CFG.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt *G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
343  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
344  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
345  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
346  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
347  CFGBlock *VisitReturnStmt(ReturnStmt *R);
348  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
349  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
350                                          AddStmtChoice asc);
351  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
352  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
353  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
354  CFGBlock *VisitWhileStmt(WhileStmt *W);
355
356  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
357  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
358  CFGBlock *VisitChildren(Stmt *S);
359
360  // Visitors to walk an AST and generate destructors of temporaries in
361  // full expression.
362  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
363  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
364  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
365  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
366      bool BindToTemporary);
367  CFGBlock *
368  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
369                                            bool BindToTemporary);
370
371  // NYS == Not Yet Supported
372  CFGBlock *NYS() {
373    badCFG = true;
374    return Block;
375  }
376
377  void autoCreateBlock() { if (!Block) Block = createBlock(); }
378  CFGBlock *createBlock(bool add_successor = true);
379  CFGBlock *createNoReturnBlock();
380
381  CFGBlock *addStmt(Stmt *S) {
382    return Visit(S, AddStmtChoice::AlwaysAdd);
383  }
384  CFGBlock *addInitializer(CXXCtorInitializer *I);
385  void addAutomaticObjDtors(LocalScope::const_iterator B,
386                            LocalScope::const_iterator E, Stmt *S);
387  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
388
389  // Local scopes creation.
390  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
391
392  void addLocalScopeForStmt(Stmt *S);
393  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
394  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
395
396  void addLocalScopeAndDtors(Stmt *S);
397
398  // Interface to CFGBlock - adding CFGElements.
399  void appendStmt(CFGBlock *B, const Stmt *S) {
400    if (alwaysAdd(S) && cachedEntry)
401      cachedEntry->second = B;
402
403    // All block-level expressions should have already been IgnoreParens()ed.
404    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
405    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
406  }
407  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
408    B->appendInitializer(I, cfg->getBumpVectorContext());
409  }
410  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
411    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
412  }
413  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
414    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
415  }
416  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
417    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
418  }
419  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
420    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
421  }
422
423  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
424      LocalScope::const_iterator B, LocalScope::const_iterator E);
425
426  void addSuccessor(CFGBlock *B, CFGBlock *S) {
427    B->addSuccessor(S, cfg->getBumpVectorContext());
428  }
429
430  /// Try and evaluate an expression to an integer constant.
431  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
432    if (!BuildOpts.PruneTriviallyFalseEdges)
433      return false;
434    return !S->isTypeDependent() &&
435           !S->isValueDependent() &&
436           S->EvaluateAsRValue(outResult, *Context);
437  }
438
439  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
440  /// if we can evaluate to a known value, otherwise return -1.
441  TryResult tryEvaluateBool(Expr *S) {
442    bool Result;
443    if (!BuildOpts.PruneTriviallyFalseEdges ||
444        S->isTypeDependent() || S->isValueDependent() ||
445        !S->EvaluateAsBooleanCondition(Result, *Context))
446      return TryResult();
447    return Result;
448  }
449
450};
451
452inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
453                                     const Stmt *stmt) const {
454  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
455}
456
457bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
458  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
459
460  if (!BuildOpts.forcedBlkExprs)
461    return shouldAdd;
462
463  if (lastLookup == stmt) {
464    if (cachedEntry) {
465      assert(cachedEntry->first == stmt);
466      return true;
467    }
468    return shouldAdd;
469  }
470
471  lastLookup = stmt;
472
473  // Perform the lookup!
474  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
475
476  if (!fb) {
477    // No need to update 'cachedEntry', since it will always be null.
478    assert(cachedEntry == 0);
479    return shouldAdd;
480  }
481
482  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
483  if (itr == fb->end()) {
484    cachedEntry = 0;
485    return shouldAdd;
486  }
487
488  cachedEntry = &*itr;
489  return true;
490}
491
492// FIXME: Add support for dependent-sized array types in C++?
493// Does it even make sense to build a CFG for an uninstantiated template?
494static const VariableArrayType *FindVA(const Type *t) {
495  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
496    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
497      if (vat->getSizeExpr())
498        return vat;
499
500    t = vt->getElementType().getTypePtr();
501  }
502
503  return 0;
504}
505
506/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
507///  arbitrary statement.  Examples include a single expression or a function
508///  body (compound statement).  The ownership of the returned CFG is
509///  transferred to the caller.  If CFG construction fails, this method returns
510///  NULL.
511CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
512  assert(cfg.get());
513  if (!Statement)
514    return NULL;
515
516  // Create an empty block that will serve as the exit block for the CFG.  Since
517  // this is the first block added to the CFG, it will be implicitly registered
518  // as the exit block.
519  Succ = createBlock();
520  assert(Succ == &cfg->getExit());
521  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
522
523  if (BuildOpts.AddImplicitDtors)
524    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
525      addImplicitDtorsForDestructor(DD);
526
527  // Visit the statements and create the CFG.
528  CFGBlock *B = addStmt(Statement);
529
530  if (badCFG)
531    return NULL;
532
533  // For C++ constructor add initializers to CFG.
534  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
535    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
536        E = CD->init_rend(); I != E; ++I) {
537      B = addInitializer(*I);
538      if (badCFG)
539        return NULL;
540    }
541  }
542
543  if (B)
544    Succ = B;
545
546  // Backpatch the gotos whose label -> block mappings we didn't know when we
547  // encountered them.
548  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
549                                   E = BackpatchBlocks.end(); I != E; ++I ) {
550
551    CFGBlock *B = I->block;
552    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
553    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
554
555    // If there is no target for the goto, then we are looking at an
556    // incomplete AST.  Handle this by not registering a successor.
557    if (LI == LabelMap.end()) continue;
558
559    JumpTarget JT = LI->second;
560    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
561                                           JT.scopePosition);
562    addSuccessor(B, JT.block);
563  }
564
565  // Add successors to the Indirect Goto Dispatch block (if we have one).
566  if (CFGBlock *B = cfg->getIndirectGotoBlock())
567    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
568                              E = AddressTakenLabels.end(); I != E; ++I ) {
569
570      // Lookup the target block.
571      LabelMapTy::iterator LI = LabelMap.find(*I);
572
573      // If there is no target block that contains label, then we are looking
574      // at an incomplete AST.  Handle this by not registering a successor.
575      if (LI == LabelMap.end()) continue;
576
577      addSuccessor(B, LI->second.block);
578    }
579
580  // Create an empty entry block that has no predecessors.
581  cfg->setEntry(createBlock());
582
583  return cfg.take();
584}
585
586/// createBlock - Used to lazily create blocks that are connected
587///  to the current (global) succcessor.
588CFGBlock *CFGBuilder::createBlock(bool add_successor) {
589  CFGBlock *B = cfg->createBlock();
590  if (add_successor && Succ)
591    addSuccessor(B, Succ);
592  return B;
593}
594
595/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
596/// CFG. It is *not* connected to the current (global) successor, and instead
597/// directly tied to the exit block in order to be reachable.
598CFGBlock *CFGBuilder::createNoReturnBlock() {
599  CFGBlock *B = createBlock(false);
600  B->setHasNoReturnElement();
601  addSuccessor(B, &cfg->getExit());
602  return B;
603}
604
605/// addInitializer - Add C++ base or member initializer element to CFG.
606CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
607  if (!BuildOpts.AddInitializers)
608    return Block;
609
610  bool IsReference = false;
611  bool HasTemporaries = false;
612
613  // Destructors of temporaries in initialization expression should be called
614  // after initialization finishes.
615  Expr *Init = I->getInit();
616  if (Init) {
617    if (FieldDecl *FD = I->getAnyMember())
618      IsReference = FD->getType()->isReferenceType();
619    HasTemporaries = isa<ExprWithCleanups>(Init);
620
621    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
622      // Generate destructors for temporaries in initialization expression.
623      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
624          IsReference);
625    }
626  }
627
628  autoCreateBlock();
629  appendInitializer(Block, I);
630
631  if (Init) {
632    if (HasTemporaries) {
633      // For expression with temporaries go directly to subexpression to omit
634      // generating destructors for the second time.
635      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
636    }
637    return Visit(Init);
638  }
639
640  return Block;
641}
642
643/// \brief Retrieve the type of the temporary object whose lifetime was
644/// extended by a local reference with the given initializer.
645static QualType getReferenceInitTemporaryType(ASTContext &Context,
646                                              const Expr *Init) {
647  while (true) {
648    // Skip parentheses.
649    Init = Init->IgnoreParens();
650
651    // Skip through cleanups.
652    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
653      Init = EWC->getSubExpr();
654      continue;
655    }
656
657    // Skip through the temporary-materialization expression.
658    if (const MaterializeTemporaryExpr *MTE
659          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
660      Init = MTE->GetTemporaryExpr();
661      continue;
662    }
663
664    // Skip derived-to-base and no-op casts.
665    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
666      if ((CE->getCastKind() == CK_DerivedToBase ||
667           CE->getCastKind() == CK_UncheckedDerivedToBase ||
668           CE->getCastKind() == CK_NoOp) &&
669          Init->getType()->isRecordType()) {
670        Init = CE->getSubExpr();
671        continue;
672      }
673    }
674
675    // Skip member accesses into rvalues.
676    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
677      if (!ME->isArrow() && ME->getBase()->isRValue()) {
678        Init = ME->getBase();
679        continue;
680      }
681    }
682
683    break;
684  }
685
686  return Init->getType();
687}
688
689/// addAutomaticObjDtors - Add to current block automatic objects destructors
690/// for objects in range of local scope positions. Use S as trigger statement
691/// for destructors.
692void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
693                                      LocalScope::const_iterator E, Stmt *S) {
694  if (!BuildOpts.AddImplicitDtors)
695    return;
696
697  if (B == E)
698    return;
699
700  // We need to append the destructors in reverse order, but any one of them
701  // may be a no-return destructor which changes the CFG. As a result, buffer
702  // this sequence up and replay them in reverse order when appending onto the
703  // CFGBlock(s).
704  SmallVector<VarDecl*, 10> Decls;
705  Decls.reserve(B.distance(E));
706  for (LocalScope::const_iterator I = B; I != E; ++I)
707    Decls.push_back(*I);
708
709  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
710                                                   E = Decls.rend();
711       I != E; ++I) {
712    // If this destructor is marked as a no-return destructor, we need to
713    // create a new block for the destructor which does not have as a successor
714    // anything built thus far: control won't flow out of this block.
715    QualType Ty;
716    if ((*I)->getType()->isReferenceType()) {
717      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
718    } else {
719      Ty = Context->getBaseElementType((*I)->getType());
720    }
721
722    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
723    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
724      Block = createNoReturnBlock();
725    else
726      autoCreateBlock();
727
728    appendAutomaticObjDtor(Block, *I, S);
729  }
730}
731
732/// addImplicitDtorsForDestructor - Add implicit destructors generated for
733/// base and member objects in destructor.
734void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
735  assert (BuildOpts.AddImplicitDtors
736      && "Can be called only when dtors should be added");
737  const CXXRecordDecl *RD = DD->getParent();
738
739  // At the end destroy virtual base objects.
740  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
741      VE = RD->vbases_end(); VI != VE; ++VI) {
742    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
743    if (!CD->hasTrivialDestructor()) {
744      autoCreateBlock();
745      appendBaseDtor(Block, VI);
746    }
747  }
748
749  // Before virtual bases destroy direct base objects.
750  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
751      BE = RD->bases_end(); BI != BE; ++BI) {
752    if (!BI->isVirtual()) {
753      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
754      if (!CD->hasTrivialDestructor()) {
755        autoCreateBlock();
756        appendBaseDtor(Block, BI);
757      }
758    }
759  }
760
761  // First destroy member objects.
762  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
763      FE = RD->field_end(); FI != FE; ++FI) {
764    // Check for constant size array. Set type to array element type.
765    QualType QT = FI->getType();
766    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
767      if (AT->getSize() == 0)
768        continue;
769      QT = AT->getElementType();
770    }
771
772    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
773      if (!CD->hasTrivialDestructor()) {
774        autoCreateBlock();
775        appendMemberDtor(Block, *FI);
776      }
777  }
778}
779
780/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
781/// way return valid LocalScope object.
782LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
783  if (!Scope) {
784    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
785    Scope = alloc.Allocate<LocalScope>();
786    BumpVectorContext ctx(alloc);
787    new (Scope) LocalScope(ctx, ScopePos);
788  }
789  return Scope;
790}
791
792/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
793/// that should create implicit scope (e.g. if/else substatements).
794void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
795  if (!BuildOpts.AddImplicitDtors)
796    return;
797
798  LocalScope *Scope = 0;
799
800  // For compound statement we will be creating explicit scope.
801  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
802    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
803        ; BI != BE; ++BI) {
804      Stmt *SI = (*BI)->stripLabelLikeStatements();
805      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
806        Scope = addLocalScopeForDeclStmt(DS, Scope);
807    }
808    return;
809  }
810
811  // For any other statement scope will be implicit and as such will be
812  // interesting only for DeclStmt.
813  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
814    addLocalScopeForDeclStmt(DS);
815}
816
817/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
818/// reuse Scope if not NULL.
819LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
820                                                 LocalScope* Scope) {
821  if (!BuildOpts.AddImplicitDtors)
822    return Scope;
823
824  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
825      ; DI != DE; ++DI) {
826    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
827      Scope = addLocalScopeForVarDecl(VD, Scope);
828  }
829  return Scope;
830}
831
832/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
833/// create add scope for automatic objects and temporary objects bound to
834/// const reference. Will reuse Scope if not NULL.
835LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
836                                                LocalScope* Scope) {
837  if (!BuildOpts.AddImplicitDtors)
838    return Scope;
839
840  // Check if variable is local.
841  switch (VD->getStorageClass()) {
842  case SC_None:
843  case SC_Auto:
844  case SC_Register:
845    break;
846  default: return Scope;
847  }
848
849  // Check for const references bound to temporary. Set type to pointee.
850  QualType QT = VD->getType();
851  if (QT.getTypePtr()->isReferenceType()) {
852    if (!VD->extendsLifetimeOfTemporary())
853      return Scope;
854
855    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
856  }
857
858  // Check for constant size array. Set type to array element type.
859  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
860    if (AT->getSize() == 0)
861      return Scope;
862    QT = AT->getElementType();
863  }
864
865  // Check if type is a C++ class with non-trivial destructor.
866  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
867    if (!CD->hasTrivialDestructor()) {
868      // Add the variable to scope
869      Scope = createOrReuseLocalScope(Scope);
870      Scope->addVar(VD);
871      ScopePos = Scope->begin();
872    }
873  return Scope;
874}
875
876/// addLocalScopeAndDtors - For given statement add local scope for it and
877/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
878void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
879  if (!BuildOpts.AddImplicitDtors)
880    return;
881
882  LocalScope::const_iterator scopeBeginPos = ScopePos;
883  addLocalScopeForStmt(S);
884  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
885}
886
887/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
888/// variables with automatic storage duration to CFGBlock's elements vector.
889/// Elements will be prepended to physical beginning of the vector which
890/// happens to be logical end. Use blocks terminator as statement that specifies
891/// destructors call site.
892/// FIXME: This mechanism for adding automatic destructors doesn't handle
893/// no-return destructors properly.
894void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
895    LocalScope::const_iterator B, LocalScope::const_iterator E) {
896  BumpVectorContext &C = cfg->getBumpVectorContext();
897  CFGBlock::iterator InsertPos
898    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
899  for (LocalScope::const_iterator I = B; I != E; ++I)
900    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
901                                            Blk->getTerminator());
902}
903
904/// Visit - Walk the subtree of a statement and add extra
905///   blocks for ternary operators, &&, and ||.  We also process "," and
906///   DeclStmts (which may contain nested control-flow).
907CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
908  if (!S) {
909    badCFG = true;
910    return 0;
911  }
912
913  if (Expr *E = dyn_cast<Expr>(S))
914    S = E->IgnoreParens();
915
916  switch (S->getStmtClass()) {
917    default:
918      return VisitStmt(S, asc);
919
920    case Stmt::AddrLabelExprClass:
921      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
922
923    case Stmt::BinaryConditionalOperatorClass:
924      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
925
926    case Stmt::BinaryOperatorClass:
927      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
928
929    case Stmt::BlockExprClass:
930      return VisitBlockExpr(cast<BlockExpr>(S), asc);
931
932    case Stmt::BreakStmtClass:
933      return VisitBreakStmt(cast<BreakStmt>(S));
934
935    case Stmt::CallExprClass:
936    case Stmt::CXXOperatorCallExprClass:
937    case Stmt::CXXMemberCallExprClass:
938    case Stmt::UserDefinedLiteralClass:
939      return VisitCallExpr(cast<CallExpr>(S), asc);
940
941    case Stmt::CaseStmtClass:
942      return VisitCaseStmt(cast<CaseStmt>(S));
943
944    case Stmt::ChooseExprClass:
945      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
946
947    case Stmt::CompoundStmtClass:
948      return VisitCompoundStmt(cast<CompoundStmt>(S));
949
950    case Stmt::ConditionalOperatorClass:
951      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
952
953    case Stmt::ContinueStmtClass:
954      return VisitContinueStmt(cast<ContinueStmt>(S));
955
956    case Stmt::CXXCatchStmtClass:
957      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
958
959    case Stmt::ExprWithCleanupsClass:
960      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
961
962    case Stmt::CXXBindTemporaryExprClass:
963      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
964
965    case Stmt::CXXConstructExprClass:
966      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
967
968    case Stmt::CXXFunctionalCastExprClass:
969      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
970
971    case Stmt::CXXTemporaryObjectExprClass:
972      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
973
974    case Stmt::CXXThrowExprClass:
975      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
976
977    case Stmt::CXXTryStmtClass:
978      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
979
980    case Stmt::CXXForRangeStmtClass:
981      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
982
983    case Stmt::DeclStmtClass:
984      return VisitDeclStmt(cast<DeclStmt>(S));
985
986    case Stmt::DefaultStmtClass:
987      return VisitDefaultStmt(cast<DefaultStmt>(S));
988
989    case Stmt::DoStmtClass:
990      return VisitDoStmt(cast<DoStmt>(S));
991
992    case Stmt::ForStmtClass:
993      return VisitForStmt(cast<ForStmt>(S));
994
995    case Stmt::GotoStmtClass:
996      return VisitGotoStmt(cast<GotoStmt>(S));
997
998    case Stmt::IfStmtClass:
999      return VisitIfStmt(cast<IfStmt>(S));
1000
1001    case Stmt::ImplicitCastExprClass:
1002      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1003
1004    case Stmt::IndirectGotoStmtClass:
1005      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1006
1007    case Stmt::LabelStmtClass:
1008      return VisitLabelStmt(cast<LabelStmt>(S));
1009
1010    case Stmt::MemberExprClass:
1011      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1012
1013    case Stmt::NullStmtClass:
1014      return Block;
1015
1016    case Stmt::ObjCAtCatchStmtClass:
1017      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1018
1019    case Stmt::ObjCAutoreleasePoolStmtClass:
1020    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1021
1022    case Stmt::ObjCAtSynchronizedStmtClass:
1023      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1024
1025    case Stmt::ObjCAtThrowStmtClass:
1026      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1027
1028    case Stmt::ObjCAtTryStmtClass:
1029      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1030
1031    case Stmt::ObjCForCollectionStmtClass:
1032      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1033
1034    case Stmt::OpaqueValueExprClass:
1035      return Block;
1036
1037    case Stmt::PseudoObjectExprClass:
1038      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1039
1040    case Stmt::ReturnStmtClass:
1041      return VisitReturnStmt(cast<ReturnStmt>(S));
1042
1043    case Stmt::UnaryExprOrTypeTraitExprClass:
1044      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1045                                           asc);
1046
1047    case Stmt::StmtExprClass:
1048      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1049
1050    case Stmt::SwitchStmtClass:
1051      return VisitSwitchStmt(cast<SwitchStmt>(S));
1052
1053    case Stmt::UnaryOperatorClass:
1054      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1055
1056    case Stmt::WhileStmtClass:
1057      return VisitWhileStmt(cast<WhileStmt>(S));
1058  }
1059}
1060
1061CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1062  if (asc.alwaysAdd(*this, S)) {
1063    autoCreateBlock();
1064    appendStmt(Block, S);
1065  }
1066
1067  return VisitChildren(S);
1068}
1069
1070/// VisitChildren - Visit the children of a Stmt.
1071CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1072  CFGBlock *lastBlock = Block;
1073  for (Stmt::child_range I = Terminator->children(); I; ++I)
1074    if (Stmt *child = *I)
1075      if (CFGBlock *b = Visit(child))
1076        lastBlock = b;
1077
1078  return lastBlock;
1079}
1080
1081CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1082                                         AddStmtChoice asc) {
1083  AddressTakenLabels.insert(A->getLabel());
1084
1085  if (asc.alwaysAdd(*this, A)) {
1086    autoCreateBlock();
1087    appendStmt(Block, A);
1088  }
1089
1090  return Block;
1091}
1092
1093CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1094           AddStmtChoice asc) {
1095  if (asc.alwaysAdd(*this, U)) {
1096    autoCreateBlock();
1097    appendStmt(Block, U);
1098  }
1099
1100  return Visit(U->getSubExpr(), AddStmtChoice());
1101}
1102
1103CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1104                                          AddStmtChoice asc) {
1105  if (B->isLogicalOp()) { // && or ||
1106    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1107    appendStmt(ConfluenceBlock, B);
1108
1109    if (badCFG)
1110      return 0;
1111
1112    // create the block evaluating the LHS
1113    CFGBlock *LHSBlock = createBlock(false);
1114    LHSBlock->setTerminator(B);
1115
1116    // create the block evaluating the RHS
1117    Succ = ConfluenceBlock;
1118    Block = NULL;
1119    CFGBlock *RHSBlock = addStmt(B->getRHS());
1120
1121    if (RHSBlock) {
1122      if (badCFG)
1123        return 0;
1124    } else {
1125      // Create an empty block for cases where the RHS doesn't require
1126      // any explicit statements in the CFG.
1127      RHSBlock = createBlock();
1128    }
1129
1130    // See if this is a known constant.
1131    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1132    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1133      KnownVal.negate();
1134
1135    // Now link the LHSBlock with RHSBlock.
1136    if (B->getOpcode() == BO_LOr) {
1137      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1138      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1139    } else {
1140      assert(B->getOpcode() == BO_LAnd);
1141      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1142      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1143    }
1144
1145    // Generate the blocks for evaluating the LHS.
1146    Block = LHSBlock;
1147    return addStmt(B->getLHS());
1148  }
1149
1150  if (B->getOpcode() == BO_Comma) { // ,
1151    autoCreateBlock();
1152    appendStmt(Block, B);
1153    addStmt(B->getRHS());
1154    return addStmt(B->getLHS());
1155  }
1156
1157  if (B->isAssignmentOp()) {
1158    if (asc.alwaysAdd(*this, B)) {
1159      autoCreateBlock();
1160      appendStmt(Block, B);
1161    }
1162    Visit(B->getLHS());
1163    return Visit(B->getRHS());
1164  }
1165
1166  if (asc.alwaysAdd(*this, B)) {
1167    autoCreateBlock();
1168    appendStmt(Block, B);
1169  }
1170
1171  CFGBlock *RBlock = Visit(B->getRHS());
1172  CFGBlock *LBlock = Visit(B->getLHS());
1173  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1174  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1175  // return RBlock.  Otherwise we'll incorrectly return NULL.
1176  return (LBlock ? LBlock : RBlock);
1177}
1178
1179CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1180  if (asc.alwaysAdd(*this, E)) {
1181    autoCreateBlock();
1182    appendStmt(Block, E);
1183  }
1184  return Block;
1185}
1186
1187CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1188  // "break" is a control-flow statement.  Thus we stop processing the current
1189  // block.
1190  if (badCFG)
1191    return 0;
1192
1193  // Now create a new block that ends with the break statement.
1194  Block = createBlock(false);
1195  Block->setTerminator(B);
1196
1197  // If there is no target for the break, then we are looking at an incomplete
1198  // AST.  This means that the CFG cannot be constructed.
1199  if (BreakJumpTarget.block) {
1200    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1201    addSuccessor(Block, BreakJumpTarget.block);
1202  } else
1203    badCFG = true;
1204
1205
1206  return Block;
1207}
1208
1209static bool CanThrow(Expr *E, ASTContext &Ctx) {
1210  QualType Ty = E->getType();
1211  if (Ty->isFunctionPointerType())
1212    Ty = Ty->getAs<PointerType>()->getPointeeType();
1213  else if (Ty->isBlockPointerType())
1214    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1215
1216  const FunctionType *FT = Ty->getAs<FunctionType>();
1217  if (FT) {
1218    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1219      if (Proto->isNothrow(Ctx))
1220        return false;
1221  }
1222  return true;
1223}
1224
1225CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1226  // Compute the callee type.
1227  QualType calleeType = C->getCallee()->getType();
1228  if (calleeType == Context->BoundMemberTy) {
1229    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1230
1231    // We should only get a null bound type if processing a dependent
1232    // CFG.  Recover by assuming nothing.
1233    if (!boundType.isNull()) calleeType = boundType;
1234  }
1235
1236  // If this is a call to a no-return function, this stops the block here.
1237  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1238
1239  bool AddEHEdge = false;
1240
1241  // Languages without exceptions are assumed to not throw.
1242  if (Context->getLangOpts().Exceptions) {
1243    if (BuildOpts.AddEHEdges)
1244      AddEHEdge = true;
1245  }
1246
1247  if (FunctionDecl *FD = C->getDirectCallee()) {
1248    if (FD->hasAttr<NoReturnAttr>())
1249      NoReturn = true;
1250    if (FD->hasAttr<NoThrowAttr>())
1251      AddEHEdge = false;
1252  }
1253
1254  if (!CanThrow(C->getCallee(), *Context))
1255    AddEHEdge = false;
1256
1257  if (!NoReturn && !AddEHEdge)
1258    return VisitStmt(C, asc.withAlwaysAdd(true));
1259
1260  if (Block) {
1261    Succ = Block;
1262    if (badCFG)
1263      return 0;
1264  }
1265
1266  if (NoReturn)
1267    Block = createNoReturnBlock();
1268  else
1269    Block = createBlock();
1270
1271  appendStmt(Block, C);
1272
1273  if (AddEHEdge) {
1274    // Add exceptional edges.
1275    if (TryTerminatedBlock)
1276      addSuccessor(Block, TryTerminatedBlock);
1277    else
1278      addSuccessor(Block, &cfg->getExit());
1279  }
1280
1281  return VisitChildren(C);
1282}
1283
1284CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1285                                      AddStmtChoice asc) {
1286  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1287  appendStmt(ConfluenceBlock, C);
1288  if (badCFG)
1289    return 0;
1290
1291  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1292  Succ = ConfluenceBlock;
1293  Block = NULL;
1294  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1295  if (badCFG)
1296    return 0;
1297
1298  Succ = ConfluenceBlock;
1299  Block = NULL;
1300  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1301  if (badCFG)
1302    return 0;
1303
1304  Block = createBlock(false);
1305  // See if this is a known constant.
1306  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1307  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1308  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1309  Block->setTerminator(C);
1310  return addStmt(C->getCond());
1311}
1312
1313
1314CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1315  addLocalScopeAndDtors(C);
1316  CFGBlock *LastBlock = Block;
1317
1318  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1319       I != E; ++I ) {
1320    // If we hit a segment of code just containing ';' (NullStmts), we can
1321    // get a null block back.  In such cases, just use the LastBlock
1322    if (CFGBlock *newBlock = addStmt(*I))
1323      LastBlock = newBlock;
1324
1325    if (badCFG)
1326      return NULL;
1327  }
1328
1329  return LastBlock;
1330}
1331
1332CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1333                                               AddStmtChoice asc) {
1334  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1335  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1336
1337  // Create the confluence block that will "merge" the results of the ternary
1338  // expression.
1339  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1340  appendStmt(ConfluenceBlock, C);
1341  if (badCFG)
1342    return 0;
1343
1344  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1345
1346  // Create a block for the LHS expression if there is an LHS expression.  A
1347  // GCC extension allows LHS to be NULL, causing the condition to be the
1348  // value that is returned instead.
1349  //  e.g: x ?: y is shorthand for: x ? x : y;
1350  Succ = ConfluenceBlock;
1351  Block = NULL;
1352  CFGBlock *LHSBlock = 0;
1353  const Expr *trueExpr = C->getTrueExpr();
1354  if (trueExpr != opaqueValue) {
1355    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1356    if (badCFG)
1357      return 0;
1358    Block = NULL;
1359  }
1360  else
1361    LHSBlock = ConfluenceBlock;
1362
1363  // Create the block for the RHS expression.
1364  Succ = ConfluenceBlock;
1365  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1366  if (badCFG)
1367    return 0;
1368
1369  // Create the block that will contain the condition.
1370  Block = createBlock(false);
1371
1372  // See if this is a known constant.
1373  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1374  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1375  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1376  Block->setTerminator(C);
1377  Expr *condExpr = C->getCond();
1378
1379  if (opaqueValue) {
1380    // Run the condition expression if it's not trivially expressed in
1381    // terms of the opaque value (or if there is no opaque value).
1382    if (condExpr != opaqueValue)
1383      addStmt(condExpr);
1384
1385    // Before that, run the common subexpression if there was one.
1386    // At least one of this or the above will be run.
1387    return addStmt(BCO->getCommon());
1388  }
1389
1390  return addStmt(condExpr);
1391}
1392
1393CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1394  // Check if the Decl is for an __label__.  If so, elide it from the
1395  // CFG entirely.
1396  if (isa<LabelDecl>(*DS->decl_begin()))
1397    return Block;
1398
1399  // This case also handles static_asserts.
1400  if (DS->isSingleDecl())
1401    return VisitDeclSubExpr(DS);
1402
1403  CFGBlock *B = 0;
1404
1405  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1406  typedef SmallVector<Decl*,10> BufTy;
1407  BufTy Buf(DS->decl_begin(), DS->decl_end());
1408
1409  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1410    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1411    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1412               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1413
1414    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1415    // automatically freed with the CFG.
1416    DeclGroupRef DG(*I);
1417    Decl *D = *I;
1418    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1419    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1420
1421    // Append the fake DeclStmt to block.
1422    B = VisitDeclSubExpr(DSNew);
1423  }
1424
1425  return B;
1426}
1427
1428/// VisitDeclSubExpr - Utility method to add block-level expressions for
1429/// DeclStmts and initializers in them.
1430CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1431  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1432  Decl *D = DS->getSingleDecl();
1433
1434  if (isa<StaticAssertDecl>(D)) {
1435    // static_asserts aren't added to the CFG because they do not impact
1436    // runtime semantics.
1437    return Block;
1438  }
1439
1440  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1441
1442  if (!VD) {
1443    autoCreateBlock();
1444    appendStmt(Block, DS);
1445    return Block;
1446  }
1447
1448  bool IsReference = false;
1449  bool HasTemporaries = false;
1450
1451  // Destructors of temporaries in initialization expression should be called
1452  // after initialization finishes.
1453  Expr *Init = VD->getInit();
1454  if (Init) {
1455    IsReference = VD->getType()->isReferenceType();
1456    HasTemporaries = isa<ExprWithCleanups>(Init);
1457
1458    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1459      // Generate destructors for temporaries in initialization expression.
1460      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1461          IsReference);
1462    }
1463  }
1464
1465  autoCreateBlock();
1466  appendStmt(Block, DS);
1467
1468  if (Init) {
1469    if (HasTemporaries)
1470      // For expression with temporaries go directly to subexpression to omit
1471      // generating destructors for the second time.
1472      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1473    else
1474      Visit(Init);
1475  }
1476
1477  // If the type of VD is a VLA, then we must process its size expressions.
1478  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1479       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1480    Block = addStmt(VA->getSizeExpr());
1481
1482  // Remove variable from local scope.
1483  if (ScopePos && VD == *ScopePos)
1484    ++ScopePos;
1485
1486  return Block;
1487}
1488
1489CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1490  // We may see an if statement in the middle of a basic block, or it may be the
1491  // first statement we are processing.  In either case, we create a new basic
1492  // block.  First, we create the blocks for the then...else statements, and
1493  // then we create the block containing the if statement.  If we were in the
1494  // middle of a block, we stop processing that block.  That block is then the
1495  // implicit successor for the "then" and "else" clauses.
1496
1497  // Save local scope position because in case of condition variable ScopePos
1498  // won't be restored when traversing AST.
1499  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1500
1501  // Create local scope for possible condition variable.
1502  // Store scope position. Add implicit destructor.
1503  if (VarDecl *VD = I->getConditionVariable()) {
1504    LocalScope::const_iterator BeginScopePos = ScopePos;
1505    addLocalScopeForVarDecl(VD);
1506    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1507  }
1508
1509  // The block we were processing is now finished.  Make it the successor
1510  // block.
1511  if (Block) {
1512    Succ = Block;
1513    if (badCFG)
1514      return 0;
1515  }
1516
1517  // Process the false branch.
1518  CFGBlock *ElseBlock = Succ;
1519
1520  if (Stmt *Else = I->getElse()) {
1521    SaveAndRestore<CFGBlock*> sv(Succ);
1522
1523    // NULL out Block so that the recursive call to Visit will
1524    // create a new basic block.
1525    Block = NULL;
1526
1527    // If branch is not a compound statement create implicit scope
1528    // and add destructors.
1529    if (!isa<CompoundStmt>(Else))
1530      addLocalScopeAndDtors(Else);
1531
1532    ElseBlock = addStmt(Else);
1533
1534    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1535      ElseBlock = sv.get();
1536    else if (Block) {
1537      if (badCFG)
1538        return 0;
1539    }
1540  }
1541
1542  // Process the true branch.
1543  CFGBlock *ThenBlock;
1544  {
1545    Stmt *Then = I->getThen();
1546    assert(Then);
1547    SaveAndRestore<CFGBlock*> sv(Succ);
1548    Block = NULL;
1549
1550    // If branch is not a compound statement create implicit scope
1551    // and add destructors.
1552    if (!isa<CompoundStmt>(Then))
1553      addLocalScopeAndDtors(Then);
1554
1555    ThenBlock = addStmt(Then);
1556
1557    if (!ThenBlock) {
1558      // We can reach here if the "then" body has all NullStmts.
1559      // Create an empty block so we can distinguish between true and false
1560      // branches in path-sensitive analyses.
1561      ThenBlock = createBlock(false);
1562      addSuccessor(ThenBlock, sv.get());
1563    } else if (Block) {
1564      if (badCFG)
1565        return 0;
1566    }
1567  }
1568
1569  // Now create a new block containing the if statement.
1570  Block = createBlock(false);
1571
1572  // Set the terminator of the new block to the If statement.
1573  Block->setTerminator(I);
1574
1575  // See if this is a known constant.
1576  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1577
1578  // Now add the successors.
1579  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1580  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1581
1582  // Add the condition as the last statement in the new block.  This may create
1583  // new blocks as the condition may contain control-flow.  Any newly created
1584  // blocks will be pointed to be "Block".
1585  Block = addStmt(I->getCond());
1586
1587  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1588  // and the condition variable initialization to the CFG.
1589  if (VarDecl *VD = I->getConditionVariable()) {
1590    if (Expr *Init = VD->getInit()) {
1591      autoCreateBlock();
1592      appendStmt(Block, I->getConditionVariableDeclStmt());
1593      addStmt(Init);
1594    }
1595  }
1596
1597  return Block;
1598}
1599
1600
1601CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1602  // If we were in the middle of a block we stop processing that block.
1603  //
1604  // NOTE: If a "return" appears in the middle of a block, this means that the
1605  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1606  //       for that code; a simple "mark-and-sweep" from the entry block will be
1607  //       able to report such dead blocks.
1608
1609  // Create the new block.
1610  Block = createBlock(false);
1611
1612  // The Exit block is the only successor.
1613  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1614  addSuccessor(Block, &cfg->getExit());
1615
1616  // Add the return statement to the block.  This may create new blocks if R
1617  // contains control-flow (short-circuit operations).
1618  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1619}
1620
1621CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1622  // Get the block of the labeled statement.  Add it to our map.
1623  addStmt(L->getSubStmt());
1624  CFGBlock *LabelBlock = Block;
1625
1626  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1627    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1628
1629  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1630         "label already in map");
1631  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1632
1633  // Labels partition blocks, so this is the end of the basic block we were
1634  // processing (L is the block's label).  Because this is label (and we have
1635  // already processed the substatement) there is no extra control-flow to worry
1636  // about.
1637  LabelBlock->setLabel(L);
1638  if (badCFG)
1639    return 0;
1640
1641  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1642  Block = NULL;
1643
1644  // This block is now the implicit successor of other blocks.
1645  Succ = LabelBlock;
1646
1647  return LabelBlock;
1648}
1649
1650CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1651  // Goto is a control-flow statement.  Thus we stop processing the current
1652  // block and create a new one.
1653
1654  Block = createBlock(false);
1655  Block->setTerminator(G);
1656
1657  // If we already know the mapping to the label block add the successor now.
1658  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1659
1660  if (I == LabelMap.end())
1661    // We will need to backpatch this block later.
1662    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1663  else {
1664    JumpTarget JT = I->second;
1665    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1666    addSuccessor(Block, JT.block);
1667  }
1668
1669  return Block;
1670}
1671
1672CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1673  CFGBlock *LoopSuccessor = NULL;
1674
1675  // Save local scope position because in case of condition variable ScopePos
1676  // won't be restored when traversing AST.
1677  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1678
1679  // Create local scope for init statement and possible condition variable.
1680  // Add destructor for init statement and condition variable.
1681  // Store scope position for continue statement.
1682  if (Stmt *Init = F->getInit())
1683    addLocalScopeForStmt(Init);
1684  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1685
1686  if (VarDecl *VD = F->getConditionVariable())
1687    addLocalScopeForVarDecl(VD);
1688  LocalScope::const_iterator ContinueScopePos = ScopePos;
1689
1690  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1691
1692  // "for" is a control-flow statement.  Thus we stop processing the current
1693  // block.
1694  if (Block) {
1695    if (badCFG)
1696      return 0;
1697    LoopSuccessor = Block;
1698  } else
1699    LoopSuccessor = Succ;
1700
1701  // Save the current value for the break targets.
1702  // All breaks should go to the code following the loop.
1703  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1704  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1705
1706  // Because of short-circuit evaluation, the condition of the loop can span
1707  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1708  // evaluate the condition.
1709  CFGBlock *ExitConditionBlock = createBlock(false);
1710  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1711
1712  // Set the terminator for the "exit" condition block.
1713  ExitConditionBlock->setTerminator(F);
1714
1715  // Now add the actual condition to the condition block.  Because the condition
1716  // itself may contain control-flow, new blocks may be created.
1717  if (Stmt *C = F->getCond()) {
1718    Block = ExitConditionBlock;
1719    EntryConditionBlock = addStmt(C);
1720    if (badCFG)
1721      return 0;
1722    assert(Block == EntryConditionBlock ||
1723           (Block == 0 && EntryConditionBlock == Succ));
1724
1725    // If this block contains a condition variable, add both the condition
1726    // variable and initializer to the CFG.
1727    if (VarDecl *VD = F->getConditionVariable()) {
1728      if (Expr *Init = VD->getInit()) {
1729        autoCreateBlock();
1730        appendStmt(Block, F->getConditionVariableDeclStmt());
1731        EntryConditionBlock = addStmt(Init);
1732        assert(Block == EntryConditionBlock);
1733      }
1734    }
1735
1736    if (Block) {
1737      if (badCFG)
1738        return 0;
1739    }
1740  }
1741
1742  // The condition block is the implicit successor for the loop body as well as
1743  // any code above the loop.
1744  Succ = EntryConditionBlock;
1745
1746  // See if this is a known constant.
1747  TryResult KnownVal(true);
1748
1749  if (F->getCond())
1750    KnownVal = tryEvaluateBool(F->getCond());
1751
1752  // Now create the loop body.
1753  {
1754    assert(F->getBody());
1755
1756   // Save the current values for Block, Succ, and continue targets.
1757   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1758   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1759
1760    // Create a new block to contain the (bottom) of the loop body.
1761    Block = NULL;
1762
1763    // Loop body should end with destructor of Condition variable (if any).
1764    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1765
1766    if (Stmt *I = F->getInc()) {
1767      // Generate increment code in its own basic block.  This is the target of
1768      // continue statements.
1769      Succ = addStmt(I);
1770    } else {
1771      // No increment code.  Create a special, empty, block that is used as the
1772      // target block for "looping back" to the start of the loop.
1773      assert(Succ == EntryConditionBlock);
1774      Succ = Block ? Block : createBlock();
1775    }
1776
1777    // Finish up the increment (or empty) block if it hasn't been already.
1778    if (Block) {
1779      assert(Block == Succ);
1780      if (badCFG)
1781        return 0;
1782      Block = 0;
1783    }
1784
1785    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1786
1787    // The starting block for the loop increment is the block that should
1788    // represent the 'loop target' for looping back to the start of the loop.
1789    ContinueJumpTarget.block->setLoopTarget(F);
1790
1791    // If body is not a compound statement create implicit scope
1792    // and add destructors.
1793    if (!isa<CompoundStmt>(F->getBody()))
1794      addLocalScopeAndDtors(F->getBody());
1795
1796    // Now populate the body block, and in the process create new blocks as we
1797    // walk the body of the loop.
1798    CFGBlock *BodyBlock = addStmt(F->getBody());
1799
1800    if (!BodyBlock)
1801      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1802    else if (badCFG)
1803      return 0;
1804
1805    // This new body block is a successor to our "exit" condition block.
1806    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1807  }
1808
1809  // Link up the condition block with the code that follows the loop.  (the
1810  // false branch).
1811  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1812
1813  // If the loop contains initialization, create a new block for those
1814  // statements.  This block can also contain statements that precede the loop.
1815  if (Stmt *I = F->getInit()) {
1816    Block = createBlock();
1817    return addStmt(I);
1818  }
1819
1820  // There is no loop initialization.  We are thus basically a while loop.
1821  // NULL out Block to force lazy block construction.
1822  Block = NULL;
1823  Succ = EntryConditionBlock;
1824  return EntryConditionBlock;
1825}
1826
1827CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1828  if (asc.alwaysAdd(*this, M)) {
1829    autoCreateBlock();
1830    appendStmt(Block, M);
1831  }
1832  return Visit(M->getBase());
1833}
1834
1835CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1836  // Objective-C fast enumeration 'for' statements:
1837  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1838  //
1839  //  for ( Type newVariable in collection_expression ) { statements }
1840  //
1841  //  becomes:
1842  //
1843  //   prologue:
1844  //     1. collection_expression
1845  //     T. jump to loop_entry
1846  //   loop_entry:
1847  //     1. side-effects of element expression
1848  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1849  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1850  //   TB:
1851  //     statements
1852  //     T. jump to loop_entry
1853  //   FB:
1854  //     what comes after
1855  //
1856  //  and
1857  //
1858  //  Type existingItem;
1859  //  for ( existingItem in expression ) { statements }
1860  //
1861  //  becomes:
1862  //
1863  //   the same with newVariable replaced with existingItem; the binding works
1864  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1865  //   a DeclStmt and the other returns a DeclRefExpr.
1866  //
1867
1868  CFGBlock *LoopSuccessor = 0;
1869
1870  if (Block) {
1871    if (badCFG)
1872      return 0;
1873    LoopSuccessor = Block;
1874    Block = 0;
1875  } else
1876    LoopSuccessor = Succ;
1877
1878  // Build the condition blocks.
1879  CFGBlock *ExitConditionBlock = createBlock(false);
1880
1881  // Set the terminator for the "exit" condition block.
1882  ExitConditionBlock->setTerminator(S);
1883
1884  // The last statement in the block should be the ObjCForCollectionStmt, which
1885  // performs the actual binding to 'element' and determines if there are any
1886  // more items in the collection.
1887  appendStmt(ExitConditionBlock, S);
1888  Block = ExitConditionBlock;
1889
1890  // Walk the 'element' expression to see if there are any side-effects.  We
1891  // generate new blocks as necessary.  We DON'T add the statement by default to
1892  // the CFG unless it contains control-flow.
1893  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1894                                        AddStmtChoice::NotAlwaysAdd);
1895  if (Block) {
1896    if (badCFG)
1897      return 0;
1898    Block = 0;
1899  }
1900
1901  // The condition block is the implicit successor for the loop body as well as
1902  // any code above the loop.
1903  Succ = EntryConditionBlock;
1904
1905  // Now create the true branch.
1906  {
1907    // Save the current values for Succ, continue and break targets.
1908    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1909    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1910        save_break(BreakJumpTarget);
1911
1912    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1913    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1914
1915    CFGBlock *BodyBlock = addStmt(S->getBody());
1916
1917    if (!BodyBlock)
1918      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1919    else if (Block) {
1920      if (badCFG)
1921        return 0;
1922    }
1923
1924    // This new body block is a successor to our "exit" condition block.
1925    addSuccessor(ExitConditionBlock, BodyBlock);
1926  }
1927
1928  // Link up the condition block with the code that follows the loop.
1929  // (the false branch).
1930  addSuccessor(ExitConditionBlock, LoopSuccessor);
1931
1932  // Now create a prologue block to contain the collection expression.
1933  Block = createBlock();
1934  return addStmt(S->getCollection());
1935}
1936
1937CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
1938  // Inline the body.
1939  return addStmt(S->getSubStmt());
1940  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
1941}
1942
1943CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
1944  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1945
1946  // Inline the body.
1947  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1948
1949  // The sync body starts its own basic block.  This makes it a little easier
1950  // for diagnostic clients.
1951  if (SyncBlock) {
1952    if (badCFG)
1953      return 0;
1954
1955    Block = 0;
1956    Succ = SyncBlock;
1957  }
1958
1959  // Add the @synchronized to the CFG.
1960  autoCreateBlock();
1961  appendStmt(Block, S);
1962
1963  // Inline the sync expression.
1964  return addStmt(S->getSynchExpr());
1965}
1966
1967CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
1968  // FIXME
1969  return NYS();
1970}
1971
1972CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
1973  autoCreateBlock();
1974
1975  // Add the PseudoObject as the last thing.
1976  appendStmt(Block, E);
1977
1978  CFGBlock *lastBlock = Block;
1979
1980  // Before that, evaluate all of the semantics in order.  In
1981  // CFG-land, that means appending them in reverse order.
1982  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
1983    Expr *Semantic = E->getSemanticExpr(--i);
1984
1985    // If the semantic is an opaque value, we're being asked to bind
1986    // it to its source expression.
1987    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
1988      Semantic = OVE->getSourceExpr();
1989
1990    if (CFGBlock *B = Visit(Semantic))
1991      lastBlock = B;
1992  }
1993
1994  return lastBlock;
1995}
1996
1997CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
1998  CFGBlock *LoopSuccessor = NULL;
1999
2000  // Save local scope position because in case of condition variable ScopePos
2001  // won't be restored when traversing AST.
2002  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2003
2004  // Create local scope for possible condition variable.
2005  // Store scope position for continue statement.
2006  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2007  if (VarDecl *VD = W->getConditionVariable()) {
2008    addLocalScopeForVarDecl(VD);
2009    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2010  }
2011
2012  // "while" is a control-flow statement.  Thus we stop processing the current
2013  // block.
2014  if (Block) {
2015    if (badCFG)
2016      return 0;
2017    LoopSuccessor = Block;
2018    Block = 0;
2019  } else
2020    LoopSuccessor = Succ;
2021
2022  // Because of short-circuit evaluation, the condition of the loop can span
2023  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2024  // evaluate the condition.
2025  CFGBlock *ExitConditionBlock = createBlock(false);
2026  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2027
2028  // Set the terminator for the "exit" condition block.
2029  ExitConditionBlock->setTerminator(W);
2030
2031  // Now add the actual condition to the condition block.  Because the condition
2032  // itself may contain control-flow, new blocks may be created.  Thus we update
2033  // "Succ" after adding the condition.
2034  if (Stmt *C = W->getCond()) {
2035    Block = ExitConditionBlock;
2036    EntryConditionBlock = addStmt(C);
2037    // The condition might finish the current 'Block'.
2038    Block = EntryConditionBlock;
2039
2040    // If this block contains a condition variable, add both the condition
2041    // variable and initializer to the CFG.
2042    if (VarDecl *VD = W->getConditionVariable()) {
2043      if (Expr *Init = VD->getInit()) {
2044        autoCreateBlock();
2045        appendStmt(Block, W->getConditionVariableDeclStmt());
2046        EntryConditionBlock = addStmt(Init);
2047        assert(Block == EntryConditionBlock);
2048      }
2049    }
2050
2051    if (Block) {
2052      if (badCFG)
2053        return 0;
2054    }
2055  }
2056
2057  // The condition block is the implicit successor for the loop body as well as
2058  // any code above the loop.
2059  Succ = EntryConditionBlock;
2060
2061  // See if this is a known constant.
2062  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
2063
2064  // Process the loop body.
2065  {
2066    assert(W->getBody());
2067
2068    // Save the current values for Block, Succ, and continue and break targets
2069    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2070    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2071        save_break(BreakJumpTarget);
2072
2073    // Create an empty block to represent the transition block for looping back
2074    // to the head of the loop.
2075    Block = 0;
2076    assert(Succ == EntryConditionBlock);
2077    Succ = createBlock();
2078    Succ->setLoopTarget(W);
2079    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2080
2081    // All breaks should go to the code following the loop.
2082    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2083
2084    // NULL out Block to force lazy instantiation of blocks for the body.
2085    Block = NULL;
2086
2087    // Loop body should end with destructor of Condition variable (if any).
2088    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2089
2090    // If body is not a compound statement create implicit scope
2091    // and add destructors.
2092    if (!isa<CompoundStmt>(W->getBody()))
2093      addLocalScopeAndDtors(W->getBody());
2094
2095    // Create the body.  The returned block is the entry to the loop body.
2096    CFGBlock *BodyBlock = addStmt(W->getBody());
2097
2098    if (!BodyBlock)
2099      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2100    else if (Block) {
2101      if (badCFG)
2102        return 0;
2103    }
2104
2105    // Add the loop body entry as a successor to the condition.
2106    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2107  }
2108
2109  // Link up the condition block with the code that follows the loop.  (the
2110  // false branch).
2111  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2112
2113  // There can be no more statements in the condition block since we loop back
2114  // to this block.  NULL out Block to force lazy creation of another block.
2115  Block = NULL;
2116
2117  // Return the condition block, which is the dominating block for the loop.
2118  Succ = EntryConditionBlock;
2119  return EntryConditionBlock;
2120}
2121
2122
2123CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2124  // FIXME: For now we pretend that @catch and the code it contains does not
2125  //  exit.
2126  return Block;
2127}
2128
2129CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2130  // FIXME: This isn't complete.  We basically treat @throw like a return
2131  //  statement.
2132
2133  // If we were in the middle of a block we stop processing that block.
2134  if (badCFG)
2135    return 0;
2136
2137  // Create the new block.
2138  Block = createBlock(false);
2139
2140  // The Exit block is the only successor.
2141  addSuccessor(Block, &cfg->getExit());
2142
2143  // Add the statement to the block.  This may create new blocks if S contains
2144  // control-flow (short-circuit operations).
2145  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2146}
2147
2148CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2149  // If we were in the middle of a block we stop processing that block.
2150  if (badCFG)
2151    return 0;
2152
2153  // Create the new block.
2154  Block = createBlock(false);
2155
2156  if (TryTerminatedBlock)
2157    // The current try statement is the only successor.
2158    addSuccessor(Block, TryTerminatedBlock);
2159  else
2160    // otherwise the Exit block is the only successor.
2161    addSuccessor(Block, &cfg->getExit());
2162
2163  // Add the statement to the block.  This may create new blocks if S contains
2164  // control-flow (short-circuit operations).
2165  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2166}
2167
2168CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2169  CFGBlock *LoopSuccessor = NULL;
2170
2171  // "do...while" is a control-flow statement.  Thus we stop processing the
2172  // current block.
2173  if (Block) {
2174    if (badCFG)
2175      return 0;
2176    LoopSuccessor = Block;
2177  } else
2178    LoopSuccessor = Succ;
2179
2180  // Because of short-circuit evaluation, the condition of the loop can span
2181  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2182  // evaluate the condition.
2183  CFGBlock *ExitConditionBlock = createBlock(false);
2184  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2185
2186  // Set the terminator for the "exit" condition block.
2187  ExitConditionBlock->setTerminator(D);
2188
2189  // Now add the actual condition to the condition block.  Because the condition
2190  // itself may contain control-flow, new blocks may be created.
2191  if (Stmt *C = D->getCond()) {
2192    Block = ExitConditionBlock;
2193    EntryConditionBlock = addStmt(C);
2194    if (Block) {
2195      if (badCFG)
2196        return 0;
2197    }
2198  }
2199
2200  // The condition block is the implicit successor for the loop body.
2201  Succ = EntryConditionBlock;
2202
2203  // See if this is a known constant.
2204  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2205
2206  // Process the loop body.
2207  CFGBlock *BodyBlock = NULL;
2208  {
2209    assert(D->getBody());
2210
2211    // Save the current values for Block, Succ, and continue and break targets
2212    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2213    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2214        save_break(BreakJumpTarget);
2215
2216    // All continues within this loop should go to the condition block
2217    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2218
2219    // All breaks should go to the code following the loop.
2220    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2221
2222    // NULL out Block to force lazy instantiation of blocks for the body.
2223    Block = NULL;
2224
2225    // If body is not a compound statement create implicit scope
2226    // and add destructors.
2227    if (!isa<CompoundStmt>(D->getBody()))
2228      addLocalScopeAndDtors(D->getBody());
2229
2230    // Create the body.  The returned block is the entry to the loop body.
2231    BodyBlock = addStmt(D->getBody());
2232
2233    if (!BodyBlock)
2234      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2235    else if (Block) {
2236      if (badCFG)
2237        return 0;
2238    }
2239
2240    if (!KnownVal.isFalse()) {
2241      // Add an intermediate block between the BodyBlock and the
2242      // ExitConditionBlock to represent the "loop back" transition.  Create an
2243      // empty block to represent the transition block for looping back to the
2244      // head of the loop.
2245      // FIXME: Can we do this more efficiently without adding another block?
2246      Block = NULL;
2247      Succ = BodyBlock;
2248      CFGBlock *LoopBackBlock = createBlock();
2249      LoopBackBlock->setLoopTarget(D);
2250
2251      // Add the loop body entry as a successor to the condition.
2252      addSuccessor(ExitConditionBlock, LoopBackBlock);
2253    }
2254    else
2255      addSuccessor(ExitConditionBlock, NULL);
2256  }
2257
2258  // Link up the condition block with the code that follows the loop.
2259  // (the false branch).
2260  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2261
2262  // There can be no more statements in the body block(s) since we loop back to
2263  // the body.  NULL out Block to force lazy creation of another block.
2264  Block = NULL;
2265
2266  // Return the loop body, which is the dominating block for the loop.
2267  Succ = BodyBlock;
2268  return BodyBlock;
2269}
2270
2271CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2272  // "continue" is a control-flow statement.  Thus we stop processing the
2273  // current block.
2274  if (badCFG)
2275    return 0;
2276
2277  // Now create a new block that ends with the continue statement.
2278  Block = createBlock(false);
2279  Block->setTerminator(C);
2280
2281  // If there is no target for the continue, then we are looking at an
2282  // incomplete AST.  This means the CFG cannot be constructed.
2283  if (ContinueJumpTarget.block) {
2284    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2285    addSuccessor(Block, ContinueJumpTarget.block);
2286  } else
2287    badCFG = true;
2288
2289  return Block;
2290}
2291
2292CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2293                                                    AddStmtChoice asc) {
2294
2295  if (asc.alwaysAdd(*this, E)) {
2296    autoCreateBlock();
2297    appendStmt(Block, E);
2298  }
2299
2300  // VLA types have expressions that must be evaluated.
2301  CFGBlock *lastBlock = Block;
2302
2303  if (E->isArgumentType()) {
2304    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2305         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2306      lastBlock = addStmt(VA->getSizeExpr());
2307  }
2308  return lastBlock;
2309}
2310
2311/// VisitStmtExpr - Utility method to handle (nested) statement
2312///  expressions (a GCC extension).
2313CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2314  if (asc.alwaysAdd(*this, SE)) {
2315    autoCreateBlock();
2316    appendStmt(Block, SE);
2317  }
2318  return VisitCompoundStmt(SE->getSubStmt());
2319}
2320
2321CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2322  // "switch" is a control-flow statement.  Thus we stop processing the current
2323  // block.
2324  CFGBlock *SwitchSuccessor = NULL;
2325
2326  // Save local scope position because in case of condition variable ScopePos
2327  // won't be restored when traversing AST.
2328  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2329
2330  // Create local scope for possible condition variable.
2331  // Store scope position. Add implicit destructor.
2332  if (VarDecl *VD = Terminator->getConditionVariable()) {
2333    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2334    addLocalScopeForVarDecl(VD);
2335    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2336  }
2337
2338  if (Block) {
2339    if (badCFG)
2340      return 0;
2341    SwitchSuccessor = Block;
2342  } else SwitchSuccessor = Succ;
2343
2344  // Save the current "switch" context.
2345  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2346                            save_default(DefaultCaseBlock);
2347  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2348
2349  // Set the "default" case to be the block after the switch statement.  If the
2350  // switch statement contains a "default:", this value will be overwritten with
2351  // the block for that code.
2352  DefaultCaseBlock = SwitchSuccessor;
2353
2354  // Create a new block that will contain the switch statement.
2355  SwitchTerminatedBlock = createBlock(false);
2356
2357  // Now process the switch body.  The code after the switch is the implicit
2358  // successor.
2359  Succ = SwitchSuccessor;
2360  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2361
2362  // When visiting the body, the case statements should automatically get linked
2363  // up to the switch.  We also don't keep a pointer to the body, since all
2364  // control-flow from the switch goes to case/default statements.
2365  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2366  Block = NULL;
2367
2368  // For pruning unreachable case statements, save the current state
2369  // for tracking the condition value.
2370  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2371                                                     false);
2372
2373  // Determine if the switch condition can be explicitly evaluated.
2374  assert(Terminator->getCond() && "switch condition must be non-NULL");
2375  Expr::EvalResult result;
2376  bool b = tryEvaluate(Terminator->getCond(), result);
2377  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2378                                                    b ? &result : 0);
2379
2380  // If body is not a compound statement create implicit scope
2381  // and add destructors.
2382  if (!isa<CompoundStmt>(Terminator->getBody()))
2383    addLocalScopeAndDtors(Terminator->getBody());
2384
2385  addStmt(Terminator->getBody());
2386  if (Block) {
2387    if (badCFG)
2388      return 0;
2389  }
2390
2391  // If we have no "default:" case, the default transition is to the code
2392  // following the switch body.  Moreover, take into account if all the
2393  // cases of a switch are covered (e.g., switching on an enum value).
2394  addSuccessor(SwitchTerminatedBlock,
2395               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2396               ? 0 : DefaultCaseBlock);
2397
2398  // Add the terminator and condition in the switch block.
2399  SwitchTerminatedBlock->setTerminator(Terminator);
2400  Block = SwitchTerminatedBlock;
2401  Block = addStmt(Terminator->getCond());
2402
2403  // Finally, if the SwitchStmt contains a condition variable, add both the
2404  // SwitchStmt and the condition variable initialization to the CFG.
2405  if (VarDecl *VD = Terminator->getConditionVariable()) {
2406    if (Expr *Init = VD->getInit()) {
2407      autoCreateBlock();
2408      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2409      addStmt(Init);
2410    }
2411  }
2412
2413  return Block;
2414}
2415
2416static bool shouldAddCase(bool &switchExclusivelyCovered,
2417                          const Expr::EvalResult *switchCond,
2418                          const CaseStmt *CS,
2419                          ASTContext &Ctx) {
2420  if (!switchCond)
2421    return true;
2422
2423  bool addCase = false;
2424
2425  if (!switchExclusivelyCovered) {
2426    if (switchCond->Val.isInt()) {
2427      // Evaluate the LHS of the case value.
2428      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2429      const llvm::APSInt &condInt = switchCond->Val.getInt();
2430
2431      if (condInt == lhsInt) {
2432        addCase = true;
2433        switchExclusivelyCovered = true;
2434      }
2435      else if (condInt < lhsInt) {
2436        if (const Expr *RHS = CS->getRHS()) {
2437          // Evaluate the RHS of the case value.
2438          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2439          if (V2 <= condInt) {
2440            addCase = true;
2441            switchExclusivelyCovered = true;
2442          }
2443        }
2444      }
2445    }
2446    else
2447      addCase = true;
2448  }
2449  return addCase;
2450}
2451
2452CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2453  // CaseStmts are essentially labels, so they are the first statement in a
2454  // block.
2455  CFGBlock *TopBlock = 0, *LastBlock = 0;
2456
2457  if (Stmt *Sub = CS->getSubStmt()) {
2458    // For deeply nested chains of CaseStmts, instead of doing a recursion
2459    // (which can blow out the stack), manually unroll and create blocks
2460    // along the way.
2461    while (isa<CaseStmt>(Sub)) {
2462      CFGBlock *currentBlock = createBlock(false);
2463      currentBlock->setLabel(CS);
2464
2465      if (TopBlock)
2466        addSuccessor(LastBlock, currentBlock);
2467      else
2468        TopBlock = currentBlock;
2469
2470      addSuccessor(SwitchTerminatedBlock,
2471                   shouldAddCase(switchExclusivelyCovered, switchCond,
2472                                 CS, *Context)
2473                   ? currentBlock : 0);
2474
2475      LastBlock = currentBlock;
2476      CS = cast<CaseStmt>(Sub);
2477      Sub = CS->getSubStmt();
2478    }
2479
2480    addStmt(Sub);
2481  }
2482
2483  CFGBlock *CaseBlock = Block;
2484  if (!CaseBlock)
2485    CaseBlock = createBlock();
2486
2487  // Cases statements partition blocks, so this is the top of the basic block we
2488  // were processing (the "case XXX:" is the label).
2489  CaseBlock->setLabel(CS);
2490
2491  if (badCFG)
2492    return 0;
2493
2494  // Add this block to the list of successors for the block with the switch
2495  // statement.
2496  assert(SwitchTerminatedBlock);
2497  addSuccessor(SwitchTerminatedBlock,
2498               shouldAddCase(switchExclusivelyCovered, switchCond,
2499                             CS, *Context)
2500               ? CaseBlock : 0);
2501
2502  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2503  Block = NULL;
2504
2505  if (TopBlock) {
2506    addSuccessor(LastBlock, CaseBlock);
2507    Succ = TopBlock;
2508  } else {
2509    // This block is now the implicit successor of other blocks.
2510    Succ = CaseBlock;
2511  }
2512
2513  return Succ;
2514}
2515
2516CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2517  if (Terminator->getSubStmt())
2518    addStmt(Terminator->getSubStmt());
2519
2520  DefaultCaseBlock = Block;
2521
2522  if (!DefaultCaseBlock)
2523    DefaultCaseBlock = createBlock();
2524
2525  // Default statements partition blocks, so this is the top of the basic block
2526  // we were processing (the "default:" is the label).
2527  DefaultCaseBlock->setLabel(Terminator);
2528
2529  if (badCFG)
2530    return 0;
2531
2532  // Unlike case statements, we don't add the default block to the successors
2533  // for the switch statement immediately.  This is done when we finish
2534  // processing the switch statement.  This allows for the default case
2535  // (including a fall-through to the code after the switch statement) to always
2536  // be the last successor of a switch-terminated block.
2537
2538  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2539  Block = NULL;
2540
2541  // This block is now the implicit successor of other blocks.
2542  Succ = DefaultCaseBlock;
2543
2544  return DefaultCaseBlock;
2545}
2546
2547CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2548  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2549  // current block.
2550  CFGBlock *TrySuccessor = NULL;
2551
2552  if (Block) {
2553    if (badCFG)
2554      return 0;
2555    TrySuccessor = Block;
2556  } else TrySuccessor = Succ;
2557
2558  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2559
2560  // Create a new block that will contain the try statement.
2561  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2562  // Add the terminator in the try block.
2563  NewTryTerminatedBlock->setTerminator(Terminator);
2564
2565  bool HasCatchAll = false;
2566  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2567    // The code after the try is the implicit successor.
2568    Succ = TrySuccessor;
2569    CXXCatchStmt *CS = Terminator->getHandler(h);
2570    if (CS->getExceptionDecl() == 0) {
2571      HasCatchAll = true;
2572    }
2573    Block = NULL;
2574    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2575    if (CatchBlock == 0)
2576      return 0;
2577    // Add this block to the list of successors for the block with the try
2578    // statement.
2579    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2580  }
2581  if (!HasCatchAll) {
2582    if (PrevTryTerminatedBlock)
2583      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2584    else
2585      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2586  }
2587
2588  // The code after the try is the implicit successor.
2589  Succ = TrySuccessor;
2590
2591  // Save the current "try" context.
2592  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2593  cfg->addTryDispatchBlock(TryTerminatedBlock);
2594
2595  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2596  Block = NULL;
2597  Block = addStmt(Terminator->getTryBlock());
2598  return Block;
2599}
2600
2601CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2602  // CXXCatchStmt are treated like labels, so they are the first statement in a
2603  // block.
2604
2605  // Save local scope position because in case of exception variable ScopePos
2606  // won't be restored when traversing AST.
2607  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2608
2609  // Create local scope for possible exception variable.
2610  // Store scope position. Add implicit destructor.
2611  if (VarDecl *VD = CS->getExceptionDecl()) {
2612    LocalScope::const_iterator BeginScopePos = ScopePos;
2613    addLocalScopeForVarDecl(VD);
2614    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2615  }
2616
2617  if (CS->getHandlerBlock())
2618    addStmt(CS->getHandlerBlock());
2619
2620  CFGBlock *CatchBlock = Block;
2621  if (!CatchBlock)
2622    CatchBlock = createBlock();
2623
2624  // CXXCatchStmt is more than just a label.  They have semantic meaning
2625  // as well, as they implicitly "initialize" the catch variable.  Add
2626  // it to the CFG as a CFGElement so that the control-flow of these
2627  // semantics gets captured.
2628  appendStmt(CatchBlock, CS);
2629
2630  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2631  // labels.
2632  CatchBlock->setLabel(CS);
2633
2634  // Bail out if the CFG is bad.
2635  if (badCFG)
2636    return 0;
2637
2638  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2639  Block = NULL;
2640
2641  return CatchBlock;
2642}
2643
2644CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2645  // C++0x for-range statements are specified as [stmt.ranged]:
2646  //
2647  // {
2648  //   auto && __range = range-init;
2649  //   for ( auto __begin = begin-expr,
2650  //         __end = end-expr;
2651  //         __begin != __end;
2652  //         ++__begin ) {
2653  //     for-range-declaration = *__begin;
2654  //     statement
2655  //   }
2656  // }
2657
2658  // Save local scope position before the addition of the implicit variables.
2659  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2660
2661  // Create local scopes and destructors for range, begin and end variables.
2662  if (Stmt *Range = S->getRangeStmt())
2663    addLocalScopeForStmt(Range);
2664  if (Stmt *BeginEnd = S->getBeginEndStmt())
2665    addLocalScopeForStmt(BeginEnd);
2666  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2667
2668  LocalScope::const_iterator ContinueScopePos = ScopePos;
2669
2670  // "for" is a control-flow statement.  Thus we stop processing the current
2671  // block.
2672  CFGBlock *LoopSuccessor = NULL;
2673  if (Block) {
2674    if (badCFG)
2675      return 0;
2676    LoopSuccessor = Block;
2677  } else
2678    LoopSuccessor = Succ;
2679
2680  // Save the current value for the break targets.
2681  // All breaks should go to the code following the loop.
2682  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2683  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2684
2685  // The block for the __begin != __end expression.
2686  CFGBlock *ConditionBlock = createBlock(false);
2687  ConditionBlock->setTerminator(S);
2688
2689  // Now add the actual condition to the condition block.
2690  if (Expr *C = S->getCond()) {
2691    Block = ConditionBlock;
2692    CFGBlock *BeginConditionBlock = addStmt(C);
2693    if (badCFG)
2694      return 0;
2695    assert(BeginConditionBlock == ConditionBlock &&
2696           "condition block in for-range was unexpectedly complex");
2697    (void)BeginConditionBlock;
2698  }
2699
2700  // The condition block is the implicit successor for the loop body as well as
2701  // any code above the loop.
2702  Succ = ConditionBlock;
2703
2704  // See if this is a known constant.
2705  TryResult KnownVal(true);
2706
2707  if (S->getCond())
2708    KnownVal = tryEvaluateBool(S->getCond());
2709
2710  // Now create the loop body.
2711  {
2712    assert(S->getBody());
2713
2714    // Save the current values for Block, Succ, and continue targets.
2715    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2716    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2717
2718    // Generate increment code in its own basic block.  This is the target of
2719    // continue statements.
2720    Block = 0;
2721    Succ = addStmt(S->getInc());
2722    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2723
2724    // The starting block for the loop increment is the block that should
2725    // represent the 'loop target' for looping back to the start of the loop.
2726    ContinueJumpTarget.block->setLoopTarget(S);
2727
2728    // Finish up the increment block and prepare to start the loop body.
2729    assert(Block);
2730    if (badCFG)
2731      return 0;
2732    Block = 0;
2733
2734
2735    // Add implicit scope and dtors for loop variable.
2736    addLocalScopeAndDtors(S->getLoopVarStmt());
2737
2738    // Populate a new block to contain the loop body and loop variable.
2739    Block = addStmt(S->getBody());
2740    if (badCFG)
2741      return 0;
2742    Block = addStmt(S->getLoopVarStmt());
2743    if (badCFG)
2744      return 0;
2745
2746    // This new body block is a successor to our condition block.
2747    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2748  }
2749
2750  // Link up the condition block with the code that follows the loop (the
2751  // false branch).
2752  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2753
2754  // Add the initialization statements.
2755  Block = createBlock();
2756  addStmt(S->getBeginEndStmt());
2757  return addStmt(S->getRangeStmt());
2758}
2759
2760CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2761    AddStmtChoice asc) {
2762  if (BuildOpts.AddImplicitDtors) {
2763    // If adding implicit destructors visit the full expression for adding
2764    // destructors of temporaries.
2765    VisitForTemporaryDtors(E->getSubExpr());
2766
2767    // Full expression has to be added as CFGStmt so it will be sequenced
2768    // before destructors of it's temporaries.
2769    asc = asc.withAlwaysAdd(true);
2770  }
2771  return Visit(E->getSubExpr(), asc);
2772}
2773
2774CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2775                                                AddStmtChoice asc) {
2776  if (asc.alwaysAdd(*this, E)) {
2777    autoCreateBlock();
2778    appendStmt(Block, E);
2779
2780    // We do not want to propagate the AlwaysAdd property.
2781    asc = asc.withAlwaysAdd(false);
2782  }
2783  return Visit(E->getSubExpr(), asc);
2784}
2785
2786CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2787                                            AddStmtChoice asc) {
2788  autoCreateBlock();
2789  appendStmt(Block, C);
2790
2791  return VisitChildren(C);
2792}
2793
2794CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2795                                                 AddStmtChoice asc) {
2796  if (asc.alwaysAdd(*this, E)) {
2797    autoCreateBlock();
2798    appendStmt(Block, E);
2799    // We do not want to propagate the AlwaysAdd property.
2800    asc = asc.withAlwaysAdd(false);
2801  }
2802  return Visit(E->getSubExpr(), asc);
2803}
2804
2805CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2806                                                  AddStmtChoice asc) {
2807  autoCreateBlock();
2808  appendStmt(Block, C);
2809  return VisitChildren(C);
2810}
2811
2812CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2813                                            AddStmtChoice asc) {
2814  if (asc.alwaysAdd(*this, E)) {
2815    autoCreateBlock();
2816    appendStmt(Block, E);
2817  }
2818  return Visit(E->getSubExpr(), AddStmtChoice());
2819}
2820
2821CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2822  // Lazily create the indirect-goto dispatch block if there isn't one already.
2823  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2824
2825  if (!IBlock) {
2826    IBlock = createBlock(false);
2827    cfg->setIndirectGotoBlock(IBlock);
2828  }
2829
2830  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2831  // current block and create a new one.
2832  if (badCFG)
2833    return 0;
2834
2835  Block = createBlock(false);
2836  Block->setTerminator(I);
2837  addSuccessor(Block, IBlock);
2838  return addStmt(I->getTarget());
2839}
2840
2841CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2842tryAgain:
2843  if (!E) {
2844    badCFG = true;
2845    return NULL;
2846  }
2847  switch (E->getStmtClass()) {
2848    default:
2849      return VisitChildrenForTemporaryDtors(E);
2850
2851    case Stmt::BinaryOperatorClass:
2852      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2853
2854    case Stmt::CXXBindTemporaryExprClass:
2855      return VisitCXXBindTemporaryExprForTemporaryDtors(
2856          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2857
2858    case Stmt::BinaryConditionalOperatorClass:
2859    case Stmt::ConditionalOperatorClass:
2860      return VisitConditionalOperatorForTemporaryDtors(
2861          cast<AbstractConditionalOperator>(E), BindToTemporary);
2862
2863    case Stmt::ImplicitCastExprClass:
2864      // For implicit cast we want BindToTemporary to be passed further.
2865      E = cast<CastExpr>(E)->getSubExpr();
2866      goto tryAgain;
2867
2868    case Stmt::ParenExprClass:
2869      E = cast<ParenExpr>(E)->getSubExpr();
2870      goto tryAgain;
2871
2872    case Stmt::MaterializeTemporaryExprClass:
2873      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2874      goto tryAgain;
2875  }
2876}
2877
2878CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2879  // When visiting children for destructors we want to visit them in reverse
2880  // order. Because there's no reverse iterator for children must to reverse
2881  // them in helper vector.
2882  typedef SmallVector<Stmt *, 4> ChildrenVect;
2883  ChildrenVect ChildrenRev;
2884  for (Stmt::child_range I = E->children(); I; ++I) {
2885    if (*I) ChildrenRev.push_back(*I);
2886  }
2887
2888  CFGBlock *B = Block;
2889  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2890      L = ChildrenRev.rend(); I != L; ++I) {
2891    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2892      B = R;
2893  }
2894  return B;
2895}
2896
2897CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2898  if (E->isLogicalOp()) {
2899    // Destructors for temporaries in LHS expression should be called after
2900    // those for RHS expression. Even if this will unnecessarily create a block,
2901    // this block will be used at least by the full expression.
2902    autoCreateBlock();
2903    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2904    if (badCFG)
2905      return NULL;
2906
2907    Succ = ConfluenceBlock;
2908    Block = NULL;
2909    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2910
2911    if (RHSBlock) {
2912      if (badCFG)
2913        return NULL;
2914
2915      // If RHS expression did produce destructors we need to connect created
2916      // blocks to CFG in same manner as for binary operator itself.
2917      CFGBlock *LHSBlock = createBlock(false);
2918      LHSBlock->setTerminator(CFGTerminator(E, true));
2919
2920      // For binary operator LHS block is before RHS in list of predecessors
2921      // of ConfluenceBlock.
2922      std::reverse(ConfluenceBlock->pred_begin(),
2923          ConfluenceBlock->pred_end());
2924
2925      // See if this is a known constant.
2926      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2927      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2928        KnownVal.negate();
2929
2930      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2931      // itself.
2932      if (E->getOpcode() == BO_LOr) {
2933        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2934        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2935      } else {
2936        assert (E->getOpcode() == BO_LAnd);
2937        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2938        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2939      }
2940
2941      Block = LHSBlock;
2942      return LHSBlock;
2943    }
2944
2945    Block = ConfluenceBlock;
2946    return ConfluenceBlock;
2947  }
2948
2949  if (E->isAssignmentOp()) {
2950    // For assignment operator (=) LHS expression is visited
2951    // before RHS expression. For destructors visit them in reverse order.
2952    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2953    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2954    return LHSBlock ? LHSBlock : RHSBlock;
2955  }
2956
2957  // For any other binary operator RHS expression is visited before
2958  // LHS expression (order of children). For destructors visit them in reverse
2959  // order.
2960  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2961  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2962  return RHSBlock ? RHSBlock : LHSBlock;
2963}
2964
2965CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2966    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2967  // First add destructors for temporaries in subexpression.
2968  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2969  if (!BindToTemporary) {
2970    // If lifetime of temporary is not prolonged (by assigning to constant
2971    // reference) add destructor for it.
2972
2973    // If the destructor is marked as a no-return destructor, we need to create
2974    // a new block for the destructor which does not have as a successor
2975    // anything built thus far. Control won't flow out of this block.
2976    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
2977    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
2978      Block = createNoReturnBlock();
2979    else
2980      autoCreateBlock();
2981
2982    appendTemporaryDtor(Block, E);
2983    B = Block;
2984  }
2985  return B;
2986}
2987
2988CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2989    AbstractConditionalOperator *E, bool BindToTemporary) {
2990  // First add destructors for condition expression.  Even if this will
2991  // unnecessarily create a block, this block will be used at least by the full
2992  // expression.
2993  autoCreateBlock();
2994  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2995  if (badCFG)
2996    return NULL;
2997  if (BinaryConditionalOperator *BCO
2998        = dyn_cast<BinaryConditionalOperator>(E)) {
2999    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3000    if (badCFG)
3001      return NULL;
3002  }
3003
3004  // Try to add block with destructors for LHS expression.
3005  CFGBlock *LHSBlock = NULL;
3006  Succ = ConfluenceBlock;
3007  Block = NULL;
3008  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3009  if (badCFG)
3010    return NULL;
3011
3012  // Try to add block with destructors for RHS expression;
3013  Succ = ConfluenceBlock;
3014  Block = NULL;
3015  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3016                                              BindToTemporary);
3017  if (badCFG)
3018    return NULL;
3019
3020  if (!RHSBlock && !LHSBlock) {
3021    // If neither LHS nor RHS expression had temporaries to destroy don't create
3022    // more blocks.
3023    Block = ConfluenceBlock;
3024    return Block;
3025  }
3026
3027  Block = createBlock(false);
3028  Block->setTerminator(CFGTerminator(E, true));
3029
3030  // See if this is a known constant.
3031  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3032
3033  if (LHSBlock) {
3034    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3035  } else if (KnownVal.isFalse()) {
3036    addSuccessor(Block, NULL);
3037  } else {
3038    addSuccessor(Block, ConfluenceBlock);
3039    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3040  }
3041
3042  if (!RHSBlock)
3043    RHSBlock = ConfluenceBlock;
3044  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3045
3046  return Block;
3047}
3048
3049} // end anonymous namespace
3050
3051/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3052///  no successors or predecessors.  If this is the first block created in the
3053///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3054CFGBlock *CFG::createBlock() {
3055  bool first_block = begin() == end();
3056
3057  // Create the block.
3058  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3059  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3060  Blocks.push_back(Mem, BlkBVC);
3061
3062  // If this is the first block, set it as the Entry and Exit.
3063  if (first_block)
3064    Entry = Exit = &back();
3065
3066  // Return the block.
3067  return &back();
3068}
3069
3070/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3071///  CFG is returned to the caller.
3072CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3073    const BuildOptions &BO) {
3074  CFGBuilder Builder(C, BO);
3075  return Builder.buildCFG(D, Statement);
3076}
3077
3078const CXXDestructorDecl *
3079CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3080  switch (getKind()) {
3081    case CFGElement::Invalid:
3082    case CFGElement::Statement:
3083    case CFGElement::Initializer:
3084      llvm_unreachable("getDestructorDecl should only be used with "
3085                       "ImplicitDtors");
3086    case CFGElement::AutomaticObjectDtor: {
3087      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3088      QualType ty = var->getType();
3089      ty = ty.getNonReferenceType();
3090      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3091        ty = arrayType->getElementType();
3092      }
3093      const RecordType *recordType = ty->getAs<RecordType>();
3094      const CXXRecordDecl *classDecl =
3095      cast<CXXRecordDecl>(recordType->getDecl());
3096      return classDecl->getDestructor();
3097    }
3098    case CFGElement::TemporaryDtor: {
3099      const CXXBindTemporaryExpr *bindExpr =
3100        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3101      const CXXTemporary *temp = bindExpr->getTemporary();
3102      return temp->getDestructor();
3103    }
3104    case CFGElement::BaseDtor:
3105    case CFGElement::MemberDtor:
3106
3107      // Not yet supported.
3108      return 0;
3109  }
3110  llvm_unreachable("getKind() returned bogus value");
3111}
3112
3113bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3114  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3115    QualType ty = cdecl->getType();
3116    return cast<FunctionType>(ty)->getNoReturnAttr();
3117  }
3118  return false;
3119}
3120
3121//===----------------------------------------------------------------------===//
3122// CFG: Queries for BlkExprs.
3123//===----------------------------------------------------------------------===//
3124
3125namespace {
3126  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3127}
3128
3129static void FindSubExprAssignments(const Stmt *S,
3130                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3131  if (!S)
3132    return;
3133
3134  for (Stmt::const_child_range I = S->children(); I; ++I) {
3135    const Stmt *child = *I;
3136    if (!child)
3137      continue;
3138
3139    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3140      if (B->isAssignmentOp()) Set.insert(B);
3141
3142    FindSubExprAssignments(child, Set);
3143  }
3144}
3145
3146static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3147  BlkExprMapTy* M = new BlkExprMapTy();
3148
3149  // Look for assignments that are used as subexpressions.  These are the only
3150  // assignments that we want to *possibly* register as a block-level
3151  // expression.  Basically, if an assignment occurs both in a subexpression and
3152  // at the block-level, it is a block-level expression.
3153  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3154
3155  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3156    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3157      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3158        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3159
3160  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3161
3162    // Iterate over the statements again on identify the Expr* and Stmt* at the
3163    // block-level that are block-level expressions.
3164
3165    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3166      const CFGStmt *CS = BI->getAs<CFGStmt>();
3167      if (!CS)
3168        continue;
3169      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3170        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3171
3172        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3173          // Assignment expressions that are not nested within another
3174          // expression are really "statements" whose value is never used by
3175          // another expression.
3176          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3177            continue;
3178        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3179          // Special handling for statement expressions.  The last statement in
3180          // the statement expression is also a block-level expr.
3181          const CompoundStmt *C = SE->getSubStmt();
3182          if (!C->body_empty()) {
3183            const Stmt *Last = C->body_back();
3184            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3185              Last = LastEx->IgnoreParens();
3186            unsigned x = M->size();
3187            (*M)[Last] = x;
3188          }
3189        }
3190
3191        unsigned x = M->size();
3192        (*M)[Exp] = x;
3193      }
3194    }
3195
3196    // Look at terminators.  The condition is a block-level expression.
3197
3198    Stmt *S = (*I)->getTerminatorCondition();
3199
3200    if (S && M->find(S) == M->end()) {
3201      unsigned x = M->size();
3202      (*M)[S] = x;
3203    }
3204  }
3205
3206  return M;
3207}
3208
3209CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3210  assert(S != NULL);
3211  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3212
3213  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3214  BlkExprMapTy::iterator I = M->find(S);
3215  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3216}
3217
3218unsigned CFG::getNumBlkExprs() {
3219  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3220    return M->size();
3221
3222  // We assume callers interested in the number of BlkExprs will want
3223  // the map constructed if it doesn't already exist.
3224  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3225  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3226}
3227
3228//===----------------------------------------------------------------------===//
3229// Filtered walking of the CFG.
3230//===----------------------------------------------------------------------===//
3231
3232bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3233        const CFGBlock *From, const CFGBlock *To) {
3234
3235  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3236    // If the 'To' has no label or is labeled but the label isn't a
3237    // CaseStmt then filter this edge.
3238    if (const SwitchStmt *S =
3239        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3240      if (S->isAllEnumCasesCovered()) {
3241        const Stmt *L = To->getLabel();
3242        if (!L || !isa<CaseStmt>(L))
3243          return true;
3244      }
3245    }
3246  }
3247
3248  return false;
3249}
3250
3251//===----------------------------------------------------------------------===//
3252// Cleanup: CFG dstor.
3253//===----------------------------------------------------------------------===//
3254
3255CFG::~CFG() {
3256  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3257}
3258
3259//===----------------------------------------------------------------------===//
3260// CFG pretty printing
3261//===----------------------------------------------------------------------===//
3262
3263namespace {
3264
3265class StmtPrinterHelper : public PrinterHelper  {
3266  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3267  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3268  StmtMapTy StmtMap;
3269  DeclMapTy DeclMap;
3270  signed currentBlock;
3271  unsigned currentStmt;
3272  const LangOptions &LangOpts;
3273public:
3274
3275  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3276    : currentBlock(0), currentStmt(0), LangOpts(LO)
3277  {
3278    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3279      unsigned j = 1;
3280      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3281           BI != BEnd; ++BI, ++j ) {
3282        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3283          const Stmt *stmt= SE->getStmt();
3284          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3285          StmtMap[stmt] = P;
3286
3287          switch (stmt->getStmtClass()) {
3288            case Stmt::DeclStmtClass:
3289                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3290                break;
3291            case Stmt::IfStmtClass: {
3292              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3293              if (var)
3294                DeclMap[var] = P;
3295              break;
3296            }
3297            case Stmt::ForStmtClass: {
3298              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3299              if (var)
3300                DeclMap[var] = P;
3301              break;
3302            }
3303            case Stmt::WhileStmtClass: {
3304              const VarDecl *var =
3305                cast<WhileStmt>(stmt)->getConditionVariable();
3306              if (var)
3307                DeclMap[var] = P;
3308              break;
3309            }
3310            case Stmt::SwitchStmtClass: {
3311              const VarDecl *var =
3312                cast<SwitchStmt>(stmt)->getConditionVariable();
3313              if (var)
3314                DeclMap[var] = P;
3315              break;
3316            }
3317            case Stmt::CXXCatchStmtClass: {
3318              const VarDecl *var =
3319                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3320              if (var)
3321                DeclMap[var] = P;
3322              break;
3323            }
3324            default:
3325              break;
3326          }
3327        }
3328      }
3329    }
3330  }
3331
3332
3333  virtual ~StmtPrinterHelper() {}
3334
3335  const LangOptions &getLangOpts() const { return LangOpts; }
3336  void setBlockID(signed i) { currentBlock = i; }
3337  void setStmtID(unsigned i) { currentStmt = i; }
3338
3339  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3340    StmtMapTy::iterator I = StmtMap.find(S);
3341
3342    if (I == StmtMap.end())
3343      return false;
3344
3345    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3346                          && I->second.second == currentStmt) {
3347      return false;
3348    }
3349
3350    OS << "[B" << I->second.first << "." << I->second.second << "]";
3351    return true;
3352  }
3353
3354  bool handleDecl(const Decl *D, raw_ostream &OS) {
3355    DeclMapTy::iterator I = DeclMap.find(D);
3356
3357    if (I == DeclMap.end())
3358      return false;
3359
3360    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3361                          && I->second.second == currentStmt) {
3362      return false;
3363    }
3364
3365    OS << "[B" << I->second.first << "." << I->second.second << "]";
3366    return true;
3367  }
3368};
3369} // end anonymous namespace
3370
3371
3372namespace {
3373class CFGBlockTerminatorPrint
3374  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3375
3376  raw_ostream &OS;
3377  StmtPrinterHelper* Helper;
3378  PrintingPolicy Policy;
3379public:
3380  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3381                          const PrintingPolicy &Policy)
3382    : OS(os), Helper(helper), Policy(Policy) {}
3383
3384  void VisitIfStmt(IfStmt *I) {
3385    OS << "if ";
3386    I->getCond()->printPretty(OS,Helper,Policy);
3387  }
3388
3389  // Default case.
3390  void VisitStmt(Stmt *Terminator) {
3391    Terminator->printPretty(OS, Helper, Policy);
3392  }
3393
3394  void VisitForStmt(ForStmt *F) {
3395    OS << "for (" ;
3396    if (F->getInit())
3397      OS << "...";
3398    OS << "; ";
3399    if (Stmt *C = F->getCond())
3400      C->printPretty(OS, Helper, Policy);
3401    OS << "; ";
3402    if (F->getInc())
3403      OS << "...";
3404    OS << ")";
3405  }
3406
3407  void VisitWhileStmt(WhileStmt *W) {
3408    OS << "while " ;
3409    if (Stmt *C = W->getCond())
3410      C->printPretty(OS, Helper, Policy);
3411  }
3412
3413  void VisitDoStmt(DoStmt *D) {
3414    OS << "do ... while ";
3415    if (Stmt *C = D->getCond())
3416      C->printPretty(OS, Helper, Policy);
3417  }
3418
3419  void VisitSwitchStmt(SwitchStmt *Terminator) {
3420    OS << "switch ";
3421    Terminator->getCond()->printPretty(OS, Helper, Policy);
3422  }
3423
3424  void VisitCXXTryStmt(CXXTryStmt *CS) {
3425    OS << "try ...";
3426  }
3427
3428  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3429    C->getCond()->printPretty(OS, Helper, Policy);
3430    OS << " ? ... : ...";
3431  }
3432
3433  void VisitChooseExpr(ChooseExpr *C) {
3434    OS << "__builtin_choose_expr( ";
3435    C->getCond()->printPretty(OS, Helper, Policy);
3436    OS << " )";
3437  }
3438
3439  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3440    OS << "goto *";
3441    I->getTarget()->printPretty(OS, Helper, Policy);
3442  }
3443
3444  void VisitBinaryOperator(BinaryOperator* B) {
3445    if (!B->isLogicalOp()) {
3446      VisitExpr(B);
3447      return;
3448    }
3449
3450    B->getLHS()->printPretty(OS, Helper, Policy);
3451
3452    switch (B->getOpcode()) {
3453      case BO_LOr:
3454        OS << " || ...";
3455        return;
3456      case BO_LAnd:
3457        OS << " && ...";
3458        return;
3459      default:
3460        llvm_unreachable("Invalid logical operator.");
3461    }
3462  }
3463
3464  void VisitExpr(Expr *E) {
3465    E->printPretty(OS, Helper, Policy);
3466  }
3467};
3468} // end anonymous namespace
3469
3470static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3471                       const CFGElement &E) {
3472  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3473    const Stmt *S = CS->getStmt();
3474
3475    if (Helper) {
3476
3477      // special printing for statement-expressions.
3478      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3479        const CompoundStmt *Sub = SE->getSubStmt();
3480
3481        if (Sub->children()) {
3482          OS << "({ ... ; ";
3483          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3484          OS << " })\n";
3485          return;
3486        }
3487      }
3488      // special printing for comma expressions.
3489      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3490        if (B->getOpcode() == BO_Comma) {
3491          OS << "... , ";
3492          Helper->handledStmt(B->getRHS(),OS);
3493          OS << '\n';
3494          return;
3495        }
3496      }
3497    }
3498    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3499
3500    if (isa<CXXOperatorCallExpr>(S)) {
3501      OS << " (OperatorCall)";
3502    }
3503    else if (isa<CXXBindTemporaryExpr>(S)) {
3504      OS << " (BindTemporary)";
3505    }
3506    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3507      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3508    }
3509    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3510      OS << " (" << CE->getStmtClassName() << ", "
3511         << CE->getCastKindName()
3512         << ", " << CE->getType().getAsString()
3513         << ")";
3514    }
3515
3516    // Expressions need a newline.
3517    if (isa<Expr>(S))
3518      OS << '\n';
3519
3520  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3521    const CXXCtorInitializer *I = IE->getInitializer();
3522    if (I->isBaseInitializer())
3523      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3524    else OS << I->getAnyMember()->getName();
3525
3526    OS << "(";
3527    if (Expr *IE = I->getInit())
3528      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3529    OS << ")";
3530
3531    if (I->isBaseInitializer())
3532      OS << " (Base initializer)\n";
3533    else OS << " (Member initializer)\n";
3534
3535  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3536    const VarDecl *VD = DE->getVarDecl();
3537    Helper->handleDecl(VD, OS);
3538
3539    const Type* T = VD->getType().getTypePtr();
3540    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3541      T = RT->getPointeeType().getTypePtr();
3542    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3543      T = ET;
3544
3545    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3546    OS << " (Implicit destructor)\n";
3547
3548  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3549    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3550    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3551    OS << " (Base object destructor)\n";
3552
3553  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3554    const FieldDecl *FD = ME->getFieldDecl();
3555
3556    const Type *T = FD->getType().getTypePtr();
3557    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3558      T = ET;
3559
3560    OS << "this->" << FD->getName();
3561    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3562    OS << " (Member object destructor)\n";
3563
3564  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3565    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3566    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3567    OS << " (Temporary object destructor)\n";
3568  }
3569}
3570
3571static void print_block(raw_ostream &OS, const CFG* cfg,
3572                        const CFGBlock &B,
3573                        StmtPrinterHelper* Helper, bool print_edges,
3574                        bool ShowColors) {
3575
3576  if (Helper)
3577    Helper->setBlockID(B.getBlockID());
3578
3579  // Print the header.
3580  if (ShowColors)
3581    OS.changeColor(raw_ostream::YELLOW, true);
3582
3583  OS << "\n [B" << B.getBlockID();
3584
3585  if (&B == &cfg->getEntry())
3586    OS << " (ENTRY)]\n";
3587  else if (&B == &cfg->getExit())
3588    OS << " (EXIT)]\n";
3589  else if (&B == cfg->getIndirectGotoBlock())
3590    OS << " (INDIRECT GOTO DISPATCH)]\n";
3591  else
3592    OS << "]\n";
3593
3594  if (ShowColors)
3595    OS.resetColor();
3596
3597  // Print the label of this block.
3598  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3599
3600    if (print_edges)
3601      OS << "  ";
3602
3603    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3604      OS << L->getName();
3605    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3606      OS << "case ";
3607      C->getLHS()->printPretty(OS, Helper,
3608                               PrintingPolicy(Helper->getLangOpts()));
3609      if (C->getRHS()) {
3610        OS << " ... ";
3611        C->getRHS()->printPretty(OS, Helper,
3612                                 PrintingPolicy(Helper->getLangOpts()));
3613      }
3614    } else if (isa<DefaultStmt>(Label))
3615      OS << "default";
3616    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3617      OS << "catch (";
3618      if (CS->getExceptionDecl())
3619        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3620                                      0);
3621      else
3622        OS << "...";
3623      OS << ")";
3624
3625    } else
3626      llvm_unreachable("Invalid label statement in CFGBlock.");
3627
3628    OS << ":\n";
3629  }
3630
3631  // Iterate through the statements in the block and print them.
3632  unsigned j = 1;
3633
3634  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3635       I != E ; ++I, ++j ) {
3636
3637    // Print the statement # in the basic block and the statement itself.
3638    if (print_edges)
3639      OS << " ";
3640
3641    OS << llvm::format("%3d", j) << ": ";
3642
3643    if (Helper)
3644      Helper->setStmtID(j);
3645
3646    print_elem(OS, Helper, *I);
3647  }
3648
3649  // Print the terminator of this block.
3650  if (B.getTerminator()) {
3651    if (ShowColors)
3652      OS.changeColor(raw_ostream::GREEN);
3653
3654    OS << "   T: ";
3655
3656    if (Helper) Helper->setBlockID(-1);
3657
3658    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3659                                     PrintingPolicy(Helper->getLangOpts()));
3660    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3661    OS << '\n';
3662
3663    if (ShowColors)
3664      OS.resetColor();
3665  }
3666
3667  if (print_edges) {
3668    // Print the predecessors of this block.
3669    if (!B.pred_empty()) {
3670      const raw_ostream::Colors Color = raw_ostream::BLUE;
3671      if (ShowColors)
3672        OS.changeColor(Color);
3673      OS << "   Preds " ;
3674      if (ShowColors)
3675        OS.resetColor();
3676      OS << '(' << B.pred_size() << "):";
3677      unsigned i = 0;
3678
3679      if (ShowColors)
3680        OS.changeColor(Color);
3681
3682      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3683           I != E; ++I, ++i) {
3684
3685        if (i == 8 || (i-8) == 0)
3686          OS << "\n     ";
3687
3688        OS << " B" << (*I)->getBlockID();
3689      }
3690
3691      if (ShowColors)
3692        OS.resetColor();
3693
3694      OS << '\n';
3695    }
3696
3697    // Print the successors of this block.
3698    if (!B.succ_empty()) {
3699      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3700      if (ShowColors)
3701        OS.changeColor(Color);
3702      OS << "   Succs ";
3703      if (ShowColors)
3704        OS.resetColor();
3705      OS << '(' << B.succ_size() << "):";
3706      unsigned i = 0;
3707
3708      if (ShowColors)
3709        OS.changeColor(Color);
3710
3711      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3712           I != E; ++I, ++i) {
3713
3714        if (i == 8 || (i-8) % 10 == 0)
3715          OS << "\n    ";
3716
3717        if (*I)
3718          OS << " B" << (*I)->getBlockID();
3719        else
3720          OS  << " NULL";
3721      }
3722
3723      if (ShowColors)
3724        OS.resetColor();
3725      OS << '\n';
3726    }
3727  }
3728}
3729
3730
3731/// dump - A simple pretty printer of a CFG that outputs to stderr.
3732void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3733  print(llvm::errs(), LO, ShowColors);
3734}
3735
3736/// print - A simple pretty printer of a CFG that outputs to an ostream.
3737void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3738  StmtPrinterHelper Helper(this, LO);
3739
3740  // Print the entry block.
3741  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3742
3743  // Iterate through the CFGBlocks and print them one by one.
3744  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3745    // Skip the entry block, because we already printed it.
3746    if (&(**I) == &getEntry() || &(**I) == &getExit())
3747      continue;
3748
3749    print_block(OS, this, **I, &Helper, true, ShowColors);
3750  }
3751
3752  // Print the exit block.
3753  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3754  OS << '\n';
3755  OS.flush();
3756}
3757
3758/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3759void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3760                    bool ShowColors) const {
3761  print(llvm::errs(), cfg, LO, ShowColors);
3762}
3763
3764/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3765///   Generally this will only be called from CFG::print.
3766void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3767                     const LangOptions &LO, bool ShowColors) const {
3768  StmtPrinterHelper Helper(cfg, LO);
3769  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3770  OS << '\n';
3771}
3772
3773/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3774void CFGBlock::printTerminator(raw_ostream &OS,
3775                               const LangOptions &LO) const {
3776  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3777  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3778}
3779
3780Stmt *CFGBlock::getTerminatorCondition() {
3781  Stmt *Terminator = this->Terminator;
3782  if (!Terminator)
3783    return NULL;
3784
3785  Expr *E = NULL;
3786
3787  switch (Terminator->getStmtClass()) {
3788    default:
3789      break;
3790
3791    case Stmt::ForStmtClass:
3792      E = cast<ForStmt>(Terminator)->getCond();
3793      break;
3794
3795    case Stmt::WhileStmtClass:
3796      E = cast<WhileStmt>(Terminator)->getCond();
3797      break;
3798
3799    case Stmt::DoStmtClass:
3800      E = cast<DoStmt>(Terminator)->getCond();
3801      break;
3802
3803    case Stmt::IfStmtClass:
3804      E = cast<IfStmt>(Terminator)->getCond();
3805      break;
3806
3807    case Stmt::ChooseExprClass:
3808      E = cast<ChooseExpr>(Terminator)->getCond();
3809      break;
3810
3811    case Stmt::IndirectGotoStmtClass:
3812      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3813      break;
3814
3815    case Stmt::SwitchStmtClass:
3816      E = cast<SwitchStmt>(Terminator)->getCond();
3817      break;
3818
3819    case Stmt::BinaryConditionalOperatorClass:
3820      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3821      break;
3822
3823    case Stmt::ConditionalOperatorClass:
3824      E = cast<ConditionalOperator>(Terminator)->getCond();
3825      break;
3826
3827    case Stmt::BinaryOperatorClass: // '&&' and '||'
3828      E = cast<BinaryOperator>(Terminator)->getLHS();
3829      break;
3830
3831    case Stmt::ObjCForCollectionStmtClass:
3832      return Terminator;
3833  }
3834
3835  return E ? E->IgnoreParens() : NULL;
3836}
3837
3838//===----------------------------------------------------------------------===//
3839// CFG Graphviz Visualization
3840//===----------------------------------------------------------------------===//
3841
3842
3843#ifndef NDEBUG
3844static StmtPrinterHelper* GraphHelper;
3845#endif
3846
3847void CFG::viewCFG(const LangOptions &LO) const {
3848#ifndef NDEBUG
3849  StmtPrinterHelper H(this, LO);
3850  GraphHelper = &H;
3851  llvm::ViewGraph(this,"CFG");
3852  GraphHelper = NULL;
3853#endif
3854}
3855
3856namespace llvm {
3857template<>
3858struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3859
3860  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3861
3862  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3863
3864#ifndef NDEBUG
3865    std::string OutSStr;
3866    llvm::raw_string_ostream Out(OutSStr);
3867    print_block(Out,Graph, *Node, GraphHelper, false, false);
3868    std::string& OutStr = Out.str();
3869
3870    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3871
3872    // Process string output to make it nicer...
3873    for (unsigned i = 0; i != OutStr.length(); ++i)
3874      if (OutStr[i] == '\n') {                            // Left justify
3875        OutStr[i] = '\\';
3876        OutStr.insert(OutStr.begin()+i+1, 'l');
3877      }
3878
3879    return OutStr;
3880#else
3881    return "";
3882#endif
3883  }
3884};
3885} // end namespace llvm
3886