CFG.cpp revision 4beaa9f51b2da57c64740cef2bd1c2fdb0c325d5
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// CFGBuilder - This class implements CFG construction from an AST.
56///   The builder is stateful: an instance of the builder should be used to only
57///   construct a single CFG.
58///
59///   Example usage:
60///
61///     CFGBuilder builder;
62///     CFG* cfg = builder.BuildAST(stmt1);
63///
64///  CFG construction is done via a recursive walk of an AST.  We actually parse
65///  the AST in reverse order so that the successor of a basic block is
66///  constructed prior to its predecessor.  This allows us to nicely capture
67///  implicit fall-throughs without extra basic blocks.
68///
69class CFGBuilder {
70  ASTContext *Context;
71  llvm::OwningPtr<CFG> cfg;
72
73  CFGBlock* Block;
74  CFGBlock* Succ;
75  CFGBlock* ContinueTargetBlock;
76  CFGBlock* BreakTargetBlock;
77  CFGBlock* SwitchTerminatedBlock;
78  CFGBlock* DefaultCaseBlock;
79  CFGBlock* TryTerminatedBlock;
80
81  // LabelMap records the mapping from Label expressions to their blocks.
82  typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
83  LabelMapTy LabelMap;
84
85  // A list of blocks that end with a "goto" that must be backpatched to their
86  // resolved targets upon completion of CFG construction.
87  typedef std::vector<CFGBlock*> BackpatchBlocksTy;
88  BackpatchBlocksTy BackpatchBlocks;
89
90  // A list of labels whose address has been taken (for indirect gotos).
91  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
92  LabelSetTy AddressTakenLabels;
93
94public:
95  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
96                          Block(NULL), Succ(NULL),
97                          ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
98                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
99                          TryTerminatedBlock(NULL) {}
100
101  // buildCFG - Used by external clients to construct the CFG.
102  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
103                bool pruneTriviallyFalseEdges, bool AddEHEdges,
104                bool AddScopes);
105
106private:
107  // Visitors to walk an AST and construct the CFG.
108  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
109  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
110  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
111  CFGBlock *VisitBreakStmt(BreakStmt *B);
112  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
113  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
114  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
115  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
116  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
117  CFGBlock *VisitCaseStmt(CaseStmt *C);
118  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
119  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
120  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
121  CFGBlock *VisitContinueStmt(ContinueStmt *C);
122  CFGBlock *VisitDeclStmt(DeclStmt *DS);
123  CFGBlock *VisitDeclSubExpr(Decl* D);
124  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
125  CFGBlock *VisitDoStmt(DoStmt *D);
126  CFGBlock *VisitForStmt(ForStmt *F);
127  CFGBlock *VisitGotoStmt(GotoStmt* G);
128  CFGBlock *VisitIfStmt(IfStmt *I);
129  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
130  CFGBlock *VisitLabelStmt(LabelStmt *L);
131  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
132  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
133  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
134  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
135  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
136  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
137  CFGBlock *VisitReturnStmt(ReturnStmt* R);
138  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
139  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
140  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
141  CFGBlock *VisitWhileStmt(WhileStmt *W);
142
143  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
144  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
145  CFGBlock *VisitChildren(Stmt* S);
146
147  // NYS == Not Yet Supported
148  CFGBlock* NYS() {
149    badCFG = true;
150    return Block;
151  }
152
153  CFGBlock *StartScope(Stmt *S, CFGBlock *B) {
154    if (!AddScopes)
155      return B;
156
157    if (B == 0)
158      B = createBlock();
159    B->StartScope(S, cfg->getBumpVectorContext());
160    return B;
161  }
162
163  void EndScope(Stmt *S) {
164    if (!AddScopes)
165      return;
166
167    if (Block == 0)
168      Block = createBlock();
169    Block->EndScope(S, cfg->getBumpVectorContext());
170  }
171
172  void autoCreateBlock() { if (!Block) Block = createBlock(); }
173  CFGBlock *createBlock(bool add_successor = true);
174
175  CFGBlock *addStmt(Stmt *S) {
176    return Visit(S, AddStmtChoice::AlwaysAdd);
177  }
178
179  void AppendStmt(CFGBlock *B, Stmt *S,
180                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
181    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
182  }
183
184  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
185    B->addSuccessor(S, cfg->getBumpVectorContext());
186  }
187
188  /// TryResult - a class representing a variant over the values
189  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
190  ///  and is used by the CFGBuilder to decide if a branch condition
191  ///  can be decided up front during CFG construction.
192  class TryResult {
193    int X;
194  public:
195    TryResult(bool b) : X(b ? 1 : 0) {}
196    TryResult() : X(-1) {}
197
198    bool isTrue() const { return X == 1; }
199    bool isFalse() const { return X == 0; }
200    bool isKnown() const { return X >= 0; }
201    void negate() {
202      assert(isKnown());
203      X ^= 0x1;
204    }
205  };
206
207  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
208  /// if we can evaluate to a known value, otherwise return -1.
209  TryResult TryEvaluateBool(Expr *S) {
210    if (!PruneTriviallyFalseEdges)
211      return TryResult();
212
213    Expr::EvalResult Result;
214    if (!S->isTypeDependent() && !S->isValueDependent() &&
215        S->Evaluate(Result, *Context) && Result.Val.isInt())
216      return Result.Val.getInt().getBoolValue();
217
218    return TryResult();
219  }
220
221  bool badCFG;
222
223  // True iff trivially false edges should be pruned from the CFG.
224  bool PruneTriviallyFalseEdges;
225
226  // True iff EH edges on CallExprs should be added to the CFG.
227  bool AddEHEdges;
228
229  // True iff scope start and scope end notes should be added to the CFG.
230  bool AddScopes;
231};
232
233// FIXME: Add support for dependent-sized array types in C++?
234// Does it even make sense to build a CFG for an uninstantiated template?
235static VariableArrayType* FindVA(Type* t) {
236  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
237    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
238      if (vat->getSizeExpr())
239        return vat;
240
241    t = vt->getElementType().getTypePtr();
242  }
243
244  return 0;
245}
246
247/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
248///  arbitrary statement.  Examples include a single expression or a function
249///  body (compound statement).  The ownership of the returned CFG is
250///  transferred to the caller.  If CFG construction fails, this method returns
251///  NULL.
252CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
253                          bool pruneTriviallyFalseEdges,
254                          bool addehedges, bool AddScopes) {
255
256  AddEHEdges = addehedges;
257  PruneTriviallyFalseEdges = pruneTriviallyFalseEdges;
258
259  Context = C;
260  assert(cfg.get());
261  if (!Statement)
262    return NULL;
263
264  this->AddScopes = AddScopes;
265  badCFG = false;
266
267  // Create an empty block that will serve as the exit block for the CFG.  Since
268  // this is the first block added to the CFG, it will be implicitly registered
269  // as the exit block.
270  Succ = createBlock();
271  assert(Succ == &cfg->getExit());
272  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
273
274  // Visit the statements and create the CFG.
275  CFGBlock *B = addStmt(Statement);
276
277  if (badCFG)
278    return NULL;
279
280  if (B)
281    Succ = B;
282
283  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
284    // FIXME: Add code for base initializers and member initializers.
285    (void)CD;
286  }
287
288  // Backpatch the gotos whose label -> block mappings we didn't know when we
289  // encountered them.
290  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
291                                   E = BackpatchBlocks.end(); I != E; ++I ) {
292
293    CFGBlock* B = *I;
294    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
295    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
296
297    // If there is no target for the goto, then we are looking at an
298    // incomplete AST.  Handle this by not registering a successor.
299    if (LI == LabelMap.end()) continue;
300
301    AddSuccessor(B, LI->second);
302  }
303
304  // Add successors to the Indirect Goto Dispatch block (if we have one).
305  if (CFGBlock* B = cfg->getIndirectGotoBlock())
306    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
307                              E = AddressTakenLabels.end(); I != E; ++I ) {
308
309      // Lookup the target block.
310      LabelMapTy::iterator LI = LabelMap.find(*I);
311
312      // If there is no target block that contains label, then we are looking
313      // at an incomplete AST.  Handle this by not registering a successor.
314      if (LI == LabelMap.end()) continue;
315
316      AddSuccessor(B, LI->second);
317    }
318
319  // Create an empty entry block that has no predecessors.
320  cfg->setEntry(createBlock());
321
322  return cfg.take();
323}
324
325/// createBlock - Used to lazily create blocks that are connected
326///  to the current (global) succcessor.
327CFGBlock* CFGBuilder::createBlock(bool add_successor) {
328  CFGBlock* B = cfg->createBlock();
329  if (add_successor && Succ)
330    AddSuccessor(B, Succ);
331  return B;
332}
333
334/// Visit - Walk the subtree of a statement and add extra
335///   blocks for ternary operators, &&, and ||.  We also process "," and
336///   DeclStmts (which may contain nested control-flow).
337CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
338tryAgain:
339  if (!S) {
340    badCFG = true;
341    return 0;
342  }
343  switch (S->getStmtClass()) {
344    default:
345      return VisitStmt(S, asc);
346
347    case Stmt::AddrLabelExprClass:
348      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
349
350    case Stmt::BinaryOperatorClass:
351      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
352
353    case Stmt::BlockExprClass:
354      return VisitBlockExpr(cast<BlockExpr>(S), asc);
355
356    case Stmt::BreakStmtClass:
357      return VisitBreakStmt(cast<BreakStmt>(S));
358
359    case Stmt::CallExprClass:
360    case Stmt::CXXOperatorCallExprClass:
361      return VisitCallExpr(cast<CallExpr>(S), asc);
362
363    case Stmt::CaseStmtClass:
364      return VisitCaseStmt(cast<CaseStmt>(S));
365
366    case Stmt::ChooseExprClass:
367      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
368
369    case Stmt::CompoundStmtClass:
370      return VisitCompoundStmt(cast<CompoundStmt>(S));
371
372    case Stmt::ConditionalOperatorClass:
373      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
374
375    case Stmt::ContinueStmtClass:
376      return VisitContinueStmt(cast<ContinueStmt>(S));
377
378    case Stmt::CXXCatchStmtClass:
379      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
380
381    case Stmt::CXXExprWithTemporariesClass: {
382      // FIXME: Handle temporaries.  For now, just visit the subexpression
383      // so we don't artificially create extra blocks.
384      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
385    }
386
387    case Stmt::CXXMemberCallExprClass:
388      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
389
390    case Stmt::CXXThrowExprClass:
391      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
392
393    case Stmt::CXXTryStmtClass:
394      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
395
396    case Stmt::DeclStmtClass:
397      return VisitDeclStmt(cast<DeclStmt>(S));
398
399    case Stmt::DefaultStmtClass:
400      return VisitDefaultStmt(cast<DefaultStmt>(S));
401
402    case Stmt::DoStmtClass:
403      return VisitDoStmt(cast<DoStmt>(S));
404
405    case Stmt::ForStmtClass:
406      return VisitForStmt(cast<ForStmt>(S));
407
408    case Stmt::GotoStmtClass:
409      return VisitGotoStmt(cast<GotoStmt>(S));
410
411    case Stmt::IfStmtClass:
412      return VisitIfStmt(cast<IfStmt>(S));
413
414    case Stmt::IndirectGotoStmtClass:
415      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
416
417    case Stmt::LabelStmtClass:
418      return VisitLabelStmt(cast<LabelStmt>(S));
419
420    case Stmt::MemberExprClass:
421      return VisitMemberExpr(cast<MemberExpr>(S), asc);
422
423    case Stmt::ObjCAtCatchStmtClass:
424      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
425
426    case Stmt::ObjCAtSynchronizedStmtClass:
427      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
428
429    case Stmt::ObjCAtThrowStmtClass:
430      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
431
432    case Stmt::ObjCAtTryStmtClass:
433      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
434
435    case Stmt::ObjCForCollectionStmtClass:
436      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
437
438    case Stmt::ParenExprClass:
439      S = cast<ParenExpr>(S)->getSubExpr();
440      goto tryAgain;
441
442    case Stmt::NullStmtClass:
443      return Block;
444
445    case Stmt::ReturnStmtClass:
446      return VisitReturnStmt(cast<ReturnStmt>(S));
447
448    case Stmt::SizeOfAlignOfExprClass:
449      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
450
451    case Stmt::StmtExprClass:
452      return VisitStmtExpr(cast<StmtExpr>(S), asc);
453
454    case Stmt::SwitchStmtClass:
455      return VisitSwitchStmt(cast<SwitchStmt>(S));
456
457    case Stmt::WhileStmtClass:
458      return VisitWhileStmt(cast<WhileStmt>(S));
459  }
460}
461
462CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
463  if (asc.alwaysAdd()) {
464    autoCreateBlock();
465    AppendStmt(Block, S, asc);
466  }
467
468  return VisitChildren(S);
469}
470
471/// VisitChildren - Visit the children of a Stmt.
472CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
473  CFGBlock *B = Block;
474  for (Stmt::child_iterator I = Terminator->child_begin(),
475         E = Terminator->child_end(); I != E; ++I) {
476    if (*I) B = Visit(*I);
477  }
478  return B;
479}
480
481CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
482                                         AddStmtChoice asc) {
483  AddressTakenLabels.insert(A->getLabel());
484
485  if (asc.alwaysAdd()) {
486    autoCreateBlock();
487    AppendStmt(Block, A, asc);
488  }
489
490  return Block;
491}
492
493CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
494                                          AddStmtChoice asc) {
495  if (B->isLogicalOp()) { // && or ||
496    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
497    AppendStmt(ConfluenceBlock, B, asc);
498
499    if (badCFG)
500      return 0;
501
502    // create the block evaluating the LHS
503    CFGBlock* LHSBlock = createBlock(false);
504    LHSBlock->setTerminator(B);
505
506    // create the block evaluating the RHS
507    Succ = ConfluenceBlock;
508    Block = NULL;
509    CFGBlock* RHSBlock = addStmt(B->getRHS());
510
511    if (RHSBlock) {
512      if (badCFG)
513        return 0;
514    }
515    else {
516      // Create an empty block for cases where the RHS doesn't require
517      // any explicit statements in the CFG.
518      RHSBlock = createBlock();
519    }
520
521    // See if this is a known constant.
522    TryResult KnownVal = TryEvaluateBool(B->getLHS());
523    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
524      KnownVal.negate();
525
526    // Now link the LHSBlock with RHSBlock.
527    if (B->getOpcode() == BO_LOr) {
528      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
529      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
530    } else {
531      assert(B->getOpcode() == BO_LAnd);
532      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
533      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
534    }
535
536    // Generate the blocks for evaluating the LHS.
537    Block = LHSBlock;
538    return addStmt(B->getLHS());
539  }
540  else if (B->getOpcode() == BO_Comma) { // ,
541    autoCreateBlock();
542    AppendStmt(Block, B, asc);
543    addStmt(B->getRHS());
544    return addStmt(B->getLHS());
545  }
546  else if (B->isAssignmentOp()) {
547    if (asc.alwaysAdd()) {
548      autoCreateBlock();
549      AppendStmt(Block, B, asc);
550    }
551
552    Visit(B->getRHS());
553    return Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
554  }
555
556  return VisitStmt(B, asc);
557}
558
559CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
560  if (asc.alwaysAdd()) {
561    autoCreateBlock();
562    AppendStmt(Block, E, asc);
563  }
564  return Block;
565}
566
567CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
568  // "break" is a control-flow statement.  Thus we stop processing the current
569  // block.
570  if (badCFG)
571    return 0;
572
573  // Now create a new block that ends with the break statement.
574  Block = createBlock(false);
575  Block->setTerminator(B);
576
577  // If there is no target for the break, then we are looking at an incomplete
578  // AST.  This means that the CFG cannot be constructed.
579  if (BreakTargetBlock)
580    AddSuccessor(Block, BreakTargetBlock);
581  else
582    badCFG = true;
583
584
585  return Block;
586}
587
588static bool CanThrow(Expr *E) {
589  QualType Ty = E->getType();
590  if (Ty->isFunctionPointerType())
591    Ty = Ty->getAs<PointerType>()->getPointeeType();
592  else if (Ty->isBlockPointerType())
593    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
594
595  const FunctionType *FT = Ty->getAs<FunctionType>();
596  if (FT) {
597    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
598      if (Proto->hasEmptyExceptionSpec())
599        return false;
600  }
601  return true;
602}
603
604CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
605  // If this is a call to a no-return function, this stops the block here.
606  bool NoReturn = false;
607  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
608    NoReturn = true;
609  }
610
611  bool AddEHEdge = false;
612
613  // Languages without exceptions are assumed to not throw.
614  if (Context->getLangOptions().Exceptions) {
615    if (AddEHEdges)
616      AddEHEdge = true;
617  }
618
619  if (FunctionDecl *FD = C->getDirectCallee()) {
620    if (FD->hasAttr<NoReturnAttr>())
621      NoReturn = true;
622    if (FD->hasAttr<NoThrowAttr>())
623      AddEHEdge = false;
624  }
625
626  if (!CanThrow(C->getCallee()))
627    AddEHEdge = false;
628
629  if (!NoReturn && !AddEHEdge) {
630    if (asc.asLValue())
631      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
632    else
633      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
634  }
635
636  if (Block) {
637    Succ = Block;
638    if (badCFG)
639      return 0;
640  }
641
642  Block = createBlock(!NoReturn);
643  AppendStmt(Block, C, asc);
644
645  if (NoReturn) {
646    // Wire this to the exit block directly.
647    AddSuccessor(Block, &cfg->getExit());
648  }
649  if (AddEHEdge) {
650    // Add exceptional edges.
651    if (TryTerminatedBlock)
652      AddSuccessor(Block, TryTerminatedBlock);
653    else
654      AddSuccessor(Block, &cfg->getExit());
655  }
656
657  return VisitChildren(C);
658}
659
660CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
661                                      AddStmtChoice asc) {
662  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
663  AppendStmt(ConfluenceBlock, C, asc);
664  if (badCFG)
665    return 0;
666
667  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
668                       : AddStmtChoice::AlwaysAdd;
669
670  Succ = ConfluenceBlock;
671  Block = NULL;
672  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
673  if (badCFG)
674    return 0;
675
676  Succ = ConfluenceBlock;
677  Block = NULL;
678  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
679  if (badCFG)
680    return 0;
681
682  Block = createBlock(false);
683  // See if this is a known constant.
684  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
685  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
686  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
687  Block->setTerminator(C);
688  return addStmt(C->getCond());
689}
690
691
692CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
693  EndScope(C);
694
695  CFGBlock* LastBlock = Block;
696
697  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
698       I != E; ++I ) {
699    // If we hit a segment of code just containing ';' (NullStmts), we can
700    // get a null block back.  In such cases, just use the LastBlock
701    if (CFGBlock *newBlock = addStmt(*I))
702      LastBlock = newBlock;
703
704    if (badCFG)
705      return NULL;
706  }
707
708  LastBlock = StartScope(C, LastBlock);
709
710  return LastBlock;
711}
712
713CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
714                                               AddStmtChoice asc) {
715  // Create the confluence block that will "merge" the results of the ternary
716  // expression.
717  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
718  AppendStmt(ConfluenceBlock, C, asc);
719  if (badCFG)
720    return 0;
721
722  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
723                       : AddStmtChoice::AlwaysAdd;
724
725  // Create a block for the LHS expression if there is an LHS expression.  A
726  // GCC extension allows LHS to be NULL, causing the condition to be the
727  // value that is returned instead.
728  //  e.g: x ?: y is shorthand for: x ? x : y;
729  Succ = ConfluenceBlock;
730  Block = NULL;
731  CFGBlock* LHSBlock = NULL;
732  if (C->getLHS()) {
733    LHSBlock = Visit(C->getLHS(), asc);
734    if (badCFG)
735      return 0;
736    Block = NULL;
737  }
738
739  // Create the block for the RHS expression.
740  Succ = ConfluenceBlock;
741  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
742  if (badCFG)
743    return 0;
744
745  // Create the block that will contain the condition.
746  Block = createBlock(false);
747
748  // See if this is a known constant.
749  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
750  if (LHSBlock) {
751    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
752  } else {
753    if (KnownVal.isFalse()) {
754      // If we know the condition is false, add NULL as the successor for
755      // the block containing the condition.  In this case, the confluence
756      // block will have just one predecessor.
757      AddSuccessor(Block, 0);
758      assert(ConfluenceBlock->pred_size() == 1);
759    } else {
760      // If we have no LHS expression, add the ConfluenceBlock as a direct
761      // successor for the block containing the condition.  Moreover, we need to
762      // reverse the order of the predecessors in the ConfluenceBlock because
763      // the RHSBlock will have been added to the succcessors already, and we
764      // want the first predecessor to the the block containing the expression
765      // for the case when the ternary expression evaluates to true.
766      AddSuccessor(Block, ConfluenceBlock);
767      assert(ConfluenceBlock->pred_size() == 2);
768      std::reverse(ConfluenceBlock->pred_begin(),
769                   ConfluenceBlock->pred_end());
770    }
771  }
772
773  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
774  Block->setTerminator(C);
775  return addStmt(C->getCond());
776}
777
778CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
779  autoCreateBlock();
780
781  if (DS->isSingleDecl()) {
782    AppendStmt(Block, DS);
783    return VisitDeclSubExpr(DS->getSingleDecl());
784  }
785
786  CFGBlock *B = 0;
787
788  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
789  typedef llvm::SmallVector<Decl*,10> BufTy;
790  BufTy Buf(DS->decl_begin(), DS->decl_end());
791
792  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
793    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
794    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
795               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
796
797    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
798    // automatically freed with the CFG.
799    DeclGroupRef DG(*I);
800    Decl *D = *I;
801    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
802    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
803
804    // Append the fake DeclStmt to block.
805    AppendStmt(Block, DSNew);
806    B = VisitDeclSubExpr(D);
807  }
808
809  return B;
810}
811
812/// VisitDeclSubExpr - Utility method to add block-level expressions for
813///  initializers in Decls.
814CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
815  assert(Block);
816
817  VarDecl *VD = dyn_cast<VarDecl>(D);
818
819  if (!VD)
820    return Block;
821
822  Expr *Init = VD->getInit();
823
824  if (Init) {
825    AddStmtChoice::Kind k =
826      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
827                                       : AddStmtChoice::NotAlwaysAdd;
828    Visit(Init, AddStmtChoice(k));
829  }
830
831  // If the type of VD is a VLA, then we must process its size expressions.
832  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
833       VA = FindVA(VA->getElementType().getTypePtr()))
834    Block = addStmt(VA->getSizeExpr());
835
836  return Block;
837}
838
839CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
840  // We may see an if statement in the middle of a basic block, or it may be the
841  // first statement we are processing.  In either case, we create a new basic
842  // block.  First, we create the blocks for the then...else statements, and
843  // then we create the block containing the if statement.  If we were in the
844  // middle of a block, we stop processing that block.  That block is then the
845  // implicit successor for the "then" and "else" clauses.
846
847  // The block we were proccessing is now finished.  Make it the successor
848  // block.
849  if (Block) {
850    Succ = Block;
851    if (badCFG)
852      return 0;
853  }
854
855  // Process the false branch.
856  CFGBlock* ElseBlock = Succ;
857
858  if (Stmt* Else = I->getElse()) {
859    SaveAndRestore<CFGBlock*> sv(Succ);
860
861    // NULL out Block so that the recursive call to Visit will
862    // create a new basic block.
863    Block = NULL;
864    ElseBlock = addStmt(Else);
865
866    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
867      ElseBlock = sv.get();
868    else if (Block) {
869      if (badCFG)
870        return 0;
871    }
872  }
873
874  // Process the true branch.
875  CFGBlock* ThenBlock;
876  {
877    Stmt* Then = I->getThen();
878    assert(Then);
879    SaveAndRestore<CFGBlock*> sv(Succ);
880    Block = NULL;
881    ThenBlock = addStmt(Then);
882
883    if (!ThenBlock) {
884      // We can reach here if the "then" body has all NullStmts.
885      // Create an empty block so we can distinguish between true and false
886      // branches in path-sensitive analyses.
887      ThenBlock = createBlock(false);
888      AddSuccessor(ThenBlock, sv.get());
889    } else if (Block) {
890      if (badCFG)
891        return 0;
892    }
893  }
894
895  // Now create a new block containing the if statement.
896  Block = createBlock(false);
897
898  // Set the terminator of the new block to the If statement.
899  Block->setTerminator(I);
900
901  // See if this is a known constant.
902  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
903
904  // Now add the successors.
905  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
906  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
907
908  // Add the condition as the last statement in the new block.  This may create
909  // new blocks as the condition may contain control-flow.  Any newly created
910  // blocks will be pointed to be "Block".
911  Block = addStmt(I->getCond());
912
913  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
914  // and the condition variable initialization to the CFG.
915  if (VarDecl *VD = I->getConditionVariable()) {
916    if (Expr *Init = VD->getInit()) {
917      autoCreateBlock();
918      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
919      addStmt(Init);
920    }
921  }
922
923  return Block;
924}
925
926
927CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
928  // If we were in the middle of a block we stop processing that block.
929  //
930  // NOTE: If a "return" appears in the middle of a block, this means that the
931  //       code afterwards is DEAD (unreachable).  We still keep a basic block
932  //       for that code; a simple "mark-and-sweep" from the entry block will be
933  //       able to report such dead blocks.
934
935  // Create the new block.
936  Block = createBlock(false);
937
938  // The Exit block is the only successor.
939  AddSuccessor(Block, &cfg->getExit());
940
941  // Add the return statement to the block.  This may create new blocks if R
942  // contains control-flow (short-circuit operations).
943  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
944}
945
946CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
947  // Get the block of the labeled statement.  Add it to our map.
948  addStmt(L->getSubStmt());
949  CFGBlock* LabelBlock = Block;
950
951  if (!LabelBlock)              // This can happen when the body is empty, i.e.
952    LabelBlock = createBlock(); // scopes that only contains NullStmts.
953
954  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
955  LabelMap[ L ] = LabelBlock;
956
957  // Labels partition blocks, so this is the end of the basic block we were
958  // processing (L is the block's label).  Because this is label (and we have
959  // already processed the substatement) there is no extra control-flow to worry
960  // about.
961  LabelBlock->setLabel(L);
962  if (badCFG)
963    return 0;
964
965  // We set Block to NULL to allow lazy creation of a new block (if necessary);
966  Block = NULL;
967
968  // This block is now the implicit successor of other blocks.
969  Succ = LabelBlock;
970
971  return LabelBlock;
972}
973
974CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
975  // Goto is a control-flow statement.  Thus we stop processing the current
976  // block and create a new one.
977
978  Block = createBlock(false);
979  Block->setTerminator(G);
980
981  // If we already know the mapping to the label block add the successor now.
982  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
983
984  if (I == LabelMap.end())
985    // We will need to backpatch this block later.
986    BackpatchBlocks.push_back(Block);
987  else
988    AddSuccessor(Block, I->second);
989
990  return Block;
991}
992
993CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
994  CFGBlock* LoopSuccessor = NULL;
995
996  // "for" is a control-flow statement.  Thus we stop processing the current
997  // block.
998  if (Block) {
999    if (badCFG)
1000      return 0;
1001    LoopSuccessor = Block;
1002  } else
1003    LoopSuccessor = Succ;
1004
1005  // Save the current value for the break targets.
1006  // All breaks should go to the code following the loop.
1007  SaveAndRestore<CFGBlock*> save_break(BreakTargetBlock);
1008  BreakTargetBlock = LoopSuccessor;
1009
1010  // Because of short-circuit evaluation, the condition of the loop can span
1011  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1012  // evaluate the condition.
1013  CFGBlock* ExitConditionBlock = createBlock(false);
1014  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1015
1016  // Set the terminator for the "exit" condition block.
1017  ExitConditionBlock->setTerminator(F);
1018
1019  // Now add the actual condition to the condition block.  Because the condition
1020  // itself may contain control-flow, new blocks may be created.
1021  if (Stmt* C = F->getCond()) {
1022    Block = ExitConditionBlock;
1023    EntryConditionBlock = addStmt(C);
1024    assert(Block == EntryConditionBlock);
1025
1026    // If this block contains a condition variable, add both the condition
1027    // variable and initializer to the CFG.
1028    if (VarDecl *VD = F->getConditionVariable()) {
1029      if (Expr *Init = VD->getInit()) {
1030        autoCreateBlock();
1031        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1032        EntryConditionBlock = addStmt(Init);
1033        assert(Block == EntryConditionBlock);
1034      }
1035    }
1036
1037    if (Block) {
1038      if (badCFG)
1039        return 0;
1040    }
1041  }
1042
1043  // The condition block is the implicit successor for the loop body as well as
1044  // any code above the loop.
1045  Succ = EntryConditionBlock;
1046
1047  // See if this is a known constant.
1048  TryResult KnownVal(true);
1049
1050  if (F->getCond())
1051    KnownVal = TryEvaluateBool(F->getCond());
1052
1053  // Now create the loop body.
1054  {
1055    assert(F->getBody());
1056
1057   // Save the current values for Block, Succ, and continue targets.
1058   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1059      save_continue(ContinueTargetBlock);
1060
1061    // Create a new block to contain the (bottom) of the loop body.
1062    Block = NULL;
1063
1064    if (Stmt* I = F->getInc()) {
1065      // Generate increment code in its own basic block.  This is the target of
1066      // continue statements.
1067      Succ = addStmt(I);
1068    } else {
1069      // No increment code.  Create a special, empty, block that is used as the
1070      // target block for "looping back" to the start of the loop.
1071      assert(Succ == EntryConditionBlock);
1072      Succ = createBlock();
1073    }
1074
1075    // Finish up the increment (or empty) block if it hasn't been already.
1076    if (Block) {
1077      assert(Block == Succ);
1078      if (badCFG)
1079        return 0;
1080      Block = 0;
1081    }
1082
1083    ContinueTargetBlock = Succ;
1084
1085    // The starting block for the loop increment is the block that should
1086    // represent the 'loop target' for looping back to the start of the loop.
1087    ContinueTargetBlock->setLoopTarget(F);
1088
1089    // Now populate the body block, and in the process create new blocks as we
1090    // walk the body of the loop.
1091    CFGBlock* BodyBlock = addStmt(F->getBody());
1092
1093    if (!BodyBlock)
1094      BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;"
1095    else if (badCFG)
1096      return 0;
1097
1098    // This new body block is a successor to our "exit" condition block.
1099    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1100  }
1101
1102  // Link up the condition block with the code that follows the loop.  (the
1103  // false branch).
1104  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1105
1106  // If the loop contains initialization, create a new block for those
1107  // statements.  This block can also contain statements that precede the loop.
1108  if (Stmt* I = F->getInit()) {
1109    Block = createBlock();
1110    return addStmt(I);
1111  } else {
1112    // There is no loop initialization.  We are thus basically a while loop.
1113    // NULL out Block to force lazy block construction.
1114    Block = NULL;
1115    Succ = EntryConditionBlock;
1116    return EntryConditionBlock;
1117  }
1118}
1119
1120CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1121  if (asc.alwaysAdd()) {
1122    autoCreateBlock();
1123    AppendStmt(Block, M, asc);
1124  }
1125  return Visit(M->getBase(),
1126               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1127                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1128}
1129
1130CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1131  // Objective-C fast enumeration 'for' statements:
1132  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1133  //
1134  //  for ( Type newVariable in collection_expression ) { statements }
1135  //
1136  //  becomes:
1137  //
1138  //   prologue:
1139  //     1. collection_expression
1140  //     T. jump to loop_entry
1141  //   loop_entry:
1142  //     1. side-effects of element expression
1143  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1144  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1145  //   TB:
1146  //     statements
1147  //     T. jump to loop_entry
1148  //   FB:
1149  //     what comes after
1150  //
1151  //  and
1152  //
1153  //  Type existingItem;
1154  //  for ( existingItem in expression ) { statements }
1155  //
1156  //  becomes:
1157  //
1158  //   the same with newVariable replaced with existingItem; the binding works
1159  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1160  //   a DeclStmt and the other returns a DeclRefExpr.
1161  //
1162
1163  CFGBlock* LoopSuccessor = 0;
1164
1165  if (Block) {
1166    if (badCFG)
1167      return 0;
1168    LoopSuccessor = Block;
1169    Block = 0;
1170  } else
1171    LoopSuccessor = Succ;
1172
1173  // Build the condition blocks.
1174  CFGBlock* ExitConditionBlock = createBlock(false);
1175  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1176
1177  // Set the terminator for the "exit" condition block.
1178  ExitConditionBlock->setTerminator(S);
1179
1180  // The last statement in the block should be the ObjCForCollectionStmt, which
1181  // performs the actual binding to 'element' and determines if there are any
1182  // more items in the collection.
1183  AppendStmt(ExitConditionBlock, S);
1184  Block = ExitConditionBlock;
1185
1186  // Walk the 'element' expression to see if there are any side-effects.  We
1187  // generate new blocks as necesary.  We DON'T add the statement by default to
1188  // the CFG unless it contains control-flow.
1189  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1190  if (Block) {
1191    if (badCFG)
1192      return 0;
1193    Block = 0;
1194  }
1195
1196  // The condition block is the implicit successor for the loop body as well as
1197  // any code above the loop.
1198  Succ = EntryConditionBlock;
1199
1200  // Now create the true branch.
1201  {
1202    // Save the current values for Succ, continue and break targets.
1203    SaveAndRestore<CFGBlock*> save_Succ(Succ),
1204      save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
1205
1206    BreakTargetBlock = LoopSuccessor;
1207    ContinueTargetBlock = EntryConditionBlock;
1208
1209    CFGBlock* BodyBlock = addStmt(S->getBody());
1210
1211    if (!BodyBlock)
1212      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1213    else if (Block) {
1214      if (badCFG)
1215        return 0;
1216    }
1217
1218    // This new body block is a successor to our "exit" condition block.
1219    AddSuccessor(ExitConditionBlock, BodyBlock);
1220  }
1221
1222  // Link up the condition block with the code that follows the loop.
1223  // (the false branch).
1224  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1225
1226  // Now create a prologue block to contain the collection expression.
1227  Block = createBlock();
1228  return addStmt(S->getCollection());
1229}
1230
1231CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1232  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1233
1234  // Inline the body.
1235  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1236
1237  // The sync body starts its own basic block.  This makes it a little easier
1238  // for diagnostic clients.
1239  if (SyncBlock) {
1240    if (badCFG)
1241      return 0;
1242
1243    Block = 0;
1244    Succ = SyncBlock;
1245  }
1246
1247  // Add the @synchronized to the CFG.
1248  autoCreateBlock();
1249  AppendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1250
1251  // Inline the sync expression.
1252  return addStmt(S->getSynchExpr());
1253}
1254
1255CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1256  // FIXME
1257  return NYS();
1258}
1259
1260CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1261  CFGBlock* LoopSuccessor = NULL;
1262
1263  // "while" is a control-flow statement.  Thus we stop processing the current
1264  // block.
1265  if (Block) {
1266    if (badCFG)
1267      return 0;
1268    LoopSuccessor = Block;
1269  } else
1270    LoopSuccessor = Succ;
1271
1272  // Because of short-circuit evaluation, the condition of the loop can span
1273  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1274  // evaluate the condition.
1275  CFGBlock* ExitConditionBlock = createBlock(false);
1276  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1277
1278  // Set the terminator for the "exit" condition block.
1279  ExitConditionBlock->setTerminator(W);
1280
1281  // Now add the actual condition to the condition block.  Because the condition
1282  // itself may contain control-flow, new blocks may be created.  Thus we update
1283  // "Succ" after adding the condition.
1284  if (Stmt* C = W->getCond()) {
1285    Block = ExitConditionBlock;
1286    EntryConditionBlock = addStmt(C);
1287    assert(Block == EntryConditionBlock);
1288
1289    // If this block contains a condition variable, add both the condition
1290    // variable and initializer to the CFG.
1291    if (VarDecl *VD = W->getConditionVariable()) {
1292      if (Expr *Init = VD->getInit()) {
1293        autoCreateBlock();
1294        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1295        EntryConditionBlock = addStmt(Init);
1296        assert(Block == EntryConditionBlock);
1297      }
1298    }
1299
1300    if (Block) {
1301      if (badCFG)
1302        return 0;
1303    }
1304  }
1305
1306  // The condition block is the implicit successor for the loop body as well as
1307  // any code above the loop.
1308  Succ = EntryConditionBlock;
1309
1310  // See if this is a known constant.
1311  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1312
1313  // Process the loop body.
1314  {
1315    assert(W->getBody());
1316
1317    // Save the current values for Block, Succ, and continue and break targets
1318    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1319                              save_continue(ContinueTargetBlock),
1320                              save_break(BreakTargetBlock);
1321
1322    // Create an empty block to represent the transition block for looping back
1323    // to the head of the loop.
1324    Block = 0;
1325    assert(Succ == EntryConditionBlock);
1326    Succ = createBlock();
1327    Succ->setLoopTarget(W);
1328    ContinueTargetBlock = Succ;
1329
1330    // All breaks should go to the code following the loop.
1331    BreakTargetBlock = LoopSuccessor;
1332
1333    // NULL out Block to force lazy instantiation of blocks for the body.
1334    Block = NULL;
1335
1336    // Create the body.  The returned block is the entry to the loop body.
1337    CFGBlock* BodyBlock = addStmt(W->getBody());
1338
1339    if (!BodyBlock)
1340      BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;"
1341    else if (Block) {
1342      if (badCFG)
1343        return 0;
1344    }
1345
1346    // Add the loop body entry as a successor to the condition.
1347    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1348  }
1349
1350  // Link up the condition block with the code that follows the loop.  (the
1351  // false branch).
1352  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1353
1354  // There can be no more statements in the condition block since we loop back
1355  // to this block.  NULL out Block to force lazy creation of another block.
1356  Block = NULL;
1357
1358  // Return the condition block, which is the dominating block for the loop.
1359  Succ = EntryConditionBlock;
1360  return EntryConditionBlock;
1361}
1362
1363
1364CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1365  // FIXME: For now we pretend that @catch and the code it contains does not
1366  //  exit.
1367  return Block;
1368}
1369
1370CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1371  // FIXME: This isn't complete.  We basically treat @throw like a return
1372  //  statement.
1373
1374  // If we were in the middle of a block we stop processing that block.
1375  if (badCFG)
1376    return 0;
1377
1378  // Create the new block.
1379  Block = createBlock(false);
1380
1381  // The Exit block is the only successor.
1382  AddSuccessor(Block, &cfg->getExit());
1383
1384  // Add the statement to the block.  This may create new blocks if S contains
1385  // control-flow (short-circuit operations).
1386  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1387}
1388
1389CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1390  // If we were in the middle of a block we stop processing that block.
1391  if (badCFG)
1392    return 0;
1393
1394  // Create the new block.
1395  Block = createBlock(false);
1396
1397  if (TryTerminatedBlock)
1398    // The current try statement is the only successor.
1399    AddSuccessor(Block, TryTerminatedBlock);
1400  else
1401    // otherwise the Exit block is the only successor.
1402    AddSuccessor(Block, &cfg->getExit());
1403
1404  // Add the statement to the block.  This may create new blocks if S contains
1405  // control-flow (short-circuit operations).
1406  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1407}
1408
1409CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1410  CFGBlock* LoopSuccessor = NULL;
1411
1412  // "do...while" is a control-flow statement.  Thus we stop processing the
1413  // current block.
1414  if (Block) {
1415    if (badCFG)
1416      return 0;
1417    LoopSuccessor = Block;
1418  } else
1419    LoopSuccessor = Succ;
1420
1421  // Because of short-circuit evaluation, the condition of the loop can span
1422  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1423  // evaluate the condition.
1424  CFGBlock* ExitConditionBlock = createBlock(false);
1425  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1426
1427  // Set the terminator for the "exit" condition block.
1428  ExitConditionBlock->setTerminator(D);
1429
1430  // Now add the actual condition to the condition block.  Because the condition
1431  // itself may contain control-flow, new blocks may be created.
1432  if (Stmt* C = D->getCond()) {
1433    Block = ExitConditionBlock;
1434    EntryConditionBlock = addStmt(C);
1435    if (Block) {
1436      if (badCFG)
1437        return 0;
1438    }
1439  }
1440
1441  // The condition block is the implicit successor for the loop body.
1442  Succ = EntryConditionBlock;
1443
1444  // See if this is a known constant.
1445  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1446
1447  // Process the loop body.
1448  CFGBlock* BodyBlock = NULL;
1449  {
1450    assert(D->getBody());
1451
1452    // Save the current values for Block, Succ, and continue and break targets
1453    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1454      save_continue(ContinueTargetBlock),
1455      save_break(BreakTargetBlock);
1456
1457    // All continues within this loop should go to the condition block
1458    ContinueTargetBlock = EntryConditionBlock;
1459
1460    // All breaks should go to the code following the loop.
1461    BreakTargetBlock = LoopSuccessor;
1462
1463    // NULL out Block to force lazy instantiation of blocks for the body.
1464    Block = NULL;
1465
1466    // Create the body.  The returned block is the entry to the loop body.
1467    BodyBlock = addStmt(D->getBody());
1468
1469    if (!BodyBlock)
1470      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1471    else if (Block) {
1472      if (badCFG)
1473        return 0;
1474    }
1475
1476    if (!KnownVal.isFalse()) {
1477      // Add an intermediate block between the BodyBlock and the
1478      // ExitConditionBlock to represent the "loop back" transition.  Create an
1479      // empty block to represent the transition block for looping back to the
1480      // head of the loop.
1481      // FIXME: Can we do this more efficiently without adding another block?
1482      Block = NULL;
1483      Succ = BodyBlock;
1484      CFGBlock *LoopBackBlock = createBlock();
1485      LoopBackBlock->setLoopTarget(D);
1486
1487      // Add the loop body entry as a successor to the condition.
1488      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1489    }
1490    else
1491      AddSuccessor(ExitConditionBlock, NULL);
1492  }
1493
1494  // Link up the condition block with the code that follows the loop.
1495  // (the false branch).
1496  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1497
1498  // There can be no more statements in the body block(s) since we loop back to
1499  // the body.  NULL out Block to force lazy creation of another block.
1500  Block = NULL;
1501
1502  // Return the loop body, which is the dominating block for the loop.
1503  Succ = BodyBlock;
1504  return BodyBlock;
1505}
1506
1507CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1508  // "continue" is a control-flow statement.  Thus we stop processing the
1509  // current block.
1510  if (badCFG)
1511    return 0;
1512
1513  // Now create a new block that ends with the continue statement.
1514  Block = createBlock(false);
1515  Block->setTerminator(C);
1516
1517  // If there is no target for the continue, then we are looking at an
1518  // incomplete AST.  This means the CFG cannot be constructed.
1519  if (ContinueTargetBlock)
1520    AddSuccessor(Block, ContinueTargetBlock);
1521  else
1522    badCFG = true;
1523
1524  return Block;
1525}
1526
1527CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1528                                             AddStmtChoice asc) {
1529
1530  if (asc.alwaysAdd()) {
1531    autoCreateBlock();
1532    AppendStmt(Block, E);
1533  }
1534
1535  // VLA types have expressions that must be evaluated.
1536  if (E->isArgumentType()) {
1537    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1538         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1539      addStmt(VA->getSizeExpr());
1540  }
1541
1542  return Block;
1543}
1544
1545/// VisitStmtExpr - Utility method to handle (nested) statement
1546///  expressions (a GCC extension).
1547CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1548  if (asc.alwaysAdd()) {
1549    autoCreateBlock();
1550    AppendStmt(Block, SE);
1551  }
1552  return VisitCompoundStmt(SE->getSubStmt());
1553}
1554
1555CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1556  // "switch" is a control-flow statement.  Thus we stop processing the current
1557  // block.
1558  CFGBlock* SwitchSuccessor = NULL;
1559
1560  if (Block) {
1561    if (badCFG)
1562      return 0;
1563    SwitchSuccessor = Block;
1564  } else SwitchSuccessor = Succ;
1565
1566  // Save the current "switch" context.
1567  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1568                            save_break(BreakTargetBlock),
1569                            save_default(DefaultCaseBlock);
1570
1571  // Set the "default" case to be the block after the switch statement.  If the
1572  // switch statement contains a "default:", this value will be overwritten with
1573  // the block for that code.
1574  DefaultCaseBlock = SwitchSuccessor;
1575
1576  // Create a new block that will contain the switch statement.
1577  SwitchTerminatedBlock = createBlock(false);
1578
1579  // Now process the switch body.  The code after the switch is the implicit
1580  // successor.
1581  Succ = SwitchSuccessor;
1582  BreakTargetBlock = SwitchSuccessor;
1583
1584  // When visiting the body, the case statements should automatically get linked
1585  // up to the switch.  We also don't keep a pointer to the body, since all
1586  // control-flow from the switch goes to case/default statements.
1587  assert(Terminator->getBody() && "switch must contain a non-NULL body");
1588  Block = NULL;
1589  addStmt(Terminator->getBody());
1590  if (Block) {
1591    if (badCFG)
1592      return 0;
1593  }
1594
1595  // If we have no "default:" case, the default transition is to the code
1596  // following the switch body.
1597  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1598
1599  // Add the terminator and condition in the switch block.
1600  SwitchTerminatedBlock->setTerminator(Terminator);
1601  assert(Terminator->getCond() && "switch condition must be non-NULL");
1602  Block = SwitchTerminatedBlock;
1603  Block = addStmt(Terminator->getCond());
1604
1605  // Finally, if the SwitchStmt contains a condition variable, add both the
1606  // SwitchStmt and the condition variable initialization to the CFG.
1607  if (VarDecl *VD = Terminator->getConditionVariable()) {
1608    if (Expr *Init = VD->getInit()) {
1609      autoCreateBlock();
1610      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1611      addStmt(Init);
1612    }
1613  }
1614
1615  return Block;
1616}
1617
1618CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1619  // CaseStmts are essentially labels, so they are the first statement in a
1620  // block.
1621  CFGBlock *TopBlock = 0, *LastBlock = 0;
1622
1623  if (Stmt *Sub = CS->getSubStmt()) {
1624    // For deeply nested chains of CaseStmts, instead of doing a recursion
1625    // (which can blow out the stack), manually unroll and create blocks
1626    // along the way.
1627    while (isa<CaseStmt>(Sub)) {
1628      CFGBlock *CurrentBlock = createBlock(false);
1629      CurrentBlock->setLabel(CS);
1630
1631      if (TopBlock)
1632        AddSuccessor(LastBlock, CurrentBlock);
1633      else
1634        TopBlock = CurrentBlock;
1635
1636      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
1637      LastBlock = CurrentBlock;
1638
1639      CS = cast<CaseStmt>(Sub);
1640      Sub = CS->getSubStmt();
1641    }
1642
1643    addStmt(Sub);
1644  }
1645
1646  CFGBlock* CaseBlock = Block;
1647  if (!CaseBlock)
1648    CaseBlock = createBlock();
1649
1650  // Cases statements partition blocks, so this is the top of the basic block we
1651  // were processing (the "case XXX:" is the label).
1652  CaseBlock->setLabel(CS);
1653
1654  if (badCFG)
1655    return 0;
1656
1657  // Add this block to the list of successors for the block with the switch
1658  // statement.
1659  assert(SwitchTerminatedBlock);
1660  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1661
1662  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1663  Block = NULL;
1664
1665  if (TopBlock) {
1666    AddSuccessor(LastBlock, CaseBlock);
1667    Succ = TopBlock;
1668  }
1669  else {
1670    // This block is now the implicit successor of other blocks.
1671    Succ = CaseBlock;
1672  }
1673
1674  return Succ;
1675}
1676
1677CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1678  if (Terminator->getSubStmt())
1679    addStmt(Terminator->getSubStmt());
1680
1681  DefaultCaseBlock = Block;
1682
1683  if (!DefaultCaseBlock)
1684    DefaultCaseBlock = createBlock();
1685
1686  // Default statements partition blocks, so this is the top of the basic block
1687  // we were processing (the "default:" is the label).
1688  DefaultCaseBlock->setLabel(Terminator);
1689
1690  if (badCFG)
1691    return 0;
1692
1693  // Unlike case statements, we don't add the default block to the successors
1694  // for the switch statement immediately.  This is done when we finish
1695  // processing the switch statement.  This allows for the default case
1696  // (including a fall-through to the code after the switch statement) to always
1697  // be the last successor of a switch-terminated block.
1698
1699  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1700  Block = NULL;
1701
1702  // This block is now the implicit successor of other blocks.
1703  Succ = DefaultCaseBlock;
1704
1705  return DefaultCaseBlock;
1706}
1707
1708CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
1709  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
1710  // current block.
1711  CFGBlock* TrySuccessor = NULL;
1712
1713  if (Block) {
1714    if (badCFG)
1715      return 0;
1716    TrySuccessor = Block;
1717  } else TrySuccessor = Succ;
1718
1719  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
1720
1721  // Create a new block that will contain the try statement.
1722  CFGBlock *NewTryTerminatedBlock = createBlock(false);
1723  // Add the terminator in the try block.
1724  NewTryTerminatedBlock->setTerminator(Terminator);
1725
1726  bool HasCatchAll = false;
1727  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
1728    // The code after the try is the implicit successor.
1729    Succ = TrySuccessor;
1730    CXXCatchStmt *CS = Terminator->getHandler(h);
1731    if (CS->getExceptionDecl() == 0) {
1732      HasCatchAll = true;
1733    }
1734    Block = NULL;
1735    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
1736    if (CatchBlock == 0)
1737      return 0;
1738    // Add this block to the list of successors for the block with the try
1739    // statement.
1740    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
1741  }
1742  if (!HasCatchAll) {
1743    if (PrevTryTerminatedBlock)
1744      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
1745    else
1746      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
1747  }
1748
1749  // The code after the try is the implicit successor.
1750  Succ = TrySuccessor;
1751
1752  // Save the current "try" context.
1753  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
1754  TryTerminatedBlock = NewTryTerminatedBlock;
1755
1756  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
1757  Block = NULL;
1758  Block = addStmt(Terminator->getTryBlock());
1759  return Block;
1760}
1761
1762CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
1763  // CXXCatchStmt are treated like labels, so they are the first statement in a
1764  // block.
1765
1766  if (CS->getHandlerBlock())
1767    addStmt(CS->getHandlerBlock());
1768
1769  CFGBlock* CatchBlock = Block;
1770  if (!CatchBlock)
1771    CatchBlock = createBlock();
1772
1773  CatchBlock->setLabel(CS);
1774
1775  if (badCFG)
1776    return 0;
1777
1778  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1779  Block = NULL;
1780
1781  return CatchBlock;
1782}
1783
1784CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
1785                                             AddStmtChoice asc) {
1786  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1787                                         : AddStmtChoice::AlwaysAdd;
1788  autoCreateBlock();
1789  AppendStmt(Block, C, AddStmtChoice(K));
1790  return VisitChildren(C);
1791}
1792
1793CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1794  // Lazily create the indirect-goto dispatch block if there isn't one already.
1795  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
1796
1797  if (!IBlock) {
1798    IBlock = createBlock(false);
1799    cfg->setIndirectGotoBlock(IBlock);
1800  }
1801
1802  // IndirectGoto is a control-flow statement.  Thus we stop processing the
1803  // current block and create a new one.
1804  if (badCFG)
1805    return 0;
1806
1807  Block = createBlock(false);
1808  Block->setTerminator(I);
1809  AddSuccessor(Block, IBlock);
1810  return addStmt(I->getTarget());
1811}
1812
1813} // end anonymous namespace
1814
1815/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
1816///  no successors or predecessors.  If this is the first block created in the
1817///  CFG, it is automatically set to be the Entry and Exit of the CFG.
1818CFGBlock* CFG::createBlock() {
1819  bool first_block = begin() == end();
1820
1821  // Create the block.
1822  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
1823  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
1824  Blocks.push_back(Mem, BlkBVC);
1825
1826  // If this is the first block, set it as the Entry and Exit.
1827  if (first_block)
1828    Entry = Exit = &back();
1829
1830  // Return the block.
1831  return &back();
1832}
1833
1834/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
1835///  CFG is returned to the caller.
1836CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
1837                   bool PruneTriviallyFalse,
1838                   bool AddEHEdges, bool AddScopes) {
1839  CFGBuilder Builder;
1840  return Builder.buildCFG(D, Statement, C, PruneTriviallyFalse,
1841                          AddEHEdges, AddScopes);
1842}
1843
1844//===----------------------------------------------------------------------===//
1845// CFG: Queries for BlkExprs.
1846//===----------------------------------------------------------------------===//
1847
1848namespace {
1849  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
1850}
1851
1852static void FindSubExprAssignments(Stmt *S,
1853                                   llvm::SmallPtrSet<Expr*,50>& Set) {
1854  if (!S)
1855    return;
1856
1857  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
1858    Stmt *child = *I;
1859    if (!child)
1860      continue;
1861
1862    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
1863      if (B->isAssignmentOp()) Set.insert(B);
1864
1865    FindSubExprAssignments(child, Set);
1866  }
1867}
1868
1869static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
1870  BlkExprMapTy* M = new BlkExprMapTy();
1871
1872  // Look for assignments that are used as subexpressions.  These are the only
1873  // assignments that we want to *possibly* register as a block-level
1874  // expression.  Basically, if an assignment occurs both in a subexpression and
1875  // at the block-level, it is a block-level expression.
1876  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
1877
1878  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
1879    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1880      FindSubExprAssignments(*BI, SubExprAssignments);
1881
1882  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
1883
1884    // Iterate over the statements again on identify the Expr* and Stmt* at the
1885    // block-level that are block-level expressions.
1886
1887    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
1888      if (Expr* Exp = dyn_cast<Expr>(*BI)) {
1889
1890        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
1891          // Assignment expressions that are not nested within another
1892          // expression are really "statements" whose value is never used by
1893          // another expression.
1894          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
1895            continue;
1896        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
1897          // Special handling for statement expressions.  The last statement in
1898          // the statement expression is also a block-level expr.
1899          const CompoundStmt* C = Terminator->getSubStmt();
1900          if (!C->body_empty()) {
1901            unsigned x = M->size();
1902            (*M)[C->body_back()] = x;
1903          }
1904        }
1905
1906        unsigned x = M->size();
1907        (*M)[Exp] = x;
1908      }
1909
1910    // Look at terminators.  The condition is a block-level expression.
1911
1912    Stmt* S = (*I)->getTerminatorCondition();
1913
1914    if (S && M->find(S) == M->end()) {
1915        unsigned x = M->size();
1916        (*M)[S] = x;
1917    }
1918  }
1919
1920  return M;
1921}
1922
1923CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
1924  assert(S != NULL);
1925  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
1926
1927  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
1928  BlkExprMapTy::iterator I = M->find(S);
1929  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
1930}
1931
1932unsigned CFG::getNumBlkExprs() {
1933  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
1934    return M->size();
1935  else {
1936    // We assume callers interested in the number of BlkExprs will want
1937    // the map constructed if it doesn't already exist.
1938    BlkExprMap = (void*) PopulateBlkExprMap(*this);
1939    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
1940  }
1941}
1942
1943//===----------------------------------------------------------------------===//
1944// Filtered walking of the CFG.
1945//===----------------------------------------------------------------------===//
1946
1947bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
1948        const CFGBlock *From, const CFGBlock *To) {
1949
1950  if (F.IgnoreDefaultsWithCoveredEnums) {
1951    // If the 'To' has no label or is labeled but the label isn't a
1952    // CaseStmt then filter this edge.
1953    if (const SwitchStmt *S =
1954  dyn_cast_or_null<SwitchStmt>(From->getTerminator())) {
1955      if (S->isAllEnumCasesCovered()) {
1956  const Stmt *L = To->getLabel();
1957  if (!L || !isa<CaseStmt>(L))
1958    return true;
1959      }
1960    }
1961  }
1962
1963  return false;
1964}
1965
1966//===----------------------------------------------------------------------===//
1967// Cleanup: CFG dstor.
1968//===----------------------------------------------------------------------===//
1969
1970CFG::~CFG() {
1971  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
1972}
1973
1974//===----------------------------------------------------------------------===//
1975// CFG pretty printing
1976//===----------------------------------------------------------------------===//
1977
1978namespace {
1979
1980class StmtPrinterHelper : public PrinterHelper  {
1981  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
1982  StmtMapTy StmtMap;
1983  signed CurrentBlock;
1984  unsigned CurrentStmt;
1985  const LangOptions &LangOpts;
1986public:
1987
1988  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
1989    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
1990    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
1991      unsigned j = 1;
1992      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
1993           BI != BEnd; ++BI, ++j )
1994        StmtMap[*BI] = std::make_pair((*I)->getBlockID(),j);
1995      }
1996  }
1997
1998  virtual ~StmtPrinterHelper() {}
1999
2000  const LangOptions &getLangOpts() const { return LangOpts; }
2001  void setBlockID(signed i) { CurrentBlock = i; }
2002  void setStmtID(unsigned i) { CurrentStmt = i; }
2003
2004  virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
2005
2006    StmtMapTy::iterator I = StmtMap.find(Terminator);
2007
2008    if (I == StmtMap.end())
2009      return false;
2010
2011    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2012                          && I->second.second == CurrentStmt) {
2013      return false;
2014    }
2015
2016    OS << "[B" << I->second.first << "." << I->second.second << "]";
2017    return true;
2018  }
2019};
2020} // end anonymous namespace
2021
2022
2023namespace {
2024class CFGBlockTerminatorPrint
2025  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2026
2027  llvm::raw_ostream& OS;
2028  StmtPrinterHelper* Helper;
2029  PrintingPolicy Policy;
2030public:
2031  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2032                          const PrintingPolicy &Policy)
2033    : OS(os), Helper(helper), Policy(Policy) {}
2034
2035  void VisitIfStmt(IfStmt* I) {
2036    OS << "if ";
2037    I->getCond()->printPretty(OS,Helper,Policy);
2038  }
2039
2040  // Default case.
2041  void VisitStmt(Stmt* Terminator) {
2042    Terminator->printPretty(OS, Helper, Policy);
2043  }
2044
2045  void VisitForStmt(ForStmt* F) {
2046    OS << "for (" ;
2047    if (F->getInit())
2048      OS << "...";
2049    OS << "; ";
2050    if (Stmt* C = F->getCond())
2051      C->printPretty(OS, Helper, Policy);
2052    OS << "; ";
2053    if (F->getInc())
2054      OS << "...";
2055    OS << ")";
2056  }
2057
2058  void VisitWhileStmt(WhileStmt* W) {
2059    OS << "while " ;
2060    if (Stmt* C = W->getCond())
2061      C->printPretty(OS, Helper, Policy);
2062  }
2063
2064  void VisitDoStmt(DoStmt* D) {
2065    OS << "do ... while ";
2066    if (Stmt* C = D->getCond())
2067      C->printPretty(OS, Helper, Policy);
2068  }
2069
2070  void VisitSwitchStmt(SwitchStmt* Terminator) {
2071    OS << "switch ";
2072    Terminator->getCond()->printPretty(OS, Helper, Policy);
2073  }
2074
2075  void VisitCXXTryStmt(CXXTryStmt* CS) {
2076    OS << "try ...";
2077  }
2078
2079  void VisitConditionalOperator(ConditionalOperator* C) {
2080    C->getCond()->printPretty(OS, Helper, Policy);
2081    OS << " ? ... : ...";
2082  }
2083
2084  void VisitChooseExpr(ChooseExpr* C) {
2085    OS << "__builtin_choose_expr( ";
2086    C->getCond()->printPretty(OS, Helper, Policy);
2087    OS << " )";
2088  }
2089
2090  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2091    OS << "goto *";
2092    I->getTarget()->printPretty(OS, Helper, Policy);
2093  }
2094
2095  void VisitBinaryOperator(BinaryOperator* B) {
2096    if (!B->isLogicalOp()) {
2097      VisitExpr(B);
2098      return;
2099    }
2100
2101    B->getLHS()->printPretty(OS, Helper, Policy);
2102
2103    switch (B->getOpcode()) {
2104      case BO_LOr:
2105        OS << " || ...";
2106        return;
2107      case BO_LAnd:
2108        OS << " && ...";
2109        return;
2110      default:
2111        assert(false && "Invalid logical operator.");
2112    }
2113  }
2114
2115  void VisitExpr(Expr* E) {
2116    E->printPretty(OS, Helper, Policy);
2117  }
2118};
2119} // end anonymous namespace
2120
2121
2122static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2123                       const CFGElement &E) {
2124
2125  if (E.asStartScope()) {
2126    OS << "start scope\n";
2127    return;
2128  }
2129  if (E.asEndScope()) {
2130    OS << "end scope\n";
2131    return;
2132  }
2133
2134  Stmt *S = E;
2135
2136  if (Helper) {
2137    // special printing for statement-expressions.
2138    if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2139      CompoundStmt* Sub = SE->getSubStmt();
2140
2141      if (Sub->child_begin() != Sub->child_end()) {
2142        OS << "({ ... ; ";
2143        Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2144        OS << " })\n";
2145        return;
2146      }
2147    }
2148
2149    // special printing for comma expressions.
2150    if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2151      if (B->getOpcode() == BO_Comma) {
2152        OS << "... , ";
2153        Helper->handledStmt(B->getRHS(),OS);
2154        OS << '\n';
2155        return;
2156      }
2157    }
2158  }
2159
2160  S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2161
2162  if (isa<CXXOperatorCallExpr>(S)) {
2163    OS << " (OperatorCall)";
2164  }
2165  else if (isa<CXXBindTemporaryExpr>(S)) {
2166    OS << " (BindTemporary)";
2167  }
2168
2169
2170  // Expressions need a newline.
2171  if (isa<Expr>(S))
2172    OS << '\n';
2173}
2174
2175static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2176                        const CFGBlock& B,
2177                        StmtPrinterHelper* Helper, bool print_edges) {
2178
2179  if (Helper) Helper->setBlockID(B.getBlockID());
2180
2181  // Print the header.
2182  OS << "\n [ B" << B.getBlockID();
2183
2184  if (&B == &cfg->getEntry())
2185    OS << " (ENTRY) ]\n";
2186  else if (&B == &cfg->getExit())
2187    OS << " (EXIT) ]\n";
2188  else if (&B == cfg->getIndirectGotoBlock())
2189    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2190  else
2191    OS << " ]\n";
2192
2193  // Print the label of this block.
2194  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2195
2196    if (print_edges)
2197      OS << "    ";
2198
2199    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2200      OS << L->getName();
2201    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2202      OS << "case ";
2203      C->getLHS()->printPretty(OS, Helper,
2204                               PrintingPolicy(Helper->getLangOpts()));
2205      if (C->getRHS()) {
2206        OS << " ... ";
2207        C->getRHS()->printPretty(OS, Helper,
2208                                 PrintingPolicy(Helper->getLangOpts()));
2209      }
2210    } else if (isa<DefaultStmt>(Label))
2211      OS << "default";
2212    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2213      OS << "catch (";
2214      if (CS->getExceptionDecl())
2215        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2216                                      0);
2217      else
2218        OS << "...";
2219      OS << ")";
2220
2221    } else
2222      assert(false && "Invalid label statement in CFGBlock.");
2223
2224    OS << ":\n";
2225  }
2226
2227  // Iterate through the statements in the block and print them.
2228  unsigned j = 1;
2229
2230  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2231       I != E ; ++I, ++j ) {
2232
2233    // Print the statement # in the basic block and the statement itself.
2234    if (print_edges)
2235      OS << "    ";
2236
2237    OS << llvm::format("%3d", j) << ": ";
2238
2239    if (Helper)
2240      Helper->setStmtID(j);
2241
2242    print_stmt(OS,Helper,*I);
2243  }
2244
2245  // Print the terminator of this block.
2246  if (B.getTerminator()) {
2247    if (print_edges)
2248      OS << "    ";
2249
2250    OS << "  T: ";
2251
2252    if (Helper) Helper->setBlockID(-1);
2253
2254    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2255                                     PrintingPolicy(Helper->getLangOpts()));
2256    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2257    OS << '\n';
2258  }
2259
2260  if (print_edges) {
2261    // Print the predecessors of this block.
2262    OS << "    Predecessors (" << B.pred_size() << "):";
2263    unsigned i = 0;
2264
2265    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2266         I != E; ++I, ++i) {
2267
2268      if (i == 8 || (i-8) == 0)
2269        OS << "\n     ";
2270
2271      OS << " B" << (*I)->getBlockID();
2272    }
2273
2274    OS << '\n';
2275
2276    // Print the successors of this block.
2277    OS << "    Successors (" << B.succ_size() << "):";
2278    i = 0;
2279
2280    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2281         I != E; ++I, ++i) {
2282
2283      if (i == 8 || (i-8) % 10 == 0)
2284        OS << "\n    ";
2285
2286      if (*I)
2287        OS << " B" << (*I)->getBlockID();
2288      else
2289        OS  << " NULL";
2290    }
2291
2292    OS << '\n';
2293  }
2294}
2295
2296
2297/// dump - A simple pretty printer of a CFG that outputs to stderr.
2298void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2299
2300/// print - A simple pretty printer of a CFG that outputs to an ostream.
2301void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2302  StmtPrinterHelper Helper(this, LO);
2303
2304  // Print the entry block.
2305  print_block(OS, this, getEntry(), &Helper, true);
2306
2307  // Iterate through the CFGBlocks and print them one by one.
2308  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2309    // Skip the entry block, because we already printed it.
2310    if (&(**I) == &getEntry() || &(**I) == &getExit())
2311      continue;
2312
2313    print_block(OS, this, **I, &Helper, true);
2314  }
2315
2316  // Print the exit block.
2317  print_block(OS, this, getExit(), &Helper, true);
2318  OS.flush();
2319}
2320
2321/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2322void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2323  print(llvm::errs(), cfg, LO);
2324}
2325
2326/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2327///   Generally this will only be called from CFG::print.
2328void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2329                     const LangOptions &LO) const {
2330  StmtPrinterHelper Helper(cfg, LO);
2331  print_block(OS, cfg, *this, &Helper, true);
2332}
2333
2334/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2335void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2336                               const LangOptions &LO) const {
2337  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2338  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2339}
2340
2341Stmt* CFGBlock::getTerminatorCondition() {
2342
2343  if (!Terminator)
2344    return NULL;
2345
2346  Expr* E = NULL;
2347
2348  switch (Terminator->getStmtClass()) {
2349    default:
2350      break;
2351
2352    case Stmt::ForStmtClass:
2353      E = cast<ForStmt>(Terminator)->getCond();
2354      break;
2355
2356    case Stmt::WhileStmtClass:
2357      E = cast<WhileStmt>(Terminator)->getCond();
2358      break;
2359
2360    case Stmt::DoStmtClass:
2361      E = cast<DoStmt>(Terminator)->getCond();
2362      break;
2363
2364    case Stmt::IfStmtClass:
2365      E = cast<IfStmt>(Terminator)->getCond();
2366      break;
2367
2368    case Stmt::ChooseExprClass:
2369      E = cast<ChooseExpr>(Terminator)->getCond();
2370      break;
2371
2372    case Stmt::IndirectGotoStmtClass:
2373      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2374      break;
2375
2376    case Stmt::SwitchStmtClass:
2377      E = cast<SwitchStmt>(Terminator)->getCond();
2378      break;
2379
2380    case Stmt::ConditionalOperatorClass:
2381      E = cast<ConditionalOperator>(Terminator)->getCond();
2382      break;
2383
2384    case Stmt::BinaryOperatorClass: // '&&' and '||'
2385      E = cast<BinaryOperator>(Terminator)->getLHS();
2386      break;
2387
2388    case Stmt::ObjCForCollectionStmtClass:
2389      return Terminator;
2390  }
2391
2392  return E ? E->IgnoreParens() : NULL;
2393}
2394
2395bool CFGBlock::hasBinaryBranchTerminator() const {
2396
2397  if (!Terminator)
2398    return false;
2399
2400  Expr* E = NULL;
2401
2402  switch (Terminator->getStmtClass()) {
2403    default:
2404      return false;
2405
2406    case Stmt::ForStmtClass:
2407    case Stmt::WhileStmtClass:
2408    case Stmt::DoStmtClass:
2409    case Stmt::IfStmtClass:
2410    case Stmt::ChooseExprClass:
2411    case Stmt::ConditionalOperatorClass:
2412    case Stmt::BinaryOperatorClass:
2413      return true;
2414  }
2415
2416  return E ? E->IgnoreParens() : NULL;
2417}
2418
2419
2420//===----------------------------------------------------------------------===//
2421// CFG Graphviz Visualization
2422//===----------------------------------------------------------------------===//
2423
2424
2425#ifndef NDEBUG
2426static StmtPrinterHelper* GraphHelper;
2427#endif
2428
2429void CFG::viewCFG(const LangOptions &LO) const {
2430#ifndef NDEBUG
2431  StmtPrinterHelper H(this, LO);
2432  GraphHelper = &H;
2433  llvm::ViewGraph(this,"CFG");
2434  GraphHelper = NULL;
2435#endif
2436}
2437
2438namespace llvm {
2439template<>
2440struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2441
2442  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2443
2444  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2445
2446#ifndef NDEBUG
2447    std::string OutSStr;
2448    llvm::raw_string_ostream Out(OutSStr);
2449    print_block(Out,Graph, *Node, GraphHelper, false);
2450    std::string& OutStr = Out.str();
2451
2452    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2453
2454    // Process string output to make it nicer...
2455    for (unsigned i = 0; i != OutStr.length(); ++i)
2456      if (OutStr[i] == '\n') {                            // Left justify
2457        OutStr[i] = '\\';
2458        OutStr.insert(OutStr.begin()+i+1, 'l');
2459      }
2460
2461    return OutStr;
2462#else
2463    return "";
2464#endif
2465  }
2466};
2467} // end namespace llvm
2468