoreParens() : NULL;
2403}
2404
2405
2406//===----------------------------------------------------------------------===//
2407// CFG Graphviz Visualization
2408//===----------------------------------------------------------------------===//
2409
2410
2411#ifndef NDEBUG
2412static StmtPrinterHelper* GraphHelper;
2413#endif
2414
2415void CFG::viewCFG(const LangOptions &LO) const {
2416#ifndef NDEBUG
2417  StmtPrinterHelper H(this, LO);
2418  GraphHelper = &H;
2419  llvm::ViewGraph(this,"CFG");
2420  GraphHelper = NULL;
2421#endif
2422}
2423
2424namespace llvm {
2425template<>
2426struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2427
2428  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2429
2430  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2431
2432#ifndef NDEBUG
2433    std::string OutSStr;
2434    llvm::raw_string_ostream Out(OutSStr);
2435    print_block(Out,Graph, *Node, GraphHelper, false);
2436    std::string& OutStr = Out.str();
2437
2438    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2439
2440    // Process string output to make it nicer...
2441    for (unsigned i = 0; i != OutStr.length(); ++i)
2442      if (OutStr[i] == '\n') {                            // Left justify
2443        OutStr[i] = '\\';
2444        OutStr.insert(OutStr.begin()+i+1, 'l');
2445      }
2446
2447    return OutStr;
2448#else
2449    return "";
2450#endif
2451  }
2452};
2453} // end namespace llvm
2454