CFG.cpp revision 29c9e62f412c9db3ee238db2472390685a6303f3
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl* D) {
33  if (VarDecl* VD = dyn_cast<VarDecl>(D))
34    if (Expr* Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl* const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl* operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator& operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator& rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator& rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl* VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock* Block;
256  CFGBlock* Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock* SwitchTerminatedBlock;
260  CFGBlock* DefaultCaseBlock;
261  CFGBlock* TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt* G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt* R);
347  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
348                                          AddStmtChoice asc);
349  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
350  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
351  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
352  CFGBlock *VisitWhileStmt(WhileStmt *W);
353
354  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
355  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
356  CFGBlock *VisitChildren(Stmt* S);
357
358  // Visitors to walk an AST and generate destructors of temporaries in
359  // full expression.
360  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
361  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
362  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
363  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
364      bool BindToTemporary);
365  CFGBlock *
366  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
367                                            bool BindToTemporary);
368
369  // NYS == Not Yet Supported
370  CFGBlock* NYS() {
371    badCFG = true;
372    return Block;
373  }
374
375  void autoCreateBlock() { if (!Block) Block = createBlock(); }
376  CFGBlock *createBlock(bool add_successor = true);
377
378  CFGBlock *addStmt(Stmt *S) {
379    return Visit(S, AddStmtChoice::AlwaysAdd);
380  }
381  CFGBlock *addInitializer(CXXCtorInitializer *I);
382  void addAutomaticObjDtors(LocalScope::const_iterator B,
383                            LocalScope::const_iterator E, Stmt* S);
384  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
385
386  // Local scopes creation.
387  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
388
389  void addLocalScopeForStmt(Stmt* S);
390  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
391  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
392
393  void addLocalScopeAndDtors(Stmt* S);
394
395  // Interface to CFGBlock - adding CFGElements.
396  void appendStmt(CFGBlock *B, const Stmt *S) {
397    if (alwaysAdd(S))
398      cachedEntry->second = B;
399
400    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
401  }
402  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
403    B->appendInitializer(I, cfg->getBumpVectorContext());
404  }
405  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
406    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
407  }
408  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
409    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
410  }
411  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
412    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
413  }
414
415  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
416    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
417  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
418      LocalScope::const_iterator E, Stmt* S);
419  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
420      LocalScope::const_iterator B, LocalScope::const_iterator E);
421
422  void addSuccessor(CFGBlock *B, CFGBlock *S) {
423    B->addSuccessor(S, cfg->getBumpVectorContext());
424  }
425
426  /// Try and evaluate an expression to an integer constant.
427  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
428    if (!BuildOpts.PruneTriviallyFalseEdges)
429      return false;
430    return !S->isTypeDependent() &&
431           !S->isValueDependent() &&
432           S->Evaluate(outResult, *Context);
433  }
434
435  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
436  /// if we can evaluate to a known value, otherwise return -1.
437  TryResult tryEvaluateBool(Expr *S) {
438    Expr::EvalResult Result;
439    if (!tryEvaluate(S, Result))
440      return TryResult();
441
442    if (Result.Val.isInt())
443      return Result.Val.getInt().getBoolValue();
444
445    if (Result.Val.isLValue()) {
446      const Expr *e = Result.Val.getLValueBase();
447      const CharUnits &c = Result.Val.getLValueOffset();
448      if (!e && c.isZero())
449        return false;
450    }
451    return TryResult();
452  }
453
454};
455
456inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
457                                     const Stmt *stmt) const {
458  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
459}
460
461bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
462  if (!BuildOpts.forcedBlkExprs)
463    return false;
464
465  if (lastLookup == stmt) {
466    if (cachedEntry) {
467      assert(cachedEntry->first == stmt);
468      return true;
469    }
470    return false;
471  }
472
473  lastLookup = stmt;
474
475  // Perform the lookup!
476  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
477
478  if (!fb) {
479    // No need to update 'cachedEntry', since it will always be null.
480    assert(cachedEntry == 0);
481    return false;
482  }
483
484  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
485  if (itr == fb->end()) {
486    cachedEntry = 0;
487    return false;
488  }
489
490  cachedEntry = &*itr;
491  return true;
492}
493
494// FIXME: Add support for dependent-sized array types in C++?
495// Does it even make sense to build a CFG for an uninstantiated template?
496static const VariableArrayType *FindVA(const Type *t) {
497  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
498    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
499      if (vat->getSizeExpr())
500        return vat;
501
502    t = vt->getElementType().getTypePtr();
503  }
504
505  return 0;
506}
507
508/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
509///  arbitrary statement.  Examples include a single expression or a function
510///  body (compound statement).  The ownership of the returned CFG is
511///  transferred to the caller.  If CFG construction fails, this method returns
512///  NULL.
513CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement) {
514  assert(cfg.get());
515  if (!Statement)
516    return NULL;
517
518  // Create an empty block that will serve as the exit block for the CFG.  Since
519  // this is the first block added to the CFG, it will be implicitly registered
520  // as the exit block.
521  Succ = createBlock();
522  assert(Succ == &cfg->getExit());
523  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
524
525  if (BuildOpts.AddImplicitDtors)
526    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
527      addImplicitDtorsForDestructor(DD);
528
529  // Visit the statements and create the CFG.
530  CFGBlock *B = addStmt(Statement);
531
532  if (badCFG)
533    return NULL;
534
535  // For C++ constructor add initializers to CFG.
536  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
537    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
538        E = CD->init_rend(); I != E; ++I) {
539      B = addInitializer(*I);
540      if (badCFG)
541        return NULL;
542    }
543  }
544
545  if (B)
546    Succ = B;
547
548  // Backpatch the gotos whose label -> block mappings we didn't know when we
549  // encountered them.
550  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
551                                   E = BackpatchBlocks.end(); I != E; ++I ) {
552
553    CFGBlock* B = I->block;
554    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
555    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
556
557    // If there is no target for the goto, then we are looking at an
558    // incomplete AST.  Handle this by not registering a successor.
559    if (LI == LabelMap.end()) continue;
560
561    JumpTarget JT = LI->second;
562    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
563                                           JT.scopePosition);
564    addSuccessor(B, JT.block);
565  }
566
567  // Add successors to the Indirect Goto Dispatch block (if we have one).
568  if (CFGBlock* B = cfg->getIndirectGotoBlock())
569    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
570                              E = AddressTakenLabels.end(); I != E; ++I ) {
571
572      // Lookup the target block.
573      LabelMapTy::iterator LI = LabelMap.find(*I);
574
575      // If there is no target block that contains label, then we are looking
576      // at an incomplete AST.  Handle this by not registering a successor.
577      if (LI == LabelMap.end()) continue;
578
579      addSuccessor(B, LI->second.block);
580    }
581
582  // Create an empty entry block that has no predecessors.
583  cfg->setEntry(createBlock());
584
585  return cfg.take();
586}
587
588/// createBlock - Used to lazily create blocks that are connected
589///  to the current (global) succcessor.
590CFGBlock* CFGBuilder::createBlock(bool add_successor) {
591  CFGBlock* B = cfg->createBlock();
592  if (add_successor && Succ)
593    addSuccessor(B, Succ);
594  return B;
595}
596
597/// addInitializer - Add C++ base or member initializer element to CFG.
598CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
599  if (!BuildOpts.AddInitializers)
600    return Block;
601
602  bool IsReference = false;
603  bool HasTemporaries = false;
604
605  // Destructors of temporaries in initialization expression should be called
606  // after initialization finishes.
607  Expr *Init = I->getInit();
608  if (Init) {
609    if (FieldDecl *FD = I->getAnyMember())
610      IsReference = FD->getType()->isReferenceType();
611    HasTemporaries = isa<ExprWithCleanups>(Init);
612
613    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
614      // Generate destructors for temporaries in initialization expression.
615      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
616          IsReference);
617    }
618  }
619
620  autoCreateBlock();
621  appendInitializer(Block, I);
622
623  if (Init) {
624    if (HasTemporaries) {
625      // For expression with temporaries go directly to subexpression to omit
626      // generating destructors for the second time.
627      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
628    }
629    return Visit(Init);
630  }
631
632  return Block;
633}
634
635/// addAutomaticObjDtors - Add to current block automatic objects destructors
636/// for objects in range of local scope positions. Use S as trigger statement
637/// for destructors.
638void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
639                                      LocalScope::const_iterator E, Stmt* S) {
640  if (!BuildOpts.AddImplicitDtors)
641    return;
642
643  if (B == E)
644    return;
645
646  autoCreateBlock();
647  appendAutomaticObjDtors(Block, B, E, S);
648}
649
650/// addImplicitDtorsForDestructor - Add implicit destructors generated for
651/// base and member objects in destructor.
652void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
653  assert (BuildOpts.AddImplicitDtors
654      && "Can be called only when dtors should be added");
655  const CXXRecordDecl *RD = DD->getParent();
656
657  // At the end destroy virtual base objects.
658  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
659      VE = RD->vbases_end(); VI != VE; ++VI) {
660    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
661    if (!CD->hasTrivialDestructor()) {
662      autoCreateBlock();
663      appendBaseDtor(Block, VI);
664    }
665  }
666
667  // Before virtual bases destroy direct base objects.
668  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
669      BE = RD->bases_end(); BI != BE; ++BI) {
670    if (!BI->isVirtual()) {
671      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
672      if (!CD->hasTrivialDestructor()) {
673        autoCreateBlock();
674        appendBaseDtor(Block, BI);
675      }
676    }
677  }
678
679  // First destroy member objects.
680  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
681      FE = RD->field_end(); FI != FE; ++FI) {
682    // Check for constant size array. Set type to array element type.
683    QualType QT = FI->getType();
684    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
685      if (AT->getSize() == 0)
686        continue;
687      QT = AT->getElementType();
688    }
689
690    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
691      if (!CD->hasTrivialDestructor()) {
692        autoCreateBlock();
693        appendMemberDtor(Block, *FI);
694      }
695  }
696}
697
698/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
699/// way return valid LocalScope object.
700LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
701  if (!Scope) {
702    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
703    Scope = alloc.Allocate<LocalScope>();
704    BumpVectorContext ctx(alloc);
705    new (Scope) LocalScope(ctx, ScopePos);
706  }
707  return Scope;
708}
709
710/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
711/// that should create implicit scope (e.g. if/else substatements).
712void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
713  if (!BuildOpts.AddImplicitDtors)
714    return;
715
716  LocalScope *Scope = 0;
717
718  // For compound statement we will be creating explicit scope.
719  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
720    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
721        ; BI != BE; ++BI) {
722      Stmt *SI = *BI;
723      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
724        SI = LS->getSubStmt();
725      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
726        Scope = addLocalScopeForDeclStmt(DS, Scope);
727    }
728    return;
729  }
730
731  // For any other statement scope will be implicit and as such will be
732  // interesting only for DeclStmt.
733  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
734    S = LS->getSubStmt();
735  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
736    addLocalScopeForDeclStmt(DS);
737}
738
739/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
740/// reuse Scope if not NULL.
741LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
742                                                 LocalScope* Scope) {
743  if (!BuildOpts.AddImplicitDtors)
744    return Scope;
745
746  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
747      ; DI != DE; ++DI) {
748    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
749      Scope = addLocalScopeForVarDecl(VD, Scope);
750  }
751  return Scope;
752}
753
754/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
755/// create add scope for automatic objects and temporary objects bound to
756/// const reference. Will reuse Scope if not NULL.
757LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
758                                                LocalScope* Scope) {
759  if (!BuildOpts.AddImplicitDtors)
760    return Scope;
761
762  // Check if variable is local.
763  switch (VD->getStorageClass()) {
764  case SC_None:
765  case SC_Auto:
766  case SC_Register:
767    break;
768  default: return Scope;
769  }
770
771  // Check for const references bound to temporary. Set type to pointee.
772  QualType QT = VD->getType();
773  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
774    QT = RT->getPointeeType();
775    if (!QT.isConstQualified())
776      return Scope;
777    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
778      return Scope;
779  }
780
781  // Check for constant size array. Set type to array element type.
782  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
783    if (AT->getSize() == 0)
784      return Scope;
785    QT = AT->getElementType();
786  }
787
788  // Check if type is a C++ class with non-trivial destructor.
789  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
790    if (!CD->hasTrivialDestructor()) {
791      // Add the variable to scope
792      Scope = createOrReuseLocalScope(Scope);
793      Scope->addVar(VD);
794      ScopePos = Scope->begin();
795    }
796  return Scope;
797}
798
799/// addLocalScopeAndDtors - For given statement add local scope for it and
800/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
801void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
802  if (!BuildOpts.AddImplicitDtors)
803    return;
804
805  LocalScope::const_iterator scopeBeginPos = ScopePos;
806  addLocalScopeForStmt(S);
807  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
808}
809
810/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
811/// automatic storage duration to CFGBlock's elements vector. Insertion will be
812/// performed in place specified with iterator.
813void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
814    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
815  BumpVectorContext& C = cfg->getBumpVectorContext();
816  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
817  while (B != E)
818    I = Blk->insertAutomaticObjDtor(I, *B++, S);
819}
820
821/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
822/// automatic storage duration to CFGBlock's elements vector. Elements will be
823/// appended to physical end of the vector which happens to be logical
824/// beginning.
825void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
826    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
827  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
828}
829
830/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
831/// variables with automatic storage duration to CFGBlock's elements vector.
832/// Elements will be prepended to physical beginning of the vector which
833/// happens to be logical end. Use blocks terminator as statement that specifies
834/// destructors call site.
835void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
836    LocalScope::const_iterator B, LocalScope::const_iterator E) {
837  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
838}
839
840/// Visit - Walk the subtree of a statement and add extra
841///   blocks for ternary operators, &&, and ||.  We also process "," and
842///   DeclStmts (which may contain nested control-flow).
843CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
844tryAgain:
845  if (!S) {
846    badCFG = true;
847    return 0;
848  }
849  switch (S->getStmtClass()) {
850    default:
851      return VisitStmt(S, asc);
852
853    case Stmt::AddrLabelExprClass:
854      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
855
856    case Stmt::BinaryConditionalOperatorClass:
857      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
858
859    case Stmt::BinaryOperatorClass:
860      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
861
862    case Stmt::BlockExprClass:
863      return VisitBlockExpr(cast<BlockExpr>(S), asc);
864
865    case Stmt::BreakStmtClass:
866      return VisitBreakStmt(cast<BreakStmt>(S));
867
868    case Stmt::CallExprClass:
869    case Stmt::CXXOperatorCallExprClass:
870    case Stmt::CXXMemberCallExprClass:
871      return VisitCallExpr(cast<CallExpr>(S), asc);
872
873    case Stmt::CaseStmtClass:
874      return VisitCaseStmt(cast<CaseStmt>(S));
875
876    case Stmt::ChooseExprClass:
877      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
878
879    case Stmt::CompoundStmtClass:
880      return VisitCompoundStmt(cast<CompoundStmt>(S));
881
882    case Stmt::ConditionalOperatorClass:
883      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
884
885    case Stmt::ContinueStmtClass:
886      return VisitContinueStmt(cast<ContinueStmt>(S));
887
888    case Stmt::CXXCatchStmtClass:
889      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
890
891    case Stmt::ExprWithCleanupsClass:
892      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
893
894    case Stmt::CXXBindTemporaryExprClass:
895      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
896
897    case Stmt::CXXConstructExprClass:
898      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
899
900    case Stmt::CXXFunctionalCastExprClass:
901      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
902
903    case Stmt::CXXTemporaryObjectExprClass:
904      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
905
906    case Stmt::CXXThrowExprClass:
907      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
908
909    case Stmt::CXXTryStmtClass:
910      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
911
912    case Stmt::CXXForRangeStmtClass:
913      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
914
915    case Stmt::DeclStmtClass:
916      return VisitDeclStmt(cast<DeclStmt>(S));
917
918    case Stmt::DefaultStmtClass:
919      return VisitDefaultStmt(cast<DefaultStmt>(S));
920
921    case Stmt::DoStmtClass:
922      return VisitDoStmt(cast<DoStmt>(S));
923
924    case Stmt::ForStmtClass:
925      return VisitForStmt(cast<ForStmt>(S));
926
927    case Stmt::GotoStmtClass:
928      return VisitGotoStmt(cast<GotoStmt>(S));
929
930    case Stmt::IfStmtClass:
931      return VisitIfStmt(cast<IfStmt>(S));
932
933    case Stmt::ImplicitCastExprClass:
934      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
935
936    case Stmt::IndirectGotoStmtClass:
937      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
938
939    case Stmt::LabelStmtClass:
940      return VisitLabelStmt(cast<LabelStmt>(S));
941
942    case Stmt::MemberExprClass:
943      return VisitMemberExpr(cast<MemberExpr>(S), asc);
944
945    case Stmt::ObjCAtCatchStmtClass:
946      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
947
948    case Stmt::ObjCAtSynchronizedStmtClass:
949      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
950
951    case Stmt::ObjCAtThrowStmtClass:
952      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
953
954    case Stmt::ObjCAtTryStmtClass:
955      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
956
957    case Stmt::ObjCForCollectionStmtClass:
958      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
959
960    case Stmt::ParenExprClass:
961      S = cast<ParenExpr>(S)->getSubExpr();
962      goto tryAgain;
963
964    case Stmt::NullStmtClass:
965      return Block;
966
967    case Stmt::ReturnStmtClass:
968      return VisitReturnStmt(cast<ReturnStmt>(S));
969
970    case Stmt::UnaryExprOrTypeTraitExprClass:
971      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
972                                           asc);
973
974    case Stmt::StmtExprClass:
975      return VisitStmtExpr(cast<StmtExpr>(S), asc);
976
977    case Stmt::SwitchStmtClass:
978      return VisitSwitchStmt(cast<SwitchStmt>(S));
979
980    case Stmt::UnaryOperatorClass:
981      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
982
983    case Stmt::WhileStmtClass:
984      return VisitWhileStmt(cast<WhileStmt>(S));
985  }
986}
987
988CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
989  if (asc.alwaysAdd(*this, S)) {
990    autoCreateBlock();
991    appendStmt(Block, S);
992  }
993
994  return VisitChildren(S);
995}
996
997/// VisitChildren - Visit the children of a Stmt.
998CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
999  CFGBlock *lastBlock = Block;
1000  for (Stmt::child_range I = Terminator->children(); I; ++I)
1001    if (Stmt *child = *I)
1002      if (CFGBlock *b = Visit(child))
1003        lastBlock = b;
1004
1005  return lastBlock;
1006}
1007
1008CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1009                                         AddStmtChoice asc) {
1010  AddressTakenLabels.insert(A->getLabel());
1011
1012  if (asc.alwaysAdd(*this, A)) {
1013    autoCreateBlock();
1014    appendStmt(Block, A);
1015  }
1016
1017  return Block;
1018}
1019
1020CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1021           AddStmtChoice asc) {
1022  if (asc.alwaysAdd(*this, U)) {
1023    autoCreateBlock();
1024    appendStmt(Block, U);
1025  }
1026
1027  return Visit(U->getSubExpr(), AddStmtChoice());
1028}
1029
1030CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1031                                          AddStmtChoice asc) {
1032  if (B->isLogicalOp()) { // && or ||
1033    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1034    appendStmt(ConfluenceBlock, B);
1035
1036    if (badCFG)
1037      return 0;
1038
1039    // create the block evaluating the LHS
1040    CFGBlock* LHSBlock = createBlock(false);
1041    LHSBlock->setTerminator(B);
1042
1043    // create the block evaluating the RHS
1044    Succ = ConfluenceBlock;
1045    Block = NULL;
1046    CFGBlock* RHSBlock = addStmt(B->getRHS());
1047
1048    if (RHSBlock) {
1049      if (badCFG)
1050        return 0;
1051    } else {
1052      // Create an empty block for cases where the RHS doesn't require
1053      // any explicit statements in the CFG.
1054      RHSBlock = createBlock();
1055    }
1056
1057    // See if this is a known constant.
1058    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1059    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1060      KnownVal.negate();
1061
1062    // Now link the LHSBlock with RHSBlock.
1063    if (B->getOpcode() == BO_LOr) {
1064      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1065      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1066    } else {
1067      assert(B->getOpcode() == BO_LAnd);
1068      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1069      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1070    }
1071
1072    // Generate the blocks for evaluating the LHS.
1073    Block = LHSBlock;
1074    return addStmt(B->getLHS());
1075  }
1076
1077  if (B->getOpcode() == BO_Comma) { // ,
1078    autoCreateBlock();
1079    appendStmt(Block, B);
1080    addStmt(B->getRHS());
1081    return addStmt(B->getLHS());
1082  }
1083
1084  if (B->isAssignmentOp()) {
1085    if (asc.alwaysAdd(*this, B)) {
1086      autoCreateBlock();
1087      appendStmt(Block, B);
1088    }
1089    Visit(B->getLHS());
1090    return Visit(B->getRHS());
1091  }
1092
1093  if (asc.alwaysAdd(*this, B)) {
1094    autoCreateBlock();
1095    appendStmt(Block, B);
1096  }
1097
1098  CFGBlock *RBlock = Visit(B->getRHS());
1099  CFGBlock *LBlock = Visit(B->getLHS());
1100  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1101  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1102  // return RBlock.  Otherwise we'll incorrectly return NULL.
1103  return (LBlock ? LBlock : RBlock);
1104}
1105
1106CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1107  if (asc.alwaysAdd(*this, E)) {
1108    autoCreateBlock();
1109    appendStmt(Block, E);
1110  }
1111  return Block;
1112}
1113
1114CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1115  // "break" is a control-flow statement.  Thus we stop processing the current
1116  // block.
1117  if (badCFG)
1118    return 0;
1119
1120  // Now create a new block that ends with the break statement.
1121  Block = createBlock(false);
1122  Block->setTerminator(B);
1123
1124  // If there is no target for the break, then we are looking at an incomplete
1125  // AST.  This means that the CFG cannot be constructed.
1126  if (BreakJumpTarget.block) {
1127    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1128    addSuccessor(Block, BreakJumpTarget.block);
1129  } else
1130    badCFG = true;
1131
1132
1133  return Block;
1134}
1135
1136static bool CanThrow(Expr *E, ASTContext &Ctx) {
1137  QualType Ty = E->getType();
1138  if (Ty->isFunctionPointerType())
1139    Ty = Ty->getAs<PointerType>()->getPointeeType();
1140  else if (Ty->isBlockPointerType())
1141    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1142
1143  const FunctionType *FT = Ty->getAs<FunctionType>();
1144  if (FT) {
1145    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1146      if (Proto->isNothrow(Ctx))
1147        return false;
1148  }
1149  return true;
1150}
1151
1152CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1153  // Compute the callee type.
1154  QualType calleeType = C->getCallee()->getType();
1155  if (calleeType == Context->BoundMemberTy) {
1156    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1157
1158    // We should only get a null bound type if processing a dependent
1159    // CFG.  Recover by assuming nothing.
1160    if (!boundType.isNull()) calleeType = boundType;
1161  }
1162
1163  // If this is a call to a no-return function, this stops the block here.
1164  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1165
1166  bool AddEHEdge = false;
1167
1168  // Languages without exceptions are assumed to not throw.
1169  if (Context->getLangOptions().Exceptions) {
1170    if (BuildOpts.AddEHEdges)
1171      AddEHEdge = true;
1172  }
1173
1174  if (FunctionDecl *FD = C->getDirectCallee()) {
1175    if (FD->hasAttr<NoReturnAttr>())
1176      NoReturn = true;
1177    if (FD->hasAttr<NoThrowAttr>())
1178      AddEHEdge = false;
1179  }
1180
1181  if (!CanThrow(C->getCallee(), *Context))
1182    AddEHEdge = false;
1183
1184  if (!NoReturn && !AddEHEdge)
1185    return VisitStmt(C, asc.withAlwaysAdd(true));
1186
1187  if (Block) {
1188    Succ = Block;
1189    if (badCFG)
1190      return 0;
1191  }
1192
1193  Block = createBlock(!NoReturn);
1194  appendStmt(Block, C);
1195
1196  if (NoReturn) {
1197    // Wire this to the exit block directly.
1198    addSuccessor(Block, &cfg->getExit());
1199  }
1200  if (AddEHEdge) {
1201    // Add exceptional edges.
1202    if (TryTerminatedBlock)
1203      addSuccessor(Block, TryTerminatedBlock);
1204    else
1205      addSuccessor(Block, &cfg->getExit());
1206  }
1207
1208  return VisitChildren(C);
1209}
1210
1211CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1212                                      AddStmtChoice asc) {
1213  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1214  appendStmt(ConfluenceBlock, C);
1215  if (badCFG)
1216    return 0;
1217
1218  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1219  Succ = ConfluenceBlock;
1220  Block = NULL;
1221  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1222  if (badCFG)
1223    return 0;
1224
1225  Succ = ConfluenceBlock;
1226  Block = NULL;
1227  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1228  if (badCFG)
1229    return 0;
1230
1231  Block = createBlock(false);
1232  // See if this is a known constant.
1233  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1234  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1235  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1236  Block->setTerminator(C);
1237  return addStmt(C->getCond());
1238}
1239
1240
1241CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1242  addLocalScopeAndDtors(C);
1243  CFGBlock* LastBlock = Block;
1244
1245  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1246       I != E; ++I ) {
1247    // If we hit a segment of code just containing ';' (NullStmts), we can
1248    // get a null block back.  In such cases, just use the LastBlock
1249    if (CFGBlock *newBlock = addStmt(*I))
1250      LastBlock = newBlock;
1251
1252    if (badCFG)
1253      return NULL;
1254  }
1255
1256  return LastBlock;
1257}
1258
1259CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1260                                               AddStmtChoice asc) {
1261  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1262  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1263
1264  // Create the confluence block that will "merge" the results of the ternary
1265  // expression.
1266  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1267  appendStmt(ConfluenceBlock, C);
1268  if (badCFG)
1269    return 0;
1270
1271  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1272
1273  // Create a block for the LHS expression if there is an LHS expression.  A
1274  // GCC extension allows LHS to be NULL, causing the condition to be the
1275  // value that is returned instead.
1276  //  e.g: x ?: y is shorthand for: x ? x : y;
1277  Succ = ConfluenceBlock;
1278  Block = NULL;
1279  CFGBlock* LHSBlock = 0;
1280  const Expr *trueExpr = C->getTrueExpr();
1281  if (trueExpr != opaqueValue) {
1282    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1283    if (badCFG)
1284      return 0;
1285    Block = NULL;
1286  }
1287  else
1288    LHSBlock = ConfluenceBlock;
1289
1290  // Create the block for the RHS expression.
1291  Succ = ConfluenceBlock;
1292  CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1293  if (badCFG)
1294    return 0;
1295
1296  // Create the block that will contain the condition.
1297  Block = createBlock(false);
1298
1299  // See if this is a known constant.
1300  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1301  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1302  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1303  Block->setTerminator(C);
1304  Expr *condExpr = C->getCond();
1305
1306  if (opaqueValue) {
1307    // Run the condition expression if it's not trivially expressed in
1308    // terms of the opaque value (or if there is no opaque value).
1309    if (condExpr != opaqueValue)
1310      addStmt(condExpr);
1311
1312    // Before that, run the common subexpression if there was one.
1313    // At least one of this or the above will be run.
1314    return addStmt(BCO->getCommon());
1315  }
1316
1317  return addStmt(condExpr);
1318}
1319
1320CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1321  // Check if the Decl is for an __label__.  If so, elide it from the
1322  // CFG entirely.
1323  if (isa<LabelDecl>(*DS->decl_begin()))
1324    return Block;
1325
1326  // This case also handles static_asserts.
1327  if (DS->isSingleDecl())
1328    return VisitDeclSubExpr(DS);
1329
1330  CFGBlock *B = 0;
1331
1332  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1333  typedef llvm::SmallVector<Decl*,10> BufTy;
1334  BufTy Buf(DS->decl_begin(), DS->decl_end());
1335
1336  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1337    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1338    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1339               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1340
1341    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1342    // automatically freed with the CFG.
1343    DeclGroupRef DG(*I);
1344    Decl *D = *I;
1345    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1346    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1347
1348    // Append the fake DeclStmt to block.
1349    B = VisitDeclSubExpr(DSNew);
1350  }
1351
1352  return B;
1353}
1354
1355/// VisitDeclSubExpr - Utility method to add block-level expressions for
1356/// DeclStmts and initializers in them.
1357CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1358  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1359  Decl *D = DS->getSingleDecl();
1360
1361  if (isa<StaticAssertDecl>(D)) {
1362    // static_asserts aren't added to the CFG because they do not impact
1363    // runtime semantics.
1364    return Block;
1365  }
1366
1367  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1368
1369  if (!VD) {
1370    autoCreateBlock();
1371    appendStmt(Block, DS);
1372    return Block;
1373  }
1374
1375  bool IsReference = false;
1376  bool HasTemporaries = false;
1377
1378  // Destructors of temporaries in initialization expression should be called
1379  // after initialization finishes.
1380  Expr *Init = VD->getInit();
1381  if (Init) {
1382    IsReference = VD->getType()->isReferenceType();
1383    HasTemporaries = isa<ExprWithCleanups>(Init);
1384
1385    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1386      // Generate destructors for temporaries in initialization expression.
1387      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1388          IsReference);
1389    }
1390  }
1391
1392  autoCreateBlock();
1393  appendStmt(Block, DS);
1394
1395  if (Init) {
1396    if (HasTemporaries)
1397      // For expression with temporaries go directly to subexpression to omit
1398      // generating destructors for the second time.
1399      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1400    else
1401      Visit(Init);
1402  }
1403
1404  // If the type of VD is a VLA, then we must process its size expressions.
1405  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1406       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1407    Block = addStmt(VA->getSizeExpr());
1408
1409  // Remove variable from local scope.
1410  if (ScopePos && VD == *ScopePos)
1411    ++ScopePos;
1412
1413  return Block;
1414}
1415
1416CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1417  // We may see an if statement in the middle of a basic block, or it may be the
1418  // first statement we are processing.  In either case, we create a new basic
1419  // block.  First, we create the blocks for the then...else statements, and
1420  // then we create the block containing the if statement.  If we were in the
1421  // middle of a block, we stop processing that block.  That block is then the
1422  // implicit successor for the "then" and "else" clauses.
1423
1424  // Save local scope position because in case of condition variable ScopePos
1425  // won't be restored when traversing AST.
1426  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1427
1428  // Create local scope for possible condition variable.
1429  // Store scope position. Add implicit destructor.
1430  if (VarDecl* VD = I->getConditionVariable()) {
1431    LocalScope::const_iterator BeginScopePos = ScopePos;
1432    addLocalScopeForVarDecl(VD);
1433    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1434  }
1435
1436  // The block we were processing is now finished.  Make it the successor
1437  // block.
1438  if (Block) {
1439    Succ = Block;
1440    if (badCFG)
1441      return 0;
1442  }
1443
1444  // Process the false branch.
1445  CFGBlock* ElseBlock = Succ;
1446
1447  if (Stmt* Else = I->getElse()) {
1448    SaveAndRestore<CFGBlock*> sv(Succ);
1449
1450    // NULL out Block so that the recursive call to Visit will
1451    // create a new basic block.
1452    Block = NULL;
1453
1454    // If branch is not a compound statement create implicit scope
1455    // and add destructors.
1456    if (!isa<CompoundStmt>(Else))
1457      addLocalScopeAndDtors(Else);
1458
1459    ElseBlock = addStmt(Else);
1460
1461    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1462      ElseBlock = sv.get();
1463    else if (Block) {
1464      if (badCFG)
1465        return 0;
1466    }
1467  }
1468
1469  // Process the true branch.
1470  CFGBlock* ThenBlock;
1471  {
1472    Stmt* Then = I->getThen();
1473    assert(Then);
1474    SaveAndRestore<CFGBlock*> sv(Succ);
1475    Block = NULL;
1476
1477    // If branch is not a compound statement create implicit scope
1478    // and add destructors.
1479    if (!isa<CompoundStmt>(Then))
1480      addLocalScopeAndDtors(Then);
1481
1482    ThenBlock = addStmt(Then);
1483
1484    if (!ThenBlock) {
1485      // We can reach here if the "then" body has all NullStmts.
1486      // Create an empty block so we can distinguish between true and false
1487      // branches in path-sensitive analyses.
1488      ThenBlock = createBlock(false);
1489      addSuccessor(ThenBlock, sv.get());
1490    } else if (Block) {
1491      if (badCFG)
1492        return 0;
1493    }
1494  }
1495
1496  // Now create a new block containing the if statement.
1497  Block = createBlock(false);
1498
1499  // Set the terminator of the new block to the If statement.
1500  Block->setTerminator(I);
1501
1502  // See if this is a known constant.
1503  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1504
1505  // Now add the successors.
1506  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1507  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1508
1509  // Add the condition as the last statement in the new block.  This may create
1510  // new blocks as the condition may contain control-flow.  Any newly created
1511  // blocks will be pointed to be "Block".
1512  Block = addStmt(I->getCond());
1513
1514  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1515  // and the condition variable initialization to the CFG.
1516  if (VarDecl *VD = I->getConditionVariable()) {
1517    if (Expr *Init = VD->getInit()) {
1518      autoCreateBlock();
1519      appendStmt(Block, I->getConditionVariableDeclStmt());
1520      addStmt(Init);
1521    }
1522  }
1523
1524  return Block;
1525}
1526
1527
1528CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1529  // If we were in the middle of a block we stop processing that block.
1530  //
1531  // NOTE: If a "return" appears in the middle of a block, this means that the
1532  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1533  //       for that code; a simple "mark-and-sweep" from the entry block will be
1534  //       able to report such dead blocks.
1535
1536  // Create the new block.
1537  Block = createBlock(false);
1538
1539  // The Exit block is the only successor.
1540  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1541  addSuccessor(Block, &cfg->getExit());
1542
1543  // Add the return statement to the block.  This may create new blocks if R
1544  // contains control-flow (short-circuit operations).
1545  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1546}
1547
1548CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1549  // Get the block of the labeled statement.  Add it to our map.
1550  addStmt(L->getSubStmt());
1551  CFGBlock *LabelBlock = Block;
1552
1553  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1554    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1555
1556  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1557         "label already in map");
1558  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1559
1560  // Labels partition blocks, so this is the end of the basic block we were
1561  // processing (L is the block's label).  Because this is label (and we have
1562  // already processed the substatement) there is no extra control-flow to worry
1563  // about.
1564  LabelBlock->setLabel(L);
1565  if (badCFG)
1566    return 0;
1567
1568  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1569  Block = NULL;
1570
1571  // This block is now the implicit successor of other blocks.
1572  Succ = LabelBlock;
1573
1574  return LabelBlock;
1575}
1576
1577CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1578  // Goto is a control-flow statement.  Thus we stop processing the current
1579  // block and create a new one.
1580
1581  Block = createBlock(false);
1582  Block->setTerminator(G);
1583
1584  // If we already know the mapping to the label block add the successor now.
1585  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1586
1587  if (I == LabelMap.end())
1588    // We will need to backpatch this block later.
1589    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1590  else {
1591    JumpTarget JT = I->second;
1592    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1593    addSuccessor(Block, JT.block);
1594  }
1595
1596  return Block;
1597}
1598
1599CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1600  CFGBlock* LoopSuccessor = NULL;
1601
1602  // Save local scope position because in case of condition variable ScopePos
1603  // won't be restored when traversing AST.
1604  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1605
1606  // Create local scope for init statement and possible condition variable.
1607  // Add destructor for init statement and condition variable.
1608  // Store scope position for continue statement.
1609  if (Stmt* Init = F->getInit())
1610    addLocalScopeForStmt(Init);
1611  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1612
1613  if (VarDecl* VD = F->getConditionVariable())
1614    addLocalScopeForVarDecl(VD);
1615  LocalScope::const_iterator ContinueScopePos = ScopePos;
1616
1617  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1618
1619  // "for" is a control-flow statement.  Thus we stop processing the current
1620  // block.
1621  if (Block) {
1622    if (badCFG)
1623      return 0;
1624    LoopSuccessor = Block;
1625  } else
1626    LoopSuccessor = Succ;
1627
1628  // Save the current value for the break targets.
1629  // All breaks should go to the code following the loop.
1630  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1631  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1632
1633  // Because of short-circuit evaluation, the condition of the loop can span
1634  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1635  // evaluate the condition.
1636  CFGBlock* ExitConditionBlock = createBlock(false);
1637  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1638
1639  // Set the terminator for the "exit" condition block.
1640  ExitConditionBlock->setTerminator(F);
1641
1642  // Now add the actual condition to the condition block.  Because the condition
1643  // itself may contain control-flow, new blocks may be created.
1644  if (Stmt* C = F->getCond()) {
1645    Block = ExitConditionBlock;
1646    EntryConditionBlock = addStmt(C);
1647    if (badCFG)
1648      return 0;
1649    assert(Block == EntryConditionBlock ||
1650           (Block == 0 && EntryConditionBlock == Succ));
1651
1652    // If this block contains a condition variable, add both the condition
1653    // variable and initializer to the CFG.
1654    if (VarDecl *VD = F->getConditionVariable()) {
1655      if (Expr *Init = VD->getInit()) {
1656        autoCreateBlock();
1657        appendStmt(Block, F->getConditionVariableDeclStmt());
1658        EntryConditionBlock = addStmt(Init);
1659        assert(Block == EntryConditionBlock);
1660      }
1661    }
1662
1663    if (Block) {
1664      if (badCFG)
1665        return 0;
1666    }
1667  }
1668
1669  // The condition block is the implicit successor for the loop body as well as
1670  // any code above the loop.
1671  Succ = EntryConditionBlock;
1672
1673  // See if this is a known constant.
1674  TryResult KnownVal(true);
1675
1676  if (F->getCond())
1677    KnownVal = tryEvaluateBool(F->getCond());
1678
1679  // Now create the loop body.
1680  {
1681    assert(F->getBody());
1682
1683   // Save the current values for Block, Succ, and continue targets.
1684   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1685   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1686
1687    // Create a new block to contain the (bottom) of the loop body.
1688    Block = NULL;
1689
1690    // Loop body should end with destructor of Condition variable (if any).
1691    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1692
1693    if (Stmt* I = F->getInc()) {
1694      // Generate increment code in its own basic block.  This is the target of
1695      // continue statements.
1696      Succ = addStmt(I);
1697    } else {
1698      // No increment code.  Create a special, empty, block that is used as the
1699      // target block for "looping back" to the start of the loop.
1700      assert(Succ == EntryConditionBlock);
1701      Succ = Block ? Block : createBlock();
1702    }
1703
1704    // Finish up the increment (or empty) block if it hasn't been already.
1705    if (Block) {
1706      assert(Block == Succ);
1707      if (badCFG)
1708        return 0;
1709      Block = 0;
1710    }
1711
1712    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1713
1714    // The starting block for the loop increment is the block that should
1715    // represent the 'loop target' for looping back to the start of the loop.
1716    ContinueJumpTarget.block->setLoopTarget(F);
1717
1718    // If body is not a compound statement create implicit scope
1719    // and add destructors.
1720    if (!isa<CompoundStmt>(F->getBody()))
1721      addLocalScopeAndDtors(F->getBody());
1722
1723    // Now populate the body block, and in the process create new blocks as we
1724    // walk the body of the loop.
1725    CFGBlock* BodyBlock = addStmt(F->getBody());
1726
1727    if (!BodyBlock)
1728      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1729    else if (badCFG)
1730      return 0;
1731
1732    // This new body block is a successor to our "exit" condition block.
1733    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1734  }
1735
1736  // Link up the condition block with the code that follows the loop.  (the
1737  // false branch).
1738  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1739
1740  // If the loop contains initialization, create a new block for those
1741  // statements.  This block can also contain statements that precede the loop.
1742  if (Stmt* I = F->getInit()) {
1743    Block = createBlock();
1744    return addStmt(I);
1745  }
1746
1747  // There is no loop initialization.  We are thus basically a while loop.
1748  // NULL out Block to force lazy block construction.
1749  Block = NULL;
1750  Succ = EntryConditionBlock;
1751  return EntryConditionBlock;
1752}
1753
1754CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1755  if (asc.alwaysAdd(*this, M)) {
1756    autoCreateBlock();
1757    appendStmt(Block, M);
1758  }
1759  return Visit(M->getBase());
1760}
1761
1762CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1763  // Objective-C fast enumeration 'for' statements:
1764  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1765  //
1766  //  for ( Type newVariable in collection_expression ) { statements }
1767  //
1768  //  becomes:
1769  //
1770  //   prologue:
1771  //     1. collection_expression
1772  //     T. jump to loop_entry
1773  //   loop_entry:
1774  //     1. side-effects of element expression
1775  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1776  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1777  //   TB:
1778  //     statements
1779  //     T. jump to loop_entry
1780  //   FB:
1781  //     what comes after
1782  //
1783  //  and
1784  //
1785  //  Type existingItem;
1786  //  for ( existingItem in expression ) { statements }
1787  //
1788  //  becomes:
1789  //
1790  //   the same with newVariable replaced with existingItem; the binding works
1791  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1792  //   a DeclStmt and the other returns a DeclRefExpr.
1793  //
1794
1795  CFGBlock* LoopSuccessor = 0;
1796
1797  if (Block) {
1798    if (badCFG)
1799      return 0;
1800    LoopSuccessor = Block;
1801    Block = 0;
1802  } else
1803    LoopSuccessor = Succ;
1804
1805  // Build the condition blocks.
1806  CFGBlock* ExitConditionBlock = createBlock(false);
1807  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1808
1809  // Set the terminator for the "exit" condition block.
1810  ExitConditionBlock->setTerminator(S);
1811
1812  // The last statement in the block should be the ObjCForCollectionStmt, which
1813  // performs the actual binding to 'element' and determines if there are any
1814  // more items in the collection.
1815  appendStmt(ExitConditionBlock, S);
1816  Block = ExitConditionBlock;
1817
1818  // Walk the 'element' expression to see if there are any side-effects.  We
1819  // generate new blocks as necessary.  We DON'T add the statement by default to
1820  // the CFG unless it contains control-flow.
1821  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1822  if (Block) {
1823    if (badCFG)
1824      return 0;
1825    Block = 0;
1826  }
1827
1828  // The condition block is the implicit successor for the loop body as well as
1829  // any code above the loop.
1830  Succ = EntryConditionBlock;
1831
1832  // Now create the true branch.
1833  {
1834    // Save the current values for Succ, continue and break targets.
1835    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1836    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1837        save_break(BreakJumpTarget);
1838
1839    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1840    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1841
1842    CFGBlock* BodyBlock = addStmt(S->getBody());
1843
1844    if (!BodyBlock)
1845      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1846    else if (Block) {
1847      if (badCFG)
1848        return 0;
1849    }
1850
1851    // This new body block is a successor to our "exit" condition block.
1852    addSuccessor(ExitConditionBlock, BodyBlock);
1853  }
1854
1855  // Link up the condition block with the code that follows the loop.
1856  // (the false branch).
1857  addSuccessor(ExitConditionBlock, LoopSuccessor);
1858
1859  // Now create a prologue block to contain the collection expression.
1860  Block = createBlock();
1861  return addStmt(S->getCollection());
1862}
1863
1864CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1865  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1866
1867  // Inline the body.
1868  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1869
1870  // The sync body starts its own basic block.  This makes it a little easier
1871  // for diagnostic clients.
1872  if (SyncBlock) {
1873    if (badCFG)
1874      return 0;
1875
1876    Block = 0;
1877    Succ = SyncBlock;
1878  }
1879
1880  // Add the @synchronized to the CFG.
1881  autoCreateBlock();
1882  appendStmt(Block, S);
1883
1884  // Inline the sync expression.
1885  return addStmt(S->getSynchExpr());
1886}
1887
1888CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1889  // FIXME
1890  return NYS();
1891}
1892
1893CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1894  CFGBlock* LoopSuccessor = NULL;
1895
1896  // Save local scope position because in case of condition variable ScopePos
1897  // won't be restored when traversing AST.
1898  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1899
1900  // Create local scope for possible condition variable.
1901  // Store scope position for continue statement.
1902  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1903  if (VarDecl* VD = W->getConditionVariable()) {
1904    addLocalScopeForVarDecl(VD);
1905    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1906  }
1907
1908  // "while" is a control-flow statement.  Thus we stop processing the current
1909  // block.
1910  if (Block) {
1911    if (badCFG)
1912      return 0;
1913    LoopSuccessor = Block;
1914    Block = 0;
1915  } else
1916    LoopSuccessor = Succ;
1917
1918  // Because of short-circuit evaluation, the condition of the loop can span
1919  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1920  // evaluate the condition.
1921  CFGBlock* ExitConditionBlock = createBlock(false);
1922  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1923
1924  // Set the terminator for the "exit" condition block.
1925  ExitConditionBlock->setTerminator(W);
1926
1927  // Now add the actual condition to the condition block.  Because the condition
1928  // itself may contain control-flow, new blocks may be created.  Thus we update
1929  // "Succ" after adding the condition.
1930  if (Stmt* C = W->getCond()) {
1931    Block = ExitConditionBlock;
1932    EntryConditionBlock = addStmt(C);
1933    // The condition might finish the current 'Block'.
1934    Block = EntryConditionBlock;
1935
1936    // If this block contains a condition variable, add both the condition
1937    // variable and initializer to the CFG.
1938    if (VarDecl *VD = W->getConditionVariable()) {
1939      if (Expr *Init = VD->getInit()) {
1940        autoCreateBlock();
1941        appendStmt(Block, W->getConditionVariableDeclStmt());
1942        EntryConditionBlock = addStmt(Init);
1943        assert(Block == EntryConditionBlock);
1944      }
1945    }
1946
1947    if (Block) {
1948      if (badCFG)
1949        return 0;
1950    }
1951  }
1952
1953  // The condition block is the implicit successor for the loop body as well as
1954  // any code above the loop.
1955  Succ = EntryConditionBlock;
1956
1957  // See if this is a known constant.
1958  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1959
1960  // Process the loop body.
1961  {
1962    assert(W->getBody());
1963
1964    // Save the current values for Block, Succ, and continue and break targets
1965    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1966    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1967        save_break(BreakJumpTarget);
1968
1969    // Create an empty block to represent the transition block for looping back
1970    // to the head of the loop.
1971    Block = 0;
1972    assert(Succ == EntryConditionBlock);
1973    Succ = createBlock();
1974    Succ->setLoopTarget(W);
1975    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1976
1977    // All breaks should go to the code following the loop.
1978    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1979
1980    // NULL out Block to force lazy instantiation of blocks for the body.
1981    Block = NULL;
1982
1983    // Loop body should end with destructor of Condition variable (if any).
1984    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1985
1986    // If body is not a compound statement create implicit scope
1987    // and add destructors.
1988    if (!isa<CompoundStmt>(W->getBody()))
1989      addLocalScopeAndDtors(W->getBody());
1990
1991    // Create the body.  The returned block is the entry to the loop body.
1992    CFGBlock* BodyBlock = addStmt(W->getBody());
1993
1994    if (!BodyBlock)
1995      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1996    else if (Block) {
1997      if (badCFG)
1998        return 0;
1999    }
2000
2001    // Add the loop body entry as a successor to the condition.
2002    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2003  }
2004
2005  // Link up the condition block with the code that follows the loop.  (the
2006  // false branch).
2007  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2008
2009  // There can be no more statements in the condition block since we loop back
2010  // to this block.  NULL out Block to force lazy creation of another block.
2011  Block = NULL;
2012
2013  // Return the condition block, which is the dominating block for the loop.
2014  Succ = EntryConditionBlock;
2015  return EntryConditionBlock;
2016}
2017
2018
2019CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
2020  // FIXME: For now we pretend that @catch and the code it contains does not
2021  //  exit.
2022  return Block;
2023}
2024
2025CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
2026  // FIXME: This isn't complete.  We basically treat @throw like a return
2027  //  statement.
2028
2029  // If we were in the middle of a block we stop processing that block.
2030  if (badCFG)
2031    return 0;
2032
2033  // Create the new block.
2034  Block = createBlock(false);
2035
2036  // The Exit block is the only successor.
2037  addSuccessor(Block, &cfg->getExit());
2038
2039  // Add the statement to the block.  This may create new blocks if S contains
2040  // control-flow (short-circuit operations).
2041  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2042}
2043
2044CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
2045  // If we were in the middle of a block we stop processing that block.
2046  if (badCFG)
2047    return 0;
2048
2049  // Create the new block.
2050  Block = createBlock(false);
2051
2052  if (TryTerminatedBlock)
2053    // The current try statement is the only successor.
2054    addSuccessor(Block, TryTerminatedBlock);
2055  else
2056    // otherwise the Exit block is the only successor.
2057    addSuccessor(Block, &cfg->getExit());
2058
2059  // Add the statement to the block.  This may create new blocks if S contains
2060  // control-flow (short-circuit operations).
2061  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2062}
2063
2064CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
2065  CFGBlock* LoopSuccessor = NULL;
2066
2067  // "do...while" is a control-flow statement.  Thus we stop processing the
2068  // current block.
2069  if (Block) {
2070    if (badCFG)
2071      return 0;
2072    LoopSuccessor = Block;
2073  } else
2074    LoopSuccessor = Succ;
2075
2076  // Because of short-circuit evaluation, the condition of the loop can span
2077  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2078  // evaluate the condition.
2079  CFGBlock* ExitConditionBlock = createBlock(false);
2080  CFGBlock* EntryConditionBlock = ExitConditionBlock;
2081
2082  // Set the terminator for the "exit" condition block.
2083  ExitConditionBlock->setTerminator(D);
2084
2085  // Now add the actual condition to the condition block.  Because the condition
2086  // itself may contain control-flow, new blocks may be created.
2087  if (Stmt* C = D->getCond()) {
2088    Block = ExitConditionBlock;
2089    EntryConditionBlock = addStmt(C);
2090    if (Block) {
2091      if (badCFG)
2092        return 0;
2093    }
2094  }
2095
2096  // The condition block is the implicit successor for the loop body.
2097  Succ = EntryConditionBlock;
2098
2099  // See if this is a known constant.
2100  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2101
2102  // Process the loop body.
2103  CFGBlock* BodyBlock = NULL;
2104  {
2105    assert(D->getBody());
2106
2107    // Save the current values for Block, Succ, and continue and break targets
2108    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2109    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2110        save_break(BreakJumpTarget);
2111
2112    // All continues within this loop should go to the condition block
2113    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2114
2115    // All breaks should go to the code following the loop.
2116    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2117
2118    // NULL out Block to force lazy instantiation of blocks for the body.
2119    Block = NULL;
2120
2121    // If body is not a compound statement create implicit scope
2122    // and add destructors.
2123    if (!isa<CompoundStmt>(D->getBody()))
2124      addLocalScopeAndDtors(D->getBody());
2125
2126    // Create the body.  The returned block is the entry to the loop body.
2127    BodyBlock = addStmt(D->getBody());
2128
2129    if (!BodyBlock)
2130      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2131    else if (Block) {
2132      if (badCFG)
2133        return 0;
2134    }
2135
2136    if (!KnownVal.isFalse()) {
2137      // Add an intermediate block between the BodyBlock and the
2138      // ExitConditionBlock to represent the "loop back" transition.  Create an
2139      // empty block to represent the transition block for looping back to the
2140      // head of the loop.
2141      // FIXME: Can we do this more efficiently without adding another block?
2142      Block = NULL;
2143      Succ = BodyBlock;
2144      CFGBlock *LoopBackBlock = createBlock();
2145      LoopBackBlock->setLoopTarget(D);
2146
2147      // Add the loop body entry as a successor to the condition.
2148      addSuccessor(ExitConditionBlock, LoopBackBlock);
2149    }
2150    else
2151      addSuccessor(ExitConditionBlock, NULL);
2152  }
2153
2154  // Link up the condition block with the code that follows the loop.
2155  // (the false branch).
2156  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2157
2158  // There can be no more statements in the body block(s) since we loop back to
2159  // the body.  NULL out Block to force lazy creation of another block.
2160  Block = NULL;
2161
2162  // Return the loop body, which is the dominating block for the loop.
2163  Succ = BodyBlock;
2164  return BodyBlock;
2165}
2166
2167CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2168  // "continue" is a control-flow statement.  Thus we stop processing the
2169  // current block.
2170  if (badCFG)
2171    return 0;
2172
2173  // Now create a new block that ends with the continue statement.
2174  Block = createBlock(false);
2175  Block->setTerminator(C);
2176
2177  // If there is no target for the continue, then we are looking at an
2178  // incomplete AST.  This means the CFG cannot be constructed.
2179  if (ContinueJumpTarget.block) {
2180    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2181    addSuccessor(Block, ContinueJumpTarget.block);
2182  } else
2183    badCFG = true;
2184
2185  return Block;
2186}
2187
2188CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2189                                                    AddStmtChoice asc) {
2190
2191  if (asc.alwaysAdd(*this, E)) {
2192    autoCreateBlock();
2193    appendStmt(Block, E);
2194  }
2195
2196  // VLA types have expressions that must be evaluated.
2197  CFGBlock *lastBlock = Block;
2198
2199  if (E->isArgumentType()) {
2200    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2201         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2202      lastBlock = addStmt(VA->getSizeExpr());
2203  }
2204
2205  return lastBlock;
2206}
2207
2208/// VisitStmtExpr - Utility method to handle (nested) statement
2209///  expressions (a GCC extension).
2210CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2211  if (asc.alwaysAdd(*this, SE)) {
2212    autoCreateBlock();
2213    appendStmt(Block, SE);
2214  }
2215  return VisitCompoundStmt(SE->getSubStmt());
2216}
2217
2218CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2219  // "switch" is a control-flow statement.  Thus we stop processing the current
2220  // block.
2221  CFGBlock* SwitchSuccessor = NULL;
2222
2223  // Save local scope position because in case of condition variable ScopePos
2224  // won't be restored when traversing AST.
2225  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2226
2227  // Create local scope for possible condition variable.
2228  // Store scope position. Add implicit destructor.
2229  if (VarDecl* VD = Terminator->getConditionVariable()) {
2230    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2231    addLocalScopeForVarDecl(VD);
2232    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2233  }
2234
2235  if (Block) {
2236    if (badCFG)
2237      return 0;
2238    SwitchSuccessor = Block;
2239  } else SwitchSuccessor = Succ;
2240
2241  // Save the current "switch" context.
2242  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2243                            save_default(DefaultCaseBlock);
2244  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2245
2246  // Set the "default" case to be the block after the switch statement.  If the
2247  // switch statement contains a "default:", this value will be overwritten with
2248  // the block for that code.
2249  DefaultCaseBlock = SwitchSuccessor;
2250
2251  // Create a new block that will contain the switch statement.
2252  SwitchTerminatedBlock = createBlock(false);
2253
2254  // Now process the switch body.  The code after the switch is the implicit
2255  // successor.
2256  Succ = SwitchSuccessor;
2257  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2258
2259  // When visiting the body, the case statements should automatically get linked
2260  // up to the switch.  We also don't keep a pointer to the body, since all
2261  // control-flow from the switch goes to case/default statements.
2262  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2263  Block = NULL;
2264
2265  // For pruning unreachable case statements, save the current state
2266  // for tracking the condition value.
2267  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2268                                                     false);
2269
2270  // Determine if the switch condition can be explicitly evaluated.
2271  assert(Terminator->getCond() && "switch condition must be non-NULL");
2272  Expr::EvalResult result;
2273  bool b = tryEvaluate(Terminator->getCond(), result);
2274  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2275                                                    b ? &result : 0);
2276
2277  // If body is not a compound statement create implicit scope
2278  // and add destructors.
2279  if (!isa<CompoundStmt>(Terminator->getBody()))
2280    addLocalScopeAndDtors(Terminator->getBody());
2281
2282  addStmt(Terminator->getBody());
2283  if (Block) {
2284    if (badCFG)
2285      return 0;
2286  }
2287
2288  // If we have no "default:" case, the default transition is to the code
2289  // following the switch body.  Moreover, take into account if all the
2290  // cases of a switch are covered (e.g., switching on an enum value).
2291  addSuccessor(SwitchTerminatedBlock,
2292               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2293               ? 0 : DefaultCaseBlock);
2294
2295  // Add the terminator and condition in the switch block.
2296  SwitchTerminatedBlock->setTerminator(Terminator);
2297  Block = SwitchTerminatedBlock;
2298  Block = addStmt(Terminator->getCond());
2299
2300  // Finally, if the SwitchStmt contains a condition variable, add both the
2301  // SwitchStmt and the condition variable initialization to the CFG.
2302  if (VarDecl *VD = Terminator->getConditionVariable()) {
2303    if (Expr *Init = VD->getInit()) {
2304      autoCreateBlock();
2305      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2306      addStmt(Init);
2307    }
2308  }
2309
2310  return Block;
2311}
2312
2313static bool shouldAddCase(bool &switchExclusivelyCovered,
2314                          const Expr::EvalResult *switchCond,
2315                          const CaseStmt *CS,
2316                          ASTContext &Ctx) {
2317  if (!switchCond)
2318    return true;
2319
2320  bool addCase = false;
2321
2322  if (!switchExclusivelyCovered) {
2323    if (switchCond->Val.isInt()) {
2324      // Evaluate the LHS of the case value.
2325      Expr::EvalResult V1;
2326      CS->getLHS()->Evaluate(V1, Ctx);
2327      assert(V1.Val.isInt());
2328      const llvm::APSInt &condInt = switchCond->Val.getInt();
2329      const llvm::APSInt &lhsInt = V1.Val.getInt();
2330
2331      if (condInt == lhsInt) {
2332        addCase = true;
2333        switchExclusivelyCovered = true;
2334      }
2335      else if (condInt < lhsInt) {
2336        if (const Expr *RHS = CS->getRHS()) {
2337          // Evaluate the RHS of the case value.
2338          Expr::EvalResult V2;
2339          RHS->Evaluate(V2, Ctx);
2340          assert(V2.Val.isInt());
2341          if (V2.Val.getInt() <= condInt) {
2342            addCase = true;
2343            switchExclusivelyCovered = true;
2344          }
2345        }
2346      }
2347    }
2348    else
2349      addCase = true;
2350  }
2351  return addCase;
2352}
2353
2354CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2355  // CaseStmts are essentially labels, so they are the first statement in a
2356  // block.
2357  CFGBlock *TopBlock = 0, *LastBlock = 0;
2358
2359  if (Stmt *Sub = CS->getSubStmt()) {
2360    // For deeply nested chains of CaseStmts, instead of doing a recursion
2361    // (which can blow out the stack), manually unroll and create blocks
2362    // along the way.
2363    while (isa<CaseStmt>(Sub)) {
2364      CFGBlock *currentBlock = createBlock(false);
2365      currentBlock->setLabel(CS);
2366
2367      if (TopBlock)
2368        addSuccessor(LastBlock, currentBlock);
2369      else
2370        TopBlock = currentBlock;
2371
2372      addSuccessor(SwitchTerminatedBlock,
2373                   shouldAddCase(switchExclusivelyCovered, switchCond,
2374                                 CS, *Context)
2375                   ? currentBlock : 0);
2376
2377      LastBlock = currentBlock;
2378      CS = cast<CaseStmt>(Sub);
2379      Sub = CS->getSubStmt();
2380    }
2381
2382    addStmt(Sub);
2383  }
2384
2385  CFGBlock* CaseBlock = Block;
2386  if (!CaseBlock)
2387    CaseBlock = createBlock();
2388
2389  // Cases statements partition blocks, so this is the top of the basic block we
2390  // were processing (the "case XXX:" is the label).
2391  CaseBlock->setLabel(CS);
2392
2393  if (badCFG)
2394    return 0;
2395
2396  // Add this block to the list of successors for the block with the switch
2397  // statement.
2398  assert(SwitchTerminatedBlock);
2399  addSuccessor(SwitchTerminatedBlock,
2400               shouldAddCase(switchExclusivelyCovered, switchCond,
2401                             CS, *Context)
2402               ? CaseBlock : 0);
2403
2404  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2405  Block = NULL;
2406
2407  if (TopBlock) {
2408    addSuccessor(LastBlock, CaseBlock);
2409    Succ = TopBlock;
2410  } else {
2411    // This block is now the implicit successor of other blocks.
2412    Succ = CaseBlock;
2413  }
2414
2415  return Succ;
2416}
2417
2418CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2419  if (Terminator->getSubStmt())
2420    addStmt(Terminator->getSubStmt());
2421
2422  DefaultCaseBlock = Block;
2423
2424  if (!DefaultCaseBlock)
2425    DefaultCaseBlock = createBlock();
2426
2427  // Default statements partition blocks, so this is the top of the basic block
2428  // we were processing (the "default:" is the label).
2429  DefaultCaseBlock->setLabel(Terminator);
2430
2431  if (badCFG)
2432    return 0;
2433
2434  // Unlike case statements, we don't add the default block to the successors
2435  // for the switch statement immediately.  This is done when we finish
2436  // processing the switch statement.  This allows for the default case
2437  // (including a fall-through to the code after the switch statement) to always
2438  // be the last successor of a switch-terminated block.
2439
2440  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2441  Block = NULL;
2442
2443  // This block is now the implicit successor of other blocks.
2444  Succ = DefaultCaseBlock;
2445
2446  return DefaultCaseBlock;
2447}
2448
2449CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2450  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2451  // current block.
2452  CFGBlock* TrySuccessor = NULL;
2453
2454  if (Block) {
2455    if (badCFG)
2456      return 0;
2457    TrySuccessor = Block;
2458  } else TrySuccessor = Succ;
2459
2460  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2461
2462  // Create a new block that will contain the try statement.
2463  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2464  // Add the terminator in the try block.
2465  NewTryTerminatedBlock->setTerminator(Terminator);
2466
2467  bool HasCatchAll = false;
2468  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2469    // The code after the try is the implicit successor.
2470    Succ = TrySuccessor;
2471    CXXCatchStmt *CS = Terminator->getHandler(h);
2472    if (CS->getExceptionDecl() == 0) {
2473      HasCatchAll = true;
2474    }
2475    Block = NULL;
2476    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2477    if (CatchBlock == 0)
2478      return 0;
2479    // Add this block to the list of successors for the block with the try
2480    // statement.
2481    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2482  }
2483  if (!HasCatchAll) {
2484    if (PrevTryTerminatedBlock)
2485      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2486    else
2487      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2488  }
2489
2490  // The code after the try is the implicit successor.
2491  Succ = TrySuccessor;
2492
2493  // Save the current "try" context.
2494  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2495  TryTerminatedBlock = NewTryTerminatedBlock;
2496
2497  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2498  Block = NULL;
2499  Block = addStmt(Terminator->getTryBlock());
2500  return Block;
2501}
2502
2503CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2504  // CXXCatchStmt are treated like labels, so they are the first statement in a
2505  // block.
2506
2507  // Save local scope position because in case of exception variable ScopePos
2508  // won't be restored when traversing AST.
2509  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2510
2511  // Create local scope for possible exception variable.
2512  // Store scope position. Add implicit destructor.
2513  if (VarDecl* VD = CS->getExceptionDecl()) {
2514    LocalScope::const_iterator BeginScopePos = ScopePos;
2515    addLocalScopeForVarDecl(VD);
2516    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2517  }
2518
2519  if (CS->getHandlerBlock())
2520    addStmt(CS->getHandlerBlock());
2521
2522  CFGBlock* CatchBlock = Block;
2523  if (!CatchBlock)
2524    CatchBlock = createBlock();
2525
2526  CatchBlock->setLabel(CS);
2527
2528  if (badCFG)
2529    return 0;
2530
2531  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2532  Block = NULL;
2533
2534  return CatchBlock;
2535}
2536
2537CFGBlock* CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt* S) {
2538  // C++0x for-range statements are specified as [stmt.ranged]:
2539  //
2540  // {
2541  //   auto && __range = range-init;
2542  //   for ( auto __begin = begin-expr,
2543  //         __end = end-expr;
2544  //         __begin != __end;
2545  //         ++__begin ) {
2546  //     for-range-declaration = *__begin;
2547  //     statement
2548  //   }
2549  // }
2550
2551  // Save local scope position before the addition of the implicit variables.
2552  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2553
2554  // Create local scopes and destructors for range, begin and end variables.
2555  if (Stmt *Range = S->getRangeStmt())
2556    addLocalScopeForStmt(Range);
2557  if (Stmt *BeginEnd = S->getBeginEndStmt())
2558    addLocalScopeForStmt(BeginEnd);
2559  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2560
2561  LocalScope::const_iterator ContinueScopePos = ScopePos;
2562
2563  // "for" is a control-flow statement.  Thus we stop processing the current
2564  // block.
2565  CFGBlock* LoopSuccessor = NULL;
2566  if (Block) {
2567    if (badCFG)
2568      return 0;
2569    LoopSuccessor = Block;
2570  } else
2571    LoopSuccessor = Succ;
2572
2573  // Save the current value for the break targets.
2574  // All breaks should go to the code following the loop.
2575  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2576  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2577
2578  // The block for the __begin != __end expression.
2579  CFGBlock* ConditionBlock = createBlock(false);
2580  ConditionBlock->setTerminator(S);
2581
2582  // Now add the actual condition to the condition block.
2583  if (Expr *C = S->getCond()) {
2584    Block = ConditionBlock;
2585    CFGBlock *BeginConditionBlock = addStmt(C);
2586    if (badCFG)
2587      return 0;
2588    assert(BeginConditionBlock == ConditionBlock &&
2589           "condition block in for-range was unexpectedly complex");
2590    (void)BeginConditionBlock;
2591  }
2592
2593  // The condition block is the implicit successor for the loop body as well as
2594  // any code above the loop.
2595  Succ = ConditionBlock;
2596
2597  // See if this is a known constant.
2598  TryResult KnownVal(true);
2599
2600  if (S->getCond())
2601    KnownVal = tryEvaluateBool(S->getCond());
2602
2603  // Now create the loop body.
2604  {
2605    assert(S->getBody());
2606
2607    // Save the current values for Block, Succ, and continue targets.
2608    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2609    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2610
2611    // Generate increment code in its own basic block.  This is the target of
2612    // continue statements.
2613    Block = 0;
2614    Succ = addStmt(S->getInc());
2615    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2616
2617    // The starting block for the loop increment is the block that should
2618    // represent the 'loop target' for looping back to the start of the loop.
2619    ContinueJumpTarget.block->setLoopTarget(S);
2620
2621    // Finish up the increment block and prepare to start the loop body.
2622    assert(Block);
2623    if (badCFG)
2624      return 0;
2625    Block = 0;
2626
2627
2628    // Add implicit scope and dtors for loop variable.
2629    addLocalScopeAndDtors(S->getLoopVarStmt());
2630
2631    // Populate a new block to contain the loop body and loop variable.
2632    Block = addStmt(S->getBody());
2633    if (badCFG)
2634      return 0;
2635    Block = addStmt(S->getLoopVarStmt());
2636    if (badCFG)
2637      return 0;
2638
2639    // This new body block is a successor to our condition block.
2640    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2641  }
2642
2643  // Link up the condition block with the code that follows the loop (the
2644  // false branch).
2645  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2646
2647  // Add the initialization statements.
2648  Block = createBlock();
2649  addStmt(S->getBeginEndStmt());
2650  return addStmt(S->getRangeStmt());
2651}
2652
2653CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2654    AddStmtChoice asc) {
2655  if (BuildOpts.AddImplicitDtors) {
2656    // If adding implicit destructors visit the full expression for adding
2657    // destructors of temporaries.
2658    VisitForTemporaryDtors(E->getSubExpr());
2659
2660    // Full expression has to be added as CFGStmt so it will be sequenced
2661    // before destructors of it's temporaries.
2662    asc = asc.withAlwaysAdd(true);
2663  }
2664  return Visit(E->getSubExpr(), asc);
2665}
2666
2667CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2668                                                AddStmtChoice asc) {
2669  if (asc.alwaysAdd(*this, E)) {
2670    autoCreateBlock();
2671    appendStmt(Block, E);
2672
2673    // We do not want to propagate the AlwaysAdd property.
2674    asc = asc.withAlwaysAdd(false);
2675  }
2676  return Visit(E->getSubExpr(), asc);
2677}
2678
2679CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2680                                            AddStmtChoice asc) {
2681  autoCreateBlock();
2682  if (!C->isElidable())
2683    appendStmt(Block, C);
2684
2685  return VisitChildren(C);
2686}
2687
2688CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2689                                                 AddStmtChoice asc) {
2690  if (asc.alwaysAdd(*this, E)) {
2691    autoCreateBlock();
2692    appendStmt(Block, E);
2693    // We do not want to propagate the AlwaysAdd property.
2694    asc = asc.withAlwaysAdd(false);
2695  }
2696  return Visit(E->getSubExpr(), asc);
2697}
2698
2699CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2700                                                  AddStmtChoice asc) {
2701  autoCreateBlock();
2702  appendStmt(Block, C);
2703  return VisitChildren(C);
2704}
2705
2706CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2707                                            AddStmtChoice asc) {
2708  if (asc.alwaysAdd(*this, E)) {
2709    autoCreateBlock();
2710    appendStmt(Block, E);
2711  }
2712  return Visit(E->getSubExpr(), AddStmtChoice());
2713}
2714
2715CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2716  // Lazily create the indirect-goto dispatch block if there isn't one already.
2717  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2718
2719  if (!IBlock) {
2720    IBlock = createBlock(false);
2721    cfg->setIndirectGotoBlock(IBlock);
2722  }
2723
2724  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2725  // current block and create a new one.
2726  if (badCFG)
2727    return 0;
2728
2729  Block = createBlock(false);
2730  Block->setTerminator(I);
2731  addSuccessor(Block, IBlock);
2732  return addStmt(I->getTarget());
2733}
2734
2735CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2736tryAgain:
2737  if (!E) {
2738    badCFG = true;
2739    return NULL;
2740  }
2741  switch (E->getStmtClass()) {
2742    default:
2743      return VisitChildrenForTemporaryDtors(E);
2744
2745    case Stmt::BinaryOperatorClass:
2746      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2747
2748    case Stmt::CXXBindTemporaryExprClass:
2749      return VisitCXXBindTemporaryExprForTemporaryDtors(
2750          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2751
2752    case Stmt::BinaryConditionalOperatorClass:
2753    case Stmt::ConditionalOperatorClass:
2754      return VisitConditionalOperatorForTemporaryDtors(
2755          cast<AbstractConditionalOperator>(E), BindToTemporary);
2756
2757    case Stmt::ImplicitCastExprClass:
2758      // For implicit cast we want BindToTemporary to be passed further.
2759      E = cast<CastExpr>(E)->getSubExpr();
2760      goto tryAgain;
2761
2762    case Stmt::ParenExprClass:
2763      E = cast<ParenExpr>(E)->getSubExpr();
2764      goto tryAgain;
2765  }
2766}
2767
2768CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2769  // When visiting children for destructors we want to visit them in reverse
2770  // order. Because there's no reverse iterator for children must to reverse
2771  // them in helper vector.
2772  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2773  ChildrenVect ChildrenRev;
2774  for (Stmt::child_range I = E->children(); I; ++I) {
2775    if (*I) ChildrenRev.push_back(*I);
2776  }
2777
2778  CFGBlock *B = Block;
2779  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2780      L = ChildrenRev.rend(); I != L; ++I) {
2781    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2782      B = R;
2783  }
2784  return B;
2785}
2786
2787CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2788  if (E->isLogicalOp()) {
2789    // Destructors for temporaries in LHS expression should be called after
2790    // those for RHS expression. Even if this will unnecessarily create a block,
2791    // this block will be used at least by the full expression.
2792    autoCreateBlock();
2793    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2794    if (badCFG)
2795      return NULL;
2796
2797    Succ = ConfluenceBlock;
2798    Block = NULL;
2799    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2800
2801    if (RHSBlock) {
2802      if (badCFG)
2803        return NULL;
2804
2805      // If RHS expression did produce destructors we need to connect created
2806      // blocks to CFG in same manner as for binary operator itself.
2807      CFGBlock *LHSBlock = createBlock(false);
2808      LHSBlock->setTerminator(CFGTerminator(E, true));
2809
2810      // For binary operator LHS block is before RHS in list of predecessors
2811      // of ConfluenceBlock.
2812      std::reverse(ConfluenceBlock->pred_begin(),
2813          ConfluenceBlock->pred_end());
2814
2815      // See if this is a known constant.
2816      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2817      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2818        KnownVal.negate();
2819
2820      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2821      // itself.
2822      if (E->getOpcode() == BO_LOr) {
2823        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2824        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2825      } else {
2826        assert (E->getOpcode() == BO_LAnd);
2827        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2828        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2829      }
2830
2831      Block = LHSBlock;
2832      return LHSBlock;
2833    }
2834
2835    Block = ConfluenceBlock;
2836    return ConfluenceBlock;
2837  }
2838
2839  if (E->isAssignmentOp()) {
2840    // For assignment operator (=) LHS expression is visited
2841    // before RHS expression. For destructors visit them in reverse order.
2842    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2843    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2844    return LHSBlock ? LHSBlock : RHSBlock;
2845  }
2846
2847  // For any other binary operator RHS expression is visited before
2848  // LHS expression (order of children). For destructors visit them in reverse
2849  // order.
2850  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2851  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2852  return RHSBlock ? RHSBlock : LHSBlock;
2853}
2854
2855CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2856    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2857  // First add destructors for temporaries in subexpression.
2858  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2859  if (!BindToTemporary) {
2860    // If lifetime of temporary is not prolonged (by assigning to constant
2861    // reference) add destructor for it.
2862    autoCreateBlock();
2863    appendTemporaryDtor(Block, E);
2864    B = Block;
2865  }
2866  return B;
2867}
2868
2869CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2870    AbstractConditionalOperator *E, bool BindToTemporary) {
2871  // First add destructors for condition expression.  Even if this will
2872  // unnecessarily create a block, this block will be used at least by the full
2873  // expression.
2874  autoCreateBlock();
2875  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2876  if (badCFG)
2877    return NULL;
2878  if (BinaryConditionalOperator *BCO
2879        = dyn_cast<BinaryConditionalOperator>(E)) {
2880    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2881    if (badCFG)
2882      return NULL;
2883  }
2884
2885  // Try to add block with destructors for LHS expression.
2886  CFGBlock *LHSBlock = NULL;
2887  Succ = ConfluenceBlock;
2888  Block = NULL;
2889  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2890  if (badCFG)
2891    return NULL;
2892
2893  // Try to add block with destructors for RHS expression;
2894  Succ = ConfluenceBlock;
2895  Block = NULL;
2896  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2897                                              BindToTemporary);
2898  if (badCFG)
2899    return NULL;
2900
2901  if (!RHSBlock && !LHSBlock) {
2902    // If neither LHS nor RHS expression had temporaries to destroy don't create
2903    // more blocks.
2904    Block = ConfluenceBlock;
2905    return Block;
2906  }
2907
2908  Block = createBlock(false);
2909  Block->setTerminator(CFGTerminator(E, true));
2910
2911  // See if this is a known constant.
2912  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2913
2914  if (LHSBlock) {
2915    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2916  } else if (KnownVal.isFalse()) {
2917    addSuccessor(Block, NULL);
2918  } else {
2919    addSuccessor(Block, ConfluenceBlock);
2920    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2921  }
2922
2923  if (!RHSBlock)
2924    RHSBlock = ConfluenceBlock;
2925  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2926
2927  return Block;
2928}
2929
2930} // end anonymous namespace
2931
2932/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2933///  no successors or predecessors.  If this is the first block created in the
2934///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2935CFGBlock* CFG::createBlock() {
2936  bool first_block = begin() == end();
2937
2938  // Create the block.
2939  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2940  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2941  Blocks.push_back(Mem, BlkBVC);
2942
2943  // If this is the first block, set it as the Entry and Exit.
2944  if (first_block)
2945    Entry = Exit = &back();
2946
2947  // Return the block.
2948  return &back();
2949}
2950
2951/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2952///  CFG is returned to the caller.
2953CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2954    const BuildOptions &BO) {
2955  CFGBuilder Builder(C, BO);
2956  return Builder.buildCFG(D, Statement);
2957}
2958
2959const CXXDestructorDecl *
2960CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2961  switch (getKind()) {
2962    case CFGElement::Invalid:
2963    case CFGElement::Statement:
2964    case CFGElement::Initializer:
2965      llvm_unreachable("getDestructorDecl should only be used with "
2966                       "ImplicitDtors");
2967    case CFGElement::AutomaticObjectDtor: {
2968      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2969      QualType ty = var->getType();
2970      ty = ty.getNonReferenceType();
2971      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2972        ty = arrayType->getElementType();
2973      }
2974      const RecordType *recordType = ty->getAs<RecordType>();
2975      const CXXRecordDecl *classDecl =
2976      cast<CXXRecordDecl>(recordType->getDecl());
2977      return classDecl->getDestructor();
2978    }
2979    case CFGElement::TemporaryDtor: {
2980      const CXXBindTemporaryExpr *bindExpr =
2981        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
2982      const CXXTemporary *temp = bindExpr->getTemporary();
2983      return temp->getDestructor();
2984    }
2985    case CFGElement::BaseDtor:
2986    case CFGElement::MemberDtor:
2987
2988      // Not yet supported.
2989      return 0;
2990  }
2991  llvm_unreachable("getKind() returned bogus value");
2992  return 0;
2993}
2994
2995bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
2996  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
2997    QualType ty = cdecl->getType();
2998    return cast<FunctionType>(ty)->getNoReturnAttr();
2999  }
3000  return false;
3001}
3002
3003//===----------------------------------------------------------------------===//
3004// CFG: Queries for BlkExprs.
3005//===----------------------------------------------------------------------===//
3006
3007namespace {
3008  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3009}
3010
3011static void FindSubExprAssignments(Stmt *S,
3012                                   llvm::SmallPtrSet<Expr*,50>& Set) {
3013  if (!S)
3014    return;
3015
3016  for (Stmt::child_range I = S->children(); I; ++I) {
3017    Stmt *child = *I;
3018    if (!child)
3019      continue;
3020
3021    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3022      if (B->isAssignmentOp()) Set.insert(B);
3023
3024    FindSubExprAssignments(child, Set);
3025  }
3026}
3027
3028static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3029  BlkExprMapTy* M = new BlkExprMapTy();
3030
3031  // Look for assignments that are used as subexpressions.  These are the only
3032  // assignments that we want to *possibly* register as a block-level
3033  // expression.  Basically, if an assignment occurs both in a subexpression and
3034  // at the block-level, it is a block-level expression.
3035  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
3036
3037  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3038    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3039      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3040        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3041
3042  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3043
3044    // Iterate over the statements again on identify the Expr* and Stmt* at the
3045    // block-level that are block-level expressions.
3046
3047    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3048      const CFGStmt *CS = BI->getAs<CFGStmt>();
3049      if (!CS)
3050        continue;
3051      if (Expr* Exp = dyn_cast<Expr>(CS->getStmt())) {
3052
3053        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3054          // Assignment expressions that are not nested within another
3055          // expression are really "statements" whose value is never used by
3056          // another expression.
3057          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3058            continue;
3059        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
3060          // Special handling for statement expressions.  The last statement in
3061          // the statement expression is also a block-level expr.
3062          const CompoundStmt* C = Terminator->getSubStmt();
3063          if (!C->body_empty()) {
3064            unsigned x = M->size();
3065            (*M)[C->body_back()] = x;
3066          }
3067        }
3068
3069        unsigned x = M->size();
3070        (*M)[Exp] = x;
3071      }
3072    }
3073
3074    // Look at terminators.  The condition is a block-level expression.
3075
3076    Stmt* S = (*I)->getTerminatorCondition();
3077
3078    if (S && M->find(S) == M->end()) {
3079        unsigned x = M->size();
3080        (*M)[S] = x;
3081    }
3082  }
3083
3084  return M;
3085}
3086
3087CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
3088  assert(S != NULL);
3089  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3090
3091  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3092  BlkExprMapTy::iterator I = M->find(S);
3093  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3094}
3095
3096unsigned CFG::getNumBlkExprs() {
3097  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3098    return M->size();
3099
3100  // We assume callers interested in the number of BlkExprs will want
3101  // the map constructed if it doesn't already exist.
3102  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3103  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3104}
3105
3106//===----------------------------------------------------------------------===//
3107// Filtered walking of the CFG.
3108//===----------------------------------------------------------------------===//
3109
3110bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3111        const CFGBlock *From, const CFGBlock *To) {
3112
3113  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3114    // If the 'To' has no label or is labeled but the label isn't a
3115    // CaseStmt then filter this edge.
3116    if (const SwitchStmt *S =
3117        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3118      if (S->isAllEnumCasesCovered()) {
3119        const Stmt *L = To->getLabel();
3120        if (!L || !isa<CaseStmt>(L))
3121          return true;
3122      }
3123    }
3124  }
3125
3126  return false;
3127}
3128
3129//===----------------------------------------------------------------------===//
3130// Cleanup: CFG dstor.
3131//===----------------------------------------------------------------------===//
3132
3133CFG::~CFG() {
3134  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3135}
3136
3137//===----------------------------------------------------------------------===//
3138// CFG pretty printing
3139//===----------------------------------------------------------------------===//
3140
3141namespace {
3142
3143class StmtPrinterHelper : public PrinterHelper  {
3144  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3145  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3146  StmtMapTy StmtMap;
3147  DeclMapTy DeclMap;
3148  signed currentBlock;
3149  unsigned currentStmt;
3150  const LangOptions &LangOpts;
3151public:
3152
3153  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3154    : currentBlock(0), currentStmt(0), LangOpts(LO)
3155  {
3156    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3157      unsigned j = 1;
3158      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3159           BI != BEnd; ++BI, ++j ) {
3160        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3161          const Stmt *stmt= SE->getStmt();
3162          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3163          StmtMap[stmt] = P;
3164
3165          switch (stmt->getStmtClass()) {
3166            case Stmt::DeclStmtClass:
3167                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3168                break;
3169            case Stmt::IfStmtClass: {
3170              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3171              if (var)
3172                DeclMap[var] = P;
3173              break;
3174            }
3175            case Stmt::ForStmtClass: {
3176              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3177              if (var)
3178                DeclMap[var] = P;
3179              break;
3180            }
3181            case Stmt::WhileStmtClass: {
3182              const VarDecl *var =
3183                cast<WhileStmt>(stmt)->getConditionVariable();
3184              if (var)
3185                DeclMap[var] = P;
3186              break;
3187            }
3188            case Stmt::SwitchStmtClass: {
3189              const VarDecl *var =
3190                cast<SwitchStmt>(stmt)->getConditionVariable();
3191              if (var)
3192                DeclMap[var] = P;
3193              break;
3194            }
3195            case Stmt::CXXCatchStmtClass: {
3196              const VarDecl *var =
3197                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3198              if (var)
3199                DeclMap[var] = P;
3200              break;
3201            }
3202            default:
3203              break;
3204          }
3205        }
3206      }
3207    }
3208  }
3209
3210
3211  virtual ~StmtPrinterHelper() {}
3212
3213  const LangOptions &getLangOpts() const { return LangOpts; }
3214  void setBlockID(signed i) { currentBlock = i; }
3215  void setStmtID(unsigned i) { currentStmt = i; }
3216
3217  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
3218    StmtMapTy::iterator I = StmtMap.find(S);
3219
3220    if (I == StmtMap.end())
3221      return false;
3222
3223    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3224                          && I->second.second == currentStmt) {
3225      return false;
3226    }
3227
3228    OS << "[B" << I->second.first << "." << I->second.second << "]";
3229    return true;
3230  }
3231
3232  bool handleDecl(const Decl* D, llvm::raw_ostream& OS) {
3233    DeclMapTy::iterator I = DeclMap.find(D);
3234
3235    if (I == DeclMap.end())
3236      return false;
3237
3238    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3239                          && I->second.second == currentStmt) {
3240      return false;
3241    }
3242
3243    OS << "[B" << I->second.first << "." << I->second.second << "]";
3244    return true;
3245  }
3246};
3247} // end anonymous namespace
3248
3249
3250namespace {
3251class CFGBlockTerminatorPrint
3252  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3253
3254  llvm::raw_ostream& OS;
3255  StmtPrinterHelper* Helper;
3256  PrintingPolicy Policy;
3257public:
3258  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
3259                          const PrintingPolicy &Policy)
3260    : OS(os), Helper(helper), Policy(Policy) {}
3261
3262  void VisitIfStmt(IfStmt* I) {
3263    OS << "if ";
3264    I->getCond()->printPretty(OS,Helper,Policy);
3265  }
3266
3267  // Default case.
3268  void VisitStmt(Stmt* Terminator) {
3269    Terminator->printPretty(OS, Helper, Policy);
3270  }
3271
3272  void VisitForStmt(ForStmt* F) {
3273    OS << "for (" ;
3274    if (F->getInit())
3275      OS << "...";
3276    OS << "; ";
3277    if (Stmt* C = F->getCond())
3278      C->printPretty(OS, Helper, Policy);
3279    OS << "; ";
3280    if (F->getInc())
3281      OS << "...";
3282    OS << ")";
3283  }
3284
3285  void VisitWhileStmt(WhileStmt* W) {
3286    OS << "while " ;
3287    if (Stmt* C = W->getCond())
3288      C->printPretty(OS, Helper, Policy);
3289  }
3290
3291  void VisitDoStmt(DoStmt* D) {
3292    OS << "do ... while ";
3293    if (Stmt* C = D->getCond())
3294      C->printPretty(OS, Helper, Policy);
3295  }
3296
3297  void VisitSwitchStmt(SwitchStmt* Terminator) {
3298    OS << "switch ";
3299    Terminator->getCond()->printPretty(OS, Helper, Policy);
3300  }
3301
3302  void VisitCXXTryStmt(CXXTryStmt* CS) {
3303    OS << "try ...";
3304  }
3305
3306  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3307    C->getCond()->printPretty(OS, Helper, Policy);
3308    OS << " ? ... : ...";
3309  }
3310
3311  void VisitChooseExpr(ChooseExpr* C) {
3312    OS << "__builtin_choose_expr( ";
3313    C->getCond()->printPretty(OS, Helper, Policy);
3314    OS << " )";
3315  }
3316
3317  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
3318    OS << "goto *";
3319    I->getTarget()->printPretty(OS, Helper, Policy);
3320  }
3321
3322  void VisitBinaryOperator(BinaryOperator* B) {
3323    if (!B->isLogicalOp()) {
3324      VisitExpr(B);
3325      return;
3326    }
3327
3328    B->getLHS()->printPretty(OS, Helper, Policy);
3329
3330    switch (B->getOpcode()) {
3331      case BO_LOr:
3332        OS << " || ...";
3333        return;
3334      case BO_LAnd:
3335        OS << " && ...";
3336        return;
3337      default:
3338        assert(false && "Invalid logical operator.");
3339    }
3340  }
3341
3342  void VisitExpr(Expr* E) {
3343    E->printPretty(OS, Helper, Policy);
3344  }
3345};
3346} // end anonymous namespace
3347
3348static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3349                       const CFGElement &E) {
3350  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3351    Stmt *S = CS->getStmt();
3352
3353    if (Helper) {
3354
3355      // special printing for statement-expressions.
3356      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3357        CompoundStmt* Sub = SE->getSubStmt();
3358
3359        if (Sub->children()) {
3360          OS << "({ ... ; ";
3361          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3362          OS << " })\n";
3363          return;
3364        }
3365      }
3366      // special printing for comma expressions.
3367      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3368        if (B->getOpcode() == BO_Comma) {
3369          OS << "... , ";
3370          Helper->handledStmt(B->getRHS(),OS);
3371          OS << '\n';
3372          return;
3373        }
3374      }
3375    }
3376    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3377
3378    if (isa<CXXOperatorCallExpr>(S)) {
3379      OS << " (OperatorCall)";
3380    } else if (isa<CXXBindTemporaryExpr>(S)) {
3381      OS << " (BindTemporary)";
3382    }
3383
3384    // Expressions need a newline.
3385    if (isa<Expr>(S))
3386      OS << '\n';
3387
3388  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3389    const CXXCtorInitializer *I = IE->getInitializer();
3390    if (I->isBaseInitializer())
3391      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3392    else OS << I->getAnyMember()->getName();
3393
3394    OS << "(";
3395    if (Expr* IE = I->getInit())
3396      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3397    OS << ")";
3398
3399    if (I->isBaseInitializer())
3400      OS << " (Base initializer)\n";
3401    else OS << " (Member initializer)\n";
3402
3403  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3404    const VarDecl* VD = DE->getVarDecl();
3405    Helper->handleDecl(VD, OS);
3406
3407    const Type* T = VD->getType().getTypePtr();
3408    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3409      T = RT->getPointeeType().getTypePtr();
3410    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3411      T = ET;
3412
3413    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3414    OS << " (Implicit destructor)\n";
3415
3416  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3417    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3418    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3419    OS << " (Base object destructor)\n";
3420
3421  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3422    const FieldDecl *FD = ME->getFieldDecl();
3423
3424    const Type *T = FD->getType().getTypePtr();
3425    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3426      T = ET;
3427
3428    OS << "this->" << FD->getName();
3429    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3430    OS << " (Member object destructor)\n";
3431
3432  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3433    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3434    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3435    OS << " (Temporary object destructor)\n";
3436  }
3437}
3438
3439static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3440                        const CFGBlock& B,
3441                        StmtPrinterHelper* Helper, bool print_edges) {
3442
3443  if (Helper) Helper->setBlockID(B.getBlockID());
3444
3445  // Print the header.
3446  OS << "\n [ B" << B.getBlockID();
3447
3448  if (&B == &cfg->getEntry())
3449    OS << " (ENTRY) ]\n";
3450  else if (&B == &cfg->getExit())
3451    OS << " (EXIT) ]\n";
3452  else if (&B == cfg->getIndirectGotoBlock())
3453    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3454  else
3455    OS << " ]\n";
3456
3457  // Print the label of this block.
3458  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3459
3460    if (print_edges)
3461      OS << "    ";
3462
3463    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3464      OS << L->getName();
3465    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3466      OS << "case ";
3467      C->getLHS()->printPretty(OS, Helper,
3468                               PrintingPolicy(Helper->getLangOpts()));
3469      if (C->getRHS()) {
3470        OS << " ... ";
3471        C->getRHS()->printPretty(OS, Helper,
3472                                 PrintingPolicy(Helper->getLangOpts()));
3473      }
3474    } else if (isa<DefaultStmt>(Label))
3475      OS << "default";
3476    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3477      OS << "catch (";
3478      if (CS->getExceptionDecl())
3479        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3480                                      0);
3481      else
3482        OS << "...";
3483      OS << ")";
3484
3485    } else
3486      assert(false && "Invalid label statement in CFGBlock.");
3487
3488    OS << ":\n";
3489  }
3490
3491  // Iterate through the statements in the block and print them.
3492  unsigned j = 1;
3493
3494  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3495       I != E ; ++I, ++j ) {
3496
3497    // Print the statement # in the basic block and the statement itself.
3498    if (print_edges)
3499      OS << "    ";
3500
3501    OS << llvm::format("%3d", j) << ": ";
3502
3503    if (Helper)
3504      Helper->setStmtID(j);
3505
3506    print_elem(OS,Helper,*I);
3507  }
3508
3509  // Print the terminator of this block.
3510  if (B.getTerminator()) {
3511    if (print_edges)
3512      OS << "    ";
3513
3514    OS << "  T: ";
3515
3516    if (Helper) Helper->setBlockID(-1);
3517
3518    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3519                                     PrintingPolicy(Helper->getLangOpts()));
3520    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3521    OS << '\n';
3522  }
3523
3524  if (print_edges) {
3525    // Print the predecessors of this block.
3526    OS << "    Predecessors (" << B.pred_size() << "):";
3527    unsigned i = 0;
3528
3529    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3530         I != E; ++I, ++i) {
3531
3532      if (i == 8 || (i-8) == 0)
3533        OS << "\n     ";
3534
3535      OS << " B" << (*I)->getBlockID();
3536    }
3537
3538    OS << '\n';
3539
3540    // Print the successors of this block.
3541    OS << "    Successors (" << B.succ_size() << "):";
3542    i = 0;
3543
3544    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3545         I != E; ++I, ++i) {
3546
3547      if (i == 8 || (i-8) % 10 == 0)
3548        OS << "\n    ";
3549
3550      if (*I)
3551        OS << " B" << (*I)->getBlockID();
3552      else
3553        OS  << " NULL";
3554    }
3555
3556    OS << '\n';
3557  }
3558}
3559
3560
3561/// dump - A simple pretty printer of a CFG that outputs to stderr.
3562void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3563
3564/// print - A simple pretty printer of a CFG that outputs to an ostream.
3565void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3566  StmtPrinterHelper Helper(this, LO);
3567
3568  // Print the entry block.
3569  print_block(OS, this, getEntry(), &Helper, true);
3570
3571  // Iterate through the CFGBlocks and print them one by one.
3572  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3573    // Skip the entry block, because we already printed it.
3574    if (&(**I) == &getEntry() || &(**I) == &getExit())
3575      continue;
3576
3577    print_block(OS, this, **I, &Helper, true);
3578  }
3579
3580  // Print the exit block.
3581  print_block(OS, this, getExit(), &Helper, true);
3582  OS.flush();
3583}
3584
3585/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3586void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3587  print(llvm::errs(), cfg, LO);
3588}
3589
3590/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3591///   Generally this will only be called from CFG::print.
3592void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3593                     const LangOptions &LO) const {
3594  StmtPrinterHelper Helper(cfg, LO);
3595  print_block(OS, cfg, *this, &Helper, true);
3596}
3597
3598/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3599void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3600                               const LangOptions &LO) const {
3601  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3602  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3603}
3604
3605Stmt* CFGBlock::getTerminatorCondition() {
3606  Stmt *Terminator = this->Terminator;
3607  if (!Terminator)
3608    return NULL;
3609
3610  Expr* E = NULL;
3611
3612  switch (Terminator->getStmtClass()) {
3613    default:
3614      break;
3615
3616    case Stmt::ForStmtClass:
3617      E = cast<ForStmt>(Terminator)->getCond();
3618      break;
3619
3620    case Stmt::WhileStmtClass:
3621      E = cast<WhileStmt>(Terminator)->getCond();
3622      break;
3623
3624    case Stmt::DoStmtClass:
3625      E = cast<DoStmt>(Terminator)->getCond();
3626      break;
3627
3628    case Stmt::IfStmtClass:
3629      E = cast<IfStmt>(Terminator)->getCond();
3630      break;
3631
3632    case Stmt::ChooseExprClass:
3633      E = cast<ChooseExpr>(Terminator)->getCond();
3634      break;
3635
3636    case Stmt::IndirectGotoStmtClass:
3637      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3638      break;
3639
3640    case Stmt::SwitchStmtClass:
3641      E = cast<SwitchStmt>(Terminator)->getCond();
3642      break;
3643
3644    case Stmt::BinaryConditionalOperatorClass:
3645      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3646      break;
3647
3648    case Stmt::ConditionalOperatorClass:
3649      E = cast<ConditionalOperator>(Terminator)->getCond();
3650      break;
3651
3652    case Stmt::BinaryOperatorClass: // '&&' and '||'
3653      E = cast<BinaryOperator>(Terminator)->getLHS();
3654      break;
3655
3656    case Stmt::ObjCForCollectionStmtClass:
3657      return Terminator;
3658  }
3659
3660  return E ? E->IgnoreParens() : NULL;
3661}
3662
3663//===----------------------------------------------------------------------===//
3664// CFG Graphviz Visualization
3665//===----------------------------------------------------------------------===//
3666
3667
3668#ifndef NDEBUG
3669static StmtPrinterHelper* GraphHelper;
3670#endif
3671
3672void CFG::viewCFG(const LangOptions &LO) const {
3673#ifndef NDEBUG
3674  StmtPrinterHelper H(this, LO);
3675  GraphHelper = &H;
3676  llvm::ViewGraph(this,"CFG");
3677  GraphHelper = NULL;
3678#endif
3679}
3680
3681namespace llvm {
3682template<>
3683struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3684
3685  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3686
3687  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3688
3689#ifndef NDEBUG
3690    std::string OutSStr;
3691    llvm::raw_string_ostream Out(OutSStr);
3692    print_block(Out,Graph, *Node, GraphHelper, false);
3693    std::string& OutStr = Out.str();
3694
3695    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3696
3697    // Process string output to make it nicer...
3698    for (unsigned i = 0; i != OutStr.length(); ++i)
3699      if (OutStr[i] == '\n') {                            // Left justify
3700        OutStr[i] = '\\';
3701        OutStr.insert(OutStr.begin()+i+1, 'l');
3702      }
3703
3704    return OutStr;
3705#else
3706    return "";
3707#endif
3708  }
3709};
3710} // end namespace llvm
3711