CFG.cpp revision 3d1125b27e8006385a830f5b3748b7b44d227b4c
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/Basic/AttrKinds.h"
23#include "llvm/Support/GraphWriter.h"
24#include "llvm/Support/Allocator.h"
25#include "llvm/Support/Format.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/OwningPtr.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236/// CFGBuilder - This class implements CFG construction from an AST.
237///   The builder is stateful: an instance of the builder should be used to only
238///   construct a single CFG.
239///
240///   Example usage:
241///
242///     CFGBuilder builder;
243///     CFG* cfg = builder.BuildAST(stmt1);
244///
245///  CFG construction is done via a recursive walk of an AST.  We actually parse
246///  the AST in reverse order so that the successor of a basic block is
247///  constructed prior to its predecessor.  This allows us to nicely capture
248///  implicit fall-throughs without extra basic blocks.
249///
250class CFGBuilder {
251  typedef BlockScopePosPair JumpTarget;
252  typedef BlockScopePosPair JumpSource;
253
254  ASTContext *Context;
255  OwningPtr<CFG> cfg;
256
257  CFGBlock *Block;
258  CFGBlock *Succ;
259  JumpTarget ContinueJumpTarget;
260  JumpTarget BreakJumpTarget;
261  CFGBlock *SwitchTerminatedBlock;
262  CFGBlock *DefaultCaseBlock;
263  CFGBlock *TryTerminatedBlock;
264
265  // Current position in local scope.
266  LocalScope::const_iterator ScopePos;
267
268  // LabelMap records the mapping from Label expressions to their jump targets.
269  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
270  LabelMapTy LabelMap;
271
272  // A list of blocks that end with a "goto" that must be backpatched to their
273  // resolved targets upon completion of CFG construction.
274  typedef std::vector<JumpSource> BackpatchBlocksTy;
275  BackpatchBlocksTy BackpatchBlocks;
276
277  // A list of labels whose address has been taken (for indirect gotos).
278  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
279  LabelSetTy AddressTakenLabels;
280
281  bool badCFG;
282  const CFG::BuildOptions &BuildOpts;
283
284  // State to track for building switch statements.
285  bool switchExclusivelyCovered;
286  Expr::EvalResult *switchCond;
287
288  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
289  const Stmt *lastLookup;
290
291  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
292  // during construction of branches for chained logical operators.
293  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
294  CachedBoolEvalsTy CachedBoolEvals;
295
296public:
297  explicit CFGBuilder(ASTContext *astContext,
298                      const CFG::BuildOptions &buildOpts)
299    : Context(astContext), cfg(new CFG()), // crew a new CFG
300      Block(NULL), Succ(NULL),
301      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
302      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
303      switchExclusivelyCovered(false), switchCond(0),
304      cachedEntry(0), lastLookup(0) {}
305
306  // buildCFG - Used by external clients to construct the CFG.
307  CFG* buildCFG(const Decl *D, Stmt *Statement);
308
309  bool alwaysAdd(const Stmt *stmt);
310
311private:
312  // Visitors to walk an AST and construct the CFG.
313  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
314  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
315  CFGBlock *VisitBreakStmt(BreakStmt *B);
316  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
317  CFGBlock *VisitCaseStmt(CaseStmt *C);
318  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
320  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
321                                     AddStmtChoice asc);
322  CFGBlock *VisitContinueStmt(ContinueStmt *C);
323  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
324                                      AddStmtChoice asc);
325  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
326  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
327  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
328  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
329                                       AddStmtChoice asc);
330  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
331                                        AddStmtChoice asc);
332  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
333  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
334  CFGBlock *VisitDeclStmt(DeclStmt *DS);
335  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
336  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
337  CFGBlock *VisitDoStmt(DoStmt *D);
338  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
339  CFGBlock *VisitForStmt(ForStmt *F);
340  CFGBlock *VisitGotoStmt(GotoStmt *G);
341  CFGBlock *VisitIfStmt(IfStmt *I);
342  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
343  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
344  CFGBlock *VisitLabelStmt(LabelStmt *L);
345  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
346  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
347  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
348                                                         Stmt *Term,
349                                                         CFGBlock *TrueBlock,
350                                                         CFGBlock *FalseBlock);
351  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
352  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
353  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
354  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
355  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
356  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
357  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
358  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
359  CFGBlock *VisitReturnStmt(ReturnStmt *R);
360  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
361  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
362  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
363                                          AddStmtChoice asc);
364  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
365  CFGBlock *VisitWhileStmt(WhileStmt *W);
366
367  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
368  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
369  CFGBlock *VisitChildren(Stmt *S);
370  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
371
372  // Visitors to walk an AST and generate destructors of temporaries in
373  // full expression.
374  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
375  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
376  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
377  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
378      bool BindToTemporary);
379  CFGBlock *
380  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
381                                            bool BindToTemporary);
382
383  // NYS == Not Yet Supported
384  CFGBlock *NYS() {
385    badCFG = true;
386    return Block;
387  }
388
389  void autoCreateBlock() { if (!Block) Block = createBlock(); }
390  CFGBlock *createBlock(bool add_successor = true);
391  CFGBlock *createNoReturnBlock();
392
393  CFGBlock *addStmt(Stmt *S) {
394    return Visit(S, AddStmtChoice::AlwaysAdd);
395  }
396  CFGBlock *addInitializer(CXXCtorInitializer *I);
397  void addAutomaticObjDtors(LocalScope::const_iterator B,
398                            LocalScope::const_iterator E, Stmt *S);
399  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
400
401  // Local scopes creation.
402  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
403
404  void addLocalScopeForStmt(Stmt *S);
405  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
406  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
407
408  void addLocalScopeAndDtors(Stmt *S);
409
410  // Interface to CFGBlock - adding CFGElements.
411  void appendStmt(CFGBlock *B, const Stmt *S) {
412    if (alwaysAdd(S) && cachedEntry)
413      cachedEntry->second = B;
414
415    // All block-level expressions should have already been IgnoreParens()ed.
416    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
417    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
418  }
419  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
420    B->appendInitializer(I, cfg->getBumpVectorContext());
421  }
422  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
423    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
424  }
425  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
426    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
427  }
428  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
429    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
430  }
431  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
432    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
433  }
434
435  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
436      LocalScope::const_iterator B, LocalScope::const_iterator E);
437
438  void addSuccessor(CFGBlock *B, CFGBlock *S) {
439    B->addSuccessor(S, cfg->getBumpVectorContext());
440  }
441
442  /// Try and evaluate an expression to an integer constant.
443  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
444    if (!BuildOpts.PruneTriviallyFalseEdges)
445      return false;
446    return !S->isTypeDependent() &&
447           !S->isValueDependent() &&
448           S->EvaluateAsRValue(outResult, *Context);
449  }
450
451  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
452  /// if we can evaluate to a known value, otherwise return -1.
453  TryResult tryEvaluateBool(Expr *S) {
454    if (!BuildOpts.PruneTriviallyFalseEdges ||
455        S->isTypeDependent() || S->isValueDependent())
456      return TryResult();
457
458    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
459      if (Bop->isLogicalOp()) {
460        // Check the cache first.
461        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
462        if (I != CachedBoolEvals.end())
463          return I->second; // already in map;
464
465        // Retrieve result at first, or the map might be updated.
466        TryResult Result = evaluateAsBooleanConditionNoCache(S);
467        CachedBoolEvals[S] = Result; // update or insert
468        return Result;
469      }
470      else {
471        switch (Bop->getOpcode()) {
472          default: break;
473          // For 'x & 0' and 'x * 0', we can determine that
474          // the value is always false.
475          case BO_Mul:
476          case BO_And: {
477            // If either operand is zero, we know the value
478            // must be false.
479            llvm::APSInt IntVal;
480            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
481              if (IntVal.getBoolValue() == false) {
482                return TryResult(false);
483              }
484            }
485            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
486              if (IntVal.getBoolValue() == false) {
487                return TryResult(false);
488              }
489            }
490          }
491          break;
492        }
493      }
494    }
495
496    return evaluateAsBooleanConditionNoCache(S);
497  }
498
499  /// \brief Evaluate as boolean \param E without using the cache.
500  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
501    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
502      if (Bop->isLogicalOp()) {
503        TryResult LHS = tryEvaluateBool(Bop->getLHS());
504        if (LHS.isKnown()) {
505          // We were able to evaluate the LHS, see if we can get away with not
506          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
507          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
508            return LHS.isTrue();
509
510          TryResult RHS = tryEvaluateBool(Bop->getRHS());
511          if (RHS.isKnown()) {
512            if (Bop->getOpcode() == BO_LOr)
513              return LHS.isTrue() || RHS.isTrue();
514            else
515              return LHS.isTrue() && RHS.isTrue();
516          }
517        } else {
518          TryResult RHS = tryEvaluateBool(Bop->getRHS());
519          if (RHS.isKnown()) {
520            // We can't evaluate the LHS; however, sometimes the result
521            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
522            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
523              return RHS.isTrue();
524          }
525        }
526
527        return TryResult();
528      }
529    }
530
531    bool Result;
532    if (E->EvaluateAsBooleanCondition(Result, *Context))
533      return Result;
534
535    return TryResult();
536  }
537
538};
539
540inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
541                                     const Stmt *stmt) const {
542  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
543}
544
545bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
546  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
547
548  if (!BuildOpts.forcedBlkExprs)
549    return shouldAdd;
550
551  if (lastLookup == stmt) {
552    if (cachedEntry) {
553      assert(cachedEntry->first == stmt);
554      return true;
555    }
556    return shouldAdd;
557  }
558
559  lastLookup = stmt;
560
561  // Perform the lookup!
562  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
563
564  if (!fb) {
565    // No need to update 'cachedEntry', since it will always be null.
566    assert(cachedEntry == 0);
567    return shouldAdd;
568  }
569
570  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
571  if (itr == fb->end()) {
572    cachedEntry = 0;
573    return shouldAdd;
574  }
575
576  cachedEntry = &*itr;
577  return true;
578}
579
580// FIXME: Add support for dependent-sized array types in C++?
581// Does it even make sense to build a CFG for an uninstantiated template?
582static const VariableArrayType *FindVA(const Type *t) {
583  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
584    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
585      if (vat->getSizeExpr())
586        return vat;
587
588    t = vt->getElementType().getTypePtr();
589  }
590
591  return 0;
592}
593
594/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
595///  arbitrary statement.  Examples include a single expression or a function
596///  body (compound statement).  The ownership of the returned CFG is
597///  transferred to the caller.  If CFG construction fails, this method returns
598///  NULL.
599CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
600  assert(cfg.get());
601  if (!Statement)
602    return NULL;
603
604  // Create an empty block that will serve as the exit block for the CFG.  Since
605  // this is the first block added to the CFG, it will be implicitly registered
606  // as the exit block.
607  Succ = createBlock();
608  assert(Succ == &cfg->getExit());
609  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
610
611  if (BuildOpts.AddImplicitDtors)
612    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
613      addImplicitDtorsForDestructor(DD);
614
615  // Visit the statements and create the CFG.
616  CFGBlock *B = addStmt(Statement);
617
618  if (badCFG)
619    return NULL;
620
621  // For C++ constructor add initializers to CFG.
622  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
623    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
624        E = CD->init_rend(); I != E; ++I) {
625      B = addInitializer(*I);
626      if (badCFG)
627        return NULL;
628    }
629  }
630
631  if (B)
632    Succ = B;
633
634  // Backpatch the gotos whose label -> block mappings we didn't know when we
635  // encountered them.
636  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
637                                   E = BackpatchBlocks.end(); I != E; ++I ) {
638
639    CFGBlock *B = I->block;
640    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
641    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
642
643    // If there is no target for the goto, then we are looking at an
644    // incomplete AST.  Handle this by not registering a successor.
645    if (LI == LabelMap.end()) continue;
646
647    JumpTarget JT = LI->second;
648    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
649                                           JT.scopePosition);
650    addSuccessor(B, JT.block);
651  }
652
653  // Add successors to the Indirect Goto Dispatch block (if we have one).
654  if (CFGBlock *B = cfg->getIndirectGotoBlock())
655    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
656                              E = AddressTakenLabels.end(); I != E; ++I ) {
657
658      // Lookup the target block.
659      LabelMapTy::iterator LI = LabelMap.find(*I);
660
661      // If there is no target block that contains label, then we are looking
662      // at an incomplete AST.  Handle this by not registering a successor.
663      if (LI == LabelMap.end()) continue;
664
665      addSuccessor(B, LI->second.block);
666    }
667
668  // Create an empty entry block that has no predecessors.
669  cfg->setEntry(createBlock());
670
671  return cfg.take();
672}
673
674/// createBlock - Used to lazily create blocks that are connected
675///  to the current (global) succcessor.
676CFGBlock *CFGBuilder::createBlock(bool add_successor) {
677  CFGBlock *B = cfg->createBlock();
678  if (add_successor && Succ)
679    addSuccessor(B, Succ);
680  return B;
681}
682
683/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
684/// CFG. It is *not* connected to the current (global) successor, and instead
685/// directly tied to the exit block in order to be reachable.
686CFGBlock *CFGBuilder::createNoReturnBlock() {
687  CFGBlock *B = createBlock(false);
688  B->setHasNoReturnElement();
689  addSuccessor(B, &cfg->getExit());
690  return B;
691}
692
693/// addInitializer - Add C++ base or member initializer element to CFG.
694CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
695  if (!BuildOpts.AddInitializers)
696    return Block;
697
698  bool IsReference = false;
699  bool HasTemporaries = false;
700
701  // Destructors of temporaries in initialization expression should be called
702  // after initialization finishes.
703  Expr *Init = I->getInit();
704  if (Init) {
705    if (FieldDecl *FD = I->getAnyMember())
706      IsReference = FD->getType()->isReferenceType();
707    HasTemporaries = isa<ExprWithCleanups>(Init);
708
709    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
710      // Generate destructors for temporaries in initialization expression.
711      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
712          IsReference);
713    }
714  }
715
716  autoCreateBlock();
717  appendInitializer(Block, I);
718
719  if (Init) {
720    if (HasTemporaries) {
721      // For expression with temporaries go directly to subexpression to omit
722      // generating destructors for the second time.
723      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
724    }
725    return Visit(Init);
726  }
727
728  return Block;
729}
730
731/// \brief Retrieve the type of the temporary object whose lifetime was
732/// extended by a local reference with the given initializer.
733static QualType getReferenceInitTemporaryType(ASTContext &Context,
734                                              const Expr *Init) {
735  while (true) {
736    // Skip parentheses.
737    Init = Init->IgnoreParens();
738
739    // Skip through cleanups.
740    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
741      Init = EWC->getSubExpr();
742      continue;
743    }
744
745    // Skip through the temporary-materialization expression.
746    if (const MaterializeTemporaryExpr *MTE
747          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
748      Init = MTE->GetTemporaryExpr();
749      continue;
750    }
751
752    // Skip derived-to-base and no-op casts.
753    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
754      if ((CE->getCastKind() == CK_DerivedToBase ||
755           CE->getCastKind() == CK_UncheckedDerivedToBase ||
756           CE->getCastKind() == CK_NoOp) &&
757          Init->getType()->isRecordType()) {
758        Init = CE->getSubExpr();
759        continue;
760      }
761    }
762
763    // Skip member accesses into rvalues.
764    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
765      if (!ME->isArrow() && ME->getBase()->isRValue()) {
766        Init = ME->getBase();
767        continue;
768      }
769    }
770
771    break;
772  }
773
774  return Init->getType();
775}
776
777/// addAutomaticObjDtors - Add to current block automatic objects destructors
778/// for objects in range of local scope positions. Use S as trigger statement
779/// for destructors.
780void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
781                                      LocalScope::const_iterator E, Stmt *S) {
782  if (!BuildOpts.AddImplicitDtors)
783    return;
784
785  if (B == E)
786    return;
787
788  // We need to append the destructors in reverse order, but any one of them
789  // may be a no-return destructor which changes the CFG. As a result, buffer
790  // this sequence up and replay them in reverse order when appending onto the
791  // CFGBlock(s).
792  SmallVector<VarDecl*, 10> Decls;
793  Decls.reserve(B.distance(E));
794  for (LocalScope::const_iterator I = B; I != E; ++I)
795    Decls.push_back(*I);
796
797  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
798                                                   E = Decls.rend();
799       I != E; ++I) {
800    // If this destructor is marked as a no-return destructor, we need to
801    // create a new block for the destructor which does not have as a successor
802    // anything built thus far: control won't flow out of this block.
803    QualType Ty = (*I)->getType();
804    if (Ty->isReferenceType()) {
805      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
806    }
807    Ty = Context->getBaseElementType(Ty);
808
809    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
810    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
811      Block = createNoReturnBlock();
812    else
813      autoCreateBlock();
814
815    appendAutomaticObjDtor(Block, *I, S);
816  }
817}
818
819/// addImplicitDtorsForDestructor - Add implicit destructors generated for
820/// base and member objects in destructor.
821void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
822  assert (BuildOpts.AddImplicitDtors
823      && "Can be called only when dtors should be added");
824  const CXXRecordDecl *RD = DD->getParent();
825
826  // At the end destroy virtual base objects.
827  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
828      VE = RD->vbases_end(); VI != VE; ++VI) {
829    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
830    if (!CD->hasTrivialDestructor()) {
831      autoCreateBlock();
832      appendBaseDtor(Block, VI);
833    }
834  }
835
836  // Before virtual bases destroy direct base objects.
837  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
838      BE = RD->bases_end(); BI != BE; ++BI) {
839    if (!BI->isVirtual()) {
840      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
841      if (!CD->hasTrivialDestructor()) {
842        autoCreateBlock();
843        appendBaseDtor(Block, BI);
844      }
845    }
846  }
847
848  // First destroy member objects.
849  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
850      FE = RD->field_end(); FI != FE; ++FI) {
851    // Check for constant size array. Set type to array element type.
852    QualType QT = FI->getType();
853    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
854      if (AT->getSize() == 0)
855        continue;
856      QT = AT->getElementType();
857    }
858
859    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
860      if (!CD->hasTrivialDestructor()) {
861        autoCreateBlock();
862        appendMemberDtor(Block, *FI);
863      }
864  }
865}
866
867/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
868/// way return valid LocalScope object.
869LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
870  if (!Scope) {
871    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
872    Scope = alloc.Allocate<LocalScope>();
873    BumpVectorContext ctx(alloc);
874    new (Scope) LocalScope(ctx, ScopePos);
875  }
876  return Scope;
877}
878
879/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
880/// that should create implicit scope (e.g. if/else substatements).
881void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
882  if (!BuildOpts.AddImplicitDtors)
883    return;
884
885  LocalScope *Scope = 0;
886
887  // For compound statement we will be creating explicit scope.
888  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
889    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
890        ; BI != BE; ++BI) {
891      Stmt *SI = (*BI)->stripLabelLikeStatements();
892      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
893        Scope = addLocalScopeForDeclStmt(DS, Scope);
894    }
895    return;
896  }
897
898  // For any other statement scope will be implicit and as such will be
899  // interesting only for DeclStmt.
900  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
901    addLocalScopeForDeclStmt(DS);
902}
903
904/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
905/// reuse Scope if not NULL.
906LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
907                                                 LocalScope* Scope) {
908  if (!BuildOpts.AddImplicitDtors)
909    return Scope;
910
911  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
912      ; DI != DE; ++DI) {
913    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
914      Scope = addLocalScopeForVarDecl(VD, Scope);
915  }
916  return Scope;
917}
918
919/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
920/// create add scope for automatic objects and temporary objects bound to
921/// const reference. Will reuse Scope if not NULL.
922LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
923                                                LocalScope* Scope) {
924  if (!BuildOpts.AddImplicitDtors)
925    return Scope;
926
927  // Check if variable is local.
928  switch (VD->getStorageClass()) {
929  case SC_None:
930  case SC_Auto:
931  case SC_Register:
932    break;
933  default: return Scope;
934  }
935
936  // Check for const references bound to temporary. Set type to pointee.
937  QualType QT = VD->getType();
938  if (QT.getTypePtr()->isReferenceType()) {
939    if (!VD->extendsLifetimeOfTemporary())
940      return Scope;
941
942    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
943  }
944
945  // Check for constant size array. Set type to array element type.
946  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
947    if (AT->getSize() == 0)
948      return Scope;
949    QT = AT->getElementType();
950  }
951
952  // Check if type is a C++ class with non-trivial destructor.
953  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
954    if (!CD->hasTrivialDestructor()) {
955      // Add the variable to scope
956      Scope = createOrReuseLocalScope(Scope);
957      Scope->addVar(VD);
958      ScopePos = Scope->begin();
959    }
960  return Scope;
961}
962
963/// addLocalScopeAndDtors - For given statement add local scope for it and
964/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
965void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
966  if (!BuildOpts.AddImplicitDtors)
967    return;
968
969  LocalScope::const_iterator scopeBeginPos = ScopePos;
970  addLocalScopeForStmt(S);
971  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
972}
973
974/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
975/// variables with automatic storage duration to CFGBlock's elements vector.
976/// Elements will be prepended to physical beginning of the vector which
977/// happens to be logical end. Use blocks terminator as statement that specifies
978/// destructors call site.
979/// FIXME: This mechanism for adding automatic destructors doesn't handle
980/// no-return destructors properly.
981void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
982    LocalScope::const_iterator B, LocalScope::const_iterator E) {
983  BumpVectorContext &C = cfg->getBumpVectorContext();
984  CFGBlock::iterator InsertPos
985    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
986  for (LocalScope::const_iterator I = B; I != E; ++I)
987    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
988                                            Blk->getTerminator());
989}
990
991/// Visit - Walk the subtree of a statement and add extra
992///   blocks for ternary operators, &&, and ||.  We also process "," and
993///   DeclStmts (which may contain nested control-flow).
994CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
995  if (!S) {
996    badCFG = true;
997    return 0;
998  }
999
1000  if (Expr *E = dyn_cast<Expr>(S))
1001    S = E->IgnoreParens();
1002
1003  switch (S->getStmtClass()) {
1004    default:
1005      return VisitStmt(S, asc);
1006
1007    case Stmt::AddrLabelExprClass:
1008      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1009
1010    case Stmt::BinaryConditionalOperatorClass:
1011      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1012
1013    case Stmt::BinaryOperatorClass:
1014      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1015
1016    case Stmt::BlockExprClass:
1017      return VisitNoRecurse(cast<Expr>(S), asc);
1018
1019    case Stmt::BreakStmtClass:
1020      return VisitBreakStmt(cast<BreakStmt>(S));
1021
1022    case Stmt::CallExprClass:
1023    case Stmt::CXXOperatorCallExprClass:
1024    case Stmt::CXXMemberCallExprClass:
1025    case Stmt::UserDefinedLiteralClass:
1026      return VisitCallExpr(cast<CallExpr>(S), asc);
1027
1028    case Stmt::CaseStmtClass:
1029      return VisitCaseStmt(cast<CaseStmt>(S));
1030
1031    case Stmt::ChooseExprClass:
1032      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1033
1034    case Stmt::CompoundStmtClass:
1035      return VisitCompoundStmt(cast<CompoundStmt>(S));
1036
1037    case Stmt::ConditionalOperatorClass:
1038      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1039
1040    case Stmt::ContinueStmtClass:
1041      return VisitContinueStmt(cast<ContinueStmt>(S));
1042
1043    case Stmt::CXXCatchStmtClass:
1044      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1045
1046    case Stmt::ExprWithCleanupsClass:
1047      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1048
1049    case Stmt::CXXDefaultArgExprClass:
1050      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1051      // called function's declaration, not by the caller. If we simply add
1052      // this expression to the CFG, we could end up with the same Expr
1053      // appearing multiple times.
1054      // PR13385 / <rdar://problem/12156507>
1055      return VisitStmt(S, asc);
1056
1057    case Stmt::CXXBindTemporaryExprClass:
1058      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1059
1060    case Stmt::CXXConstructExprClass:
1061      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1062
1063    case Stmt::CXXFunctionalCastExprClass:
1064      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1065
1066    case Stmt::CXXTemporaryObjectExprClass:
1067      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1068
1069    case Stmt::CXXThrowExprClass:
1070      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1071
1072    case Stmt::CXXTryStmtClass:
1073      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1074
1075    case Stmt::CXXForRangeStmtClass:
1076      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1077
1078    case Stmt::DeclStmtClass:
1079      return VisitDeclStmt(cast<DeclStmt>(S));
1080
1081    case Stmt::DefaultStmtClass:
1082      return VisitDefaultStmt(cast<DefaultStmt>(S));
1083
1084    case Stmt::DoStmtClass:
1085      return VisitDoStmt(cast<DoStmt>(S));
1086
1087    case Stmt::ForStmtClass:
1088      return VisitForStmt(cast<ForStmt>(S));
1089
1090    case Stmt::GotoStmtClass:
1091      return VisitGotoStmt(cast<GotoStmt>(S));
1092
1093    case Stmt::IfStmtClass:
1094      return VisitIfStmt(cast<IfStmt>(S));
1095
1096    case Stmt::ImplicitCastExprClass:
1097      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1098
1099    case Stmt::IndirectGotoStmtClass:
1100      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1101
1102    case Stmt::LabelStmtClass:
1103      return VisitLabelStmt(cast<LabelStmt>(S));
1104
1105    case Stmt::LambdaExprClass:
1106      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1107
1108    case Stmt::MemberExprClass:
1109      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1110
1111    case Stmt::NullStmtClass:
1112      return Block;
1113
1114    case Stmt::ObjCAtCatchStmtClass:
1115      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1116
1117    case Stmt::ObjCAutoreleasePoolStmtClass:
1118    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1119
1120    case Stmt::ObjCAtSynchronizedStmtClass:
1121      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1122
1123    case Stmt::ObjCAtThrowStmtClass:
1124      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1125
1126    case Stmt::ObjCAtTryStmtClass:
1127      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1128
1129    case Stmt::ObjCForCollectionStmtClass:
1130      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1131
1132    case Stmt::OpaqueValueExprClass:
1133      return Block;
1134
1135    case Stmt::PseudoObjectExprClass:
1136      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1137
1138    case Stmt::ReturnStmtClass:
1139      return VisitReturnStmt(cast<ReturnStmt>(S));
1140
1141    case Stmt::UnaryExprOrTypeTraitExprClass:
1142      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1143                                           asc);
1144
1145    case Stmt::StmtExprClass:
1146      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1147
1148    case Stmt::SwitchStmtClass:
1149      return VisitSwitchStmt(cast<SwitchStmt>(S));
1150
1151    case Stmt::UnaryOperatorClass:
1152      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1153
1154    case Stmt::WhileStmtClass:
1155      return VisitWhileStmt(cast<WhileStmt>(S));
1156  }
1157}
1158
1159CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1160  if (asc.alwaysAdd(*this, S)) {
1161    autoCreateBlock();
1162    appendStmt(Block, S);
1163  }
1164
1165  return VisitChildren(S);
1166}
1167
1168/// VisitChildren - Visit the children of a Stmt.
1169CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1170  CFGBlock *lastBlock = Block;
1171  for (Stmt::child_range I = Terminator->children(); I; ++I)
1172    if (Stmt *child = *I)
1173      if (CFGBlock *b = Visit(child))
1174        lastBlock = b;
1175
1176  return lastBlock;
1177}
1178
1179CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1180                                         AddStmtChoice asc) {
1181  AddressTakenLabels.insert(A->getLabel());
1182
1183  if (asc.alwaysAdd(*this, A)) {
1184    autoCreateBlock();
1185    appendStmt(Block, A);
1186  }
1187
1188  return Block;
1189}
1190
1191CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1192           AddStmtChoice asc) {
1193  if (asc.alwaysAdd(*this, U)) {
1194    autoCreateBlock();
1195    appendStmt(Block, U);
1196  }
1197
1198  return Visit(U->getSubExpr(), AddStmtChoice());
1199}
1200
1201CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1202  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1203  appendStmt(ConfluenceBlock, B);
1204
1205  if (badCFG)
1206    return 0;
1207
1208  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1209}
1210
1211std::pair<CFGBlock*, CFGBlock*>
1212CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1213                                 Stmt *Term,
1214                                 CFGBlock *TrueBlock,
1215                                 CFGBlock *FalseBlock) {
1216
1217  // Introspect the RHS.  If it is a nested logical operation, we recursively
1218  // build the CFG using this function.  Otherwise, resort to default
1219  // CFG construction behavior.
1220  Expr *RHS = B->getRHS()->IgnoreParens();
1221  CFGBlock *RHSBlock, *ExitBlock;
1222
1223  do {
1224    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1225      if (B_RHS->isLogicalOp()) {
1226        llvm::tie(RHSBlock, ExitBlock) =
1227          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1228        break;
1229      }
1230
1231    // The RHS is not a nested logical operation.  Don't push the terminator
1232    // down further, but instead visit RHS and construct the respective
1233    // pieces of the CFG, and link up the RHSBlock with the terminator
1234    // we have been provided.
1235    ExitBlock = RHSBlock = createBlock(false);
1236
1237    if (!Term) {
1238      assert(TrueBlock == FalseBlock);
1239      addSuccessor(RHSBlock, TrueBlock);
1240    }
1241    else {
1242      RHSBlock->setTerminator(Term);
1243      TryResult KnownVal = tryEvaluateBool(RHS);
1244      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1245      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1246    }
1247
1248    Block = RHSBlock;
1249    RHSBlock = addStmt(RHS);
1250  }
1251  while (false);
1252
1253  if (badCFG)
1254    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1255
1256  // Generate the blocks for evaluating the LHS.
1257  Expr *LHS = B->getLHS()->IgnoreParens();
1258
1259  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1260    if (B_LHS->isLogicalOp()) {
1261      if (B->getOpcode() == BO_LOr)
1262        FalseBlock = RHSBlock;
1263      else
1264        TrueBlock = RHSBlock;
1265
1266      // For the LHS, treat 'B' as the terminator that we want to sink
1267      // into the nested branch.  The RHS always gets the top-most
1268      // terminator.
1269      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1270    }
1271
1272  // Create the block evaluating the LHS.
1273  // This contains the '&&' or '||' as the terminator.
1274  CFGBlock *LHSBlock = createBlock(false);
1275  LHSBlock->setTerminator(B);
1276
1277  Block = LHSBlock;
1278  CFGBlock *EntryLHSBlock = addStmt(LHS);
1279
1280  if (badCFG)
1281    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1282
1283  // See if this is a known constant.
1284  TryResult KnownVal = tryEvaluateBool(LHS);
1285
1286  // Now link the LHSBlock with RHSBlock.
1287  if (B->getOpcode() == BO_LOr) {
1288    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1289    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1290  } else {
1291    assert(B->getOpcode() == BO_LAnd);
1292    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1293    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1294  }
1295
1296  return std::make_pair(EntryLHSBlock, ExitBlock);
1297}
1298
1299
1300CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1301                                          AddStmtChoice asc) {
1302   // && or ||
1303  if (B->isLogicalOp())
1304    return VisitLogicalOperator(B);
1305
1306  if (B->getOpcode() == BO_Comma) { // ,
1307    autoCreateBlock();
1308    appendStmt(Block, B);
1309    addStmt(B->getRHS());
1310    return addStmt(B->getLHS());
1311  }
1312
1313  if (B->isAssignmentOp()) {
1314    if (asc.alwaysAdd(*this, B)) {
1315      autoCreateBlock();
1316      appendStmt(Block, B);
1317    }
1318    Visit(B->getLHS());
1319    return Visit(B->getRHS());
1320  }
1321
1322  if (asc.alwaysAdd(*this, B)) {
1323    autoCreateBlock();
1324    appendStmt(Block, B);
1325  }
1326
1327  CFGBlock *RBlock = Visit(B->getRHS());
1328  CFGBlock *LBlock = Visit(B->getLHS());
1329  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1330  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1331  // return RBlock.  Otherwise we'll incorrectly return NULL.
1332  return (LBlock ? LBlock : RBlock);
1333}
1334
1335CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1336  if (asc.alwaysAdd(*this, E)) {
1337    autoCreateBlock();
1338    appendStmt(Block, E);
1339  }
1340  return Block;
1341}
1342
1343CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1344  // "break" is a control-flow statement.  Thus we stop processing the current
1345  // block.
1346  if (badCFG)
1347    return 0;
1348
1349  // Now create a new block that ends with the break statement.
1350  Block = createBlock(false);
1351  Block->setTerminator(B);
1352
1353  // If there is no target for the break, then we are looking at an incomplete
1354  // AST.  This means that the CFG cannot be constructed.
1355  if (BreakJumpTarget.block) {
1356    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1357    addSuccessor(Block, BreakJumpTarget.block);
1358  } else
1359    badCFG = true;
1360
1361
1362  return Block;
1363}
1364
1365static bool CanThrow(Expr *E, ASTContext &Ctx) {
1366  QualType Ty = E->getType();
1367  if (Ty->isFunctionPointerType())
1368    Ty = Ty->getAs<PointerType>()->getPointeeType();
1369  else if (Ty->isBlockPointerType())
1370    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1371
1372  const FunctionType *FT = Ty->getAs<FunctionType>();
1373  if (FT) {
1374    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1375      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1376          Proto->isNothrow(Ctx))
1377        return false;
1378  }
1379  return true;
1380}
1381
1382CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1383  // Compute the callee type.
1384  QualType calleeType = C->getCallee()->getType();
1385  if (calleeType == Context->BoundMemberTy) {
1386    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1387
1388    // We should only get a null bound type if processing a dependent
1389    // CFG.  Recover by assuming nothing.
1390    if (!boundType.isNull()) calleeType = boundType;
1391  }
1392
1393  // If this is a call to a no-return function, this stops the block here.
1394  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1395
1396  bool AddEHEdge = false;
1397
1398  // Languages without exceptions are assumed to not throw.
1399  if (Context->getLangOpts().Exceptions) {
1400    if (BuildOpts.AddEHEdges)
1401      AddEHEdge = true;
1402  }
1403
1404  if (FunctionDecl *FD = C->getDirectCallee()) {
1405    if (FD->hasAttr<NoReturnAttr>())
1406      NoReturn = true;
1407    if (FD->hasAttr<NoThrowAttr>())
1408      AddEHEdge = false;
1409  }
1410
1411  if (!CanThrow(C->getCallee(), *Context))
1412    AddEHEdge = false;
1413
1414  if (!NoReturn && !AddEHEdge)
1415    return VisitStmt(C, asc.withAlwaysAdd(true));
1416
1417  if (Block) {
1418    Succ = Block;
1419    if (badCFG)
1420      return 0;
1421  }
1422
1423  if (NoReturn)
1424    Block = createNoReturnBlock();
1425  else
1426    Block = createBlock();
1427
1428  appendStmt(Block, C);
1429
1430  if (AddEHEdge) {
1431    // Add exceptional edges.
1432    if (TryTerminatedBlock)
1433      addSuccessor(Block, TryTerminatedBlock);
1434    else
1435      addSuccessor(Block, &cfg->getExit());
1436  }
1437
1438  return VisitChildren(C);
1439}
1440
1441CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1442                                      AddStmtChoice asc) {
1443  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1444  appendStmt(ConfluenceBlock, C);
1445  if (badCFG)
1446    return 0;
1447
1448  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1449  Succ = ConfluenceBlock;
1450  Block = NULL;
1451  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1452  if (badCFG)
1453    return 0;
1454
1455  Succ = ConfluenceBlock;
1456  Block = NULL;
1457  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1458  if (badCFG)
1459    return 0;
1460
1461  Block = createBlock(false);
1462  // See if this is a known constant.
1463  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1464  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1465  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1466  Block->setTerminator(C);
1467  return addStmt(C->getCond());
1468}
1469
1470
1471CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1472  addLocalScopeAndDtors(C);
1473  CFGBlock *LastBlock = Block;
1474
1475  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1476       I != E; ++I ) {
1477    // If we hit a segment of code just containing ';' (NullStmts), we can
1478    // get a null block back.  In such cases, just use the LastBlock
1479    if (CFGBlock *newBlock = addStmt(*I))
1480      LastBlock = newBlock;
1481
1482    if (badCFG)
1483      return NULL;
1484  }
1485
1486  return LastBlock;
1487}
1488
1489CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1490                                               AddStmtChoice asc) {
1491  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1492  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1493
1494  // Create the confluence block that will "merge" the results of the ternary
1495  // expression.
1496  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1497  appendStmt(ConfluenceBlock, C);
1498  if (badCFG)
1499    return 0;
1500
1501  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1502
1503  // Create a block for the LHS expression if there is an LHS expression.  A
1504  // GCC extension allows LHS to be NULL, causing the condition to be the
1505  // value that is returned instead.
1506  //  e.g: x ?: y is shorthand for: x ? x : y;
1507  Succ = ConfluenceBlock;
1508  Block = NULL;
1509  CFGBlock *LHSBlock = 0;
1510  const Expr *trueExpr = C->getTrueExpr();
1511  if (trueExpr != opaqueValue) {
1512    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1513    if (badCFG)
1514      return 0;
1515    Block = NULL;
1516  }
1517  else
1518    LHSBlock = ConfluenceBlock;
1519
1520  // Create the block for the RHS expression.
1521  Succ = ConfluenceBlock;
1522  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1523  if (badCFG)
1524    return 0;
1525
1526  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1527  if (BinaryOperator *Cond =
1528        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1529    if (Cond->isLogicalOp())
1530      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1531
1532  // Create the block that will contain the condition.
1533  Block = createBlock(false);
1534
1535  // See if this is a known constant.
1536  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1537  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1538  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1539  Block->setTerminator(C);
1540  Expr *condExpr = C->getCond();
1541
1542  if (opaqueValue) {
1543    // Run the condition expression if it's not trivially expressed in
1544    // terms of the opaque value (or if there is no opaque value).
1545    if (condExpr != opaqueValue)
1546      addStmt(condExpr);
1547
1548    // Before that, run the common subexpression if there was one.
1549    // At least one of this or the above will be run.
1550    return addStmt(BCO->getCommon());
1551  }
1552
1553  return addStmt(condExpr);
1554}
1555
1556CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1557  // Check if the Decl is for an __label__.  If so, elide it from the
1558  // CFG entirely.
1559  if (isa<LabelDecl>(*DS->decl_begin()))
1560    return Block;
1561
1562  // This case also handles static_asserts.
1563  if (DS->isSingleDecl())
1564    return VisitDeclSubExpr(DS);
1565
1566  CFGBlock *B = 0;
1567
1568  // Build an individual DeclStmt for each decl.
1569  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1570                                       E = DS->decl_rend();
1571       I != E; ++I) {
1572    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1573    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1574               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1575
1576    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1577    // automatically freed with the CFG.
1578    DeclGroupRef DG(*I);
1579    Decl *D = *I;
1580    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1581    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1582
1583    // Append the fake DeclStmt to block.
1584    B = VisitDeclSubExpr(DSNew);
1585  }
1586
1587  return B;
1588}
1589
1590/// VisitDeclSubExpr - Utility method to add block-level expressions for
1591/// DeclStmts and initializers in them.
1592CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1593  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1594  Decl *D = DS->getSingleDecl();
1595
1596  if (isa<StaticAssertDecl>(D)) {
1597    // static_asserts aren't added to the CFG because they do not impact
1598    // runtime semantics.
1599    return Block;
1600  }
1601
1602  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1603
1604  if (!VD) {
1605    autoCreateBlock();
1606    appendStmt(Block, DS);
1607    return Block;
1608  }
1609
1610  bool IsReference = false;
1611  bool HasTemporaries = false;
1612
1613  // Destructors of temporaries in initialization expression should be called
1614  // after initialization finishes.
1615  Expr *Init = VD->getInit();
1616  if (Init) {
1617    IsReference = VD->getType()->isReferenceType();
1618    HasTemporaries = isa<ExprWithCleanups>(Init);
1619
1620    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1621      // Generate destructors for temporaries in initialization expression.
1622      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1623          IsReference);
1624    }
1625  }
1626
1627  autoCreateBlock();
1628  appendStmt(Block, DS);
1629
1630  // Keep track of the last non-null block, as 'Block' can be nulled out
1631  // if the initializer expression is something like a 'while' in a
1632  // statement-expression.
1633  CFGBlock *LastBlock = Block;
1634
1635  if (Init) {
1636    if (HasTemporaries) {
1637      // For expression with temporaries go directly to subexpression to omit
1638      // generating destructors for the second time.
1639      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1640      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1641        LastBlock = newBlock;
1642    }
1643    else {
1644      if (CFGBlock *newBlock = Visit(Init))
1645        LastBlock = newBlock;
1646    }
1647  }
1648
1649  // If the type of VD is a VLA, then we must process its size expressions.
1650  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1651       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1652    Block = addStmt(VA->getSizeExpr());
1653
1654  // Remove variable from local scope.
1655  if (ScopePos && VD == *ScopePos)
1656    ++ScopePos;
1657
1658  return Block ? Block : LastBlock;
1659}
1660
1661CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1662  // We may see an if statement in the middle of a basic block, or it may be the
1663  // first statement we are processing.  In either case, we create a new basic
1664  // block.  First, we create the blocks for the then...else statements, and
1665  // then we create the block containing the if statement.  If we were in the
1666  // middle of a block, we stop processing that block.  That block is then the
1667  // implicit successor for the "then" and "else" clauses.
1668
1669  // Save local scope position because in case of condition variable ScopePos
1670  // won't be restored when traversing AST.
1671  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1672
1673  // Create local scope for possible condition variable.
1674  // Store scope position. Add implicit destructor.
1675  if (VarDecl *VD = I->getConditionVariable()) {
1676    LocalScope::const_iterator BeginScopePos = ScopePos;
1677    addLocalScopeForVarDecl(VD);
1678    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1679  }
1680
1681  // The block we were processing is now finished.  Make it the successor
1682  // block.
1683  if (Block) {
1684    Succ = Block;
1685    if (badCFG)
1686      return 0;
1687  }
1688
1689  // Process the false branch.
1690  CFGBlock *ElseBlock = Succ;
1691
1692  if (Stmt *Else = I->getElse()) {
1693    SaveAndRestore<CFGBlock*> sv(Succ);
1694
1695    // NULL out Block so that the recursive call to Visit will
1696    // create a new basic block.
1697    Block = NULL;
1698
1699    // If branch is not a compound statement create implicit scope
1700    // and add destructors.
1701    if (!isa<CompoundStmt>(Else))
1702      addLocalScopeAndDtors(Else);
1703
1704    ElseBlock = addStmt(Else);
1705
1706    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1707      ElseBlock = sv.get();
1708    else if (Block) {
1709      if (badCFG)
1710        return 0;
1711    }
1712  }
1713
1714  // Process the true branch.
1715  CFGBlock *ThenBlock;
1716  {
1717    Stmt *Then = I->getThen();
1718    assert(Then);
1719    SaveAndRestore<CFGBlock*> sv(Succ);
1720    Block = NULL;
1721
1722    // If branch is not a compound statement create implicit scope
1723    // and add destructors.
1724    if (!isa<CompoundStmt>(Then))
1725      addLocalScopeAndDtors(Then);
1726
1727    ThenBlock = addStmt(Then);
1728
1729    if (!ThenBlock) {
1730      // We can reach here if the "then" body has all NullStmts.
1731      // Create an empty block so we can distinguish between true and false
1732      // branches in path-sensitive analyses.
1733      ThenBlock = createBlock(false);
1734      addSuccessor(ThenBlock, sv.get());
1735    } else if (Block) {
1736      if (badCFG)
1737        return 0;
1738    }
1739  }
1740
1741  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1742  // having these handle the actual control-flow jump.  Note that
1743  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1744  // we resort to the old control-flow behavior.  This special handling
1745  // removes infeasible paths from the control-flow graph by having the
1746  // control-flow transfer of '&&' or '||' go directly into the then/else
1747  // blocks directly.
1748  if (!I->getConditionVariable())
1749    if (BinaryOperator *Cond =
1750            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1751      if (Cond->isLogicalOp())
1752        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1753
1754  // Now create a new block containing the if statement.
1755  Block = createBlock(false);
1756
1757  // Set the terminator of the new block to the If statement.
1758  Block->setTerminator(I);
1759
1760  // See if this is a known constant.
1761  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1762
1763  // Now add the successors.
1764  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1765  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1766
1767  // Add the condition as the last statement in the new block.  This may create
1768  // new blocks as the condition may contain control-flow.  Any newly created
1769  // blocks will be pointed to be "Block".
1770  Block = addStmt(I->getCond());
1771
1772  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1773  // and the condition variable initialization to the CFG.
1774  if (VarDecl *VD = I->getConditionVariable()) {
1775    if (Expr *Init = VD->getInit()) {
1776      autoCreateBlock();
1777      appendStmt(Block, I->getConditionVariableDeclStmt());
1778      addStmt(Init);
1779    }
1780  }
1781
1782  return Block;
1783}
1784
1785
1786CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1787  // If we were in the middle of a block we stop processing that block.
1788  //
1789  // NOTE: If a "return" appears in the middle of a block, this means that the
1790  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1791  //       for that code; a simple "mark-and-sweep" from the entry block will be
1792  //       able to report such dead blocks.
1793
1794  // Create the new block.
1795  Block = createBlock(false);
1796
1797  // The Exit block is the only successor.
1798  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1799  addSuccessor(Block, &cfg->getExit());
1800
1801  // Add the return statement to the block.  This may create new blocks if R
1802  // contains control-flow (short-circuit operations).
1803  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1804}
1805
1806CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1807  // Get the block of the labeled statement.  Add it to our map.
1808  addStmt(L->getSubStmt());
1809  CFGBlock *LabelBlock = Block;
1810
1811  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1812    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1813
1814  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1815         "label already in map");
1816  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1817
1818  // Labels partition blocks, so this is the end of the basic block we were
1819  // processing (L is the block's label).  Because this is label (and we have
1820  // already processed the substatement) there is no extra control-flow to worry
1821  // about.
1822  LabelBlock->setLabel(L);
1823  if (badCFG)
1824    return 0;
1825
1826  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1827  Block = NULL;
1828
1829  // This block is now the implicit successor of other blocks.
1830  Succ = LabelBlock;
1831
1832  return LabelBlock;
1833}
1834
1835CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1836  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1837  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1838       et = E->capture_init_end(); it != et; ++it) {
1839    if (Expr *Init = *it) {
1840      CFGBlock *Tmp = Visit(Init);
1841      if (Tmp != 0)
1842        LastBlock = Tmp;
1843    }
1844  }
1845  return LastBlock;
1846}
1847
1848CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1849  // Goto is a control-flow statement.  Thus we stop processing the current
1850  // block and create a new one.
1851
1852  Block = createBlock(false);
1853  Block->setTerminator(G);
1854
1855  // If we already know the mapping to the label block add the successor now.
1856  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1857
1858  if (I == LabelMap.end())
1859    // We will need to backpatch this block later.
1860    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1861  else {
1862    JumpTarget JT = I->second;
1863    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1864    addSuccessor(Block, JT.block);
1865  }
1866
1867  return Block;
1868}
1869
1870CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1871  CFGBlock *LoopSuccessor = NULL;
1872
1873  // Save local scope position because in case of condition variable ScopePos
1874  // won't be restored when traversing AST.
1875  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1876
1877  // Create local scope for init statement and possible condition variable.
1878  // Add destructor for init statement and condition variable.
1879  // Store scope position for continue statement.
1880  if (Stmt *Init = F->getInit())
1881    addLocalScopeForStmt(Init);
1882  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1883
1884  if (VarDecl *VD = F->getConditionVariable())
1885    addLocalScopeForVarDecl(VD);
1886  LocalScope::const_iterator ContinueScopePos = ScopePos;
1887
1888  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1889
1890  // "for" is a control-flow statement.  Thus we stop processing the current
1891  // block.
1892  if (Block) {
1893    if (badCFG)
1894      return 0;
1895    LoopSuccessor = Block;
1896  } else
1897    LoopSuccessor = Succ;
1898
1899  // Save the current value for the break targets.
1900  // All breaks should go to the code following the loop.
1901  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1902  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1903
1904  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1905
1906  // Now create the loop body.
1907  {
1908    assert(F->getBody());
1909
1910    // Save the current values for Block, Succ, continue and break targets.
1911    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1912    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1913
1914    // Create an empty block to represent the transition block for looping back
1915    // to the head of the loop.  If we have increment code, it will
1916    // go in this block as well.
1917    Block = Succ = TransitionBlock = createBlock(false);
1918    TransitionBlock->setLoopTarget(F);
1919
1920    if (Stmt *I = F->getInc()) {
1921      // Generate increment code in its own basic block.  This is the target of
1922      // continue statements.
1923      Succ = addStmt(I);
1924    }
1925
1926    // Finish up the increment (or empty) block if it hasn't been already.
1927    if (Block) {
1928      assert(Block == Succ);
1929      if (badCFG)
1930        return 0;
1931      Block = 0;
1932    }
1933
1934   // The starting block for the loop increment is the block that should
1935   // represent the 'loop target' for looping back to the start of the loop.
1936   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1937   ContinueJumpTarget.block->setLoopTarget(F);
1938
1939    // Loop body should end with destructor of Condition variable (if any).
1940    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1941
1942    // If body is not a compound statement create implicit scope
1943    // and add destructors.
1944    if (!isa<CompoundStmt>(F->getBody()))
1945      addLocalScopeAndDtors(F->getBody());
1946
1947    // Now populate the body block, and in the process create new blocks as we
1948    // walk the body of the loop.
1949    BodyBlock = addStmt(F->getBody());
1950
1951    if (!BodyBlock) {
1952      // In the case of "for (...;...;...);" we can have a null BodyBlock.
1953      // Use the continue jump target as the proxy for the body.
1954      BodyBlock = ContinueJumpTarget.block;
1955    }
1956    else if (badCFG)
1957      return 0;
1958  }
1959
1960  // Because of short-circuit evaluation, the condition of the loop can span
1961  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1962  // evaluate the condition.
1963  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
1964
1965  do {
1966    Expr *C = F->getCond();
1967
1968    // Specially handle logical operators, which have a slightly
1969    // more optimal CFG representation.
1970    if (BinaryOperator *Cond =
1971            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
1972      if (Cond->isLogicalOp()) {
1973        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
1974          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
1975        break;
1976      }
1977
1978    // The default case when not handling logical operators.
1979    EntryConditionBlock = ExitConditionBlock = createBlock(false);
1980    ExitConditionBlock->setTerminator(F);
1981
1982    // See if this is a known constant.
1983    TryResult KnownVal(true);
1984
1985    if (C) {
1986      // Now add the actual condition to the condition block.
1987      // Because the condition itself may contain control-flow, new blocks may
1988      // be created.  Thus we update "Succ" after adding the condition.
1989      Block = ExitConditionBlock;
1990      EntryConditionBlock = addStmt(C);
1991
1992      // If this block contains a condition variable, add both the condition
1993      // variable and initializer to the CFG.
1994      if (VarDecl *VD = F->getConditionVariable()) {
1995        if (Expr *Init = VD->getInit()) {
1996          autoCreateBlock();
1997          appendStmt(Block, F->getConditionVariableDeclStmt());
1998          EntryConditionBlock = addStmt(Init);
1999          assert(Block == EntryConditionBlock);
2000        }
2001      }
2002
2003      if (Block && badCFG)
2004        return 0;
2005
2006      KnownVal = tryEvaluateBool(C);
2007    }
2008
2009    // Add the loop body entry as a successor to the condition.
2010    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2011    // Link up the condition block with the code that follows the loop.  (the
2012    // false branch).
2013    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2014
2015  } while (false);
2016
2017  // Link up the loop-back block to the entry condition block.
2018  addSuccessor(TransitionBlock, EntryConditionBlock);
2019
2020  // The condition block is the implicit successor for any code above the loop.
2021  Succ = EntryConditionBlock;
2022
2023  // If the loop contains initialization, create a new block for those
2024  // statements.  This block can also contain statements that precede the loop.
2025  if (Stmt *I = F->getInit()) {
2026    Block = createBlock();
2027    return addStmt(I);
2028  }
2029
2030  // There is no loop initialization.  We are thus basically a while loop.
2031  // NULL out Block to force lazy block construction.
2032  Block = NULL;
2033  Succ = EntryConditionBlock;
2034  return EntryConditionBlock;
2035}
2036
2037CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2038  if (asc.alwaysAdd(*this, M)) {
2039    autoCreateBlock();
2040    appendStmt(Block, M);
2041  }
2042  return Visit(M->getBase());
2043}
2044
2045CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2046  // Objective-C fast enumeration 'for' statements:
2047  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2048  //
2049  //  for ( Type newVariable in collection_expression ) { statements }
2050  //
2051  //  becomes:
2052  //
2053  //   prologue:
2054  //     1. collection_expression
2055  //     T. jump to loop_entry
2056  //   loop_entry:
2057  //     1. side-effects of element expression
2058  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2059  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2060  //   TB:
2061  //     statements
2062  //     T. jump to loop_entry
2063  //   FB:
2064  //     what comes after
2065  //
2066  //  and
2067  //
2068  //  Type existingItem;
2069  //  for ( existingItem in expression ) { statements }
2070  //
2071  //  becomes:
2072  //
2073  //   the same with newVariable replaced with existingItem; the binding works
2074  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2075  //   a DeclStmt and the other returns a DeclRefExpr.
2076  //
2077
2078  CFGBlock *LoopSuccessor = 0;
2079
2080  if (Block) {
2081    if (badCFG)
2082      return 0;
2083    LoopSuccessor = Block;
2084    Block = 0;
2085  } else
2086    LoopSuccessor = Succ;
2087
2088  // Build the condition blocks.
2089  CFGBlock *ExitConditionBlock = createBlock(false);
2090
2091  // Set the terminator for the "exit" condition block.
2092  ExitConditionBlock->setTerminator(S);
2093
2094  // The last statement in the block should be the ObjCForCollectionStmt, which
2095  // performs the actual binding to 'element' and determines if there are any
2096  // more items in the collection.
2097  appendStmt(ExitConditionBlock, S);
2098  Block = ExitConditionBlock;
2099
2100  // Walk the 'element' expression to see if there are any side-effects.  We
2101  // generate new blocks as necessary.  We DON'T add the statement by default to
2102  // the CFG unless it contains control-flow.
2103  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2104                                        AddStmtChoice::NotAlwaysAdd);
2105  if (Block) {
2106    if (badCFG)
2107      return 0;
2108    Block = 0;
2109  }
2110
2111  // The condition block is the implicit successor for the loop body as well as
2112  // any code above the loop.
2113  Succ = EntryConditionBlock;
2114
2115  // Now create the true branch.
2116  {
2117    // Save the current values for Succ, continue and break targets.
2118    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2119    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2120        save_break(BreakJumpTarget);
2121
2122    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2123    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2124
2125    CFGBlock *BodyBlock = addStmt(S->getBody());
2126
2127    if (!BodyBlock)
2128      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2129    else if (Block) {
2130      if (badCFG)
2131        return 0;
2132    }
2133
2134    // This new body block is a successor to our "exit" condition block.
2135    addSuccessor(ExitConditionBlock, BodyBlock);
2136  }
2137
2138  // Link up the condition block with the code that follows the loop.
2139  // (the false branch).
2140  addSuccessor(ExitConditionBlock, LoopSuccessor);
2141
2142  // Now create a prologue block to contain the collection expression.
2143  Block = createBlock();
2144  return addStmt(S->getCollection());
2145}
2146
2147CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2148  // Inline the body.
2149  return addStmt(S->getSubStmt());
2150  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2151}
2152
2153CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2154  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2155
2156  // Inline the body.
2157  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2158
2159  // The sync body starts its own basic block.  This makes it a little easier
2160  // for diagnostic clients.
2161  if (SyncBlock) {
2162    if (badCFG)
2163      return 0;
2164
2165    Block = 0;
2166    Succ = SyncBlock;
2167  }
2168
2169  // Add the @synchronized to the CFG.
2170  autoCreateBlock();
2171  appendStmt(Block, S);
2172
2173  // Inline the sync expression.
2174  return addStmt(S->getSynchExpr());
2175}
2176
2177CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2178  // FIXME
2179  return NYS();
2180}
2181
2182CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2183  autoCreateBlock();
2184
2185  // Add the PseudoObject as the last thing.
2186  appendStmt(Block, E);
2187
2188  CFGBlock *lastBlock = Block;
2189
2190  // Before that, evaluate all of the semantics in order.  In
2191  // CFG-land, that means appending them in reverse order.
2192  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2193    Expr *Semantic = E->getSemanticExpr(--i);
2194
2195    // If the semantic is an opaque value, we're being asked to bind
2196    // it to its source expression.
2197    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2198      Semantic = OVE->getSourceExpr();
2199
2200    if (CFGBlock *B = Visit(Semantic))
2201      lastBlock = B;
2202  }
2203
2204  return lastBlock;
2205}
2206
2207CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2208  CFGBlock *LoopSuccessor = NULL;
2209
2210  // Save local scope position because in case of condition variable ScopePos
2211  // won't be restored when traversing AST.
2212  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2213
2214  // Create local scope for possible condition variable.
2215  // Store scope position for continue statement.
2216  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2217  if (VarDecl *VD = W->getConditionVariable()) {
2218    addLocalScopeForVarDecl(VD);
2219    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2220  }
2221
2222  // "while" is a control-flow statement.  Thus we stop processing the current
2223  // block.
2224  if (Block) {
2225    if (badCFG)
2226      return 0;
2227    LoopSuccessor = Block;
2228    Block = 0;
2229  } else {
2230    LoopSuccessor = Succ;
2231  }
2232
2233  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2234
2235  // Process the loop body.
2236  {
2237    assert(W->getBody());
2238
2239    // Save the current values for Block, Succ, continue and break targets.
2240    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2241    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2242                               save_break(BreakJumpTarget);
2243
2244    // Create an empty block to represent the transition block for looping back
2245    // to the head of the loop.
2246    Succ = TransitionBlock = createBlock(false);
2247    TransitionBlock->setLoopTarget(W);
2248    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2249
2250    // All breaks should go to the code following the loop.
2251    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2252
2253    // Loop body should end with destructor of Condition variable (if any).
2254    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2255
2256    // If body is not a compound statement create implicit scope
2257    // and add destructors.
2258    if (!isa<CompoundStmt>(W->getBody()))
2259      addLocalScopeAndDtors(W->getBody());
2260
2261    // Create the body.  The returned block is the entry to the loop body.
2262    BodyBlock = addStmt(W->getBody());
2263
2264    if (!BodyBlock)
2265      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2266    else if (Block && badCFG)
2267      return 0;
2268  }
2269
2270  // Because of short-circuit evaluation, the condition of the loop can span
2271  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2272  // evaluate the condition.
2273  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2274
2275  do {
2276    Expr *C = W->getCond();
2277
2278    // Specially handle logical operators, which have a slightly
2279    // more optimal CFG representation.
2280    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2281      if (Cond->isLogicalOp()) {
2282        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2283          VisitLogicalOperator(Cond, W, BodyBlock,
2284                               LoopSuccessor);
2285        break;
2286      }
2287
2288    // The default case when not handling logical operators.
2289    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2290    ExitConditionBlock->setTerminator(W);
2291
2292    // Now add the actual condition to the condition block.
2293    // Because the condition itself may contain control-flow, new blocks may
2294    // be created.  Thus we update "Succ" after adding the condition.
2295    Block = ExitConditionBlock;
2296    Block = EntryConditionBlock = addStmt(C);
2297
2298    // If this block contains a condition variable, add both the condition
2299    // variable and initializer to the CFG.
2300    if (VarDecl *VD = W->getConditionVariable()) {
2301      if (Expr *Init = VD->getInit()) {
2302        autoCreateBlock();
2303        appendStmt(Block, W->getConditionVariableDeclStmt());
2304        EntryConditionBlock = addStmt(Init);
2305        assert(Block == EntryConditionBlock);
2306      }
2307    }
2308
2309    if (Block && badCFG)
2310      return 0;
2311
2312    // See if this is a known constant.
2313    const TryResult& KnownVal = tryEvaluateBool(C);
2314
2315    // Add the loop body entry as a successor to the condition.
2316    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2317    // Link up the condition block with the code that follows the loop.  (the
2318    // false branch).
2319    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2320
2321  } while(false);
2322
2323  // Link up the loop-back block to the entry condition block.
2324  addSuccessor(TransitionBlock, EntryConditionBlock);
2325
2326  // There can be no more statements in the condition block since we loop back
2327  // to this block.  NULL out Block to force lazy creation of another block.
2328  Block = NULL;
2329
2330  // Return the condition block, which is the dominating block for the loop.
2331  Succ = EntryConditionBlock;
2332  return EntryConditionBlock;
2333}
2334
2335
2336CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2337  // FIXME: For now we pretend that @catch and the code it contains does not
2338  //  exit.
2339  return Block;
2340}
2341
2342CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2343  // FIXME: This isn't complete.  We basically treat @throw like a return
2344  //  statement.
2345
2346  // If we were in the middle of a block we stop processing that block.
2347  if (badCFG)
2348    return 0;
2349
2350  // Create the new block.
2351  Block = createBlock(false);
2352
2353  // The Exit block is the only successor.
2354  addSuccessor(Block, &cfg->getExit());
2355
2356  // Add the statement to the block.  This may create new blocks if S contains
2357  // control-flow (short-circuit operations).
2358  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2359}
2360
2361CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2362  // If we were in the middle of a block we stop processing that block.
2363  if (badCFG)
2364    return 0;
2365
2366  // Create the new block.
2367  Block = createBlock(false);
2368
2369  if (TryTerminatedBlock)
2370    // The current try statement is the only successor.
2371    addSuccessor(Block, TryTerminatedBlock);
2372  else
2373    // otherwise the Exit block is the only successor.
2374    addSuccessor(Block, &cfg->getExit());
2375
2376  // Add the statement to the block.  This may create new blocks if S contains
2377  // control-flow (short-circuit operations).
2378  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2379}
2380
2381CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2382  CFGBlock *LoopSuccessor = NULL;
2383
2384  // "do...while" is a control-flow statement.  Thus we stop processing the
2385  // current block.
2386  if (Block) {
2387    if (badCFG)
2388      return 0;
2389    LoopSuccessor = Block;
2390  } else
2391    LoopSuccessor = Succ;
2392
2393  // Because of short-circuit evaluation, the condition of the loop can span
2394  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2395  // evaluate the condition.
2396  CFGBlock *ExitConditionBlock = createBlock(false);
2397  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2398
2399  // Set the terminator for the "exit" condition block.
2400  ExitConditionBlock->setTerminator(D);
2401
2402  // Now add the actual condition to the condition block.  Because the condition
2403  // itself may contain control-flow, new blocks may be created.
2404  if (Stmt *C = D->getCond()) {
2405    Block = ExitConditionBlock;
2406    EntryConditionBlock = addStmt(C);
2407    if (Block) {
2408      if (badCFG)
2409        return 0;
2410    }
2411  }
2412
2413  // The condition block is the implicit successor for the loop body.
2414  Succ = EntryConditionBlock;
2415
2416  // See if this is a known constant.
2417  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2418
2419  // Process the loop body.
2420  CFGBlock *BodyBlock = NULL;
2421  {
2422    assert(D->getBody());
2423
2424    // Save the current values for Block, Succ, and continue and break targets
2425    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2426    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2427        save_break(BreakJumpTarget);
2428
2429    // All continues within this loop should go to the condition block
2430    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2431
2432    // All breaks should go to the code following the loop.
2433    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2434
2435    // NULL out Block to force lazy instantiation of blocks for the body.
2436    Block = NULL;
2437
2438    // If body is not a compound statement create implicit scope
2439    // and add destructors.
2440    if (!isa<CompoundStmt>(D->getBody()))
2441      addLocalScopeAndDtors(D->getBody());
2442
2443    // Create the body.  The returned block is the entry to the loop body.
2444    BodyBlock = addStmt(D->getBody());
2445
2446    if (!BodyBlock)
2447      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2448    else if (Block) {
2449      if (badCFG)
2450        return 0;
2451    }
2452
2453    if (!KnownVal.isFalse()) {
2454      // Add an intermediate block between the BodyBlock and the
2455      // ExitConditionBlock to represent the "loop back" transition.  Create an
2456      // empty block to represent the transition block for looping back to the
2457      // head of the loop.
2458      // FIXME: Can we do this more efficiently without adding another block?
2459      Block = NULL;
2460      Succ = BodyBlock;
2461      CFGBlock *LoopBackBlock = createBlock();
2462      LoopBackBlock->setLoopTarget(D);
2463
2464      // Add the loop body entry as a successor to the condition.
2465      addSuccessor(ExitConditionBlock, LoopBackBlock);
2466    }
2467    else
2468      addSuccessor(ExitConditionBlock, NULL);
2469  }
2470
2471  // Link up the condition block with the code that follows the loop.
2472  // (the false branch).
2473  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2474
2475  // There can be no more statements in the body block(s) since we loop back to
2476  // the body.  NULL out Block to force lazy creation of another block.
2477  Block = NULL;
2478
2479  // Return the loop body, which is the dominating block for the loop.
2480  Succ = BodyBlock;
2481  return BodyBlock;
2482}
2483
2484CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2485  // "continue" is a control-flow statement.  Thus we stop processing the
2486  // current block.
2487  if (badCFG)
2488    return 0;
2489
2490  // Now create a new block that ends with the continue statement.
2491  Block = createBlock(false);
2492  Block->setTerminator(C);
2493
2494  // If there is no target for the continue, then we are looking at an
2495  // incomplete AST.  This means the CFG cannot be constructed.
2496  if (ContinueJumpTarget.block) {
2497    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2498    addSuccessor(Block, ContinueJumpTarget.block);
2499  } else
2500    badCFG = true;
2501
2502  return Block;
2503}
2504
2505CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2506                                                    AddStmtChoice asc) {
2507
2508  if (asc.alwaysAdd(*this, E)) {
2509    autoCreateBlock();
2510    appendStmt(Block, E);
2511  }
2512
2513  // VLA types have expressions that must be evaluated.
2514  CFGBlock *lastBlock = Block;
2515
2516  if (E->isArgumentType()) {
2517    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2518         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2519      lastBlock = addStmt(VA->getSizeExpr());
2520  }
2521  return lastBlock;
2522}
2523
2524/// VisitStmtExpr - Utility method to handle (nested) statement
2525///  expressions (a GCC extension).
2526CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2527  if (asc.alwaysAdd(*this, SE)) {
2528    autoCreateBlock();
2529    appendStmt(Block, SE);
2530  }
2531  return VisitCompoundStmt(SE->getSubStmt());
2532}
2533
2534CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2535  // "switch" is a control-flow statement.  Thus we stop processing the current
2536  // block.
2537  CFGBlock *SwitchSuccessor = NULL;
2538
2539  // Save local scope position because in case of condition variable ScopePos
2540  // won't be restored when traversing AST.
2541  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2542
2543  // Create local scope for possible condition variable.
2544  // Store scope position. Add implicit destructor.
2545  if (VarDecl *VD = Terminator->getConditionVariable()) {
2546    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2547    addLocalScopeForVarDecl(VD);
2548    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2549  }
2550
2551  if (Block) {
2552    if (badCFG)
2553      return 0;
2554    SwitchSuccessor = Block;
2555  } else SwitchSuccessor = Succ;
2556
2557  // Save the current "switch" context.
2558  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2559                            save_default(DefaultCaseBlock);
2560  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2561
2562  // Set the "default" case to be the block after the switch statement.  If the
2563  // switch statement contains a "default:", this value will be overwritten with
2564  // the block for that code.
2565  DefaultCaseBlock = SwitchSuccessor;
2566
2567  // Create a new block that will contain the switch statement.
2568  SwitchTerminatedBlock = createBlock(false);
2569
2570  // Now process the switch body.  The code after the switch is the implicit
2571  // successor.
2572  Succ = SwitchSuccessor;
2573  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2574
2575  // When visiting the body, the case statements should automatically get linked
2576  // up to the switch.  We also don't keep a pointer to the body, since all
2577  // control-flow from the switch goes to case/default statements.
2578  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2579  Block = NULL;
2580
2581  // For pruning unreachable case statements, save the current state
2582  // for tracking the condition value.
2583  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2584                                                     false);
2585
2586  // Determine if the switch condition can be explicitly evaluated.
2587  assert(Terminator->getCond() && "switch condition must be non-NULL");
2588  Expr::EvalResult result;
2589  bool b = tryEvaluate(Terminator->getCond(), result);
2590  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2591                                                    b ? &result : 0);
2592
2593  // If body is not a compound statement create implicit scope
2594  // and add destructors.
2595  if (!isa<CompoundStmt>(Terminator->getBody()))
2596    addLocalScopeAndDtors(Terminator->getBody());
2597
2598  addStmt(Terminator->getBody());
2599  if (Block) {
2600    if (badCFG)
2601      return 0;
2602  }
2603
2604  // If we have no "default:" case, the default transition is to the code
2605  // following the switch body.  Moreover, take into account if all the
2606  // cases of a switch are covered (e.g., switching on an enum value).
2607  addSuccessor(SwitchTerminatedBlock,
2608               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2609               ? 0 : DefaultCaseBlock);
2610
2611  // Add the terminator and condition in the switch block.
2612  SwitchTerminatedBlock->setTerminator(Terminator);
2613  Block = SwitchTerminatedBlock;
2614  Block = addStmt(Terminator->getCond());
2615
2616  // Finally, if the SwitchStmt contains a condition variable, add both the
2617  // SwitchStmt and the condition variable initialization to the CFG.
2618  if (VarDecl *VD = Terminator->getConditionVariable()) {
2619    if (Expr *Init = VD->getInit()) {
2620      autoCreateBlock();
2621      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2622      addStmt(Init);
2623    }
2624  }
2625
2626  return Block;
2627}
2628
2629static bool shouldAddCase(bool &switchExclusivelyCovered,
2630                          const Expr::EvalResult *switchCond,
2631                          const CaseStmt *CS,
2632                          ASTContext &Ctx) {
2633  if (!switchCond)
2634    return true;
2635
2636  bool addCase = false;
2637
2638  if (!switchExclusivelyCovered) {
2639    if (switchCond->Val.isInt()) {
2640      // Evaluate the LHS of the case value.
2641      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2642      const llvm::APSInt &condInt = switchCond->Val.getInt();
2643
2644      if (condInt == lhsInt) {
2645        addCase = true;
2646        switchExclusivelyCovered = true;
2647      }
2648      else if (condInt < lhsInt) {
2649        if (const Expr *RHS = CS->getRHS()) {
2650          // Evaluate the RHS of the case value.
2651          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2652          if (V2 <= condInt) {
2653            addCase = true;
2654            switchExclusivelyCovered = true;
2655          }
2656        }
2657      }
2658    }
2659    else
2660      addCase = true;
2661  }
2662  return addCase;
2663}
2664
2665CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2666  // CaseStmts are essentially labels, so they are the first statement in a
2667  // block.
2668  CFGBlock *TopBlock = 0, *LastBlock = 0;
2669
2670  if (Stmt *Sub = CS->getSubStmt()) {
2671    // For deeply nested chains of CaseStmts, instead of doing a recursion
2672    // (which can blow out the stack), manually unroll and create blocks
2673    // along the way.
2674    while (isa<CaseStmt>(Sub)) {
2675      CFGBlock *currentBlock = createBlock(false);
2676      currentBlock->setLabel(CS);
2677
2678      if (TopBlock)
2679        addSuccessor(LastBlock, currentBlock);
2680      else
2681        TopBlock = currentBlock;
2682
2683      addSuccessor(SwitchTerminatedBlock,
2684                   shouldAddCase(switchExclusivelyCovered, switchCond,
2685                                 CS, *Context)
2686                   ? currentBlock : 0);
2687
2688      LastBlock = currentBlock;
2689      CS = cast<CaseStmt>(Sub);
2690      Sub = CS->getSubStmt();
2691    }
2692
2693    addStmt(Sub);
2694  }
2695
2696  CFGBlock *CaseBlock = Block;
2697  if (!CaseBlock)
2698    CaseBlock = createBlock();
2699
2700  // Cases statements partition blocks, so this is the top of the basic block we
2701  // were processing (the "case XXX:" is the label).
2702  CaseBlock->setLabel(CS);
2703
2704  if (badCFG)
2705    return 0;
2706
2707  // Add this block to the list of successors for the block with the switch
2708  // statement.
2709  assert(SwitchTerminatedBlock);
2710  addSuccessor(SwitchTerminatedBlock,
2711               shouldAddCase(switchExclusivelyCovered, switchCond,
2712                             CS, *Context)
2713               ? CaseBlock : 0);
2714
2715  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2716  Block = NULL;
2717
2718  if (TopBlock) {
2719    addSuccessor(LastBlock, CaseBlock);
2720    Succ = TopBlock;
2721  } else {
2722    // This block is now the implicit successor of other blocks.
2723    Succ = CaseBlock;
2724  }
2725
2726  return Succ;
2727}
2728
2729CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2730  if (Terminator->getSubStmt())
2731    addStmt(Terminator->getSubStmt());
2732
2733  DefaultCaseBlock = Block;
2734
2735  if (!DefaultCaseBlock)
2736    DefaultCaseBlock = createBlock();
2737
2738  // Default statements partition blocks, so this is the top of the basic block
2739  // we were processing (the "default:" is the label).
2740  DefaultCaseBlock->setLabel(Terminator);
2741
2742  if (badCFG)
2743    return 0;
2744
2745  // Unlike case statements, we don't add the default block to the successors
2746  // for the switch statement immediately.  This is done when we finish
2747  // processing the switch statement.  This allows for the default case
2748  // (including a fall-through to the code after the switch statement) to always
2749  // be the last successor of a switch-terminated block.
2750
2751  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2752  Block = NULL;
2753
2754  // This block is now the implicit successor of other blocks.
2755  Succ = DefaultCaseBlock;
2756
2757  return DefaultCaseBlock;
2758}
2759
2760CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2761  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2762  // current block.
2763  CFGBlock *TrySuccessor = NULL;
2764
2765  if (Block) {
2766    if (badCFG)
2767      return 0;
2768    TrySuccessor = Block;
2769  } else TrySuccessor = Succ;
2770
2771  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2772
2773  // Create a new block that will contain the try statement.
2774  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2775  // Add the terminator in the try block.
2776  NewTryTerminatedBlock->setTerminator(Terminator);
2777
2778  bool HasCatchAll = false;
2779  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2780    // The code after the try is the implicit successor.
2781    Succ = TrySuccessor;
2782    CXXCatchStmt *CS = Terminator->getHandler(h);
2783    if (CS->getExceptionDecl() == 0) {
2784      HasCatchAll = true;
2785    }
2786    Block = NULL;
2787    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2788    if (CatchBlock == 0)
2789      return 0;
2790    // Add this block to the list of successors for the block with the try
2791    // statement.
2792    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2793  }
2794  if (!HasCatchAll) {
2795    if (PrevTryTerminatedBlock)
2796      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2797    else
2798      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2799  }
2800
2801  // The code after the try is the implicit successor.
2802  Succ = TrySuccessor;
2803
2804  // Save the current "try" context.
2805  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2806  cfg->addTryDispatchBlock(TryTerminatedBlock);
2807
2808  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2809  Block = NULL;
2810  Block = addStmt(Terminator->getTryBlock());
2811  return Block;
2812}
2813
2814CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2815  // CXXCatchStmt are treated like labels, so they are the first statement in a
2816  // block.
2817
2818  // Save local scope position because in case of exception variable ScopePos
2819  // won't be restored when traversing AST.
2820  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2821
2822  // Create local scope for possible exception variable.
2823  // Store scope position. Add implicit destructor.
2824  if (VarDecl *VD = CS->getExceptionDecl()) {
2825    LocalScope::const_iterator BeginScopePos = ScopePos;
2826    addLocalScopeForVarDecl(VD);
2827    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2828  }
2829
2830  if (CS->getHandlerBlock())
2831    addStmt(CS->getHandlerBlock());
2832
2833  CFGBlock *CatchBlock = Block;
2834  if (!CatchBlock)
2835    CatchBlock = createBlock();
2836
2837  // CXXCatchStmt is more than just a label.  They have semantic meaning
2838  // as well, as they implicitly "initialize" the catch variable.  Add
2839  // it to the CFG as a CFGElement so that the control-flow of these
2840  // semantics gets captured.
2841  appendStmt(CatchBlock, CS);
2842
2843  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2844  // labels.
2845  CatchBlock->setLabel(CS);
2846
2847  // Bail out if the CFG is bad.
2848  if (badCFG)
2849    return 0;
2850
2851  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2852  Block = NULL;
2853
2854  return CatchBlock;
2855}
2856
2857CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2858  // C++0x for-range statements are specified as [stmt.ranged]:
2859  //
2860  // {
2861  //   auto && __range = range-init;
2862  //   for ( auto __begin = begin-expr,
2863  //         __end = end-expr;
2864  //         __begin != __end;
2865  //         ++__begin ) {
2866  //     for-range-declaration = *__begin;
2867  //     statement
2868  //   }
2869  // }
2870
2871  // Save local scope position before the addition of the implicit variables.
2872  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2873
2874  // Create local scopes and destructors for range, begin and end variables.
2875  if (Stmt *Range = S->getRangeStmt())
2876    addLocalScopeForStmt(Range);
2877  if (Stmt *BeginEnd = S->getBeginEndStmt())
2878    addLocalScopeForStmt(BeginEnd);
2879  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2880
2881  LocalScope::const_iterator ContinueScopePos = ScopePos;
2882
2883  // "for" is a control-flow statement.  Thus we stop processing the current
2884  // block.
2885  CFGBlock *LoopSuccessor = NULL;
2886  if (Block) {
2887    if (badCFG)
2888      return 0;
2889    LoopSuccessor = Block;
2890  } else
2891    LoopSuccessor = Succ;
2892
2893  // Save the current value for the break targets.
2894  // All breaks should go to the code following the loop.
2895  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2896  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2897
2898  // The block for the __begin != __end expression.
2899  CFGBlock *ConditionBlock = createBlock(false);
2900  ConditionBlock->setTerminator(S);
2901
2902  // Now add the actual condition to the condition block.
2903  if (Expr *C = S->getCond()) {
2904    Block = ConditionBlock;
2905    CFGBlock *BeginConditionBlock = addStmt(C);
2906    if (badCFG)
2907      return 0;
2908    assert(BeginConditionBlock == ConditionBlock &&
2909           "condition block in for-range was unexpectedly complex");
2910    (void)BeginConditionBlock;
2911  }
2912
2913  // The condition block is the implicit successor for the loop body as well as
2914  // any code above the loop.
2915  Succ = ConditionBlock;
2916
2917  // See if this is a known constant.
2918  TryResult KnownVal(true);
2919
2920  if (S->getCond())
2921    KnownVal = tryEvaluateBool(S->getCond());
2922
2923  // Now create the loop body.
2924  {
2925    assert(S->getBody());
2926
2927    // Save the current values for Block, Succ, and continue targets.
2928    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2929    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2930
2931    // Generate increment code in its own basic block.  This is the target of
2932    // continue statements.
2933    Block = 0;
2934    Succ = addStmt(S->getInc());
2935    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2936
2937    // The starting block for the loop increment is the block that should
2938    // represent the 'loop target' for looping back to the start of the loop.
2939    ContinueJumpTarget.block->setLoopTarget(S);
2940
2941    // Finish up the increment block and prepare to start the loop body.
2942    assert(Block);
2943    if (badCFG)
2944      return 0;
2945    Block = 0;
2946
2947
2948    // Add implicit scope and dtors for loop variable.
2949    addLocalScopeAndDtors(S->getLoopVarStmt());
2950
2951    // Populate a new block to contain the loop body and loop variable.
2952    Block = addStmt(S->getBody());
2953    if (badCFG)
2954      return 0;
2955    Block = addStmt(S->getLoopVarStmt());
2956    if (badCFG)
2957      return 0;
2958
2959    // This new body block is a successor to our condition block.
2960    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2961  }
2962
2963  // Link up the condition block with the code that follows the loop (the
2964  // false branch).
2965  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2966
2967  // Add the initialization statements.
2968  Block = createBlock();
2969  addStmt(S->getBeginEndStmt());
2970  return addStmt(S->getRangeStmt());
2971}
2972
2973CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2974    AddStmtChoice asc) {
2975  if (BuildOpts.AddImplicitDtors) {
2976    // If adding implicit destructors visit the full expression for adding
2977    // destructors of temporaries.
2978    VisitForTemporaryDtors(E->getSubExpr());
2979
2980    // Full expression has to be added as CFGStmt so it will be sequenced
2981    // before destructors of it's temporaries.
2982    asc = asc.withAlwaysAdd(true);
2983  }
2984  return Visit(E->getSubExpr(), asc);
2985}
2986
2987CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2988                                                AddStmtChoice asc) {
2989  if (asc.alwaysAdd(*this, E)) {
2990    autoCreateBlock();
2991    appendStmt(Block, E);
2992
2993    // We do not want to propagate the AlwaysAdd property.
2994    asc = asc.withAlwaysAdd(false);
2995  }
2996  return Visit(E->getSubExpr(), asc);
2997}
2998
2999CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3000                                            AddStmtChoice asc) {
3001  autoCreateBlock();
3002  appendStmt(Block, C);
3003
3004  return VisitChildren(C);
3005}
3006
3007CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3008                                                 AddStmtChoice asc) {
3009  if (asc.alwaysAdd(*this, E)) {
3010    autoCreateBlock();
3011    appendStmt(Block, E);
3012    // We do not want to propagate the AlwaysAdd property.
3013    asc = asc.withAlwaysAdd(false);
3014  }
3015  return Visit(E->getSubExpr(), asc);
3016}
3017
3018CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3019                                                  AddStmtChoice asc) {
3020  autoCreateBlock();
3021  appendStmt(Block, C);
3022  return VisitChildren(C);
3023}
3024
3025CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3026                                            AddStmtChoice asc) {
3027  if (asc.alwaysAdd(*this, E)) {
3028    autoCreateBlock();
3029    appendStmt(Block, E);
3030  }
3031  return Visit(E->getSubExpr(), AddStmtChoice());
3032}
3033
3034CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3035  // Lazily create the indirect-goto dispatch block if there isn't one already.
3036  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3037
3038  if (!IBlock) {
3039    IBlock = createBlock(false);
3040    cfg->setIndirectGotoBlock(IBlock);
3041  }
3042
3043  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3044  // current block and create a new one.
3045  if (badCFG)
3046    return 0;
3047
3048  Block = createBlock(false);
3049  Block->setTerminator(I);
3050  addSuccessor(Block, IBlock);
3051  return addStmt(I->getTarget());
3052}
3053
3054CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3055tryAgain:
3056  if (!E) {
3057    badCFG = true;
3058    return NULL;
3059  }
3060  switch (E->getStmtClass()) {
3061    default:
3062      return VisitChildrenForTemporaryDtors(E);
3063
3064    case Stmt::BinaryOperatorClass:
3065      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3066
3067    case Stmt::CXXBindTemporaryExprClass:
3068      return VisitCXXBindTemporaryExprForTemporaryDtors(
3069          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3070
3071    case Stmt::BinaryConditionalOperatorClass:
3072    case Stmt::ConditionalOperatorClass:
3073      return VisitConditionalOperatorForTemporaryDtors(
3074          cast<AbstractConditionalOperator>(E), BindToTemporary);
3075
3076    case Stmt::ImplicitCastExprClass:
3077      // For implicit cast we want BindToTemporary to be passed further.
3078      E = cast<CastExpr>(E)->getSubExpr();
3079      goto tryAgain;
3080
3081    case Stmt::ParenExprClass:
3082      E = cast<ParenExpr>(E)->getSubExpr();
3083      goto tryAgain;
3084
3085    case Stmt::MaterializeTemporaryExprClass:
3086      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3087      goto tryAgain;
3088  }
3089}
3090
3091CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3092  // When visiting children for destructors we want to visit them in reverse
3093  // order. Because there's no reverse iterator for children must to reverse
3094  // them in helper vector.
3095  typedef SmallVector<Stmt *, 4> ChildrenVect;
3096  ChildrenVect ChildrenRev;
3097  for (Stmt::child_range I = E->children(); I; ++I) {
3098    if (*I) ChildrenRev.push_back(*I);
3099  }
3100
3101  CFGBlock *B = Block;
3102  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
3103      L = ChildrenRev.rend(); I != L; ++I) {
3104    if (CFGBlock *R = VisitForTemporaryDtors(*I))
3105      B = R;
3106  }
3107  return B;
3108}
3109
3110CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3111  if (E->isLogicalOp()) {
3112    // Destructors for temporaries in LHS expression should be called after
3113    // those for RHS expression. Even if this will unnecessarily create a block,
3114    // this block will be used at least by the full expression.
3115    autoCreateBlock();
3116    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3117    if (badCFG)
3118      return NULL;
3119
3120    Succ = ConfluenceBlock;
3121    Block = NULL;
3122    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3123
3124    if (RHSBlock) {
3125      if (badCFG)
3126        return NULL;
3127
3128      // If RHS expression did produce destructors we need to connect created
3129      // blocks to CFG in same manner as for binary operator itself.
3130      CFGBlock *LHSBlock = createBlock(false);
3131      LHSBlock->setTerminator(CFGTerminator(E, true));
3132
3133      // For binary operator LHS block is before RHS in list of predecessors
3134      // of ConfluenceBlock.
3135      std::reverse(ConfluenceBlock->pred_begin(),
3136          ConfluenceBlock->pred_end());
3137
3138      // See if this is a known constant.
3139      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3140      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3141        KnownVal.negate();
3142
3143      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3144      // itself.
3145      if (E->getOpcode() == BO_LOr) {
3146        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3147        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3148      } else {
3149        assert (E->getOpcode() == BO_LAnd);
3150        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3151        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3152      }
3153
3154      Block = LHSBlock;
3155      return LHSBlock;
3156    }
3157
3158    Block = ConfluenceBlock;
3159    return ConfluenceBlock;
3160  }
3161
3162  if (E->isAssignmentOp()) {
3163    // For assignment operator (=) LHS expression is visited
3164    // before RHS expression. For destructors visit them in reverse order.
3165    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3166    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3167    return LHSBlock ? LHSBlock : RHSBlock;
3168  }
3169
3170  // For any other binary operator RHS expression is visited before
3171  // LHS expression (order of children). For destructors visit them in reverse
3172  // order.
3173  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3174  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3175  return RHSBlock ? RHSBlock : LHSBlock;
3176}
3177
3178CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3179    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3180  // First add destructors for temporaries in subexpression.
3181  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3182  if (!BindToTemporary) {
3183    // If lifetime of temporary is not prolonged (by assigning to constant
3184    // reference) add destructor for it.
3185
3186    // If the destructor is marked as a no-return destructor, we need to create
3187    // a new block for the destructor which does not have as a successor
3188    // anything built thus far. Control won't flow out of this block.
3189    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3190    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3191      Block = createNoReturnBlock();
3192    else
3193      autoCreateBlock();
3194
3195    appendTemporaryDtor(Block, E);
3196    B = Block;
3197  }
3198  return B;
3199}
3200
3201CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3202    AbstractConditionalOperator *E, bool BindToTemporary) {
3203  // First add destructors for condition expression.  Even if this will
3204  // unnecessarily create a block, this block will be used at least by the full
3205  // expression.
3206  autoCreateBlock();
3207  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3208  if (badCFG)
3209    return NULL;
3210  if (BinaryConditionalOperator *BCO
3211        = dyn_cast<BinaryConditionalOperator>(E)) {
3212    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3213    if (badCFG)
3214      return NULL;
3215  }
3216
3217  // Try to add block with destructors for LHS expression.
3218  CFGBlock *LHSBlock = NULL;
3219  Succ = ConfluenceBlock;
3220  Block = NULL;
3221  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3222  if (badCFG)
3223    return NULL;
3224
3225  // Try to add block with destructors for RHS expression;
3226  Succ = ConfluenceBlock;
3227  Block = NULL;
3228  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3229                                              BindToTemporary);
3230  if (badCFG)
3231    return NULL;
3232
3233  if (!RHSBlock && !LHSBlock) {
3234    // If neither LHS nor RHS expression had temporaries to destroy don't create
3235    // more blocks.
3236    Block = ConfluenceBlock;
3237    return Block;
3238  }
3239
3240  Block = createBlock(false);
3241  Block->setTerminator(CFGTerminator(E, true));
3242
3243  // See if this is a known constant.
3244  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3245
3246  if (LHSBlock) {
3247    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3248  } else if (KnownVal.isFalse()) {
3249    addSuccessor(Block, NULL);
3250  } else {
3251    addSuccessor(Block, ConfluenceBlock);
3252    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3253  }
3254
3255  if (!RHSBlock)
3256    RHSBlock = ConfluenceBlock;
3257  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3258
3259  return Block;
3260}
3261
3262} // end anonymous namespace
3263
3264/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3265///  no successors or predecessors.  If this is the first block created in the
3266///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3267CFGBlock *CFG::createBlock() {
3268  bool first_block = begin() == end();
3269
3270  // Create the block.
3271  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3272  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3273  Blocks.push_back(Mem, BlkBVC);
3274
3275  // If this is the first block, set it as the Entry and Exit.
3276  if (first_block)
3277    Entry = Exit = &back();
3278
3279  // Return the block.
3280  return &back();
3281}
3282
3283/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3284///  CFG is returned to the caller.
3285CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3286    const BuildOptions &BO) {
3287  CFGBuilder Builder(C, BO);
3288  return Builder.buildCFG(D, Statement);
3289}
3290
3291const CXXDestructorDecl *
3292CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3293  switch (getKind()) {
3294    case CFGElement::Invalid:
3295    case CFGElement::Statement:
3296    case CFGElement::Initializer:
3297      llvm_unreachable("getDestructorDecl should only be used with "
3298                       "ImplicitDtors");
3299    case CFGElement::AutomaticObjectDtor: {
3300      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3301      QualType ty = var->getType();
3302      ty = ty.getNonReferenceType();
3303      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3304        ty = arrayType->getElementType();
3305      }
3306      const RecordType *recordType = ty->getAs<RecordType>();
3307      const CXXRecordDecl *classDecl =
3308      cast<CXXRecordDecl>(recordType->getDecl());
3309      return classDecl->getDestructor();
3310    }
3311    case CFGElement::TemporaryDtor: {
3312      const CXXBindTemporaryExpr *bindExpr =
3313        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3314      const CXXTemporary *temp = bindExpr->getTemporary();
3315      return temp->getDestructor();
3316    }
3317    case CFGElement::BaseDtor:
3318    case CFGElement::MemberDtor:
3319
3320      // Not yet supported.
3321      return 0;
3322  }
3323  llvm_unreachable("getKind() returned bogus value");
3324}
3325
3326bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3327  if (const CXXDestructorDecl *decl = getDestructorDecl(astContext)) {
3328    QualType ty = decl->getType();
3329    return cast<FunctionType>(ty)->getNoReturnAttr();
3330  }
3331  return false;
3332}
3333
3334//===----------------------------------------------------------------------===//
3335// CFG: Queries for BlkExprs.
3336//===----------------------------------------------------------------------===//
3337
3338namespace {
3339  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3340}
3341
3342static void FindSubExprAssignments(const Stmt *S,
3343                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3344  if (!S)
3345    return;
3346
3347  for (Stmt::const_child_range I = S->children(); I; ++I) {
3348    const Stmt *child = *I;
3349    if (!child)
3350      continue;
3351
3352    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3353      if (B->isAssignmentOp()) Set.insert(B);
3354
3355    FindSubExprAssignments(child, Set);
3356  }
3357}
3358
3359static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3360  BlkExprMapTy* M = new BlkExprMapTy();
3361
3362  // Look for assignments that are used as subexpressions.  These are the only
3363  // assignments that we want to *possibly* register as a block-level
3364  // expression.  Basically, if an assignment occurs both in a subexpression and
3365  // at the block-level, it is a block-level expression.
3366  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3367
3368  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3369    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3370      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3371        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3372
3373  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3374
3375    // Iterate over the statements again on identify the Expr* and Stmt* at the
3376    // block-level that are block-level expressions.
3377
3378    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3379      const CFGStmt *CS = BI->getAs<CFGStmt>();
3380      if (!CS)
3381        continue;
3382      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3383        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3384
3385        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3386          // Assignment expressions that are not nested within another
3387          // expression are really "statements" whose value is never used by
3388          // another expression.
3389          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3390            continue;
3391        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3392          // Special handling for statement expressions.  The last statement in
3393          // the statement expression is also a block-level expr.
3394          const CompoundStmt *C = SE->getSubStmt();
3395          if (!C->body_empty()) {
3396            const Stmt *Last = C->body_back();
3397            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3398              Last = LastEx->IgnoreParens();
3399            unsigned x = M->size();
3400            (*M)[Last] = x;
3401          }
3402        }
3403
3404        unsigned x = M->size();
3405        (*M)[Exp] = x;
3406      }
3407    }
3408
3409    // Look at terminators.  The condition is a block-level expression.
3410
3411    Stmt *S = (*I)->getTerminatorCondition();
3412
3413    if (S && M->find(S) == M->end()) {
3414      unsigned x = M->size();
3415      (*M)[S] = x;
3416    }
3417  }
3418
3419  return M;
3420}
3421
3422CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3423  assert(S != NULL);
3424  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3425
3426  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3427  BlkExprMapTy::iterator I = M->find(S);
3428  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3429}
3430
3431unsigned CFG::getNumBlkExprs() {
3432  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3433    return M->size();
3434
3435  // We assume callers interested in the number of BlkExprs will want
3436  // the map constructed if it doesn't already exist.
3437  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3438  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3439}
3440
3441//===----------------------------------------------------------------------===//
3442// Filtered walking of the CFG.
3443//===----------------------------------------------------------------------===//
3444
3445bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3446        const CFGBlock *From, const CFGBlock *To) {
3447
3448  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3449    // If the 'To' has no label or is labeled but the label isn't a
3450    // CaseStmt then filter this edge.
3451    if (const SwitchStmt *S =
3452        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3453      if (S->isAllEnumCasesCovered()) {
3454        const Stmt *L = To->getLabel();
3455        if (!L || !isa<CaseStmt>(L))
3456          return true;
3457      }
3458    }
3459  }
3460
3461  return false;
3462}
3463
3464//===----------------------------------------------------------------------===//
3465// Cleanup: CFG dstor.
3466//===----------------------------------------------------------------------===//
3467
3468CFG::~CFG() {
3469  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3470}
3471
3472//===----------------------------------------------------------------------===//
3473// CFG pretty printing
3474//===----------------------------------------------------------------------===//
3475
3476namespace {
3477
3478class StmtPrinterHelper : public PrinterHelper  {
3479  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3480  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3481  StmtMapTy StmtMap;
3482  DeclMapTy DeclMap;
3483  signed currentBlock;
3484  unsigned currStmt;
3485  const LangOptions &LangOpts;
3486public:
3487
3488  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3489    : currentBlock(0), currStmt(0), LangOpts(LO)
3490  {
3491    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3492      unsigned j = 1;
3493      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3494           BI != BEnd; ++BI, ++j ) {
3495        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3496          const Stmt *stmt= SE->getStmt();
3497          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3498          StmtMap[stmt] = P;
3499
3500          switch (stmt->getStmtClass()) {
3501            case Stmt::DeclStmtClass:
3502                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3503                break;
3504            case Stmt::IfStmtClass: {
3505              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3506              if (var)
3507                DeclMap[var] = P;
3508              break;
3509            }
3510            case Stmt::ForStmtClass: {
3511              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3512              if (var)
3513                DeclMap[var] = P;
3514              break;
3515            }
3516            case Stmt::WhileStmtClass: {
3517              const VarDecl *var =
3518                cast<WhileStmt>(stmt)->getConditionVariable();
3519              if (var)
3520                DeclMap[var] = P;
3521              break;
3522            }
3523            case Stmt::SwitchStmtClass: {
3524              const VarDecl *var =
3525                cast<SwitchStmt>(stmt)->getConditionVariable();
3526              if (var)
3527                DeclMap[var] = P;
3528              break;
3529            }
3530            case Stmt::CXXCatchStmtClass: {
3531              const VarDecl *var =
3532                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3533              if (var)
3534                DeclMap[var] = P;
3535              break;
3536            }
3537            default:
3538              break;
3539          }
3540        }
3541      }
3542    }
3543  }
3544
3545
3546  virtual ~StmtPrinterHelper() {}
3547
3548  const LangOptions &getLangOpts() const { return LangOpts; }
3549  void setBlockID(signed i) { currentBlock = i; }
3550  void setStmtID(unsigned i) { currStmt = i; }
3551
3552  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3553    StmtMapTy::iterator I = StmtMap.find(S);
3554
3555    if (I == StmtMap.end())
3556      return false;
3557
3558    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3559                          && I->second.second == currStmt) {
3560      return false;
3561    }
3562
3563    OS << "[B" << I->second.first << "." << I->second.second << "]";
3564    return true;
3565  }
3566
3567  bool handleDecl(const Decl *D, raw_ostream &OS) {
3568    DeclMapTy::iterator I = DeclMap.find(D);
3569
3570    if (I == DeclMap.end())
3571      return false;
3572
3573    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3574                          && I->second.second == currStmt) {
3575      return false;
3576    }
3577
3578    OS << "[B" << I->second.first << "." << I->second.second << "]";
3579    return true;
3580  }
3581};
3582} // end anonymous namespace
3583
3584
3585namespace {
3586class CFGBlockTerminatorPrint
3587  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3588
3589  raw_ostream &OS;
3590  StmtPrinterHelper* Helper;
3591  PrintingPolicy Policy;
3592public:
3593  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3594                          const PrintingPolicy &Policy)
3595    : OS(os), Helper(helper), Policy(Policy) {}
3596
3597  void VisitIfStmt(IfStmt *I) {
3598    OS << "if ";
3599    I->getCond()->printPretty(OS,Helper,Policy);
3600  }
3601
3602  // Default case.
3603  void VisitStmt(Stmt *Terminator) {
3604    Terminator->printPretty(OS, Helper, Policy);
3605  }
3606
3607  void VisitForStmt(ForStmt *F) {
3608    OS << "for (" ;
3609    if (F->getInit())
3610      OS << "...";
3611    OS << "; ";
3612    if (Stmt *C = F->getCond())
3613      C->printPretty(OS, Helper, Policy);
3614    OS << "; ";
3615    if (F->getInc())
3616      OS << "...";
3617    OS << ")";
3618  }
3619
3620  void VisitWhileStmt(WhileStmt *W) {
3621    OS << "while " ;
3622    if (Stmt *C = W->getCond())
3623      C->printPretty(OS, Helper, Policy);
3624  }
3625
3626  void VisitDoStmt(DoStmt *D) {
3627    OS << "do ... while ";
3628    if (Stmt *C = D->getCond())
3629      C->printPretty(OS, Helper, Policy);
3630  }
3631
3632  void VisitSwitchStmt(SwitchStmt *Terminator) {
3633    OS << "switch ";
3634    Terminator->getCond()->printPretty(OS, Helper, Policy);
3635  }
3636
3637  void VisitCXXTryStmt(CXXTryStmt *CS) {
3638    OS << "try ...";
3639  }
3640
3641  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3642    C->getCond()->printPretty(OS, Helper, Policy);
3643    OS << " ? ... : ...";
3644  }
3645
3646  void VisitChooseExpr(ChooseExpr *C) {
3647    OS << "__builtin_choose_expr( ";
3648    C->getCond()->printPretty(OS, Helper, Policy);
3649    OS << " )";
3650  }
3651
3652  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3653    OS << "goto *";
3654    I->getTarget()->printPretty(OS, Helper, Policy);
3655  }
3656
3657  void VisitBinaryOperator(BinaryOperator* B) {
3658    if (!B->isLogicalOp()) {
3659      VisitExpr(B);
3660      return;
3661    }
3662
3663    B->getLHS()->printPretty(OS, Helper, Policy);
3664
3665    switch (B->getOpcode()) {
3666      case BO_LOr:
3667        OS << " || ...";
3668        return;
3669      case BO_LAnd:
3670        OS << " && ...";
3671        return;
3672      default:
3673        llvm_unreachable("Invalid logical operator.");
3674    }
3675  }
3676
3677  void VisitExpr(Expr *E) {
3678    E->printPretty(OS, Helper, Policy);
3679  }
3680};
3681} // end anonymous namespace
3682
3683static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3684                       const CFGElement &E) {
3685  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3686    const Stmt *S = CS->getStmt();
3687
3688    if (Helper) {
3689
3690      // special printing for statement-expressions.
3691      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3692        const CompoundStmt *Sub = SE->getSubStmt();
3693
3694        if (Sub->children()) {
3695          OS << "({ ... ; ";
3696          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3697          OS << " })\n";
3698          return;
3699        }
3700      }
3701      // special printing for comma expressions.
3702      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3703        if (B->getOpcode() == BO_Comma) {
3704          OS << "... , ";
3705          Helper->handledStmt(B->getRHS(),OS);
3706          OS << '\n';
3707          return;
3708        }
3709      }
3710    }
3711    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3712
3713    if (isa<CXXOperatorCallExpr>(S)) {
3714      OS << " (OperatorCall)";
3715    }
3716    else if (isa<CXXBindTemporaryExpr>(S)) {
3717      OS << " (BindTemporary)";
3718    }
3719    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3720      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3721    }
3722    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3723      OS << " (" << CE->getStmtClassName() << ", "
3724         << CE->getCastKindName()
3725         << ", " << CE->getType().getAsString()
3726         << ")";
3727    }
3728
3729    // Expressions need a newline.
3730    if (isa<Expr>(S))
3731      OS << '\n';
3732
3733  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3734    const CXXCtorInitializer *I = IE->getInitializer();
3735    if (I->isBaseInitializer())
3736      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3737    else OS << I->getAnyMember()->getName();
3738
3739    OS << "(";
3740    if (Expr *IE = I->getInit())
3741      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3742    OS << ")";
3743
3744    if (I->isBaseInitializer())
3745      OS << " (Base initializer)\n";
3746    else OS << " (Member initializer)\n";
3747
3748  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3749    const VarDecl *VD = DE->getVarDecl();
3750    Helper->handleDecl(VD, OS);
3751
3752    const Type* T = VD->getType().getTypePtr();
3753    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3754      T = RT->getPointeeType().getTypePtr();
3755    T = T->getBaseElementTypeUnsafe();
3756
3757    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3758    OS << " (Implicit destructor)\n";
3759
3760  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3761    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3762    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3763    OS << " (Base object destructor)\n";
3764
3765  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3766    const FieldDecl *FD = ME->getFieldDecl();
3767    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3768    OS << "this->" << FD->getName();
3769    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3770    OS << " (Member object destructor)\n";
3771
3772  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3773    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3774    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3775    OS << " (Temporary object destructor)\n";
3776  }
3777}
3778
3779static void print_block(raw_ostream &OS, const CFG* cfg,
3780                        const CFGBlock &B,
3781                        StmtPrinterHelper* Helper, bool print_edges,
3782                        bool ShowColors) {
3783
3784  if (Helper)
3785    Helper->setBlockID(B.getBlockID());
3786
3787  // Print the header.
3788  if (ShowColors)
3789    OS.changeColor(raw_ostream::YELLOW, true);
3790
3791  OS << "\n [B" << B.getBlockID();
3792
3793  if (&B == &cfg->getEntry())
3794    OS << " (ENTRY)]\n";
3795  else if (&B == &cfg->getExit())
3796    OS << " (EXIT)]\n";
3797  else if (&B == cfg->getIndirectGotoBlock())
3798    OS << " (INDIRECT GOTO DISPATCH)]\n";
3799  else
3800    OS << "]\n";
3801
3802  if (ShowColors)
3803    OS.resetColor();
3804
3805  // Print the label of this block.
3806  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3807
3808    if (print_edges)
3809      OS << "  ";
3810
3811    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3812      OS << L->getName();
3813    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3814      OS << "case ";
3815      C->getLHS()->printPretty(OS, Helper,
3816                               PrintingPolicy(Helper->getLangOpts()));
3817      if (C->getRHS()) {
3818        OS << " ... ";
3819        C->getRHS()->printPretty(OS, Helper,
3820                                 PrintingPolicy(Helper->getLangOpts()));
3821      }
3822    } else if (isa<DefaultStmt>(Label))
3823      OS << "default";
3824    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3825      OS << "catch (";
3826      if (CS->getExceptionDecl())
3827        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3828                                      0);
3829      else
3830        OS << "...";
3831      OS << ")";
3832
3833    } else
3834      llvm_unreachable("Invalid label statement in CFGBlock.");
3835
3836    OS << ":\n";
3837  }
3838
3839  // Iterate through the statements in the block and print them.
3840  unsigned j = 1;
3841
3842  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3843       I != E ; ++I, ++j ) {
3844
3845    // Print the statement # in the basic block and the statement itself.
3846    if (print_edges)
3847      OS << " ";
3848
3849    OS << llvm::format("%3d", j) << ": ";
3850
3851    if (Helper)
3852      Helper->setStmtID(j);
3853
3854    print_elem(OS, Helper, *I);
3855  }
3856
3857  // Print the terminator of this block.
3858  if (B.getTerminator()) {
3859    if (ShowColors)
3860      OS.changeColor(raw_ostream::GREEN);
3861
3862    OS << "   T: ";
3863
3864    if (Helper) Helper->setBlockID(-1);
3865
3866    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3867                                     PrintingPolicy(Helper->getLangOpts()));
3868    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3869    OS << '\n';
3870
3871    if (ShowColors)
3872      OS.resetColor();
3873  }
3874
3875  if (print_edges) {
3876    // Print the predecessors of this block.
3877    if (!B.pred_empty()) {
3878      const raw_ostream::Colors Color = raw_ostream::BLUE;
3879      if (ShowColors)
3880        OS.changeColor(Color);
3881      OS << "   Preds " ;
3882      if (ShowColors)
3883        OS.resetColor();
3884      OS << '(' << B.pred_size() << "):";
3885      unsigned i = 0;
3886
3887      if (ShowColors)
3888        OS.changeColor(Color);
3889
3890      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3891           I != E; ++I, ++i) {
3892
3893        if (i == 8 || (i-8) == 0)
3894          OS << "\n     ";
3895
3896        OS << " B" << (*I)->getBlockID();
3897      }
3898
3899      if (ShowColors)
3900        OS.resetColor();
3901
3902      OS << '\n';
3903    }
3904
3905    // Print the successors of this block.
3906    if (!B.succ_empty()) {
3907      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3908      if (ShowColors)
3909        OS.changeColor(Color);
3910      OS << "   Succs ";
3911      if (ShowColors)
3912        OS.resetColor();
3913      OS << '(' << B.succ_size() << "):";
3914      unsigned i = 0;
3915
3916      if (ShowColors)
3917        OS.changeColor(Color);
3918
3919      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3920           I != E; ++I, ++i) {
3921
3922        if (i == 8 || (i-8) % 10 == 0)
3923          OS << "\n    ";
3924
3925        if (*I)
3926          OS << " B" << (*I)->getBlockID();
3927        else
3928          OS  << " NULL";
3929      }
3930
3931      if (ShowColors)
3932        OS.resetColor();
3933      OS << '\n';
3934    }
3935  }
3936}
3937
3938
3939/// dump - A simple pretty printer of a CFG that outputs to stderr.
3940void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3941  print(llvm::errs(), LO, ShowColors);
3942}
3943
3944/// print - A simple pretty printer of a CFG that outputs to an ostream.
3945void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3946  StmtPrinterHelper Helper(this, LO);
3947
3948  // Print the entry block.
3949  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3950
3951  // Iterate through the CFGBlocks and print them one by one.
3952  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3953    // Skip the entry block, because we already printed it.
3954    if (&(**I) == &getEntry() || &(**I) == &getExit())
3955      continue;
3956
3957    print_block(OS, this, **I, &Helper, true, ShowColors);
3958  }
3959
3960  // Print the exit block.
3961  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3962  OS << '\n';
3963  OS.flush();
3964}
3965
3966/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3967void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3968                    bool ShowColors) const {
3969  print(llvm::errs(), cfg, LO, ShowColors);
3970}
3971
3972/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3973///   Generally this will only be called from CFG::print.
3974void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3975                     const LangOptions &LO, bool ShowColors) const {
3976  StmtPrinterHelper Helper(cfg, LO);
3977  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3978  OS << '\n';
3979}
3980
3981/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3982void CFGBlock::printTerminator(raw_ostream &OS,
3983                               const LangOptions &LO) const {
3984  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3985  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3986}
3987
3988Stmt *CFGBlock::getTerminatorCondition() {
3989  Stmt *Terminator = this->Terminator;
3990  if (!Terminator)
3991    return NULL;
3992
3993  Expr *E = NULL;
3994
3995  switch (Terminator->getStmtClass()) {
3996    default:
3997      break;
3998
3999    case Stmt::ForStmtClass:
4000      E = cast<ForStmt>(Terminator)->getCond();
4001      break;
4002
4003    case Stmt::WhileStmtClass:
4004      E = cast<WhileStmt>(Terminator)->getCond();
4005      break;
4006
4007    case Stmt::DoStmtClass:
4008      E = cast<DoStmt>(Terminator)->getCond();
4009      break;
4010
4011    case Stmt::IfStmtClass:
4012      E = cast<IfStmt>(Terminator)->getCond();
4013      break;
4014
4015    case Stmt::ChooseExprClass:
4016      E = cast<ChooseExpr>(Terminator)->getCond();
4017      break;
4018
4019    case Stmt::IndirectGotoStmtClass:
4020      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4021      break;
4022
4023    case Stmt::SwitchStmtClass:
4024      E = cast<SwitchStmt>(Terminator)->getCond();
4025      break;
4026
4027    case Stmt::BinaryConditionalOperatorClass:
4028      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4029      break;
4030
4031    case Stmt::ConditionalOperatorClass:
4032      E = cast<ConditionalOperator>(Terminator)->getCond();
4033      break;
4034
4035    case Stmt::BinaryOperatorClass: // '&&' and '||'
4036      E = cast<BinaryOperator>(Terminator)->getLHS();
4037      break;
4038
4039    case Stmt::ObjCForCollectionStmtClass:
4040      return Terminator;
4041  }
4042
4043  return E ? E->IgnoreParens() : NULL;
4044}
4045
4046//===----------------------------------------------------------------------===//
4047// CFG Graphviz Visualization
4048//===----------------------------------------------------------------------===//
4049
4050
4051#ifndef NDEBUG
4052static StmtPrinterHelper* GraphHelper;
4053#endif
4054
4055void CFG::viewCFG(const LangOptions &LO) const {
4056#ifndef NDEBUG
4057  StmtPrinterHelper H(this, LO);
4058  GraphHelper = &H;
4059  llvm::ViewGraph(this,"CFG");
4060  GraphHelper = NULL;
4061#endif
4062}
4063
4064namespace llvm {
4065template<>
4066struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4067
4068  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4069
4070  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4071
4072#ifndef NDEBUG
4073    std::string OutSStr;
4074    llvm::raw_string_ostream Out(OutSStr);
4075    print_block(Out,Graph, *Node, GraphHelper, false, false);
4076    std::string& OutStr = Out.str();
4077
4078    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4079
4080    // Process string output to make it nicer...
4081    for (unsigned i = 0; i != OutStr.length(); ++i)
4082      if (OutStr[i] == '\n') {                            // Left justify
4083        OutStr[i] = '\\';
4084        OutStr.insert(OutStr.begin()+i+1, 'l');
4085      }
4086
4087    return OutStr;
4088#else
4089    return "";
4090#endif
4091  }
4092};
4093} // end namespace llvm
4094