CFG.cpp revision 239a7c42df78abc7fd5611d806d5e199fec994d1
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// LocalScope - Node in tree of local scopes created for C++ implicit
56/// destructor calls generation. It contains list of automatic variables
57/// declared in the scope and link to position in previous scope this scope
58/// began in.
59///
60/// The process of creating local scopes is as follows:
61/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
62/// - Before processing statements in scope (e.g. CompoundStmt) create
63///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
64///   and set CFGBuilder::ScopePos to the end of new scope,
65/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
66///   at this VarDecl,
67/// - For every normal (without jump) end of scope add to CFGBlock destructors
68///   for objects in the current scope,
69/// - For every jump add to CFGBlock destructors for objects
70///   between CFGBuilder::ScopePos and local scope position saved for jump
71///   target. Thanks to C++ restrictions on goto jumps we can be sure that
72///   jump target position will be on the path to root from CFGBuilder::ScopePos
73///   (adding any variable that doesn't need constructor to be called to
74///   LocalScope can break this assumption),
75///
76class LocalScope {
77public:
78  typedef llvm::SmallVector<VarDecl*, 4> AutomaticVarsTy;
79
80  /// const_iterator - Iterates local scope backwards and jumps to previous
81  /// scope on reaching the beginning of currently iterated scope.
82  class const_iterator {
83    const LocalScope* Scope;
84
85    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
86    /// Invalid iterator (with null Scope) has VarIter equal to 0.
87    unsigned VarIter;
88
89  public:
90    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
91    /// Incrementing invalid iterator is allowed and will result in invalid
92    /// iterator.
93    const_iterator()
94        : Scope(NULL), VarIter(0) {}
95
96    /// Create valid iterator. In case when S.Prev is an invalid iterator and
97    /// I is equal to 0, this will create invalid iterator.
98    const_iterator(const LocalScope& S, unsigned I)
99        : Scope(&S), VarIter(I) {
100      // Iterator to "end" of scope is not allowed. Handle it by going up
101      // in scopes tree possibly up to invalid iterator in the root.
102      if (VarIter == 0 && Scope)
103        *this = Scope->Prev;
104    }
105
106    VarDecl* const* operator->() const {
107      assert (Scope && "Dereferencing invalid iterator is not allowed");
108      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
109      return &Scope->Vars[VarIter - 1];
110    }
111    VarDecl* operator*() const {
112      return *this->operator->();
113    }
114
115    const_iterator& operator++() {
116      if (!Scope)
117        return *this;
118
119      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
120      --VarIter;
121      if (VarIter == 0)
122        *this = Scope->Prev;
123      return *this;
124    }
125    const_iterator operator++(int) {
126      const_iterator P = *this;
127      ++*this;
128      return P;
129    }
130
131    bool operator==(const const_iterator& rhs) const {
132      return Scope == rhs.Scope && VarIter == rhs.VarIter;
133    }
134    bool operator!=(const const_iterator& rhs) const {
135      return !(*this == rhs);
136    }
137
138    operator bool() const {
139      return *this != const_iterator();
140    }
141
142    int distance(const_iterator L);
143  };
144
145  friend class const_iterator;
146
147private:
148  /// Automatic variables in order of declaration.
149  AutomaticVarsTy Vars;
150  /// Iterator to variable in previous scope that was declared just before
151  /// begin of this scope.
152  const_iterator Prev;
153
154public:
155  /// Constructs empty scope linked to previous scope in specified place.
156  LocalScope(const_iterator P)
157      : Vars()
158      , Prev(P) {}
159
160  /// Begin of scope in direction of CFG building (backwards).
161  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
162
163  void addVar(VarDecl* VD) {
164    Vars.push_back(VD);
165  }
166};
167
168/// distance - Calculates distance from this to L. L must be reachable from this
169/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
170/// number of scopes between this and L.
171int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
172  int D = 0;
173  const_iterator F = *this;
174  while (F.Scope != L.Scope) {
175    assert (F != const_iterator()
176        && "L iterator is not reachable from F iterator.");
177    D += F.VarIter;
178    F = F.Scope->Prev;
179  }
180  D += F.VarIter - L.VarIter;
181  return D;
182}
183
184/// BlockScopePosPair - Structure for specifying position in CFG during its
185/// build process. It consists of CFGBlock that specifies position in CFG graph
186/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
187struct BlockScopePosPair {
188  BlockScopePosPair() {}
189  BlockScopePosPair(CFGBlock* B, LocalScope::const_iterator S)
190      : Block(B), ScopePos(S) {}
191
192  CFGBlock*                   Block;
193  LocalScope::const_iterator  ScopePos;
194};
195
196/// CFGBuilder - This class implements CFG construction from an AST.
197///   The builder is stateful: an instance of the builder should be used to only
198///   construct a single CFG.
199///
200///   Example usage:
201///
202///     CFGBuilder builder;
203///     CFG* cfg = builder.BuildAST(stmt1);
204///
205///  CFG construction is done via a recursive walk of an AST.  We actually parse
206///  the AST in reverse order so that the successor of a basic block is
207///  constructed prior to its predecessor.  This allows us to nicely capture
208///  implicit fall-throughs without extra basic blocks.
209///
210class CFGBuilder {
211  typedef BlockScopePosPair JumpTarget;
212  typedef BlockScopePosPair JumpSource;
213
214  ASTContext *Context;
215  llvm::OwningPtr<CFG> cfg;
216
217  CFGBlock* Block;
218  CFGBlock* Succ;
219  JumpTarget ContinueJumpTarget;
220  JumpTarget BreakJumpTarget;
221  CFGBlock* SwitchTerminatedBlock;
222  CFGBlock* DefaultCaseBlock;
223  CFGBlock* TryTerminatedBlock;
224
225  // Current position in local scope.
226  LocalScope::const_iterator ScopePos;
227
228  // LabelMap records the mapping from Label expressions to their jump targets.
229  typedef llvm::DenseMap<LabelStmt*, JumpTarget> LabelMapTy;
230  LabelMapTy LabelMap;
231
232  // A list of blocks that end with a "goto" that must be backpatched to their
233  // resolved targets upon completion of CFG construction.
234  typedef std::vector<JumpSource> BackpatchBlocksTy;
235  BackpatchBlocksTy BackpatchBlocks;
236
237  // A list of labels whose address has been taken (for indirect gotos).
238  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
239  LabelSetTy AddressTakenLabels;
240
241  bool badCFG;
242  CFG::BuildOptions BuildOpts;
243
244public:
245  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
246                          Block(NULL), Succ(NULL),
247                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
248                          TryTerminatedBlock(NULL), badCFG(false) {}
249
250  // buildCFG - Used by external clients to construct the CFG.
251  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
252      CFG::BuildOptions BO);
253
254private:
255  // Visitors to walk an AST and construct the CFG.
256  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
257  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
258  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
259  CFGBlock *VisitBreakStmt(BreakStmt *B);
260  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
261  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
262  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
263  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
264  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
265  CFGBlock *VisitCaseStmt(CaseStmt *C);
266  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
267  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
268  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
269  CFGBlock *VisitContinueStmt(ContinueStmt *C);
270  CFGBlock *VisitDeclStmt(DeclStmt *DS);
271  CFGBlock *VisitDeclSubExpr(Decl* D);
272  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
273  CFGBlock *VisitDoStmt(DoStmt *D);
274  CFGBlock *VisitForStmt(ForStmt *F);
275  CFGBlock *VisitGotoStmt(GotoStmt* G);
276  CFGBlock *VisitIfStmt(IfStmt *I);
277  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
278  CFGBlock *VisitLabelStmt(LabelStmt *L);
279  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
280  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
281  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
282  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
283  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
284  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
285  CFGBlock *VisitReturnStmt(ReturnStmt* R);
286  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
287  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
288  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
289  CFGBlock *VisitWhileStmt(WhileStmt *W);
290
291  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
292  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
293  CFGBlock *VisitChildren(Stmt* S);
294
295  // NYS == Not Yet Supported
296  CFGBlock* NYS() {
297    badCFG = true;
298    return Block;
299  }
300
301  void autoCreateBlock() { if (!Block) Block = createBlock(); }
302  CFGBlock *createBlock(bool add_successor = true);
303
304  CFGBlock *addStmt(Stmt *S) {
305    return Visit(S, AddStmtChoice::AlwaysAdd);
306  }
307  CFGBlock *addAutomaticObjDtors(LocalScope::const_iterator B,
308      LocalScope::const_iterator E, Stmt* S);
309
310  // Local scopes creation.
311  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
312
313  LocalScope* addLocalScopeForStmt(Stmt* S, LocalScope* Scope = NULL);
314  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
315  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
316
317  void addLocalScopeAndDtors(Stmt* S);
318
319  // Interface to CFGBlock - adding CFGElements.
320  void AppendStmt(CFGBlock *B, Stmt *S,
321                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
322    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
323  }
324
325  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
326    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
327  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
328      LocalScope::const_iterator E, Stmt* S);
329  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
330      LocalScope::const_iterator B, LocalScope::const_iterator E);
331
332  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
333    B->addSuccessor(S, cfg->getBumpVectorContext());
334  }
335
336  /// TryResult - a class representing a variant over the values
337  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
338  ///  and is used by the CFGBuilder to decide if a branch condition
339  ///  can be decided up front during CFG construction.
340  class TryResult {
341    int X;
342  public:
343    TryResult(bool b) : X(b ? 1 : 0) {}
344    TryResult() : X(-1) {}
345
346    bool isTrue() const { return X == 1; }
347    bool isFalse() const { return X == 0; }
348    bool isKnown() const { return X >= 0; }
349    void negate() {
350      assert(isKnown());
351      X ^= 0x1;
352    }
353  };
354
355  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
356  /// if we can evaluate to a known value, otherwise return -1.
357  TryResult TryEvaluateBool(Expr *S) {
358    if (!BuildOpts.PruneTriviallyFalseEdges)
359      return TryResult();
360
361    Expr::EvalResult Result;
362    if (!S->isTypeDependent() && !S->isValueDependent() &&
363        S->Evaluate(Result, *Context) && Result.Val.isInt())
364      return Result.Val.getInt().getBoolValue();
365
366    return TryResult();
367  }
368};
369
370// FIXME: Add support for dependent-sized array types in C++?
371// Does it even make sense to build a CFG for an uninstantiated template?
372static VariableArrayType* FindVA(Type* t) {
373  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
374    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
375      if (vat->getSizeExpr())
376        return vat;
377
378    t = vt->getElementType().getTypePtr();
379  }
380
381  return 0;
382}
383
384/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
385///  arbitrary statement.  Examples include a single expression or a function
386///  body (compound statement).  The ownership of the returned CFG is
387///  transferred to the caller.  If CFG construction fails, this method returns
388///  NULL.
389CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
390    CFG::BuildOptions BO) {
391
392  Context = C;
393  assert(cfg.get());
394  if (!Statement)
395    return NULL;
396
397  BuildOpts = BO;
398  if (!C->getLangOptions().CPlusPlus)
399    BuildOpts.AddImplicitDtors = false;
400
401  // Create an empty block that will serve as the exit block for the CFG.  Since
402  // this is the first block added to the CFG, it will be implicitly registered
403  // as the exit block.
404  Succ = createBlock();
405  assert(Succ == &cfg->getExit());
406  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
407
408  // Visit the statements and create the CFG.
409  CFGBlock *B = addStmt(Statement);
410
411  if (badCFG)
412    return NULL;
413
414  if (B)
415    Succ = B;
416
417  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
418    // FIXME: Add code for base initializers and member initializers.
419    (void)CD;
420  }
421
422  // Backpatch the gotos whose label -> block mappings we didn't know when we
423  // encountered them.
424  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
425                                   E = BackpatchBlocks.end(); I != E; ++I ) {
426
427    CFGBlock* B = I->Block;
428    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
429    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
430
431    // If there is no target for the goto, then we are looking at an
432    // incomplete AST.  Handle this by not registering a successor.
433    if (LI == LabelMap.end()) continue;
434
435    JumpTarget JT = LI->second;
436    AddSuccessor(B, JT.Block);
437  }
438
439  // Add successors to the Indirect Goto Dispatch block (if we have one).
440  if (CFGBlock* B = cfg->getIndirectGotoBlock())
441    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
442                              E = AddressTakenLabels.end(); I != E; ++I ) {
443
444      // Lookup the target block.
445      LabelMapTy::iterator LI = LabelMap.find(*I);
446
447      // If there is no target block that contains label, then we are looking
448      // at an incomplete AST.  Handle this by not registering a successor.
449      if (LI == LabelMap.end()) continue;
450
451      AddSuccessor(B, LI->second.Block);
452    }
453
454  // Create an empty entry block that has no predecessors.
455  cfg->setEntry(createBlock());
456
457  return cfg.take();
458}
459
460/// createBlock - Used to lazily create blocks that are connected
461///  to the current (global) succcessor.
462CFGBlock* CFGBuilder::createBlock(bool add_successor) {
463  CFGBlock* B = cfg->createBlock();
464  if (add_successor && Succ)
465    AddSuccessor(B, Succ);
466  return B;
467}
468
469/// addAutomaticObjDtors - Add to current block automatic objects destructors
470/// for objects in range of local scope positions. Use S as trigger statement
471/// for destructors.
472CFGBlock* CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
473    LocalScope::const_iterator E, Stmt* S) {
474  if (!BuildOpts.AddImplicitDtors)
475    return Block;
476  if (B == E)
477    return Block;
478
479  autoCreateBlock();
480  appendAutomaticObjDtors(Block, B, E, S);
481  return Block;
482}
483
484/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
485/// way return valid LocalScope object.
486LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
487  if (!Scope) {
488    Scope = cfg->getAllocator().Allocate<LocalScope>();
489    new (Scope) LocalScope(ScopePos);
490  }
491  return Scope;
492}
493
494/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
495/// that should create implicit scope (e.g. if/else substatements). Will reuse
496/// Scope if not NULL.
497LocalScope* CFGBuilder::addLocalScopeForStmt(Stmt* S, LocalScope* Scope) {
498  if (!BuildOpts.AddImplicitDtors)
499    return Scope;
500
501  // For compound statement we will be creating explicit scope.
502  if (CompoundStmt* CS = dyn_cast<CompoundStmt>(S)) {
503    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
504        ; BI != BE; ++BI) {
505      Stmt* SI = *BI;
506      if (LabelStmt* LS = dyn_cast<LabelStmt>(SI))
507        SI = LS->getSubStmt();
508      if (DeclStmt* DS = dyn_cast<DeclStmt>(SI))
509        Scope = addLocalScopeForDeclStmt(DS, Scope);
510    }
511    return Scope;
512  }
513
514  // For any other statement scope will be implicit and as such will be
515  // interesting only for DeclStmt.
516  if (LabelStmt* LS = dyn_cast<LabelStmt>(S))
517    S = LS->getSubStmt();
518  if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
519    Scope = addLocalScopeForDeclStmt(DS, Scope);
520  return Scope;
521}
522
523/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
524/// reuse Scope if not NULL.
525LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
526    LocalScope* Scope) {
527  if (!BuildOpts.AddImplicitDtors)
528    return Scope;
529
530  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
531      ; DI != DE; ++DI) {
532    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
533      Scope = addLocalScopeForVarDecl(VD, Scope);
534  }
535  return Scope;
536}
537
538/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
539/// create add scope for automatic objects and temporary objects bound to
540/// const reference. Will reuse Scope if not NULL.
541LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
542    LocalScope* Scope) {
543  if (!BuildOpts.AddImplicitDtors)
544    return Scope;
545
546  // Check if variable is local.
547  switch (VD->getStorageClass()) {
548  case SC_None:
549  case SC_Auto:
550  case SC_Register:
551    break;
552  default: return Scope;
553  }
554
555  // Check for const references bound to temporary. Set type to pointee.
556  QualType QT = VD->getType();
557  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
558    QT = RT->getPointeeType();
559    if (!QT.isConstQualified())
560      return Scope;
561    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
562      return Scope;
563  }
564
565  // Check if type is a C++ class with non-trivial destructor.
566  const RecordType* RT = QT.getTypePtr()->getAs<RecordType>();
567  if (!RT || cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor())
568    return Scope;
569
570  // Add the variable to scope
571  Scope = createOrReuseLocalScope(Scope);
572  Scope->addVar(VD);
573  ScopePos = Scope->begin();
574  return Scope;
575}
576
577/// addLocalScopeAndDtors - For given statement add local scope for it and
578/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
579void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
580  if (!BuildOpts.AddImplicitDtors)
581    return;
582
583  LocalScope::const_iterator scopeBeginPos = ScopePos;
584  addLocalScopeForStmt(S, NULL);
585  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
586}
587
588/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
589/// automatic storage duration to CFGBlock's elements vector. Insertion will be
590/// performed in place specified with iterator.
591void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
592    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
593  BumpVectorContext& C = cfg->getBumpVectorContext();
594  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
595  while (B != E)
596    I = Blk->insertAutomaticObjDtor(I, *B++, S);
597}
598
599/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
600/// automatic storage duration to CFGBlock's elements vector. Elements will be
601/// appended to physical end of the vector which happens to be logical
602/// beginning.
603void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
604    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
605  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
606}
607
608/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
609/// variables with automatic storage duration to CFGBlock's elements vector.
610/// Elements will be prepended to physical beginning of the vector which
611/// happens to be logical end. Use blocks terminator as statement that specifies
612/// destructors call site.
613void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
614    LocalScope::const_iterator B, LocalScope::const_iterator E) {
615  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
616}
617
618/// Visit - Walk the subtree of a statement and add extra
619///   blocks for ternary operators, &&, and ||.  We also process "," and
620///   DeclStmts (which may contain nested control-flow).
621CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
622tryAgain:
623  if (!S) {
624    badCFG = true;
625    return 0;
626  }
627  switch (S->getStmtClass()) {
628    default:
629      return VisitStmt(S, asc);
630
631    case Stmt::AddrLabelExprClass:
632      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
633
634    case Stmt::BinaryOperatorClass:
635      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
636
637    case Stmt::BlockExprClass:
638      return VisitBlockExpr(cast<BlockExpr>(S), asc);
639
640    case Stmt::BreakStmtClass:
641      return VisitBreakStmt(cast<BreakStmt>(S));
642
643    case Stmt::CallExprClass:
644    case Stmt::CXXOperatorCallExprClass:
645      return VisitCallExpr(cast<CallExpr>(S), asc);
646
647    case Stmt::CaseStmtClass:
648      return VisitCaseStmt(cast<CaseStmt>(S));
649
650    case Stmt::ChooseExprClass:
651      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
652
653    case Stmt::CompoundStmtClass:
654      return VisitCompoundStmt(cast<CompoundStmt>(S));
655
656    case Stmt::ConditionalOperatorClass:
657      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
658
659    case Stmt::ContinueStmtClass:
660      return VisitContinueStmt(cast<ContinueStmt>(S));
661
662    case Stmt::CXXCatchStmtClass:
663      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
664
665    case Stmt::CXXExprWithTemporariesClass: {
666      // FIXME: Handle temporaries.  For now, just visit the subexpression
667      // so we don't artificially create extra blocks.
668      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
669    }
670
671    case Stmt::CXXMemberCallExprClass:
672      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
673
674    case Stmt::CXXThrowExprClass:
675      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
676
677    case Stmt::CXXTryStmtClass:
678      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
679
680    case Stmt::DeclStmtClass:
681      return VisitDeclStmt(cast<DeclStmt>(S));
682
683    case Stmt::DefaultStmtClass:
684      return VisitDefaultStmt(cast<DefaultStmt>(S));
685
686    case Stmt::DoStmtClass:
687      return VisitDoStmt(cast<DoStmt>(S));
688
689    case Stmt::ForStmtClass:
690      return VisitForStmt(cast<ForStmt>(S));
691
692    case Stmt::GotoStmtClass:
693      return VisitGotoStmt(cast<GotoStmt>(S));
694
695    case Stmt::IfStmtClass:
696      return VisitIfStmt(cast<IfStmt>(S));
697
698    case Stmt::IndirectGotoStmtClass:
699      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
700
701    case Stmt::LabelStmtClass:
702      return VisitLabelStmt(cast<LabelStmt>(S));
703
704    case Stmt::MemberExprClass:
705      return VisitMemberExpr(cast<MemberExpr>(S), asc);
706
707    case Stmt::ObjCAtCatchStmtClass:
708      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
709
710    case Stmt::ObjCAtSynchronizedStmtClass:
711      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
712
713    case Stmt::ObjCAtThrowStmtClass:
714      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
715
716    case Stmt::ObjCAtTryStmtClass:
717      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
718
719    case Stmt::ObjCForCollectionStmtClass:
720      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
721
722    case Stmt::ParenExprClass:
723      S = cast<ParenExpr>(S)->getSubExpr();
724      goto tryAgain;
725
726    case Stmt::NullStmtClass:
727      return Block;
728
729    case Stmt::ReturnStmtClass:
730      return VisitReturnStmt(cast<ReturnStmt>(S));
731
732    case Stmt::SizeOfAlignOfExprClass:
733      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
734
735    case Stmt::StmtExprClass:
736      return VisitStmtExpr(cast<StmtExpr>(S), asc);
737
738    case Stmt::SwitchStmtClass:
739      return VisitSwitchStmt(cast<SwitchStmt>(S));
740
741    case Stmt::WhileStmtClass:
742      return VisitWhileStmt(cast<WhileStmt>(S));
743  }
744}
745
746CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
747  if (asc.alwaysAdd()) {
748    autoCreateBlock();
749    AppendStmt(Block, S, asc);
750  }
751
752  return VisitChildren(S);
753}
754
755/// VisitChildren - Visit the children of a Stmt.
756CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
757  CFGBlock *B = Block;
758  for (Stmt::child_iterator I = Terminator->child_begin(),
759         E = Terminator->child_end(); I != E; ++I) {
760    if (*I) B = Visit(*I);
761  }
762  return B;
763}
764
765CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
766                                         AddStmtChoice asc) {
767  AddressTakenLabels.insert(A->getLabel());
768
769  if (asc.alwaysAdd()) {
770    autoCreateBlock();
771    AppendStmt(Block, A, asc);
772  }
773
774  return Block;
775}
776
777CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
778                                          AddStmtChoice asc) {
779  if (B->isLogicalOp()) { // && or ||
780    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
781    AppendStmt(ConfluenceBlock, B, asc);
782
783    if (badCFG)
784      return 0;
785
786    // create the block evaluating the LHS
787    CFGBlock* LHSBlock = createBlock(false);
788    LHSBlock->setTerminator(B);
789
790    // create the block evaluating the RHS
791    Succ = ConfluenceBlock;
792    Block = NULL;
793    CFGBlock* RHSBlock = addStmt(B->getRHS());
794
795    if (RHSBlock) {
796      if (badCFG)
797        return 0;
798    }
799    else {
800      // Create an empty block for cases where the RHS doesn't require
801      // any explicit statements in the CFG.
802      RHSBlock = createBlock();
803    }
804
805    // See if this is a known constant.
806    TryResult KnownVal = TryEvaluateBool(B->getLHS());
807    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
808      KnownVal.negate();
809
810    // Now link the LHSBlock with RHSBlock.
811    if (B->getOpcode() == BO_LOr) {
812      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
813      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
814    } else {
815      assert(B->getOpcode() == BO_LAnd);
816      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
817      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
818    }
819
820    // Generate the blocks for evaluating the LHS.
821    Block = LHSBlock;
822    return addStmt(B->getLHS());
823  }
824  else if (B->getOpcode() == BO_Comma) { // ,
825    autoCreateBlock();
826    AppendStmt(Block, B, asc);
827    addStmt(B->getRHS());
828    return addStmt(B->getLHS());
829  }
830  else if (B->isAssignmentOp()) {
831    if (asc.alwaysAdd()) {
832      autoCreateBlock();
833      AppendStmt(Block, B, asc);
834    }
835
836    // If visiting RHS causes us to finish 'Block' and the LHS doesn't
837    // create a new block, then we should return RBlock.  Otherwise
838    // we'll incorrectly return NULL.
839    CFGBlock *RBlock = Visit(B->getRHS());
840    CFGBlock *LBlock = Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
841    return LBlock ? LBlock : RBlock;
842  }
843
844  return VisitStmt(B, asc);
845}
846
847CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
848  if (asc.alwaysAdd()) {
849    autoCreateBlock();
850    AppendStmt(Block, E, asc);
851  }
852  return Block;
853}
854
855CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
856  // "break" is a control-flow statement.  Thus we stop processing the current
857  // block.
858  if (badCFG)
859    return 0;
860
861  // Now create a new block that ends with the break statement.
862  Block = createBlock(false);
863  Block->setTerminator(B);
864
865  // If there is no target for the break, then we are looking at an incomplete
866  // AST.  This means that the CFG cannot be constructed.
867  if (BreakJumpTarget.Block) {
868    AddSuccessor(Block, BreakJumpTarget.Block);
869  } else
870    badCFG = true;
871
872
873  return Block;
874}
875
876static bool CanThrow(Expr *E) {
877  QualType Ty = E->getType();
878  if (Ty->isFunctionPointerType())
879    Ty = Ty->getAs<PointerType>()->getPointeeType();
880  else if (Ty->isBlockPointerType())
881    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
882
883  const FunctionType *FT = Ty->getAs<FunctionType>();
884  if (FT) {
885    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
886      if (Proto->hasEmptyExceptionSpec())
887        return false;
888  }
889  return true;
890}
891
892CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
893  // If this is a call to a no-return function, this stops the block here.
894  bool NoReturn = false;
895  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
896    NoReturn = true;
897  }
898
899  bool AddEHEdge = false;
900
901  // Languages without exceptions are assumed to not throw.
902  if (Context->getLangOptions().Exceptions) {
903    if (BuildOpts.AddEHEdges)
904      AddEHEdge = true;
905  }
906
907  if (FunctionDecl *FD = C->getDirectCallee()) {
908    if (FD->hasAttr<NoReturnAttr>())
909      NoReturn = true;
910    if (FD->hasAttr<NoThrowAttr>())
911      AddEHEdge = false;
912  }
913
914  if (!CanThrow(C->getCallee()))
915    AddEHEdge = false;
916
917  if (!NoReturn && !AddEHEdge) {
918    if (asc.asLValue())
919      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
920    else
921      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
922  }
923
924  if (Block) {
925    Succ = Block;
926    if (badCFG)
927      return 0;
928  }
929
930  Block = createBlock(!NoReturn);
931  AppendStmt(Block, C, asc);
932
933  if (NoReturn) {
934    // Wire this to the exit block directly.
935    AddSuccessor(Block, &cfg->getExit());
936  }
937  if (AddEHEdge) {
938    // Add exceptional edges.
939    if (TryTerminatedBlock)
940      AddSuccessor(Block, TryTerminatedBlock);
941    else
942      AddSuccessor(Block, &cfg->getExit());
943  }
944
945  return VisitChildren(C);
946}
947
948CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
949                                      AddStmtChoice asc) {
950  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
951  AppendStmt(ConfluenceBlock, C, asc);
952  if (badCFG)
953    return 0;
954
955  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
956                       : AddStmtChoice::AlwaysAdd;
957
958  Succ = ConfluenceBlock;
959  Block = NULL;
960  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
961  if (badCFG)
962    return 0;
963
964  Succ = ConfluenceBlock;
965  Block = NULL;
966  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
967  if (badCFG)
968    return 0;
969
970  Block = createBlock(false);
971  // See if this is a known constant.
972  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
973  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
974  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
975  Block->setTerminator(C);
976  return addStmt(C->getCond());
977}
978
979
980CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
981  CFGBlock* LastBlock = Block;
982
983  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
984       I != E; ++I ) {
985    // If we hit a segment of code just containing ';' (NullStmts), we can
986    // get a null block back.  In such cases, just use the LastBlock
987    if (CFGBlock *newBlock = addStmt(*I))
988      LastBlock = newBlock;
989
990    if (badCFG)
991      return NULL;
992  }
993
994  return LastBlock;
995}
996
997CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
998                                               AddStmtChoice asc) {
999  // Create the confluence block that will "merge" the results of the ternary
1000  // expression.
1001  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1002  AppendStmt(ConfluenceBlock, C, asc);
1003  if (badCFG)
1004    return 0;
1005
1006  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1007                       : AddStmtChoice::AlwaysAdd;
1008
1009  // Create a block for the LHS expression if there is an LHS expression.  A
1010  // GCC extension allows LHS to be NULL, causing the condition to be the
1011  // value that is returned instead.
1012  //  e.g: x ?: y is shorthand for: x ? x : y;
1013  Succ = ConfluenceBlock;
1014  Block = NULL;
1015  CFGBlock* LHSBlock = NULL;
1016  if (C->getLHS()) {
1017    LHSBlock = Visit(C->getLHS(), asc);
1018    if (badCFG)
1019      return 0;
1020    Block = NULL;
1021  }
1022
1023  // Create the block for the RHS expression.
1024  Succ = ConfluenceBlock;
1025  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
1026  if (badCFG)
1027    return 0;
1028
1029  // Create the block that will contain the condition.
1030  Block = createBlock(false);
1031
1032  // See if this is a known constant.
1033  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
1034  if (LHSBlock) {
1035    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1036  } else {
1037    if (KnownVal.isFalse()) {
1038      // If we know the condition is false, add NULL as the successor for
1039      // the block containing the condition.  In this case, the confluence
1040      // block will have just one predecessor.
1041      AddSuccessor(Block, 0);
1042      assert(ConfluenceBlock->pred_size() == 1);
1043    } else {
1044      // If we have no LHS expression, add the ConfluenceBlock as a direct
1045      // successor for the block containing the condition.  Moreover, we need to
1046      // reverse the order of the predecessors in the ConfluenceBlock because
1047      // the RHSBlock will have been added to the succcessors already, and we
1048      // want the first predecessor to the the block containing the expression
1049      // for the case when the ternary expression evaluates to true.
1050      AddSuccessor(Block, ConfluenceBlock);
1051      assert(ConfluenceBlock->pred_size() == 2);
1052      std::reverse(ConfluenceBlock->pred_begin(),
1053                   ConfluenceBlock->pred_end());
1054    }
1055  }
1056
1057  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1058  Block->setTerminator(C);
1059  return addStmt(C->getCond());
1060}
1061
1062CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1063  autoCreateBlock();
1064
1065  if (DS->isSingleDecl()) {
1066    AppendStmt(Block, DS);
1067    return VisitDeclSubExpr(DS->getSingleDecl());
1068  }
1069
1070  CFGBlock *B = 0;
1071
1072  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1073  typedef llvm::SmallVector<Decl*,10> BufTy;
1074  BufTy Buf(DS->decl_begin(), DS->decl_end());
1075
1076  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1077    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1078    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1079               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1080
1081    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1082    // automatically freed with the CFG.
1083    DeclGroupRef DG(*I);
1084    Decl *D = *I;
1085    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1086    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1087
1088    // Append the fake DeclStmt to block.
1089    AppendStmt(Block, DSNew);
1090    B = VisitDeclSubExpr(D);
1091  }
1092
1093  return B;
1094}
1095
1096/// VisitDeclSubExpr - Utility method to add block-level expressions for
1097///  initializers in Decls.
1098CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
1099  assert(Block);
1100
1101  VarDecl *VD = dyn_cast<VarDecl>(D);
1102
1103  if (!VD)
1104    return Block;
1105
1106  Expr *Init = VD->getInit();
1107
1108  if (Init) {
1109    AddStmtChoice::Kind k =
1110      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
1111                                       : AddStmtChoice::NotAlwaysAdd;
1112    Visit(Init, AddStmtChoice(k));
1113  }
1114
1115  // If the type of VD is a VLA, then we must process its size expressions.
1116  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
1117       VA = FindVA(VA->getElementType().getTypePtr()))
1118    Block = addStmt(VA->getSizeExpr());
1119
1120  return Block;
1121}
1122
1123CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1124  // We may see an if statement in the middle of a basic block, or it may be the
1125  // first statement we are processing.  In either case, we create a new basic
1126  // block.  First, we create the blocks for the then...else statements, and
1127  // then we create the block containing the if statement.  If we were in the
1128  // middle of a block, we stop processing that block.  That block is then the
1129  // implicit successor for the "then" and "else" clauses.
1130
1131  // The block we were proccessing is now finished.  Make it the successor
1132  // block.
1133  if (Block) {
1134    Succ = Block;
1135    if (badCFG)
1136      return 0;
1137  }
1138
1139  // Process the false branch.
1140  CFGBlock* ElseBlock = Succ;
1141
1142  if (Stmt* Else = I->getElse()) {
1143    SaveAndRestore<CFGBlock*> sv(Succ);
1144
1145    // NULL out Block so that the recursive call to Visit will
1146    // create a new basic block.
1147    Block = NULL;
1148    ElseBlock = addStmt(Else);
1149
1150    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1151      ElseBlock = sv.get();
1152    else if (Block) {
1153      if (badCFG)
1154        return 0;
1155    }
1156  }
1157
1158  // Process the true branch.
1159  CFGBlock* ThenBlock;
1160  {
1161    Stmt* Then = I->getThen();
1162    assert(Then);
1163    SaveAndRestore<CFGBlock*> sv(Succ);
1164    Block = NULL;
1165    ThenBlock = addStmt(Then);
1166
1167    if (!ThenBlock) {
1168      // We can reach here if the "then" body has all NullStmts.
1169      // Create an empty block so we can distinguish between true and false
1170      // branches in path-sensitive analyses.
1171      ThenBlock = createBlock(false);
1172      AddSuccessor(ThenBlock, sv.get());
1173    } else if (Block) {
1174      if (badCFG)
1175        return 0;
1176    }
1177  }
1178
1179  // Now create a new block containing the if statement.
1180  Block = createBlock(false);
1181
1182  // Set the terminator of the new block to the If statement.
1183  Block->setTerminator(I);
1184
1185  // See if this is a known constant.
1186  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
1187
1188  // Now add the successors.
1189  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1190  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1191
1192  // Add the condition as the last statement in the new block.  This may create
1193  // new blocks as the condition may contain control-flow.  Any newly created
1194  // blocks will be pointed to be "Block".
1195  Block = addStmt(I->getCond());
1196
1197  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1198  // and the condition variable initialization to the CFG.
1199  if (VarDecl *VD = I->getConditionVariable()) {
1200    if (Expr *Init = VD->getInit()) {
1201      autoCreateBlock();
1202      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1203      addStmt(Init);
1204    }
1205  }
1206
1207  return Block;
1208}
1209
1210
1211CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1212  // If we were in the middle of a block we stop processing that block.
1213  //
1214  // NOTE: If a "return" appears in the middle of a block, this means that the
1215  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1216  //       for that code; a simple "mark-and-sweep" from the entry block will be
1217  //       able to report such dead blocks.
1218
1219  // Create the new block.
1220  Block = createBlock(false);
1221
1222  // The Exit block is the only successor.
1223  AddSuccessor(Block, &cfg->getExit());
1224
1225  // Add the return statement to the block.  This may create new blocks if R
1226  // contains control-flow (short-circuit operations).
1227  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1228}
1229
1230CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
1231  // Get the block of the labeled statement.  Add it to our map.
1232  addStmt(L->getSubStmt());
1233  CFGBlock* LabelBlock = Block;
1234
1235  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1236    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1237
1238  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
1239  LabelMap[ L ] = JumpTarget(LabelBlock, ScopePos);
1240
1241  // Labels partition blocks, so this is the end of the basic block we were
1242  // processing (L is the block's label).  Because this is label (and we have
1243  // already processed the substatement) there is no extra control-flow to worry
1244  // about.
1245  LabelBlock->setLabel(L);
1246  if (badCFG)
1247    return 0;
1248
1249  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1250  Block = NULL;
1251
1252  // This block is now the implicit successor of other blocks.
1253  Succ = LabelBlock;
1254
1255  return LabelBlock;
1256}
1257
1258CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1259  // Goto is a control-flow statement.  Thus we stop processing the current
1260  // block and create a new one.
1261
1262  Block = createBlock(false);
1263  Block->setTerminator(G);
1264
1265  // If we already know the mapping to the label block add the successor now.
1266  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1267
1268  if (I == LabelMap.end())
1269    // We will need to backpatch this block later.
1270    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1271  else {
1272    JumpTarget JT = I->second;
1273    AddSuccessor(Block, JT.Block);
1274  }
1275
1276  return Block;
1277}
1278
1279CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1280  CFGBlock* LoopSuccessor = NULL;
1281
1282  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1283
1284  // "for" is a control-flow statement.  Thus we stop processing the current
1285  // block.
1286  if (Block) {
1287    if (badCFG)
1288      return 0;
1289    LoopSuccessor = Block;
1290  } else
1291    LoopSuccessor = Succ;
1292
1293  // Save the current value for the break targets.
1294  // All breaks should go to the code following the loop.
1295  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1296  BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1297
1298  // Because of short-circuit evaluation, the condition of the loop can span
1299  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1300  // evaluate the condition.
1301  CFGBlock* ExitConditionBlock = createBlock(false);
1302  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1303
1304  // Set the terminator for the "exit" condition block.
1305  ExitConditionBlock->setTerminator(F);
1306
1307  // Now add the actual condition to the condition block.  Because the condition
1308  // itself may contain control-flow, new blocks may be created.
1309  if (Stmt* C = F->getCond()) {
1310    Block = ExitConditionBlock;
1311    EntryConditionBlock = addStmt(C);
1312    assert(Block == EntryConditionBlock ||
1313           (Block == 0 && EntryConditionBlock == Succ));
1314
1315    // If this block contains a condition variable, add both the condition
1316    // variable and initializer to the CFG.
1317    if (VarDecl *VD = F->getConditionVariable()) {
1318      if (Expr *Init = VD->getInit()) {
1319        autoCreateBlock();
1320        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1321        EntryConditionBlock = addStmt(Init);
1322        assert(Block == EntryConditionBlock);
1323      }
1324    }
1325
1326    if (Block) {
1327      if (badCFG)
1328        return 0;
1329    }
1330  }
1331
1332  // The condition block is the implicit successor for the loop body as well as
1333  // any code above the loop.
1334  Succ = EntryConditionBlock;
1335
1336  // See if this is a known constant.
1337  TryResult KnownVal(true);
1338
1339  if (F->getCond())
1340    KnownVal = TryEvaluateBool(F->getCond());
1341
1342  // Now create the loop body.
1343  {
1344    assert(F->getBody());
1345
1346   // Save the current values for Block, Succ, and continue targets.
1347   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1348   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1349
1350    // Create a new block to contain the (bottom) of the loop body.
1351    Block = NULL;
1352
1353    if (Stmt* I = F->getInc()) {
1354      // Generate increment code in its own basic block.  This is the target of
1355      // continue statements.
1356      Succ = addStmt(I);
1357    } else {
1358      // No increment code.  Create a special, empty, block that is used as the
1359      // target block for "looping back" to the start of the loop.
1360      assert(Succ == EntryConditionBlock);
1361      Succ = createBlock();
1362    }
1363
1364    // Finish up the increment (or empty) block if it hasn't been already.
1365    if (Block) {
1366      assert(Block == Succ);
1367      if (badCFG)
1368        return 0;
1369      Block = 0;
1370    }
1371
1372    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1373
1374    // The starting block for the loop increment is the block that should
1375    // represent the 'loop target' for looping back to the start of the loop.
1376    ContinueJumpTarget.Block->setLoopTarget(F);
1377
1378    // Now populate the body block, and in the process create new blocks as we
1379    // walk the body of the loop.
1380    CFGBlock* BodyBlock = addStmt(F->getBody());
1381
1382    if (!BodyBlock)
1383      BodyBlock = ContinueJumpTarget.Block;//can happen for "for (...;...;...);"
1384    else if (badCFG)
1385      return 0;
1386
1387    // This new body block is a successor to our "exit" condition block.
1388    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1389  }
1390
1391  // Link up the condition block with the code that follows the loop.  (the
1392  // false branch).
1393  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1394
1395  // If the loop contains initialization, create a new block for those
1396  // statements.  This block can also contain statements that precede the loop.
1397  if (Stmt* I = F->getInit()) {
1398    Block = createBlock();
1399    return addStmt(I);
1400  } else {
1401    // There is no loop initialization.  We are thus basically a while loop.
1402    // NULL out Block to force lazy block construction.
1403    Block = NULL;
1404    Succ = EntryConditionBlock;
1405    return EntryConditionBlock;
1406  }
1407}
1408
1409CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1410  if (asc.alwaysAdd()) {
1411    autoCreateBlock();
1412    AppendStmt(Block, M, asc);
1413  }
1414  return Visit(M->getBase(),
1415               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1416                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1417}
1418
1419CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1420  // Objective-C fast enumeration 'for' statements:
1421  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1422  //
1423  //  for ( Type newVariable in collection_expression ) { statements }
1424  //
1425  //  becomes:
1426  //
1427  //   prologue:
1428  //     1. collection_expression
1429  //     T. jump to loop_entry
1430  //   loop_entry:
1431  //     1. side-effects of element expression
1432  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1433  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1434  //   TB:
1435  //     statements
1436  //     T. jump to loop_entry
1437  //   FB:
1438  //     what comes after
1439  //
1440  //  and
1441  //
1442  //  Type existingItem;
1443  //  for ( existingItem in expression ) { statements }
1444  //
1445  //  becomes:
1446  //
1447  //   the same with newVariable replaced with existingItem; the binding works
1448  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1449  //   a DeclStmt and the other returns a DeclRefExpr.
1450  //
1451
1452  CFGBlock* LoopSuccessor = 0;
1453
1454  if (Block) {
1455    if (badCFG)
1456      return 0;
1457    LoopSuccessor = Block;
1458    Block = 0;
1459  } else
1460    LoopSuccessor = Succ;
1461
1462  // Build the condition blocks.
1463  CFGBlock* ExitConditionBlock = createBlock(false);
1464  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1465
1466  // Set the terminator for the "exit" condition block.
1467  ExitConditionBlock->setTerminator(S);
1468
1469  // The last statement in the block should be the ObjCForCollectionStmt, which
1470  // performs the actual binding to 'element' and determines if there are any
1471  // more items in the collection.
1472  AppendStmt(ExitConditionBlock, S);
1473  Block = ExitConditionBlock;
1474
1475  // Walk the 'element' expression to see if there are any side-effects.  We
1476  // generate new blocks as necesary.  We DON'T add the statement by default to
1477  // the CFG unless it contains control-flow.
1478  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1479  if (Block) {
1480    if (badCFG)
1481      return 0;
1482    Block = 0;
1483  }
1484
1485  // The condition block is the implicit successor for the loop body as well as
1486  // any code above the loop.
1487  Succ = EntryConditionBlock;
1488
1489  // Now create the true branch.
1490  {
1491    // Save the current values for Succ, continue and break targets.
1492    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1493    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1494        save_break(BreakJumpTarget);
1495
1496    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1497    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1498
1499    CFGBlock* BodyBlock = addStmt(S->getBody());
1500
1501    if (!BodyBlock)
1502      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1503    else if (Block) {
1504      if (badCFG)
1505        return 0;
1506    }
1507
1508    // This new body block is a successor to our "exit" condition block.
1509    AddSuccessor(ExitConditionBlock, BodyBlock);
1510  }
1511
1512  // Link up the condition block with the code that follows the loop.
1513  // (the false branch).
1514  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1515
1516  // Now create a prologue block to contain the collection expression.
1517  Block = createBlock();
1518  return addStmt(S->getCollection());
1519}
1520
1521CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1522  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1523
1524  // Inline the body.
1525  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1526
1527  // The sync body starts its own basic block.  This makes it a little easier
1528  // for diagnostic clients.
1529  if (SyncBlock) {
1530    if (badCFG)
1531      return 0;
1532
1533    Block = 0;
1534    Succ = SyncBlock;
1535  }
1536
1537  // Add the @synchronized to the CFG.
1538  autoCreateBlock();
1539  AppendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1540
1541  // Inline the sync expression.
1542  return addStmt(S->getSynchExpr());
1543}
1544
1545CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1546  // FIXME
1547  return NYS();
1548}
1549
1550CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1551  CFGBlock* LoopSuccessor = NULL;
1552
1553  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1554
1555  // "while" is a control-flow statement.  Thus we stop processing the current
1556  // block.
1557  if (Block) {
1558    if (badCFG)
1559      return 0;
1560    LoopSuccessor = Block;
1561  } else
1562    LoopSuccessor = Succ;
1563
1564  // Because of short-circuit evaluation, the condition of the loop can span
1565  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1566  // evaluate the condition.
1567  CFGBlock* ExitConditionBlock = createBlock(false);
1568  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1569
1570  // Set the terminator for the "exit" condition block.
1571  ExitConditionBlock->setTerminator(W);
1572
1573  // Now add the actual condition to the condition block.  Because the condition
1574  // itself may contain control-flow, new blocks may be created.  Thus we update
1575  // "Succ" after adding the condition.
1576  if (Stmt* C = W->getCond()) {
1577    Block = ExitConditionBlock;
1578    EntryConditionBlock = addStmt(C);
1579    assert(Block == EntryConditionBlock);
1580
1581    // If this block contains a condition variable, add both the condition
1582    // variable and initializer to the CFG.
1583    if (VarDecl *VD = W->getConditionVariable()) {
1584      if (Expr *Init = VD->getInit()) {
1585        autoCreateBlock();
1586        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1587        EntryConditionBlock = addStmt(Init);
1588        assert(Block == EntryConditionBlock);
1589      }
1590    }
1591
1592    if (Block) {
1593      if (badCFG)
1594        return 0;
1595    }
1596  }
1597
1598  // The condition block is the implicit successor for the loop body as well as
1599  // any code above the loop.
1600  Succ = EntryConditionBlock;
1601
1602  // See if this is a known constant.
1603  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1604
1605  // Process the loop body.
1606  {
1607    assert(W->getBody());
1608
1609    // Save the current values for Block, Succ, and continue and break targets
1610    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1611    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1612        save_break(BreakJumpTarget);
1613
1614    // Create an empty block to represent the transition block for looping back
1615    // to the head of the loop.
1616    Block = 0;
1617    assert(Succ == EntryConditionBlock);
1618    Succ = createBlock();
1619    Succ->setLoopTarget(W);
1620    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1621
1622    // All breaks should go to the code following the loop.
1623    BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1624
1625    // NULL out Block to force lazy instantiation of blocks for the body.
1626    Block = NULL;
1627
1628    // Create the body.  The returned block is the entry to the loop body.
1629    CFGBlock* BodyBlock = addStmt(W->getBody());
1630
1631    if (!BodyBlock)
1632      BodyBlock = ContinueJumpTarget.Block; // can happen for "while(...) ;"
1633    else if (Block) {
1634      if (badCFG)
1635        return 0;
1636    }
1637
1638    // Add the loop body entry as a successor to the condition.
1639    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1640  }
1641
1642  // Link up the condition block with the code that follows the loop.  (the
1643  // false branch).
1644  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1645
1646  // There can be no more statements in the condition block since we loop back
1647  // to this block.  NULL out Block to force lazy creation of another block.
1648  Block = NULL;
1649
1650  // Return the condition block, which is the dominating block for the loop.
1651  Succ = EntryConditionBlock;
1652  return EntryConditionBlock;
1653}
1654
1655
1656CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1657  // FIXME: For now we pretend that @catch and the code it contains does not
1658  //  exit.
1659  return Block;
1660}
1661
1662CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1663  // FIXME: This isn't complete.  We basically treat @throw like a return
1664  //  statement.
1665
1666  // If we were in the middle of a block we stop processing that block.
1667  if (badCFG)
1668    return 0;
1669
1670  // Create the new block.
1671  Block = createBlock(false);
1672
1673  // The Exit block is the only successor.
1674  AddSuccessor(Block, &cfg->getExit());
1675
1676  // Add the statement to the block.  This may create new blocks if S contains
1677  // control-flow (short-circuit operations).
1678  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1679}
1680
1681CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1682  // If we were in the middle of a block we stop processing that block.
1683  if (badCFG)
1684    return 0;
1685
1686  // Create the new block.
1687  Block = createBlock(false);
1688
1689  if (TryTerminatedBlock)
1690    // The current try statement is the only successor.
1691    AddSuccessor(Block, TryTerminatedBlock);
1692  else
1693    // otherwise the Exit block is the only successor.
1694    AddSuccessor(Block, &cfg->getExit());
1695
1696  // Add the statement to the block.  This may create new blocks if S contains
1697  // control-flow (short-circuit operations).
1698  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1699}
1700
1701CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1702  CFGBlock* LoopSuccessor = NULL;
1703
1704  // "do...while" is a control-flow statement.  Thus we stop processing the
1705  // current block.
1706  if (Block) {
1707    if (badCFG)
1708      return 0;
1709    LoopSuccessor = Block;
1710  } else
1711    LoopSuccessor = Succ;
1712
1713  // Because of short-circuit evaluation, the condition of the loop can span
1714  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1715  // evaluate the condition.
1716  CFGBlock* ExitConditionBlock = createBlock(false);
1717  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1718
1719  // Set the terminator for the "exit" condition block.
1720  ExitConditionBlock->setTerminator(D);
1721
1722  // Now add the actual condition to the condition block.  Because the condition
1723  // itself may contain control-flow, new blocks may be created.
1724  if (Stmt* C = D->getCond()) {
1725    Block = ExitConditionBlock;
1726    EntryConditionBlock = addStmt(C);
1727    if (Block) {
1728      if (badCFG)
1729        return 0;
1730    }
1731  }
1732
1733  // The condition block is the implicit successor for the loop body.
1734  Succ = EntryConditionBlock;
1735
1736  // See if this is a known constant.
1737  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1738
1739  // Process the loop body.
1740  CFGBlock* BodyBlock = NULL;
1741  {
1742    assert(D->getBody());
1743
1744    // Save the current values for Block, Succ, and continue and break targets
1745    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1746    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1747        save_break(BreakJumpTarget);
1748
1749    // All continues within this loop should go to the condition block
1750    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1751
1752    // All breaks should go to the code following the loop.
1753    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1754
1755    // NULL out Block to force lazy instantiation of blocks for the body.
1756    Block = NULL;
1757
1758    // Create the body.  The returned block is the entry to the loop body.
1759    BodyBlock = addStmt(D->getBody());
1760
1761    if (!BodyBlock)
1762      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1763    else if (Block) {
1764      if (badCFG)
1765        return 0;
1766    }
1767
1768    if (!KnownVal.isFalse()) {
1769      // Add an intermediate block between the BodyBlock and the
1770      // ExitConditionBlock to represent the "loop back" transition.  Create an
1771      // empty block to represent the transition block for looping back to the
1772      // head of the loop.
1773      // FIXME: Can we do this more efficiently without adding another block?
1774      Block = NULL;
1775      Succ = BodyBlock;
1776      CFGBlock *LoopBackBlock = createBlock();
1777      LoopBackBlock->setLoopTarget(D);
1778
1779      // Add the loop body entry as a successor to the condition.
1780      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1781    }
1782    else
1783      AddSuccessor(ExitConditionBlock, NULL);
1784  }
1785
1786  // Link up the condition block with the code that follows the loop.
1787  // (the false branch).
1788  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1789
1790  // There can be no more statements in the body block(s) since we loop back to
1791  // the body.  NULL out Block to force lazy creation of another block.
1792  Block = NULL;
1793
1794  // Return the loop body, which is the dominating block for the loop.
1795  Succ = BodyBlock;
1796  return BodyBlock;
1797}
1798
1799CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1800  // "continue" is a control-flow statement.  Thus we stop processing the
1801  // current block.
1802  if (badCFG)
1803    return 0;
1804
1805  // Now create a new block that ends with the continue statement.
1806  Block = createBlock(false);
1807  Block->setTerminator(C);
1808
1809  // If there is no target for the continue, then we are looking at an
1810  // incomplete AST.  This means the CFG cannot be constructed.
1811  if (ContinueJumpTarget.Block) {
1812    AddSuccessor(Block, ContinueJumpTarget.Block);
1813  } else
1814    badCFG = true;
1815
1816  return Block;
1817}
1818
1819CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1820                                             AddStmtChoice asc) {
1821
1822  if (asc.alwaysAdd()) {
1823    autoCreateBlock();
1824    AppendStmt(Block, E);
1825  }
1826
1827  // VLA types have expressions that must be evaluated.
1828  if (E->isArgumentType()) {
1829    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1830         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1831      addStmt(VA->getSizeExpr());
1832  }
1833
1834  return Block;
1835}
1836
1837/// VisitStmtExpr - Utility method to handle (nested) statement
1838///  expressions (a GCC extension).
1839CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1840  if (asc.alwaysAdd()) {
1841    autoCreateBlock();
1842    AppendStmt(Block, SE);
1843  }
1844  return VisitCompoundStmt(SE->getSubStmt());
1845}
1846
1847CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1848  // "switch" is a control-flow statement.  Thus we stop processing the current
1849  // block.
1850  CFGBlock* SwitchSuccessor = NULL;
1851
1852  if (Block) {
1853    if (badCFG)
1854      return 0;
1855    SwitchSuccessor = Block;
1856  } else SwitchSuccessor = Succ;
1857
1858  // Save the current "switch" context.
1859  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1860                            save_default(DefaultCaseBlock);
1861  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1862
1863  // Set the "default" case to be the block after the switch statement.  If the
1864  // switch statement contains a "default:", this value will be overwritten with
1865  // the block for that code.
1866  DefaultCaseBlock = SwitchSuccessor;
1867
1868  // Create a new block that will contain the switch statement.
1869  SwitchTerminatedBlock = createBlock(false);
1870
1871  // Now process the switch body.  The code after the switch is the implicit
1872  // successor.
1873  Succ = SwitchSuccessor;
1874  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
1875
1876  // When visiting the body, the case statements should automatically get linked
1877  // up to the switch.  We also don't keep a pointer to the body, since all
1878  // control-flow from the switch goes to case/default statements.
1879  assert(Terminator->getBody() && "switch must contain a non-NULL body");
1880  Block = NULL;
1881  addStmt(Terminator->getBody());
1882  if (Block) {
1883    if (badCFG)
1884      return 0;
1885  }
1886
1887  // If we have no "default:" case, the default transition is to the code
1888  // following the switch body.
1889  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1890
1891  // Add the terminator and condition in the switch block.
1892  SwitchTerminatedBlock->setTerminator(Terminator);
1893  assert(Terminator->getCond() && "switch condition must be non-NULL");
1894  Block = SwitchTerminatedBlock;
1895  Block = addStmt(Terminator->getCond());
1896
1897  // Finally, if the SwitchStmt contains a condition variable, add both the
1898  // SwitchStmt and the condition variable initialization to the CFG.
1899  if (VarDecl *VD = Terminator->getConditionVariable()) {
1900    if (Expr *Init = VD->getInit()) {
1901      autoCreateBlock();
1902      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1903      addStmt(Init);
1904    }
1905  }
1906
1907  return Block;
1908}
1909
1910CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1911  // CaseStmts are essentially labels, so they are the first statement in a
1912  // block.
1913  CFGBlock *TopBlock = 0, *LastBlock = 0;
1914
1915  if (Stmt *Sub = CS->getSubStmt()) {
1916    // For deeply nested chains of CaseStmts, instead of doing a recursion
1917    // (which can blow out the stack), manually unroll and create blocks
1918    // along the way.
1919    while (isa<CaseStmt>(Sub)) {
1920      CFGBlock *CurrentBlock = createBlock(false);
1921      CurrentBlock->setLabel(CS);
1922
1923      if (TopBlock)
1924        AddSuccessor(LastBlock, CurrentBlock);
1925      else
1926        TopBlock = CurrentBlock;
1927
1928      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
1929      LastBlock = CurrentBlock;
1930
1931      CS = cast<CaseStmt>(Sub);
1932      Sub = CS->getSubStmt();
1933    }
1934
1935    addStmt(Sub);
1936  }
1937
1938  CFGBlock* CaseBlock = Block;
1939  if (!CaseBlock)
1940    CaseBlock = createBlock();
1941
1942  // Cases statements partition blocks, so this is the top of the basic block we
1943  // were processing (the "case XXX:" is the label).
1944  CaseBlock->setLabel(CS);
1945
1946  if (badCFG)
1947    return 0;
1948
1949  // Add this block to the list of successors for the block with the switch
1950  // statement.
1951  assert(SwitchTerminatedBlock);
1952  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1953
1954  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1955  Block = NULL;
1956
1957  if (TopBlock) {
1958    AddSuccessor(LastBlock, CaseBlock);
1959    Succ = TopBlock;
1960  }
1961  else {
1962    // This block is now the implicit successor of other blocks.
1963    Succ = CaseBlock;
1964  }
1965
1966  return Succ;
1967}
1968
1969CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1970  if (Terminator->getSubStmt())
1971    addStmt(Terminator->getSubStmt());
1972
1973  DefaultCaseBlock = Block;
1974
1975  if (!DefaultCaseBlock)
1976    DefaultCaseBlock = createBlock();
1977
1978  // Default statements partition blocks, so this is the top of the basic block
1979  // we were processing (the "default:" is the label).
1980  DefaultCaseBlock->setLabel(Terminator);
1981
1982  if (badCFG)
1983    return 0;
1984
1985  // Unlike case statements, we don't add the default block to the successors
1986  // for the switch statement immediately.  This is done when we finish
1987  // processing the switch statement.  This allows for the default case
1988  // (including a fall-through to the code after the switch statement) to always
1989  // be the last successor of a switch-terminated block.
1990
1991  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1992  Block = NULL;
1993
1994  // This block is now the implicit successor of other blocks.
1995  Succ = DefaultCaseBlock;
1996
1997  return DefaultCaseBlock;
1998}
1999
2000CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2001  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2002  // current block.
2003  CFGBlock* TrySuccessor = NULL;
2004
2005  if (Block) {
2006    if (badCFG)
2007      return 0;
2008    TrySuccessor = Block;
2009  } else TrySuccessor = Succ;
2010
2011  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2012
2013  // Create a new block that will contain the try statement.
2014  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2015  // Add the terminator in the try block.
2016  NewTryTerminatedBlock->setTerminator(Terminator);
2017
2018  bool HasCatchAll = false;
2019  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2020    // The code after the try is the implicit successor.
2021    Succ = TrySuccessor;
2022    CXXCatchStmt *CS = Terminator->getHandler(h);
2023    if (CS->getExceptionDecl() == 0) {
2024      HasCatchAll = true;
2025    }
2026    Block = NULL;
2027    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2028    if (CatchBlock == 0)
2029      return 0;
2030    // Add this block to the list of successors for the block with the try
2031    // statement.
2032    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
2033  }
2034  if (!HasCatchAll) {
2035    if (PrevTryTerminatedBlock)
2036      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2037    else
2038      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2039  }
2040
2041  // The code after the try is the implicit successor.
2042  Succ = TrySuccessor;
2043
2044  // Save the current "try" context.
2045  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2046  TryTerminatedBlock = NewTryTerminatedBlock;
2047
2048  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2049  Block = NULL;
2050  Block = addStmt(Terminator->getTryBlock());
2051  return Block;
2052}
2053
2054CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2055  // CXXCatchStmt are treated like labels, so they are the first statement in a
2056  // block.
2057
2058  if (CS->getHandlerBlock())
2059    addStmt(CS->getHandlerBlock());
2060
2061  CFGBlock* CatchBlock = Block;
2062  if (!CatchBlock)
2063    CatchBlock = createBlock();
2064
2065  CatchBlock->setLabel(CS);
2066
2067  if (badCFG)
2068    return 0;
2069
2070  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2071  Block = NULL;
2072
2073  return CatchBlock;
2074}
2075
2076CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2077                                             AddStmtChoice asc) {
2078  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
2079                                         : AddStmtChoice::AlwaysAdd;
2080  autoCreateBlock();
2081  AppendStmt(Block, C, AddStmtChoice(K));
2082  return VisitChildren(C);
2083}
2084
2085CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2086  // Lazily create the indirect-goto dispatch block if there isn't one already.
2087  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2088
2089  if (!IBlock) {
2090    IBlock = createBlock(false);
2091    cfg->setIndirectGotoBlock(IBlock);
2092  }
2093
2094  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2095  // current block and create a new one.
2096  if (badCFG)
2097    return 0;
2098
2099  Block = createBlock(false);
2100  Block->setTerminator(I);
2101  AddSuccessor(Block, IBlock);
2102  return addStmt(I->getTarget());
2103}
2104
2105} // end anonymous namespace
2106
2107/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2108///  no successors or predecessors.  If this is the first block created in the
2109///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2110CFGBlock* CFG::createBlock() {
2111  bool first_block = begin() == end();
2112
2113  // Create the block.
2114  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2115  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2116  Blocks.push_back(Mem, BlkBVC);
2117
2118  // If this is the first block, set it as the Entry and Exit.
2119  if (first_block)
2120    Entry = Exit = &back();
2121
2122  // Return the block.
2123  return &back();
2124}
2125
2126/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2127///  CFG is returned to the caller.
2128CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2129    BuildOptions BO) {
2130  CFGBuilder Builder;
2131  return Builder.buildCFG(D, Statement, C, BO);
2132}
2133
2134//===----------------------------------------------------------------------===//
2135// CFG: Queries for BlkExprs.
2136//===----------------------------------------------------------------------===//
2137
2138namespace {
2139  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2140}
2141
2142static void FindSubExprAssignments(Stmt *S,
2143                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2144  if (!S)
2145    return;
2146
2147  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
2148    Stmt *child = *I;
2149    if (!child)
2150      continue;
2151
2152    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2153      if (B->isAssignmentOp()) Set.insert(B);
2154
2155    FindSubExprAssignments(child, Set);
2156  }
2157}
2158
2159static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2160  BlkExprMapTy* M = new BlkExprMapTy();
2161
2162  // Look for assignments that are used as subexpressions.  These are the only
2163  // assignments that we want to *possibly* register as a block-level
2164  // expression.  Basically, if an assignment occurs both in a subexpression and
2165  // at the block-level, it is a block-level expression.
2166  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2167
2168  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2169    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2170      if (CFGStmt S = BI->getAs<CFGStmt>())
2171        FindSubExprAssignments(S, SubExprAssignments);
2172
2173  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2174
2175    // Iterate over the statements again on identify the Expr* and Stmt* at the
2176    // block-level that are block-level expressions.
2177
2178    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2179      CFGStmt CS = BI->getAs<CFGStmt>();
2180      if (!CS.isValid())
2181        continue;
2182      if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2183
2184        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2185          // Assignment expressions that are not nested within another
2186          // expression are really "statements" whose value is never used by
2187          // another expression.
2188          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2189            continue;
2190        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2191          // Special handling for statement expressions.  The last statement in
2192          // the statement expression is also a block-level expr.
2193          const CompoundStmt* C = Terminator->getSubStmt();
2194          if (!C->body_empty()) {
2195            unsigned x = M->size();
2196            (*M)[C->body_back()] = x;
2197          }
2198        }
2199
2200        unsigned x = M->size();
2201        (*M)[Exp] = x;
2202      }
2203    }
2204
2205    // Look at terminators.  The condition is a block-level expression.
2206
2207    Stmt* S = (*I)->getTerminatorCondition();
2208
2209    if (S && M->find(S) == M->end()) {
2210        unsigned x = M->size();
2211        (*M)[S] = x;
2212    }
2213  }
2214
2215  return M;
2216}
2217
2218CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2219  assert(S != NULL);
2220  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2221
2222  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2223  BlkExprMapTy::iterator I = M->find(S);
2224  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2225}
2226
2227unsigned CFG::getNumBlkExprs() {
2228  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2229    return M->size();
2230  else {
2231    // We assume callers interested in the number of BlkExprs will want
2232    // the map constructed if it doesn't already exist.
2233    BlkExprMap = (void*) PopulateBlkExprMap(*this);
2234    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2235  }
2236}
2237
2238//===----------------------------------------------------------------------===//
2239// Filtered walking of the CFG.
2240//===----------------------------------------------------------------------===//
2241
2242bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2243        const CFGBlock *From, const CFGBlock *To) {
2244
2245  if (F.IgnoreDefaultsWithCoveredEnums) {
2246    // If the 'To' has no label or is labeled but the label isn't a
2247    // CaseStmt then filter this edge.
2248    if (const SwitchStmt *S =
2249  dyn_cast_or_null<SwitchStmt>(From->getTerminator())) {
2250      if (S->isAllEnumCasesCovered()) {
2251  const Stmt *L = To->getLabel();
2252  if (!L || !isa<CaseStmt>(L))
2253    return true;
2254      }
2255    }
2256  }
2257
2258  return false;
2259}
2260
2261//===----------------------------------------------------------------------===//
2262// Cleanup: CFG dstor.
2263//===----------------------------------------------------------------------===//
2264
2265CFG::~CFG() {
2266  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2267}
2268
2269//===----------------------------------------------------------------------===//
2270// CFG pretty printing
2271//===----------------------------------------------------------------------===//
2272
2273namespace {
2274
2275class StmtPrinterHelper : public PrinterHelper  {
2276  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2277  typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2278  StmtMapTy StmtMap;
2279  DeclMapTy DeclMap;
2280  signed CurrentBlock;
2281  unsigned CurrentStmt;
2282  const LangOptions &LangOpts;
2283public:
2284
2285  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2286    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
2287    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2288      unsigned j = 1;
2289      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2290           BI != BEnd; ++BI, ++j ) {
2291        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2292          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2293          StmtMap[SE] = P;
2294
2295          if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2296              DeclMap[DS->getSingleDecl()] = P;
2297
2298          } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2299            if (VarDecl* VD = IS->getConditionVariable())
2300              DeclMap[VD] = P;
2301
2302          } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2303            if (VarDecl* VD = FS->getConditionVariable())
2304              DeclMap[VD] = P;
2305
2306          } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2307            if (VarDecl* VD = WS->getConditionVariable())
2308              DeclMap[VD] = P;
2309
2310          } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2311            if (VarDecl* VD = SS->getConditionVariable())
2312              DeclMap[VD] = P;
2313
2314          } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2315            if (VarDecl* VD = CS->getExceptionDecl())
2316              DeclMap[VD] = P;
2317          }
2318        }
2319      }
2320    }
2321  }
2322
2323  virtual ~StmtPrinterHelper() {}
2324
2325  const LangOptions &getLangOpts() const { return LangOpts; }
2326  void setBlockID(signed i) { CurrentBlock = i; }
2327  void setStmtID(unsigned i) { CurrentStmt = i; }
2328
2329  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2330    StmtMapTy::iterator I = StmtMap.find(S);
2331
2332    if (I == StmtMap.end())
2333      return false;
2334
2335    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2336                          && I->second.second == CurrentStmt) {
2337      return false;
2338    }
2339
2340    OS << "[B" << I->second.first << "." << I->second.second << "]";
2341    return true;
2342  }
2343
2344  bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2345    DeclMapTy::iterator I = DeclMap.find(D);
2346
2347    if (I == DeclMap.end())
2348      return false;
2349
2350    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2351                          && I->second.second == CurrentStmt) {
2352      return false;
2353    }
2354
2355    OS << "[B" << I->second.first << "." << I->second.second << "]";
2356    return true;
2357  }
2358};
2359} // end anonymous namespace
2360
2361
2362namespace {
2363class CFGBlockTerminatorPrint
2364  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2365
2366  llvm::raw_ostream& OS;
2367  StmtPrinterHelper* Helper;
2368  PrintingPolicy Policy;
2369public:
2370  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2371                          const PrintingPolicy &Policy)
2372    : OS(os), Helper(helper), Policy(Policy) {}
2373
2374  void VisitIfStmt(IfStmt* I) {
2375    OS << "if ";
2376    I->getCond()->printPretty(OS,Helper,Policy);
2377  }
2378
2379  // Default case.
2380  void VisitStmt(Stmt* Terminator) {
2381    Terminator->printPretty(OS, Helper, Policy);
2382  }
2383
2384  void VisitForStmt(ForStmt* F) {
2385    OS << "for (" ;
2386    if (F->getInit())
2387      OS << "...";
2388    OS << "; ";
2389    if (Stmt* C = F->getCond())
2390      C->printPretty(OS, Helper, Policy);
2391    OS << "; ";
2392    if (F->getInc())
2393      OS << "...";
2394    OS << ")";
2395  }
2396
2397  void VisitWhileStmt(WhileStmt* W) {
2398    OS << "while " ;
2399    if (Stmt* C = W->getCond())
2400      C->printPretty(OS, Helper, Policy);
2401  }
2402
2403  void VisitDoStmt(DoStmt* D) {
2404    OS << "do ... while ";
2405    if (Stmt* C = D->getCond())
2406      C->printPretty(OS, Helper, Policy);
2407  }
2408
2409  void VisitSwitchStmt(SwitchStmt* Terminator) {
2410    OS << "switch ";
2411    Terminator->getCond()->printPretty(OS, Helper, Policy);
2412  }
2413
2414  void VisitCXXTryStmt(CXXTryStmt* CS) {
2415    OS << "try ...";
2416  }
2417
2418  void VisitConditionalOperator(ConditionalOperator* C) {
2419    C->getCond()->printPretty(OS, Helper, Policy);
2420    OS << " ? ... : ...";
2421  }
2422
2423  void VisitChooseExpr(ChooseExpr* C) {
2424    OS << "__builtin_choose_expr( ";
2425    C->getCond()->printPretty(OS, Helper, Policy);
2426    OS << " )";
2427  }
2428
2429  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2430    OS << "goto *";
2431    I->getTarget()->printPretty(OS, Helper, Policy);
2432  }
2433
2434  void VisitBinaryOperator(BinaryOperator* B) {
2435    if (!B->isLogicalOp()) {
2436      VisitExpr(B);
2437      return;
2438    }
2439
2440    B->getLHS()->printPretty(OS, Helper, Policy);
2441
2442    switch (B->getOpcode()) {
2443      case BO_LOr:
2444        OS << " || ...";
2445        return;
2446      case BO_LAnd:
2447        OS << " && ...";
2448        return;
2449      default:
2450        assert(false && "Invalid logical operator.");
2451    }
2452  }
2453
2454  void VisitExpr(Expr* E) {
2455    E->printPretty(OS, Helper, Policy);
2456  }
2457};
2458} // end anonymous namespace
2459
2460static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2461                       const CFGElement &E) {
2462  if (CFGStmt CS = E.getAs<CFGStmt>()) {
2463    Stmt *S = CS;
2464
2465    if (Helper) {
2466
2467      // special printing for statement-expressions.
2468      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2469        CompoundStmt* Sub = SE->getSubStmt();
2470
2471        if (Sub->child_begin() != Sub->child_end()) {
2472          OS << "({ ... ; ";
2473          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2474          OS << " })\n";
2475          return;
2476        }
2477      }
2478      // special printing for comma expressions.
2479      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2480        if (B->getOpcode() == BO_Comma) {
2481          OS << "... , ";
2482          Helper->handledStmt(B->getRHS(),OS);
2483          OS << '\n';
2484          return;
2485        }
2486      }
2487    }
2488    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2489
2490    if (isa<CXXOperatorCallExpr>(S)) {
2491      OS << " (OperatorCall)";
2492    }
2493    else if (isa<CXXBindTemporaryExpr>(S)) {
2494      OS << " (BindTemporary)";
2495    }
2496
2497    // Expressions need a newline.
2498    if (isa<Expr>(S))
2499      OS << '\n';
2500
2501  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
2502    CXXBaseOrMemberInitializer* I = IE;
2503    if (I->isBaseInitializer())
2504      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
2505    else OS << I->getMember()->getName();
2506
2507    OS << "(";
2508    if (Expr* IE = I->getInit())
2509      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2510    OS << ")";
2511
2512    if (I->isBaseInitializer())
2513      OS << " (Base initializer)\n";
2514    else OS << " (Member initializer)\n";
2515
2516  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
2517    VarDecl* VD = DE.getVarDecl();
2518    Helper->handleDecl(VD, OS);
2519
2520    Type* T = VD->getType().getTypePtr();
2521    if (const ReferenceType* RT = T->getAs<ReferenceType>())
2522      T = RT->getPointeeType().getTypePtr();
2523
2524    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
2525    OS << " (Implicit destructor)\n";
2526  }
2527 }
2528
2529static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2530                        const CFGBlock& B,
2531                        StmtPrinterHelper* Helper, bool print_edges) {
2532
2533  if (Helper) Helper->setBlockID(B.getBlockID());
2534
2535  // Print the header.
2536  OS << "\n [ B" << B.getBlockID();
2537
2538  if (&B == &cfg->getEntry())
2539    OS << " (ENTRY) ]\n";
2540  else if (&B == &cfg->getExit())
2541    OS << " (EXIT) ]\n";
2542  else if (&B == cfg->getIndirectGotoBlock())
2543    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2544  else
2545    OS << " ]\n";
2546
2547  // Print the label of this block.
2548  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2549
2550    if (print_edges)
2551      OS << "    ";
2552
2553    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2554      OS << L->getName();
2555    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2556      OS << "case ";
2557      C->getLHS()->printPretty(OS, Helper,
2558                               PrintingPolicy(Helper->getLangOpts()));
2559      if (C->getRHS()) {
2560        OS << " ... ";
2561        C->getRHS()->printPretty(OS, Helper,
2562                                 PrintingPolicy(Helper->getLangOpts()));
2563      }
2564    } else if (isa<DefaultStmt>(Label))
2565      OS << "default";
2566    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2567      OS << "catch (";
2568      if (CS->getExceptionDecl())
2569        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2570                                      0);
2571      else
2572        OS << "...";
2573      OS << ")";
2574
2575    } else
2576      assert(false && "Invalid label statement in CFGBlock.");
2577
2578    OS << ":\n";
2579  }
2580
2581  // Iterate through the statements in the block and print them.
2582  unsigned j = 1;
2583
2584  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2585       I != E ; ++I, ++j ) {
2586
2587    // Print the statement # in the basic block and the statement itself.
2588    if (print_edges)
2589      OS << "    ";
2590
2591    OS << llvm::format("%3d", j) << ": ";
2592
2593    if (Helper)
2594      Helper->setStmtID(j);
2595
2596    print_elem(OS,Helper,*I);
2597  }
2598
2599  // Print the terminator of this block.
2600  if (B.getTerminator()) {
2601    if (print_edges)
2602      OS << "    ";
2603
2604    OS << "  T: ";
2605
2606    if (Helper) Helper->setBlockID(-1);
2607
2608    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2609                                     PrintingPolicy(Helper->getLangOpts()));
2610    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2611    OS << '\n';
2612  }
2613
2614  if (print_edges) {
2615    // Print the predecessors of this block.
2616    OS << "    Predecessors (" << B.pred_size() << "):";
2617    unsigned i = 0;
2618
2619    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2620         I != E; ++I, ++i) {
2621
2622      if (i == 8 || (i-8) == 0)
2623        OS << "\n     ";
2624
2625      OS << " B" << (*I)->getBlockID();
2626    }
2627
2628    OS << '\n';
2629
2630    // Print the successors of this block.
2631    OS << "    Successors (" << B.succ_size() << "):";
2632    i = 0;
2633
2634    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2635         I != E; ++I, ++i) {
2636
2637      if (i == 8 || (i-8) % 10 == 0)
2638        OS << "\n    ";
2639
2640      if (*I)
2641        OS << " B" << (*I)->getBlockID();
2642      else
2643        OS  << " NULL";
2644    }
2645
2646    OS << '\n';
2647  }
2648}
2649
2650
2651/// dump - A simple pretty printer of a CFG that outputs to stderr.
2652void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2653
2654/// print - A simple pretty printer of a CFG that outputs to an ostream.
2655void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2656  StmtPrinterHelper Helper(this, LO);
2657
2658  // Print the entry block.
2659  print_block(OS, this, getEntry(), &Helper, true);
2660
2661  // Iterate through the CFGBlocks and print them one by one.
2662  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2663    // Skip the entry block, because we already printed it.
2664    if (&(**I) == &getEntry() || &(**I) == &getExit())
2665      continue;
2666
2667    print_block(OS, this, **I, &Helper, true);
2668  }
2669
2670  // Print the exit block.
2671  print_block(OS, this, getExit(), &Helper, true);
2672  OS.flush();
2673}
2674
2675/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2676void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2677  print(llvm::errs(), cfg, LO);
2678}
2679
2680/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2681///   Generally this will only be called from CFG::print.
2682void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2683                     const LangOptions &LO) const {
2684  StmtPrinterHelper Helper(cfg, LO);
2685  print_block(OS, cfg, *this, &Helper, true);
2686}
2687
2688/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2689void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2690                               const LangOptions &LO) const {
2691  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2692  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2693}
2694
2695Stmt* CFGBlock::getTerminatorCondition() {
2696
2697  if (!Terminator)
2698    return NULL;
2699
2700  Expr* E = NULL;
2701
2702  switch (Terminator->getStmtClass()) {
2703    default:
2704      break;
2705
2706    case Stmt::ForStmtClass:
2707      E = cast<ForStmt>(Terminator)->getCond();
2708      break;
2709
2710    case Stmt::WhileStmtClass:
2711      E = cast<WhileStmt>(Terminator)->getCond();
2712      break;
2713
2714    case Stmt::DoStmtClass:
2715      E = cast<DoStmt>(Terminator)->getCond();
2716      break;
2717
2718    case Stmt::IfStmtClass:
2719      E = cast<IfStmt>(Terminator)->getCond();
2720      break;
2721
2722    case Stmt::ChooseExprClass:
2723      E = cast<ChooseExpr>(Terminator)->getCond();
2724      break;
2725
2726    case Stmt::IndirectGotoStmtClass:
2727      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2728      break;
2729
2730    case Stmt::SwitchStmtClass:
2731      E = cast<SwitchStmt>(Terminator)->getCond();
2732      break;
2733
2734    case Stmt::ConditionalOperatorClass:
2735      E = cast<ConditionalOperator>(Terminator)->getCond();
2736      break;
2737
2738    case Stmt::BinaryOperatorClass: // '&&' and '||'
2739      E = cast<BinaryOperator>(Terminator)->getLHS();
2740      break;
2741
2742    case Stmt::ObjCForCollectionStmtClass:
2743      return Terminator;
2744  }
2745
2746  return E ? E->IgnoreParens() : NULL;
2747}
2748
2749bool CFGBlock::hasBinaryBranchTerminator() const {
2750
2751  if (!Terminator)
2752    return false;
2753
2754  Expr* E = NULL;
2755
2756  switch (Terminator->getStmtClass()) {
2757    default:
2758      return false;
2759
2760    case Stmt::ForStmtClass:
2761    case Stmt::WhileStmtClass:
2762    case Stmt::DoStmtClass:
2763    case Stmt::IfStmtClass:
2764    case Stmt::ChooseExprClass:
2765    case Stmt::ConditionalOperatorClass:
2766    case Stmt::BinaryOperatorClass:
2767      return true;
2768  }
2769
2770  return E ? E->IgnoreParens() : NULL;
2771}
2772
2773
2774//===----------------------------------------------------------------------===//
2775// CFG Graphviz Visualization
2776//===----------------------------------------------------------------------===//
2777
2778
2779#ifndef NDEBUG
2780static StmtPrinterHelper* GraphHelper;
2781#endif
2782
2783void CFG::viewCFG(const LangOptions &LO) const {
2784#ifndef NDEBUG
2785  StmtPrinterHelper H(this, LO);
2786  GraphHelper = &H;
2787  llvm::ViewGraph(this,"CFG");
2788  GraphHelper = NULL;
2789#endif
2790}
2791
2792namespace llvm {
2793template<>
2794struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2795
2796  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2797
2798  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2799
2800#ifndef NDEBUG
2801    std::string OutSStr;
2802    llvm::raw_string_ostream Out(OutSStr);
2803    print_block(Out,Graph, *Node, GraphHelper, false);
2804    std::string& OutStr = Out.str();
2805
2806    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2807
2808    // Process string output to make it nicer...
2809    for (unsigned i = 0; i != OutStr.length(); ++i)
2810      if (OutStr[i] == '\n') {                            // Left justify
2811        OutStr[i] = '\\';
2812        OutStr.insert(OutStr.begin()+i+1, 'l');
2813      }
2814
2815    return OutStr;
2816#else
2817    return "";
2818#endif
2819  }
2820};
2821} // end namespace llvm
2822