CFG.cpp revision 49bab4c0046e8300c79e79b7ca9a479696c7e87a
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/GraphWriter.h"
28#include "llvm/Support/SaveAndRestore.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    LLVM_EXPLICIT operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236class reverse_children {
237  llvm::SmallVector<Stmt *, 12> childrenBuf;
238  ArrayRef<Stmt*> children;
239public:
240  reverse_children(Stmt *S);
241
242  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
243  iterator begin() const { return children.rbegin(); }
244  iterator end() const { return children.rend(); }
245};
246
247
248reverse_children::reverse_children(Stmt *S) {
249  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
250    children = CE->getRawSubExprs();
251    return;
252  }
253  switch (S->getStmtClass()) {
254    // Note: Fill in this switch with more cases we want to optimize.
255    case Stmt::InitListExprClass: {
256      InitListExpr *IE = cast<InitListExpr>(S);
257      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
258                                    IE->getNumInits());
259      return;
260    }
261    default:
262      break;
263  }
264
265  // Default case for all other statements.
266  for (Stmt::child_range I = S->children(); I; ++I) {
267    childrenBuf.push_back(*I);
268  }
269
270  // This needs to be done *after* childrenBuf has been populated.
271  children = childrenBuf;
272}
273
274/// CFGBuilder - This class implements CFG construction from an AST.
275///   The builder is stateful: an instance of the builder should be used to only
276///   construct a single CFG.
277///
278///   Example usage:
279///
280///     CFGBuilder builder;
281///     CFG* cfg = builder.BuildAST(stmt1);
282///
283///  CFG construction is done via a recursive walk of an AST.  We actually parse
284///  the AST in reverse order so that the successor of a basic block is
285///  constructed prior to its predecessor.  This allows us to nicely capture
286///  implicit fall-throughs without extra basic blocks.
287///
288class CFGBuilder {
289  typedef BlockScopePosPair JumpTarget;
290  typedef BlockScopePosPair JumpSource;
291
292  ASTContext *Context;
293  OwningPtr<CFG> cfg;
294
295  CFGBlock *Block;
296  CFGBlock *Succ;
297  JumpTarget ContinueJumpTarget;
298  JumpTarget BreakJumpTarget;
299  CFGBlock *SwitchTerminatedBlock;
300  CFGBlock *DefaultCaseBlock;
301  CFGBlock *TryTerminatedBlock;
302
303  // Current position in local scope.
304  LocalScope::const_iterator ScopePos;
305
306  // LabelMap records the mapping from Label expressions to their jump targets.
307  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
308  LabelMapTy LabelMap;
309
310  // A list of blocks that end with a "goto" that must be backpatched to their
311  // resolved targets upon completion of CFG construction.
312  typedef std::vector<JumpSource> BackpatchBlocksTy;
313  BackpatchBlocksTy BackpatchBlocks;
314
315  // A list of labels whose address has been taken (for indirect gotos).
316  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
317  LabelSetTy AddressTakenLabels;
318
319  bool badCFG;
320  const CFG::BuildOptions &BuildOpts;
321
322  // State to track for building switch statements.
323  bool switchExclusivelyCovered;
324  Expr::EvalResult *switchCond;
325
326  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
327  const Stmt *lastLookup;
328
329  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
330  // during construction of branches for chained logical operators.
331  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
332  CachedBoolEvalsTy CachedBoolEvals;
333
334public:
335  explicit CFGBuilder(ASTContext *astContext,
336                      const CFG::BuildOptions &buildOpts)
337    : Context(astContext), cfg(new CFG()), // crew a new CFG
338      Block(NULL), Succ(NULL),
339      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
340      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
341      switchExclusivelyCovered(false), switchCond(0),
342      cachedEntry(0), lastLookup(0) {}
343
344  // buildCFG - Used by external clients to construct the CFG.
345  CFG* buildCFG(const Decl *D, Stmt *Statement);
346
347  bool alwaysAdd(const Stmt *stmt);
348
349private:
350  // Visitors to walk an AST and construct the CFG.
351  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
352  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
353  CFGBlock *VisitBreakStmt(BreakStmt *B);
354  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
355  CFGBlock *VisitCaseStmt(CaseStmt *C);
356  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
357  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
358  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
359                                     AddStmtChoice asc);
360  CFGBlock *VisitContinueStmt(ContinueStmt *C);
361  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
362                                      AddStmtChoice asc);
363  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
364  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
365  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
366  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
367                                       AddStmtChoice asc);
368  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
369                                        AddStmtChoice asc);
370  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
371  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
372  CFGBlock *VisitDeclStmt(DeclStmt *DS);
373  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
374  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
375  CFGBlock *VisitDoStmt(DoStmt *D);
376  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
377  CFGBlock *VisitForStmt(ForStmt *F);
378  CFGBlock *VisitGotoStmt(GotoStmt *G);
379  CFGBlock *VisitIfStmt(IfStmt *I);
380  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
381  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
382  CFGBlock *VisitLabelStmt(LabelStmt *L);
383  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
385  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
386                                                         Stmt *Term,
387                                                         CFGBlock *TrueBlock,
388                                                         CFGBlock *FalseBlock);
389  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
390  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
391  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
392  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
393  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
394  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
395  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
396  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
397  CFGBlock *VisitReturnStmt(ReturnStmt *R);
398  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
399  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
400  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
401                                          AddStmtChoice asc);
402  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
403  CFGBlock *VisitWhileStmt(WhileStmt *W);
404
405  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
406  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
407  CFGBlock *VisitChildren(Stmt *S);
408  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
409
410  // Visitors to walk an AST and generate destructors of temporaries in
411  // full expression.
412  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
413  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
414  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
415  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
416      bool BindToTemporary);
417  CFGBlock *
418  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
419                                            bool BindToTemporary);
420
421  // NYS == Not Yet Supported
422  CFGBlock *NYS() {
423    badCFG = true;
424    return Block;
425  }
426
427  void autoCreateBlock() { if (!Block) Block = createBlock(); }
428  CFGBlock *createBlock(bool add_successor = true);
429  CFGBlock *createNoReturnBlock();
430
431  CFGBlock *addStmt(Stmt *S) {
432    return Visit(S, AddStmtChoice::AlwaysAdd);
433  }
434  CFGBlock *addInitializer(CXXCtorInitializer *I);
435  void addAutomaticObjDtors(LocalScope::const_iterator B,
436                            LocalScope::const_iterator E, Stmt *S);
437  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
438
439  // Local scopes creation.
440  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
441
442  void addLocalScopeForStmt(Stmt *S);
443  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
444  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
445
446  void addLocalScopeAndDtors(Stmt *S);
447
448  // Interface to CFGBlock - adding CFGElements.
449  void appendStmt(CFGBlock *B, const Stmt *S) {
450    if (alwaysAdd(S) && cachedEntry)
451      cachedEntry->second = B;
452
453    // All block-level expressions should have already been IgnoreParens()ed.
454    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
455    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
456  }
457  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
458    B->appendInitializer(I, cfg->getBumpVectorContext());
459  }
460  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
461    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
462  }
463  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
464    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
465  }
466  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
467    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
468  }
469  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
470    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
471  }
472
473  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
474      LocalScope::const_iterator B, LocalScope::const_iterator E);
475
476  void addSuccessor(CFGBlock *B, CFGBlock *S) {
477    B->addSuccessor(S, cfg->getBumpVectorContext());
478  }
479
480  /// Try and evaluate an expression to an integer constant.
481  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
482    if (!BuildOpts.PruneTriviallyFalseEdges)
483      return false;
484    return !S->isTypeDependent() &&
485           !S->isValueDependent() &&
486           S->EvaluateAsRValue(outResult, *Context);
487  }
488
489  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
490  /// if we can evaluate to a known value, otherwise return -1.
491  TryResult tryEvaluateBool(Expr *S) {
492    if (!BuildOpts.PruneTriviallyFalseEdges ||
493        S->isTypeDependent() || S->isValueDependent())
494      return TryResult();
495
496    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
497      if (Bop->isLogicalOp()) {
498        // Check the cache first.
499        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
500        if (I != CachedBoolEvals.end())
501          return I->second; // already in map;
502
503        // Retrieve result at first, or the map might be updated.
504        TryResult Result = evaluateAsBooleanConditionNoCache(S);
505        CachedBoolEvals[S] = Result; // update or insert
506        return Result;
507      }
508      else {
509        switch (Bop->getOpcode()) {
510          default: break;
511          // For 'x & 0' and 'x * 0', we can determine that
512          // the value is always false.
513          case BO_Mul:
514          case BO_And: {
515            // If either operand is zero, we know the value
516            // must be false.
517            llvm::APSInt IntVal;
518            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
519              if (IntVal.getBoolValue() == false) {
520                return TryResult(false);
521              }
522            }
523            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
524              if (IntVal.getBoolValue() == false) {
525                return TryResult(false);
526              }
527            }
528          }
529          break;
530        }
531      }
532    }
533
534    return evaluateAsBooleanConditionNoCache(S);
535  }
536
537  /// \brief Evaluate as boolean \param E without using the cache.
538  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
539    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
540      if (Bop->isLogicalOp()) {
541        TryResult LHS = tryEvaluateBool(Bop->getLHS());
542        if (LHS.isKnown()) {
543          // We were able to evaluate the LHS, see if we can get away with not
544          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
545          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
546            return LHS.isTrue();
547
548          TryResult RHS = tryEvaluateBool(Bop->getRHS());
549          if (RHS.isKnown()) {
550            if (Bop->getOpcode() == BO_LOr)
551              return LHS.isTrue() || RHS.isTrue();
552            else
553              return LHS.isTrue() && RHS.isTrue();
554          }
555        } else {
556          TryResult RHS = tryEvaluateBool(Bop->getRHS());
557          if (RHS.isKnown()) {
558            // We can't evaluate the LHS; however, sometimes the result
559            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
560            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
561              return RHS.isTrue();
562          }
563        }
564
565        return TryResult();
566      }
567    }
568
569    bool Result;
570    if (E->EvaluateAsBooleanCondition(Result, *Context))
571      return Result;
572
573    return TryResult();
574  }
575
576};
577
578inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
579                                     const Stmt *stmt) const {
580  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
581}
582
583bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
584  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
585
586  if (!BuildOpts.forcedBlkExprs)
587    return shouldAdd;
588
589  if (lastLookup == stmt) {
590    if (cachedEntry) {
591      assert(cachedEntry->first == stmt);
592      return true;
593    }
594    return shouldAdd;
595  }
596
597  lastLookup = stmt;
598
599  // Perform the lookup!
600  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
601
602  if (!fb) {
603    // No need to update 'cachedEntry', since it will always be null.
604    assert(cachedEntry == 0);
605    return shouldAdd;
606  }
607
608  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
609  if (itr == fb->end()) {
610    cachedEntry = 0;
611    return shouldAdd;
612  }
613
614  cachedEntry = &*itr;
615  return true;
616}
617
618// FIXME: Add support for dependent-sized array types in C++?
619// Does it even make sense to build a CFG for an uninstantiated template?
620static const VariableArrayType *FindVA(const Type *t) {
621  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
622    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
623      if (vat->getSizeExpr())
624        return vat;
625
626    t = vt->getElementType().getTypePtr();
627  }
628
629  return 0;
630}
631
632/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
633///  arbitrary statement.  Examples include a single expression or a function
634///  body (compound statement).  The ownership of the returned CFG is
635///  transferred to the caller.  If CFG construction fails, this method returns
636///  NULL.
637CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
638  assert(cfg.get());
639  if (!Statement)
640    return NULL;
641
642  // Create an empty block that will serve as the exit block for the CFG.  Since
643  // this is the first block added to the CFG, it will be implicitly registered
644  // as the exit block.
645  Succ = createBlock();
646  assert(Succ == &cfg->getExit());
647  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
648
649  if (BuildOpts.AddImplicitDtors)
650    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
651      addImplicitDtorsForDestructor(DD);
652
653  // Visit the statements and create the CFG.
654  CFGBlock *B = addStmt(Statement);
655
656  if (badCFG)
657    return NULL;
658
659  // For C++ constructor add initializers to CFG.
660  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
661    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
662        E = CD->init_rend(); I != E; ++I) {
663      B = addInitializer(*I);
664      if (badCFG)
665        return NULL;
666    }
667  }
668
669  if (B)
670    Succ = B;
671
672  // Backpatch the gotos whose label -> block mappings we didn't know when we
673  // encountered them.
674  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
675                                   E = BackpatchBlocks.end(); I != E; ++I ) {
676
677    CFGBlock *B = I->block;
678    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
679    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
680
681    // If there is no target for the goto, then we are looking at an
682    // incomplete AST.  Handle this by not registering a successor.
683    if (LI == LabelMap.end()) continue;
684
685    JumpTarget JT = LI->second;
686    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
687                                           JT.scopePosition);
688    addSuccessor(B, JT.block);
689  }
690
691  // Add successors to the Indirect Goto Dispatch block (if we have one).
692  if (CFGBlock *B = cfg->getIndirectGotoBlock())
693    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
694                              E = AddressTakenLabels.end(); I != E; ++I ) {
695
696      // Lookup the target block.
697      LabelMapTy::iterator LI = LabelMap.find(*I);
698
699      // If there is no target block that contains label, then we are looking
700      // at an incomplete AST.  Handle this by not registering a successor.
701      if (LI == LabelMap.end()) continue;
702
703      addSuccessor(B, LI->second.block);
704    }
705
706  // Create an empty entry block that has no predecessors.
707  cfg->setEntry(createBlock());
708
709  return cfg.take();
710}
711
712/// createBlock - Used to lazily create blocks that are connected
713///  to the current (global) succcessor.
714CFGBlock *CFGBuilder::createBlock(bool add_successor) {
715  CFGBlock *B = cfg->createBlock();
716  if (add_successor && Succ)
717    addSuccessor(B, Succ);
718  return B;
719}
720
721/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
722/// CFG. It is *not* connected to the current (global) successor, and instead
723/// directly tied to the exit block in order to be reachable.
724CFGBlock *CFGBuilder::createNoReturnBlock() {
725  CFGBlock *B = createBlock(false);
726  B->setHasNoReturnElement();
727  addSuccessor(B, &cfg->getExit());
728  return B;
729}
730
731/// addInitializer - Add C++ base or member initializer element to CFG.
732CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
733  if (!BuildOpts.AddInitializers)
734    return Block;
735
736  bool IsReference = false;
737  bool HasTemporaries = false;
738
739  // Destructors of temporaries in initialization expression should be called
740  // after initialization finishes.
741  Expr *Init = I->getInit();
742  if (Init) {
743    if (FieldDecl *FD = I->getAnyMember())
744      IsReference = FD->getType()->isReferenceType();
745    HasTemporaries = isa<ExprWithCleanups>(Init);
746
747    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
748      // Generate destructors for temporaries in initialization expression.
749      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
750          IsReference);
751    }
752  }
753
754  autoCreateBlock();
755  appendInitializer(Block, I);
756
757  if (Init) {
758    if (HasTemporaries) {
759      // For expression with temporaries go directly to subexpression to omit
760      // generating destructors for the second time.
761      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
762    }
763    return Visit(Init);
764  }
765
766  return Block;
767}
768
769/// \brief Retrieve the type of the temporary object whose lifetime was
770/// extended by a local reference with the given initializer.
771static QualType getReferenceInitTemporaryType(ASTContext &Context,
772                                              const Expr *Init) {
773  while (true) {
774    // Skip parentheses.
775    Init = Init->IgnoreParens();
776
777    // Skip through cleanups.
778    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
779      Init = EWC->getSubExpr();
780      continue;
781    }
782
783    // Skip through the temporary-materialization expression.
784    if (const MaterializeTemporaryExpr *MTE
785          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
786      Init = MTE->GetTemporaryExpr();
787      continue;
788    }
789
790    // Skip derived-to-base and no-op casts.
791    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
792      if ((CE->getCastKind() == CK_DerivedToBase ||
793           CE->getCastKind() == CK_UncheckedDerivedToBase ||
794           CE->getCastKind() == CK_NoOp) &&
795          Init->getType()->isRecordType()) {
796        Init = CE->getSubExpr();
797        continue;
798      }
799    }
800
801    // Skip member accesses into rvalues.
802    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
803      if (!ME->isArrow() && ME->getBase()->isRValue()) {
804        Init = ME->getBase();
805        continue;
806      }
807    }
808
809    break;
810  }
811
812  return Init->getType();
813}
814
815/// addAutomaticObjDtors - Add to current block automatic objects destructors
816/// for objects in range of local scope positions. Use S as trigger statement
817/// for destructors.
818void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
819                                      LocalScope::const_iterator E, Stmt *S) {
820  if (!BuildOpts.AddImplicitDtors)
821    return;
822
823  if (B == E)
824    return;
825
826  // We need to append the destructors in reverse order, but any one of them
827  // may be a no-return destructor which changes the CFG. As a result, buffer
828  // this sequence up and replay them in reverse order when appending onto the
829  // CFGBlock(s).
830  SmallVector<VarDecl*, 10> Decls;
831  Decls.reserve(B.distance(E));
832  for (LocalScope::const_iterator I = B; I != E; ++I)
833    Decls.push_back(*I);
834
835  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
836                                                   E = Decls.rend();
837       I != E; ++I) {
838    // If this destructor is marked as a no-return destructor, we need to
839    // create a new block for the destructor which does not have as a successor
840    // anything built thus far: control won't flow out of this block.
841    QualType Ty = (*I)->getType();
842    if (Ty->isReferenceType()) {
843      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
844    }
845    Ty = Context->getBaseElementType(Ty);
846
847    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
848    if (Dtor->isNoReturn())
849      Block = createNoReturnBlock();
850    else
851      autoCreateBlock();
852
853    appendAutomaticObjDtor(Block, *I, S);
854  }
855}
856
857/// addImplicitDtorsForDestructor - Add implicit destructors generated for
858/// base and member objects in destructor.
859void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
860  assert (BuildOpts.AddImplicitDtors
861      && "Can be called only when dtors should be added");
862  const CXXRecordDecl *RD = DD->getParent();
863
864  // At the end destroy virtual base objects.
865  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
866      VE = RD->vbases_end(); VI != VE; ++VI) {
867    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
868    if (!CD->hasTrivialDestructor()) {
869      autoCreateBlock();
870      appendBaseDtor(Block, VI);
871    }
872  }
873
874  // Before virtual bases destroy direct base objects.
875  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
876      BE = RD->bases_end(); BI != BE; ++BI) {
877    if (!BI->isVirtual()) {
878      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
879      if (!CD->hasTrivialDestructor()) {
880        autoCreateBlock();
881        appendBaseDtor(Block, BI);
882      }
883    }
884  }
885
886  // First destroy member objects.
887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
888      FE = RD->field_end(); FI != FE; ++FI) {
889    // Check for constant size array. Set type to array element type.
890    QualType QT = FI->getType();
891    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
892      if (AT->getSize() == 0)
893        continue;
894      QT = AT->getElementType();
895    }
896
897    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
898      if (!CD->hasTrivialDestructor()) {
899        autoCreateBlock();
900        appendMemberDtor(Block, *FI);
901      }
902  }
903}
904
905/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
906/// way return valid LocalScope object.
907LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
908  if (!Scope) {
909    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
910    Scope = alloc.Allocate<LocalScope>();
911    BumpVectorContext ctx(alloc);
912    new (Scope) LocalScope(ctx, ScopePos);
913  }
914  return Scope;
915}
916
917/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
918/// that should create implicit scope (e.g. if/else substatements).
919void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
920  if (!BuildOpts.AddImplicitDtors)
921    return;
922
923  LocalScope *Scope = 0;
924
925  // For compound statement we will be creating explicit scope.
926  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
927    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
928        ; BI != BE; ++BI) {
929      Stmt *SI = (*BI)->stripLabelLikeStatements();
930      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
931        Scope = addLocalScopeForDeclStmt(DS, Scope);
932    }
933    return;
934  }
935
936  // For any other statement scope will be implicit and as such will be
937  // interesting only for DeclStmt.
938  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
939    addLocalScopeForDeclStmt(DS);
940}
941
942/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
943/// reuse Scope if not NULL.
944LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
945                                                 LocalScope* Scope) {
946  if (!BuildOpts.AddImplicitDtors)
947    return Scope;
948
949  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
950      ; DI != DE; ++DI) {
951    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
952      Scope = addLocalScopeForVarDecl(VD, Scope);
953  }
954  return Scope;
955}
956
957/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
958/// create add scope for automatic objects and temporary objects bound to
959/// const reference. Will reuse Scope if not NULL.
960LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
961                                                LocalScope* Scope) {
962  if (!BuildOpts.AddImplicitDtors)
963    return Scope;
964
965  // Check if variable is local.
966  switch (VD->getStorageClass()) {
967  case SC_None:
968  case SC_Auto:
969  case SC_Register:
970    break;
971  default: return Scope;
972  }
973
974  // Check for const references bound to temporary. Set type to pointee.
975  QualType QT = VD->getType();
976  if (QT.getTypePtr()->isReferenceType()) {
977    // Attempt to determine whether this declaration lifetime-extends a
978    // temporary.
979    //
980    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
981    // temporaries, and a single declaration can extend multiple temporaries.
982    // We should look at the storage duration on each nested
983    // MaterializeTemporaryExpr instead.
984    const Expr *Init = VD->getInit();
985    if (!Init)
986      return Scope;
987    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
988      Init = EWC->getSubExpr();
989    if (!isa<MaterializeTemporaryExpr>(Init))
990      return Scope;
991
992    // Lifetime-extending a temporary.
993    QT = getReferenceInitTemporaryType(*Context, Init);
994  }
995
996  // Check for constant size array. Set type to array element type.
997  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
998    if (AT->getSize() == 0)
999      return Scope;
1000    QT = AT->getElementType();
1001  }
1002
1003  // Check if type is a C++ class with non-trivial destructor.
1004  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1005    if (!CD->hasTrivialDestructor()) {
1006      // Add the variable to scope
1007      Scope = createOrReuseLocalScope(Scope);
1008      Scope->addVar(VD);
1009      ScopePos = Scope->begin();
1010    }
1011  return Scope;
1012}
1013
1014/// addLocalScopeAndDtors - For given statement add local scope for it and
1015/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1016void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1017  if (!BuildOpts.AddImplicitDtors)
1018    return;
1019
1020  LocalScope::const_iterator scopeBeginPos = ScopePos;
1021  addLocalScopeForStmt(S);
1022  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1023}
1024
1025/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1026/// variables with automatic storage duration to CFGBlock's elements vector.
1027/// Elements will be prepended to physical beginning of the vector which
1028/// happens to be logical end. Use blocks terminator as statement that specifies
1029/// destructors call site.
1030/// FIXME: This mechanism for adding automatic destructors doesn't handle
1031/// no-return destructors properly.
1032void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1033    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1034  BumpVectorContext &C = cfg->getBumpVectorContext();
1035  CFGBlock::iterator InsertPos
1036    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1037  for (LocalScope::const_iterator I = B; I != E; ++I)
1038    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1039                                            Blk->getTerminator());
1040}
1041
1042/// Visit - Walk the subtree of a statement and add extra
1043///   blocks for ternary operators, &&, and ||.  We also process "," and
1044///   DeclStmts (which may contain nested control-flow).
1045CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1046  if (!S) {
1047    badCFG = true;
1048    return 0;
1049  }
1050
1051  if (Expr *E = dyn_cast<Expr>(S))
1052    S = E->IgnoreParens();
1053
1054  switch (S->getStmtClass()) {
1055    default:
1056      return VisitStmt(S, asc);
1057
1058    case Stmt::AddrLabelExprClass:
1059      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1060
1061    case Stmt::BinaryConditionalOperatorClass:
1062      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1063
1064    case Stmt::BinaryOperatorClass:
1065      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1066
1067    case Stmt::BlockExprClass:
1068      return VisitNoRecurse(cast<Expr>(S), asc);
1069
1070    case Stmt::BreakStmtClass:
1071      return VisitBreakStmt(cast<BreakStmt>(S));
1072
1073    case Stmt::CallExprClass:
1074    case Stmt::CXXOperatorCallExprClass:
1075    case Stmt::CXXMemberCallExprClass:
1076    case Stmt::UserDefinedLiteralClass:
1077      return VisitCallExpr(cast<CallExpr>(S), asc);
1078
1079    case Stmt::CaseStmtClass:
1080      return VisitCaseStmt(cast<CaseStmt>(S));
1081
1082    case Stmt::ChooseExprClass:
1083      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1084
1085    case Stmt::CompoundStmtClass:
1086      return VisitCompoundStmt(cast<CompoundStmt>(S));
1087
1088    case Stmt::ConditionalOperatorClass:
1089      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1090
1091    case Stmt::ContinueStmtClass:
1092      return VisitContinueStmt(cast<ContinueStmt>(S));
1093
1094    case Stmt::CXXCatchStmtClass:
1095      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1096
1097    case Stmt::ExprWithCleanupsClass:
1098      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1099
1100    case Stmt::CXXDefaultArgExprClass:
1101    case Stmt::CXXDefaultInitExprClass:
1102      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1103      // called function's declaration, not by the caller. If we simply add
1104      // this expression to the CFG, we could end up with the same Expr
1105      // appearing multiple times.
1106      // PR13385 / <rdar://problem/12156507>
1107      //
1108      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1109      // expression to be used in the same function (through aggregate
1110      // initialization).
1111      return VisitStmt(S, asc);
1112
1113    case Stmt::CXXBindTemporaryExprClass:
1114      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1115
1116    case Stmt::CXXConstructExprClass:
1117      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1118
1119    case Stmt::CXXFunctionalCastExprClass:
1120      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1121
1122    case Stmt::CXXTemporaryObjectExprClass:
1123      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1124
1125    case Stmt::CXXThrowExprClass:
1126      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1127
1128    case Stmt::CXXTryStmtClass:
1129      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1130
1131    case Stmt::CXXForRangeStmtClass:
1132      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1133
1134    case Stmt::DeclStmtClass:
1135      return VisitDeclStmt(cast<DeclStmt>(S));
1136
1137    case Stmt::DefaultStmtClass:
1138      return VisitDefaultStmt(cast<DefaultStmt>(S));
1139
1140    case Stmt::DoStmtClass:
1141      return VisitDoStmt(cast<DoStmt>(S));
1142
1143    case Stmt::ForStmtClass:
1144      return VisitForStmt(cast<ForStmt>(S));
1145
1146    case Stmt::GotoStmtClass:
1147      return VisitGotoStmt(cast<GotoStmt>(S));
1148
1149    case Stmt::IfStmtClass:
1150      return VisitIfStmt(cast<IfStmt>(S));
1151
1152    case Stmt::ImplicitCastExprClass:
1153      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1154
1155    case Stmt::IndirectGotoStmtClass:
1156      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1157
1158    case Stmt::LabelStmtClass:
1159      return VisitLabelStmt(cast<LabelStmt>(S));
1160
1161    case Stmt::LambdaExprClass:
1162      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1163
1164    case Stmt::MemberExprClass:
1165      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1166
1167    case Stmt::NullStmtClass:
1168      return Block;
1169
1170    case Stmt::ObjCAtCatchStmtClass:
1171      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1172
1173    case Stmt::ObjCAutoreleasePoolStmtClass:
1174    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1175
1176    case Stmt::ObjCAtSynchronizedStmtClass:
1177      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1178
1179    case Stmt::ObjCAtThrowStmtClass:
1180      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1181
1182    case Stmt::ObjCAtTryStmtClass:
1183      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1184
1185    case Stmt::ObjCForCollectionStmtClass:
1186      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1187
1188    case Stmt::OpaqueValueExprClass:
1189      return Block;
1190
1191    case Stmt::PseudoObjectExprClass:
1192      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1193
1194    case Stmt::ReturnStmtClass:
1195      return VisitReturnStmt(cast<ReturnStmt>(S));
1196
1197    case Stmt::UnaryExprOrTypeTraitExprClass:
1198      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1199                                           asc);
1200
1201    case Stmt::StmtExprClass:
1202      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1203
1204    case Stmt::SwitchStmtClass:
1205      return VisitSwitchStmt(cast<SwitchStmt>(S));
1206
1207    case Stmt::UnaryOperatorClass:
1208      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1209
1210    case Stmt::WhileStmtClass:
1211      return VisitWhileStmt(cast<WhileStmt>(S));
1212  }
1213}
1214
1215CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1216  if (asc.alwaysAdd(*this, S)) {
1217    autoCreateBlock();
1218    appendStmt(Block, S);
1219  }
1220
1221  return VisitChildren(S);
1222}
1223
1224/// VisitChildren - Visit the children of a Stmt.
1225CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1226  CFGBlock *B = Block;
1227
1228  // Visit the children in their reverse order so that they appear in
1229  // left-to-right (natural) order in the CFG.
1230  reverse_children RChildren(S);
1231  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1232       I != E; ++I) {
1233    if (Stmt *Child = *I)
1234      if (CFGBlock *R = Visit(Child))
1235        B = R;
1236  }
1237  return B;
1238}
1239
1240CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1241                                         AddStmtChoice asc) {
1242  AddressTakenLabels.insert(A->getLabel());
1243
1244  if (asc.alwaysAdd(*this, A)) {
1245    autoCreateBlock();
1246    appendStmt(Block, A);
1247  }
1248
1249  return Block;
1250}
1251
1252CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1253           AddStmtChoice asc) {
1254  if (asc.alwaysAdd(*this, U)) {
1255    autoCreateBlock();
1256    appendStmt(Block, U);
1257  }
1258
1259  return Visit(U->getSubExpr(), AddStmtChoice());
1260}
1261
1262CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1263  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1264  appendStmt(ConfluenceBlock, B);
1265
1266  if (badCFG)
1267    return 0;
1268
1269  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1270}
1271
1272std::pair<CFGBlock*, CFGBlock*>
1273CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1274                                 Stmt *Term,
1275                                 CFGBlock *TrueBlock,
1276                                 CFGBlock *FalseBlock) {
1277
1278  // Introspect the RHS.  If it is a nested logical operation, we recursively
1279  // build the CFG using this function.  Otherwise, resort to default
1280  // CFG construction behavior.
1281  Expr *RHS = B->getRHS()->IgnoreParens();
1282  CFGBlock *RHSBlock, *ExitBlock;
1283
1284  do {
1285    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1286      if (B_RHS->isLogicalOp()) {
1287        llvm::tie(RHSBlock, ExitBlock) =
1288          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1289        break;
1290      }
1291
1292    // The RHS is not a nested logical operation.  Don't push the terminator
1293    // down further, but instead visit RHS and construct the respective
1294    // pieces of the CFG, and link up the RHSBlock with the terminator
1295    // we have been provided.
1296    ExitBlock = RHSBlock = createBlock(false);
1297
1298    if (!Term) {
1299      assert(TrueBlock == FalseBlock);
1300      addSuccessor(RHSBlock, TrueBlock);
1301    }
1302    else {
1303      RHSBlock->setTerminator(Term);
1304      TryResult KnownVal = tryEvaluateBool(RHS);
1305      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1306      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1307    }
1308
1309    Block = RHSBlock;
1310    RHSBlock = addStmt(RHS);
1311  }
1312  while (false);
1313
1314  if (badCFG)
1315    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1316
1317  // Generate the blocks for evaluating the LHS.
1318  Expr *LHS = B->getLHS()->IgnoreParens();
1319
1320  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1321    if (B_LHS->isLogicalOp()) {
1322      if (B->getOpcode() == BO_LOr)
1323        FalseBlock = RHSBlock;
1324      else
1325        TrueBlock = RHSBlock;
1326
1327      // For the LHS, treat 'B' as the terminator that we want to sink
1328      // into the nested branch.  The RHS always gets the top-most
1329      // terminator.
1330      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1331    }
1332
1333  // Create the block evaluating the LHS.
1334  // This contains the '&&' or '||' as the terminator.
1335  CFGBlock *LHSBlock = createBlock(false);
1336  LHSBlock->setTerminator(B);
1337
1338  Block = LHSBlock;
1339  CFGBlock *EntryLHSBlock = addStmt(LHS);
1340
1341  if (badCFG)
1342    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1343
1344  // See if this is a known constant.
1345  TryResult KnownVal = tryEvaluateBool(LHS);
1346
1347  // Now link the LHSBlock with RHSBlock.
1348  if (B->getOpcode() == BO_LOr) {
1349    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1350    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1351  } else {
1352    assert(B->getOpcode() == BO_LAnd);
1353    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1354    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1355  }
1356
1357  return std::make_pair(EntryLHSBlock, ExitBlock);
1358}
1359
1360
1361CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1362                                          AddStmtChoice asc) {
1363   // && or ||
1364  if (B->isLogicalOp())
1365    return VisitLogicalOperator(B);
1366
1367  if (B->getOpcode() == BO_Comma) { // ,
1368    autoCreateBlock();
1369    appendStmt(Block, B);
1370    addStmt(B->getRHS());
1371    return addStmt(B->getLHS());
1372  }
1373
1374  if (B->isAssignmentOp()) {
1375    if (asc.alwaysAdd(*this, B)) {
1376      autoCreateBlock();
1377      appendStmt(Block, B);
1378    }
1379    Visit(B->getLHS());
1380    return Visit(B->getRHS());
1381  }
1382
1383  if (asc.alwaysAdd(*this, B)) {
1384    autoCreateBlock();
1385    appendStmt(Block, B);
1386  }
1387
1388  CFGBlock *RBlock = Visit(B->getRHS());
1389  CFGBlock *LBlock = Visit(B->getLHS());
1390  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1391  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1392  // return RBlock.  Otherwise we'll incorrectly return NULL.
1393  return (LBlock ? LBlock : RBlock);
1394}
1395
1396CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1397  if (asc.alwaysAdd(*this, E)) {
1398    autoCreateBlock();
1399    appendStmt(Block, E);
1400  }
1401  return Block;
1402}
1403
1404CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1405  // "break" is a control-flow statement.  Thus we stop processing the current
1406  // block.
1407  if (badCFG)
1408    return 0;
1409
1410  // Now create a new block that ends with the break statement.
1411  Block = createBlock(false);
1412  Block->setTerminator(B);
1413
1414  // If there is no target for the break, then we are looking at an incomplete
1415  // AST.  This means that the CFG cannot be constructed.
1416  if (BreakJumpTarget.block) {
1417    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1418    addSuccessor(Block, BreakJumpTarget.block);
1419  } else
1420    badCFG = true;
1421
1422
1423  return Block;
1424}
1425
1426static bool CanThrow(Expr *E, ASTContext &Ctx) {
1427  QualType Ty = E->getType();
1428  if (Ty->isFunctionPointerType())
1429    Ty = Ty->getAs<PointerType>()->getPointeeType();
1430  else if (Ty->isBlockPointerType())
1431    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1432
1433  const FunctionType *FT = Ty->getAs<FunctionType>();
1434  if (FT) {
1435    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1436      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1437          Proto->isNothrow(Ctx))
1438        return false;
1439  }
1440  return true;
1441}
1442
1443CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1444  // Compute the callee type.
1445  QualType calleeType = C->getCallee()->getType();
1446  if (calleeType == Context->BoundMemberTy) {
1447    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1448
1449    // We should only get a null bound type if processing a dependent
1450    // CFG.  Recover by assuming nothing.
1451    if (!boundType.isNull()) calleeType = boundType;
1452  }
1453
1454  // If this is a call to a no-return function, this stops the block here.
1455  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1456
1457  bool AddEHEdge = false;
1458
1459  // Languages without exceptions are assumed to not throw.
1460  if (Context->getLangOpts().Exceptions) {
1461    if (BuildOpts.AddEHEdges)
1462      AddEHEdge = true;
1463  }
1464
1465  if (FunctionDecl *FD = C->getDirectCallee()) {
1466    if (FD->isNoReturn())
1467      NoReturn = true;
1468    if (FD->hasAttr<NoThrowAttr>())
1469      AddEHEdge = false;
1470  }
1471
1472  if (!CanThrow(C->getCallee(), *Context))
1473    AddEHEdge = false;
1474
1475  if (!NoReturn && !AddEHEdge)
1476    return VisitStmt(C, asc.withAlwaysAdd(true));
1477
1478  if (Block) {
1479    Succ = Block;
1480    if (badCFG)
1481      return 0;
1482  }
1483
1484  if (NoReturn)
1485    Block = createNoReturnBlock();
1486  else
1487    Block = createBlock();
1488
1489  appendStmt(Block, C);
1490
1491  if (AddEHEdge) {
1492    // Add exceptional edges.
1493    if (TryTerminatedBlock)
1494      addSuccessor(Block, TryTerminatedBlock);
1495    else
1496      addSuccessor(Block, &cfg->getExit());
1497  }
1498
1499  return VisitChildren(C);
1500}
1501
1502CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1503                                      AddStmtChoice asc) {
1504  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1505  appendStmt(ConfluenceBlock, C);
1506  if (badCFG)
1507    return 0;
1508
1509  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1510  Succ = ConfluenceBlock;
1511  Block = NULL;
1512  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1513  if (badCFG)
1514    return 0;
1515
1516  Succ = ConfluenceBlock;
1517  Block = NULL;
1518  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1519  if (badCFG)
1520    return 0;
1521
1522  Block = createBlock(false);
1523  // See if this is a known constant.
1524  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1525  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1526  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1527  Block->setTerminator(C);
1528  return addStmt(C->getCond());
1529}
1530
1531
1532CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1533  addLocalScopeAndDtors(C);
1534  CFGBlock *LastBlock = Block;
1535
1536  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1537       I != E; ++I ) {
1538    // If we hit a segment of code just containing ';' (NullStmts), we can
1539    // get a null block back.  In such cases, just use the LastBlock
1540    if (CFGBlock *newBlock = addStmt(*I))
1541      LastBlock = newBlock;
1542
1543    if (badCFG)
1544      return NULL;
1545  }
1546
1547  return LastBlock;
1548}
1549
1550CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1551                                               AddStmtChoice asc) {
1552  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1553  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1554
1555  // Create the confluence block that will "merge" the results of the ternary
1556  // expression.
1557  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1558  appendStmt(ConfluenceBlock, C);
1559  if (badCFG)
1560    return 0;
1561
1562  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1563
1564  // Create a block for the LHS expression if there is an LHS expression.  A
1565  // GCC extension allows LHS to be NULL, causing the condition to be the
1566  // value that is returned instead.
1567  //  e.g: x ?: y is shorthand for: x ? x : y;
1568  Succ = ConfluenceBlock;
1569  Block = NULL;
1570  CFGBlock *LHSBlock = 0;
1571  const Expr *trueExpr = C->getTrueExpr();
1572  if (trueExpr != opaqueValue) {
1573    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1574    if (badCFG)
1575      return 0;
1576    Block = NULL;
1577  }
1578  else
1579    LHSBlock = ConfluenceBlock;
1580
1581  // Create the block for the RHS expression.
1582  Succ = ConfluenceBlock;
1583  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1584  if (badCFG)
1585    return 0;
1586
1587  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1588  if (BinaryOperator *Cond =
1589        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1590    if (Cond->isLogicalOp())
1591      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1592
1593  // Create the block that will contain the condition.
1594  Block = createBlock(false);
1595
1596  // See if this is a known constant.
1597  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1598  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1599  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1600  Block->setTerminator(C);
1601  Expr *condExpr = C->getCond();
1602
1603  if (opaqueValue) {
1604    // Run the condition expression if it's not trivially expressed in
1605    // terms of the opaque value (or if there is no opaque value).
1606    if (condExpr != opaqueValue)
1607      addStmt(condExpr);
1608
1609    // Before that, run the common subexpression if there was one.
1610    // At least one of this or the above will be run.
1611    return addStmt(BCO->getCommon());
1612  }
1613
1614  return addStmt(condExpr);
1615}
1616
1617CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1618  // Check if the Decl is for an __label__.  If so, elide it from the
1619  // CFG entirely.
1620  if (isa<LabelDecl>(*DS->decl_begin()))
1621    return Block;
1622
1623  // This case also handles static_asserts.
1624  if (DS->isSingleDecl())
1625    return VisitDeclSubExpr(DS);
1626
1627  CFGBlock *B = 0;
1628
1629  // Build an individual DeclStmt for each decl.
1630  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1631                                       E = DS->decl_rend();
1632       I != E; ++I) {
1633    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1634    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1635               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1636
1637    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1638    // automatically freed with the CFG.
1639    DeclGroupRef DG(*I);
1640    Decl *D = *I;
1641    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1642    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1643    cfg->addSyntheticDeclStmt(DSNew, DS);
1644
1645    // Append the fake DeclStmt to block.
1646    B = VisitDeclSubExpr(DSNew);
1647  }
1648
1649  return B;
1650}
1651
1652/// VisitDeclSubExpr - Utility method to add block-level expressions for
1653/// DeclStmts and initializers in them.
1654CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1655  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1656  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1657
1658  if (!VD) {
1659    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1660    // runtime semantics.
1661    return Block;
1662  }
1663
1664  bool IsReference = false;
1665  bool HasTemporaries = false;
1666
1667  // Guard static initializers under a branch.
1668  CFGBlock *blockAfterStaticInit = 0;
1669
1670  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1671    // For static variables, we need to create a branch to track
1672    // whether or not they are initialized.
1673    if (Block) {
1674      Succ = Block;
1675      Block = 0;
1676      if (badCFG)
1677        return 0;
1678    }
1679    blockAfterStaticInit = Succ;
1680  }
1681
1682  // Destructors of temporaries in initialization expression should be called
1683  // after initialization finishes.
1684  Expr *Init = VD->getInit();
1685  if (Init) {
1686    IsReference = VD->getType()->isReferenceType();
1687    HasTemporaries = isa<ExprWithCleanups>(Init);
1688
1689    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1690      // Generate destructors for temporaries in initialization expression.
1691      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1692          IsReference);
1693    }
1694  }
1695
1696  autoCreateBlock();
1697  appendStmt(Block, DS);
1698
1699  // Keep track of the last non-null block, as 'Block' can be nulled out
1700  // if the initializer expression is something like a 'while' in a
1701  // statement-expression.
1702  CFGBlock *LastBlock = Block;
1703
1704  if (Init) {
1705    if (HasTemporaries) {
1706      // For expression with temporaries go directly to subexpression to omit
1707      // generating destructors for the second time.
1708      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1709      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1710        LastBlock = newBlock;
1711    }
1712    else {
1713      if (CFGBlock *newBlock = Visit(Init))
1714        LastBlock = newBlock;
1715    }
1716  }
1717
1718  // If the type of VD is a VLA, then we must process its size expressions.
1719  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1720       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1721    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1722      LastBlock = newBlock;
1723  }
1724
1725  // Remove variable from local scope.
1726  if (ScopePos && VD == *ScopePos)
1727    ++ScopePos;
1728
1729  CFGBlock *B = LastBlock;
1730  if (blockAfterStaticInit) {
1731    Succ = B;
1732    Block = createBlock(false);
1733    Block->setTerminator(DS);
1734    addSuccessor(Block, blockAfterStaticInit);
1735    addSuccessor(Block, B);
1736    B = Block;
1737  }
1738
1739  return B;
1740}
1741
1742CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1743  // We may see an if statement in the middle of a basic block, or it may be the
1744  // first statement we are processing.  In either case, we create a new basic
1745  // block.  First, we create the blocks for the then...else statements, and
1746  // then we create the block containing the if statement.  If we were in the
1747  // middle of a block, we stop processing that block.  That block is then the
1748  // implicit successor for the "then" and "else" clauses.
1749
1750  // Save local scope position because in case of condition variable ScopePos
1751  // won't be restored when traversing AST.
1752  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1753
1754  // Create local scope for possible condition variable.
1755  // Store scope position. Add implicit destructor.
1756  if (VarDecl *VD = I->getConditionVariable()) {
1757    LocalScope::const_iterator BeginScopePos = ScopePos;
1758    addLocalScopeForVarDecl(VD);
1759    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1760  }
1761
1762  // The block we were processing is now finished.  Make it the successor
1763  // block.
1764  if (Block) {
1765    Succ = Block;
1766    if (badCFG)
1767      return 0;
1768  }
1769
1770  // Process the false branch.
1771  CFGBlock *ElseBlock = Succ;
1772
1773  if (Stmt *Else = I->getElse()) {
1774    SaveAndRestore<CFGBlock*> sv(Succ);
1775
1776    // NULL out Block so that the recursive call to Visit will
1777    // create a new basic block.
1778    Block = NULL;
1779
1780    // If branch is not a compound statement create implicit scope
1781    // and add destructors.
1782    if (!isa<CompoundStmt>(Else))
1783      addLocalScopeAndDtors(Else);
1784
1785    ElseBlock = addStmt(Else);
1786
1787    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1788      ElseBlock = sv.get();
1789    else if (Block) {
1790      if (badCFG)
1791        return 0;
1792    }
1793  }
1794
1795  // Process the true branch.
1796  CFGBlock *ThenBlock;
1797  {
1798    Stmt *Then = I->getThen();
1799    assert(Then);
1800    SaveAndRestore<CFGBlock*> sv(Succ);
1801    Block = NULL;
1802
1803    // If branch is not a compound statement create implicit scope
1804    // and add destructors.
1805    if (!isa<CompoundStmt>(Then))
1806      addLocalScopeAndDtors(Then);
1807
1808    ThenBlock = addStmt(Then);
1809
1810    if (!ThenBlock) {
1811      // We can reach here if the "then" body has all NullStmts.
1812      // Create an empty block so we can distinguish between true and false
1813      // branches in path-sensitive analyses.
1814      ThenBlock = createBlock(false);
1815      addSuccessor(ThenBlock, sv.get());
1816    } else if (Block) {
1817      if (badCFG)
1818        return 0;
1819    }
1820  }
1821
1822  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1823  // having these handle the actual control-flow jump.  Note that
1824  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1825  // we resort to the old control-flow behavior.  This special handling
1826  // removes infeasible paths from the control-flow graph by having the
1827  // control-flow transfer of '&&' or '||' go directly into the then/else
1828  // blocks directly.
1829  if (!I->getConditionVariable())
1830    if (BinaryOperator *Cond =
1831            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1832      if (Cond->isLogicalOp())
1833        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1834
1835  // Now create a new block containing the if statement.
1836  Block = createBlock(false);
1837
1838  // Set the terminator of the new block to the If statement.
1839  Block->setTerminator(I);
1840
1841  // See if this is a known constant.
1842  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1843
1844  // Now add the successors.
1845  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1846  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1847
1848  // Add the condition as the last statement in the new block.  This may create
1849  // new blocks as the condition may contain control-flow.  Any newly created
1850  // blocks will be pointed to be "Block".
1851  CFGBlock *LastBlock = addStmt(I->getCond());
1852
1853  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1854  // and the condition variable initialization to the CFG.
1855  if (VarDecl *VD = I->getConditionVariable()) {
1856    if (Expr *Init = VD->getInit()) {
1857      autoCreateBlock();
1858      appendStmt(Block, I->getConditionVariableDeclStmt());
1859      LastBlock = addStmt(Init);
1860    }
1861  }
1862
1863  return LastBlock;
1864}
1865
1866
1867CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1868  // If we were in the middle of a block we stop processing that block.
1869  //
1870  // NOTE: If a "return" appears in the middle of a block, this means that the
1871  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1872  //       for that code; a simple "mark-and-sweep" from the entry block will be
1873  //       able to report such dead blocks.
1874
1875  // Create the new block.
1876  Block = createBlock(false);
1877
1878  // The Exit block is the only successor.
1879  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1880  addSuccessor(Block, &cfg->getExit());
1881
1882  // Add the return statement to the block.  This may create new blocks if R
1883  // contains control-flow (short-circuit operations).
1884  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1885}
1886
1887CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1888  // Get the block of the labeled statement.  Add it to our map.
1889  addStmt(L->getSubStmt());
1890  CFGBlock *LabelBlock = Block;
1891
1892  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1893    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1894
1895  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1896         "label already in map");
1897  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1898
1899  // Labels partition blocks, so this is the end of the basic block we were
1900  // processing (L is the block's label).  Because this is label (and we have
1901  // already processed the substatement) there is no extra control-flow to worry
1902  // about.
1903  LabelBlock->setLabel(L);
1904  if (badCFG)
1905    return 0;
1906
1907  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1908  Block = NULL;
1909
1910  // This block is now the implicit successor of other blocks.
1911  Succ = LabelBlock;
1912
1913  return LabelBlock;
1914}
1915
1916CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1917  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1918  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1919       et = E->capture_init_end(); it != et; ++it) {
1920    if (Expr *Init = *it) {
1921      CFGBlock *Tmp = Visit(Init);
1922      if (Tmp != 0)
1923        LastBlock = Tmp;
1924    }
1925  }
1926  return LastBlock;
1927}
1928
1929CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1930  // Goto is a control-flow statement.  Thus we stop processing the current
1931  // block and create a new one.
1932
1933  Block = createBlock(false);
1934  Block->setTerminator(G);
1935
1936  // If we already know the mapping to the label block add the successor now.
1937  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1938
1939  if (I == LabelMap.end())
1940    // We will need to backpatch this block later.
1941    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1942  else {
1943    JumpTarget JT = I->second;
1944    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1945    addSuccessor(Block, JT.block);
1946  }
1947
1948  return Block;
1949}
1950
1951CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1952  CFGBlock *LoopSuccessor = NULL;
1953
1954  // Save local scope position because in case of condition variable ScopePos
1955  // won't be restored when traversing AST.
1956  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1957
1958  // Create local scope for init statement and possible condition variable.
1959  // Add destructor for init statement and condition variable.
1960  // Store scope position for continue statement.
1961  if (Stmt *Init = F->getInit())
1962    addLocalScopeForStmt(Init);
1963  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1964
1965  if (VarDecl *VD = F->getConditionVariable())
1966    addLocalScopeForVarDecl(VD);
1967  LocalScope::const_iterator ContinueScopePos = ScopePos;
1968
1969  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1970
1971  // "for" is a control-flow statement.  Thus we stop processing the current
1972  // block.
1973  if (Block) {
1974    if (badCFG)
1975      return 0;
1976    LoopSuccessor = Block;
1977  } else
1978    LoopSuccessor = Succ;
1979
1980  // Save the current value for the break targets.
1981  // All breaks should go to the code following the loop.
1982  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1983  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1984
1985  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1986
1987  // Now create the loop body.
1988  {
1989    assert(F->getBody());
1990
1991    // Save the current values for Block, Succ, continue and break targets.
1992    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1993    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1994
1995    // Create an empty block to represent the transition block for looping back
1996    // to the head of the loop.  If we have increment code, it will
1997    // go in this block as well.
1998    Block = Succ = TransitionBlock = createBlock(false);
1999    TransitionBlock->setLoopTarget(F);
2000
2001    if (Stmt *I = F->getInc()) {
2002      // Generate increment code in its own basic block.  This is the target of
2003      // continue statements.
2004      Succ = addStmt(I);
2005    }
2006
2007    // Finish up the increment (or empty) block if it hasn't been already.
2008    if (Block) {
2009      assert(Block == Succ);
2010      if (badCFG)
2011        return 0;
2012      Block = 0;
2013    }
2014
2015   // The starting block for the loop increment is the block that should
2016   // represent the 'loop target' for looping back to the start of the loop.
2017   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2018   ContinueJumpTarget.block->setLoopTarget(F);
2019
2020    // Loop body should end with destructor of Condition variable (if any).
2021    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2022
2023    // If body is not a compound statement create implicit scope
2024    // and add destructors.
2025    if (!isa<CompoundStmt>(F->getBody()))
2026      addLocalScopeAndDtors(F->getBody());
2027
2028    // Now populate the body block, and in the process create new blocks as we
2029    // walk the body of the loop.
2030    BodyBlock = addStmt(F->getBody());
2031
2032    if (!BodyBlock) {
2033      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2034      // Use the continue jump target as the proxy for the body.
2035      BodyBlock = ContinueJumpTarget.block;
2036    }
2037    else if (badCFG)
2038      return 0;
2039  }
2040
2041  // Because of short-circuit evaluation, the condition of the loop can span
2042  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2043  // evaluate the condition.
2044  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2045
2046  do {
2047    Expr *C = F->getCond();
2048
2049    // Specially handle logical operators, which have a slightly
2050    // more optimal CFG representation.
2051    if (BinaryOperator *Cond =
2052            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2053      if (Cond->isLogicalOp()) {
2054        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2055          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2056        break;
2057      }
2058
2059    // The default case when not handling logical operators.
2060    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2061    ExitConditionBlock->setTerminator(F);
2062
2063    // See if this is a known constant.
2064    TryResult KnownVal(true);
2065
2066    if (C) {
2067      // Now add the actual condition to the condition block.
2068      // Because the condition itself may contain control-flow, new blocks may
2069      // be created.  Thus we update "Succ" after adding the condition.
2070      Block = ExitConditionBlock;
2071      EntryConditionBlock = addStmt(C);
2072
2073      // If this block contains a condition variable, add both the condition
2074      // variable and initializer to the CFG.
2075      if (VarDecl *VD = F->getConditionVariable()) {
2076        if (Expr *Init = VD->getInit()) {
2077          autoCreateBlock();
2078          appendStmt(Block, F->getConditionVariableDeclStmt());
2079          EntryConditionBlock = addStmt(Init);
2080          assert(Block == EntryConditionBlock);
2081        }
2082      }
2083
2084      if (Block && badCFG)
2085        return 0;
2086
2087      KnownVal = tryEvaluateBool(C);
2088    }
2089
2090    // Add the loop body entry as a successor to the condition.
2091    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2092    // Link up the condition block with the code that follows the loop.  (the
2093    // false branch).
2094    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2095
2096  } while (false);
2097
2098  // Link up the loop-back block to the entry condition block.
2099  addSuccessor(TransitionBlock, EntryConditionBlock);
2100
2101  // The condition block is the implicit successor for any code above the loop.
2102  Succ = EntryConditionBlock;
2103
2104  // If the loop contains initialization, create a new block for those
2105  // statements.  This block can also contain statements that precede the loop.
2106  if (Stmt *I = F->getInit()) {
2107    Block = createBlock();
2108    return addStmt(I);
2109  }
2110
2111  // There is no loop initialization.  We are thus basically a while loop.
2112  // NULL out Block to force lazy block construction.
2113  Block = NULL;
2114  Succ = EntryConditionBlock;
2115  return EntryConditionBlock;
2116}
2117
2118CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2119  if (asc.alwaysAdd(*this, M)) {
2120    autoCreateBlock();
2121    appendStmt(Block, M);
2122  }
2123  return Visit(M->getBase());
2124}
2125
2126CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2127  // Objective-C fast enumeration 'for' statements:
2128  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2129  //
2130  //  for ( Type newVariable in collection_expression ) { statements }
2131  //
2132  //  becomes:
2133  //
2134  //   prologue:
2135  //     1. collection_expression
2136  //     T. jump to loop_entry
2137  //   loop_entry:
2138  //     1. side-effects of element expression
2139  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2140  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2141  //   TB:
2142  //     statements
2143  //     T. jump to loop_entry
2144  //   FB:
2145  //     what comes after
2146  //
2147  //  and
2148  //
2149  //  Type existingItem;
2150  //  for ( existingItem in expression ) { statements }
2151  //
2152  //  becomes:
2153  //
2154  //   the same with newVariable replaced with existingItem; the binding works
2155  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2156  //   a DeclStmt and the other returns a DeclRefExpr.
2157  //
2158
2159  CFGBlock *LoopSuccessor = 0;
2160
2161  if (Block) {
2162    if (badCFG)
2163      return 0;
2164    LoopSuccessor = Block;
2165    Block = 0;
2166  } else
2167    LoopSuccessor = Succ;
2168
2169  // Build the condition blocks.
2170  CFGBlock *ExitConditionBlock = createBlock(false);
2171
2172  // Set the terminator for the "exit" condition block.
2173  ExitConditionBlock->setTerminator(S);
2174
2175  // The last statement in the block should be the ObjCForCollectionStmt, which
2176  // performs the actual binding to 'element' and determines if there are any
2177  // more items in the collection.
2178  appendStmt(ExitConditionBlock, S);
2179  Block = ExitConditionBlock;
2180
2181  // Walk the 'element' expression to see if there are any side-effects.  We
2182  // generate new blocks as necessary.  We DON'T add the statement by default to
2183  // the CFG unless it contains control-flow.
2184  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2185                                        AddStmtChoice::NotAlwaysAdd);
2186  if (Block) {
2187    if (badCFG)
2188      return 0;
2189    Block = 0;
2190  }
2191
2192  // The condition block is the implicit successor for the loop body as well as
2193  // any code above the loop.
2194  Succ = EntryConditionBlock;
2195
2196  // Now create the true branch.
2197  {
2198    // Save the current values for Succ, continue and break targets.
2199    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2200    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2201                               save_break(BreakJumpTarget);
2202
2203    // Add an intermediate block between the BodyBlock and the
2204    // EntryConditionBlock to represent the "loop back" transition, for looping
2205    // back to the head of the loop.
2206    CFGBlock *LoopBackBlock = 0;
2207    Succ = LoopBackBlock = createBlock();
2208    LoopBackBlock->setLoopTarget(S);
2209
2210    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2211    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2212
2213    CFGBlock *BodyBlock = addStmt(S->getBody());
2214
2215    if (!BodyBlock)
2216      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2217    else if (Block) {
2218      if (badCFG)
2219        return 0;
2220    }
2221
2222    // This new body block is a successor to our "exit" condition block.
2223    addSuccessor(ExitConditionBlock, BodyBlock);
2224  }
2225
2226  // Link up the condition block with the code that follows the loop.
2227  // (the false branch).
2228  addSuccessor(ExitConditionBlock, LoopSuccessor);
2229
2230  // Now create a prologue block to contain the collection expression.
2231  Block = createBlock();
2232  return addStmt(S->getCollection());
2233}
2234
2235CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2236  // Inline the body.
2237  return addStmt(S->getSubStmt());
2238  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2239}
2240
2241CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2242  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2243
2244  // Inline the body.
2245  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2246
2247  // The sync body starts its own basic block.  This makes it a little easier
2248  // for diagnostic clients.
2249  if (SyncBlock) {
2250    if (badCFG)
2251      return 0;
2252
2253    Block = 0;
2254    Succ = SyncBlock;
2255  }
2256
2257  // Add the @synchronized to the CFG.
2258  autoCreateBlock();
2259  appendStmt(Block, S);
2260
2261  // Inline the sync expression.
2262  return addStmt(S->getSynchExpr());
2263}
2264
2265CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2266  // FIXME
2267  return NYS();
2268}
2269
2270CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2271  autoCreateBlock();
2272
2273  // Add the PseudoObject as the last thing.
2274  appendStmt(Block, E);
2275
2276  CFGBlock *lastBlock = Block;
2277
2278  // Before that, evaluate all of the semantics in order.  In
2279  // CFG-land, that means appending them in reverse order.
2280  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2281    Expr *Semantic = E->getSemanticExpr(--i);
2282
2283    // If the semantic is an opaque value, we're being asked to bind
2284    // it to its source expression.
2285    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2286      Semantic = OVE->getSourceExpr();
2287
2288    if (CFGBlock *B = Visit(Semantic))
2289      lastBlock = B;
2290  }
2291
2292  return lastBlock;
2293}
2294
2295CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2296  CFGBlock *LoopSuccessor = NULL;
2297
2298  // Save local scope position because in case of condition variable ScopePos
2299  // won't be restored when traversing AST.
2300  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2301
2302  // Create local scope for possible condition variable.
2303  // Store scope position for continue statement.
2304  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2305  if (VarDecl *VD = W->getConditionVariable()) {
2306    addLocalScopeForVarDecl(VD);
2307    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2308  }
2309
2310  // "while" is a control-flow statement.  Thus we stop processing the current
2311  // block.
2312  if (Block) {
2313    if (badCFG)
2314      return 0;
2315    LoopSuccessor = Block;
2316    Block = 0;
2317  } else {
2318    LoopSuccessor = Succ;
2319  }
2320
2321  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2322
2323  // Process the loop body.
2324  {
2325    assert(W->getBody());
2326
2327    // Save the current values for Block, Succ, continue and break targets.
2328    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2329    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2330                               save_break(BreakJumpTarget);
2331
2332    // Create an empty block to represent the transition block for looping back
2333    // to the head of the loop.
2334    Succ = TransitionBlock = createBlock(false);
2335    TransitionBlock->setLoopTarget(W);
2336    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2337
2338    // All breaks should go to the code following the loop.
2339    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2340
2341    // Loop body should end with destructor of Condition variable (if any).
2342    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2343
2344    // If body is not a compound statement create implicit scope
2345    // and add destructors.
2346    if (!isa<CompoundStmt>(W->getBody()))
2347      addLocalScopeAndDtors(W->getBody());
2348
2349    // Create the body.  The returned block is the entry to the loop body.
2350    BodyBlock = addStmt(W->getBody());
2351
2352    if (!BodyBlock)
2353      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2354    else if (Block && badCFG)
2355      return 0;
2356  }
2357
2358  // Because of short-circuit evaluation, the condition of the loop can span
2359  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2360  // evaluate the condition.
2361  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2362
2363  do {
2364    Expr *C = W->getCond();
2365
2366    // Specially handle logical operators, which have a slightly
2367    // more optimal CFG representation.
2368    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2369      if (Cond->isLogicalOp()) {
2370        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2371          VisitLogicalOperator(Cond, W, BodyBlock,
2372                               LoopSuccessor);
2373        break;
2374      }
2375
2376    // The default case when not handling logical operators.
2377    ExitConditionBlock = createBlock(false);
2378    ExitConditionBlock->setTerminator(W);
2379
2380    // Now add the actual condition to the condition block.
2381    // Because the condition itself may contain control-flow, new blocks may
2382    // be created.  Thus we update "Succ" after adding the condition.
2383    Block = ExitConditionBlock;
2384    Block = EntryConditionBlock = addStmt(C);
2385
2386    // If this block contains a condition variable, add both the condition
2387    // variable and initializer to the CFG.
2388    if (VarDecl *VD = W->getConditionVariable()) {
2389      if (Expr *Init = VD->getInit()) {
2390        autoCreateBlock();
2391        appendStmt(Block, W->getConditionVariableDeclStmt());
2392        EntryConditionBlock = addStmt(Init);
2393        assert(Block == EntryConditionBlock);
2394      }
2395    }
2396
2397    if (Block && badCFG)
2398      return 0;
2399
2400    // See if this is a known constant.
2401    const TryResult& KnownVal = tryEvaluateBool(C);
2402
2403    // Add the loop body entry as a successor to the condition.
2404    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2405    // Link up the condition block with the code that follows the loop.  (the
2406    // false branch).
2407    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2408
2409  } while(false);
2410
2411  // Link up the loop-back block to the entry condition block.
2412  addSuccessor(TransitionBlock, EntryConditionBlock);
2413
2414  // There can be no more statements in the condition block since we loop back
2415  // to this block.  NULL out Block to force lazy creation of another block.
2416  Block = NULL;
2417
2418  // Return the condition block, which is the dominating block for the loop.
2419  Succ = EntryConditionBlock;
2420  return EntryConditionBlock;
2421}
2422
2423
2424CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2425  // FIXME: For now we pretend that @catch and the code it contains does not
2426  //  exit.
2427  return Block;
2428}
2429
2430CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2431  // FIXME: This isn't complete.  We basically treat @throw like a return
2432  //  statement.
2433
2434  // If we were in the middle of a block we stop processing that block.
2435  if (badCFG)
2436    return 0;
2437
2438  // Create the new block.
2439  Block = createBlock(false);
2440
2441  // The Exit block is the only successor.
2442  addSuccessor(Block, &cfg->getExit());
2443
2444  // Add the statement to the block.  This may create new blocks if S contains
2445  // control-flow (short-circuit operations).
2446  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2447}
2448
2449CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2450  // If we were in the middle of a block we stop processing that block.
2451  if (badCFG)
2452    return 0;
2453
2454  // Create the new block.
2455  Block = createBlock(false);
2456
2457  if (TryTerminatedBlock)
2458    // The current try statement is the only successor.
2459    addSuccessor(Block, TryTerminatedBlock);
2460  else
2461    // otherwise the Exit block is the only successor.
2462    addSuccessor(Block, &cfg->getExit());
2463
2464  // Add the statement to the block.  This may create new blocks if S contains
2465  // control-flow (short-circuit operations).
2466  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2467}
2468
2469CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2470  CFGBlock *LoopSuccessor = NULL;
2471
2472  // "do...while" is a control-flow statement.  Thus we stop processing the
2473  // current block.
2474  if (Block) {
2475    if (badCFG)
2476      return 0;
2477    LoopSuccessor = Block;
2478  } else
2479    LoopSuccessor = Succ;
2480
2481  // Because of short-circuit evaluation, the condition of the loop can span
2482  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2483  // evaluate the condition.
2484  CFGBlock *ExitConditionBlock = createBlock(false);
2485  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2486
2487  // Set the terminator for the "exit" condition block.
2488  ExitConditionBlock->setTerminator(D);
2489
2490  // Now add the actual condition to the condition block.  Because the condition
2491  // itself may contain control-flow, new blocks may be created.
2492  if (Stmt *C = D->getCond()) {
2493    Block = ExitConditionBlock;
2494    EntryConditionBlock = addStmt(C);
2495    if (Block) {
2496      if (badCFG)
2497        return 0;
2498    }
2499  }
2500
2501  // The condition block is the implicit successor for the loop body.
2502  Succ = EntryConditionBlock;
2503
2504  // See if this is a known constant.
2505  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2506
2507  // Process the loop body.
2508  CFGBlock *BodyBlock = NULL;
2509  {
2510    assert(D->getBody());
2511
2512    // Save the current values for Block, Succ, and continue and break targets
2513    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2514    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2515        save_break(BreakJumpTarget);
2516
2517    // All continues within this loop should go to the condition block
2518    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2519
2520    // All breaks should go to the code following the loop.
2521    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2522
2523    // NULL out Block to force lazy instantiation of blocks for the body.
2524    Block = NULL;
2525
2526    // If body is not a compound statement create implicit scope
2527    // and add destructors.
2528    if (!isa<CompoundStmt>(D->getBody()))
2529      addLocalScopeAndDtors(D->getBody());
2530
2531    // Create the body.  The returned block is the entry to the loop body.
2532    BodyBlock = addStmt(D->getBody());
2533
2534    if (!BodyBlock)
2535      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2536    else if (Block) {
2537      if (badCFG)
2538        return 0;
2539    }
2540
2541    if (!KnownVal.isFalse()) {
2542      // Add an intermediate block between the BodyBlock and the
2543      // ExitConditionBlock to represent the "loop back" transition.  Create an
2544      // empty block to represent the transition block for looping back to the
2545      // head of the loop.
2546      // FIXME: Can we do this more efficiently without adding another block?
2547      Block = NULL;
2548      Succ = BodyBlock;
2549      CFGBlock *LoopBackBlock = createBlock();
2550      LoopBackBlock->setLoopTarget(D);
2551
2552      // Add the loop body entry as a successor to the condition.
2553      addSuccessor(ExitConditionBlock, LoopBackBlock);
2554    }
2555    else
2556      addSuccessor(ExitConditionBlock, NULL);
2557  }
2558
2559  // Link up the condition block with the code that follows the loop.
2560  // (the false branch).
2561  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2562
2563  // There can be no more statements in the body block(s) since we loop back to
2564  // the body.  NULL out Block to force lazy creation of another block.
2565  Block = NULL;
2566
2567  // Return the loop body, which is the dominating block for the loop.
2568  Succ = BodyBlock;
2569  return BodyBlock;
2570}
2571
2572CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2573  // "continue" is a control-flow statement.  Thus we stop processing the
2574  // current block.
2575  if (badCFG)
2576    return 0;
2577
2578  // Now create a new block that ends with the continue statement.
2579  Block = createBlock(false);
2580  Block->setTerminator(C);
2581
2582  // If there is no target for the continue, then we are looking at an
2583  // incomplete AST.  This means the CFG cannot be constructed.
2584  if (ContinueJumpTarget.block) {
2585    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2586    addSuccessor(Block, ContinueJumpTarget.block);
2587  } else
2588    badCFG = true;
2589
2590  return Block;
2591}
2592
2593CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2594                                                    AddStmtChoice asc) {
2595
2596  if (asc.alwaysAdd(*this, E)) {
2597    autoCreateBlock();
2598    appendStmt(Block, E);
2599  }
2600
2601  // VLA types have expressions that must be evaluated.
2602  CFGBlock *lastBlock = Block;
2603
2604  if (E->isArgumentType()) {
2605    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2606         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2607      lastBlock = addStmt(VA->getSizeExpr());
2608  }
2609  return lastBlock;
2610}
2611
2612/// VisitStmtExpr - Utility method to handle (nested) statement
2613///  expressions (a GCC extension).
2614CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2615  if (asc.alwaysAdd(*this, SE)) {
2616    autoCreateBlock();
2617    appendStmt(Block, SE);
2618  }
2619  return VisitCompoundStmt(SE->getSubStmt());
2620}
2621
2622CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2623  // "switch" is a control-flow statement.  Thus we stop processing the current
2624  // block.
2625  CFGBlock *SwitchSuccessor = NULL;
2626
2627  // Save local scope position because in case of condition variable ScopePos
2628  // won't be restored when traversing AST.
2629  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2630
2631  // Create local scope for possible condition variable.
2632  // Store scope position. Add implicit destructor.
2633  if (VarDecl *VD = Terminator->getConditionVariable()) {
2634    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2635    addLocalScopeForVarDecl(VD);
2636    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2637  }
2638
2639  if (Block) {
2640    if (badCFG)
2641      return 0;
2642    SwitchSuccessor = Block;
2643  } else SwitchSuccessor = Succ;
2644
2645  // Save the current "switch" context.
2646  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2647                            save_default(DefaultCaseBlock);
2648  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2649
2650  // Set the "default" case to be the block after the switch statement.  If the
2651  // switch statement contains a "default:", this value will be overwritten with
2652  // the block for that code.
2653  DefaultCaseBlock = SwitchSuccessor;
2654
2655  // Create a new block that will contain the switch statement.
2656  SwitchTerminatedBlock = createBlock(false);
2657
2658  // Now process the switch body.  The code after the switch is the implicit
2659  // successor.
2660  Succ = SwitchSuccessor;
2661  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2662
2663  // When visiting the body, the case statements should automatically get linked
2664  // up to the switch.  We also don't keep a pointer to the body, since all
2665  // control-flow from the switch goes to case/default statements.
2666  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2667  Block = NULL;
2668
2669  // For pruning unreachable case statements, save the current state
2670  // for tracking the condition value.
2671  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2672                                                     false);
2673
2674  // Determine if the switch condition can be explicitly evaluated.
2675  assert(Terminator->getCond() && "switch condition must be non-NULL");
2676  Expr::EvalResult result;
2677  bool b = tryEvaluate(Terminator->getCond(), result);
2678  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2679                                                    b ? &result : 0);
2680
2681  // If body is not a compound statement create implicit scope
2682  // and add destructors.
2683  if (!isa<CompoundStmt>(Terminator->getBody()))
2684    addLocalScopeAndDtors(Terminator->getBody());
2685
2686  addStmt(Terminator->getBody());
2687  if (Block) {
2688    if (badCFG)
2689      return 0;
2690  }
2691
2692  // If we have no "default:" case, the default transition is to the code
2693  // following the switch body.  Moreover, take into account if all the
2694  // cases of a switch are covered (e.g., switching on an enum value).
2695  //
2696  // Note: We add a successor to a switch that is considered covered yet has no
2697  //       case statements if the enumeration has no enumerators.
2698  bool SwitchAlwaysHasSuccessor = false;
2699  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2700  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2701                              Terminator->getSwitchCaseList();
2702  addSuccessor(SwitchTerminatedBlock,
2703               SwitchAlwaysHasSuccessor ? 0 : DefaultCaseBlock);
2704
2705  // Add the terminator and condition in the switch block.
2706  SwitchTerminatedBlock->setTerminator(Terminator);
2707  Block = SwitchTerminatedBlock;
2708  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2709
2710  // Finally, if the SwitchStmt contains a condition variable, add both the
2711  // SwitchStmt and the condition variable initialization to the CFG.
2712  if (VarDecl *VD = Terminator->getConditionVariable()) {
2713    if (Expr *Init = VD->getInit()) {
2714      autoCreateBlock();
2715      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2716      LastBlock = addStmt(Init);
2717    }
2718  }
2719
2720  return LastBlock;
2721}
2722
2723static bool shouldAddCase(bool &switchExclusivelyCovered,
2724                          const Expr::EvalResult *switchCond,
2725                          const CaseStmt *CS,
2726                          ASTContext &Ctx) {
2727  if (!switchCond)
2728    return true;
2729
2730  bool addCase = false;
2731
2732  if (!switchExclusivelyCovered) {
2733    if (switchCond->Val.isInt()) {
2734      // Evaluate the LHS of the case value.
2735      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2736      const llvm::APSInt &condInt = switchCond->Val.getInt();
2737
2738      if (condInt == lhsInt) {
2739        addCase = true;
2740        switchExclusivelyCovered = true;
2741      }
2742      else if (condInt < lhsInt) {
2743        if (const Expr *RHS = CS->getRHS()) {
2744          // Evaluate the RHS of the case value.
2745          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2746          if (V2 <= condInt) {
2747            addCase = true;
2748            switchExclusivelyCovered = true;
2749          }
2750        }
2751      }
2752    }
2753    else
2754      addCase = true;
2755  }
2756  return addCase;
2757}
2758
2759CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2760  // CaseStmts are essentially labels, so they are the first statement in a
2761  // block.
2762  CFGBlock *TopBlock = 0, *LastBlock = 0;
2763
2764  if (Stmt *Sub = CS->getSubStmt()) {
2765    // For deeply nested chains of CaseStmts, instead of doing a recursion
2766    // (which can blow out the stack), manually unroll and create blocks
2767    // along the way.
2768    while (isa<CaseStmt>(Sub)) {
2769      CFGBlock *currentBlock = createBlock(false);
2770      currentBlock->setLabel(CS);
2771
2772      if (TopBlock)
2773        addSuccessor(LastBlock, currentBlock);
2774      else
2775        TopBlock = currentBlock;
2776
2777      addSuccessor(SwitchTerminatedBlock,
2778                   shouldAddCase(switchExclusivelyCovered, switchCond,
2779                                 CS, *Context)
2780                   ? currentBlock : 0);
2781
2782      LastBlock = currentBlock;
2783      CS = cast<CaseStmt>(Sub);
2784      Sub = CS->getSubStmt();
2785    }
2786
2787    addStmt(Sub);
2788  }
2789
2790  CFGBlock *CaseBlock = Block;
2791  if (!CaseBlock)
2792    CaseBlock = createBlock();
2793
2794  // Cases statements partition blocks, so this is the top of the basic block we
2795  // were processing (the "case XXX:" is the label).
2796  CaseBlock->setLabel(CS);
2797
2798  if (badCFG)
2799    return 0;
2800
2801  // Add this block to the list of successors for the block with the switch
2802  // statement.
2803  assert(SwitchTerminatedBlock);
2804  addSuccessor(SwitchTerminatedBlock,
2805               shouldAddCase(switchExclusivelyCovered, switchCond,
2806                             CS, *Context)
2807               ? CaseBlock : 0);
2808
2809  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2810  Block = NULL;
2811
2812  if (TopBlock) {
2813    addSuccessor(LastBlock, CaseBlock);
2814    Succ = TopBlock;
2815  } else {
2816    // This block is now the implicit successor of other blocks.
2817    Succ = CaseBlock;
2818  }
2819
2820  return Succ;
2821}
2822
2823CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2824  if (Terminator->getSubStmt())
2825    addStmt(Terminator->getSubStmt());
2826
2827  DefaultCaseBlock = Block;
2828
2829  if (!DefaultCaseBlock)
2830    DefaultCaseBlock = createBlock();
2831
2832  // Default statements partition blocks, so this is the top of the basic block
2833  // we were processing (the "default:" is the label).
2834  DefaultCaseBlock->setLabel(Terminator);
2835
2836  if (badCFG)
2837    return 0;
2838
2839  // Unlike case statements, we don't add the default block to the successors
2840  // for the switch statement immediately.  This is done when we finish
2841  // processing the switch statement.  This allows for the default case
2842  // (including a fall-through to the code after the switch statement) to always
2843  // be the last successor of a switch-terminated block.
2844
2845  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2846  Block = NULL;
2847
2848  // This block is now the implicit successor of other blocks.
2849  Succ = DefaultCaseBlock;
2850
2851  return DefaultCaseBlock;
2852}
2853
2854CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2855  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2856  // current block.
2857  CFGBlock *TrySuccessor = NULL;
2858
2859  if (Block) {
2860    if (badCFG)
2861      return 0;
2862    TrySuccessor = Block;
2863  } else TrySuccessor = Succ;
2864
2865  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2866
2867  // Create a new block that will contain the try statement.
2868  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2869  // Add the terminator in the try block.
2870  NewTryTerminatedBlock->setTerminator(Terminator);
2871
2872  bool HasCatchAll = false;
2873  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2874    // The code after the try is the implicit successor.
2875    Succ = TrySuccessor;
2876    CXXCatchStmt *CS = Terminator->getHandler(h);
2877    if (CS->getExceptionDecl() == 0) {
2878      HasCatchAll = true;
2879    }
2880    Block = NULL;
2881    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2882    if (CatchBlock == 0)
2883      return 0;
2884    // Add this block to the list of successors for the block with the try
2885    // statement.
2886    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2887  }
2888  if (!HasCatchAll) {
2889    if (PrevTryTerminatedBlock)
2890      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2891    else
2892      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2893  }
2894
2895  // The code after the try is the implicit successor.
2896  Succ = TrySuccessor;
2897
2898  // Save the current "try" context.
2899  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2900  cfg->addTryDispatchBlock(TryTerminatedBlock);
2901
2902  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2903  Block = NULL;
2904  return addStmt(Terminator->getTryBlock());
2905}
2906
2907CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2908  // CXXCatchStmt are treated like labels, so they are the first statement in a
2909  // block.
2910
2911  // Save local scope position because in case of exception variable ScopePos
2912  // won't be restored when traversing AST.
2913  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2914
2915  // Create local scope for possible exception variable.
2916  // Store scope position. Add implicit destructor.
2917  if (VarDecl *VD = CS->getExceptionDecl()) {
2918    LocalScope::const_iterator BeginScopePos = ScopePos;
2919    addLocalScopeForVarDecl(VD);
2920    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2921  }
2922
2923  if (CS->getHandlerBlock())
2924    addStmt(CS->getHandlerBlock());
2925
2926  CFGBlock *CatchBlock = Block;
2927  if (!CatchBlock)
2928    CatchBlock = createBlock();
2929
2930  // CXXCatchStmt is more than just a label.  They have semantic meaning
2931  // as well, as they implicitly "initialize" the catch variable.  Add
2932  // it to the CFG as a CFGElement so that the control-flow of these
2933  // semantics gets captured.
2934  appendStmt(CatchBlock, CS);
2935
2936  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2937  // labels.
2938  CatchBlock->setLabel(CS);
2939
2940  // Bail out if the CFG is bad.
2941  if (badCFG)
2942    return 0;
2943
2944  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2945  Block = NULL;
2946
2947  return CatchBlock;
2948}
2949
2950CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2951  // C++0x for-range statements are specified as [stmt.ranged]:
2952  //
2953  // {
2954  //   auto && __range = range-init;
2955  //   for ( auto __begin = begin-expr,
2956  //         __end = end-expr;
2957  //         __begin != __end;
2958  //         ++__begin ) {
2959  //     for-range-declaration = *__begin;
2960  //     statement
2961  //   }
2962  // }
2963
2964  // Save local scope position before the addition of the implicit variables.
2965  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2966
2967  // Create local scopes and destructors for range, begin and end variables.
2968  if (Stmt *Range = S->getRangeStmt())
2969    addLocalScopeForStmt(Range);
2970  if (Stmt *BeginEnd = S->getBeginEndStmt())
2971    addLocalScopeForStmt(BeginEnd);
2972  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2973
2974  LocalScope::const_iterator ContinueScopePos = ScopePos;
2975
2976  // "for" is a control-flow statement.  Thus we stop processing the current
2977  // block.
2978  CFGBlock *LoopSuccessor = NULL;
2979  if (Block) {
2980    if (badCFG)
2981      return 0;
2982    LoopSuccessor = Block;
2983  } else
2984    LoopSuccessor = Succ;
2985
2986  // Save the current value for the break targets.
2987  // All breaks should go to the code following the loop.
2988  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2989  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2990
2991  // The block for the __begin != __end expression.
2992  CFGBlock *ConditionBlock = createBlock(false);
2993  ConditionBlock->setTerminator(S);
2994
2995  // Now add the actual condition to the condition block.
2996  if (Expr *C = S->getCond()) {
2997    Block = ConditionBlock;
2998    CFGBlock *BeginConditionBlock = addStmt(C);
2999    if (badCFG)
3000      return 0;
3001    assert(BeginConditionBlock == ConditionBlock &&
3002           "condition block in for-range was unexpectedly complex");
3003    (void)BeginConditionBlock;
3004  }
3005
3006  // The condition block is the implicit successor for the loop body as well as
3007  // any code above the loop.
3008  Succ = ConditionBlock;
3009
3010  // See if this is a known constant.
3011  TryResult KnownVal(true);
3012
3013  if (S->getCond())
3014    KnownVal = tryEvaluateBool(S->getCond());
3015
3016  // Now create the loop body.
3017  {
3018    assert(S->getBody());
3019
3020    // Save the current values for Block, Succ, and continue targets.
3021    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3022    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3023
3024    // Generate increment code in its own basic block.  This is the target of
3025    // continue statements.
3026    Block = 0;
3027    Succ = addStmt(S->getInc());
3028    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3029
3030    // The starting block for the loop increment is the block that should
3031    // represent the 'loop target' for looping back to the start of the loop.
3032    ContinueJumpTarget.block->setLoopTarget(S);
3033
3034    // Finish up the increment block and prepare to start the loop body.
3035    assert(Block);
3036    if (badCFG)
3037      return 0;
3038    Block = 0;
3039
3040
3041    // Add implicit scope and dtors for loop variable.
3042    addLocalScopeAndDtors(S->getLoopVarStmt());
3043
3044    // Populate a new block to contain the loop body and loop variable.
3045    addStmt(S->getBody());
3046    if (badCFG)
3047      return 0;
3048    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3049    if (badCFG)
3050      return 0;
3051
3052    // This new body block is a successor to our condition block.
3053    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3054  }
3055
3056  // Link up the condition block with the code that follows the loop (the
3057  // false branch).
3058  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3059
3060  // Add the initialization statements.
3061  Block = createBlock();
3062  addStmt(S->getBeginEndStmt());
3063  return addStmt(S->getRangeStmt());
3064}
3065
3066CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3067    AddStmtChoice asc) {
3068  if (BuildOpts.AddTemporaryDtors) {
3069    // If adding implicit destructors visit the full expression for adding
3070    // destructors of temporaries.
3071    VisitForTemporaryDtors(E->getSubExpr());
3072
3073    // Full expression has to be added as CFGStmt so it will be sequenced
3074    // before destructors of it's temporaries.
3075    asc = asc.withAlwaysAdd(true);
3076  }
3077  return Visit(E->getSubExpr(), asc);
3078}
3079
3080CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3081                                                AddStmtChoice asc) {
3082  if (asc.alwaysAdd(*this, E)) {
3083    autoCreateBlock();
3084    appendStmt(Block, E);
3085
3086    // We do not want to propagate the AlwaysAdd property.
3087    asc = asc.withAlwaysAdd(false);
3088  }
3089  return Visit(E->getSubExpr(), asc);
3090}
3091
3092CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3093                                            AddStmtChoice asc) {
3094  autoCreateBlock();
3095  appendStmt(Block, C);
3096
3097  return VisitChildren(C);
3098}
3099
3100CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3101                                                 AddStmtChoice asc) {
3102  if (asc.alwaysAdd(*this, E)) {
3103    autoCreateBlock();
3104    appendStmt(Block, E);
3105    // We do not want to propagate the AlwaysAdd property.
3106    asc = asc.withAlwaysAdd(false);
3107  }
3108  return Visit(E->getSubExpr(), asc);
3109}
3110
3111CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3112                                                  AddStmtChoice asc) {
3113  autoCreateBlock();
3114  appendStmt(Block, C);
3115  return VisitChildren(C);
3116}
3117
3118CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3119                                            AddStmtChoice asc) {
3120  if (asc.alwaysAdd(*this, E)) {
3121    autoCreateBlock();
3122    appendStmt(Block, E);
3123  }
3124  return Visit(E->getSubExpr(), AddStmtChoice());
3125}
3126
3127CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3128  // Lazily create the indirect-goto dispatch block if there isn't one already.
3129  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3130
3131  if (!IBlock) {
3132    IBlock = createBlock(false);
3133    cfg->setIndirectGotoBlock(IBlock);
3134  }
3135
3136  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3137  // current block and create a new one.
3138  if (badCFG)
3139    return 0;
3140
3141  Block = createBlock(false);
3142  Block->setTerminator(I);
3143  addSuccessor(Block, IBlock);
3144  return addStmt(I->getTarget());
3145}
3146
3147CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3148  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3149
3150tryAgain:
3151  if (!E) {
3152    badCFG = true;
3153    return NULL;
3154  }
3155  switch (E->getStmtClass()) {
3156    default:
3157      return VisitChildrenForTemporaryDtors(E);
3158
3159    case Stmt::BinaryOperatorClass:
3160      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3161
3162    case Stmt::CXXBindTemporaryExprClass:
3163      return VisitCXXBindTemporaryExprForTemporaryDtors(
3164          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3165
3166    case Stmt::BinaryConditionalOperatorClass:
3167    case Stmt::ConditionalOperatorClass:
3168      return VisitConditionalOperatorForTemporaryDtors(
3169          cast<AbstractConditionalOperator>(E), BindToTemporary);
3170
3171    case Stmt::ImplicitCastExprClass:
3172      // For implicit cast we want BindToTemporary to be passed further.
3173      E = cast<CastExpr>(E)->getSubExpr();
3174      goto tryAgain;
3175
3176    case Stmt::ParenExprClass:
3177      E = cast<ParenExpr>(E)->getSubExpr();
3178      goto tryAgain;
3179
3180    case Stmt::MaterializeTemporaryExprClass:
3181      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3182      goto tryAgain;
3183  }
3184}
3185
3186CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3187  // When visiting children for destructors we want to visit them in reverse
3188  // order that they will appear in the CFG.  Because the CFG is built
3189  // bottom-up, this means we visit them in their natural order, which
3190  // reverses them in the CFG.
3191  CFGBlock *B = Block;
3192  for (Stmt::child_range I = E->children(); I; ++I) {
3193    if (Stmt *Child = *I)
3194      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3195        B = R;
3196  }
3197  return B;
3198}
3199
3200CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3201  if (E->isLogicalOp()) {
3202    // Destructors for temporaries in LHS expression should be called after
3203    // those for RHS expression. Even if this will unnecessarily create a block,
3204    // this block will be used at least by the full expression.
3205    autoCreateBlock();
3206    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3207    if (badCFG)
3208      return NULL;
3209
3210    Succ = ConfluenceBlock;
3211    Block = NULL;
3212    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3213
3214    if (RHSBlock) {
3215      if (badCFG)
3216        return NULL;
3217
3218      // If RHS expression did produce destructors we need to connect created
3219      // blocks to CFG in same manner as for binary operator itself.
3220      CFGBlock *LHSBlock = createBlock(false);
3221      LHSBlock->setTerminator(CFGTerminator(E, true));
3222
3223      // For binary operator LHS block is before RHS in list of predecessors
3224      // of ConfluenceBlock.
3225      std::reverse(ConfluenceBlock->pred_begin(),
3226          ConfluenceBlock->pred_end());
3227
3228      // See if this is a known constant.
3229      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3230      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3231        KnownVal.negate();
3232
3233      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3234      // itself.
3235      if (E->getOpcode() == BO_LOr) {
3236        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3237        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3238      } else {
3239        assert (E->getOpcode() == BO_LAnd);
3240        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3241        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3242      }
3243
3244      Block = LHSBlock;
3245      return LHSBlock;
3246    }
3247
3248    Block = ConfluenceBlock;
3249    return ConfluenceBlock;
3250  }
3251
3252  if (E->isAssignmentOp()) {
3253    // For assignment operator (=) LHS expression is visited
3254    // before RHS expression. For destructors visit them in reverse order.
3255    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3256    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3257    return LHSBlock ? LHSBlock : RHSBlock;
3258  }
3259
3260  // For any other binary operator RHS expression is visited before
3261  // LHS expression (order of children). For destructors visit them in reverse
3262  // order.
3263  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3264  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3265  return RHSBlock ? RHSBlock : LHSBlock;
3266}
3267
3268CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3269    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3270  // First add destructors for temporaries in subexpression.
3271  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3272  if (!BindToTemporary) {
3273    // If lifetime of temporary is not prolonged (by assigning to constant
3274    // reference) add destructor for it.
3275
3276    // If the destructor is marked as a no-return destructor, we need to create
3277    // a new block for the destructor which does not have as a successor
3278    // anything built thus far. Control won't flow out of this block.
3279    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3280    if (Dtor->isNoReturn())
3281      Block = createNoReturnBlock();
3282    else
3283      autoCreateBlock();
3284
3285    appendTemporaryDtor(Block, E);
3286    B = Block;
3287  }
3288  return B;
3289}
3290
3291CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3292    AbstractConditionalOperator *E, bool BindToTemporary) {
3293  // First add destructors for condition expression.  Even if this will
3294  // unnecessarily create a block, this block will be used at least by the full
3295  // expression.
3296  autoCreateBlock();
3297  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3298  if (badCFG)
3299    return NULL;
3300  if (BinaryConditionalOperator *BCO
3301        = dyn_cast<BinaryConditionalOperator>(E)) {
3302    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3303    if (badCFG)
3304      return NULL;
3305  }
3306
3307  // Try to add block with destructors for LHS expression.
3308  CFGBlock *LHSBlock = NULL;
3309  Succ = ConfluenceBlock;
3310  Block = NULL;
3311  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3312  if (badCFG)
3313    return NULL;
3314
3315  // Try to add block with destructors for RHS expression;
3316  Succ = ConfluenceBlock;
3317  Block = NULL;
3318  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3319                                              BindToTemporary);
3320  if (badCFG)
3321    return NULL;
3322
3323  if (!RHSBlock && !LHSBlock) {
3324    // If neither LHS nor RHS expression had temporaries to destroy don't create
3325    // more blocks.
3326    Block = ConfluenceBlock;
3327    return Block;
3328  }
3329
3330  Block = createBlock(false);
3331  Block->setTerminator(CFGTerminator(E, true));
3332
3333  // See if this is a known constant.
3334  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3335
3336  if (LHSBlock) {
3337    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3338  } else if (KnownVal.isFalse()) {
3339    addSuccessor(Block, NULL);
3340  } else {
3341    addSuccessor(Block, ConfluenceBlock);
3342    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3343  }
3344
3345  if (!RHSBlock)
3346    RHSBlock = ConfluenceBlock;
3347  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3348
3349  return Block;
3350}
3351
3352} // end anonymous namespace
3353
3354/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3355///  no successors or predecessors.  If this is the first block created in the
3356///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3357CFGBlock *CFG::createBlock() {
3358  bool first_block = begin() == end();
3359
3360  // Create the block.
3361  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3362  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3363  Blocks.push_back(Mem, BlkBVC);
3364
3365  // If this is the first block, set it as the Entry and Exit.
3366  if (first_block)
3367    Entry = Exit = &back();
3368
3369  // Return the block.
3370  return &back();
3371}
3372
3373/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3374///  CFG is returned to the caller.
3375CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3376    const BuildOptions &BO) {
3377  CFGBuilder Builder(C, BO);
3378  return Builder.buildCFG(D, Statement);
3379}
3380
3381const CXXDestructorDecl *
3382CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3383  switch (getKind()) {
3384    case CFGElement::Statement:
3385    case CFGElement::Initializer:
3386      llvm_unreachable("getDestructorDecl should only be used with "
3387                       "ImplicitDtors");
3388    case CFGElement::AutomaticObjectDtor: {
3389      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3390      QualType ty = var->getType();
3391      ty = ty.getNonReferenceType();
3392      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3393        ty = arrayType->getElementType();
3394      }
3395      const RecordType *recordType = ty->getAs<RecordType>();
3396      const CXXRecordDecl *classDecl =
3397      cast<CXXRecordDecl>(recordType->getDecl());
3398      return classDecl->getDestructor();
3399    }
3400    case CFGElement::TemporaryDtor: {
3401      const CXXBindTemporaryExpr *bindExpr =
3402        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3403      const CXXTemporary *temp = bindExpr->getTemporary();
3404      return temp->getDestructor();
3405    }
3406    case CFGElement::BaseDtor:
3407    case CFGElement::MemberDtor:
3408
3409      // Not yet supported.
3410      return 0;
3411  }
3412  llvm_unreachable("getKind() returned bogus value");
3413}
3414
3415bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3416  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3417    return DD->isNoReturn();
3418  return false;
3419}
3420
3421//===----------------------------------------------------------------------===//
3422// Filtered walking of the CFG.
3423//===----------------------------------------------------------------------===//
3424
3425bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3426        const CFGBlock *From, const CFGBlock *To) {
3427
3428  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3429    // If the 'To' has no label or is labeled but the label isn't a
3430    // CaseStmt then filter this edge.
3431    if (const SwitchStmt *S =
3432        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3433      if (S->isAllEnumCasesCovered()) {
3434        const Stmt *L = To->getLabel();
3435        if (!L || !isa<CaseStmt>(L))
3436          return true;
3437      }
3438    }
3439  }
3440
3441  return false;
3442}
3443
3444//===----------------------------------------------------------------------===//
3445// CFG pretty printing
3446//===----------------------------------------------------------------------===//
3447
3448namespace {
3449
3450class StmtPrinterHelper : public PrinterHelper  {
3451  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3452  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3453  StmtMapTy StmtMap;
3454  DeclMapTy DeclMap;
3455  signed currentBlock;
3456  unsigned currStmt;
3457  const LangOptions &LangOpts;
3458public:
3459
3460  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3461    : currentBlock(0), currStmt(0), LangOpts(LO)
3462  {
3463    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3464      unsigned j = 1;
3465      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3466           BI != BEnd; ++BI, ++j ) {
3467        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3468          const Stmt *stmt= SE->getStmt();
3469          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3470          StmtMap[stmt] = P;
3471
3472          switch (stmt->getStmtClass()) {
3473            case Stmt::DeclStmtClass:
3474                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3475                break;
3476            case Stmt::IfStmtClass: {
3477              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3478              if (var)
3479                DeclMap[var] = P;
3480              break;
3481            }
3482            case Stmt::ForStmtClass: {
3483              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3484              if (var)
3485                DeclMap[var] = P;
3486              break;
3487            }
3488            case Stmt::WhileStmtClass: {
3489              const VarDecl *var =
3490                cast<WhileStmt>(stmt)->getConditionVariable();
3491              if (var)
3492                DeclMap[var] = P;
3493              break;
3494            }
3495            case Stmt::SwitchStmtClass: {
3496              const VarDecl *var =
3497                cast<SwitchStmt>(stmt)->getConditionVariable();
3498              if (var)
3499                DeclMap[var] = P;
3500              break;
3501            }
3502            case Stmt::CXXCatchStmtClass: {
3503              const VarDecl *var =
3504                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3505              if (var)
3506                DeclMap[var] = P;
3507              break;
3508            }
3509            default:
3510              break;
3511          }
3512        }
3513      }
3514    }
3515  }
3516
3517
3518  virtual ~StmtPrinterHelper() {}
3519
3520  const LangOptions &getLangOpts() const { return LangOpts; }
3521  void setBlockID(signed i) { currentBlock = i; }
3522  void setStmtID(unsigned i) { currStmt = i; }
3523
3524  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3525    StmtMapTy::iterator I = StmtMap.find(S);
3526
3527    if (I == StmtMap.end())
3528      return false;
3529
3530    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3531                          && I->second.second == currStmt) {
3532      return false;
3533    }
3534
3535    OS << "[B" << I->second.first << "." << I->second.second << "]";
3536    return true;
3537  }
3538
3539  bool handleDecl(const Decl *D, raw_ostream &OS) {
3540    DeclMapTy::iterator I = DeclMap.find(D);
3541
3542    if (I == DeclMap.end())
3543      return false;
3544
3545    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3546                          && I->second.second == currStmt) {
3547      return false;
3548    }
3549
3550    OS << "[B" << I->second.first << "." << I->second.second << "]";
3551    return true;
3552  }
3553};
3554} // end anonymous namespace
3555
3556
3557namespace {
3558class CFGBlockTerminatorPrint
3559  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3560
3561  raw_ostream &OS;
3562  StmtPrinterHelper* Helper;
3563  PrintingPolicy Policy;
3564public:
3565  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3566                          const PrintingPolicy &Policy)
3567    : OS(os), Helper(helper), Policy(Policy) {}
3568
3569  void VisitIfStmt(IfStmt *I) {
3570    OS << "if ";
3571    I->getCond()->printPretty(OS,Helper,Policy);
3572  }
3573
3574  // Default case.
3575  void VisitStmt(Stmt *Terminator) {
3576    Terminator->printPretty(OS, Helper, Policy);
3577  }
3578
3579  void VisitDeclStmt(DeclStmt *DS) {
3580    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3581    OS << "static init " << VD->getName();
3582  }
3583
3584  void VisitForStmt(ForStmt *F) {
3585    OS << "for (" ;
3586    if (F->getInit())
3587      OS << "...";
3588    OS << "; ";
3589    if (Stmt *C = F->getCond())
3590      C->printPretty(OS, Helper, Policy);
3591    OS << "; ";
3592    if (F->getInc())
3593      OS << "...";
3594    OS << ")";
3595  }
3596
3597  void VisitWhileStmt(WhileStmt *W) {
3598    OS << "while " ;
3599    if (Stmt *C = W->getCond())
3600      C->printPretty(OS, Helper, Policy);
3601  }
3602
3603  void VisitDoStmt(DoStmt *D) {
3604    OS << "do ... while ";
3605    if (Stmt *C = D->getCond())
3606      C->printPretty(OS, Helper, Policy);
3607  }
3608
3609  void VisitSwitchStmt(SwitchStmt *Terminator) {
3610    OS << "switch ";
3611    Terminator->getCond()->printPretty(OS, Helper, Policy);
3612  }
3613
3614  void VisitCXXTryStmt(CXXTryStmt *CS) {
3615    OS << "try ...";
3616  }
3617
3618  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3619    C->getCond()->printPretty(OS, Helper, Policy);
3620    OS << " ? ... : ...";
3621  }
3622
3623  void VisitChooseExpr(ChooseExpr *C) {
3624    OS << "__builtin_choose_expr( ";
3625    C->getCond()->printPretty(OS, Helper, Policy);
3626    OS << " )";
3627  }
3628
3629  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3630    OS << "goto *";
3631    I->getTarget()->printPretty(OS, Helper, Policy);
3632  }
3633
3634  void VisitBinaryOperator(BinaryOperator* B) {
3635    if (!B->isLogicalOp()) {
3636      VisitExpr(B);
3637      return;
3638    }
3639
3640    B->getLHS()->printPretty(OS, Helper, Policy);
3641
3642    switch (B->getOpcode()) {
3643      case BO_LOr:
3644        OS << " || ...";
3645        return;
3646      case BO_LAnd:
3647        OS << " && ...";
3648        return;
3649      default:
3650        llvm_unreachable("Invalid logical operator.");
3651    }
3652  }
3653
3654  void VisitExpr(Expr *E) {
3655    E->printPretty(OS, Helper, Policy);
3656  }
3657};
3658} // end anonymous namespace
3659
3660static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3661                       const CFGElement &E) {
3662  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3663    const Stmt *S = CS->getStmt();
3664
3665    if (Helper) {
3666
3667      // special printing for statement-expressions.
3668      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3669        const CompoundStmt *Sub = SE->getSubStmt();
3670
3671        if (Sub->children()) {
3672          OS << "({ ... ; ";
3673          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3674          OS << " })\n";
3675          return;
3676        }
3677      }
3678      // special printing for comma expressions.
3679      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3680        if (B->getOpcode() == BO_Comma) {
3681          OS << "... , ";
3682          Helper->handledStmt(B->getRHS(),OS);
3683          OS << '\n';
3684          return;
3685        }
3686      }
3687    }
3688    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3689
3690    if (isa<CXXOperatorCallExpr>(S)) {
3691      OS << " (OperatorCall)";
3692    }
3693    else if (isa<CXXBindTemporaryExpr>(S)) {
3694      OS << " (BindTemporary)";
3695    }
3696    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3697      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3698    }
3699    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3700      OS << " (" << CE->getStmtClassName() << ", "
3701         << CE->getCastKindName()
3702         << ", " << CE->getType().getAsString()
3703         << ")";
3704    }
3705
3706    // Expressions need a newline.
3707    if (isa<Expr>(S))
3708      OS << '\n';
3709
3710  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3711    const CXXCtorInitializer *I = IE->getInitializer();
3712    if (I->isBaseInitializer())
3713      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3714    else OS << I->getAnyMember()->getName();
3715
3716    OS << "(";
3717    if (Expr *IE = I->getInit())
3718      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3719    OS << ")";
3720
3721    if (I->isBaseInitializer())
3722      OS << " (Base initializer)\n";
3723    else OS << " (Member initializer)\n";
3724
3725  } else if (Optional<CFGAutomaticObjDtor> DE =
3726                 E.getAs<CFGAutomaticObjDtor>()) {
3727    const VarDecl *VD = DE->getVarDecl();
3728    Helper->handleDecl(VD, OS);
3729
3730    const Type* T = VD->getType().getTypePtr();
3731    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3732      T = RT->getPointeeType().getTypePtr();
3733    T = T->getBaseElementTypeUnsafe();
3734
3735    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3736    OS << " (Implicit destructor)\n";
3737
3738  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3739    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3740    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3741    OS << " (Base object destructor)\n";
3742
3743  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3744    const FieldDecl *FD = ME->getFieldDecl();
3745    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3746    OS << "this->" << FD->getName();
3747    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3748    OS << " (Member object destructor)\n";
3749
3750  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3751    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3752    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3753    OS << " (Temporary object destructor)\n";
3754  }
3755}
3756
3757static void print_block(raw_ostream &OS, const CFG* cfg,
3758                        const CFGBlock &B,
3759                        StmtPrinterHelper* Helper, bool print_edges,
3760                        bool ShowColors) {
3761
3762  if (Helper)
3763    Helper->setBlockID(B.getBlockID());
3764
3765  // Print the header.
3766  if (ShowColors)
3767    OS.changeColor(raw_ostream::YELLOW, true);
3768
3769  OS << "\n [B" << B.getBlockID();
3770
3771  if (&B == &cfg->getEntry())
3772    OS << " (ENTRY)]\n";
3773  else if (&B == &cfg->getExit())
3774    OS << " (EXIT)]\n";
3775  else if (&B == cfg->getIndirectGotoBlock())
3776    OS << " (INDIRECT GOTO DISPATCH)]\n";
3777  else
3778    OS << "]\n";
3779
3780  if (ShowColors)
3781    OS.resetColor();
3782
3783  // Print the label of this block.
3784  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3785
3786    if (print_edges)
3787      OS << "  ";
3788
3789    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3790      OS << L->getName();
3791    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3792      OS << "case ";
3793      C->getLHS()->printPretty(OS, Helper,
3794                               PrintingPolicy(Helper->getLangOpts()));
3795      if (C->getRHS()) {
3796        OS << " ... ";
3797        C->getRHS()->printPretty(OS, Helper,
3798                                 PrintingPolicy(Helper->getLangOpts()));
3799      }
3800    } else if (isa<DefaultStmt>(Label))
3801      OS << "default";
3802    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3803      OS << "catch (";
3804      if (CS->getExceptionDecl())
3805        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3806                                      0);
3807      else
3808        OS << "...";
3809      OS << ")";
3810
3811    } else
3812      llvm_unreachable("Invalid label statement in CFGBlock.");
3813
3814    OS << ":\n";
3815  }
3816
3817  // Iterate through the statements in the block and print them.
3818  unsigned j = 1;
3819
3820  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3821       I != E ; ++I, ++j ) {
3822
3823    // Print the statement # in the basic block and the statement itself.
3824    if (print_edges)
3825      OS << " ";
3826
3827    OS << llvm::format("%3d", j) << ": ";
3828
3829    if (Helper)
3830      Helper->setStmtID(j);
3831
3832    print_elem(OS, Helper, *I);
3833  }
3834
3835  // Print the terminator of this block.
3836  if (B.getTerminator()) {
3837    if (ShowColors)
3838      OS.changeColor(raw_ostream::GREEN);
3839
3840    OS << "   T: ";
3841
3842    if (Helper) Helper->setBlockID(-1);
3843
3844    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3845    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3846    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3847    OS << '\n';
3848
3849    if (ShowColors)
3850      OS.resetColor();
3851  }
3852
3853  if (print_edges) {
3854    // Print the predecessors of this block.
3855    if (!B.pred_empty()) {
3856      const raw_ostream::Colors Color = raw_ostream::BLUE;
3857      if (ShowColors)
3858        OS.changeColor(Color);
3859      OS << "   Preds " ;
3860      if (ShowColors)
3861        OS.resetColor();
3862      OS << '(' << B.pred_size() << "):";
3863      unsigned i = 0;
3864
3865      if (ShowColors)
3866        OS.changeColor(Color);
3867
3868      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3869           I != E; ++I, ++i) {
3870
3871        if (i % 10 == 8)
3872          OS << "\n     ";
3873
3874        OS << " B" << (*I)->getBlockID();
3875      }
3876
3877      if (ShowColors)
3878        OS.resetColor();
3879
3880      OS << '\n';
3881    }
3882
3883    // Print the successors of this block.
3884    if (!B.succ_empty()) {
3885      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3886      if (ShowColors)
3887        OS.changeColor(Color);
3888      OS << "   Succs ";
3889      if (ShowColors)
3890        OS.resetColor();
3891      OS << '(' << B.succ_size() << "):";
3892      unsigned i = 0;
3893
3894      if (ShowColors)
3895        OS.changeColor(Color);
3896
3897      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3898           I != E; ++I, ++i) {
3899
3900        if (i % 10 == 8)
3901          OS << "\n    ";
3902
3903        if (*I)
3904          OS << " B" << (*I)->getBlockID();
3905        else
3906          OS  << " NULL";
3907      }
3908
3909      if (ShowColors)
3910        OS.resetColor();
3911      OS << '\n';
3912    }
3913  }
3914}
3915
3916
3917/// dump - A simple pretty printer of a CFG that outputs to stderr.
3918void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3919  print(llvm::errs(), LO, ShowColors);
3920}
3921
3922/// print - A simple pretty printer of a CFG that outputs to an ostream.
3923void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3924  StmtPrinterHelper Helper(this, LO);
3925
3926  // Print the entry block.
3927  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3928
3929  // Iterate through the CFGBlocks and print them one by one.
3930  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3931    // Skip the entry block, because we already printed it.
3932    if (&(**I) == &getEntry() || &(**I) == &getExit())
3933      continue;
3934
3935    print_block(OS, this, **I, &Helper, true, ShowColors);
3936  }
3937
3938  // Print the exit block.
3939  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3940  OS << '\n';
3941  OS.flush();
3942}
3943
3944/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3945void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3946                    bool ShowColors) const {
3947  print(llvm::errs(), cfg, LO, ShowColors);
3948}
3949
3950/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3951///   Generally this will only be called from CFG::print.
3952void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3953                     const LangOptions &LO, bool ShowColors) const {
3954  StmtPrinterHelper Helper(cfg, LO);
3955  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3956  OS << '\n';
3957}
3958
3959/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3960void CFGBlock::printTerminator(raw_ostream &OS,
3961                               const LangOptions &LO) const {
3962  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3963  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3964}
3965
3966Stmt *CFGBlock::getTerminatorCondition() {
3967  Stmt *Terminator = this->Terminator;
3968  if (!Terminator)
3969    return NULL;
3970
3971  Expr *E = NULL;
3972
3973  switch (Terminator->getStmtClass()) {
3974    default:
3975      break;
3976
3977    case Stmt::CXXForRangeStmtClass:
3978      E = cast<CXXForRangeStmt>(Terminator)->getCond();
3979      break;
3980
3981    case Stmt::ForStmtClass:
3982      E = cast<ForStmt>(Terminator)->getCond();
3983      break;
3984
3985    case Stmt::WhileStmtClass:
3986      E = cast<WhileStmt>(Terminator)->getCond();
3987      break;
3988
3989    case Stmt::DoStmtClass:
3990      E = cast<DoStmt>(Terminator)->getCond();
3991      break;
3992
3993    case Stmt::IfStmtClass:
3994      E = cast<IfStmt>(Terminator)->getCond();
3995      break;
3996
3997    case Stmt::ChooseExprClass:
3998      E = cast<ChooseExpr>(Terminator)->getCond();
3999      break;
4000
4001    case Stmt::IndirectGotoStmtClass:
4002      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4003      break;
4004
4005    case Stmt::SwitchStmtClass:
4006      E = cast<SwitchStmt>(Terminator)->getCond();
4007      break;
4008
4009    case Stmt::BinaryConditionalOperatorClass:
4010      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4011      break;
4012
4013    case Stmt::ConditionalOperatorClass:
4014      E = cast<ConditionalOperator>(Terminator)->getCond();
4015      break;
4016
4017    case Stmt::BinaryOperatorClass: // '&&' and '||'
4018      E = cast<BinaryOperator>(Terminator)->getLHS();
4019      break;
4020
4021    case Stmt::ObjCForCollectionStmtClass:
4022      return Terminator;
4023  }
4024
4025  return E ? E->IgnoreParens() : NULL;
4026}
4027
4028//===----------------------------------------------------------------------===//
4029// CFG Graphviz Visualization
4030//===----------------------------------------------------------------------===//
4031
4032
4033#ifndef NDEBUG
4034static StmtPrinterHelper* GraphHelper;
4035#endif
4036
4037void CFG::viewCFG(const LangOptions &LO) const {
4038#ifndef NDEBUG
4039  StmtPrinterHelper H(this, LO);
4040  GraphHelper = &H;
4041  llvm::ViewGraph(this,"CFG");
4042  GraphHelper = NULL;
4043#endif
4044}
4045
4046namespace llvm {
4047template<>
4048struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4049
4050  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4051
4052  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4053
4054#ifndef NDEBUG
4055    std::string OutSStr;
4056    llvm::raw_string_ostream Out(OutSStr);
4057    print_block(Out,Graph, *Node, GraphHelper, false, false);
4058    std::string& OutStr = Out.str();
4059
4060    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4061
4062    // Process string output to make it nicer...
4063    for (unsigned i = 0; i != OutStr.length(); ++i)
4064      if (OutStr[i] == '\n') {                            // Left justify
4065        OutStr[i] = '\\';
4066        OutStr.insert(OutStr.begin()+i+1, 'l');
4067      }
4068
4069    return OutStr;
4070#else
4071    return "";
4072#endif
4073  }
4074};
4075} // end namespace llvm
4076