CFG.cpp revision 4c98b1f67cdf385e05a86d54201b319cf1f1c042
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/GraphWriter.h"
28#include "llvm/Support/SaveAndRestore.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    LLVM_EXPLICIT operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236class reverse_children {
237  llvm::SmallVector<Stmt *, 12> childrenBuf;
238  ArrayRef<Stmt*> children;
239public:
240  reverse_children(Stmt *S);
241
242  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
243  iterator begin() const { return children.rbegin(); }
244  iterator end() const { return children.rend(); }
245};
246
247
248reverse_children::reverse_children(Stmt *S) {
249  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
250    children = CE->getRawSubExprs();
251    return;
252  }
253  switch (S->getStmtClass()) {
254    // Note: Fill in this switch with more cases we want to optimize.
255    case Stmt::InitListExprClass: {
256      InitListExpr *IE = cast<InitListExpr>(S);
257      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
258                                    IE->getNumInits());
259      return;
260    }
261    default:
262      break;
263  }
264
265  // Default case for all other statements.
266  for (Stmt::child_range I = S->children(); I; ++I) {
267    childrenBuf.push_back(*I);
268  }
269
270  // This needs to be done *after* childrenBuf has been populated.
271  children = childrenBuf;
272}
273
274/// CFGBuilder - This class implements CFG construction from an AST.
275///   The builder is stateful: an instance of the builder should be used to only
276///   construct a single CFG.
277///
278///   Example usage:
279///
280///     CFGBuilder builder;
281///     CFG* cfg = builder.BuildAST(stmt1);
282///
283///  CFG construction is done via a recursive walk of an AST.  We actually parse
284///  the AST in reverse order so that the successor of a basic block is
285///  constructed prior to its predecessor.  This allows us to nicely capture
286///  implicit fall-throughs without extra basic blocks.
287///
288class CFGBuilder {
289  typedef BlockScopePosPair JumpTarget;
290  typedef BlockScopePosPair JumpSource;
291
292  ASTContext *Context;
293  OwningPtr<CFG> cfg;
294
295  CFGBlock *Block;
296  CFGBlock *Succ;
297  JumpTarget ContinueJumpTarget;
298  JumpTarget BreakJumpTarget;
299  CFGBlock *SwitchTerminatedBlock;
300  CFGBlock *DefaultCaseBlock;
301  CFGBlock *TryTerminatedBlock;
302
303  // Current position in local scope.
304  LocalScope::const_iterator ScopePos;
305
306  // LabelMap records the mapping from Label expressions to their jump targets.
307  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
308  LabelMapTy LabelMap;
309
310  // A list of blocks that end with a "goto" that must be backpatched to their
311  // resolved targets upon completion of CFG construction.
312  typedef std::vector<JumpSource> BackpatchBlocksTy;
313  BackpatchBlocksTy BackpatchBlocks;
314
315  // A list of labels whose address has been taken (for indirect gotos).
316  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
317  LabelSetTy AddressTakenLabels;
318
319  bool badCFG;
320  const CFG::BuildOptions &BuildOpts;
321
322  // State to track for building switch statements.
323  bool switchExclusivelyCovered;
324  Expr::EvalResult *switchCond;
325
326  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
327  const Stmt *lastLookup;
328
329  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
330  // during construction of branches for chained logical operators.
331  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
332  CachedBoolEvalsTy CachedBoolEvals;
333
334public:
335  explicit CFGBuilder(ASTContext *astContext,
336                      const CFG::BuildOptions &buildOpts)
337    : Context(astContext), cfg(new CFG()), // crew a new CFG
338      Block(NULL), Succ(NULL),
339      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
340      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
341      switchExclusivelyCovered(false), switchCond(0),
342      cachedEntry(0), lastLookup(0) {}
343
344  // buildCFG - Used by external clients to construct the CFG.
345  CFG* buildCFG(const Decl *D, Stmt *Statement);
346
347  bool alwaysAdd(const Stmt *stmt);
348
349private:
350  // Visitors to walk an AST and construct the CFG.
351  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
352  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
353  CFGBlock *VisitBreakStmt(BreakStmt *B);
354  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
355  CFGBlock *VisitCaseStmt(CaseStmt *C);
356  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
357  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
358  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
359                                     AddStmtChoice asc);
360  CFGBlock *VisitContinueStmt(ContinueStmt *C);
361  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
362                                      AddStmtChoice asc);
363  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
364  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
365  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
366  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
367                                       AddStmtChoice asc);
368  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
369                                        AddStmtChoice asc);
370  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
371  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
372  CFGBlock *VisitDeclStmt(DeclStmt *DS);
373  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
374  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
375  CFGBlock *VisitDoStmt(DoStmt *D);
376  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
377  CFGBlock *VisitForStmt(ForStmt *F);
378  CFGBlock *VisitGotoStmt(GotoStmt *G);
379  CFGBlock *VisitIfStmt(IfStmt *I);
380  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
381  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
382  CFGBlock *VisitLabelStmt(LabelStmt *L);
383  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
385  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
386                                                         Stmt *Term,
387                                                         CFGBlock *TrueBlock,
388                                                         CFGBlock *FalseBlock);
389  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
390  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
391  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
392  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
393  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
394  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
395  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
396  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
397  CFGBlock *VisitReturnStmt(ReturnStmt *R);
398  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
399  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
400  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
401                                          AddStmtChoice asc);
402  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
403  CFGBlock *VisitWhileStmt(WhileStmt *W);
404
405  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
406  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
407  CFGBlock *VisitChildren(Stmt *S);
408  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
409
410  // Visitors to walk an AST and generate destructors of temporaries in
411  // full expression.
412  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
413  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
414  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
415  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
416      bool BindToTemporary);
417  CFGBlock *
418  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
419                                            bool BindToTemporary);
420
421  // NYS == Not Yet Supported
422  CFGBlock *NYS() {
423    badCFG = true;
424    return Block;
425  }
426
427  void autoCreateBlock() { if (!Block) Block = createBlock(); }
428  CFGBlock *createBlock(bool add_successor = true);
429  CFGBlock *createNoReturnBlock();
430
431  CFGBlock *addStmt(Stmt *S) {
432    return Visit(S, AddStmtChoice::AlwaysAdd);
433  }
434  CFGBlock *addInitializer(CXXCtorInitializer *I);
435  void addAutomaticObjDtors(LocalScope::const_iterator B,
436                            LocalScope::const_iterator E, Stmt *S);
437  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
438
439  // Local scopes creation.
440  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
441
442  void addLocalScopeForStmt(Stmt *S);
443  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
444  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
445
446  void addLocalScopeAndDtors(Stmt *S);
447
448  // Interface to CFGBlock - adding CFGElements.
449  void appendStmt(CFGBlock *B, const Stmt *S) {
450    if (alwaysAdd(S) && cachedEntry)
451      cachedEntry->second = B;
452
453    // All block-level expressions should have already been IgnoreParens()ed.
454    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
455    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
456  }
457  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
458    B->appendInitializer(I, cfg->getBumpVectorContext());
459  }
460  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
461    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
462  }
463  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
464    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
465  }
466  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
467    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
468  }
469  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
470    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
471  }
472
473  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
474      LocalScope::const_iterator B, LocalScope::const_iterator E);
475
476  void addSuccessor(CFGBlock *B, CFGBlock *S) {
477    B->addSuccessor(S, cfg->getBumpVectorContext());
478  }
479
480  /// Try and evaluate an expression to an integer constant.
481  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
482    if (!BuildOpts.PruneTriviallyFalseEdges)
483      return false;
484    return !S->isTypeDependent() &&
485           !S->isValueDependent() &&
486           S->EvaluateAsRValue(outResult, *Context);
487  }
488
489  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
490  /// if we can evaluate to a known value, otherwise return -1.
491  TryResult tryEvaluateBool(Expr *S) {
492    if (!BuildOpts.PruneTriviallyFalseEdges ||
493        S->isTypeDependent() || S->isValueDependent())
494      return TryResult();
495
496    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
497      if (Bop->isLogicalOp()) {
498        // Check the cache first.
499        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
500        if (I != CachedBoolEvals.end())
501          return I->second; // already in map;
502
503        // Retrieve result at first, or the map might be updated.
504        TryResult Result = evaluateAsBooleanConditionNoCache(S);
505        CachedBoolEvals[S] = Result; // update or insert
506        return Result;
507      }
508      else {
509        switch (Bop->getOpcode()) {
510          default: break;
511          // For 'x & 0' and 'x * 0', we can determine that
512          // the value is always false.
513          case BO_Mul:
514          case BO_And: {
515            // If either operand is zero, we know the value
516            // must be false.
517            llvm::APSInt IntVal;
518            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
519              if (IntVal.getBoolValue() == false) {
520                return TryResult(false);
521              }
522            }
523            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
524              if (IntVal.getBoolValue() == false) {
525                return TryResult(false);
526              }
527            }
528          }
529          break;
530        }
531      }
532    }
533
534    return evaluateAsBooleanConditionNoCache(S);
535  }
536
537  /// \brief Evaluate as boolean \param E without using the cache.
538  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
539    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
540      if (Bop->isLogicalOp()) {
541        TryResult LHS = tryEvaluateBool(Bop->getLHS());
542        if (LHS.isKnown()) {
543          // We were able to evaluate the LHS, see if we can get away with not
544          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
545          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
546            return LHS.isTrue();
547
548          TryResult RHS = tryEvaluateBool(Bop->getRHS());
549          if (RHS.isKnown()) {
550            if (Bop->getOpcode() == BO_LOr)
551              return LHS.isTrue() || RHS.isTrue();
552            else
553              return LHS.isTrue() && RHS.isTrue();
554          }
555        } else {
556          TryResult RHS = tryEvaluateBool(Bop->getRHS());
557          if (RHS.isKnown()) {
558            // We can't evaluate the LHS; however, sometimes the result
559            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
560            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
561              return RHS.isTrue();
562          }
563        }
564
565        return TryResult();
566      }
567    }
568
569    bool Result;
570    if (E->EvaluateAsBooleanCondition(Result, *Context))
571      return Result;
572
573    return TryResult();
574  }
575
576};
577
578inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
579                                     const Stmt *stmt) const {
580  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
581}
582
583bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
584  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
585
586  if (!BuildOpts.forcedBlkExprs)
587    return shouldAdd;
588
589  if (lastLookup == stmt) {
590    if (cachedEntry) {
591      assert(cachedEntry->first == stmt);
592      return true;
593    }
594    return shouldAdd;
595  }
596
597  lastLookup = stmt;
598
599  // Perform the lookup!
600  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
601
602  if (!fb) {
603    // No need to update 'cachedEntry', since it will always be null.
604    assert(cachedEntry == 0);
605    return shouldAdd;
606  }
607
608  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
609  if (itr == fb->end()) {
610    cachedEntry = 0;
611    return shouldAdd;
612  }
613
614  cachedEntry = &*itr;
615  return true;
616}
617
618// FIXME: Add support for dependent-sized array types in C++?
619// Does it even make sense to build a CFG for an uninstantiated template?
620static const VariableArrayType *FindVA(const Type *t) {
621  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
622    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
623      if (vat->getSizeExpr())
624        return vat;
625
626    t = vt->getElementType().getTypePtr();
627  }
628
629  return 0;
630}
631
632/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
633///  arbitrary statement.  Examples include a single expression or a function
634///  body (compound statement).  The ownership of the returned CFG is
635///  transferred to the caller.  If CFG construction fails, this method returns
636///  NULL.
637CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
638  assert(cfg.get());
639  if (!Statement)
640    return NULL;
641
642  // Create an empty block that will serve as the exit block for the CFG.  Since
643  // this is the first block added to the CFG, it will be implicitly registered
644  // as the exit block.
645  Succ = createBlock();
646  assert(Succ == &cfg->getExit());
647  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
648
649  if (BuildOpts.AddImplicitDtors)
650    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
651      addImplicitDtorsForDestructor(DD);
652
653  // Visit the statements and create the CFG.
654  CFGBlock *B = addStmt(Statement);
655
656  if (badCFG)
657    return NULL;
658
659  // For C++ constructor add initializers to CFG.
660  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
661    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
662        E = CD->init_rend(); I != E; ++I) {
663      B = addInitializer(*I);
664      if (badCFG)
665        return NULL;
666    }
667  }
668
669  if (B)
670    Succ = B;
671
672  // Backpatch the gotos whose label -> block mappings we didn't know when we
673  // encountered them.
674  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
675                                   E = BackpatchBlocks.end(); I != E; ++I ) {
676
677    CFGBlock *B = I->block;
678    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
679    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
680
681    // If there is no target for the goto, then we are looking at an
682    // incomplete AST.  Handle this by not registering a successor.
683    if (LI == LabelMap.end()) continue;
684
685    JumpTarget JT = LI->second;
686    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
687                                           JT.scopePosition);
688    addSuccessor(B, JT.block);
689  }
690
691  // Add successors to the Indirect Goto Dispatch block (if we have one).
692  if (CFGBlock *B = cfg->getIndirectGotoBlock())
693    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
694                              E = AddressTakenLabels.end(); I != E; ++I ) {
695
696      // Lookup the target block.
697      LabelMapTy::iterator LI = LabelMap.find(*I);
698
699      // If there is no target block that contains label, then we are looking
700      // at an incomplete AST.  Handle this by not registering a successor.
701      if (LI == LabelMap.end()) continue;
702
703      addSuccessor(B, LI->second.block);
704    }
705
706  // Create an empty entry block that has no predecessors.
707  cfg->setEntry(createBlock());
708
709  return cfg.take();
710}
711
712/// createBlock - Used to lazily create blocks that are connected
713///  to the current (global) succcessor.
714CFGBlock *CFGBuilder::createBlock(bool add_successor) {
715  CFGBlock *B = cfg->createBlock();
716  if (add_successor && Succ)
717    addSuccessor(B, Succ);
718  return B;
719}
720
721/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
722/// CFG. It is *not* connected to the current (global) successor, and instead
723/// directly tied to the exit block in order to be reachable.
724CFGBlock *CFGBuilder::createNoReturnBlock() {
725  CFGBlock *B = createBlock(false);
726  B->setHasNoReturnElement();
727  addSuccessor(B, &cfg->getExit());
728  return B;
729}
730
731/// addInitializer - Add C++ base or member initializer element to CFG.
732CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
733  if (!BuildOpts.AddInitializers)
734    return Block;
735
736  bool IsReference = false;
737  bool HasTemporaries = false;
738
739  // Destructors of temporaries in initialization expression should be called
740  // after initialization finishes.
741  Expr *Init = I->getInit();
742  if (Init) {
743    if (FieldDecl *FD = I->getAnyMember())
744      IsReference = FD->getType()->isReferenceType();
745    HasTemporaries = isa<ExprWithCleanups>(Init);
746
747    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
748      // Generate destructors for temporaries in initialization expression.
749      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
750          IsReference);
751    }
752  }
753
754  autoCreateBlock();
755  appendInitializer(Block, I);
756
757  if (Init) {
758    if (HasTemporaries) {
759      // For expression with temporaries go directly to subexpression to omit
760      // generating destructors for the second time.
761      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
762    }
763    return Visit(Init);
764  }
765
766  return Block;
767}
768
769/// \brief Retrieve the type of the temporary object whose lifetime was
770/// extended by a local reference with the given initializer.
771static QualType getReferenceInitTemporaryType(ASTContext &Context,
772                                              const Expr *Init) {
773  while (true) {
774    // Skip parentheses.
775    Init = Init->IgnoreParens();
776
777    // Skip through cleanups.
778    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
779      Init = EWC->getSubExpr();
780      continue;
781    }
782
783    // Skip through the temporary-materialization expression.
784    if (const MaterializeTemporaryExpr *MTE
785          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
786      Init = MTE->GetTemporaryExpr();
787      continue;
788    }
789
790    // Skip derived-to-base and no-op casts.
791    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
792      if ((CE->getCastKind() == CK_DerivedToBase ||
793           CE->getCastKind() == CK_UncheckedDerivedToBase ||
794           CE->getCastKind() == CK_NoOp) &&
795          Init->getType()->isRecordType()) {
796        Init = CE->getSubExpr();
797        continue;
798      }
799    }
800
801    // Skip member accesses into rvalues.
802    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
803      if (!ME->isArrow() && ME->getBase()->isRValue()) {
804        Init = ME->getBase();
805        continue;
806      }
807    }
808
809    break;
810  }
811
812  return Init->getType();
813}
814
815/// addAutomaticObjDtors - Add to current block automatic objects destructors
816/// for objects in range of local scope positions. Use S as trigger statement
817/// for destructors.
818void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
819                                      LocalScope::const_iterator E, Stmt *S) {
820  if (!BuildOpts.AddImplicitDtors)
821    return;
822
823  if (B == E)
824    return;
825
826  // We need to append the destructors in reverse order, but any one of them
827  // may be a no-return destructor which changes the CFG. As a result, buffer
828  // this sequence up and replay them in reverse order when appending onto the
829  // CFGBlock(s).
830  SmallVector<VarDecl*, 10> Decls;
831  Decls.reserve(B.distance(E));
832  for (LocalScope::const_iterator I = B; I != E; ++I)
833    Decls.push_back(*I);
834
835  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
836                                                   E = Decls.rend();
837       I != E; ++I) {
838    // If this destructor is marked as a no-return destructor, we need to
839    // create a new block for the destructor which does not have as a successor
840    // anything built thus far: control won't flow out of this block.
841    QualType Ty = (*I)->getType();
842    if (Ty->isReferenceType()) {
843      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
844    }
845    Ty = Context->getBaseElementType(Ty);
846
847    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
848    if (Dtor->isNoReturn())
849      Block = createNoReturnBlock();
850    else
851      autoCreateBlock();
852
853    appendAutomaticObjDtor(Block, *I, S);
854  }
855}
856
857/// addImplicitDtorsForDestructor - Add implicit destructors generated for
858/// base and member objects in destructor.
859void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
860  assert (BuildOpts.AddImplicitDtors
861      && "Can be called only when dtors should be added");
862  const CXXRecordDecl *RD = DD->getParent();
863
864  // At the end destroy virtual base objects.
865  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
866      VE = RD->vbases_end(); VI != VE; ++VI) {
867    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
868    if (!CD->hasTrivialDestructor()) {
869      autoCreateBlock();
870      appendBaseDtor(Block, VI);
871    }
872  }
873
874  // Before virtual bases destroy direct base objects.
875  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
876      BE = RD->bases_end(); BI != BE; ++BI) {
877    if (!BI->isVirtual()) {
878      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
879      if (!CD->hasTrivialDestructor()) {
880        autoCreateBlock();
881        appendBaseDtor(Block, BI);
882      }
883    }
884  }
885
886  // First destroy member objects.
887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
888      FE = RD->field_end(); FI != FE; ++FI) {
889    // Check for constant size array. Set type to array element type.
890    QualType QT = FI->getType();
891    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
892      if (AT->getSize() == 0)
893        continue;
894      QT = AT->getElementType();
895    }
896
897    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
898      if (!CD->hasTrivialDestructor()) {
899        autoCreateBlock();
900        appendMemberDtor(Block, *FI);
901      }
902  }
903}
904
905/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
906/// way return valid LocalScope object.
907LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
908  if (!Scope) {
909    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
910    Scope = alloc.Allocate<LocalScope>();
911    BumpVectorContext ctx(alloc);
912    new (Scope) LocalScope(ctx, ScopePos);
913  }
914  return Scope;
915}
916
917/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
918/// that should create implicit scope (e.g. if/else substatements).
919void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
920  if (!BuildOpts.AddImplicitDtors)
921    return;
922
923  LocalScope *Scope = 0;
924
925  // For compound statement we will be creating explicit scope.
926  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
927    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
928        ; BI != BE; ++BI) {
929      Stmt *SI = (*BI)->stripLabelLikeStatements();
930      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
931        Scope = addLocalScopeForDeclStmt(DS, Scope);
932    }
933    return;
934  }
935
936  // For any other statement scope will be implicit and as such will be
937  // interesting only for DeclStmt.
938  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
939    addLocalScopeForDeclStmt(DS);
940}
941
942/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
943/// reuse Scope if not NULL.
944LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
945                                                 LocalScope* Scope) {
946  if (!BuildOpts.AddImplicitDtors)
947    return Scope;
948
949  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
950      ; DI != DE; ++DI) {
951    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
952      Scope = addLocalScopeForVarDecl(VD, Scope);
953  }
954  return Scope;
955}
956
957/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
958/// create add scope for automatic objects and temporary objects bound to
959/// const reference. Will reuse Scope if not NULL.
960LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
961                                                LocalScope* Scope) {
962  if (!BuildOpts.AddImplicitDtors)
963    return Scope;
964
965  // Check if variable is local.
966  switch (VD->getStorageClass()) {
967  case SC_None:
968  case SC_Auto:
969  case SC_Register:
970    break;
971  default: return Scope;
972  }
973
974  // Check for const references bound to temporary. Set type to pointee.
975  QualType QT = VD->getType();
976  if (QT.getTypePtr()->isReferenceType()) {
977    if (!VD->extendsLifetimeOfTemporary())
978      return Scope;
979
980    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
981  }
982
983  // Check for constant size array. Set type to array element type.
984  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
985    if (AT->getSize() == 0)
986      return Scope;
987    QT = AT->getElementType();
988  }
989
990  // Check if type is a C++ class with non-trivial destructor.
991  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
992    if (!CD->hasTrivialDestructor()) {
993      // Add the variable to scope
994      Scope = createOrReuseLocalScope(Scope);
995      Scope->addVar(VD);
996      ScopePos = Scope->begin();
997    }
998  return Scope;
999}
1000
1001/// addLocalScopeAndDtors - For given statement add local scope for it and
1002/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1003void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1004  if (!BuildOpts.AddImplicitDtors)
1005    return;
1006
1007  LocalScope::const_iterator scopeBeginPos = ScopePos;
1008  addLocalScopeForStmt(S);
1009  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1010}
1011
1012/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1013/// variables with automatic storage duration to CFGBlock's elements vector.
1014/// Elements will be prepended to physical beginning of the vector which
1015/// happens to be logical end. Use blocks terminator as statement that specifies
1016/// destructors call site.
1017/// FIXME: This mechanism for adding automatic destructors doesn't handle
1018/// no-return destructors properly.
1019void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1020    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1021  BumpVectorContext &C = cfg->getBumpVectorContext();
1022  CFGBlock::iterator InsertPos
1023    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1024  for (LocalScope::const_iterator I = B; I != E; ++I)
1025    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1026                                            Blk->getTerminator());
1027}
1028
1029/// Visit - Walk the subtree of a statement and add extra
1030///   blocks for ternary operators, &&, and ||.  We also process "," and
1031///   DeclStmts (which may contain nested control-flow).
1032CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1033  if (!S) {
1034    badCFG = true;
1035    return 0;
1036  }
1037
1038  if (Expr *E = dyn_cast<Expr>(S))
1039    S = E->IgnoreParens();
1040
1041  switch (S->getStmtClass()) {
1042    default:
1043      return VisitStmt(S, asc);
1044
1045    case Stmt::AddrLabelExprClass:
1046      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1047
1048    case Stmt::BinaryConditionalOperatorClass:
1049      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1050
1051    case Stmt::BinaryOperatorClass:
1052      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1053
1054    case Stmt::BlockExprClass:
1055      return VisitNoRecurse(cast<Expr>(S), asc);
1056
1057    case Stmt::BreakStmtClass:
1058      return VisitBreakStmt(cast<BreakStmt>(S));
1059
1060    case Stmt::CallExprClass:
1061    case Stmt::CXXOperatorCallExprClass:
1062    case Stmt::CXXMemberCallExprClass:
1063    case Stmt::UserDefinedLiteralClass:
1064      return VisitCallExpr(cast<CallExpr>(S), asc);
1065
1066    case Stmt::CaseStmtClass:
1067      return VisitCaseStmt(cast<CaseStmt>(S));
1068
1069    case Stmt::ChooseExprClass:
1070      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1071
1072    case Stmt::CompoundStmtClass:
1073      return VisitCompoundStmt(cast<CompoundStmt>(S));
1074
1075    case Stmt::ConditionalOperatorClass:
1076      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1077
1078    case Stmt::ContinueStmtClass:
1079      return VisitContinueStmt(cast<ContinueStmt>(S));
1080
1081    case Stmt::CXXCatchStmtClass:
1082      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1083
1084    case Stmt::ExprWithCleanupsClass:
1085      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1086
1087    case Stmt::CXXDefaultArgExprClass:
1088    case Stmt::CXXDefaultInitExprClass:
1089      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1090      // called function's declaration, not by the caller. If we simply add
1091      // this expression to the CFG, we could end up with the same Expr
1092      // appearing multiple times.
1093      // PR13385 / <rdar://problem/12156507>
1094      //
1095      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1096      // expression to be used in the same function (through aggregate
1097      // initialization).
1098      return VisitStmt(S, asc);
1099
1100    case Stmt::CXXBindTemporaryExprClass:
1101      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1102
1103    case Stmt::CXXConstructExprClass:
1104      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1105
1106    case Stmt::CXXFunctionalCastExprClass:
1107      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1108
1109    case Stmt::CXXTemporaryObjectExprClass:
1110      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1111
1112    case Stmt::CXXThrowExprClass:
1113      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1114
1115    case Stmt::CXXTryStmtClass:
1116      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1117
1118    case Stmt::CXXForRangeStmtClass:
1119      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1120
1121    case Stmt::DeclStmtClass:
1122      return VisitDeclStmt(cast<DeclStmt>(S));
1123
1124    case Stmt::DefaultStmtClass:
1125      return VisitDefaultStmt(cast<DefaultStmt>(S));
1126
1127    case Stmt::DoStmtClass:
1128      return VisitDoStmt(cast<DoStmt>(S));
1129
1130    case Stmt::ForStmtClass:
1131      return VisitForStmt(cast<ForStmt>(S));
1132
1133    case Stmt::GotoStmtClass:
1134      return VisitGotoStmt(cast<GotoStmt>(S));
1135
1136    case Stmt::IfStmtClass:
1137      return VisitIfStmt(cast<IfStmt>(S));
1138
1139    case Stmt::ImplicitCastExprClass:
1140      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1141
1142    case Stmt::IndirectGotoStmtClass:
1143      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1144
1145    case Stmt::LabelStmtClass:
1146      return VisitLabelStmt(cast<LabelStmt>(S));
1147
1148    case Stmt::LambdaExprClass:
1149      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1150
1151    case Stmt::MemberExprClass:
1152      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1153
1154    case Stmt::NullStmtClass:
1155      return Block;
1156
1157    case Stmt::ObjCAtCatchStmtClass:
1158      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1159
1160    case Stmt::ObjCAutoreleasePoolStmtClass:
1161    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1162
1163    case Stmt::ObjCAtSynchronizedStmtClass:
1164      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1165
1166    case Stmt::ObjCAtThrowStmtClass:
1167      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1168
1169    case Stmt::ObjCAtTryStmtClass:
1170      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1171
1172    case Stmt::ObjCForCollectionStmtClass:
1173      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1174
1175    case Stmt::OpaqueValueExprClass:
1176      return Block;
1177
1178    case Stmt::PseudoObjectExprClass:
1179      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1180
1181    case Stmt::ReturnStmtClass:
1182      return VisitReturnStmt(cast<ReturnStmt>(S));
1183
1184    case Stmt::UnaryExprOrTypeTraitExprClass:
1185      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1186                                           asc);
1187
1188    case Stmt::StmtExprClass:
1189      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1190
1191    case Stmt::SwitchStmtClass:
1192      return VisitSwitchStmt(cast<SwitchStmt>(S));
1193
1194    case Stmt::UnaryOperatorClass:
1195      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1196
1197    case Stmt::WhileStmtClass:
1198      return VisitWhileStmt(cast<WhileStmt>(S));
1199  }
1200}
1201
1202CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1203  if (asc.alwaysAdd(*this, S)) {
1204    autoCreateBlock();
1205    appendStmt(Block, S);
1206  }
1207
1208  return VisitChildren(S);
1209}
1210
1211/// VisitChildren - Visit the children of a Stmt.
1212CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1213  CFGBlock *B = Block;
1214
1215  // Visit the children in their reverse order so that they appear in
1216  // left-to-right (natural) order in the CFG.
1217  reverse_children RChildren(S);
1218  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1219       I != E; ++I) {
1220    if (Stmt *Child = *I)
1221      if (CFGBlock *R = Visit(Child))
1222        B = R;
1223  }
1224  return B;
1225}
1226
1227CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1228                                         AddStmtChoice asc) {
1229  AddressTakenLabels.insert(A->getLabel());
1230
1231  if (asc.alwaysAdd(*this, A)) {
1232    autoCreateBlock();
1233    appendStmt(Block, A);
1234  }
1235
1236  return Block;
1237}
1238
1239CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1240           AddStmtChoice asc) {
1241  if (asc.alwaysAdd(*this, U)) {
1242    autoCreateBlock();
1243    appendStmt(Block, U);
1244  }
1245
1246  return Visit(U->getSubExpr(), AddStmtChoice());
1247}
1248
1249CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1250  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1251  appendStmt(ConfluenceBlock, B);
1252
1253  if (badCFG)
1254    return 0;
1255
1256  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1257}
1258
1259std::pair<CFGBlock*, CFGBlock*>
1260CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1261                                 Stmt *Term,
1262                                 CFGBlock *TrueBlock,
1263                                 CFGBlock *FalseBlock) {
1264
1265  // Introspect the RHS.  If it is a nested logical operation, we recursively
1266  // build the CFG using this function.  Otherwise, resort to default
1267  // CFG construction behavior.
1268  Expr *RHS = B->getRHS()->IgnoreParens();
1269  CFGBlock *RHSBlock, *ExitBlock;
1270
1271  do {
1272    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1273      if (B_RHS->isLogicalOp()) {
1274        llvm::tie(RHSBlock, ExitBlock) =
1275          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1276        break;
1277      }
1278
1279    // The RHS is not a nested logical operation.  Don't push the terminator
1280    // down further, but instead visit RHS and construct the respective
1281    // pieces of the CFG, and link up the RHSBlock with the terminator
1282    // we have been provided.
1283    ExitBlock = RHSBlock = createBlock(false);
1284
1285    if (!Term) {
1286      assert(TrueBlock == FalseBlock);
1287      addSuccessor(RHSBlock, TrueBlock);
1288    }
1289    else {
1290      RHSBlock->setTerminator(Term);
1291      TryResult KnownVal = tryEvaluateBool(RHS);
1292      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1293      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1294    }
1295
1296    Block = RHSBlock;
1297    RHSBlock = addStmt(RHS);
1298  }
1299  while (false);
1300
1301  if (badCFG)
1302    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1303
1304  // Generate the blocks for evaluating the LHS.
1305  Expr *LHS = B->getLHS()->IgnoreParens();
1306
1307  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1308    if (B_LHS->isLogicalOp()) {
1309      if (B->getOpcode() == BO_LOr)
1310        FalseBlock = RHSBlock;
1311      else
1312        TrueBlock = RHSBlock;
1313
1314      // For the LHS, treat 'B' as the terminator that we want to sink
1315      // into the nested branch.  The RHS always gets the top-most
1316      // terminator.
1317      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1318    }
1319
1320  // Create the block evaluating the LHS.
1321  // This contains the '&&' or '||' as the terminator.
1322  CFGBlock *LHSBlock = createBlock(false);
1323  LHSBlock->setTerminator(B);
1324
1325  Block = LHSBlock;
1326  CFGBlock *EntryLHSBlock = addStmt(LHS);
1327
1328  if (badCFG)
1329    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1330
1331  // See if this is a known constant.
1332  TryResult KnownVal = tryEvaluateBool(LHS);
1333
1334  // Now link the LHSBlock with RHSBlock.
1335  if (B->getOpcode() == BO_LOr) {
1336    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1337    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1338  } else {
1339    assert(B->getOpcode() == BO_LAnd);
1340    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1341    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1342  }
1343
1344  return std::make_pair(EntryLHSBlock, ExitBlock);
1345}
1346
1347
1348CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1349                                          AddStmtChoice asc) {
1350   // && or ||
1351  if (B->isLogicalOp())
1352    return VisitLogicalOperator(B);
1353
1354  if (B->getOpcode() == BO_Comma) { // ,
1355    autoCreateBlock();
1356    appendStmt(Block, B);
1357    addStmt(B->getRHS());
1358    return addStmt(B->getLHS());
1359  }
1360
1361  if (B->isAssignmentOp()) {
1362    if (asc.alwaysAdd(*this, B)) {
1363      autoCreateBlock();
1364      appendStmt(Block, B);
1365    }
1366    Visit(B->getLHS());
1367    return Visit(B->getRHS());
1368  }
1369
1370  if (asc.alwaysAdd(*this, B)) {
1371    autoCreateBlock();
1372    appendStmt(Block, B);
1373  }
1374
1375  CFGBlock *RBlock = Visit(B->getRHS());
1376  CFGBlock *LBlock = Visit(B->getLHS());
1377  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1378  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1379  // return RBlock.  Otherwise we'll incorrectly return NULL.
1380  return (LBlock ? LBlock : RBlock);
1381}
1382
1383CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1384  if (asc.alwaysAdd(*this, E)) {
1385    autoCreateBlock();
1386    appendStmt(Block, E);
1387  }
1388  return Block;
1389}
1390
1391CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1392  // "break" is a control-flow statement.  Thus we stop processing the current
1393  // block.
1394  if (badCFG)
1395    return 0;
1396
1397  // Now create a new block that ends with the break statement.
1398  Block = createBlock(false);
1399  Block->setTerminator(B);
1400
1401  // If there is no target for the break, then we are looking at an incomplete
1402  // AST.  This means that the CFG cannot be constructed.
1403  if (BreakJumpTarget.block) {
1404    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1405    addSuccessor(Block, BreakJumpTarget.block);
1406  } else
1407    badCFG = true;
1408
1409
1410  return Block;
1411}
1412
1413static bool CanThrow(Expr *E, ASTContext &Ctx) {
1414  QualType Ty = E->getType();
1415  if (Ty->isFunctionPointerType())
1416    Ty = Ty->getAs<PointerType>()->getPointeeType();
1417  else if (Ty->isBlockPointerType())
1418    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1419
1420  const FunctionType *FT = Ty->getAs<FunctionType>();
1421  if (FT) {
1422    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1423      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1424          Proto->isNothrow(Ctx))
1425        return false;
1426  }
1427  return true;
1428}
1429
1430CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1431  // Compute the callee type.
1432  QualType calleeType = C->getCallee()->getType();
1433  if (calleeType == Context->BoundMemberTy) {
1434    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1435
1436    // We should only get a null bound type if processing a dependent
1437    // CFG.  Recover by assuming nothing.
1438    if (!boundType.isNull()) calleeType = boundType;
1439  }
1440
1441  // If this is a call to a no-return function, this stops the block here.
1442  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1443
1444  bool AddEHEdge = false;
1445
1446  // Languages without exceptions are assumed to not throw.
1447  if (Context->getLangOpts().Exceptions) {
1448    if (BuildOpts.AddEHEdges)
1449      AddEHEdge = true;
1450  }
1451
1452  if (FunctionDecl *FD = C->getDirectCallee()) {
1453    if (FD->isNoReturn())
1454      NoReturn = true;
1455    if (FD->hasAttr<NoThrowAttr>())
1456      AddEHEdge = false;
1457  }
1458
1459  if (!CanThrow(C->getCallee(), *Context))
1460    AddEHEdge = false;
1461
1462  if (!NoReturn && !AddEHEdge)
1463    return VisitStmt(C, asc.withAlwaysAdd(true));
1464
1465  if (Block) {
1466    Succ = Block;
1467    if (badCFG)
1468      return 0;
1469  }
1470
1471  if (NoReturn)
1472    Block = createNoReturnBlock();
1473  else
1474    Block = createBlock();
1475
1476  appendStmt(Block, C);
1477
1478  if (AddEHEdge) {
1479    // Add exceptional edges.
1480    if (TryTerminatedBlock)
1481      addSuccessor(Block, TryTerminatedBlock);
1482    else
1483      addSuccessor(Block, &cfg->getExit());
1484  }
1485
1486  return VisitChildren(C);
1487}
1488
1489CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1490                                      AddStmtChoice asc) {
1491  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1492  appendStmt(ConfluenceBlock, C);
1493  if (badCFG)
1494    return 0;
1495
1496  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1497  Succ = ConfluenceBlock;
1498  Block = NULL;
1499  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1500  if (badCFG)
1501    return 0;
1502
1503  Succ = ConfluenceBlock;
1504  Block = NULL;
1505  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1506  if (badCFG)
1507    return 0;
1508
1509  Block = createBlock(false);
1510  // See if this is a known constant.
1511  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1512  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1513  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1514  Block->setTerminator(C);
1515  return addStmt(C->getCond());
1516}
1517
1518
1519CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1520  addLocalScopeAndDtors(C);
1521  CFGBlock *LastBlock = Block;
1522
1523  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1524       I != E; ++I ) {
1525    // If we hit a segment of code just containing ';' (NullStmts), we can
1526    // get a null block back.  In such cases, just use the LastBlock
1527    if (CFGBlock *newBlock = addStmt(*I))
1528      LastBlock = newBlock;
1529
1530    if (badCFG)
1531      return NULL;
1532  }
1533
1534  return LastBlock;
1535}
1536
1537CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1538                                               AddStmtChoice asc) {
1539  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1540  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1541
1542  // Create the confluence block that will "merge" the results of the ternary
1543  // expression.
1544  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1545  appendStmt(ConfluenceBlock, C);
1546  if (badCFG)
1547    return 0;
1548
1549  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1550
1551  // Create a block for the LHS expression if there is an LHS expression.  A
1552  // GCC extension allows LHS to be NULL, causing the condition to be the
1553  // value that is returned instead.
1554  //  e.g: x ?: y is shorthand for: x ? x : y;
1555  Succ = ConfluenceBlock;
1556  Block = NULL;
1557  CFGBlock *LHSBlock = 0;
1558  const Expr *trueExpr = C->getTrueExpr();
1559  if (trueExpr != opaqueValue) {
1560    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1561    if (badCFG)
1562      return 0;
1563    Block = NULL;
1564  }
1565  else
1566    LHSBlock = ConfluenceBlock;
1567
1568  // Create the block for the RHS expression.
1569  Succ = ConfluenceBlock;
1570  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1571  if (badCFG)
1572    return 0;
1573
1574  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1575  if (BinaryOperator *Cond =
1576        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1577    if (Cond->isLogicalOp())
1578      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1579
1580  // Create the block that will contain the condition.
1581  Block = createBlock(false);
1582
1583  // See if this is a known constant.
1584  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1585  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1586  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1587  Block->setTerminator(C);
1588  Expr *condExpr = C->getCond();
1589
1590  if (opaqueValue) {
1591    // Run the condition expression if it's not trivially expressed in
1592    // terms of the opaque value (or if there is no opaque value).
1593    if (condExpr != opaqueValue)
1594      addStmt(condExpr);
1595
1596    // Before that, run the common subexpression if there was one.
1597    // At least one of this or the above will be run.
1598    return addStmt(BCO->getCommon());
1599  }
1600
1601  return addStmt(condExpr);
1602}
1603
1604CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1605  // Check if the Decl is for an __label__.  If so, elide it from the
1606  // CFG entirely.
1607  if (isa<LabelDecl>(*DS->decl_begin()))
1608    return Block;
1609
1610  // This case also handles static_asserts.
1611  if (DS->isSingleDecl())
1612    return VisitDeclSubExpr(DS);
1613
1614  CFGBlock *B = 0;
1615
1616  // Build an individual DeclStmt for each decl.
1617  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1618                                       E = DS->decl_rend();
1619       I != E; ++I) {
1620    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1621    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1622               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1623
1624    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1625    // automatically freed with the CFG.
1626    DeclGroupRef DG(*I);
1627    Decl *D = *I;
1628    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1629    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1630    cfg->addSyntheticDeclStmt(DSNew, DS);
1631
1632    // Append the fake DeclStmt to block.
1633    B = VisitDeclSubExpr(DSNew);
1634  }
1635
1636  return B;
1637}
1638
1639/// VisitDeclSubExpr - Utility method to add block-level expressions for
1640/// DeclStmts and initializers in them.
1641CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1642  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1643  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1644
1645  if (!VD) {
1646    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1647    // runtime semantics.
1648    return Block;
1649  }
1650
1651  bool IsReference = false;
1652  bool HasTemporaries = false;
1653
1654  // Guard static initializers under a branch.
1655  CFGBlock *blockAfterStaticInit = 0;
1656
1657  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1658    // For static variables, we need to create a branch to track
1659    // whether or not they are initialized.
1660    if (Block) {
1661      Succ = Block;
1662      Block = 0;
1663      if (badCFG)
1664        return 0;
1665    }
1666    blockAfterStaticInit = Succ;
1667  }
1668
1669  // Destructors of temporaries in initialization expression should be called
1670  // after initialization finishes.
1671  Expr *Init = VD->getInit();
1672  if (Init) {
1673    IsReference = VD->getType()->isReferenceType();
1674    HasTemporaries = isa<ExprWithCleanups>(Init);
1675
1676    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1677      // Generate destructors for temporaries in initialization expression.
1678      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1679          IsReference);
1680    }
1681  }
1682
1683  autoCreateBlock();
1684  appendStmt(Block, DS);
1685
1686  // Keep track of the last non-null block, as 'Block' can be nulled out
1687  // if the initializer expression is something like a 'while' in a
1688  // statement-expression.
1689  CFGBlock *LastBlock = Block;
1690
1691  if (Init) {
1692    if (HasTemporaries) {
1693      // For expression with temporaries go directly to subexpression to omit
1694      // generating destructors for the second time.
1695      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1696      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1697        LastBlock = newBlock;
1698    }
1699    else {
1700      if (CFGBlock *newBlock = Visit(Init))
1701        LastBlock = newBlock;
1702    }
1703  }
1704
1705  // If the type of VD is a VLA, then we must process its size expressions.
1706  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1707       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1708    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1709      LastBlock = newBlock;
1710  }
1711
1712  // Remove variable from local scope.
1713  if (ScopePos && VD == *ScopePos)
1714    ++ScopePos;
1715
1716  CFGBlock *B = LastBlock;
1717  if (blockAfterStaticInit) {
1718    Succ = B;
1719    Block = createBlock(false);
1720    Block->setTerminator(DS);
1721    addSuccessor(Block, blockAfterStaticInit);
1722    addSuccessor(Block, B);
1723    B = Block;
1724  }
1725
1726  return B;
1727}
1728
1729CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1730  // We may see an if statement in the middle of a basic block, or it may be the
1731  // first statement we are processing.  In either case, we create a new basic
1732  // block.  First, we create the blocks for the then...else statements, and
1733  // then we create the block containing the if statement.  If we were in the
1734  // middle of a block, we stop processing that block.  That block is then the
1735  // implicit successor for the "then" and "else" clauses.
1736
1737  // Save local scope position because in case of condition variable ScopePos
1738  // won't be restored when traversing AST.
1739  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1740
1741  // Create local scope for possible condition variable.
1742  // Store scope position. Add implicit destructor.
1743  if (VarDecl *VD = I->getConditionVariable()) {
1744    LocalScope::const_iterator BeginScopePos = ScopePos;
1745    addLocalScopeForVarDecl(VD);
1746    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1747  }
1748
1749  // The block we were processing is now finished.  Make it the successor
1750  // block.
1751  if (Block) {
1752    Succ = Block;
1753    if (badCFG)
1754      return 0;
1755  }
1756
1757  // Process the false branch.
1758  CFGBlock *ElseBlock = Succ;
1759
1760  if (Stmt *Else = I->getElse()) {
1761    SaveAndRestore<CFGBlock*> sv(Succ);
1762
1763    // NULL out Block so that the recursive call to Visit will
1764    // create a new basic block.
1765    Block = NULL;
1766
1767    // If branch is not a compound statement create implicit scope
1768    // and add destructors.
1769    if (!isa<CompoundStmt>(Else))
1770      addLocalScopeAndDtors(Else);
1771
1772    ElseBlock = addStmt(Else);
1773
1774    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1775      ElseBlock = sv.get();
1776    else if (Block) {
1777      if (badCFG)
1778        return 0;
1779    }
1780  }
1781
1782  // Process the true branch.
1783  CFGBlock *ThenBlock;
1784  {
1785    Stmt *Then = I->getThen();
1786    assert(Then);
1787    SaveAndRestore<CFGBlock*> sv(Succ);
1788    Block = NULL;
1789
1790    // If branch is not a compound statement create implicit scope
1791    // and add destructors.
1792    if (!isa<CompoundStmt>(Then))
1793      addLocalScopeAndDtors(Then);
1794
1795    ThenBlock = addStmt(Then);
1796
1797    if (!ThenBlock) {
1798      // We can reach here if the "then" body has all NullStmts.
1799      // Create an empty block so we can distinguish between true and false
1800      // branches in path-sensitive analyses.
1801      ThenBlock = createBlock(false);
1802      addSuccessor(ThenBlock, sv.get());
1803    } else if (Block) {
1804      if (badCFG)
1805        return 0;
1806    }
1807  }
1808
1809  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1810  // having these handle the actual control-flow jump.  Note that
1811  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1812  // we resort to the old control-flow behavior.  This special handling
1813  // removes infeasible paths from the control-flow graph by having the
1814  // control-flow transfer of '&&' or '||' go directly into the then/else
1815  // blocks directly.
1816  if (!I->getConditionVariable())
1817    if (BinaryOperator *Cond =
1818            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1819      if (Cond->isLogicalOp())
1820        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1821
1822  // Now create a new block containing the if statement.
1823  Block = createBlock(false);
1824
1825  // Set the terminator of the new block to the If statement.
1826  Block->setTerminator(I);
1827
1828  // See if this is a known constant.
1829  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1830
1831  // Now add the successors.
1832  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1833  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1834
1835  // Add the condition as the last statement in the new block.  This may create
1836  // new blocks as the condition may contain control-flow.  Any newly created
1837  // blocks will be pointed to be "Block".
1838  CFGBlock *LastBlock = addStmt(I->getCond());
1839
1840  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1841  // and the condition variable initialization to the CFG.
1842  if (VarDecl *VD = I->getConditionVariable()) {
1843    if (Expr *Init = VD->getInit()) {
1844      autoCreateBlock();
1845      appendStmt(Block, I->getConditionVariableDeclStmt());
1846      LastBlock = addStmt(Init);
1847    }
1848  }
1849
1850  return LastBlock;
1851}
1852
1853
1854CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1855  // If we were in the middle of a block we stop processing that block.
1856  //
1857  // NOTE: If a "return" appears in the middle of a block, this means that the
1858  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1859  //       for that code; a simple "mark-and-sweep" from the entry block will be
1860  //       able to report such dead blocks.
1861
1862  // Create the new block.
1863  Block = createBlock(false);
1864
1865  // The Exit block is the only successor.
1866  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1867  addSuccessor(Block, &cfg->getExit());
1868
1869  // Add the return statement to the block.  This may create new blocks if R
1870  // contains control-flow (short-circuit operations).
1871  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1872}
1873
1874CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1875  // Get the block of the labeled statement.  Add it to our map.
1876  addStmt(L->getSubStmt());
1877  CFGBlock *LabelBlock = Block;
1878
1879  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1880    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1881
1882  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1883         "label already in map");
1884  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1885
1886  // Labels partition blocks, so this is the end of the basic block we were
1887  // processing (L is the block's label).  Because this is label (and we have
1888  // already processed the substatement) there is no extra control-flow to worry
1889  // about.
1890  LabelBlock->setLabel(L);
1891  if (badCFG)
1892    return 0;
1893
1894  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1895  Block = NULL;
1896
1897  // This block is now the implicit successor of other blocks.
1898  Succ = LabelBlock;
1899
1900  return LabelBlock;
1901}
1902
1903CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1904  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1905  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1906       et = E->capture_init_end(); it != et; ++it) {
1907    if (Expr *Init = *it) {
1908      CFGBlock *Tmp = Visit(Init);
1909      if (Tmp != 0)
1910        LastBlock = Tmp;
1911    }
1912  }
1913  return LastBlock;
1914}
1915
1916CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1917  // Goto is a control-flow statement.  Thus we stop processing the current
1918  // block and create a new one.
1919
1920  Block = createBlock(false);
1921  Block->setTerminator(G);
1922
1923  // If we already know the mapping to the label block add the successor now.
1924  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1925
1926  if (I == LabelMap.end())
1927    // We will need to backpatch this block later.
1928    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1929  else {
1930    JumpTarget JT = I->second;
1931    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1932    addSuccessor(Block, JT.block);
1933  }
1934
1935  return Block;
1936}
1937
1938CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1939  CFGBlock *LoopSuccessor = NULL;
1940
1941  // Save local scope position because in case of condition variable ScopePos
1942  // won't be restored when traversing AST.
1943  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1944
1945  // Create local scope for init statement and possible condition variable.
1946  // Add destructor for init statement and condition variable.
1947  // Store scope position for continue statement.
1948  if (Stmt *Init = F->getInit())
1949    addLocalScopeForStmt(Init);
1950  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1951
1952  if (VarDecl *VD = F->getConditionVariable())
1953    addLocalScopeForVarDecl(VD);
1954  LocalScope::const_iterator ContinueScopePos = ScopePos;
1955
1956  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1957
1958  // "for" is a control-flow statement.  Thus we stop processing the current
1959  // block.
1960  if (Block) {
1961    if (badCFG)
1962      return 0;
1963    LoopSuccessor = Block;
1964  } else
1965    LoopSuccessor = Succ;
1966
1967  // Save the current value for the break targets.
1968  // All breaks should go to the code following the loop.
1969  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1970  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1971
1972  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1973
1974  // Now create the loop body.
1975  {
1976    assert(F->getBody());
1977
1978    // Save the current values for Block, Succ, continue and break targets.
1979    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1980    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1981
1982    // Create an empty block to represent the transition block for looping back
1983    // to the head of the loop.  If we have increment code, it will
1984    // go in this block as well.
1985    Block = Succ = TransitionBlock = createBlock(false);
1986    TransitionBlock->setLoopTarget(F);
1987
1988    if (Stmt *I = F->getInc()) {
1989      // Generate increment code in its own basic block.  This is the target of
1990      // continue statements.
1991      Succ = addStmt(I);
1992    }
1993
1994    // Finish up the increment (or empty) block if it hasn't been already.
1995    if (Block) {
1996      assert(Block == Succ);
1997      if (badCFG)
1998        return 0;
1999      Block = 0;
2000    }
2001
2002   // The starting block for the loop increment is the block that should
2003   // represent the 'loop target' for looping back to the start of the loop.
2004   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2005   ContinueJumpTarget.block->setLoopTarget(F);
2006
2007    // Loop body should end with destructor of Condition variable (if any).
2008    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2009
2010    // If body is not a compound statement create implicit scope
2011    // and add destructors.
2012    if (!isa<CompoundStmt>(F->getBody()))
2013      addLocalScopeAndDtors(F->getBody());
2014
2015    // Now populate the body block, and in the process create new blocks as we
2016    // walk the body of the loop.
2017    BodyBlock = addStmt(F->getBody());
2018
2019    if (!BodyBlock) {
2020      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2021      // Use the continue jump target as the proxy for the body.
2022      BodyBlock = ContinueJumpTarget.block;
2023    }
2024    else if (badCFG)
2025      return 0;
2026  }
2027
2028  // Because of short-circuit evaluation, the condition of the loop can span
2029  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2030  // evaluate the condition.
2031  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2032
2033  do {
2034    Expr *C = F->getCond();
2035
2036    // Specially handle logical operators, which have a slightly
2037    // more optimal CFG representation.
2038    if (BinaryOperator *Cond =
2039            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2040      if (Cond->isLogicalOp()) {
2041        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2042          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2043        break;
2044      }
2045
2046    // The default case when not handling logical operators.
2047    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2048    ExitConditionBlock->setTerminator(F);
2049
2050    // See if this is a known constant.
2051    TryResult KnownVal(true);
2052
2053    if (C) {
2054      // Now add the actual condition to the condition block.
2055      // Because the condition itself may contain control-flow, new blocks may
2056      // be created.  Thus we update "Succ" after adding the condition.
2057      Block = ExitConditionBlock;
2058      EntryConditionBlock = addStmt(C);
2059
2060      // If this block contains a condition variable, add both the condition
2061      // variable and initializer to the CFG.
2062      if (VarDecl *VD = F->getConditionVariable()) {
2063        if (Expr *Init = VD->getInit()) {
2064          autoCreateBlock();
2065          appendStmt(Block, F->getConditionVariableDeclStmt());
2066          EntryConditionBlock = addStmt(Init);
2067          assert(Block == EntryConditionBlock);
2068        }
2069      }
2070
2071      if (Block && badCFG)
2072        return 0;
2073
2074      KnownVal = tryEvaluateBool(C);
2075    }
2076
2077    // Add the loop body entry as a successor to the condition.
2078    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2079    // Link up the condition block with the code that follows the loop.  (the
2080    // false branch).
2081    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2082
2083  } while (false);
2084
2085  // Link up the loop-back block to the entry condition block.
2086  addSuccessor(TransitionBlock, EntryConditionBlock);
2087
2088  // The condition block is the implicit successor for any code above the loop.
2089  Succ = EntryConditionBlock;
2090
2091  // If the loop contains initialization, create a new block for those
2092  // statements.  This block can also contain statements that precede the loop.
2093  if (Stmt *I = F->getInit()) {
2094    Block = createBlock();
2095    return addStmt(I);
2096  }
2097
2098  // There is no loop initialization.  We are thus basically a while loop.
2099  // NULL out Block to force lazy block construction.
2100  Block = NULL;
2101  Succ = EntryConditionBlock;
2102  return EntryConditionBlock;
2103}
2104
2105CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2106  if (asc.alwaysAdd(*this, M)) {
2107    autoCreateBlock();
2108    appendStmt(Block, M);
2109  }
2110  return Visit(M->getBase());
2111}
2112
2113CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2114  // Objective-C fast enumeration 'for' statements:
2115  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2116  //
2117  //  for ( Type newVariable in collection_expression ) { statements }
2118  //
2119  //  becomes:
2120  //
2121  //   prologue:
2122  //     1. collection_expression
2123  //     T. jump to loop_entry
2124  //   loop_entry:
2125  //     1. side-effects of element expression
2126  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2127  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2128  //   TB:
2129  //     statements
2130  //     T. jump to loop_entry
2131  //   FB:
2132  //     what comes after
2133  //
2134  //  and
2135  //
2136  //  Type existingItem;
2137  //  for ( existingItem in expression ) { statements }
2138  //
2139  //  becomes:
2140  //
2141  //   the same with newVariable replaced with existingItem; the binding works
2142  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2143  //   a DeclStmt and the other returns a DeclRefExpr.
2144  //
2145
2146  CFGBlock *LoopSuccessor = 0;
2147
2148  if (Block) {
2149    if (badCFG)
2150      return 0;
2151    LoopSuccessor = Block;
2152    Block = 0;
2153  } else
2154    LoopSuccessor = Succ;
2155
2156  // Build the condition blocks.
2157  CFGBlock *ExitConditionBlock = createBlock(false);
2158
2159  // Set the terminator for the "exit" condition block.
2160  ExitConditionBlock->setTerminator(S);
2161
2162  // The last statement in the block should be the ObjCForCollectionStmt, which
2163  // performs the actual binding to 'element' and determines if there are any
2164  // more items in the collection.
2165  appendStmt(ExitConditionBlock, S);
2166  Block = ExitConditionBlock;
2167
2168  // Walk the 'element' expression to see if there are any side-effects.  We
2169  // generate new blocks as necessary.  We DON'T add the statement by default to
2170  // the CFG unless it contains control-flow.
2171  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2172                                        AddStmtChoice::NotAlwaysAdd);
2173  if (Block) {
2174    if (badCFG)
2175      return 0;
2176    Block = 0;
2177  }
2178
2179  // The condition block is the implicit successor for the loop body as well as
2180  // any code above the loop.
2181  Succ = EntryConditionBlock;
2182
2183  // Now create the true branch.
2184  {
2185    // Save the current values for Succ, continue and break targets.
2186    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2187    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2188                               save_break(BreakJumpTarget);
2189
2190    // Add an intermediate block between the BodyBlock and the
2191    // EntryConditionBlock to represent the "loop back" transition, for looping
2192    // back to the head of the loop.
2193    CFGBlock *LoopBackBlock = 0;
2194    Succ = LoopBackBlock = createBlock();
2195    LoopBackBlock->setLoopTarget(S);
2196
2197    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2198    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2199
2200    CFGBlock *BodyBlock = addStmt(S->getBody());
2201
2202    if (!BodyBlock)
2203      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2204    else if (Block) {
2205      if (badCFG)
2206        return 0;
2207    }
2208
2209    // This new body block is a successor to our "exit" condition block.
2210    addSuccessor(ExitConditionBlock, BodyBlock);
2211  }
2212
2213  // Link up the condition block with the code that follows the loop.
2214  // (the false branch).
2215  addSuccessor(ExitConditionBlock, LoopSuccessor);
2216
2217  // Now create a prologue block to contain the collection expression.
2218  Block = createBlock();
2219  return addStmt(S->getCollection());
2220}
2221
2222CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2223  // Inline the body.
2224  return addStmt(S->getSubStmt());
2225  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2226}
2227
2228CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2229  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2230
2231  // Inline the body.
2232  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2233
2234  // The sync body starts its own basic block.  This makes it a little easier
2235  // for diagnostic clients.
2236  if (SyncBlock) {
2237    if (badCFG)
2238      return 0;
2239
2240    Block = 0;
2241    Succ = SyncBlock;
2242  }
2243
2244  // Add the @synchronized to the CFG.
2245  autoCreateBlock();
2246  appendStmt(Block, S);
2247
2248  // Inline the sync expression.
2249  return addStmt(S->getSynchExpr());
2250}
2251
2252CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2253  // FIXME
2254  return NYS();
2255}
2256
2257CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2258  autoCreateBlock();
2259
2260  // Add the PseudoObject as the last thing.
2261  appendStmt(Block, E);
2262
2263  CFGBlock *lastBlock = Block;
2264
2265  // Before that, evaluate all of the semantics in order.  In
2266  // CFG-land, that means appending them in reverse order.
2267  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2268    Expr *Semantic = E->getSemanticExpr(--i);
2269
2270    // If the semantic is an opaque value, we're being asked to bind
2271    // it to its source expression.
2272    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2273      Semantic = OVE->getSourceExpr();
2274
2275    if (CFGBlock *B = Visit(Semantic))
2276      lastBlock = B;
2277  }
2278
2279  return lastBlock;
2280}
2281
2282CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2283  CFGBlock *LoopSuccessor = NULL;
2284
2285  // Save local scope position because in case of condition variable ScopePos
2286  // won't be restored when traversing AST.
2287  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2288
2289  // Create local scope for possible condition variable.
2290  // Store scope position for continue statement.
2291  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2292  if (VarDecl *VD = W->getConditionVariable()) {
2293    addLocalScopeForVarDecl(VD);
2294    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2295  }
2296
2297  // "while" is a control-flow statement.  Thus we stop processing the current
2298  // block.
2299  if (Block) {
2300    if (badCFG)
2301      return 0;
2302    LoopSuccessor = Block;
2303    Block = 0;
2304  } else {
2305    LoopSuccessor = Succ;
2306  }
2307
2308  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2309
2310  // Process the loop body.
2311  {
2312    assert(W->getBody());
2313
2314    // Save the current values for Block, Succ, continue and break targets.
2315    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2316    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2317                               save_break(BreakJumpTarget);
2318
2319    // Create an empty block to represent the transition block for looping back
2320    // to the head of the loop.
2321    Succ = TransitionBlock = createBlock(false);
2322    TransitionBlock->setLoopTarget(W);
2323    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2324
2325    // All breaks should go to the code following the loop.
2326    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2327
2328    // Loop body should end with destructor of Condition variable (if any).
2329    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2330
2331    // If body is not a compound statement create implicit scope
2332    // and add destructors.
2333    if (!isa<CompoundStmt>(W->getBody()))
2334      addLocalScopeAndDtors(W->getBody());
2335
2336    // Create the body.  The returned block is the entry to the loop body.
2337    BodyBlock = addStmt(W->getBody());
2338
2339    if (!BodyBlock)
2340      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2341    else if (Block && badCFG)
2342      return 0;
2343  }
2344
2345  // Because of short-circuit evaluation, the condition of the loop can span
2346  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2347  // evaluate the condition.
2348  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2349
2350  do {
2351    Expr *C = W->getCond();
2352
2353    // Specially handle logical operators, which have a slightly
2354    // more optimal CFG representation.
2355    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2356      if (Cond->isLogicalOp()) {
2357        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2358          VisitLogicalOperator(Cond, W, BodyBlock,
2359                               LoopSuccessor);
2360        break;
2361      }
2362
2363    // The default case when not handling logical operators.
2364    ExitConditionBlock = createBlock(false);
2365    ExitConditionBlock->setTerminator(W);
2366
2367    // Now add the actual condition to the condition block.
2368    // Because the condition itself may contain control-flow, new blocks may
2369    // be created.  Thus we update "Succ" after adding the condition.
2370    Block = ExitConditionBlock;
2371    Block = EntryConditionBlock = addStmt(C);
2372
2373    // If this block contains a condition variable, add both the condition
2374    // variable and initializer to the CFG.
2375    if (VarDecl *VD = W->getConditionVariable()) {
2376      if (Expr *Init = VD->getInit()) {
2377        autoCreateBlock();
2378        appendStmt(Block, W->getConditionVariableDeclStmt());
2379        EntryConditionBlock = addStmt(Init);
2380        assert(Block == EntryConditionBlock);
2381      }
2382    }
2383
2384    if (Block && badCFG)
2385      return 0;
2386
2387    // See if this is a known constant.
2388    const TryResult& KnownVal = tryEvaluateBool(C);
2389
2390    // Add the loop body entry as a successor to the condition.
2391    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2392    // Link up the condition block with the code that follows the loop.  (the
2393    // false branch).
2394    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2395
2396  } while(false);
2397
2398  // Link up the loop-back block to the entry condition block.
2399  addSuccessor(TransitionBlock, EntryConditionBlock);
2400
2401  // There can be no more statements in the condition block since we loop back
2402  // to this block.  NULL out Block to force lazy creation of another block.
2403  Block = NULL;
2404
2405  // Return the condition block, which is the dominating block for the loop.
2406  Succ = EntryConditionBlock;
2407  return EntryConditionBlock;
2408}
2409
2410
2411CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2412  // FIXME: For now we pretend that @catch and the code it contains does not
2413  //  exit.
2414  return Block;
2415}
2416
2417CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2418  // FIXME: This isn't complete.  We basically treat @throw like a return
2419  //  statement.
2420
2421  // If we were in the middle of a block we stop processing that block.
2422  if (badCFG)
2423    return 0;
2424
2425  // Create the new block.
2426  Block = createBlock(false);
2427
2428  // The Exit block is the only successor.
2429  addSuccessor(Block, &cfg->getExit());
2430
2431  // Add the statement to the block.  This may create new blocks if S contains
2432  // control-flow (short-circuit operations).
2433  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2434}
2435
2436CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2437  // If we were in the middle of a block we stop processing that block.
2438  if (badCFG)
2439    return 0;
2440
2441  // Create the new block.
2442  Block = createBlock(false);
2443
2444  if (TryTerminatedBlock)
2445    // The current try statement is the only successor.
2446    addSuccessor(Block, TryTerminatedBlock);
2447  else
2448    // otherwise the Exit block is the only successor.
2449    addSuccessor(Block, &cfg->getExit());
2450
2451  // Add the statement to the block.  This may create new blocks if S contains
2452  // control-flow (short-circuit operations).
2453  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2454}
2455
2456CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2457  CFGBlock *LoopSuccessor = NULL;
2458
2459  // "do...while" is a control-flow statement.  Thus we stop processing the
2460  // current block.
2461  if (Block) {
2462    if (badCFG)
2463      return 0;
2464    LoopSuccessor = Block;
2465  } else
2466    LoopSuccessor = Succ;
2467
2468  // Because of short-circuit evaluation, the condition of the loop can span
2469  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2470  // evaluate the condition.
2471  CFGBlock *ExitConditionBlock = createBlock(false);
2472  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2473
2474  // Set the terminator for the "exit" condition block.
2475  ExitConditionBlock->setTerminator(D);
2476
2477  // Now add the actual condition to the condition block.  Because the condition
2478  // itself may contain control-flow, new blocks may be created.
2479  if (Stmt *C = D->getCond()) {
2480    Block = ExitConditionBlock;
2481    EntryConditionBlock = addStmt(C);
2482    if (Block) {
2483      if (badCFG)
2484        return 0;
2485    }
2486  }
2487
2488  // The condition block is the implicit successor for the loop body.
2489  Succ = EntryConditionBlock;
2490
2491  // See if this is a known constant.
2492  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2493
2494  // Process the loop body.
2495  CFGBlock *BodyBlock = NULL;
2496  {
2497    assert(D->getBody());
2498
2499    // Save the current values for Block, Succ, and continue and break targets
2500    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2501    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2502        save_break(BreakJumpTarget);
2503
2504    // All continues within this loop should go to the condition block
2505    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2506
2507    // All breaks should go to the code following the loop.
2508    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2509
2510    // NULL out Block to force lazy instantiation of blocks for the body.
2511    Block = NULL;
2512
2513    // If body is not a compound statement create implicit scope
2514    // and add destructors.
2515    if (!isa<CompoundStmt>(D->getBody()))
2516      addLocalScopeAndDtors(D->getBody());
2517
2518    // Create the body.  The returned block is the entry to the loop body.
2519    BodyBlock = addStmt(D->getBody());
2520
2521    if (!BodyBlock)
2522      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2523    else if (Block) {
2524      if (badCFG)
2525        return 0;
2526    }
2527
2528    if (!KnownVal.isFalse()) {
2529      // Add an intermediate block between the BodyBlock and the
2530      // ExitConditionBlock to represent the "loop back" transition.  Create an
2531      // empty block to represent the transition block for looping back to the
2532      // head of the loop.
2533      // FIXME: Can we do this more efficiently without adding another block?
2534      Block = NULL;
2535      Succ = BodyBlock;
2536      CFGBlock *LoopBackBlock = createBlock();
2537      LoopBackBlock->setLoopTarget(D);
2538
2539      // Add the loop body entry as a successor to the condition.
2540      addSuccessor(ExitConditionBlock, LoopBackBlock);
2541    }
2542    else
2543      addSuccessor(ExitConditionBlock, NULL);
2544  }
2545
2546  // Link up the condition block with the code that follows the loop.
2547  // (the false branch).
2548  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2549
2550  // There can be no more statements in the body block(s) since we loop back to
2551  // the body.  NULL out Block to force lazy creation of another block.
2552  Block = NULL;
2553
2554  // Return the loop body, which is the dominating block for the loop.
2555  Succ = BodyBlock;
2556  return BodyBlock;
2557}
2558
2559CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2560  // "continue" is a control-flow statement.  Thus we stop processing the
2561  // current block.
2562  if (badCFG)
2563    return 0;
2564
2565  // Now create a new block that ends with the continue statement.
2566  Block = createBlock(false);
2567  Block->setTerminator(C);
2568
2569  // If there is no target for the continue, then we are looking at an
2570  // incomplete AST.  This means the CFG cannot be constructed.
2571  if (ContinueJumpTarget.block) {
2572    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2573    addSuccessor(Block, ContinueJumpTarget.block);
2574  } else
2575    badCFG = true;
2576
2577  return Block;
2578}
2579
2580CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2581                                                    AddStmtChoice asc) {
2582
2583  if (asc.alwaysAdd(*this, E)) {
2584    autoCreateBlock();
2585    appendStmt(Block, E);
2586  }
2587
2588  // VLA types have expressions that must be evaluated.
2589  CFGBlock *lastBlock = Block;
2590
2591  if (E->isArgumentType()) {
2592    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2593         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2594      lastBlock = addStmt(VA->getSizeExpr());
2595  }
2596  return lastBlock;
2597}
2598
2599/// VisitStmtExpr - Utility method to handle (nested) statement
2600///  expressions (a GCC extension).
2601CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2602  if (asc.alwaysAdd(*this, SE)) {
2603    autoCreateBlock();
2604    appendStmt(Block, SE);
2605  }
2606  return VisitCompoundStmt(SE->getSubStmt());
2607}
2608
2609CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2610  // "switch" is a control-flow statement.  Thus we stop processing the current
2611  // block.
2612  CFGBlock *SwitchSuccessor = NULL;
2613
2614  // Save local scope position because in case of condition variable ScopePos
2615  // won't be restored when traversing AST.
2616  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2617
2618  // Create local scope for possible condition variable.
2619  // Store scope position. Add implicit destructor.
2620  if (VarDecl *VD = Terminator->getConditionVariable()) {
2621    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2622    addLocalScopeForVarDecl(VD);
2623    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2624  }
2625
2626  if (Block) {
2627    if (badCFG)
2628      return 0;
2629    SwitchSuccessor = Block;
2630  } else SwitchSuccessor = Succ;
2631
2632  // Save the current "switch" context.
2633  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2634                            save_default(DefaultCaseBlock);
2635  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2636
2637  // Set the "default" case to be the block after the switch statement.  If the
2638  // switch statement contains a "default:", this value will be overwritten with
2639  // the block for that code.
2640  DefaultCaseBlock = SwitchSuccessor;
2641
2642  // Create a new block that will contain the switch statement.
2643  SwitchTerminatedBlock = createBlock(false);
2644
2645  // Now process the switch body.  The code after the switch is the implicit
2646  // successor.
2647  Succ = SwitchSuccessor;
2648  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2649
2650  // When visiting the body, the case statements should automatically get linked
2651  // up to the switch.  We also don't keep a pointer to the body, since all
2652  // control-flow from the switch goes to case/default statements.
2653  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2654  Block = NULL;
2655
2656  // For pruning unreachable case statements, save the current state
2657  // for tracking the condition value.
2658  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2659                                                     false);
2660
2661  // Determine if the switch condition can be explicitly evaluated.
2662  assert(Terminator->getCond() && "switch condition must be non-NULL");
2663  Expr::EvalResult result;
2664  bool b = tryEvaluate(Terminator->getCond(), result);
2665  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2666                                                    b ? &result : 0);
2667
2668  // If body is not a compound statement create implicit scope
2669  // and add destructors.
2670  if (!isa<CompoundStmt>(Terminator->getBody()))
2671    addLocalScopeAndDtors(Terminator->getBody());
2672
2673  addStmt(Terminator->getBody());
2674  if (Block) {
2675    if (badCFG)
2676      return 0;
2677  }
2678
2679  // If we have no "default:" case, the default transition is to the code
2680  // following the switch body.  Moreover, take into account if all the
2681  // cases of a switch are covered (e.g., switching on an enum value).
2682  //
2683  // Note: We add a successor to a switch that is considered covered yet has no
2684  //       case statements if the enumeration has no enumerators.
2685  bool SwitchAlwaysHasSuccessor = false;
2686  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2687  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2688                              Terminator->getSwitchCaseList();
2689  addSuccessor(SwitchTerminatedBlock,
2690               SwitchAlwaysHasSuccessor ? 0 : DefaultCaseBlock);
2691
2692  // Add the terminator and condition in the switch block.
2693  SwitchTerminatedBlock->setTerminator(Terminator);
2694  Block = SwitchTerminatedBlock;
2695  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2696
2697  // Finally, if the SwitchStmt contains a condition variable, add both the
2698  // SwitchStmt and the condition variable initialization to the CFG.
2699  if (VarDecl *VD = Terminator->getConditionVariable()) {
2700    if (Expr *Init = VD->getInit()) {
2701      autoCreateBlock();
2702      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2703      LastBlock = addStmt(Init);
2704    }
2705  }
2706
2707  return LastBlock;
2708}
2709
2710static bool shouldAddCase(bool &switchExclusivelyCovered,
2711                          const Expr::EvalResult *switchCond,
2712                          const CaseStmt *CS,
2713                          ASTContext &Ctx) {
2714  if (!switchCond)
2715    return true;
2716
2717  bool addCase = false;
2718
2719  if (!switchExclusivelyCovered) {
2720    if (switchCond->Val.isInt()) {
2721      // Evaluate the LHS of the case value.
2722      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2723      const llvm::APSInt &condInt = switchCond->Val.getInt();
2724
2725      if (condInt == lhsInt) {
2726        addCase = true;
2727        switchExclusivelyCovered = true;
2728      }
2729      else if (condInt < lhsInt) {
2730        if (const Expr *RHS = CS->getRHS()) {
2731          // Evaluate the RHS of the case value.
2732          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2733          if (V2 <= condInt) {
2734            addCase = true;
2735            switchExclusivelyCovered = true;
2736          }
2737        }
2738      }
2739    }
2740    else
2741      addCase = true;
2742  }
2743  return addCase;
2744}
2745
2746CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2747  // CaseStmts are essentially labels, so they are the first statement in a
2748  // block.
2749  CFGBlock *TopBlock = 0, *LastBlock = 0;
2750
2751  if (Stmt *Sub = CS->getSubStmt()) {
2752    // For deeply nested chains of CaseStmts, instead of doing a recursion
2753    // (which can blow out the stack), manually unroll and create blocks
2754    // along the way.
2755    while (isa<CaseStmt>(Sub)) {
2756      CFGBlock *currentBlock = createBlock(false);
2757      currentBlock->setLabel(CS);
2758
2759      if (TopBlock)
2760        addSuccessor(LastBlock, currentBlock);
2761      else
2762        TopBlock = currentBlock;
2763
2764      addSuccessor(SwitchTerminatedBlock,
2765                   shouldAddCase(switchExclusivelyCovered, switchCond,
2766                                 CS, *Context)
2767                   ? currentBlock : 0);
2768
2769      LastBlock = currentBlock;
2770      CS = cast<CaseStmt>(Sub);
2771      Sub = CS->getSubStmt();
2772    }
2773
2774    addStmt(Sub);
2775  }
2776
2777  CFGBlock *CaseBlock = Block;
2778  if (!CaseBlock)
2779    CaseBlock = createBlock();
2780
2781  // Cases statements partition blocks, so this is the top of the basic block we
2782  // were processing (the "case XXX:" is the label).
2783  CaseBlock->setLabel(CS);
2784
2785  if (badCFG)
2786    return 0;
2787
2788  // Add this block to the list of successors for the block with the switch
2789  // statement.
2790  assert(SwitchTerminatedBlock);
2791  addSuccessor(SwitchTerminatedBlock,
2792               shouldAddCase(switchExclusivelyCovered, switchCond,
2793                             CS, *Context)
2794               ? CaseBlock : 0);
2795
2796  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2797  Block = NULL;
2798
2799  if (TopBlock) {
2800    addSuccessor(LastBlock, CaseBlock);
2801    Succ = TopBlock;
2802  } else {
2803    // This block is now the implicit successor of other blocks.
2804    Succ = CaseBlock;
2805  }
2806
2807  return Succ;
2808}
2809
2810CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2811  if (Terminator->getSubStmt())
2812    addStmt(Terminator->getSubStmt());
2813
2814  DefaultCaseBlock = Block;
2815
2816  if (!DefaultCaseBlock)
2817    DefaultCaseBlock = createBlock();
2818
2819  // Default statements partition blocks, so this is the top of the basic block
2820  // we were processing (the "default:" is the label).
2821  DefaultCaseBlock->setLabel(Terminator);
2822
2823  if (badCFG)
2824    return 0;
2825
2826  // Unlike case statements, we don't add the default block to the successors
2827  // for the switch statement immediately.  This is done when we finish
2828  // processing the switch statement.  This allows for the default case
2829  // (including a fall-through to the code after the switch statement) to always
2830  // be the last successor of a switch-terminated block.
2831
2832  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2833  Block = NULL;
2834
2835  // This block is now the implicit successor of other blocks.
2836  Succ = DefaultCaseBlock;
2837
2838  return DefaultCaseBlock;
2839}
2840
2841CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2842  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2843  // current block.
2844  CFGBlock *TrySuccessor = NULL;
2845
2846  if (Block) {
2847    if (badCFG)
2848      return 0;
2849    TrySuccessor = Block;
2850  } else TrySuccessor = Succ;
2851
2852  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2853
2854  // Create a new block that will contain the try statement.
2855  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2856  // Add the terminator in the try block.
2857  NewTryTerminatedBlock->setTerminator(Terminator);
2858
2859  bool HasCatchAll = false;
2860  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2861    // The code after the try is the implicit successor.
2862    Succ = TrySuccessor;
2863    CXXCatchStmt *CS = Terminator->getHandler(h);
2864    if (CS->getExceptionDecl() == 0) {
2865      HasCatchAll = true;
2866    }
2867    Block = NULL;
2868    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2869    if (CatchBlock == 0)
2870      return 0;
2871    // Add this block to the list of successors for the block with the try
2872    // statement.
2873    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2874  }
2875  if (!HasCatchAll) {
2876    if (PrevTryTerminatedBlock)
2877      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2878    else
2879      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2880  }
2881
2882  // The code after the try is the implicit successor.
2883  Succ = TrySuccessor;
2884
2885  // Save the current "try" context.
2886  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2887  cfg->addTryDispatchBlock(TryTerminatedBlock);
2888
2889  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2890  Block = NULL;
2891  return addStmt(Terminator->getTryBlock());
2892}
2893
2894CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2895  // CXXCatchStmt are treated like labels, so they are the first statement in a
2896  // block.
2897
2898  // Save local scope position because in case of exception variable ScopePos
2899  // won't be restored when traversing AST.
2900  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2901
2902  // Create local scope for possible exception variable.
2903  // Store scope position. Add implicit destructor.
2904  if (VarDecl *VD = CS->getExceptionDecl()) {
2905    LocalScope::const_iterator BeginScopePos = ScopePos;
2906    addLocalScopeForVarDecl(VD);
2907    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2908  }
2909
2910  if (CS->getHandlerBlock())
2911    addStmt(CS->getHandlerBlock());
2912
2913  CFGBlock *CatchBlock = Block;
2914  if (!CatchBlock)
2915    CatchBlock = createBlock();
2916
2917  // CXXCatchStmt is more than just a label.  They have semantic meaning
2918  // as well, as they implicitly "initialize" the catch variable.  Add
2919  // it to the CFG as a CFGElement so that the control-flow of these
2920  // semantics gets captured.
2921  appendStmt(CatchBlock, CS);
2922
2923  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2924  // labels.
2925  CatchBlock->setLabel(CS);
2926
2927  // Bail out if the CFG is bad.
2928  if (badCFG)
2929    return 0;
2930
2931  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2932  Block = NULL;
2933
2934  return CatchBlock;
2935}
2936
2937CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2938  // C++0x for-range statements are specified as [stmt.ranged]:
2939  //
2940  // {
2941  //   auto && __range = range-init;
2942  //   for ( auto __begin = begin-expr,
2943  //         __end = end-expr;
2944  //         __begin != __end;
2945  //         ++__begin ) {
2946  //     for-range-declaration = *__begin;
2947  //     statement
2948  //   }
2949  // }
2950
2951  // Save local scope position before the addition of the implicit variables.
2952  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2953
2954  // Create local scopes and destructors for range, begin and end variables.
2955  if (Stmt *Range = S->getRangeStmt())
2956    addLocalScopeForStmt(Range);
2957  if (Stmt *BeginEnd = S->getBeginEndStmt())
2958    addLocalScopeForStmt(BeginEnd);
2959  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2960
2961  LocalScope::const_iterator ContinueScopePos = ScopePos;
2962
2963  // "for" is a control-flow statement.  Thus we stop processing the current
2964  // block.
2965  CFGBlock *LoopSuccessor = NULL;
2966  if (Block) {
2967    if (badCFG)
2968      return 0;
2969    LoopSuccessor = Block;
2970  } else
2971    LoopSuccessor = Succ;
2972
2973  // Save the current value for the break targets.
2974  // All breaks should go to the code following the loop.
2975  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2976  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2977
2978  // The block for the __begin != __end expression.
2979  CFGBlock *ConditionBlock = createBlock(false);
2980  ConditionBlock->setTerminator(S);
2981
2982  // Now add the actual condition to the condition block.
2983  if (Expr *C = S->getCond()) {
2984    Block = ConditionBlock;
2985    CFGBlock *BeginConditionBlock = addStmt(C);
2986    if (badCFG)
2987      return 0;
2988    assert(BeginConditionBlock == ConditionBlock &&
2989           "condition block in for-range was unexpectedly complex");
2990    (void)BeginConditionBlock;
2991  }
2992
2993  // The condition block is the implicit successor for the loop body as well as
2994  // any code above the loop.
2995  Succ = ConditionBlock;
2996
2997  // See if this is a known constant.
2998  TryResult KnownVal(true);
2999
3000  if (S->getCond())
3001    KnownVal = tryEvaluateBool(S->getCond());
3002
3003  // Now create the loop body.
3004  {
3005    assert(S->getBody());
3006
3007    // Save the current values for Block, Succ, and continue targets.
3008    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3009    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3010
3011    // Generate increment code in its own basic block.  This is the target of
3012    // continue statements.
3013    Block = 0;
3014    Succ = addStmt(S->getInc());
3015    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3016
3017    // The starting block for the loop increment is the block that should
3018    // represent the 'loop target' for looping back to the start of the loop.
3019    ContinueJumpTarget.block->setLoopTarget(S);
3020
3021    // Finish up the increment block and prepare to start the loop body.
3022    assert(Block);
3023    if (badCFG)
3024      return 0;
3025    Block = 0;
3026
3027
3028    // Add implicit scope and dtors for loop variable.
3029    addLocalScopeAndDtors(S->getLoopVarStmt());
3030
3031    // Populate a new block to contain the loop body and loop variable.
3032    addStmt(S->getBody());
3033    if (badCFG)
3034      return 0;
3035    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3036    if (badCFG)
3037      return 0;
3038
3039    // This new body block is a successor to our condition block.
3040    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3041  }
3042
3043  // Link up the condition block with the code that follows the loop (the
3044  // false branch).
3045  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3046
3047  // Add the initialization statements.
3048  Block = createBlock();
3049  addStmt(S->getBeginEndStmt());
3050  return addStmt(S->getRangeStmt());
3051}
3052
3053CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3054    AddStmtChoice asc) {
3055  if (BuildOpts.AddTemporaryDtors) {
3056    // If adding implicit destructors visit the full expression for adding
3057    // destructors of temporaries.
3058    VisitForTemporaryDtors(E->getSubExpr());
3059
3060    // Full expression has to be added as CFGStmt so it will be sequenced
3061    // before destructors of it's temporaries.
3062    asc = asc.withAlwaysAdd(true);
3063  }
3064  return Visit(E->getSubExpr(), asc);
3065}
3066
3067CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3068                                                AddStmtChoice asc) {
3069  if (asc.alwaysAdd(*this, E)) {
3070    autoCreateBlock();
3071    appendStmt(Block, E);
3072
3073    // We do not want to propagate the AlwaysAdd property.
3074    asc = asc.withAlwaysAdd(false);
3075  }
3076  return Visit(E->getSubExpr(), asc);
3077}
3078
3079CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3080                                            AddStmtChoice asc) {
3081  autoCreateBlock();
3082  appendStmt(Block, C);
3083
3084  return VisitChildren(C);
3085}
3086
3087CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3088                                                 AddStmtChoice asc) {
3089  if (asc.alwaysAdd(*this, E)) {
3090    autoCreateBlock();
3091    appendStmt(Block, E);
3092    // We do not want to propagate the AlwaysAdd property.
3093    asc = asc.withAlwaysAdd(false);
3094  }
3095  return Visit(E->getSubExpr(), asc);
3096}
3097
3098CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3099                                                  AddStmtChoice asc) {
3100  autoCreateBlock();
3101  appendStmt(Block, C);
3102  return VisitChildren(C);
3103}
3104
3105CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3106                                            AddStmtChoice asc) {
3107  if (asc.alwaysAdd(*this, E)) {
3108    autoCreateBlock();
3109    appendStmt(Block, E);
3110  }
3111  return Visit(E->getSubExpr(), AddStmtChoice());
3112}
3113
3114CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3115  // Lazily create the indirect-goto dispatch block if there isn't one already.
3116  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3117
3118  if (!IBlock) {
3119    IBlock = createBlock(false);
3120    cfg->setIndirectGotoBlock(IBlock);
3121  }
3122
3123  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3124  // current block and create a new one.
3125  if (badCFG)
3126    return 0;
3127
3128  Block = createBlock(false);
3129  Block->setTerminator(I);
3130  addSuccessor(Block, IBlock);
3131  return addStmt(I->getTarget());
3132}
3133
3134CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3135  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3136
3137tryAgain:
3138  if (!E) {
3139    badCFG = true;
3140    return NULL;
3141  }
3142  switch (E->getStmtClass()) {
3143    default:
3144      return VisitChildrenForTemporaryDtors(E);
3145
3146    case Stmt::BinaryOperatorClass:
3147      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3148
3149    case Stmt::CXXBindTemporaryExprClass:
3150      return VisitCXXBindTemporaryExprForTemporaryDtors(
3151          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3152
3153    case Stmt::BinaryConditionalOperatorClass:
3154    case Stmt::ConditionalOperatorClass:
3155      return VisitConditionalOperatorForTemporaryDtors(
3156          cast<AbstractConditionalOperator>(E), BindToTemporary);
3157
3158    case Stmt::ImplicitCastExprClass:
3159      // For implicit cast we want BindToTemporary to be passed further.
3160      E = cast<CastExpr>(E)->getSubExpr();
3161      goto tryAgain;
3162
3163    case Stmt::ParenExprClass:
3164      E = cast<ParenExpr>(E)->getSubExpr();
3165      goto tryAgain;
3166
3167    case Stmt::MaterializeTemporaryExprClass:
3168      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3169      goto tryAgain;
3170  }
3171}
3172
3173CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3174  // When visiting children for destructors we want to visit them in reverse
3175  // order that they will appear in the CFG.  Because the CFG is built
3176  // bottom-up, this means we visit them in their natural order, which
3177  // reverses them in the CFG.
3178  CFGBlock *B = Block;
3179  for (Stmt::child_range I = E->children(); I; ++I) {
3180    if (Stmt *Child = *I)
3181      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3182        B = R;
3183  }
3184  return B;
3185}
3186
3187CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3188  if (E->isLogicalOp()) {
3189    // Destructors for temporaries in LHS expression should be called after
3190    // those for RHS expression. Even if this will unnecessarily create a block,
3191    // this block will be used at least by the full expression.
3192    autoCreateBlock();
3193    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3194    if (badCFG)
3195      return NULL;
3196
3197    Succ = ConfluenceBlock;
3198    Block = NULL;
3199    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3200
3201    if (RHSBlock) {
3202      if (badCFG)
3203        return NULL;
3204
3205      // If RHS expression did produce destructors we need to connect created
3206      // blocks to CFG in same manner as for binary operator itself.
3207      CFGBlock *LHSBlock = createBlock(false);
3208      LHSBlock->setTerminator(CFGTerminator(E, true));
3209
3210      // For binary operator LHS block is before RHS in list of predecessors
3211      // of ConfluenceBlock.
3212      std::reverse(ConfluenceBlock->pred_begin(),
3213          ConfluenceBlock->pred_end());
3214
3215      // See if this is a known constant.
3216      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3217      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3218        KnownVal.negate();
3219
3220      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3221      // itself.
3222      if (E->getOpcode() == BO_LOr) {
3223        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3224        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3225      } else {
3226        assert (E->getOpcode() == BO_LAnd);
3227        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3228        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3229      }
3230
3231      Block = LHSBlock;
3232      return LHSBlock;
3233    }
3234
3235    Block = ConfluenceBlock;
3236    return ConfluenceBlock;
3237  }
3238
3239  if (E->isAssignmentOp()) {
3240    // For assignment operator (=) LHS expression is visited
3241    // before RHS expression. For destructors visit them in reverse order.
3242    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3243    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3244    return LHSBlock ? LHSBlock : RHSBlock;
3245  }
3246
3247  // For any other binary operator RHS expression is visited before
3248  // LHS expression (order of children). For destructors visit them in reverse
3249  // order.
3250  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3251  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3252  return RHSBlock ? RHSBlock : LHSBlock;
3253}
3254
3255CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3256    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3257  // First add destructors for temporaries in subexpression.
3258  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3259  if (!BindToTemporary) {
3260    // If lifetime of temporary is not prolonged (by assigning to constant
3261    // reference) add destructor for it.
3262
3263    // If the destructor is marked as a no-return destructor, we need to create
3264    // a new block for the destructor which does not have as a successor
3265    // anything built thus far. Control won't flow out of this block.
3266    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3267    if (Dtor->isNoReturn())
3268      Block = createNoReturnBlock();
3269    else
3270      autoCreateBlock();
3271
3272    appendTemporaryDtor(Block, E);
3273    B = Block;
3274  }
3275  return B;
3276}
3277
3278CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3279    AbstractConditionalOperator *E, bool BindToTemporary) {
3280  // First add destructors for condition expression.  Even if this will
3281  // unnecessarily create a block, this block will be used at least by the full
3282  // expression.
3283  autoCreateBlock();
3284  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3285  if (badCFG)
3286    return NULL;
3287  if (BinaryConditionalOperator *BCO
3288        = dyn_cast<BinaryConditionalOperator>(E)) {
3289    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3290    if (badCFG)
3291      return NULL;
3292  }
3293
3294  // Try to add block with destructors for LHS expression.
3295  CFGBlock *LHSBlock = NULL;
3296  Succ = ConfluenceBlock;
3297  Block = NULL;
3298  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3299  if (badCFG)
3300    return NULL;
3301
3302  // Try to add block with destructors for RHS expression;
3303  Succ = ConfluenceBlock;
3304  Block = NULL;
3305  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3306                                              BindToTemporary);
3307  if (badCFG)
3308    return NULL;
3309
3310  if (!RHSBlock && !LHSBlock) {
3311    // If neither LHS nor RHS expression had temporaries to destroy don't create
3312    // more blocks.
3313    Block = ConfluenceBlock;
3314    return Block;
3315  }
3316
3317  Block = createBlock(false);
3318  Block->setTerminator(CFGTerminator(E, true));
3319
3320  // See if this is a known constant.
3321  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3322
3323  if (LHSBlock) {
3324    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3325  } else if (KnownVal.isFalse()) {
3326    addSuccessor(Block, NULL);
3327  } else {
3328    addSuccessor(Block, ConfluenceBlock);
3329    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3330  }
3331
3332  if (!RHSBlock)
3333    RHSBlock = ConfluenceBlock;
3334  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3335
3336  return Block;
3337}
3338
3339} // end anonymous namespace
3340
3341/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3342///  no successors or predecessors.  If this is the first block created in the
3343///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3344CFGBlock *CFG::createBlock() {
3345  bool first_block = begin() == end();
3346
3347  // Create the block.
3348  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3349  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3350  Blocks.push_back(Mem, BlkBVC);
3351
3352  // If this is the first block, set it as the Entry and Exit.
3353  if (first_block)
3354    Entry = Exit = &back();
3355
3356  // Return the block.
3357  return &back();
3358}
3359
3360/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3361///  CFG is returned to the caller.
3362CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3363    const BuildOptions &BO) {
3364  CFGBuilder Builder(C, BO);
3365  return Builder.buildCFG(D, Statement);
3366}
3367
3368const CXXDestructorDecl *
3369CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3370  switch (getKind()) {
3371    case CFGElement::Statement:
3372    case CFGElement::Initializer:
3373      llvm_unreachable("getDestructorDecl should only be used with "
3374                       "ImplicitDtors");
3375    case CFGElement::AutomaticObjectDtor: {
3376      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3377      QualType ty = var->getType();
3378      ty = ty.getNonReferenceType();
3379      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3380        ty = arrayType->getElementType();
3381      }
3382      const RecordType *recordType = ty->getAs<RecordType>();
3383      const CXXRecordDecl *classDecl =
3384      cast<CXXRecordDecl>(recordType->getDecl());
3385      return classDecl->getDestructor();
3386    }
3387    case CFGElement::TemporaryDtor: {
3388      const CXXBindTemporaryExpr *bindExpr =
3389        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3390      const CXXTemporary *temp = bindExpr->getTemporary();
3391      return temp->getDestructor();
3392    }
3393    case CFGElement::BaseDtor:
3394    case CFGElement::MemberDtor:
3395
3396      // Not yet supported.
3397      return 0;
3398  }
3399  llvm_unreachable("getKind() returned bogus value");
3400}
3401
3402bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3403  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3404    return DD->isNoReturn();
3405  return false;
3406}
3407
3408//===----------------------------------------------------------------------===//
3409// Filtered walking of the CFG.
3410//===----------------------------------------------------------------------===//
3411
3412bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3413        const CFGBlock *From, const CFGBlock *To) {
3414
3415  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3416    // If the 'To' has no label or is labeled but the label isn't a
3417    // CaseStmt then filter this edge.
3418    if (const SwitchStmt *S =
3419        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3420      if (S->isAllEnumCasesCovered()) {
3421        const Stmt *L = To->getLabel();
3422        if (!L || !isa<CaseStmt>(L))
3423          return true;
3424      }
3425    }
3426  }
3427
3428  return false;
3429}
3430
3431//===----------------------------------------------------------------------===//
3432// CFG pretty printing
3433//===----------------------------------------------------------------------===//
3434
3435namespace {
3436
3437class StmtPrinterHelper : public PrinterHelper  {
3438  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3439  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3440  StmtMapTy StmtMap;
3441  DeclMapTy DeclMap;
3442  signed currentBlock;
3443  unsigned currStmt;
3444  const LangOptions &LangOpts;
3445public:
3446
3447  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3448    : currentBlock(0), currStmt(0), LangOpts(LO)
3449  {
3450    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3451      unsigned j = 1;
3452      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3453           BI != BEnd; ++BI, ++j ) {
3454        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3455          const Stmt *stmt= SE->getStmt();
3456          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3457          StmtMap[stmt] = P;
3458
3459          switch (stmt->getStmtClass()) {
3460            case Stmt::DeclStmtClass:
3461                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3462                break;
3463            case Stmt::IfStmtClass: {
3464              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3465              if (var)
3466                DeclMap[var] = P;
3467              break;
3468            }
3469            case Stmt::ForStmtClass: {
3470              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3471              if (var)
3472                DeclMap[var] = P;
3473              break;
3474            }
3475            case Stmt::WhileStmtClass: {
3476              const VarDecl *var =
3477                cast<WhileStmt>(stmt)->getConditionVariable();
3478              if (var)
3479                DeclMap[var] = P;
3480              break;
3481            }
3482            case Stmt::SwitchStmtClass: {
3483              const VarDecl *var =
3484                cast<SwitchStmt>(stmt)->getConditionVariable();
3485              if (var)
3486                DeclMap[var] = P;
3487              break;
3488            }
3489            case Stmt::CXXCatchStmtClass: {
3490              const VarDecl *var =
3491                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3492              if (var)
3493                DeclMap[var] = P;
3494              break;
3495            }
3496            default:
3497              break;
3498          }
3499        }
3500      }
3501    }
3502  }
3503
3504
3505  virtual ~StmtPrinterHelper() {}
3506
3507  const LangOptions &getLangOpts() const { return LangOpts; }
3508  void setBlockID(signed i) { currentBlock = i; }
3509  void setStmtID(unsigned i) { currStmt = i; }
3510
3511  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3512    StmtMapTy::iterator I = StmtMap.find(S);
3513
3514    if (I == StmtMap.end())
3515      return false;
3516
3517    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3518                          && I->second.second == currStmt) {
3519      return false;
3520    }
3521
3522    OS << "[B" << I->second.first << "." << I->second.second << "]";
3523    return true;
3524  }
3525
3526  bool handleDecl(const Decl *D, raw_ostream &OS) {
3527    DeclMapTy::iterator I = DeclMap.find(D);
3528
3529    if (I == DeclMap.end())
3530      return false;
3531
3532    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3533                          && I->second.second == currStmt) {
3534      return false;
3535    }
3536
3537    OS << "[B" << I->second.first << "." << I->second.second << "]";
3538    return true;
3539  }
3540};
3541} // end anonymous namespace
3542
3543
3544namespace {
3545class CFGBlockTerminatorPrint
3546  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3547
3548  raw_ostream &OS;
3549  StmtPrinterHelper* Helper;
3550  PrintingPolicy Policy;
3551public:
3552  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3553                          const PrintingPolicy &Policy)
3554    : OS(os), Helper(helper), Policy(Policy) {}
3555
3556  void VisitIfStmt(IfStmt *I) {
3557    OS << "if ";
3558    I->getCond()->printPretty(OS,Helper,Policy);
3559  }
3560
3561  // Default case.
3562  void VisitStmt(Stmt *Terminator) {
3563    Terminator->printPretty(OS, Helper, Policy);
3564  }
3565
3566  void VisitDeclStmt(DeclStmt *DS) {
3567    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3568    OS << "static init " << VD->getName();
3569  }
3570
3571  void VisitForStmt(ForStmt *F) {
3572    OS << "for (" ;
3573    if (F->getInit())
3574      OS << "...";
3575    OS << "; ";
3576    if (Stmt *C = F->getCond())
3577      C->printPretty(OS, Helper, Policy);
3578    OS << "; ";
3579    if (F->getInc())
3580      OS << "...";
3581    OS << ")";
3582  }
3583
3584  void VisitWhileStmt(WhileStmt *W) {
3585    OS << "while " ;
3586    if (Stmt *C = W->getCond())
3587      C->printPretty(OS, Helper, Policy);
3588  }
3589
3590  void VisitDoStmt(DoStmt *D) {
3591    OS << "do ... while ";
3592    if (Stmt *C = D->getCond())
3593      C->printPretty(OS, Helper, Policy);
3594  }
3595
3596  void VisitSwitchStmt(SwitchStmt *Terminator) {
3597    OS << "switch ";
3598    Terminator->getCond()->printPretty(OS, Helper, Policy);
3599  }
3600
3601  void VisitCXXTryStmt(CXXTryStmt *CS) {
3602    OS << "try ...";
3603  }
3604
3605  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3606    C->getCond()->printPretty(OS, Helper, Policy);
3607    OS << " ? ... : ...";
3608  }
3609
3610  void VisitChooseExpr(ChooseExpr *C) {
3611    OS << "__builtin_choose_expr( ";
3612    C->getCond()->printPretty(OS, Helper, Policy);
3613    OS << " )";
3614  }
3615
3616  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3617    OS << "goto *";
3618    I->getTarget()->printPretty(OS, Helper, Policy);
3619  }
3620
3621  void VisitBinaryOperator(BinaryOperator* B) {
3622    if (!B->isLogicalOp()) {
3623      VisitExpr(B);
3624      return;
3625    }
3626
3627    B->getLHS()->printPretty(OS, Helper, Policy);
3628
3629    switch (B->getOpcode()) {
3630      case BO_LOr:
3631        OS << " || ...";
3632        return;
3633      case BO_LAnd:
3634        OS << " && ...";
3635        return;
3636      default:
3637        llvm_unreachable("Invalid logical operator.");
3638    }
3639  }
3640
3641  void VisitExpr(Expr *E) {
3642    E->printPretty(OS, Helper, Policy);
3643  }
3644};
3645} // end anonymous namespace
3646
3647static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3648                       const CFGElement &E) {
3649  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3650    const Stmt *S = CS->getStmt();
3651
3652    if (Helper) {
3653
3654      // special printing for statement-expressions.
3655      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3656        const CompoundStmt *Sub = SE->getSubStmt();
3657
3658        if (Sub->children()) {
3659          OS << "({ ... ; ";
3660          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3661          OS << " })\n";
3662          return;
3663        }
3664      }
3665      // special printing for comma expressions.
3666      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3667        if (B->getOpcode() == BO_Comma) {
3668          OS << "... , ";
3669          Helper->handledStmt(B->getRHS(),OS);
3670          OS << '\n';
3671          return;
3672        }
3673      }
3674    }
3675    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3676
3677    if (isa<CXXOperatorCallExpr>(S)) {
3678      OS << " (OperatorCall)";
3679    }
3680    else if (isa<CXXBindTemporaryExpr>(S)) {
3681      OS << " (BindTemporary)";
3682    }
3683    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3684      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3685    }
3686    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3687      OS << " (" << CE->getStmtClassName() << ", "
3688         << CE->getCastKindName()
3689         << ", " << CE->getType().getAsString()
3690         << ")";
3691    }
3692
3693    // Expressions need a newline.
3694    if (isa<Expr>(S))
3695      OS << '\n';
3696
3697  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3698    const CXXCtorInitializer *I = IE->getInitializer();
3699    if (I->isBaseInitializer())
3700      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3701    else OS << I->getAnyMember()->getName();
3702
3703    OS << "(";
3704    if (Expr *IE = I->getInit())
3705      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3706    OS << ")";
3707
3708    if (I->isBaseInitializer())
3709      OS << " (Base initializer)\n";
3710    else OS << " (Member initializer)\n";
3711
3712  } else if (Optional<CFGAutomaticObjDtor> DE =
3713                 E.getAs<CFGAutomaticObjDtor>()) {
3714    const VarDecl *VD = DE->getVarDecl();
3715    Helper->handleDecl(VD, OS);
3716
3717    const Type* T = VD->getType().getTypePtr();
3718    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3719      T = RT->getPointeeType().getTypePtr();
3720    T = T->getBaseElementTypeUnsafe();
3721
3722    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3723    OS << " (Implicit destructor)\n";
3724
3725  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3726    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3727    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3728    OS << " (Base object destructor)\n";
3729
3730  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3731    const FieldDecl *FD = ME->getFieldDecl();
3732    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3733    OS << "this->" << FD->getName();
3734    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3735    OS << " (Member object destructor)\n";
3736
3737  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3738    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3739    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3740    OS << " (Temporary object destructor)\n";
3741  }
3742}
3743
3744static void print_block(raw_ostream &OS, const CFG* cfg,
3745                        const CFGBlock &B,
3746                        StmtPrinterHelper* Helper, bool print_edges,
3747                        bool ShowColors) {
3748
3749  if (Helper)
3750    Helper->setBlockID(B.getBlockID());
3751
3752  // Print the header.
3753  if (ShowColors)
3754    OS.changeColor(raw_ostream::YELLOW, true);
3755
3756  OS << "\n [B" << B.getBlockID();
3757
3758  if (&B == &cfg->getEntry())
3759    OS << " (ENTRY)]\n";
3760  else if (&B == &cfg->getExit())
3761    OS << " (EXIT)]\n";
3762  else if (&B == cfg->getIndirectGotoBlock())
3763    OS << " (INDIRECT GOTO DISPATCH)]\n";
3764  else
3765    OS << "]\n";
3766
3767  if (ShowColors)
3768    OS.resetColor();
3769
3770  // Print the label of this block.
3771  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3772
3773    if (print_edges)
3774      OS << "  ";
3775
3776    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3777      OS << L->getName();
3778    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3779      OS << "case ";
3780      C->getLHS()->printPretty(OS, Helper,
3781                               PrintingPolicy(Helper->getLangOpts()));
3782      if (C->getRHS()) {
3783        OS << " ... ";
3784        C->getRHS()->printPretty(OS, Helper,
3785                                 PrintingPolicy(Helper->getLangOpts()));
3786      }
3787    } else if (isa<DefaultStmt>(Label))
3788      OS << "default";
3789    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3790      OS << "catch (";
3791      if (CS->getExceptionDecl())
3792        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3793                                      0);
3794      else
3795        OS << "...";
3796      OS << ")";
3797
3798    } else
3799      llvm_unreachable("Invalid label statement in CFGBlock.");
3800
3801    OS << ":\n";
3802  }
3803
3804  // Iterate through the statements in the block and print them.
3805  unsigned j = 1;
3806
3807  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3808       I != E ; ++I, ++j ) {
3809
3810    // Print the statement # in the basic block and the statement itself.
3811    if (print_edges)
3812      OS << " ";
3813
3814    OS << llvm::format("%3d", j) << ": ";
3815
3816    if (Helper)
3817      Helper->setStmtID(j);
3818
3819    print_elem(OS, Helper, *I);
3820  }
3821
3822  // Print the terminator of this block.
3823  if (B.getTerminator()) {
3824    if (ShowColors)
3825      OS.changeColor(raw_ostream::GREEN);
3826
3827    OS << "   T: ";
3828
3829    if (Helper) Helper->setBlockID(-1);
3830
3831    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3832    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3833    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3834    OS << '\n';
3835
3836    if (ShowColors)
3837      OS.resetColor();
3838  }
3839
3840  if (print_edges) {
3841    // Print the predecessors of this block.
3842    if (!B.pred_empty()) {
3843      const raw_ostream::Colors Color = raw_ostream::BLUE;
3844      if (ShowColors)
3845        OS.changeColor(Color);
3846      OS << "   Preds " ;
3847      if (ShowColors)
3848        OS.resetColor();
3849      OS << '(' << B.pred_size() << "):";
3850      unsigned i = 0;
3851
3852      if (ShowColors)
3853        OS.changeColor(Color);
3854
3855      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3856           I != E; ++I, ++i) {
3857
3858        if (i % 10 == 8)
3859          OS << "\n     ";
3860
3861        OS << " B" << (*I)->getBlockID();
3862      }
3863
3864      if (ShowColors)
3865        OS.resetColor();
3866
3867      OS << '\n';
3868    }
3869
3870    // Print the successors of this block.
3871    if (!B.succ_empty()) {
3872      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3873      if (ShowColors)
3874        OS.changeColor(Color);
3875      OS << "   Succs ";
3876      if (ShowColors)
3877        OS.resetColor();
3878      OS << '(' << B.succ_size() << "):";
3879      unsigned i = 0;
3880
3881      if (ShowColors)
3882        OS.changeColor(Color);
3883
3884      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3885           I != E; ++I, ++i) {
3886
3887        if (i % 10 == 8)
3888          OS << "\n    ";
3889
3890        if (*I)
3891          OS << " B" << (*I)->getBlockID();
3892        else
3893          OS  << " NULL";
3894      }
3895
3896      if (ShowColors)
3897        OS.resetColor();
3898      OS << '\n';
3899    }
3900  }
3901}
3902
3903
3904/// dump - A simple pretty printer of a CFG that outputs to stderr.
3905void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3906  print(llvm::errs(), LO, ShowColors);
3907}
3908
3909/// print - A simple pretty printer of a CFG that outputs to an ostream.
3910void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3911  StmtPrinterHelper Helper(this, LO);
3912
3913  // Print the entry block.
3914  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3915
3916  // Iterate through the CFGBlocks and print them one by one.
3917  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3918    // Skip the entry block, because we already printed it.
3919    if (&(**I) == &getEntry() || &(**I) == &getExit())
3920      continue;
3921
3922    print_block(OS, this, **I, &Helper, true, ShowColors);
3923  }
3924
3925  // Print the exit block.
3926  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3927  OS << '\n';
3928  OS.flush();
3929}
3930
3931/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3932void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3933                    bool ShowColors) const {
3934  print(llvm::errs(), cfg, LO, ShowColors);
3935}
3936
3937/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3938///   Generally this will only be called from CFG::print.
3939void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3940                     const LangOptions &LO, bool ShowColors) const {
3941  StmtPrinterHelper Helper(cfg, LO);
3942  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3943  OS << '\n';
3944}
3945
3946/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3947void CFGBlock::printTerminator(raw_ostream &OS,
3948                               const LangOptions &LO) const {
3949  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3950  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3951}
3952
3953Stmt *CFGBlock::getTerminatorCondition() {
3954  Stmt *Terminator = this->Terminator;
3955  if (!Terminator)
3956    return NULL;
3957
3958  Expr *E = NULL;
3959
3960  switch (Terminator->getStmtClass()) {
3961    default:
3962      break;
3963
3964    case Stmt::CXXForRangeStmtClass:
3965      E = cast<CXXForRangeStmt>(Terminator)->getCond();
3966      break;
3967
3968    case Stmt::ForStmtClass:
3969      E = cast<ForStmt>(Terminator)->getCond();
3970      break;
3971
3972    case Stmt::WhileStmtClass:
3973      E = cast<WhileStmt>(Terminator)->getCond();
3974      break;
3975
3976    case Stmt::DoStmtClass:
3977      E = cast<DoStmt>(Terminator)->getCond();
3978      break;
3979
3980    case Stmt::IfStmtClass:
3981      E = cast<IfStmt>(Terminator)->getCond();
3982      break;
3983
3984    case Stmt::ChooseExprClass:
3985      E = cast<ChooseExpr>(Terminator)->getCond();
3986      break;
3987
3988    case Stmt::IndirectGotoStmtClass:
3989      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3990      break;
3991
3992    case Stmt::SwitchStmtClass:
3993      E = cast<SwitchStmt>(Terminator)->getCond();
3994      break;
3995
3996    case Stmt::BinaryConditionalOperatorClass:
3997      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3998      break;
3999
4000    case Stmt::ConditionalOperatorClass:
4001      E = cast<ConditionalOperator>(Terminator)->getCond();
4002      break;
4003
4004    case Stmt::BinaryOperatorClass: // '&&' and '||'
4005      E = cast<BinaryOperator>(Terminator)->getLHS();
4006      break;
4007
4008    case Stmt::ObjCForCollectionStmtClass:
4009      return Terminator;
4010  }
4011
4012  return E ? E->IgnoreParens() : NULL;
4013}
4014
4015//===----------------------------------------------------------------------===//
4016// CFG Graphviz Visualization
4017//===----------------------------------------------------------------------===//
4018
4019
4020#ifndef NDEBUG
4021static StmtPrinterHelper* GraphHelper;
4022#endif
4023
4024void CFG::viewCFG(const LangOptions &LO) const {
4025#ifndef NDEBUG
4026  StmtPrinterHelper H(this, LO);
4027  GraphHelper = &H;
4028  llvm::ViewGraph(this,"CFG");
4029  GraphHelper = NULL;
4030#endif
4031}
4032
4033namespace llvm {
4034template<>
4035struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4036
4037  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4038
4039  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4040
4041#ifndef NDEBUG
4042    std::string OutSStr;
4043    llvm::raw_string_ostream Out(OutSStr);
4044    print_block(Out,Graph, *Node, GraphHelper, false, false);
4045    std::string& OutStr = Out.str();
4046
4047    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4048
4049    // Process string output to make it nicer...
4050    for (unsigned i = 0; i != OutStr.length(); ++i)
4051      if (OutStr[i] == '\n') {                            // Left justify
4052        OutStr[i] = '\\';
4053        OutStr.insert(OutStr.begin()+i+1, 'l');
4054      }
4055
4056    return OutStr;
4057#else
4058    return "";
4059#endif
4060  }
4061};
4062} // end namespace llvm
4063