CFG.cpp revision 5062bb22706c8f2ceec5815533ff5a88d169d098
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/GraphWriter.h"
28#include "llvm/Support/SaveAndRestore.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236class reverse_children {
237  llvm::SmallVector<Stmt *, 12> childrenBuf;
238  ArrayRef<Stmt*> children;
239public:
240  reverse_children(Stmt *S);
241
242  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
243  iterator begin() const { return children.rbegin(); }
244  iterator end() const { return children.rend(); }
245};
246
247
248reverse_children::reverse_children(Stmt *S) {
249  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
250    children = CE->getRawSubExprs();
251    return;
252  }
253  switch (S->getStmtClass()) {
254    // Note: Fill in this switch with more cases we want to optimize.
255    case Stmt::InitListExprClass: {
256      InitListExpr *IE = cast<InitListExpr>(S);
257      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
258                                    IE->getNumInits());
259      return;
260    }
261    default:
262      break;
263  }
264
265  // Default case for all other statements.
266  for (Stmt::child_range I = S->children(); I; ++I) {
267    childrenBuf.push_back(*I);
268  }
269
270  // This needs to be done *after* childrenBuf has been populated.
271  children = childrenBuf;
272}
273
274/// CFGBuilder - This class implements CFG construction from an AST.
275///   The builder is stateful: an instance of the builder should be used to only
276///   construct a single CFG.
277///
278///   Example usage:
279///
280///     CFGBuilder builder;
281///     CFG* cfg = builder.BuildAST(stmt1);
282///
283///  CFG construction is done via a recursive walk of an AST.  We actually parse
284///  the AST in reverse order so that the successor of a basic block is
285///  constructed prior to its predecessor.  This allows us to nicely capture
286///  implicit fall-throughs without extra basic blocks.
287///
288class CFGBuilder {
289  typedef BlockScopePosPair JumpTarget;
290  typedef BlockScopePosPair JumpSource;
291
292  ASTContext *Context;
293  OwningPtr<CFG> cfg;
294
295  CFGBlock *Block;
296  CFGBlock *Succ;
297  JumpTarget ContinueJumpTarget;
298  JumpTarget BreakJumpTarget;
299  CFGBlock *SwitchTerminatedBlock;
300  CFGBlock *DefaultCaseBlock;
301  CFGBlock *TryTerminatedBlock;
302
303  // Current position in local scope.
304  LocalScope::const_iterator ScopePos;
305
306  // LabelMap records the mapping from Label expressions to their jump targets.
307  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
308  LabelMapTy LabelMap;
309
310  // A list of blocks that end with a "goto" that must be backpatched to their
311  // resolved targets upon completion of CFG construction.
312  typedef std::vector<JumpSource> BackpatchBlocksTy;
313  BackpatchBlocksTy BackpatchBlocks;
314
315  // A list of labels whose address has been taken (for indirect gotos).
316  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
317  LabelSetTy AddressTakenLabels;
318
319  bool badCFG;
320  const CFG::BuildOptions &BuildOpts;
321
322  // State to track for building switch statements.
323  bool switchExclusivelyCovered;
324  Expr::EvalResult *switchCond;
325
326  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
327  const Stmt *lastLookup;
328
329  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
330  // during construction of branches for chained logical operators.
331  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
332  CachedBoolEvalsTy CachedBoolEvals;
333
334public:
335  explicit CFGBuilder(ASTContext *astContext,
336                      const CFG::BuildOptions &buildOpts)
337    : Context(astContext), cfg(new CFG()), // crew a new CFG
338      Block(NULL), Succ(NULL),
339      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
340      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
341      switchExclusivelyCovered(false), switchCond(0),
342      cachedEntry(0), lastLookup(0) {}
343
344  // buildCFG - Used by external clients to construct the CFG.
345  CFG* buildCFG(const Decl *D, Stmt *Statement);
346
347  bool alwaysAdd(const Stmt *stmt);
348
349private:
350  // Visitors to walk an AST and construct the CFG.
351  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
352  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
353  CFGBlock *VisitBreakStmt(BreakStmt *B);
354  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
355  CFGBlock *VisitCaseStmt(CaseStmt *C);
356  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
357  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
358  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
359                                     AddStmtChoice asc);
360  CFGBlock *VisitContinueStmt(ContinueStmt *C);
361  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
362                                      AddStmtChoice asc);
363  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
364  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
365  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
366  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
367                                       AddStmtChoice asc);
368  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
369                                        AddStmtChoice asc);
370  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
371  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
372  CFGBlock *VisitDeclStmt(DeclStmt *DS);
373  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
374  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
375  CFGBlock *VisitDoStmt(DoStmt *D);
376  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
377  CFGBlock *VisitForStmt(ForStmt *F);
378  CFGBlock *VisitGotoStmt(GotoStmt *G);
379  CFGBlock *VisitIfStmt(IfStmt *I);
380  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
381  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
382  CFGBlock *VisitLabelStmt(LabelStmt *L);
383  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
385  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
386                                                         Stmt *Term,
387                                                         CFGBlock *TrueBlock,
388                                                         CFGBlock *FalseBlock);
389  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
390  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
391  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
392  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
393  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
394  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
395  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
396  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
397  CFGBlock *VisitReturnStmt(ReturnStmt *R);
398  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
399  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
400  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
401                                          AddStmtChoice asc);
402  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
403  CFGBlock *VisitWhileStmt(WhileStmt *W);
404
405  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
406  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
407  CFGBlock *VisitChildren(Stmt *S);
408  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
409
410  // Visitors to walk an AST and generate destructors of temporaries in
411  // full expression.
412  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
413  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
414  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
415  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
416      bool BindToTemporary);
417  CFGBlock *
418  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
419                                            bool BindToTemporary);
420
421  // NYS == Not Yet Supported
422  CFGBlock *NYS() {
423    badCFG = true;
424    return Block;
425  }
426
427  void autoCreateBlock() { if (!Block) Block = createBlock(); }
428  CFGBlock *createBlock(bool add_successor = true);
429  CFGBlock *createNoReturnBlock();
430
431  CFGBlock *addStmt(Stmt *S) {
432    return Visit(S, AddStmtChoice::AlwaysAdd);
433  }
434  CFGBlock *addInitializer(CXXCtorInitializer *I);
435  void addAutomaticObjDtors(LocalScope::const_iterator B,
436                            LocalScope::const_iterator E, Stmt *S);
437  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
438
439  // Local scopes creation.
440  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
441
442  void addLocalScopeForStmt(Stmt *S);
443  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
444  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
445
446  void addLocalScopeAndDtors(Stmt *S);
447
448  // Interface to CFGBlock - adding CFGElements.
449  void appendStmt(CFGBlock *B, const Stmt *S) {
450    if (alwaysAdd(S) && cachedEntry)
451      cachedEntry->second = B;
452
453    // All block-level expressions should have already been IgnoreParens()ed.
454    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
455    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
456  }
457  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
458    B->appendInitializer(I, cfg->getBumpVectorContext());
459  }
460  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
461    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
462  }
463  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
464    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
465  }
466  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
467    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
468  }
469  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
470    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
471  }
472
473  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
474      LocalScope::const_iterator B, LocalScope::const_iterator E);
475
476  void addSuccessor(CFGBlock *B, CFGBlock *S) {
477    B->addSuccessor(S, cfg->getBumpVectorContext());
478  }
479
480  /// Try and evaluate an expression to an integer constant.
481  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
482    if (!BuildOpts.PruneTriviallyFalseEdges)
483      return false;
484    return !S->isTypeDependent() &&
485           !S->isValueDependent() &&
486           S->EvaluateAsRValue(outResult, *Context);
487  }
488
489  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
490  /// if we can evaluate to a known value, otherwise return -1.
491  TryResult tryEvaluateBool(Expr *S) {
492    if (!BuildOpts.PruneTriviallyFalseEdges ||
493        S->isTypeDependent() || S->isValueDependent())
494      return TryResult();
495
496    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
497      if (Bop->isLogicalOp()) {
498        // Check the cache first.
499        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
500        if (I != CachedBoolEvals.end())
501          return I->second; // already in map;
502
503        // Retrieve result at first, or the map might be updated.
504        TryResult Result = evaluateAsBooleanConditionNoCache(S);
505        CachedBoolEvals[S] = Result; // update or insert
506        return Result;
507      }
508      else {
509        switch (Bop->getOpcode()) {
510          default: break;
511          // For 'x & 0' and 'x * 0', we can determine that
512          // the value is always false.
513          case BO_Mul:
514          case BO_And: {
515            // If either operand is zero, we know the value
516            // must be false.
517            llvm::APSInt IntVal;
518            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
519              if (IntVal.getBoolValue() == false) {
520                return TryResult(false);
521              }
522            }
523            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
524              if (IntVal.getBoolValue() == false) {
525                return TryResult(false);
526              }
527            }
528          }
529          break;
530        }
531      }
532    }
533
534    return evaluateAsBooleanConditionNoCache(S);
535  }
536
537  /// \brief Evaluate as boolean \param E without using the cache.
538  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
539    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
540      if (Bop->isLogicalOp()) {
541        TryResult LHS = tryEvaluateBool(Bop->getLHS());
542        if (LHS.isKnown()) {
543          // We were able to evaluate the LHS, see if we can get away with not
544          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
545          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
546            return LHS.isTrue();
547
548          TryResult RHS = tryEvaluateBool(Bop->getRHS());
549          if (RHS.isKnown()) {
550            if (Bop->getOpcode() == BO_LOr)
551              return LHS.isTrue() || RHS.isTrue();
552            else
553              return LHS.isTrue() && RHS.isTrue();
554          }
555        } else {
556          TryResult RHS = tryEvaluateBool(Bop->getRHS());
557          if (RHS.isKnown()) {
558            // We can't evaluate the LHS; however, sometimes the result
559            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
560            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
561              return RHS.isTrue();
562          }
563        }
564
565        return TryResult();
566      }
567    }
568
569    bool Result;
570    if (E->EvaluateAsBooleanCondition(Result, *Context))
571      return Result;
572
573    return TryResult();
574  }
575
576};
577
578inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
579                                     const Stmt *stmt) const {
580  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
581}
582
583bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
584  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
585
586  if (!BuildOpts.forcedBlkExprs)
587    return shouldAdd;
588
589  if (lastLookup == stmt) {
590    if (cachedEntry) {
591      assert(cachedEntry->first == stmt);
592      return true;
593    }
594    return shouldAdd;
595  }
596
597  lastLookup = stmt;
598
599  // Perform the lookup!
600  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
601
602  if (!fb) {
603    // No need to update 'cachedEntry', since it will always be null.
604    assert(cachedEntry == 0);
605    return shouldAdd;
606  }
607
608  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
609  if (itr == fb->end()) {
610    cachedEntry = 0;
611    return shouldAdd;
612  }
613
614  cachedEntry = &*itr;
615  return true;
616}
617
618// FIXME: Add support for dependent-sized array types in C++?
619// Does it even make sense to build a CFG for an uninstantiated template?
620static const VariableArrayType *FindVA(const Type *t) {
621  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
622    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
623      if (vat->getSizeExpr())
624        return vat;
625
626    t = vt->getElementType().getTypePtr();
627  }
628
629  return 0;
630}
631
632/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
633///  arbitrary statement.  Examples include a single expression or a function
634///  body (compound statement).  The ownership of the returned CFG is
635///  transferred to the caller.  If CFG construction fails, this method returns
636///  NULL.
637CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
638  assert(cfg.get());
639  if (!Statement)
640    return NULL;
641
642  // Create an empty block that will serve as the exit block for the CFG.  Since
643  // this is the first block added to the CFG, it will be implicitly registered
644  // as the exit block.
645  Succ = createBlock();
646  assert(Succ == &cfg->getExit());
647  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
648
649  if (BuildOpts.AddImplicitDtors)
650    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
651      addImplicitDtorsForDestructor(DD);
652
653  // Visit the statements and create the CFG.
654  CFGBlock *B = addStmt(Statement);
655
656  if (badCFG)
657    return NULL;
658
659  // For C++ constructor add initializers to CFG.
660  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
661    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
662        E = CD->init_rend(); I != E; ++I) {
663      B = addInitializer(*I);
664      if (badCFG)
665        return NULL;
666    }
667  }
668
669  if (B)
670    Succ = B;
671
672  // Backpatch the gotos whose label -> block mappings we didn't know when we
673  // encountered them.
674  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
675                                   E = BackpatchBlocks.end(); I != E; ++I ) {
676
677    CFGBlock *B = I->block;
678    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
679    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
680
681    // If there is no target for the goto, then we are looking at an
682    // incomplete AST.  Handle this by not registering a successor.
683    if (LI == LabelMap.end()) continue;
684
685    JumpTarget JT = LI->second;
686    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
687                                           JT.scopePosition);
688    addSuccessor(B, JT.block);
689  }
690
691  // Add successors to the Indirect Goto Dispatch block (if we have one).
692  if (CFGBlock *B = cfg->getIndirectGotoBlock())
693    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
694                              E = AddressTakenLabels.end(); I != E; ++I ) {
695
696      // Lookup the target block.
697      LabelMapTy::iterator LI = LabelMap.find(*I);
698
699      // If there is no target block that contains label, then we are looking
700      // at an incomplete AST.  Handle this by not registering a successor.
701      if (LI == LabelMap.end()) continue;
702
703      addSuccessor(B, LI->second.block);
704    }
705
706  // Create an empty entry block that has no predecessors.
707  cfg->setEntry(createBlock());
708
709  return cfg.take();
710}
711
712/// createBlock - Used to lazily create blocks that are connected
713///  to the current (global) succcessor.
714CFGBlock *CFGBuilder::createBlock(bool add_successor) {
715  CFGBlock *B = cfg->createBlock();
716  if (add_successor && Succ)
717    addSuccessor(B, Succ);
718  return B;
719}
720
721/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
722/// CFG. It is *not* connected to the current (global) successor, and instead
723/// directly tied to the exit block in order to be reachable.
724CFGBlock *CFGBuilder::createNoReturnBlock() {
725  CFGBlock *B = createBlock(false);
726  B->setHasNoReturnElement();
727  addSuccessor(B, &cfg->getExit());
728  return B;
729}
730
731/// addInitializer - Add C++ base or member initializer element to CFG.
732CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
733  if (!BuildOpts.AddInitializers)
734    return Block;
735
736  bool IsReference = false;
737  bool HasTemporaries = false;
738
739  // Destructors of temporaries in initialization expression should be called
740  // after initialization finishes.
741  Expr *Init = I->getInit();
742  if (Init) {
743    if (FieldDecl *FD = I->getAnyMember())
744      IsReference = FD->getType()->isReferenceType();
745    HasTemporaries = isa<ExprWithCleanups>(Init);
746
747    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
748      // Generate destructors for temporaries in initialization expression.
749      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
750          IsReference);
751    }
752  }
753
754  autoCreateBlock();
755  appendInitializer(Block, I);
756
757  if (Init) {
758    if (HasTemporaries) {
759      // For expression with temporaries go directly to subexpression to omit
760      // generating destructors for the second time.
761      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
762    }
763    return Visit(Init);
764  }
765
766  return Block;
767}
768
769/// \brief Retrieve the type of the temporary object whose lifetime was
770/// extended by a local reference with the given initializer.
771static QualType getReferenceInitTemporaryType(ASTContext &Context,
772                                              const Expr *Init) {
773  while (true) {
774    // Skip parentheses.
775    Init = Init->IgnoreParens();
776
777    // Skip through cleanups.
778    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
779      Init = EWC->getSubExpr();
780      continue;
781    }
782
783    // Skip through the temporary-materialization expression.
784    if (const MaterializeTemporaryExpr *MTE
785          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
786      Init = MTE->GetTemporaryExpr();
787      continue;
788    }
789
790    // Skip derived-to-base and no-op casts.
791    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
792      if ((CE->getCastKind() == CK_DerivedToBase ||
793           CE->getCastKind() == CK_UncheckedDerivedToBase ||
794           CE->getCastKind() == CK_NoOp) &&
795          Init->getType()->isRecordType()) {
796        Init = CE->getSubExpr();
797        continue;
798      }
799    }
800
801    // Skip member accesses into rvalues.
802    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
803      if (!ME->isArrow() && ME->getBase()->isRValue()) {
804        Init = ME->getBase();
805        continue;
806      }
807    }
808
809    break;
810  }
811
812  return Init->getType();
813}
814
815/// addAutomaticObjDtors - Add to current block automatic objects destructors
816/// for objects in range of local scope positions. Use S as trigger statement
817/// for destructors.
818void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
819                                      LocalScope::const_iterator E, Stmt *S) {
820  if (!BuildOpts.AddImplicitDtors)
821    return;
822
823  if (B == E)
824    return;
825
826  // We need to append the destructors in reverse order, but any one of them
827  // may be a no-return destructor which changes the CFG. As a result, buffer
828  // this sequence up and replay them in reverse order when appending onto the
829  // CFGBlock(s).
830  SmallVector<VarDecl*, 10> Decls;
831  Decls.reserve(B.distance(E));
832  for (LocalScope::const_iterator I = B; I != E; ++I)
833    Decls.push_back(*I);
834
835  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
836                                                   E = Decls.rend();
837       I != E; ++I) {
838    // If this destructor is marked as a no-return destructor, we need to
839    // create a new block for the destructor which does not have as a successor
840    // anything built thus far: control won't flow out of this block.
841    QualType Ty = (*I)->getType();
842    if (Ty->isReferenceType()) {
843      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
844    }
845    Ty = Context->getBaseElementType(Ty);
846
847    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
848    if (Dtor->isNoReturn())
849      Block = createNoReturnBlock();
850    else
851      autoCreateBlock();
852
853    appendAutomaticObjDtor(Block, *I, S);
854  }
855}
856
857/// addImplicitDtorsForDestructor - Add implicit destructors generated for
858/// base and member objects in destructor.
859void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
860  assert (BuildOpts.AddImplicitDtors
861      && "Can be called only when dtors should be added");
862  const CXXRecordDecl *RD = DD->getParent();
863
864  // At the end destroy virtual base objects.
865  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
866      VE = RD->vbases_end(); VI != VE; ++VI) {
867    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
868    if (!CD->hasTrivialDestructor()) {
869      autoCreateBlock();
870      appendBaseDtor(Block, VI);
871    }
872  }
873
874  // Before virtual bases destroy direct base objects.
875  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
876      BE = RD->bases_end(); BI != BE; ++BI) {
877    if (!BI->isVirtual()) {
878      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
879      if (!CD->hasTrivialDestructor()) {
880        autoCreateBlock();
881        appendBaseDtor(Block, BI);
882      }
883    }
884  }
885
886  // First destroy member objects.
887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
888      FE = RD->field_end(); FI != FE; ++FI) {
889    // Check for constant size array. Set type to array element type.
890    QualType QT = FI->getType();
891    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
892      if (AT->getSize() == 0)
893        continue;
894      QT = AT->getElementType();
895    }
896
897    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
898      if (!CD->hasTrivialDestructor()) {
899        autoCreateBlock();
900        appendMemberDtor(Block, *FI);
901      }
902  }
903}
904
905/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
906/// way return valid LocalScope object.
907LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
908  if (!Scope) {
909    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
910    Scope = alloc.Allocate<LocalScope>();
911    BumpVectorContext ctx(alloc);
912    new (Scope) LocalScope(ctx, ScopePos);
913  }
914  return Scope;
915}
916
917/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
918/// that should create implicit scope (e.g. if/else substatements).
919void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
920  if (!BuildOpts.AddImplicitDtors)
921    return;
922
923  LocalScope *Scope = 0;
924
925  // For compound statement we will be creating explicit scope.
926  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
927    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
928        ; BI != BE; ++BI) {
929      Stmt *SI = (*BI)->stripLabelLikeStatements();
930      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
931        Scope = addLocalScopeForDeclStmt(DS, Scope);
932    }
933    return;
934  }
935
936  // For any other statement scope will be implicit and as such will be
937  // interesting only for DeclStmt.
938  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
939    addLocalScopeForDeclStmt(DS);
940}
941
942/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
943/// reuse Scope if not NULL.
944LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
945                                                 LocalScope* Scope) {
946  if (!BuildOpts.AddImplicitDtors)
947    return Scope;
948
949  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
950      ; DI != DE; ++DI) {
951    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
952      Scope = addLocalScopeForVarDecl(VD, Scope);
953  }
954  return Scope;
955}
956
957/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
958/// create add scope for automatic objects and temporary objects bound to
959/// const reference. Will reuse Scope if not NULL.
960LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
961                                                LocalScope* Scope) {
962  if (!BuildOpts.AddImplicitDtors)
963    return Scope;
964
965  // Check if variable is local.
966  switch (VD->getStorageClass()) {
967  case SC_None:
968  case SC_Auto:
969  case SC_Register:
970    break;
971  default: return Scope;
972  }
973
974  // Check for const references bound to temporary. Set type to pointee.
975  QualType QT = VD->getType();
976  if (QT.getTypePtr()->isReferenceType()) {
977    if (!VD->extendsLifetimeOfTemporary())
978      return Scope;
979
980    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
981  }
982
983  // Check for constant size array. Set type to array element type.
984  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
985    if (AT->getSize() == 0)
986      return Scope;
987    QT = AT->getElementType();
988  }
989
990  // Check if type is a C++ class with non-trivial destructor.
991  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
992    if (!CD->hasTrivialDestructor()) {
993      // Add the variable to scope
994      Scope = createOrReuseLocalScope(Scope);
995      Scope->addVar(VD);
996      ScopePos = Scope->begin();
997    }
998  return Scope;
999}
1000
1001/// addLocalScopeAndDtors - For given statement add local scope for it and
1002/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1003void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1004  if (!BuildOpts.AddImplicitDtors)
1005    return;
1006
1007  LocalScope::const_iterator scopeBeginPos = ScopePos;
1008  addLocalScopeForStmt(S);
1009  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1010}
1011
1012/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1013/// variables with automatic storage duration to CFGBlock's elements vector.
1014/// Elements will be prepended to physical beginning of the vector which
1015/// happens to be logical end. Use blocks terminator as statement that specifies
1016/// destructors call site.
1017/// FIXME: This mechanism for adding automatic destructors doesn't handle
1018/// no-return destructors properly.
1019void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1020    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1021  BumpVectorContext &C = cfg->getBumpVectorContext();
1022  CFGBlock::iterator InsertPos
1023    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1024  for (LocalScope::const_iterator I = B; I != E; ++I)
1025    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1026                                            Blk->getTerminator());
1027}
1028
1029/// Visit - Walk the subtree of a statement and add extra
1030///   blocks for ternary operators, &&, and ||.  We also process "," and
1031///   DeclStmts (which may contain nested control-flow).
1032CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1033  if (!S) {
1034    badCFG = true;
1035    return 0;
1036  }
1037
1038  if (Expr *E = dyn_cast<Expr>(S))
1039    S = E->IgnoreParens();
1040
1041  switch (S->getStmtClass()) {
1042    default:
1043      return VisitStmt(S, asc);
1044
1045    case Stmt::AddrLabelExprClass:
1046      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1047
1048    case Stmt::BinaryConditionalOperatorClass:
1049      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1050
1051    case Stmt::BinaryOperatorClass:
1052      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1053
1054    case Stmt::BlockExprClass:
1055      return VisitNoRecurse(cast<Expr>(S), asc);
1056
1057    case Stmt::BreakStmtClass:
1058      return VisitBreakStmt(cast<BreakStmt>(S));
1059
1060    case Stmt::CallExprClass:
1061    case Stmt::CXXOperatorCallExprClass:
1062    case Stmt::CXXMemberCallExprClass:
1063    case Stmt::UserDefinedLiteralClass:
1064      return VisitCallExpr(cast<CallExpr>(S), asc);
1065
1066    case Stmt::CaseStmtClass:
1067      return VisitCaseStmt(cast<CaseStmt>(S));
1068
1069    case Stmt::ChooseExprClass:
1070      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1071
1072    case Stmt::CompoundStmtClass:
1073      return VisitCompoundStmt(cast<CompoundStmt>(S));
1074
1075    case Stmt::ConditionalOperatorClass:
1076      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1077
1078    case Stmt::ContinueStmtClass:
1079      return VisitContinueStmt(cast<ContinueStmt>(S));
1080
1081    case Stmt::CXXCatchStmtClass:
1082      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1083
1084    case Stmt::ExprWithCleanupsClass:
1085      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1086
1087    case Stmt::CXXDefaultArgExprClass:
1088      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1089      // called function's declaration, not by the caller. If we simply add
1090      // this expression to the CFG, we could end up with the same Expr
1091      // appearing multiple times.
1092      // PR13385 / <rdar://problem/12156507>
1093      return VisitStmt(S, asc);
1094
1095    case Stmt::CXXBindTemporaryExprClass:
1096      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1097
1098    case Stmt::CXXConstructExprClass:
1099      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1100
1101    case Stmt::CXXFunctionalCastExprClass:
1102      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1103
1104    case Stmt::CXXTemporaryObjectExprClass:
1105      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1106
1107    case Stmt::CXXThrowExprClass:
1108      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1109
1110    case Stmt::CXXTryStmtClass:
1111      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1112
1113    case Stmt::CXXForRangeStmtClass:
1114      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1115
1116    case Stmt::DeclStmtClass:
1117      return VisitDeclStmt(cast<DeclStmt>(S));
1118
1119    case Stmt::DefaultStmtClass:
1120      return VisitDefaultStmt(cast<DefaultStmt>(S));
1121
1122    case Stmt::DoStmtClass:
1123      return VisitDoStmt(cast<DoStmt>(S));
1124
1125    case Stmt::ForStmtClass:
1126      return VisitForStmt(cast<ForStmt>(S));
1127
1128    case Stmt::GotoStmtClass:
1129      return VisitGotoStmt(cast<GotoStmt>(S));
1130
1131    case Stmt::IfStmtClass:
1132      return VisitIfStmt(cast<IfStmt>(S));
1133
1134    case Stmt::ImplicitCastExprClass:
1135      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1136
1137    case Stmt::IndirectGotoStmtClass:
1138      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1139
1140    case Stmt::LabelStmtClass:
1141      return VisitLabelStmt(cast<LabelStmt>(S));
1142
1143    case Stmt::LambdaExprClass:
1144      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1145
1146    case Stmt::MemberExprClass:
1147      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1148
1149    case Stmt::NullStmtClass:
1150      return Block;
1151
1152    case Stmt::ObjCAtCatchStmtClass:
1153      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1154
1155    case Stmt::ObjCAutoreleasePoolStmtClass:
1156    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1157
1158    case Stmt::ObjCAtSynchronizedStmtClass:
1159      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1160
1161    case Stmt::ObjCAtThrowStmtClass:
1162      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1163
1164    case Stmt::ObjCAtTryStmtClass:
1165      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1166
1167    case Stmt::ObjCForCollectionStmtClass:
1168      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1169
1170    case Stmt::OpaqueValueExprClass:
1171      return Block;
1172
1173    case Stmt::PseudoObjectExprClass:
1174      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1175
1176    case Stmt::ReturnStmtClass:
1177      return VisitReturnStmt(cast<ReturnStmt>(S));
1178
1179    case Stmt::UnaryExprOrTypeTraitExprClass:
1180      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1181                                           asc);
1182
1183    case Stmt::StmtExprClass:
1184      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1185
1186    case Stmt::SwitchStmtClass:
1187      return VisitSwitchStmt(cast<SwitchStmt>(S));
1188
1189    case Stmt::UnaryOperatorClass:
1190      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1191
1192    case Stmt::WhileStmtClass:
1193      return VisitWhileStmt(cast<WhileStmt>(S));
1194  }
1195}
1196
1197CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1198  if (asc.alwaysAdd(*this, S)) {
1199    autoCreateBlock();
1200    appendStmt(Block, S);
1201  }
1202
1203  return VisitChildren(S);
1204}
1205
1206/// VisitChildren - Visit the children of a Stmt.
1207CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1208  CFGBlock *B = Block;
1209
1210  // Visit the children in their reverse order so that they appear in
1211  // left-to-right (natural) order in the CFG.
1212  reverse_children RChildren(S);
1213  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1214       I != E; ++I) {
1215    if (Stmt *Child = *I)
1216      if (CFGBlock *R = Visit(Child))
1217        B = R;
1218  }
1219  return B;
1220}
1221
1222CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1223                                         AddStmtChoice asc) {
1224  AddressTakenLabels.insert(A->getLabel());
1225
1226  if (asc.alwaysAdd(*this, A)) {
1227    autoCreateBlock();
1228    appendStmt(Block, A);
1229  }
1230
1231  return Block;
1232}
1233
1234CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1235           AddStmtChoice asc) {
1236  if (asc.alwaysAdd(*this, U)) {
1237    autoCreateBlock();
1238    appendStmt(Block, U);
1239  }
1240
1241  return Visit(U->getSubExpr(), AddStmtChoice());
1242}
1243
1244CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1245  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1246  appendStmt(ConfluenceBlock, B);
1247
1248  if (badCFG)
1249    return 0;
1250
1251  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1252}
1253
1254std::pair<CFGBlock*, CFGBlock*>
1255CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1256                                 Stmt *Term,
1257                                 CFGBlock *TrueBlock,
1258                                 CFGBlock *FalseBlock) {
1259
1260  // Introspect the RHS.  If it is a nested logical operation, we recursively
1261  // build the CFG using this function.  Otherwise, resort to default
1262  // CFG construction behavior.
1263  Expr *RHS = B->getRHS()->IgnoreParens();
1264  CFGBlock *RHSBlock, *ExitBlock;
1265
1266  do {
1267    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1268      if (B_RHS->isLogicalOp()) {
1269        llvm::tie(RHSBlock, ExitBlock) =
1270          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1271        break;
1272      }
1273
1274    // The RHS is not a nested logical operation.  Don't push the terminator
1275    // down further, but instead visit RHS and construct the respective
1276    // pieces of the CFG, and link up the RHSBlock with the terminator
1277    // we have been provided.
1278    ExitBlock = RHSBlock = createBlock(false);
1279
1280    if (!Term) {
1281      assert(TrueBlock == FalseBlock);
1282      addSuccessor(RHSBlock, TrueBlock);
1283    }
1284    else {
1285      RHSBlock->setTerminator(Term);
1286      TryResult KnownVal = tryEvaluateBool(RHS);
1287      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1288      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1289    }
1290
1291    Block = RHSBlock;
1292    RHSBlock = addStmt(RHS);
1293  }
1294  while (false);
1295
1296  if (badCFG)
1297    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1298
1299  // Generate the blocks for evaluating the LHS.
1300  Expr *LHS = B->getLHS()->IgnoreParens();
1301
1302  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1303    if (B_LHS->isLogicalOp()) {
1304      if (B->getOpcode() == BO_LOr)
1305        FalseBlock = RHSBlock;
1306      else
1307        TrueBlock = RHSBlock;
1308
1309      // For the LHS, treat 'B' as the terminator that we want to sink
1310      // into the nested branch.  The RHS always gets the top-most
1311      // terminator.
1312      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1313    }
1314
1315  // Create the block evaluating the LHS.
1316  // This contains the '&&' or '||' as the terminator.
1317  CFGBlock *LHSBlock = createBlock(false);
1318  LHSBlock->setTerminator(B);
1319
1320  Block = LHSBlock;
1321  CFGBlock *EntryLHSBlock = addStmt(LHS);
1322
1323  if (badCFG)
1324    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1325
1326  // See if this is a known constant.
1327  TryResult KnownVal = tryEvaluateBool(LHS);
1328
1329  // Now link the LHSBlock with RHSBlock.
1330  if (B->getOpcode() == BO_LOr) {
1331    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1332    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1333  } else {
1334    assert(B->getOpcode() == BO_LAnd);
1335    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1336    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1337  }
1338
1339  return std::make_pair(EntryLHSBlock, ExitBlock);
1340}
1341
1342
1343CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1344                                          AddStmtChoice asc) {
1345   // && or ||
1346  if (B->isLogicalOp())
1347    return VisitLogicalOperator(B);
1348
1349  if (B->getOpcode() == BO_Comma) { // ,
1350    autoCreateBlock();
1351    appendStmt(Block, B);
1352    addStmt(B->getRHS());
1353    return addStmt(B->getLHS());
1354  }
1355
1356  if (B->isAssignmentOp()) {
1357    if (asc.alwaysAdd(*this, B)) {
1358      autoCreateBlock();
1359      appendStmt(Block, B);
1360    }
1361    Visit(B->getLHS());
1362    return Visit(B->getRHS());
1363  }
1364
1365  if (asc.alwaysAdd(*this, B)) {
1366    autoCreateBlock();
1367    appendStmt(Block, B);
1368  }
1369
1370  CFGBlock *RBlock = Visit(B->getRHS());
1371  CFGBlock *LBlock = Visit(B->getLHS());
1372  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1373  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1374  // return RBlock.  Otherwise we'll incorrectly return NULL.
1375  return (LBlock ? LBlock : RBlock);
1376}
1377
1378CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1379  if (asc.alwaysAdd(*this, E)) {
1380    autoCreateBlock();
1381    appendStmt(Block, E);
1382  }
1383  return Block;
1384}
1385
1386CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1387  // "break" is a control-flow statement.  Thus we stop processing the current
1388  // block.
1389  if (badCFG)
1390    return 0;
1391
1392  // Now create a new block that ends with the break statement.
1393  Block = createBlock(false);
1394  Block->setTerminator(B);
1395
1396  // If there is no target for the break, then we are looking at an incomplete
1397  // AST.  This means that the CFG cannot be constructed.
1398  if (BreakJumpTarget.block) {
1399    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1400    addSuccessor(Block, BreakJumpTarget.block);
1401  } else
1402    badCFG = true;
1403
1404
1405  return Block;
1406}
1407
1408static bool CanThrow(Expr *E, ASTContext &Ctx) {
1409  QualType Ty = E->getType();
1410  if (Ty->isFunctionPointerType())
1411    Ty = Ty->getAs<PointerType>()->getPointeeType();
1412  else if (Ty->isBlockPointerType())
1413    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1414
1415  const FunctionType *FT = Ty->getAs<FunctionType>();
1416  if (FT) {
1417    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1418      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1419          Proto->isNothrow(Ctx))
1420        return false;
1421  }
1422  return true;
1423}
1424
1425CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1426  // Compute the callee type.
1427  QualType calleeType = C->getCallee()->getType();
1428  if (calleeType == Context->BoundMemberTy) {
1429    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1430
1431    // We should only get a null bound type if processing a dependent
1432    // CFG.  Recover by assuming nothing.
1433    if (!boundType.isNull()) calleeType = boundType;
1434  }
1435
1436  // If this is a call to a no-return function, this stops the block here.
1437  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1438
1439  bool AddEHEdge = false;
1440
1441  // Languages without exceptions are assumed to not throw.
1442  if (Context->getLangOpts().Exceptions) {
1443    if (BuildOpts.AddEHEdges)
1444      AddEHEdge = true;
1445  }
1446
1447  if (FunctionDecl *FD = C->getDirectCallee()) {
1448    if (FD->isNoReturn())
1449      NoReturn = true;
1450    if (FD->hasAttr<NoThrowAttr>())
1451      AddEHEdge = false;
1452  }
1453
1454  if (!CanThrow(C->getCallee(), *Context))
1455    AddEHEdge = false;
1456
1457  if (!NoReturn && !AddEHEdge)
1458    return VisitStmt(C, asc.withAlwaysAdd(true));
1459
1460  if (Block) {
1461    Succ = Block;
1462    if (badCFG)
1463      return 0;
1464  }
1465
1466  if (NoReturn)
1467    Block = createNoReturnBlock();
1468  else
1469    Block = createBlock();
1470
1471  appendStmt(Block, C);
1472
1473  if (AddEHEdge) {
1474    // Add exceptional edges.
1475    if (TryTerminatedBlock)
1476      addSuccessor(Block, TryTerminatedBlock);
1477    else
1478      addSuccessor(Block, &cfg->getExit());
1479  }
1480
1481  return VisitChildren(C);
1482}
1483
1484CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1485                                      AddStmtChoice asc) {
1486  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1487  appendStmt(ConfluenceBlock, C);
1488  if (badCFG)
1489    return 0;
1490
1491  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1492  Succ = ConfluenceBlock;
1493  Block = NULL;
1494  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1495  if (badCFG)
1496    return 0;
1497
1498  Succ = ConfluenceBlock;
1499  Block = NULL;
1500  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1501  if (badCFG)
1502    return 0;
1503
1504  Block = createBlock(false);
1505  // See if this is a known constant.
1506  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1507  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1508  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1509  Block->setTerminator(C);
1510  return addStmt(C->getCond());
1511}
1512
1513
1514CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1515  addLocalScopeAndDtors(C);
1516  CFGBlock *LastBlock = Block;
1517
1518  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1519       I != E; ++I ) {
1520    // If we hit a segment of code just containing ';' (NullStmts), we can
1521    // get a null block back.  In such cases, just use the LastBlock
1522    if (CFGBlock *newBlock = addStmt(*I))
1523      LastBlock = newBlock;
1524
1525    if (badCFG)
1526      return NULL;
1527  }
1528
1529  return LastBlock;
1530}
1531
1532CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1533                                               AddStmtChoice asc) {
1534  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1535  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1536
1537  // Create the confluence block that will "merge" the results of the ternary
1538  // expression.
1539  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1540  appendStmt(ConfluenceBlock, C);
1541  if (badCFG)
1542    return 0;
1543
1544  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1545
1546  // Create a block for the LHS expression if there is an LHS expression.  A
1547  // GCC extension allows LHS to be NULL, causing the condition to be the
1548  // value that is returned instead.
1549  //  e.g: x ?: y is shorthand for: x ? x : y;
1550  Succ = ConfluenceBlock;
1551  Block = NULL;
1552  CFGBlock *LHSBlock = 0;
1553  const Expr *trueExpr = C->getTrueExpr();
1554  if (trueExpr != opaqueValue) {
1555    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1556    if (badCFG)
1557      return 0;
1558    Block = NULL;
1559  }
1560  else
1561    LHSBlock = ConfluenceBlock;
1562
1563  // Create the block for the RHS expression.
1564  Succ = ConfluenceBlock;
1565  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1566  if (badCFG)
1567    return 0;
1568
1569  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1570  if (BinaryOperator *Cond =
1571        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1572    if (Cond->isLogicalOp())
1573      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1574
1575  // Create the block that will contain the condition.
1576  Block = createBlock(false);
1577
1578  // See if this is a known constant.
1579  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1580  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1581  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1582  Block->setTerminator(C);
1583  Expr *condExpr = C->getCond();
1584
1585  if (opaqueValue) {
1586    // Run the condition expression if it's not trivially expressed in
1587    // terms of the opaque value (or if there is no opaque value).
1588    if (condExpr != opaqueValue)
1589      addStmt(condExpr);
1590
1591    // Before that, run the common subexpression if there was one.
1592    // At least one of this or the above will be run.
1593    return addStmt(BCO->getCommon());
1594  }
1595
1596  return addStmt(condExpr);
1597}
1598
1599CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1600  // Check if the Decl is for an __label__.  If so, elide it from the
1601  // CFG entirely.
1602  if (isa<LabelDecl>(*DS->decl_begin()))
1603    return Block;
1604
1605  // This case also handles static_asserts.
1606  if (DS->isSingleDecl())
1607    return VisitDeclSubExpr(DS);
1608
1609  CFGBlock *B = 0;
1610
1611  // Build an individual DeclStmt for each decl.
1612  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1613                                       E = DS->decl_rend();
1614       I != E; ++I) {
1615    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1616    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1617               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1618
1619    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1620    // automatically freed with the CFG.
1621    DeclGroupRef DG(*I);
1622    Decl *D = *I;
1623    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1624    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1625
1626    // Append the fake DeclStmt to block.
1627    B = VisitDeclSubExpr(DSNew);
1628  }
1629
1630  return B;
1631}
1632
1633/// VisitDeclSubExpr - Utility method to add block-level expressions for
1634/// DeclStmts and initializers in them.
1635CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1636  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1637  Decl *D = DS->getSingleDecl();
1638
1639  if (isa<StaticAssertDecl>(D)) {
1640    // static_asserts aren't added to the CFG because they do not impact
1641    // runtime semantics.
1642    return Block;
1643  }
1644
1645  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1646
1647  if (!VD) {
1648    autoCreateBlock();
1649    appendStmt(Block, DS);
1650    return Block;
1651  }
1652
1653  bool IsReference = false;
1654  bool HasTemporaries = false;
1655
1656  // Guard static initializers under a branch.
1657  CFGBlock *blockAfterStaticInit = 0;
1658
1659  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1660    // For static variables, we need to create a branch to track
1661    // whether or not they are initialized.
1662    if (Block) {
1663      Succ = Block;
1664      Block = 0;
1665      if (badCFG)
1666        return 0;
1667    }
1668    blockAfterStaticInit = Succ;
1669  }
1670
1671  // Destructors of temporaries in initialization expression should be called
1672  // after initialization finishes.
1673  Expr *Init = VD->getInit();
1674  if (Init) {
1675    IsReference = VD->getType()->isReferenceType();
1676    HasTemporaries = isa<ExprWithCleanups>(Init);
1677
1678    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1679      // Generate destructors for temporaries in initialization expression.
1680      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1681          IsReference);
1682    }
1683  }
1684
1685  autoCreateBlock();
1686  appendStmt(Block, DS);
1687
1688  // Keep track of the last non-null block, as 'Block' can be nulled out
1689  // if the initializer expression is something like a 'while' in a
1690  // statement-expression.
1691  CFGBlock *LastBlock = Block;
1692
1693  if (Init) {
1694    if (HasTemporaries) {
1695      // For expression with temporaries go directly to subexpression to omit
1696      // generating destructors for the second time.
1697      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1698      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1699        LastBlock = newBlock;
1700    }
1701    else {
1702      if (CFGBlock *newBlock = Visit(Init))
1703        LastBlock = newBlock;
1704    }
1705  }
1706
1707  // If the type of VD is a VLA, then we must process its size expressions.
1708  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1709       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1710    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1711      LastBlock = newBlock;
1712  }
1713
1714  // Remove variable from local scope.
1715  if (ScopePos && VD == *ScopePos)
1716    ++ScopePos;
1717
1718  CFGBlock *B = LastBlock;
1719  if (blockAfterStaticInit) {
1720    Succ = B;
1721    Block = createBlock(false);
1722    Block->setTerminator(DS);
1723    addSuccessor(Block, blockAfterStaticInit);
1724    addSuccessor(Block, B);
1725    B = Block;
1726  }
1727
1728  return B;
1729}
1730
1731CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1732  // We may see an if statement in the middle of a basic block, or it may be the
1733  // first statement we are processing.  In either case, we create a new basic
1734  // block.  First, we create the blocks for the then...else statements, and
1735  // then we create the block containing the if statement.  If we were in the
1736  // middle of a block, we stop processing that block.  That block is then the
1737  // implicit successor for the "then" and "else" clauses.
1738
1739  // Save local scope position because in case of condition variable ScopePos
1740  // won't be restored when traversing AST.
1741  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1742
1743  // Create local scope for possible condition variable.
1744  // Store scope position. Add implicit destructor.
1745  if (VarDecl *VD = I->getConditionVariable()) {
1746    LocalScope::const_iterator BeginScopePos = ScopePos;
1747    addLocalScopeForVarDecl(VD);
1748    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1749  }
1750
1751  // The block we were processing is now finished.  Make it the successor
1752  // block.
1753  if (Block) {
1754    Succ = Block;
1755    if (badCFG)
1756      return 0;
1757  }
1758
1759  // Process the false branch.
1760  CFGBlock *ElseBlock = Succ;
1761
1762  if (Stmt *Else = I->getElse()) {
1763    SaveAndRestore<CFGBlock*> sv(Succ);
1764
1765    // NULL out Block so that the recursive call to Visit will
1766    // create a new basic block.
1767    Block = NULL;
1768
1769    // If branch is not a compound statement create implicit scope
1770    // and add destructors.
1771    if (!isa<CompoundStmt>(Else))
1772      addLocalScopeAndDtors(Else);
1773
1774    ElseBlock = addStmt(Else);
1775
1776    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1777      ElseBlock = sv.get();
1778    else if (Block) {
1779      if (badCFG)
1780        return 0;
1781    }
1782  }
1783
1784  // Process the true branch.
1785  CFGBlock *ThenBlock;
1786  {
1787    Stmt *Then = I->getThen();
1788    assert(Then);
1789    SaveAndRestore<CFGBlock*> sv(Succ);
1790    Block = NULL;
1791
1792    // If branch is not a compound statement create implicit scope
1793    // and add destructors.
1794    if (!isa<CompoundStmt>(Then))
1795      addLocalScopeAndDtors(Then);
1796
1797    ThenBlock = addStmt(Then);
1798
1799    if (!ThenBlock) {
1800      // We can reach here if the "then" body has all NullStmts.
1801      // Create an empty block so we can distinguish between true and false
1802      // branches in path-sensitive analyses.
1803      ThenBlock = createBlock(false);
1804      addSuccessor(ThenBlock, sv.get());
1805    } else if (Block) {
1806      if (badCFG)
1807        return 0;
1808    }
1809  }
1810
1811  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1812  // having these handle the actual control-flow jump.  Note that
1813  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1814  // we resort to the old control-flow behavior.  This special handling
1815  // removes infeasible paths from the control-flow graph by having the
1816  // control-flow transfer of '&&' or '||' go directly into the then/else
1817  // blocks directly.
1818  if (!I->getConditionVariable())
1819    if (BinaryOperator *Cond =
1820            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1821      if (Cond->isLogicalOp())
1822        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1823
1824  // Now create a new block containing the if statement.
1825  Block = createBlock(false);
1826
1827  // Set the terminator of the new block to the If statement.
1828  Block->setTerminator(I);
1829
1830  // See if this is a known constant.
1831  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1832
1833  // Now add the successors.
1834  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1835  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1836
1837  // Add the condition as the last statement in the new block.  This may create
1838  // new blocks as the condition may contain control-flow.  Any newly created
1839  // blocks will be pointed to be "Block".
1840  CFGBlock *LastBlock = addStmt(I->getCond());
1841
1842  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1843  // and the condition variable initialization to the CFG.
1844  if (VarDecl *VD = I->getConditionVariable()) {
1845    if (Expr *Init = VD->getInit()) {
1846      autoCreateBlock();
1847      appendStmt(Block, I->getConditionVariableDeclStmt());
1848      LastBlock = addStmt(Init);
1849    }
1850  }
1851
1852  return LastBlock;
1853}
1854
1855
1856CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1857  // If we were in the middle of a block we stop processing that block.
1858  //
1859  // NOTE: If a "return" appears in the middle of a block, this means that the
1860  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1861  //       for that code; a simple "mark-and-sweep" from the entry block will be
1862  //       able to report such dead blocks.
1863
1864  // Create the new block.
1865  Block = createBlock(false);
1866
1867  // The Exit block is the only successor.
1868  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1869  addSuccessor(Block, &cfg->getExit());
1870
1871  // Add the return statement to the block.  This may create new blocks if R
1872  // contains control-flow (short-circuit operations).
1873  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1874}
1875
1876CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1877  // Get the block of the labeled statement.  Add it to our map.
1878  addStmt(L->getSubStmt());
1879  CFGBlock *LabelBlock = Block;
1880
1881  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1882    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1883
1884  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1885         "label already in map");
1886  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1887
1888  // Labels partition blocks, so this is the end of the basic block we were
1889  // processing (L is the block's label).  Because this is label (and we have
1890  // already processed the substatement) there is no extra control-flow to worry
1891  // about.
1892  LabelBlock->setLabel(L);
1893  if (badCFG)
1894    return 0;
1895
1896  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1897  Block = NULL;
1898
1899  // This block is now the implicit successor of other blocks.
1900  Succ = LabelBlock;
1901
1902  return LabelBlock;
1903}
1904
1905CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1906  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1907  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1908       et = E->capture_init_end(); it != et; ++it) {
1909    if (Expr *Init = *it) {
1910      CFGBlock *Tmp = Visit(Init);
1911      if (Tmp != 0)
1912        LastBlock = Tmp;
1913    }
1914  }
1915  return LastBlock;
1916}
1917
1918CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1919  // Goto is a control-flow statement.  Thus we stop processing the current
1920  // block and create a new one.
1921
1922  Block = createBlock(false);
1923  Block->setTerminator(G);
1924
1925  // If we already know the mapping to the label block add the successor now.
1926  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1927
1928  if (I == LabelMap.end())
1929    // We will need to backpatch this block later.
1930    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1931  else {
1932    JumpTarget JT = I->second;
1933    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1934    addSuccessor(Block, JT.block);
1935  }
1936
1937  return Block;
1938}
1939
1940CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1941  CFGBlock *LoopSuccessor = NULL;
1942
1943  // Save local scope position because in case of condition variable ScopePos
1944  // won't be restored when traversing AST.
1945  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1946
1947  // Create local scope for init statement and possible condition variable.
1948  // Add destructor for init statement and condition variable.
1949  // Store scope position for continue statement.
1950  if (Stmt *Init = F->getInit())
1951    addLocalScopeForStmt(Init);
1952  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1953
1954  if (VarDecl *VD = F->getConditionVariable())
1955    addLocalScopeForVarDecl(VD);
1956  LocalScope::const_iterator ContinueScopePos = ScopePos;
1957
1958  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1959
1960  // "for" is a control-flow statement.  Thus we stop processing the current
1961  // block.
1962  if (Block) {
1963    if (badCFG)
1964      return 0;
1965    LoopSuccessor = Block;
1966  } else
1967    LoopSuccessor = Succ;
1968
1969  // Save the current value for the break targets.
1970  // All breaks should go to the code following the loop.
1971  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1972  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1973
1974  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1975
1976  // Now create the loop body.
1977  {
1978    assert(F->getBody());
1979
1980    // Save the current values for Block, Succ, continue and break targets.
1981    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1982    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1983
1984    // Create an empty block to represent the transition block for looping back
1985    // to the head of the loop.  If we have increment code, it will
1986    // go in this block as well.
1987    Block = Succ = TransitionBlock = createBlock(false);
1988    TransitionBlock->setLoopTarget(F);
1989
1990    if (Stmt *I = F->getInc()) {
1991      // Generate increment code in its own basic block.  This is the target of
1992      // continue statements.
1993      Succ = addStmt(I);
1994    }
1995
1996    // Finish up the increment (or empty) block if it hasn't been already.
1997    if (Block) {
1998      assert(Block == Succ);
1999      if (badCFG)
2000        return 0;
2001      Block = 0;
2002    }
2003
2004   // The starting block for the loop increment is the block that should
2005   // represent the 'loop target' for looping back to the start of the loop.
2006   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2007   ContinueJumpTarget.block->setLoopTarget(F);
2008
2009    // Loop body should end with destructor of Condition variable (if any).
2010    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2011
2012    // If body is not a compound statement create implicit scope
2013    // and add destructors.
2014    if (!isa<CompoundStmt>(F->getBody()))
2015      addLocalScopeAndDtors(F->getBody());
2016
2017    // Now populate the body block, and in the process create new blocks as we
2018    // walk the body of the loop.
2019    BodyBlock = addStmt(F->getBody());
2020
2021    if (!BodyBlock) {
2022      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2023      // Use the continue jump target as the proxy for the body.
2024      BodyBlock = ContinueJumpTarget.block;
2025    }
2026    else if (badCFG)
2027      return 0;
2028  }
2029
2030  // Because of short-circuit evaluation, the condition of the loop can span
2031  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2032  // evaluate the condition.
2033  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2034
2035  do {
2036    Expr *C = F->getCond();
2037
2038    // Specially handle logical operators, which have a slightly
2039    // more optimal CFG representation.
2040    if (BinaryOperator *Cond =
2041            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2042      if (Cond->isLogicalOp()) {
2043        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2044          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2045        break;
2046      }
2047
2048    // The default case when not handling logical operators.
2049    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2050    ExitConditionBlock->setTerminator(F);
2051
2052    // See if this is a known constant.
2053    TryResult KnownVal(true);
2054
2055    if (C) {
2056      // Now add the actual condition to the condition block.
2057      // Because the condition itself may contain control-flow, new blocks may
2058      // be created.  Thus we update "Succ" after adding the condition.
2059      Block = ExitConditionBlock;
2060      EntryConditionBlock = addStmt(C);
2061
2062      // If this block contains a condition variable, add both the condition
2063      // variable and initializer to the CFG.
2064      if (VarDecl *VD = F->getConditionVariable()) {
2065        if (Expr *Init = VD->getInit()) {
2066          autoCreateBlock();
2067          appendStmt(Block, F->getConditionVariableDeclStmt());
2068          EntryConditionBlock = addStmt(Init);
2069          assert(Block == EntryConditionBlock);
2070        }
2071      }
2072
2073      if (Block && badCFG)
2074        return 0;
2075
2076      KnownVal = tryEvaluateBool(C);
2077    }
2078
2079    // Add the loop body entry as a successor to the condition.
2080    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2081    // Link up the condition block with the code that follows the loop.  (the
2082    // false branch).
2083    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2084
2085  } while (false);
2086
2087  // Link up the loop-back block to the entry condition block.
2088  addSuccessor(TransitionBlock, EntryConditionBlock);
2089
2090  // The condition block is the implicit successor for any code above the loop.
2091  Succ = EntryConditionBlock;
2092
2093  // If the loop contains initialization, create a new block for those
2094  // statements.  This block can also contain statements that precede the loop.
2095  if (Stmt *I = F->getInit()) {
2096    Block = createBlock();
2097    return addStmt(I);
2098  }
2099
2100  // There is no loop initialization.  We are thus basically a while loop.
2101  // NULL out Block to force lazy block construction.
2102  Block = NULL;
2103  Succ = EntryConditionBlock;
2104  return EntryConditionBlock;
2105}
2106
2107CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2108  if (asc.alwaysAdd(*this, M)) {
2109    autoCreateBlock();
2110    appendStmt(Block, M);
2111  }
2112  return Visit(M->getBase());
2113}
2114
2115CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2116  // Objective-C fast enumeration 'for' statements:
2117  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2118  //
2119  //  for ( Type newVariable in collection_expression ) { statements }
2120  //
2121  //  becomes:
2122  //
2123  //   prologue:
2124  //     1. collection_expression
2125  //     T. jump to loop_entry
2126  //   loop_entry:
2127  //     1. side-effects of element expression
2128  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2129  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2130  //   TB:
2131  //     statements
2132  //     T. jump to loop_entry
2133  //   FB:
2134  //     what comes after
2135  //
2136  //  and
2137  //
2138  //  Type existingItem;
2139  //  for ( existingItem in expression ) { statements }
2140  //
2141  //  becomes:
2142  //
2143  //   the same with newVariable replaced with existingItem; the binding works
2144  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2145  //   a DeclStmt and the other returns a DeclRefExpr.
2146  //
2147
2148  CFGBlock *LoopSuccessor = 0;
2149
2150  if (Block) {
2151    if (badCFG)
2152      return 0;
2153    LoopSuccessor = Block;
2154    Block = 0;
2155  } else
2156    LoopSuccessor = Succ;
2157
2158  // Build the condition blocks.
2159  CFGBlock *ExitConditionBlock = createBlock(false);
2160
2161  // Set the terminator for the "exit" condition block.
2162  ExitConditionBlock->setTerminator(S);
2163
2164  // The last statement in the block should be the ObjCForCollectionStmt, which
2165  // performs the actual binding to 'element' and determines if there are any
2166  // more items in the collection.
2167  appendStmt(ExitConditionBlock, S);
2168  Block = ExitConditionBlock;
2169
2170  // Walk the 'element' expression to see if there are any side-effects.  We
2171  // generate new blocks as necessary.  We DON'T add the statement by default to
2172  // the CFG unless it contains control-flow.
2173  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2174                                        AddStmtChoice::NotAlwaysAdd);
2175  if (Block) {
2176    if (badCFG)
2177      return 0;
2178    Block = 0;
2179  }
2180
2181  // The condition block is the implicit successor for the loop body as well as
2182  // any code above the loop.
2183  Succ = EntryConditionBlock;
2184
2185  // Now create the true branch.
2186  {
2187    // Save the current values for Succ, continue and break targets.
2188    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2189    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2190        save_break(BreakJumpTarget);
2191
2192    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2193    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2194
2195    CFGBlock *BodyBlock = addStmt(S->getBody());
2196
2197    if (!BodyBlock)
2198      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2199    else if (Block) {
2200      if (badCFG)
2201        return 0;
2202    }
2203
2204    // This new body block is a successor to our "exit" condition block.
2205    addSuccessor(ExitConditionBlock, BodyBlock);
2206  }
2207
2208  // Link up the condition block with the code that follows the loop.
2209  // (the false branch).
2210  addSuccessor(ExitConditionBlock, LoopSuccessor);
2211
2212  // Now create a prologue block to contain the collection expression.
2213  Block = createBlock();
2214  return addStmt(S->getCollection());
2215}
2216
2217CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2218  // Inline the body.
2219  return addStmt(S->getSubStmt());
2220  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2221}
2222
2223CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2224  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2225
2226  // Inline the body.
2227  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2228
2229  // The sync body starts its own basic block.  This makes it a little easier
2230  // for diagnostic clients.
2231  if (SyncBlock) {
2232    if (badCFG)
2233      return 0;
2234
2235    Block = 0;
2236    Succ = SyncBlock;
2237  }
2238
2239  // Add the @synchronized to the CFG.
2240  autoCreateBlock();
2241  appendStmt(Block, S);
2242
2243  // Inline the sync expression.
2244  return addStmt(S->getSynchExpr());
2245}
2246
2247CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2248  // FIXME
2249  return NYS();
2250}
2251
2252CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2253  autoCreateBlock();
2254
2255  // Add the PseudoObject as the last thing.
2256  appendStmt(Block, E);
2257
2258  CFGBlock *lastBlock = Block;
2259
2260  // Before that, evaluate all of the semantics in order.  In
2261  // CFG-land, that means appending them in reverse order.
2262  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2263    Expr *Semantic = E->getSemanticExpr(--i);
2264
2265    // If the semantic is an opaque value, we're being asked to bind
2266    // it to its source expression.
2267    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2268      Semantic = OVE->getSourceExpr();
2269
2270    if (CFGBlock *B = Visit(Semantic))
2271      lastBlock = B;
2272  }
2273
2274  return lastBlock;
2275}
2276
2277CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2278  CFGBlock *LoopSuccessor = NULL;
2279
2280  // Save local scope position because in case of condition variable ScopePos
2281  // won't be restored when traversing AST.
2282  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2283
2284  // Create local scope for possible condition variable.
2285  // Store scope position for continue statement.
2286  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2287  if (VarDecl *VD = W->getConditionVariable()) {
2288    addLocalScopeForVarDecl(VD);
2289    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2290  }
2291
2292  // "while" is a control-flow statement.  Thus we stop processing the current
2293  // block.
2294  if (Block) {
2295    if (badCFG)
2296      return 0;
2297    LoopSuccessor = Block;
2298    Block = 0;
2299  } else {
2300    LoopSuccessor = Succ;
2301  }
2302
2303  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2304
2305  // Process the loop body.
2306  {
2307    assert(W->getBody());
2308
2309    // Save the current values for Block, Succ, continue and break targets.
2310    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2311    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2312                               save_break(BreakJumpTarget);
2313
2314    // Create an empty block to represent the transition block for looping back
2315    // to the head of the loop.
2316    Succ = TransitionBlock = createBlock(false);
2317    TransitionBlock->setLoopTarget(W);
2318    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2319
2320    // All breaks should go to the code following the loop.
2321    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2322
2323    // Loop body should end with destructor of Condition variable (if any).
2324    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2325
2326    // If body is not a compound statement create implicit scope
2327    // and add destructors.
2328    if (!isa<CompoundStmt>(W->getBody()))
2329      addLocalScopeAndDtors(W->getBody());
2330
2331    // Create the body.  The returned block is the entry to the loop body.
2332    BodyBlock = addStmt(W->getBody());
2333
2334    if (!BodyBlock)
2335      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2336    else if (Block && badCFG)
2337      return 0;
2338  }
2339
2340  // Because of short-circuit evaluation, the condition of the loop can span
2341  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2342  // evaluate the condition.
2343  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2344
2345  do {
2346    Expr *C = W->getCond();
2347
2348    // Specially handle logical operators, which have a slightly
2349    // more optimal CFG representation.
2350    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2351      if (Cond->isLogicalOp()) {
2352        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2353          VisitLogicalOperator(Cond, W, BodyBlock,
2354                               LoopSuccessor);
2355        break;
2356      }
2357
2358    // The default case when not handling logical operators.
2359    ExitConditionBlock = createBlock(false);
2360    ExitConditionBlock->setTerminator(W);
2361
2362    // Now add the actual condition to the condition block.
2363    // Because the condition itself may contain control-flow, new blocks may
2364    // be created.  Thus we update "Succ" after adding the condition.
2365    Block = ExitConditionBlock;
2366    Block = EntryConditionBlock = addStmt(C);
2367
2368    // If this block contains a condition variable, add both the condition
2369    // variable and initializer to the CFG.
2370    if (VarDecl *VD = W->getConditionVariable()) {
2371      if (Expr *Init = VD->getInit()) {
2372        autoCreateBlock();
2373        appendStmt(Block, W->getConditionVariableDeclStmt());
2374        EntryConditionBlock = addStmt(Init);
2375        assert(Block == EntryConditionBlock);
2376      }
2377    }
2378
2379    if (Block && badCFG)
2380      return 0;
2381
2382    // See if this is a known constant.
2383    const TryResult& KnownVal = tryEvaluateBool(C);
2384
2385    // Add the loop body entry as a successor to the condition.
2386    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2387    // Link up the condition block with the code that follows the loop.  (the
2388    // false branch).
2389    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2390
2391  } while(false);
2392
2393  // Link up the loop-back block to the entry condition block.
2394  addSuccessor(TransitionBlock, EntryConditionBlock);
2395
2396  // There can be no more statements in the condition block since we loop back
2397  // to this block.  NULL out Block to force lazy creation of another block.
2398  Block = NULL;
2399
2400  // Return the condition block, which is the dominating block for the loop.
2401  Succ = EntryConditionBlock;
2402  return EntryConditionBlock;
2403}
2404
2405
2406CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2407  // FIXME: For now we pretend that @catch and the code it contains does not
2408  //  exit.
2409  return Block;
2410}
2411
2412CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2413  // FIXME: This isn't complete.  We basically treat @throw like a return
2414  //  statement.
2415
2416  // If we were in the middle of a block we stop processing that block.
2417  if (badCFG)
2418    return 0;
2419
2420  // Create the new block.
2421  Block = createBlock(false);
2422
2423  // The Exit block is the only successor.
2424  addSuccessor(Block, &cfg->getExit());
2425
2426  // Add the statement to the block.  This may create new blocks if S contains
2427  // control-flow (short-circuit operations).
2428  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2429}
2430
2431CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2432  // If we were in the middle of a block we stop processing that block.
2433  if (badCFG)
2434    return 0;
2435
2436  // Create the new block.
2437  Block = createBlock(false);
2438
2439  if (TryTerminatedBlock)
2440    // The current try statement is the only successor.
2441    addSuccessor(Block, TryTerminatedBlock);
2442  else
2443    // otherwise the Exit block is the only successor.
2444    addSuccessor(Block, &cfg->getExit());
2445
2446  // Add the statement to the block.  This may create new blocks if S contains
2447  // control-flow (short-circuit operations).
2448  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2449}
2450
2451CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2452  CFGBlock *LoopSuccessor = NULL;
2453
2454  // "do...while" is a control-flow statement.  Thus we stop processing the
2455  // current block.
2456  if (Block) {
2457    if (badCFG)
2458      return 0;
2459    LoopSuccessor = Block;
2460  } else
2461    LoopSuccessor = Succ;
2462
2463  // Because of short-circuit evaluation, the condition of the loop can span
2464  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2465  // evaluate the condition.
2466  CFGBlock *ExitConditionBlock = createBlock(false);
2467  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2468
2469  // Set the terminator for the "exit" condition block.
2470  ExitConditionBlock->setTerminator(D);
2471
2472  // Now add the actual condition to the condition block.  Because the condition
2473  // itself may contain control-flow, new blocks may be created.
2474  if (Stmt *C = D->getCond()) {
2475    Block = ExitConditionBlock;
2476    EntryConditionBlock = addStmt(C);
2477    if (Block) {
2478      if (badCFG)
2479        return 0;
2480    }
2481  }
2482
2483  // The condition block is the implicit successor for the loop body.
2484  Succ = EntryConditionBlock;
2485
2486  // See if this is a known constant.
2487  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2488
2489  // Process the loop body.
2490  CFGBlock *BodyBlock = NULL;
2491  {
2492    assert(D->getBody());
2493
2494    // Save the current values for Block, Succ, and continue and break targets
2495    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2496    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2497        save_break(BreakJumpTarget);
2498
2499    // All continues within this loop should go to the condition block
2500    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2501
2502    // All breaks should go to the code following the loop.
2503    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2504
2505    // NULL out Block to force lazy instantiation of blocks for the body.
2506    Block = NULL;
2507
2508    // If body is not a compound statement create implicit scope
2509    // and add destructors.
2510    if (!isa<CompoundStmt>(D->getBody()))
2511      addLocalScopeAndDtors(D->getBody());
2512
2513    // Create the body.  The returned block is the entry to the loop body.
2514    BodyBlock = addStmt(D->getBody());
2515
2516    if (!BodyBlock)
2517      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2518    else if (Block) {
2519      if (badCFG)
2520        return 0;
2521    }
2522
2523    if (!KnownVal.isFalse()) {
2524      // Add an intermediate block between the BodyBlock and the
2525      // ExitConditionBlock to represent the "loop back" transition.  Create an
2526      // empty block to represent the transition block for looping back to the
2527      // head of the loop.
2528      // FIXME: Can we do this more efficiently without adding another block?
2529      Block = NULL;
2530      Succ = BodyBlock;
2531      CFGBlock *LoopBackBlock = createBlock();
2532      LoopBackBlock->setLoopTarget(D);
2533
2534      // Add the loop body entry as a successor to the condition.
2535      addSuccessor(ExitConditionBlock, LoopBackBlock);
2536    }
2537    else
2538      addSuccessor(ExitConditionBlock, NULL);
2539  }
2540
2541  // Link up the condition block with the code that follows the loop.
2542  // (the false branch).
2543  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2544
2545  // There can be no more statements in the body block(s) since we loop back to
2546  // the body.  NULL out Block to force lazy creation of another block.
2547  Block = NULL;
2548
2549  // Return the loop body, which is the dominating block for the loop.
2550  Succ = BodyBlock;
2551  return BodyBlock;
2552}
2553
2554CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2555  // "continue" is a control-flow statement.  Thus we stop processing the
2556  // current block.
2557  if (badCFG)
2558    return 0;
2559
2560  // Now create a new block that ends with the continue statement.
2561  Block = createBlock(false);
2562  Block->setTerminator(C);
2563
2564  // If there is no target for the continue, then we are looking at an
2565  // incomplete AST.  This means the CFG cannot be constructed.
2566  if (ContinueJumpTarget.block) {
2567    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2568    addSuccessor(Block, ContinueJumpTarget.block);
2569  } else
2570    badCFG = true;
2571
2572  return Block;
2573}
2574
2575CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2576                                                    AddStmtChoice asc) {
2577
2578  if (asc.alwaysAdd(*this, E)) {
2579    autoCreateBlock();
2580    appendStmt(Block, E);
2581  }
2582
2583  // VLA types have expressions that must be evaluated.
2584  CFGBlock *lastBlock = Block;
2585
2586  if (E->isArgumentType()) {
2587    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2588         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2589      lastBlock = addStmt(VA->getSizeExpr());
2590  }
2591  return lastBlock;
2592}
2593
2594/// VisitStmtExpr - Utility method to handle (nested) statement
2595///  expressions (a GCC extension).
2596CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2597  if (asc.alwaysAdd(*this, SE)) {
2598    autoCreateBlock();
2599    appendStmt(Block, SE);
2600  }
2601  return VisitCompoundStmt(SE->getSubStmt());
2602}
2603
2604CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2605  // "switch" is a control-flow statement.  Thus we stop processing the current
2606  // block.
2607  CFGBlock *SwitchSuccessor = NULL;
2608
2609  // Save local scope position because in case of condition variable ScopePos
2610  // won't be restored when traversing AST.
2611  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2612
2613  // Create local scope for possible condition variable.
2614  // Store scope position. Add implicit destructor.
2615  if (VarDecl *VD = Terminator->getConditionVariable()) {
2616    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2617    addLocalScopeForVarDecl(VD);
2618    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2619  }
2620
2621  if (Block) {
2622    if (badCFG)
2623      return 0;
2624    SwitchSuccessor = Block;
2625  } else SwitchSuccessor = Succ;
2626
2627  // Save the current "switch" context.
2628  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2629                            save_default(DefaultCaseBlock);
2630  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2631
2632  // Set the "default" case to be the block after the switch statement.  If the
2633  // switch statement contains a "default:", this value will be overwritten with
2634  // the block for that code.
2635  DefaultCaseBlock = SwitchSuccessor;
2636
2637  // Create a new block that will contain the switch statement.
2638  SwitchTerminatedBlock = createBlock(false);
2639
2640  // Now process the switch body.  The code after the switch is the implicit
2641  // successor.
2642  Succ = SwitchSuccessor;
2643  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2644
2645  // When visiting the body, the case statements should automatically get linked
2646  // up to the switch.  We also don't keep a pointer to the body, since all
2647  // control-flow from the switch goes to case/default statements.
2648  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2649  Block = NULL;
2650
2651  // For pruning unreachable case statements, save the current state
2652  // for tracking the condition value.
2653  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2654                                                     false);
2655
2656  // Determine if the switch condition can be explicitly evaluated.
2657  assert(Terminator->getCond() && "switch condition must be non-NULL");
2658  Expr::EvalResult result;
2659  bool b = tryEvaluate(Terminator->getCond(), result);
2660  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2661                                                    b ? &result : 0);
2662
2663  // If body is not a compound statement create implicit scope
2664  // and add destructors.
2665  if (!isa<CompoundStmt>(Terminator->getBody()))
2666    addLocalScopeAndDtors(Terminator->getBody());
2667
2668  addStmt(Terminator->getBody());
2669  if (Block) {
2670    if (badCFG)
2671      return 0;
2672  }
2673
2674  // If we have no "default:" case, the default transition is to the code
2675  // following the switch body.  Moreover, take into account if all the
2676  // cases of a switch are covered (e.g., switching on an enum value).
2677  addSuccessor(SwitchTerminatedBlock,
2678               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2679               ? 0 : DefaultCaseBlock);
2680
2681  // Add the terminator and condition in the switch block.
2682  SwitchTerminatedBlock->setTerminator(Terminator);
2683  Block = SwitchTerminatedBlock;
2684  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2685
2686  // Finally, if the SwitchStmt contains a condition variable, add both the
2687  // SwitchStmt and the condition variable initialization to the CFG.
2688  if (VarDecl *VD = Terminator->getConditionVariable()) {
2689    if (Expr *Init = VD->getInit()) {
2690      autoCreateBlock();
2691      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2692      LastBlock = addStmt(Init);
2693    }
2694  }
2695
2696  return LastBlock;
2697}
2698
2699static bool shouldAddCase(bool &switchExclusivelyCovered,
2700                          const Expr::EvalResult *switchCond,
2701                          const CaseStmt *CS,
2702                          ASTContext &Ctx) {
2703  if (!switchCond)
2704    return true;
2705
2706  bool addCase = false;
2707
2708  if (!switchExclusivelyCovered) {
2709    if (switchCond->Val.isInt()) {
2710      // Evaluate the LHS of the case value.
2711      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2712      const llvm::APSInt &condInt = switchCond->Val.getInt();
2713
2714      if (condInt == lhsInt) {
2715        addCase = true;
2716        switchExclusivelyCovered = true;
2717      }
2718      else if (condInt < lhsInt) {
2719        if (const Expr *RHS = CS->getRHS()) {
2720          // Evaluate the RHS of the case value.
2721          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2722          if (V2 <= condInt) {
2723            addCase = true;
2724            switchExclusivelyCovered = true;
2725          }
2726        }
2727      }
2728    }
2729    else
2730      addCase = true;
2731  }
2732  return addCase;
2733}
2734
2735CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2736  // CaseStmts are essentially labels, so they are the first statement in a
2737  // block.
2738  CFGBlock *TopBlock = 0, *LastBlock = 0;
2739
2740  if (Stmt *Sub = CS->getSubStmt()) {
2741    // For deeply nested chains of CaseStmts, instead of doing a recursion
2742    // (which can blow out the stack), manually unroll and create blocks
2743    // along the way.
2744    while (isa<CaseStmt>(Sub)) {
2745      CFGBlock *currentBlock = createBlock(false);
2746      currentBlock->setLabel(CS);
2747
2748      if (TopBlock)
2749        addSuccessor(LastBlock, currentBlock);
2750      else
2751        TopBlock = currentBlock;
2752
2753      addSuccessor(SwitchTerminatedBlock,
2754                   shouldAddCase(switchExclusivelyCovered, switchCond,
2755                                 CS, *Context)
2756                   ? currentBlock : 0);
2757
2758      LastBlock = currentBlock;
2759      CS = cast<CaseStmt>(Sub);
2760      Sub = CS->getSubStmt();
2761    }
2762
2763    addStmt(Sub);
2764  }
2765
2766  CFGBlock *CaseBlock = Block;
2767  if (!CaseBlock)
2768    CaseBlock = createBlock();
2769
2770  // Cases statements partition blocks, so this is the top of the basic block we
2771  // were processing (the "case XXX:" is the label).
2772  CaseBlock->setLabel(CS);
2773
2774  if (badCFG)
2775    return 0;
2776
2777  // Add this block to the list of successors for the block with the switch
2778  // statement.
2779  assert(SwitchTerminatedBlock);
2780  addSuccessor(SwitchTerminatedBlock,
2781               shouldAddCase(switchExclusivelyCovered, switchCond,
2782                             CS, *Context)
2783               ? CaseBlock : 0);
2784
2785  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2786  Block = NULL;
2787
2788  if (TopBlock) {
2789    addSuccessor(LastBlock, CaseBlock);
2790    Succ = TopBlock;
2791  } else {
2792    // This block is now the implicit successor of other blocks.
2793    Succ = CaseBlock;
2794  }
2795
2796  return Succ;
2797}
2798
2799CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2800  if (Terminator->getSubStmt())
2801    addStmt(Terminator->getSubStmt());
2802
2803  DefaultCaseBlock = Block;
2804
2805  if (!DefaultCaseBlock)
2806    DefaultCaseBlock = createBlock();
2807
2808  // Default statements partition blocks, so this is the top of the basic block
2809  // we were processing (the "default:" is the label).
2810  DefaultCaseBlock->setLabel(Terminator);
2811
2812  if (badCFG)
2813    return 0;
2814
2815  // Unlike case statements, we don't add the default block to the successors
2816  // for the switch statement immediately.  This is done when we finish
2817  // processing the switch statement.  This allows for the default case
2818  // (including a fall-through to the code after the switch statement) to always
2819  // be the last successor of a switch-terminated block.
2820
2821  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2822  Block = NULL;
2823
2824  // This block is now the implicit successor of other blocks.
2825  Succ = DefaultCaseBlock;
2826
2827  return DefaultCaseBlock;
2828}
2829
2830CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2831  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2832  // current block.
2833  CFGBlock *TrySuccessor = NULL;
2834
2835  if (Block) {
2836    if (badCFG)
2837      return 0;
2838    TrySuccessor = Block;
2839  } else TrySuccessor = Succ;
2840
2841  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2842
2843  // Create a new block that will contain the try statement.
2844  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2845  // Add the terminator in the try block.
2846  NewTryTerminatedBlock->setTerminator(Terminator);
2847
2848  bool HasCatchAll = false;
2849  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2850    // The code after the try is the implicit successor.
2851    Succ = TrySuccessor;
2852    CXXCatchStmt *CS = Terminator->getHandler(h);
2853    if (CS->getExceptionDecl() == 0) {
2854      HasCatchAll = true;
2855    }
2856    Block = NULL;
2857    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2858    if (CatchBlock == 0)
2859      return 0;
2860    // Add this block to the list of successors for the block with the try
2861    // statement.
2862    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2863  }
2864  if (!HasCatchAll) {
2865    if (PrevTryTerminatedBlock)
2866      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2867    else
2868      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2869  }
2870
2871  // The code after the try is the implicit successor.
2872  Succ = TrySuccessor;
2873
2874  // Save the current "try" context.
2875  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2876  cfg->addTryDispatchBlock(TryTerminatedBlock);
2877
2878  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2879  Block = NULL;
2880  return addStmt(Terminator->getTryBlock());
2881}
2882
2883CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2884  // CXXCatchStmt are treated like labels, so they are the first statement in a
2885  // block.
2886
2887  // Save local scope position because in case of exception variable ScopePos
2888  // won't be restored when traversing AST.
2889  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2890
2891  // Create local scope for possible exception variable.
2892  // Store scope position. Add implicit destructor.
2893  if (VarDecl *VD = CS->getExceptionDecl()) {
2894    LocalScope::const_iterator BeginScopePos = ScopePos;
2895    addLocalScopeForVarDecl(VD);
2896    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2897  }
2898
2899  if (CS->getHandlerBlock())
2900    addStmt(CS->getHandlerBlock());
2901
2902  CFGBlock *CatchBlock = Block;
2903  if (!CatchBlock)
2904    CatchBlock = createBlock();
2905
2906  // CXXCatchStmt is more than just a label.  They have semantic meaning
2907  // as well, as they implicitly "initialize" the catch variable.  Add
2908  // it to the CFG as a CFGElement so that the control-flow of these
2909  // semantics gets captured.
2910  appendStmt(CatchBlock, CS);
2911
2912  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2913  // labels.
2914  CatchBlock->setLabel(CS);
2915
2916  // Bail out if the CFG is bad.
2917  if (badCFG)
2918    return 0;
2919
2920  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2921  Block = NULL;
2922
2923  return CatchBlock;
2924}
2925
2926CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2927  // C++0x for-range statements are specified as [stmt.ranged]:
2928  //
2929  // {
2930  //   auto && __range = range-init;
2931  //   for ( auto __begin = begin-expr,
2932  //         __end = end-expr;
2933  //         __begin != __end;
2934  //         ++__begin ) {
2935  //     for-range-declaration = *__begin;
2936  //     statement
2937  //   }
2938  // }
2939
2940  // Save local scope position before the addition of the implicit variables.
2941  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2942
2943  // Create local scopes and destructors for range, begin and end variables.
2944  if (Stmt *Range = S->getRangeStmt())
2945    addLocalScopeForStmt(Range);
2946  if (Stmt *BeginEnd = S->getBeginEndStmt())
2947    addLocalScopeForStmt(BeginEnd);
2948  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2949
2950  LocalScope::const_iterator ContinueScopePos = ScopePos;
2951
2952  // "for" is a control-flow statement.  Thus we stop processing the current
2953  // block.
2954  CFGBlock *LoopSuccessor = NULL;
2955  if (Block) {
2956    if (badCFG)
2957      return 0;
2958    LoopSuccessor = Block;
2959  } else
2960    LoopSuccessor = Succ;
2961
2962  // Save the current value for the break targets.
2963  // All breaks should go to the code following the loop.
2964  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2965  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2966
2967  // The block for the __begin != __end expression.
2968  CFGBlock *ConditionBlock = createBlock(false);
2969  ConditionBlock->setTerminator(S);
2970
2971  // Now add the actual condition to the condition block.
2972  if (Expr *C = S->getCond()) {
2973    Block = ConditionBlock;
2974    CFGBlock *BeginConditionBlock = addStmt(C);
2975    if (badCFG)
2976      return 0;
2977    assert(BeginConditionBlock == ConditionBlock &&
2978           "condition block in for-range was unexpectedly complex");
2979    (void)BeginConditionBlock;
2980  }
2981
2982  // The condition block is the implicit successor for the loop body as well as
2983  // any code above the loop.
2984  Succ = ConditionBlock;
2985
2986  // See if this is a known constant.
2987  TryResult KnownVal(true);
2988
2989  if (S->getCond())
2990    KnownVal = tryEvaluateBool(S->getCond());
2991
2992  // Now create the loop body.
2993  {
2994    assert(S->getBody());
2995
2996    // Save the current values for Block, Succ, and continue targets.
2997    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2998    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2999
3000    // Generate increment code in its own basic block.  This is the target of
3001    // continue statements.
3002    Block = 0;
3003    Succ = addStmt(S->getInc());
3004    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3005
3006    // The starting block for the loop increment is the block that should
3007    // represent the 'loop target' for looping back to the start of the loop.
3008    ContinueJumpTarget.block->setLoopTarget(S);
3009
3010    // Finish up the increment block and prepare to start the loop body.
3011    assert(Block);
3012    if (badCFG)
3013      return 0;
3014    Block = 0;
3015
3016
3017    // Add implicit scope and dtors for loop variable.
3018    addLocalScopeAndDtors(S->getLoopVarStmt());
3019
3020    // Populate a new block to contain the loop body and loop variable.
3021    addStmt(S->getBody());
3022    if (badCFG)
3023      return 0;
3024    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3025    if (badCFG)
3026      return 0;
3027
3028    // This new body block is a successor to our condition block.
3029    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3030  }
3031
3032  // Link up the condition block with the code that follows the loop (the
3033  // false branch).
3034  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3035
3036  // Add the initialization statements.
3037  Block = createBlock();
3038  addStmt(S->getBeginEndStmt());
3039  return addStmt(S->getRangeStmt());
3040}
3041
3042CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3043    AddStmtChoice asc) {
3044  if (BuildOpts.AddTemporaryDtors) {
3045    // If adding implicit destructors visit the full expression for adding
3046    // destructors of temporaries.
3047    VisitForTemporaryDtors(E->getSubExpr());
3048
3049    // Full expression has to be added as CFGStmt so it will be sequenced
3050    // before destructors of it's temporaries.
3051    asc = asc.withAlwaysAdd(true);
3052  }
3053  return Visit(E->getSubExpr(), asc);
3054}
3055
3056CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3057                                                AddStmtChoice asc) {
3058  if (asc.alwaysAdd(*this, E)) {
3059    autoCreateBlock();
3060    appendStmt(Block, E);
3061
3062    // We do not want to propagate the AlwaysAdd property.
3063    asc = asc.withAlwaysAdd(false);
3064  }
3065  return Visit(E->getSubExpr(), asc);
3066}
3067
3068CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3069                                            AddStmtChoice asc) {
3070  autoCreateBlock();
3071  appendStmt(Block, C);
3072
3073  return VisitChildren(C);
3074}
3075
3076CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3077                                                 AddStmtChoice asc) {
3078  if (asc.alwaysAdd(*this, E)) {
3079    autoCreateBlock();
3080    appendStmt(Block, E);
3081    // We do not want to propagate the AlwaysAdd property.
3082    asc = asc.withAlwaysAdd(false);
3083  }
3084  return Visit(E->getSubExpr(), asc);
3085}
3086
3087CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3088                                                  AddStmtChoice asc) {
3089  autoCreateBlock();
3090  appendStmt(Block, C);
3091  return VisitChildren(C);
3092}
3093
3094CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3095                                            AddStmtChoice asc) {
3096  if (asc.alwaysAdd(*this, E)) {
3097    autoCreateBlock();
3098    appendStmt(Block, E);
3099  }
3100  return Visit(E->getSubExpr(), AddStmtChoice());
3101}
3102
3103CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3104  // Lazily create the indirect-goto dispatch block if there isn't one already.
3105  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3106
3107  if (!IBlock) {
3108    IBlock = createBlock(false);
3109    cfg->setIndirectGotoBlock(IBlock);
3110  }
3111
3112  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3113  // current block and create a new one.
3114  if (badCFG)
3115    return 0;
3116
3117  Block = createBlock(false);
3118  Block->setTerminator(I);
3119  addSuccessor(Block, IBlock);
3120  return addStmt(I->getTarget());
3121}
3122
3123CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3124  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3125
3126tryAgain:
3127  if (!E) {
3128    badCFG = true;
3129    return NULL;
3130  }
3131  switch (E->getStmtClass()) {
3132    default:
3133      return VisitChildrenForTemporaryDtors(E);
3134
3135    case Stmt::BinaryOperatorClass:
3136      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3137
3138    case Stmt::CXXBindTemporaryExprClass:
3139      return VisitCXXBindTemporaryExprForTemporaryDtors(
3140          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3141
3142    case Stmt::BinaryConditionalOperatorClass:
3143    case Stmt::ConditionalOperatorClass:
3144      return VisitConditionalOperatorForTemporaryDtors(
3145          cast<AbstractConditionalOperator>(E), BindToTemporary);
3146
3147    case Stmt::ImplicitCastExprClass:
3148      // For implicit cast we want BindToTemporary to be passed further.
3149      E = cast<CastExpr>(E)->getSubExpr();
3150      goto tryAgain;
3151
3152    case Stmt::ParenExprClass:
3153      E = cast<ParenExpr>(E)->getSubExpr();
3154      goto tryAgain;
3155
3156    case Stmt::MaterializeTemporaryExprClass:
3157      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3158      goto tryAgain;
3159  }
3160}
3161
3162CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3163  // When visiting children for destructors we want to visit them in reverse
3164  // order that they will appear in the CFG.  Because the CFG is built
3165  // bottom-up, this means we visit them in their natural order, which
3166  // reverses them in the CFG.
3167  CFGBlock *B = Block;
3168  for (Stmt::child_range I = E->children(); I; ++I) {
3169    if (Stmt *Child = *I)
3170      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3171        B = R;
3172  }
3173  return B;
3174}
3175
3176CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3177  if (E->isLogicalOp()) {
3178    // Destructors for temporaries in LHS expression should be called after
3179    // those for RHS expression. Even if this will unnecessarily create a block,
3180    // this block will be used at least by the full expression.
3181    autoCreateBlock();
3182    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3183    if (badCFG)
3184      return NULL;
3185
3186    Succ = ConfluenceBlock;
3187    Block = NULL;
3188    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3189
3190    if (RHSBlock) {
3191      if (badCFG)
3192        return NULL;
3193
3194      // If RHS expression did produce destructors we need to connect created
3195      // blocks to CFG in same manner as for binary operator itself.
3196      CFGBlock *LHSBlock = createBlock(false);
3197      LHSBlock->setTerminator(CFGTerminator(E, true));
3198
3199      // For binary operator LHS block is before RHS in list of predecessors
3200      // of ConfluenceBlock.
3201      std::reverse(ConfluenceBlock->pred_begin(),
3202          ConfluenceBlock->pred_end());
3203
3204      // See if this is a known constant.
3205      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3206      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3207        KnownVal.negate();
3208
3209      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3210      // itself.
3211      if (E->getOpcode() == BO_LOr) {
3212        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3213        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3214      } else {
3215        assert (E->getOpcode() == BO_LAnd);
3216        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3217        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3218      }
3219
3220      Block = LHSBlock;
3221      return LHSBlock;
3222    }
3223
3224    Block = ConfluenceBlock;
3225    return ConfluenceBlock;
3226  }
3227
3228  if (E->isAssignmentOp()) {
3229    // For assignment operator (=) LHS expression is visited
3230    // before RHS expression. For destructors visit them in reverse order.
3231    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3232    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3233    return LHSBlock ? LHSBlock : RHSBlock;
3234  }
3235
3236  // For any other binary operator RHS expression is visited before
3237  // LHS expression (order of children). For destructors visit them in reverse
3238  // order.
3239  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3240  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3241  return RHSBlock ? RHSBlock : LHSBlock;
3242}
3243
3244CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3245    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3246  // First add destructors for temporaries in subexpression.
3247  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3248  if (!BindToTemporary) {
3249    // If lifetime of temporary is not prolonged (by assigning to constant
3250    // reference) add destructor for it.
3251
3252    // If the destructor is marked as a no-return destructor, we need to create
3253    // a new block for the destructor which does not have as a successor
3254    // anything built thus far. Control won't flow out of this block.
3255    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3256    if (Dtor->isNoReturn())
3257      Block = createNoReturnBlock();
3258    else
3259      autoCreateBlock();
3260
3261    appendTemporaryDtor(Block, E);
3262    B = Block;
3263  }
3264  return B;
3265}
3266
3267CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3268    AbstractConditionalOperator *E, bool BindToTemporary) {
3269  // First add destructors for condition expression.  Even if this will
3270  // unnecessarily create a block, this block will be used at least by the full
3271  // expression.
3272  autoCreateBlock();
3273  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3274  if (badCFG)
3275    return NULL;
3276  if (BinaryConditionalOperator *BCO
3277        = dyn_cast<BinaryConditionalOperator>(E)) {
3278    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3279    if (badCFG)
3280      return NULL;
3281  }
3282
3283  // Try to add block with destructors for LHS expression.
3284  CFGBlock *LHSBlock = NULL;
3285  Succ = ConfluenceBlock;
3286  Block = NULL;
3287  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3288  if (badCFG)
3289    return NULL;
3290
3291  // Try to add block with destructors for RHS expression;
3292  Succ = ConfluenceBlock;
3293  Block = NULL;
3294  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3295                                              BindToTemporary);
3296  if (badCFG)
3297    return NULL;
3298
3299  if (!RHSBlock && !LHSBlock) {
3300    // If neither LHS nor RHS expression had temporaries to destroy don't create
3301    // more blocks.
3302    Block = ConfluenceBlock;
3303    return Block;
3304  }
3305
3306  Block = createBlock(false);
3307  Block->setTerminator(CFGTerminator(E, true));
3308
3309  // See if this is a known constant.
3310  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3311
3312  if (LHSBlock) {
3313    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3314  } else if (KnownVal.isFalse()) {
3315    addSuccessor(Block, NULL);
3316  } else {
3317    addSuccessor(Block, ConfluenceBlock);
3318    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3319  }
3320
3321  if (!RHSBlock)
3322    RHSBlock = ConfluenceBlock;
3323  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3324
3325  return Block;
3326}
3327
3328} // end anonymous namespace
3329
3330/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3331///  no successors or predecessors.  If this is the first block created in the
3332///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3333CFGBlock *CFG::createBlock() {
3334  bool first_block = begin() == end();
3335
3336  // Create the block.
3337  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3338  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3339  Blocks.push_back(Mem, BlkBVC);
3340
3341  // If this is the first block, set it as the Entry and Exit.
3342  if (first_block)
3343    Entry = Exit = &back();
3344
3345  // Return the block.
3346  return &back();
3347}
3348
3349/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3350///  CFG is returned to the caller.
3351CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3352    const BuildOptions &BO) {
3353  CFGBuilder Builder(C, BO);
3354  return Builder.buildCFG(D, Statement);
3355}
3356
3357const CXXDestructorDecl *
3358CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3359  switch (getKind()) {
3360    case CFGElement::Statement:
3361    case CFGElement::Initializer:
3362      llvm_unreachable("getDestructorDecl should only be used with "
3363                       "ImplicitDtors");
3364    case CFGElement::AutomaticObjectDtor: {
3365      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3366      QualType ty = var->getType();
3367      ty = ty.getNonReferenceType();
3368      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3369        ty = arrayType->getElementType();
3370      }
3371      const RecordType *recordType = ty->getAs<RecordType>();
3372      const CXXRecordDecl *classDecl =
3373      cast<CXXRecordDecl>(recordType->getDecl());
3374      return classDecl->getDestructor();
3375    }
3376    case CFGElement::TemporaryDtor: {
3377      const CXXBindTemporaryExpr *bindExpr =
3378        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3379      const CXXTemporary *temp = bindExpr->getTemporary();
3380      return temp->getDestructor();
3381    }
3382    case CFGElement::BaseDtor:
3383    case CFGElement::MemberDtor:
3384
3385      // Not yet supported.
3386      return 0;
3387  }
3388  llvm_unreachable("getKind() returned bogus value");
3389}
3390
3391bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3392  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3393    return DD->isNoReturn();
3394  return false;
3395}
3396
3397//===----------------------------------------------------------------------===//
3398// CFG: Queries for BlkExprs.
3399//===----------------------------------------------------------------------===//
3400
3401namespace {
3402  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3403}
3404
3405static void FindSubExprAssignments(const Stmt *S,
3406                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3407  if (!S)
3408    return;
3409
3410  for (Stmt::const_child_range I = S->children(); I; ++I) {
3411    const Stmt *child = *I;
3412    if (!child)
3413      continue;
3414
3415    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3416      if (B->isAssignmentOp()) Set.insert(B);
3417
3418    FindSubExprAssignments(child, Set);
3419  }
3420}
3421
3422static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3423  BlkExprMapTy* M = new BlkExprMapTy();
3424
3425  // Look for assignments that are used as subexpressions.  These are the only
3426  // assignments that we want to *possibly* register as a block-level
3427  // expression.  Basically, if an assignment occurs both in a subexpression and
3428  // at the block-level, it is a block-level expression.
3429  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3430
3431  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3432    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3433      if (Optional<CFGStmt> S = BI->getAs<CFGStmt>())
3434        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3435
3436  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3437
3438    // Iterate over the statements again on identify the Expr* and Stmt* at the
3439    // block-level that are block-level expressions.
3440
3441    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3442      Optional<CFGStmt> CS = BI->getAs<CFGStmt>();
3443      if (!CS)
3444        continue;
3445      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3446        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3447
3448        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3449          // Assignment expressions that are not nested within another
3450          // expression are really "statements" whose value is never used by
3451          // another expression.
3452          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3453            continue;
3454        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3455          // Special handling for statement expressions.  The last statement in
3456          // the statement expression is also a block-level expr.
3457          const CompoundStmt *C = SE->getSubStmt();
3458          if (!C->body_empty()) {
3459            const Stmt *Last = C->body_back();
3460            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3461              Last = LastEx->IgnoreParens();
3462            unsigned x = M->size();
3463            (*M)[Last] = x;
3464          }
3465        }
3466
3467        unsigned x = M->size();
3468        (*M)[Exp] = x;
3469      }
3470    }
3471
3472    // Look at terminators.  The condition is a block-level expression.
3473
3474    Stmt *S = (*I)->getTerminatorCondition();
3475
3476    if (S && M->find(S) == M->end()) {
3477      unsigned x = M->size();
3478      (*M)[S] = x;
3479    }
3480  }
3481
3482  return M;
3483}
3484
3485CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3486  assert(S != NULL);
3487  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3488
3489  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3490  BlkExprMapTy::iterator I = M->find(S);
3491  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3492}
3493
3494unsigned CFG::getNumBlkExprs() {
3495  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3496    return M->size();
3497
3498  // We assume callers interested in the number of BlkExprs will want
3499  // the map constructed if it doesn't already exist.
3500  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3501  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3502}
3503
3504//===----------------------------------------------------------------------===//
3505// Filtered walking of the CFG.
3506//===----------------------------------------------------------------------===//
3507
3508bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3509        const CFGBlock *From, const CFGBlock *To) {
3510
3511  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3512    // If the 'To' has no label or is labeled but the label isn't a
3513    // CaseStmt then filter this edge.
3514    if (const SwitchStmt *S =
3515        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3516      if (S->isAllEnumCasesCovered()) {
3517        const Stmt *L = To->getLabel();
3518        if (!L || !isa<CaseStmt>(L))
3519          return true;
3520      }
3521    }
3522  }
3523
3524  return false;
3525}
3526
3527//===----------------------------------------------------------------------===//
3528// Cleanup: CFG dstor.
3529//===----------------------------------------------------------------------===//
3530
3531CFG::~CFG() {
3532  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3533}
3534
3535//===----------------------------------------------------------------------===//
3536// CFG pretty printing
3537//===----------------------------------------------------------------------===//
3538
3539namespace {
3540
3541class StmtPrinterHelper : public PrinterHelper  {
3542  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3543  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3544  StmtMapTy StmtMap;
3545  DeclMapTy DeclMap;
3546  signed currentBlock;
3547  unsigned currStmt;
3548  const LangOptions &LangOpts;
3549public:
3550
3551  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3552    : currentBlock(0), currStmt(0), LangOpts(LO)
3553  {
3554    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3555      unsigned j = 1;
3556      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3557           BI != BEnd; ++BI, ++j ) {
3558        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3559          const Stmt *stmt= SE->getStmt();
3560          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3561          StmtMap[stmt] = P;
3562
3563          switch (stmt->getStmtClass()) {
3564            case Stmt::DeclStmtClass:
3565                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3566                break;
3567            case Stmt::IfStmtClass: {
3568              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3569              if (var)
3570                DeclMap[var] = P;
3571              break;
3572            }
3573            case Stmt::ForStmtClass: {
3574              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3575              if (var)
3576                DeclMap[var] = P;
3577              break;
3578            }
3579            case Stmt::WhileStmtClass: {
3580              const VarDecl *var =
3581                cast<WhileStmt>(stmt)->getConditionVariable();
3582              if (var)
3583                DeclMap[var] = P;
3584              break;
3585            }
3586            case Stmt::SwitchStmtClass: {
3587              const VarDecl *var =
3588                cast<SwitchStmt>(stmt)->getConditionVariable();
3589              if (var)
3590                DeclMap[var] = P;
3591              break;
3592            }
3593            case Stmt::CXXCatchStmtClass: {
3594              const VarDecl *var =
3595                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3596              if (var)
3597                DeclMap[var] = P;
3598              break;
3599            }
3600            default:
3601              break;
3602          }
3603        }
3604      }
3605    }
3606  }
3607
3608
3609  virtual ~StmtPrinterHelper() {}
3610
3611  const LangOptions &getLangOpts() const { return LangOpts; }
3612  void setBlockID(signed i) { currentBlock = i; }
3613  void setStmtID(unsigned i) { currStmt = i; }
3614
3615  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3616    StmtMapTy::iterator I = StmtMap.find(S);
3617
3618    if (I == StmtMap.end())
3619      return false;
3620
3621    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3622                          && I->second.second == currStmt) {
3623      return false;
3624    }
3625
3626    OS << "[B" << I->second.first << "." << I->second.second << "]";
3627    return true;
3628  }
3629
3630  bool handleDecl(const Decl *D, raw_ostream &OS) {
3631    DeclMapTy::iterator I = DeclMap.find(D);
3632
3633    if (I == DeclMap.end())
3634      return false;
3635
3636    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3637                          && I->second.second == currStmt) {
3638      return false;
3639    }
3640
3641    OS << "[B" << I->second.first << "." << I->second.second << "]";
3642    return true;
3643  }
3644};
3645} // end anonymous namespace
3646
3647
3648namespace {
3649class CFGBlockTerminatorPrint
3650  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3651
3652  raw_ostream &OS;
3653  StmtPrinterHelper* Helper;
3654  PrintingPolicy Policy;
3655public:
3656  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3657                          const PrintingPolicy &Policy)
3658    : OS(os), Helper(helper), Policy(Policy) {}
3659
3660  void VisitIfStmt(IfStmt *I) {
3661    OS << "if ";
3662    I->getCond()->printPretty(OS,Helper,Policy);
3663  }
3664
3665  // Default case.
3666  void VisitStmt(Stmt *Terminator) {
3667    Terminator->printPretty(OS, Helper, Policy);
3668  }
3669
3670  void VisitDeclStmt(DeclStmt *DS) {
3671    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3672    OS << "static init " << VD->getName();
3673  }
3674
3675  void VisitForStmt(ForStmt *F) {
3676    OS << "for (" ;
3677    if (F->getInit())
3678      OS << "...";
3679    OS << "; ";
3680    if (Stmt *C = F->getCond())
3681      C->printPretty(OS, Helper, Policy);
3682    OS << "; ";
3683    if (F->getInc())
3684      OS << "...";
3685    OS << ")";
3686  }
3687
3688  void VisitWhileStmt(WhileStmt *W) {
3689    OS << "while " ;
3690    if (Stmt *C = W->getCond())
3691      C->printPretty(OS, Helper, Policy);
3692  }
3693
3694  void VisitDoStmt(DoStmt *D) {
3695    OS << "do ... while ";
3696    if (Stmt *C = D->getCond())
3697      C->printPretty(OS, Helper, Policy);
3698  }
3699
3700  void VisitSwitchStmt(SwitchStmt *Terminator) {
3701    OS << "switch ";
3702    Terminator->getCond()->printPretty(OS, Helper, Policy);
3703  }
3704
3705  void VisitCXXTryStmt(CXXTryStmt *CS) {
3706    OS << "try ...";
3707  }
3708
3709  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3710    C->getCond()->printPretty(OS, Helper, Policy);
3711    OS << " ? ... : ...";
3712  }
3713
3714  void VisitChooseExpr(ChooseExpr *C) {
3715    OS << "__builtin_choose_expr( ";
3716    C->getCond()->printPretty(OS, Helper, Policy);
3717    OS << " )";
3718  }
3719
3720  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3721    OS << "goto *";
3722    I->getTarget()->printPretty(OS, Helper, Policy);
3723  }
3724
3725  void VisitBinaryOperator(BinaryOperator* B) {
3726    if (!B->isLogicalOp()) {
3727      VisitExpr(B);
3728      return;
3729    }
3730
3731    B->getLHS()->printPretty(OS, Helper, Policy);
3732
3733    switch (B->getOpcode()) {
3734      case BO_LOr:
3735        OS << " || ...";
3736        return;
3737      case BO_LAnd:
3738        OS << " && ...";
3739        return;
3740      default:
3741        llvm_unreachable("Invalid logical operator.");
3742    }
3743  }
3744
3745  void VisitExpr(Expr *E) {
3746    E->printPretty(OS, Helper, Policy);
3747  }
3748};
3749} // end anonymous namespace
3750
3751static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3752                       const CFGElement &E) {
3753  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3754    const Stmt *S = CS->getStmt();
3755
3756    if (Helper) {
3757
3758      // special printing for statement-expressions.
3759      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3760        const CompoundStmt *Sub = SE->getSubStmt();
3761
3762        if (Sub->children()) {
3763          OS << "({ ... ; ";
3764          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3765          OS << " })\n";
3766          return;
3767        }
3768      }
3769      // special printing for comma expressions.
3770      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3771        if (B->getOpcode() == BO_Comma) {
3772          OS << "... , ";
3773          Helper->handledStmt(B->getRHS(),OS);
3774          OS << '\n';
3775          return;
3776        }
3777      }
3778    }
3779    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3780
3781    if (isa<CXXOperatorCallExpr>(S)) {
3782      OS << " (OperatorCall)";
3783    }
3784    else if (isa<CXXBindTemporaryExpr>(S)) {
3785      OS << " (BindTemporary)";
3786    }
3787    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3788      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3789    }
3790    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3791      OS << " (" << CE->getStmtClassName() << ", "
3792         << CE->getCastKindName()
3793         << ", " << CE->getType().getAsString()
3794         << ")";
3795    }
3796
3797    // Expressions need a newline.
3798    if (isa<Expr>(S))
3799      OS << '\n';
3800
3801  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3802    const CXXCtorInitializer *I = IE->getInitializer();
3803    if (I->isBaseInitializer())
3804      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3805    else OS << I->getAnyMember()->getName();
3806
3807    OS << "(";
3808    if (Expr *IE = I->getInit())
3809      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3810    OS << ")";
3811
3812    if (I->isBaseInitializer())
3813      OS << " (Base initializer)\n";
3814    else OS << " (Member initializer)\n";
3815
3816  } else if (Optional<CFGAutomaticObjDtor> DE =
3817                 E.getAs<CFGAutomaticObjDtor>()) {
3818    const VarDecl *VD = DE->getVarDecl();
3819    Helper->handleDecl(VD, OS);
3820
3821    const Type* T = VD->getType().getTypePtr();
3822    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3823      T = RT->getPointeeType().getTypePtr();
3824    T = T->getBaseElementTypeUnsafe();
3825
3826    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3827    OS << " (Implicit destructor)\n";
3828
3829  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3830    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3831    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3832    OS << " (Base object destructor)\n";
3833
3834  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3835    const FieldDecl *FD = ME->getFieldDecl();
3836    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3837    OS << "this->" << FD->getName();
3838    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3839    OS << " (Member object destructor)\n";
3840
3841  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3842    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3843    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3844    OS << " (Temporary object destructor)\n";
3845  }
3846}
3847
3848static void print_block(raw_ostream &OS, const CFG* cfg,
3849                        const CFGBlock &B,
3850                        StmtPrinterHelper* Helper, bool print_edges,
3851                        bool ShowColors) {
3852
3853  if (Helper)
3854    Helper->setBlockID(B.getBlockID());
3855
3856  // Print the header.
3857  if (ShowColors)
3858    OS.changeColor(raw_ostream::YELLOW, true);
3859
3860  OS << "\n [B" << B.getBlockID();
3861
3862  if (&B == &cfg->getEntry())
3863    OS << " (ENTRY)]\n";
3864  else if (&B == &cfg->getExit())
3865    OS << " (EXIT)]\n";
3866  else if (&B == cfg->getIndirectGotoBlock())
3867    OS << " (INDIRECT GOTO DISPATCH)]\n";
3868  else
3869    OS << "]\n";
3870
3871  if (ShowColors)
3872    OS.resetColor();
3873
3874  // Print the label of this block.
3875  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3876
3877    if (print_edges)
3878      OS << "  ";
3879
3880    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3881      OS << L->getName();
3882    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3883      OS << "case ";
3884      C->getLHS()->printPretty(OS, Helper,
3885                               PrintingPolicy(Helper->getLangOpts()));
3886      if (C->getRHS()) {
3887        OS << " ... ";
3888        C->getRHS()->printPretty(OS, Helper,
3889                                 PrintingPolicy(Helper->getLangOpts()));
3890      }
3891    } else if (isa<DefaultStmt>(Label))
3892      OS << "default";
3893    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3894      OS << "catch (";
3895      if (CS->getExceptionDecl())
3896        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3897                                      0);
3898      else
3899        OS << "...";
3900      OS << ")";
3901
3902    } else
3903      llvm_unreachable("Invalid label statement in CFGBlock.");
3904
3905    OS << ":\n";
3906  }
3907
3908  // Iterate through the statements in the block and print them.
3909  unsigned j = 1;
3910
3911  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3912       I != E ; ++I, ++j ) {
3913
3914    // Print the statement # in the basic block and the statement itself.
3915    if (print_edges)
3916      OS << " ";
3917
3918    OS << llvm::format("%3d", j) << ": ";
3919
3920    if (Helper)
3921      Helper->setStmtID(j);
3922
3923    print_elem(OS, Helper, *I);
3924  }
3925
3926  // Print the terminator of this block.
3927  if (B.getTerminator()) {
3928    if (ShowColors)
3929      OS.changeColor(raw_ostream::GREEN);
3930
3931    OS << "   T: ";
3932
3933    if (Helper) Helper->setBlockID(-1);
3934
3935    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3936    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3937    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3938    OS << '\n';
3939
3940    if (ShowColors)
3941      OS.resetColor();
3942  }
3943
3944  if (print_edges) {
3945    // Print the predecessors of this block.
3946    if (!B.pred_empty()) {
3947      const raw_ostream::Colors Color = raw_ostream::BLUE;
3948      if (ShowColors)
3949        OS.changeColor(Color);
3950      OS << "   Preds " ;
3951      if (ShowColors)
3952        OS.resetColor();
3953      OS << '(' << B.pred_size() << "):";
3954      unsigned i = 0;
3955
3956      if (ShowColors)
3957        OS.changeColor(Color);
3958
3959      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3960           I != E; ++I, ++i) {
3961
3962        if (i % 10 == 8)
3963          OS << "\n     ";
3964
3965        OS << " B" << (*I)->getBlockID();
3966      }
3967
3968      if (ShowColors)
3969        OS.resetColor();
3970
3971      OS << '\n';
3972    }
3973
3974    // Print the successors of this block.
3975    if (!B.succ_empty()) {
3976      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3977      if (ShowColors)
3978        OS.changeColor(Color);
3979      OS << "   Succs ";
3980      if (ShowColors)
3981        OS.resetColor();
3982      OS << '(' << B.succ_size() << "):";
3983      unsigned i = 0;
3984
3985      if (ShowColors)
3986        OS.changeColor(Color);
3987
3988      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3989           I != E; ++I, ++i) {
3990
3991        if (i % 10 == 8)
3992          OS << "\n    ";
3993
3994        if (*I)
3995          OS << " B" << (*I)->getBlockID();
3996        else
3997          OS  << " NULL";
3998      }
3999
4000      if (ShowColors)
4001        OS.resetColor();
4002      OS << '\n';
4003    }
4004  }
4005}
4006
4007
4008/// dump - A simple pretty printer of a CFG that outputs to stderr.
4009void CFG::dump(const LangOptions &LO, bool ShowColors) const {
4010  print(llvm::errs(), LO, ShowColors);
4011}
4012
4013/// print - A simple pretty printer of a CFG that outputs to an ostream.
4014void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
4015  StmtPrinterHelper Helper(this, LO);
4016
4017  // Print the entry block.
4018  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
4019
4020  // Iterate through the CFGBlocks and print them one by one.
4021  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
4022    // Skip the entry block, because we already printed it.
4023    if (&(**I) == &getEntry() || &(**I) == &getExit())
4024      continue;
4025
4026    print_block(OS, this, **I, &Helper, true, ShowColors);
4027  }
4028
4029  // Print the exit block.
4030  print_block(OS, this, getExit(), &Helper, true, ShowColors);
4031  OS << '\n';
4032  OS.flush();
4033}
4034
4035/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
4036void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4037                    bool ShowColors) const {
4038  print(llvm::errs(), cfg, LO, ShowColors);
4039}
4040
4041/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4042///   Generally this will only be called from CFG::print.
4043void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4044                     const LangOptions &LO, bool ShowColors) const {
4045  StmtPrinterHelper Helper(cfg, LO);
4046  print_block(OS, cfg, *this, &Helper, true, ShowColors);
4047  OS << '\n';
4048}
4049
4050/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
4051void CFGBlock::printTerminator(raw_ostream &OS,
4052                               const LangOptions &LO) const {
4053  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
4054  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
4055}
4056
4057Stmt *CFGBlock::getTerminatorCondition() {
4058  Stmt *Terminator = this->Terminator;
4059  if (!Terminator)
4060    return NULL;
4061
4062  Expr *E = NULL;
4063
4064  switch (Terminator->getStmtClass()) {
4065    default:
4066      break;
4067
4068    case Stmt::ForStmtClass:
4069      E = cast<ForStmt>(Terminator)->getCond();
4070      break;
4071
4072    case Stmt::WhileStmtClass:
4073      E = cast<WhileStmt>(Terminator)->getCond();
4074      break;
4075
4076    case Stmt::DoStmtClass:
4077      E = cast<DoStmt>(Terminator)->getCond();
4078      break;
4079
4080    case Stmt::IfStmtClass:
4081      E = cast<IfStmt>(Terminator)->getCond();
4082      break;
4083
4084    case Stmt::ChooseExprClass:
4085      E = cast<ChooseExpr>(Terminator)->getCond();
4086      break;
4087
4088    case Stmt::IndirectGotoStmtClass:
4089      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4090      break;
4091
4092    case Stmt::SwitchStmtClass:
4093      E = cast<SwitchStmt>(Terminator)->getCond();
4094      break;
4095
4096    case Stmt::BinaryConditionalOperatorClass:
4097      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4098      break;
4099
4100    case Stmt::ConditionalOperatorClass:
4101      E = cast<ConditionalOperator>(Terminator)->getCond();
4102      break;
4103
4104    case Stmt::BinaryOperatorClass: // '&&' and '||'
4105      E = cast<BinaryOperator>(Terminator)->getLHS();
4106      break;
4107
4108    case Stmt::ObjCForCollectionStmtClass:
4109      return Terminator;
4110  }
4111
4112  return E ? E->IgnoreParens() : NULL;
4113}
4114
4115//===----------------------------------------------------------------------===//
4116// CFG Graphviz Visualization
4117//===----------------------------------------------------------------------===//
4118
4119
4120#ifndef NDEBUG
4121static StmtPrinterHelper* GraphHelper;
4122#endif
4123
4124void CFG::viewCFG(const LangOptions &LO) const {
4125#ifndef NDEBUG
4126  StmtPrinterHelper H(this, LO);
4127  GraphHelper = &H;
4128  llvm::ViewGraph(this,"CFG");
4129  GraphHelper = NULL;
4130#endif
4131}
4132
4133namespace llvm {
4134template<>
4135struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4136
4137  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4138
4139  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4140
4141#ifndef NDEBUG
4142    std::string OutSStr;
4143    llvm::raw_string_ostream Out(OutSStr);
4144    print_block(Out,Graph, *Node, GraphHelper, false, false);
4145    std::string& OutStr = Out.str();
4146
4147    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4148
4149    // Process string output to make it nicer...
4150    for (unsigned i = 0; i != OutStr.length(); ++i)
4151      if (OutStr[i] == '\n') {                            // Left justify
4152        OutStr[i] = '\\';
4153        OutStr.insert(OutStr.begin()+i+1, 'l');
4154      }
4155
4156    return OutStr;
4157#else
4158    return "";
4159#endif
4160  }
4161};
4162} // end namespace llvm
4163