CFG.cpp revision 540dda6f2e4982b3eab0300c804345f5b6104c11
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt *G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt *R);
347  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
348                                          AddStmtChoice asc);
349  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
350  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
351  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
352  CFGBlock *VisitWhileStmt(WhileStmt *W);
353
354  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
355  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
356  CFGBlock *VisitChildren(Stmt *S);
357
358  // Visitors to walk an AST and generate destructors of temporaries in
359  // full expression.
360  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
361  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
362  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
363  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
364      bool BindToTemporary);
365  CFGBlock *
366  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
367                                            bool BindToTemporary);
368
369  // NYS == Not Yet Supported
370  CFGBlock *NYS() {
371    badCFG = true;
372    return Block;
373  }
374
375  void autoCreateBlock() { if (!Block) Block = createBlock(); }
376  CFGBlock *createBlock(bool add_successor = true);
377
378  CFGBlock *addStmt(Stmt *S) {
379    return Visit(S, AddStmtChoice::AlwaysAdd);
380  }
381  CFGBlock *addInitializer(CXXCtorInitializer *I);
382  void addAutomaticObjDtors(LocalScope::const_iterator B,
383                            LocalScope::const_iterator E, Stmt *S);
384  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
385
386  // Local scopes creation.
387  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
388
389  void addLocalScopeForStmt(Stmt *S);
390  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
391  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
392
393  void addLocalScopeAndDtors(Stmt *S);
394
395  // Interface to CFGBlock - adding CFGElements.
396  void appendStmt(CFGBlock *B, const Stmt *S) {
397    if (alwaysAdd(S) && cachedEntry)
398      cachedEntry->second = B;
399
400    // All block-level expressions should have already been IgnoreParens()ed.
401    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
402    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
403  }
404  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
405    B->appendInitializer(I, cfg->getBumpVectorContext());
406  }
407  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
408    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
409  }
410  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
411    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
412  }
413  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
414    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
415  }
416
417  void insertAutomaticObjDtors(CFGBlock *Blk, CFGBlock::iterator I,
418    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt *S);
419  void appendAutomaticObjDtors(CFGBlock *Blk, LocalScope::const_iterator B,
420      LocalScope::const_iterator E, Stmt *S);
421  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
422      LocalScope::const_iterator B, LocalScope::const_iterator E);
423
424  void addSuccessor(CFGBlock *B, CFGBlock *S) {
425    B->addSuccessor(S, cfg->getBumpVectorContext());
426  }
427
428  /// Try and evaluate an expression to an integer constant.
429  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
430    if (!BuildOpts.PruneTriviallyFalseEdges)
431      return false;
432    return !S->isTypeDependent() &&
433           !S->isValueDependent() &&
434           S->Evaluate(outResult, *Context);
435  }
436
437  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
438  /// if we can evaluate to a known value, otherwise return -1.
439  TryResult tryEvaluateBool(Expr *S) {
440    Expr::EvalResult Result;
441    if (!tryEvaluate(S, Result))
442      return TryResult();
443
444    if (Result.Val.isInt())
445      return Result.Val.getInt().getBoolValue();
446
447    if (Result.Val.isLValue()) {
448      const Expr *e = Result.Val.getLValueBase();
449      const CharUnits &c = Result.Val.getLValueOffset();
450      if (!e && c.isZero())
451        return false;
452    }
453    return TryResult();
454  }
455
456};
457
458inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
459                                     const Stmt *stmt) const {
460  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
461}
462
463bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
464  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
465
466  if (!BuildOpts.forcedBlkExprs)
467    return shouldAdd;
468
469  if (lastLookup == stmt) {
470    if (cachedEntry) {
471      assert(cachedEntry->first == stmt);
472      return true;
473    }
474    return shouldAdd;
475  }
476
477  lastLookup = stmt;
478
479  // Perform the lookup!
480  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
481
482  if (!fb) {
483    // No need to update 'cachedEntry', since it will always be null.
484    assert(cachedEntry == 0);
485    return shouldAdd;
486  }
487
488  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
489  if (itr == fb->end()) {
490    cachedEntry = 0;
491    return shouldAdd;
492  }
493
494  cachedEntry = &*itr;
495  return true;
496}
497
498// FIXME: Add support for dependent-sized array types in C++?
499// Does it even make sense to build a CFG for an uninstantiated template?
500static const VariableArrayType *FindVA(const Type *t) {
501  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
502    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
503      if (vat->getSizeExpr())
504        return vat;
505
506    t = vt->getElementType().getTypePtr();
507  }
508
509  return 0;
510}
511
512/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
513///  arbitrary statement.  Examples include a single expression or a function
514///  body (compound statement).  The ownership of the returned CFG is
515///  transferred to the caller.  If CFG construction fails, this method returns
516///  NULL.
517CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
518  assert(cfg.get());
519  if (!Statement)
520    return NULL;
521
522  // Create an empty block that will serve as the exit block for the CFG.  Since
523  // this is the first block added to the CFG, it will be implicitly registered
524  // as the exit block.
525  Succ = createBlock();
526  assert(Succ == &cfg->getExit());
527  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
528
529  if (BuildOpts.AddImplicitDtors)
530    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
531      addImplicitDtorsForDestructor(DD);
532
533  // Visit the statements and create the CFG.
534  CFGBlock *B = addStmt(Statement);
535
536  if (badCFG)
537    return NULL;
538
539  // For C++ constructor add initializers to CFG.
540  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
541    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
542        E = CD->init_rend(); I != E; ++I) {
543      B = addInitializer(*I);
544      if (badCFG)
545        return NULL;
546    }
547  }
548
549  if (B)
550    Succ = B;
551
552  // Backpatch the gotos whose label -> block mappings we didn't know when we
553  // encountered them.
554  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
555                                   E = BackpatchBlocks.end(); I != E; ++I ) {
556
557    CFGBlock *B = I->block;
558    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
559    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
560
561    // If there is no target for the goto, then we are looking at an
562    // incomplete AST.  Handle this by not registering a successor.
563    if (LI == LabelMap.end()) continue;
564
565    JumpTarget JT = LI->second;
566    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
567                                           JT.scopePosition);
568    addSuccessor(B, JT.block);
569  }
570
571  // Add successors to the Indirect Goto Dispatch block (if we have one).
572  if (CFGBlock *B = cfg->getIndirectGotoBlock())
573    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
574                              E = AddressTakenLabels.end(); I != E; ++I ) {
575
576      // Lookup the target block.
577      LabelMapTy::iterator LI = LabelMap.find(*I);
578
579      // If there is no target block that contains label, then we are looking
580      // at an incomplete AST.  Handle this by not registering a successor.
581      if (LI == LabelMap.end()) continue;
582
583      addSuccessor(B, LI->second.block);
584    }
585
586  // Create an empty entry block that has no predecessors.
587  cfg->setEntry(createBlock());
588
589  return cfg.take();
590}
591
592/// createBlock - Used to lazily create blocks that are connected
593///  to the current (global) succcessor.
594CFGBlock *CFGBuilder::createBlock(bool add_successor) {
595  CFGBlock *B = cfg->createBlock();
596  if (add_successor && Succ)
597    addSuccessor(B, Succ);
598  return B;
599}
600
601/// addInitializer - Add C++ base or member initializer element to CFG.
602CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
603  if (!BuildOpts.AddInitializers)
604    return Block;
605
606  bool IsReference = false;
607  bool HasTemporaries = false;
608
609  // Destructors of temporaries in initialization expression should be called
610  // after initialization finishes.
611  Expr *Init = I->getInit();
612  if (Init) {
613    if (FieldDecl *FD = I->getAnyMember())
614      IsReference = FD->getType()->isReferenceType();
615    HasTemporaries = isa<ExprWithCleanups>(Init);
616
617    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
618      // Generate destructors for temporaries in initialization expression.
619      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
620          IsReference);
621    }
622  }
623
624  autoCreateBlock();
625  appendInitializer(Block, I);
626
627  if (Init) {
628    if (HasTemporaries) {
629      // For expression with temporaries go directly to subexpression to omit
630      // generating destructors for the second time.
631      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
632    }
633    return Visit(Init);
634  }
635
636  return Block;
637}
638
639/// addAutomaticObjDtors - Add to current block automatic objects destructors
640/// for objects in range of local scope positions. Use S as trigger statement
641/// for destructors.
642void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
643                                      LocalScope::const_iterator E, Stmt *S) {
644  if (!BuildOpts.AddImplicitDtors)
645    return;
646
647  if (B == E)
648    return;
649
650  autoCreateBlock();
651  appendAutomaticObjDtors(Block, B, E, S);
652}
653
654/// addImplicitDtorsForDestructor - Add implicit destructors generated for
655/// base and member objects in destructor.
656void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
657  assert (BuildOpts.AddImplicitDtors
658      && "Can be called only when dtors should be added");
659  const CXXRecordDecl *RD = DD->getParent();
660
661  // At the end destroy virtual base objects.
662  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
663      VE = RD->vbases_end(); VI != VE; ++VI) {
664    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
665    if (!CD->hasTrivialDestructor()) {
666      autoCreateBlock();
667      appendBaseDtor(Block, VI);
668    }
669  }
670
671  // Before virtual bases destroy direct base objects.
672  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
673      BE = RD->bases_end(); BI != BE; ++BI) {
674    if (!BI->isVirtual()) {
675      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
676      if (!CD->hasTrivialDestructor()) {
677        autoCreateBlock();
678        appendBaseDtor(Block, BI);
679      }
680    }
681  }
682
683  // First destroy member objects.
684  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
685      FE = RD->field_end(); FI != FE; ++FI) {
686    // Check for constant size array. Set type to array element type.
687    QualType QT = FI->getType();
688    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
689      if (AT->getSize() == 0)
690        continue;
691      QT = AT->getElementType();
692    }
693
694    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
695      if (!CD->hasTrivialDestructor()) {
696        autoCreateBlock();
697        appendMemberDtor(Block, *FI);
698      }
699  }
700}
701
702/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
703/// way return valid LocalScope object.
704LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
705  if (!Scope) {
706    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
707    Scope = alloc.Allocate<LocalScope>();
708    BumpVectorContext ctx(alloc);
709    new (Scope) LocalScope(ctx, ScopePos);
710  }
711  return Scope;
712}
713
714/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
715/// that should create implicit scope (e.g. if/else substatements).
716void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
717  if (!BuildOpts.AddImplicitDtors)
718    return;
719
720  LocalScope *Scope = 0;
721
722  // For compound statement we will be creating explicit scope.
723  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
724    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
725        ; BI != BE; ++BI) {
726      Stmt *SI = *BI;
727      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
728        SI = LS->getSubStmt();
729      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
730        Scope = addLocalScopeForDeclStmt(DS, Scope);
731    }
732    return;
733  }
734
735  // For any other statement scope will be implicit and as such will be
736  // interesting only for DeclStmt.
737  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
738    S = LS->getSubStmt();
739  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
740    addLocalScopeForDeclStmt(DS);
741}
742
743/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
744/// reuse Scope if not NULL.
745LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
746                                                 LocalScope* Scope) {
747  if (!BuildOpts.AddImplicitDtors)
748    return Scope;
749
750  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
751      ; DI != DE; ++DI) {
752    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
753      Scope = addLocalScopeForVarDecl(VD, Scope);
754  }
755  return Scope;
756}
757
758/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
759/// create add scope for automatic objects and temporary objects bound to
760/// const reference. Will reuse Scope if not NULL.
761LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
762                                                LocalScope* Scope) {
763  if (!BuildOpts.AddImplicitDtors)
764    return Scope;
765
766  // Check if variable is local.
767  switch (VD->getStorageClass()) {
768  case SC_None:
769  case SC_Auto:
770  case SC_Register:
771    break;
772  default: return Scope;
773  }
774
775  // Check for const references bound to temporary. Set type to pointee.
776  QualType QT = VD->getType();
777  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
778    QT = RT->getPointeeType();
779    if (!QT.isConstQualified())
780      return Scope;
781    if (!VD->extendsLifetimeOfTemporary())
782      return Scope;
783  }
784
785  // Check for constant size array. Set type to array element type.
786  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
787    if (AT->getSize() == 0)
788      return Scope;
789    QT = AT->getElementType();
790  }
791
792  // Check if type is a C++ class with non-trivial destructor.
793  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
794    if (!CD->hasTrivialDestructor()) {
795      // Add the variable to scope
796      Scope = createOrReuseLocalScope(Scope);
797      Scope->addVar(VD);
798      ScopePos = Scope->begin();
799    }
800  return Scope;
801}
802
803/// addLocalScopeAndDtors - For given statement add local scope for it and
804/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
805void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
806  if (!BuildOpts.AddImplicitDtors)
807    return;
808
809  LocalScope::const_iterator scopeBeginPos = ScopePos;
810  addLocalScopeForStmt(S);
811  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
812}
813
814/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
815/// automatic storage duration to CFGBlock's elements vector. Insertion will be
816/// performed in place specified with iterator.
817void CFGBuilder::insertAutomaticObjDtors(CFGBlock *Blk, CFGBlock::iterator I,
818    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt *S) {
819  BumpVectorContext &C = cfg->getBumpVectorContext();
820  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
821  while (B != E)
822    I = Blk->insertAutomaticObjDtor(I, *B++, S);
823}
824
825/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
826/// automatic storage duration to CFGBlock's elements vector. Elements will be
827/// appended to physical end of the vector which happens to be logical
828/// beginning.
829void CFGBuilder::appendAutomaticObjDtors(CFGBlock *Blk,
830    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt *S) {
831  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
832}
833
834/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
835/// variables with automatic storage duration to CFGBlock's elements vector.
836/// Elements will be prepended to physical beginning of the vector which
837/// happens to be logical end. Use blocks terminator as statement that specifies
838/// destructors call site.
839void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
840    LocalScope::const_iterator B, LocalScope::const_iterator E) {
841  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
842}
843
844/// Visit - Walk the subtree of a statement and add extra
845///   blocks for ternary operators, &&, and ||.  We also process "," and
846///   DeclStmts (which may contain nested control-flow).
847CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
848  if (!S) {
849    badCFG = true;
850    return 0;
851  }
852
853  if (Expr *E = dyn_cast<Expr>(S))
854    S = E->IgnoreParens();
855
856  switch (S->getStmtClass()) {
857    default:
858      return VisitStmt(S, asc);
859
860    case Stmt::AddrLabelExprClass:
861      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
862
863    case Stmt::BinaryConditionalOperatorClass:
864      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
865
866    case Stmt::BinaryOperatorClass:
867      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
868
869    case Stmt::BlockExprClass:
870      return VisitBlockExpr(cast<BlockExpr>(S), asc);
871
872    case Stmt::BreakStmtClass:
873      return VisitBreakStmt(cast<BreakStmt>(S));
874
875    case Stmt::CallExprClass:
876    case Stmt::CXXOperatorCallExprClass:
877    case Stmt::CXXMemberCallExprClass:
878      return VisitCallExpr(cast<CallExpr>(S), asc);
879
880    case Stmt::CaseStmtClass:
881      return VisitCaseStmt(cast<CaseStmt>(S));
882
883    case Stmt::ChooseExprClass:
884      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
885
886    case Stmt::CompoundStmtClass:
887      return VisitCompoundStmt(cast<CompoundStmt>(S));
888
889    case Stmt::ConditionalOperatorClass:
890      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
891
892    case Stmt::ContinueStmtClass:
893      return VisitContinueStmt(cast<ContinueStmt>(S));
894
895    case Stmt::CXXCatchStmtClass:
896      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
897
898    case Stmt::ExprWithCleanupsClass:
899      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
900
901    case Stmt::CXXBindTemporaryExprClass:
902      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
903
904    case Stmt::CXXConstructExprClass:
905      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
906
907    case Stmt::CXXFunctionalCastExprClass:
908      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
909
910    case Stmt::CXXTemporaryObjectExprClass:
911      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
912
913    case Stmt::CXXThrowExprClass:
914      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
915
916    case Stmt::CXXTryStmtClass:
917      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
918
919    case Stmt::CXXForRangeStmtClass:
920      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
921
922    case Stmt::DeclStmtClass:
923      return VisitDeclStmt(cast<DeclStmt>(S));
924
925    case Stmt::DefaultStmtClass:
926      return VisitDefaultStmt(cast<DefaultStmt>(S));
927
928    case Stmt::DoStmtClass:
929      return VisitDoStmt(cast<DoStmt>(S));
930
931    case Stmt::ForStmtClass:
932      return VisitForStmt(cast<ForStmt>(S));
933
934    case Stmt::GotoStmtClass:
935      return VisitGotoStmt(cast<GotoStmt>(S));
936
937    case Stmt::IfStmtClass:
938      return VisitIfStmt(cast<IfStmt>(S));
939
940    case Stmt::ImplicitCastExprClass:
941      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
942
943    case Stmt::IndirectGotoStmtClass:
944      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
945
946    case Stmt::LabelStmtClass:
947      return VisitLabelStmt(cast<LabelStmt>(S));
948
949    case Stmt::MemberExprClass:
950      return VisitMemberExpr(cast<MemberExpr>(S), asc);
951
952    case Stmt::ObjCAtCatchStmtClass:
953      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
954
955    case Stmt::ObjCAtSynchronizedStmtClass:
956      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
957
958    case Stmt::ObjCAtThrowStmtClass:
959      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
960
961    case Stmt::ObjCAtTryStmtClass:
962      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
963
964    case Stmt::ObjCForCollectionStmtClass:
965      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
966
967    case Stmt::NullStmtClass:
968      return Block;
969
970    case Stmt::ReturnStmtClass:
971      return VisitReturnStmt(cast<ReturnStmt>(S));
972
973    case Stmt::UnaryExprOrTypeTraitExprClass:
974      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
975                                           asc);
976
977    case Stmt::StmtExprClass:
978      return VisitStmtExpr(cast<StmtExpr>(S), asc);
979
980    case Stmt::SwitchStmtClass:
981      return VisitSwitchStmt(cast<SwitchStmt>(S));
982
983    case Stmt::UnaryOperatorClass:
984      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
985
986    case Stmt::WhileStmtClass:
987      return VisitWhileStmt(cast<WhileStmt>(S));
988  }
989}
990
991CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
992  if (asc.alwaysAdd(*this, S)) {
993    autoCreateBlock();
994    appendStmt(Block, S);
995  }
996
997  return VisitChildren(S);
998}
999
1000/// VisitChildren - Visit the children of a Stmt.
1001CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1002  CFGBlock *lastBlock = Block;
1003  for (Stmt::child_range I = Terminator->children(); I; ++I)
1004    if (Stmt *child = *I)
1005      if (CFGBlock *b = Visit(child))
1006        lastBlock = b;
1007
1008  return lastBlock;
1009}
1010
1011CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1012                                         AddStmtChoice asc) {
1013  AddressTakenLabels.insert(A->getLabel());
1014
1015  if (asc.alwaysAdd(*this, A)) {
1016    autoCreateBlock();
1017    appendStmt(Block, A);
1018  }
1019
1020  return Block;
1021}
1022
1023CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1024           AddStmtChoice asc) {
1025  if (asc.alwaysAdd(*this, U)) {
1026    autoCreateBlock();
1027    appendStmt(Block, U);
1028  }
1029
1030  return Visit(U->getSubExpr(), AddStmtChoice());
1031}
1032
1033CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1034                                          AddStmtChoice asc) {
1035  if (B->isLogicalOp()) { // && or ||
1036    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1037    appendStmt(ConfluenceBlock, B);
1038
1039    if (badCFG)
1040      return 0;
1041
1042    // create the block evaluating the LHS
1043    CFGBlock *LHSBlock = createBlock(false);
1044    LHSBlock->setTerminator(B);
1045
1046    // create the block evaluating the RHS
1047    Succ = ConfluenceBlock;
1048    Block = NULL;
1049    CFGBlock *RHSBlock = addStmt(B->getRHS());
1050
1051    if (RHSBlock) {
1052      if (badCFG)
1053        return 0;
1054    } else {
1055      // Create an empty block for cases where the RHS doesn't require
1056      // any explicit statements in the CFG.
1057      RHSBlock = createBlock();
1058    }
1059
1060    // See if this is a known constant.
1061    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1062    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1063      KnownVal.negate();
1064
1065    // Now link the LHSBlock with RHSBlock.
1066    if (B->getOpcode() == BO_LOr) {
1067      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1068      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1069    } else {
1070      assert(B->getOpcode() == BO_LAnd);
1071      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1072      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1073    }
1074
1075    // Generate the blocks for evaluating the LHS.
1076    Block = LHSBlock;
1077    return addStmt(B->getLHS());
1078  }
1079
1080  if (B->getOpcode() == BO_Comma) { // ,
1081    autoCreateBlock();
1082    appendStmt(Block, B);
1083    addStmt(B->getRHS());
1084    return addStmt(B->getLHS());
1085  }
1086
1087  if (B->isAssignmentOp()) {
1088    if (asc.alwaysAdd(*this, B)) {
1089      autoCreateBlock();
1090      appendStmt(Block, B);
1091    }
1092    Visit(B->getLHS());
1093    return Visit(B->getRHS());
1094  }
1095
1096  if (asc.alwaysAdd(*this, B)) {
1097    autoCreateBlock();
1098    appendStmt(Block, B);
1099  }
1100
1101  CFGBlock *RBlock = Visit(B->getRHS());
1102  CFGBlock *LBlock = Visit(B->getLHS());
1103  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1104  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1105  // return RBlock.  Otherwise we'll incorrectly return NULL.
1106  return (LBlock ? LBlock : RBlock);
1107}
1108
1109CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1110  if (asc.alwaysAdd(*this, E)) {
1111    autoCreateBlock();
1112    appendStmt(Block, E);
1113  }
1114  return Block;
1115}
1116
1117CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1118  // "break" is a control-flow statement.  Thus we stop processing the current
1119  // block.
1120  if (badCFG)
1121    return 0;
1122
1123  // Now create a new block that ends with the break statement.
1124  Block = createBlock(false);
1125  Block->setTerminator(B);
1126
1127  // If there is no target for the break, then we are looking at an incomplete
1128  // AST.  This means that the CFG cannot be constructed.
1129  if (BreakJumpTarget.block) {
1130    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1131    addSuccessor(Block, BreakJumpTarget.block);
1132  } else
1133    badCFG = true;
1134
1135
1136  return Block;
1137}
1138
1139static bool CanThrow(Expr *E, ASTContext &Ctx) {
1140  QualType Ty = E->getType();
1141  if (Ty->isFunctionPointerType())
1142    Ty = Ty->getAs<PointerType>()->getPointeeType();
1143  else if (Ty->isBlockPointerType())
1144    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1145
1146  const FunctionType *FT = Ty->getAs<FunctionType>();
1147  if (FT) {
1148    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1149      if (Proto->isNothrow(Ctx))
1150        return false;
1151  }
1152  return true;
1153}
1154
1155CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1156  // Compute the callee type.
1157  QualType calleeType = C->getCallee()->getType();
1158  if (calleeType == Context->BoundMemberTy) {
1159    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1160
1161    // We should only get a null bound type if processing a dependent
1162    // CFG.  Recover by assuming nothing.
1163    if (!boundType.isNull()) calleeType = boundType;
1164  }
1165
1166  // If this is a call to a no-return function, this stops the block here.
1167  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1168
1169  bool AddEHEdge = false;
1170
1171  // Languages without exceptions are assumed to not throw.
1172  if (Context->getLangOptions().Exceptions) {
1173    if (BuildOpts.AddEHEdges)
1174      AddEHEdge = true;
1175  }
1176
1177  if (FunctionDecl *FD = C->getDirectCallee()) {
1178    if (FD->hasAttr<NoReturnAttr>())
1179      NoReturn = true;
1180    if (FD->hasAttr<NoThrowAttr>())
1181      AddEHEdge = false;
1182  }
1183
1184  if (!CanThrow(C->getCallee(), *Context))
1185    AddEHEdge = false;
1186
1187  if (!NoReturn && !AddEHEdge)
1188    return VisitStmt(C, asc.withAlwaysAdd(true));
1189
1190  if (Block) {
1191    Succ = Block;
1192    if (badCFG)
1193      return 0;
1194  }
1195
1196  Block = createBlock(!NoReturn);
1197  appendStmt(Block, C);
1198
1199  if (NoReturn) {
1200    // Wire this to the exit block directly.
1201    addSuccessor(Block, &cfg->getExit());
1202  }
1203  if (AddEHEdge) {
1204    // Add exceptional edges.
1205    if (TryTerminatedBlock)
1206      addSuccessor(Block, TryTerminatedBlock);
1207    else
1208      addSuccessor(Block, &cfg->getExit());
1209  }
1210
1211  return VisitChildren(C);
1212}
1213
1214CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1215                                      AddStmtChoice asc) {
1216  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1217  appendStmt(ConfluenceBlock, C);
1218  if (badCFG)
1219    return 0;
1220
1221  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1222  Succ = ConfluenceBlock;
1223  Block = NULL;
1224  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1225  if (badCFG)
1226    return 0;
1227
1228  Succ = ConfluenceBlock;
1229  Block = NULL;
1230  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1231  if (badCFG)
1232    return 0;
1233
1234  Block = createBlock(false);
1235  // See if this is a known constant.
1236  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1237  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1238  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1239  Block->setTerminator(C);
1240  return addStmt(C->getCond());
1241}
1242
1243
1244CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1245  addLocalScopeAndDtors(C);
1246  CFGBlock *LastBlock = Block;
1247
1248  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1249       I != E; ++I ) {
1250    // If we hit a segment of code just containing ';' (NullStmts), we can
1251    // get a null block back.  In such cases, just use the LastBlock
1252    if (CFGBlock *newBlock = addStmt(*I))
1253      LastBlock = newBlock;
1254
1255    if (badCFG)
1256      return NULL;
1257  }
1258
1259  return LastBlock;
1260}
1261
1262CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1263                                               AddStmtChoice asc) {
1264  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1265  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1266
1267  // Create the confluence block that will "merge" the results of the ternary
1268  // expression.
1269  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1270  appendStmt(ConfluenceBlock, C);
1271  if (badCFG)
1272    return 0;
1273
1274  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1275
1276  // Create a block for the LHS expression if there is an LHS expression.  A
1277  // GCC extension allows LHS to be NULL, causing the condition to be the
1278  // value that is returned instead.
1279  //  e.g: x ?: y is shorthand for: x ? x : y;
1280  Succ = ConfluenceBlock;
1281  Block = NULL;
1282  CFGBlock *LHSBlock = 0;
1283  const Expr *trueExpr = C->getTrueExpr();
1284  if (trueExpr != opaqueValue) {
1285    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1286    if (badCFG)
1287      return 0;
1288    Block = NULL;
1289  }
1290  else
1291    LHSBlock = ConfluenceBlock;
1292
1293  // Create the block for the RHS expression.
1294  Succ = ConfluenceBlock;
1295  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1296  if (badCFG)
1297    return 0;
1298
1299  // Create the block that will contain the condition.
1300  Block = createBlock(false);
1301
1302  // See if this is a known constant.
1303  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1304  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1305  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1306  Block->setTerminator(C);
1307  Expr *condExpr = C->getCond();
1308
1309  if (opaqueValue) {
1310    // Run the condition expression if it's not trivially expressed in
1311    // terms of the opaque value (or if there is no opaque value).
1312    if (condExpr != opaqueValue)
1313      addStmt(condExpr);
1314
1315    // Before that, run the common subexpression if there was one.
1316    // At least one of this or the above will be run.
1317    return addStmt(BCO->getCommon());
1318  }
1319
1320  return addStmt(condExpr);
1321}
1322
1323CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1324  // Check if the Decl is for an __label__.  If so, elide it from the
1325  // CFG entirely.
1326  if (isa<LabelDecl>(*DS->decl_begin()))
1327    return Block;
1328
1329  // This case also handles static_asserts.
1330  if (DS->isSingleDecl())
1331    return VisitDeclSubExpr(DS);
1332
1333  CFGBlock *B = 0;
1334
1335  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1336  typedef SmallVector<Decl*,10> BufTy;
1337  BufTy Buf(DS->decl_begin(), DS->decl_end());
1338
1339  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1340    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1341    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1342               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1343
1344    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1345    // automatically freed with the CFG.
1346    DeclGroupRef DG(*I);
1347    Decl *D = *I;
1348    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1349    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1350
1351    // Append the fake DeclStmt to block.
1352    B = VisitDeclSubExpr(DSNew);
1353  }
1354
1355  return B;
1356}
1357
1358/// VisitDeclSubExpr - Utility method to add block-level expressions for
1359/// DeclStmts and initializers in them.
1360CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1361  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1362  Decl *D = DS->getSingleDecl();
1363
1364  if (isa<StaticAssertDecl>(D)) {
1365    // static_asserts aren't added to the CFG because they do not impact
1366    // runtime semantics.
1367    return Block;
1368  }
1369
1370  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1371
1372  if (!VD) {
1373    autoCreateBlock();
1374    appendStmt(Block, DS);
1375    return Block;
1376  }
1377
1378  bool IsReference = false;
1379  bool HasTemporaries = false;
1380
1381  // Destructors of temporaries in initialization expression should be called
1382  // after initialization finishes.
1383  Expr *Init = VD->getInit();
1384  if (Init) {
1385    IsReference = VD->getType()->isReferenceType();
1386    HasTemporaries = isa<ExprWithCleanups>(Init);
1387
1388    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1389      // Generate destructors for temporaries in initialization expression.
1390      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1391          IsReference);
1392    }
1393  }
1394
1395  autoCreateBlock();
1396  appendStmt(Block, DS);
1397
1398  if (Init) {
1399    if (HasTemporaries)
1400      // For expression with temporaries go directly to subexpression to omit
1401      // generating destructors for the second time.
1402      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1403    else
1404      Visit(Init);
1405  }
1406
1407  // If the type of VD is a VLA, then we must process its size expressions.
1408  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1409       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1410    Block = addStmt(VA->getSizeExpr());
1411
1412  // Remove variable from local scope.
1413  if (ScopePos && VD == *ScopePos)
1414    ++ScopePos;
1415
1416  return Block;
1417}
1418
1419CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1420  // We may see an if statement in the middle of a basic block, or it may be the
1421  // first statement we are processing.  In either case, we create a new basic
1422  // block.  First, we create the blocks for the then...else statements, and
1423  // then we create the block containing the if statement.  If we were in the
1424  // middle of a block, we stop processing that block.  That block is then the
1425  // implicit successor for the "then" and "else" clauses.
1426
1427  // Save local scope position because in case of condition variable ScopePos
1428  // won't be restored when traversing AST.
1429  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1430
1431  // Create local scope for possible condition variable.
1432  // Store scope position. Add implicit destructor.
1433  if (VarDecl *VD = I->getConditionVariable()) {
1434    LocalScope::const_iterator BeginScopePos = ScopePos;
1435    addLocalScopeForVarDecl(VD);
1436    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1437  }
1438
1439  // The block we were processing is now finished.  Make it the successor
1440  // block.
1441  if (Block) {
1442    Succ = Block;
1443    if (badCFG)
1444      return 0;
1445  }
1446
1447  // Process the false branch.
1448  CFGBlock *ElseBlock = Succ;
1449
1450  if (Stmt *Else = I->getElse()) {
1451    SaveAndRestore<CFGBlock*> sv(Succ);
1452
1453    // NULL out Block so that the recursive call to Visit will
1454    // create a new basic block.
1455    Block = NULL;
1456
1457    // If branch is not a compound statement create implicit scope
1458    // and add destructors.
1459    if (!isa<CompoundStmt>(Else))
1460      addLocalScopeAndDtors(Else);
1461
1462    ElseBlock = addStmt(Else);
1463
1464    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1465      ElseBlock = sv.get();
1466    else if (Block) {
1467      if (badCFG)
1468        return 0;
1469    }
1470  }
1471
1472  // Process the true branch.
1473  CFGBlock *ThenBlock;
1474  {
1475    Stmt *Then = I->getThen();
1476    assert(Then);
1477    SaveAndRestore<CFGBlock*> sv(Succ);
1478    Block = NULL;
1479
1480    // If branch is not a compound statement create implicit scope
1481    // and add destructors.
1482    if (!isa<CompoundStmt>(Then))
1483      addLocalScopeAndDtors(Then);
1484
1485    ThenBlock = addStmt(Then);
1486
1487    if (!ThenBlock) {
1488      // We can reach here if the "then" body has all NullStmts.
1489      // Create an empty block so we can distinguish between true and false
1490      // branches in path-sensitive analyses.
1491      ThenBlock = createBlock(false);
1492      addSuccessor(ThenBlock, sv.get());
1493    } else if (Block) {
1494      if (badCFG)
1495        return 0;
1496    }
1497  }
1498
1499  // Now create a new block containing the if statement.
1500  Block = createBlock(false);
1501
1502  // Set the terminator of the new block to the If statement.
1503  Block->setTerminator(I);
1504
1505  // See if this is a known constant.
1506  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1507
1508  // Now add the successors.
1509  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1510  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1511
1512  // Add the condition as the last statement in the new block.  This may create
1513  // new blocks as the condition may contain control-flow.  Any newly created
1514  // blocks will be pointed to be "Block".
1515  Block = addStmt(I->getCond());
1516
1517  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1518  // and the condition variable initialization to the CFG.
1519  if (VarDecl *VD = I->getConditionVariable()) {
1520    if (Expr *Init = VD->getInit()) {
1521      autoCreateBlock();
1522      appendStmt(Block, I->getConditionVariableDeclStmt());
1523      addStmt(Init);
1524    }
1525  }
1526
1527  return Block;
1528}
1529
1530
1531CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1532  // If we were in the middle of a block we stop processing that block.
1533  //
1534  // NOTE: If a "return" appears in the middle of a block, this means that the
1535  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1536  //       for that code; a simple "mark-and-sweep" from the entry block will be
1537  //       able to report such dead blocks.
1538
1539  // Create the new block.
1540  Block = createBlock(false);
1541
1542  // The Exit block is the only successor.
1543  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1544  addSuccessor(Block, &cfg->getExit());
1545
1546  // Add the return statement to the block.  This may create new blocks if R
1547  // contains control-flow (short-circuit operations).
1548  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1549}
1550
1551CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1552  // Get the block of the labeled statement.  Add it to our map.
1553  addStmt(L->getSubStmt());
1554  CFGBlock *LabelBlock = Block;
1555
1556  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1557    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1558
1559  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1560         "label already in map");
1561  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1562
1563  // Labels partition blocks, so this is the end of the basic block we were
1564  // processing (L is the block's label).  Because this is label (and we have
1565  // already processed the substatement) there is no extra control-flow to worry
1566  // about.
1567  LabelBlock->setLabel(L);
1568  if (badCFG)
1569    return 0;
1570
1571  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1572  Block = NULL;
1573
1574  // This block is now the implicit successor of other blocks.
1575  Succ = LabelBlock;
1576
1577  return LabelBlock;
1578}
1579
1580CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1581  // Goto is a control-flow statement.  Thus we stop processing the current
1582  // block and create a new one.
1583
1584  Block = createBlock(false);
1585  Block->setTerminator(G);
1586
1587  // If we already know the mapping to the label block add the successor now.
1588  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1589
1590  if (I == LabelMap.end())
1591    // We will need to backpatch this block later.
1592    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1593  else {
1594    JumpTarget JT = I->second;
1595    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1596    addSuccessor(Block, JT.block);
1597  }
1598
1599  return Block;
1600}
1601
1602CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1603  CFGBlock *LoopSuccessor = NULL;
1604
1605  // Save local scope position because in case of condition variable ScopePos
1606  // won't be restored when traversing AST.
1607  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1608
1609  // Create local scope for init statement and possible condition variable.
1610  // Add destructor for init statement and condition variable.
1611  // Store scope position for continue statement.
1612  if (Stmt *Init = F->getInit())
1613    addLocalScopeForStmt(Init);
1614  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1615
1616  if (VarDecl *VD = F->getConditionVariable())
1617    addLocalScopeForVarDecl(VD);
1618  LocalScope::const_iterator ContinueScopePos = ScopePos;
1619
1620  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1621
1622  // "for" is a control-flow statement.  Thus we stop processing the current
1623  // block.
1624  if (Block) {
1625    if (badCFG)
1626      return 0;
1627    LoopSuccessor = Block;
1628  } else
1629    LoopSuccessor = Succ;
1630
1631  // Save the current value for the break targets.
1632  // All breaks should go to the code following the loop.
1633  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1634  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1635
1636  // Because of short-circuit evaluation, the condition of the loop can span
1637  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1638  // evaluate the condition.
1639  CFGBlock *ExitConditionBlock = createBlock(false);
1640  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1641
1642  // Set the terminator for the "exit" condition block.
1643  ExitConditionBlock->setTerminator(F);
1644
1645  // Now add the actual condition to the condition block.  Because the condition
1646  // itself may contain control-flow, new blocks may be created.
1647  if (Stmt *C = F->getCond()) {
1648    Block = ExitConditionBlock;
1649    EntryConditionBlock = addStmt(C);
1650    if (badCFG)
1651      return 0;
1652    assert(Block == EntryConditionBlock ||
1653           (Block == 0 && EntryConditionBlock == Succ));
1654
1655    // If this block contains a condition variable, add both the condition
1656    // variable and initializer to the CFG.
1657    if (VarDecl *VD = F->getConditionVariable()) {
1658      if (Expr *Init = VD->getInit()) {
1659        autoCreateBlock();
1660        appendStmt(Block, F->getConditionVariableDeclStmt());
1661        EntryConditionBlock = addStmt(Init);
1662        assert(Block == EntryConditionBlock);
1663      }
1664    }
1665
1666    if (Block) {
1667      if (badCFG)
1668        return 0;
1669    }
1670  }
1671
1672  // The condition block is the implicit successor for the loop body as well as
1673  // any code above the loop.
1674  Succ = EntryConditionBlock;
1675
1676  // See if this is a known constant.
1677  TryResult KnownVal(true);
1678
1679  if (F->getCond())
1680    KnownVal = tryEvaluateBool(F->getCond());
1681
1682  // Now create the loop body.
1683  {
1684    assert(F->getBody());
1685
1686   // Save the current values for Block, Succ, and continue targets.
1687   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1688   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1689
1690    // Create a new block to contain the (bottom) of the loop body.
1691    Block = NULL;
1692
1693    // Loop body should end with destructor of Condition variable (if any).
1694    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1695
1696    if (Stmt *I = F->getInc()) {
1697      // Generate increment code in its own basic block.  This is the target of
1698      // continue statements.
1699      Succ = addStmt(I);
1700    } else {
1701      // No increment code.  Create a special, empty, block that is used as the
1702      // target block for "looping back" to the start of the loop.
1703      assert(Succ == EntryConditionBlock);
1704      Succ = Block ? Block : createBlock();
1705    }
1706
1707    // Finish up the increment (or empty) block if it hasn't been already.
1708    if (Block) {
1709      assert(Block == Succ);
1710      if (badCFG)
1711        return 0;
1712      Block = 0;
1713    }
1714
1715    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1716
1717    // The starting block for the loop increment is the block that should
1718    // represent the 'loop target' for looping back to the start of the loop.
1719    ContinueJumpTarget.block->setLoopTarget(F);
1720
1721    // If body is not a compound statement create implicit scope
1722    // and add destructors.
1723    if (!isa<CompoundStmt>(F->getBody()))
1724      addLocalScopeAndDtors(F->getBody());
1725
1726    // Now populate the body block, and in the process create new blocks as we
1727    // walk the body of the loop.
1728    CFGBlock *BodyBlock = addStmt(F->getBody());
1729
1730    if (!BodyBlock)
1731      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1732    else if (badCFG)
1733      return 0;
1734
1735    // This new body block is a successor to our "exit" condition block.
1736    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1737  }
1738
1739  // Link up the condition block with the code that follows the loop.  (the
1740  // false branch).
1741  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1742
1743  // If the loop contains initialization, create a new block for those
1744  // statements.  This block can also contain statements that precede the loop.
1745  if (Stmt *I = F->getInit()) {
1746    Block = createBlock();
1747    return addStmt(I);
1748  }
1749
1750  // There is no loop initialization.  We are thus basically a while loop.
1751  // NULL out Block to force lazy block construction.
1752  Block = NULL;
1753  Succ = EntryConditionBlock;
1754  return EntryConditionBlock;
1755}
1756
1757CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1758  if (asc.alwaysAdd(*this, M)) {
1759    autoCreateBlock();
1760    appendStmt(Block, M);
1761  }
1762  return Visit(M->getBase());
1763}
1764
1765CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1766  // Objective-C fast enumeration 'for' statements:
1767  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1768  //
1769  //  for ( Type newVariable in collection_expression ) { statements }
1770  //
1771  //  becomes:
1772  //
1773  //   prologue:
1774  //     1. collection_expression
1775  //     T. jump to loop_entry
1776  //   loop_entry:
1777  //     1. side-effects of element expression
1778  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1779  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1780  //   TB:
1781  //     statements
1782  //     T. jump to loop_entry
1783  //   FB:
1784  //     what comes after
1785  //
1786  //  and
1787  //
1788  //  Type existingItem;
1789  //  for ( existingItem in expression ) { statements }
1790  //
1791  //  becomes:
1792  //
1793  //   the same with newVariable replaced with existingItem; the binding works
1794  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1795  //   a DeclStmt and the other returns a DeclRefExpr.
1796  //
1797
1798  CFGBlock *LoopSuccessor = 0;
1799
1800  if (Block) {
1801    if (badCFG)
1802      return 0;
1803    LoopSuccessor = Block;
1804    Block = 0;
1805  } else
1806    LoopSuccessor = Succ;
1807
1808  // Build the condition blocks.
1809  CFGBlock *ExitConditionBlock = createBlock(false);
1810
1811  // Set the terminator for the "exit" condition block.
1812  ExitConditionBlock->setTerminator(S);
1813
1814  // The last statement in the block should be the ObjCForCollectionStmt, which
1815  // performs the actual binding to 'element' and determines if there are any
1816  // more items in the collection.
1817  appendStmt(ExitConditionBlock, S);
1818  Block = ExitConditionBlock;
1819
1820  // Walk the 'element' expression to see if there are any side-effects.  We
1821  // generate new blocks as necessary.  We DON'T add the statement by default to
1822  // the CFG unless it contains control-flow.
1823  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1824                                        AddStmtChoice::NotAlwaysAdd);
1825  if (Block) {
1826    if (badCFG)
1827      return 0;
1828    Block = 0;
1829  }
1830
1831  // The condition block is the implicit successor for the loop body as well as
1832  // any code above the loop.
1833  Succ = EntryConditionBlock;
1834
1835  // Now create the true branch.
1836  {
1837    // Save the current values for Succ, continue and break targets.
1838    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1839    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1840        save_break(BreakJumpTarget);
1841
1842    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1843    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1844
1845    CFGBlock *BodyBlock = addStmt(S->getBody());
1846
1847    if (!BodyBlock)
1848      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1849    else if (Block) {
1850      if (badCFG)
1851        return 0;
1852    }
1853
1854    // This new body block is a successor to our "exit" condition block.
1855    addSuccessor(ExitConditionBlock, BodyBlock);
1856  }
1857
1858  // Link up the condition block with the code that follows the loop.
1859  // (the false branch).
1860  addSuccessor(ExitConditionBlock, LoopSuccessor);
1861
1862  // Now create a prologue block to contain the collection expression.
1863  Block = createBlock();
1864  return addStmt(S->getCollection());
1865}
1866
1867CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
1868  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1869
1870  // Inline the body.
1871  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1872
1873  // The sync body starts its own basic block.  This makes it a little easier
1874  // for diagnostic clients.
1875  if (SyncBlock) {
1876    if (badCFG)
1877      return 0;
1878
1879    Block = 0;
1880    Succ = SyncBlock;
1881  }
1882
1883  // Add the @synchronized to the CFG.
1884  autoCreateBlock();
1885  appendStmt(Block, S);
1886
1887  // Inline the sync expression.
1888  return addStmt(S->getSynchExpr());
1889}
1890
1891CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
1892  // FIXME
1893  return NYS();
1894}
1895
1896CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
1897  CFGBlock *LoopSuccessor = NULL;
1898
1899  // Save local scope position because in case of condition variable ScopePos
1900  // won't be restored when traversing AST.
1901  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1902
1903  // Create local scope for possible condition variable.
1904  // Store scope position for continue statement.
1905  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1906  if (VarDecl *VD = W->getConditionVariable()) {
1907    addLocalScopeForVarDecl(VD);
1908    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1909  }
1910
1911  // "while" is a control-flow statement.  Thus we stop processing the current
1912  // block.
1913  if (Block) {
1914    if (badCFG)
1915      return 0;
1916    LoopSuccessor = Block;
1917    Block = 0;
1918  } else
1919    LoopSuccessor = Succ;
1920
1921  // Because of short-circuit evaluation, the condition of the loop can span
1922  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1923  // evaluate the condition.
1924  CFGBlock *ExitConditionBlock = createBlock(false);
1925  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1926
1927  // Set the terminator for the "exit" condition block.
1928  ExitConditionBlock->setTerminator(W);
1929
1930  // Now add the actual condition to the condition block.  Because the condition
1931  // itself may contain control-flow, new blocks may be created.  Thus we update
1932  // "Succ" after adding the condition.
1933  if (Stmt *C = W->getCond()) {
1934    Block = ExitConditionBlock;
1935    EntryConditionBlock = addStmt(C);
1936    // The condition might finish the current 'Block'.
1937    Block = EntryConditionBlock;
1938
1939    // If this block contains a condition variable, add both the condition
1940    // variable and initializer to the CFG.
1941    if (VarDecl *VD = W->getConditionVariable()) {
1942      if (Expr *Init = VD->getInit()) {
1943        autoCreateBlock();
1944        appendStmt(Block, W->getConditionVariableDeclStmt());
1945        EntryConditionBlock = addStmt(Init);
1946        assert(Block == EntryConditionBlock);
1947      }
1948    }
1949
1950    if (Block) {
1951      if (badCFG)
1952        return 0;
1953    }
1954  }
1955
1956  // The condition block is the implicit successor for the loop body as well as
1957  // any code above the loop.
1958  Succ = EntryConditionBlock;
1959
1960  // See if this is a known constant.
1961  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1962
1963  // Process the loop body.
1964  {
1965    assert(W->getBody());
1966
1967    // Save the current values for Block, Succ, and continue and break targets
1968    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1969    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1970        save_break(BreakJumpTarget);
1971
1972    // Create an empty block to represent the transition block for looping back
1973    // to the head of the loop.
1974    Block = 0;
1975    assert(Succ == EntryConditionBlock);
1976    Succ = createBlock();
1977    Succ->setLoopTarget(W);
1978    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1979
1980    // All breaks should go to the code following the loop.
1981    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1982
1983    // NULL out Block to force lazy instantiation of blocks for the body.
1984    Block = NULL;
1985
1986    // Loop body should end with destructor of Condition variable (if any).
1987    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1988
1989    // If body is not a compound statement create implicit scope
1990    // and add destructors.
1991    if (!isa<CompoundStmt>(W->getBody()))
1992      addLocalScopeAndDtors(W->getBody());
1993
1994    // Create the body.  The returned block is the entry to the loop body.
1995    CFGBlock *BodyBlock = addStmt(W->getBody());
1996
1997    if (!BodyBlock)
1998      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1999    else if (Block) {
2000      if (badCFG)
2001        return 0;
2002    }
2003
2004    // Add the loop body entry as a successor to the condition.
2005    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2006  }
2007
2008  // Link up the condition block with the code that follows the loop.  (the
2009  // false branch).
2010  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2011
2012  // There can be no more statements in the condition block since we loop back
2013  // to this block.  NULL out Block to force lazy creation of another block.
2014  Block = NULL;
2015
2016  // Return the condition block, which is the dominating block for the loop.
2017  Succ = EntryConditionBlock;
2018  return EntryConditionBlock;
2019}
2020
2021
2022CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2023  // FIXME: For now we pretend that @catch and the code it contains does not
2024  //  exit.
2025  return Block;
2026}
2027
2028CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2029  // FIXME: This isn't complete.  We basically treat @throw like a return
2030  //  statement.
2031
2032  // If we were in the middle of a block we stop processing that block.
2033  if (badCFG)
2034    return 0;
2035
2036  // Create the new block.
2037  Block = createBlock(false);
2038
2039  // The Exit block is the only successor.
2040  addSuccessor(Block, &cfg->getExit());
2041
2042  // Add the statement to the block.  This may create new blocks if S contains
2043  // control-flow (short-circuit operations).
2044  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2045}
2046
2047CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2048  // If we were in the middle of a block we stop processing that block.
2049  if (badCFG)
2050    return 0;
2051
2052  // Create the new block.
2053  Block = createBlock(false);
2054
2055  if (TryTerminatedBlock)
2056    // The current try statement is the only successor.
2057    addSuccessor(Block, TryTerminatedBlock);
2058  else
2059    // otherwise the Exit block is the only successor.
2060    addSuccessor(Block, &cfg->getExit());
2061
2062  // Add the statement to the block.  This may create new blocks if S contains
2063  // control-flow (short-circuit operations).
2064  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2065}
2066
2067CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2068  CFGBlock *LoopSuccessor = NULL;
2069
2070  // "do...while" is a control-flow statement.  Thus we stop processing the
2071  // current block.
2072  if (Block) {
2073    if (badCFG)
2074      return 0;
2075    LoopSuccessor = Block;
2076  } else
2077    LoopSuccessor = Succ;
2078
2079  // Because of short-circuit evaluation, the condition of the loop can span
2080  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2081  // evaluate the condition.
2082  CFGBlock *ExitConditionBlock = createBlock(false);
2083  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2084
2085  // Set the terminator for the "exit" condition block.
2086  ExitConditionBlock->setTerminator(D);
2087
2088  // Now add the actual condition to the condition block.  Because the condition
2089  // itself may contain control-flow, new blocks may be created.
2090  if (Stmt *C = D->getCond()) {
2091    Block = ExitConditionBlock;
2092    EntryConditionBlock = addStmt(C);
2093    if (Block) {
2094      if (badCFG)
2095        return 0;
2096    }
2097  }
2098
2099  // The condition block is the implicit successor for the loop body.
2100  Succ = EntryConditionBlock;
2101
2102  // See if this is a known constant.
2103  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2104
2105  // Process the loop body.
2106  CFGBlock *BodyBlock = NULL;
2107  {
2108    assert(D->getBody());
2109
2110    // Save the current values for Block, Succ, and continue and break targets
2111    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2112    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2113        save_break(BreakJumpTarget);
2114
2115    // All continues within this loop should go to the condition block
2116    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2117
2118    // All breaks should go to the code following the loop.
2119    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2120
2121    // NULL out Block to force lazy instantiation of blocks for the body.
2122    Block = NULL;
2123
2124    // If body is not a compound statement create implicit scope
2125    // and add destructors.
2126    if (!isa<CompoundStmt>(D->getBody()))
2127      addLocalScopeAndDtors(D->getBody());
2128
2129    // Create the body.  The returned block is the entry to the loop body.
2130    BodyBlock = addStmt(D->getBody());
2131
2132    if (!BodyBlock)
2133      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2134    else if (Block) {
2135      if (badCFG)
2136        return 0;
2137    }
2138
2139    if (!KnownVal.isFalse()) {
2140      // Add an intermediate block between the BodyBlock and the
2141      // ExitConditionBlock to represent the "loop back" transition.  Create an
2142      // empty block to represent the transition block for looping back to the
2143      // head of the loop.
2144      // FIXME: Can we do this more efficiently without adding another block?
2145      Block = NULL;
2146      Succ = BodyBlock;
2147      CFGBlock *LoopBackBlock = createBlock();
2148      LoopBackBlock->setLoopTarget(D);
2149
2150      // Add the loop body entry as a successor to the condition.
2151      addSuccessor(ExitConditionBlock, LoopBackBlock);
2152    }
2153    else
2154      addSuccessor(ExitConditionBlock, NULL);
2155  }
2156
2157  // Link up the condition block with the code that follows the loop.
2158  // (the false branch).
2159  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2160
2161  // There can be no more statements in the body block(s) since we loop back to
2162  // the body.  NULL out Block to force lazy creation of another block.
2163  Block = NULL;
2164
2165  // Return the loop body, which is the dominating block for the loop.
2166  Succ = BodyBlock;
2167  return BodyBlock;
2168}
2169
2170CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2171  // "continue" is a control-flow statement.  Thus we stop processing the
2172  // current block.
2173  if (badCFG)
2174    return 0;
2175
2176  // Now create a new block that ends with the continue statement.
2177  Block = createBlock(false);
2178  Block->setTerminator(C);
2179
2180  // If there is no target for the continue, then we are looking at an
2181  // incomplete AST.  This means the CFG cannot be constructed.
2182  if (ContinueJumpTarget.block) {
2183    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2184    addSuccessor(Block, ContinueJumpTarget.block);
2185  } else
2186    badCFG = true;
2187
2188  return Block;
2189}
2190
2191CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2192                                                    AddStmtChoice asc) {
2193
2194  if (asc.alwaysAdd(*this, E)) {
2195    autoCreateBlock();
2196    appendStmt(Block, E);
2197  }
2198
2199  // VLA types have expressions that must be evaluated.
2200  CFGBlock *lastBlock = Block;
2201
2202  if (E->isArgumentType()) {
2203    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2204         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2205      lastBlock = addStmt(VA->getSizeExpr());
2206  }
2207  return lastBlock;
2208}
2209
2210/// VisitStmtExpr - Utility method to handle (nested) statement
2211///  expressions (a GCC extension).
2212CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2213  if (asc.alwaysAdd(*this, SE)) {
2214    autoCreateBlock();
2215    appendStmt(Block, SE);
2216  }
2217  return VisitCompoundStmt(SE->getSubStmt());
2218}
2219
2220CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2221  // "switch" is a control-flow statement.  Thus we stop processing the current
2222  // block.
2223  CFGBlock *SwitchSuccessor = NULL;
2224
2225  // Save local scope position because in case of condition variable ScopePos
2226  // won't be restored when traversing AST.
2227  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2228
2229  // Create local scope for possible condition variable.
2230  // Store scope position. Add implicit destructor.
2231  if (VarDecl *VD = Terminator->getConditionVariable()) {
2232    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2233    addLocalScopeForVarDecl(VD);
2234    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2235  }
2236
2237  if (Block) {
2238    if (badCFG)
2239      return 0;
2240    SwitchSuccessor = Block;
2241  } else SwitchSuccessor = Succ;
2242
2243  // Save the current "switch" context.
2244  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2245                            save_default(DefaultCaseBlock);
2246  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2247
2248  // Set the "default" case to be the block after the switch statement.  If the
2249  // switch statement contains a "default:", this value will be overwritten with
2250  // the block for that code.
2251  DefaultCaseBlock = SwitchSuccessor;
2252
2253  // Create a new block that will contain the switch statement.
2254  SwitchTerminatedBlock = createBlock(false);
2255
2256  // Now process the switch body.  The code after the switch is the implicit
2257  // successor.
2258  Succ = SwitchSuccessor;
2259  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2260
2261  // When visiting the body, the case statements should automatically get linked
2262  // up to the switch.  We also don't keep a pointer to the body, since all
2263  // control-flow from the switch goes to case/default statements.
2264  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2265  Block = NULL;
2266
2267  // For pruning unreachable case statements, save the current state
2268  // for tracking the condition value.
2269  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2270                                                     false);
2271
2272  // Determine if the switch condition can be explicitly evaluated.
2273  assert(Terminator->getCond() && "switch condition must be non-NULL");
2274  Expr::EvalResult result;
2275  bool b = tryEvaluate(Terminator->getCond(), result);
2276  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2277                                                    b ? &result : 0);
2278
2279  // If body is not a compound statement create implicit scope
2280  // and add destructors.
2281  if (!isa<CompoundStmt>(Terminator->getBody()))
2282    addLocalScopeAndDtors(Terminator->getBody());
2283
2284  addStmt(Terminator->getBody());
2285  if (Block) {
2286    if (badCFG)
2287      return 0;
2288  }
2289
2290  // If we have no "default:" case, the default transition is to the code
2291  // following the switch body.  Moreover, take into account if all the
2292  // cases of a switch are covered (e.g., switching on an enum value).
2293  addSuccessor(SwitchTerminatedBlock,
2294               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2295               ? 0 : DefaultCaseBlock);
2296
2297  // Add the terminator and condition in the switch block.
2298  SwitchTerminatedBlock->setTerminator(Terminator);
2299  Block = SwitchTerminatedBlock;
2300  Block = addStmt(Terminator->getCond());
2301
2302  // Finally, if the SwitchStmt contains a condition variable, add both the
2303  // SwitchStmt and the condition variable initialization to the CFG.
2304  if (VarDecl *VD = Terminator->getConditionVariable()) {
2305    if (Expr *Init = VD->getInit()) {
2306      autoCreateBlock();
2307      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2308      addStmt(Init);
2309    }
2310  }
2311
2312  return Block;
2313}
2314
2315static bool shouldAddCase(bool &switchExclusivelyCovered,
2316                          const Expr::EvalResult *switchCond,
2317                          const CaseStmt *CS,
2318                          ASTContext &Ctx) {
2319  if (!switchCond)
2320    return true;
2321
2322  bool addCase = false;
2323
2324  if (!switchExclusivelyCovered) {
2325    if (switchCond->Val.isInt()) {
2326      // Evaluate the LHS of the case value.
2327      Expr::EvalResult V1;
2328      CS->getLHS()->Evaluate(V1, Ctx);
2329      assert(V1.Val.isInt());
2330      const llvm::APSInt &condInt = switchCond->Val.getInt();
2331      const llvm::APSInt &lhsInt = V1.Val.getInt();
2332
2333      if (condInt == lhsInt) {
2334        addCase = true;
2335        switchExclusivelyCovered = true;
2336      }
2337      else if (condInt < lhsInt) {
2338        if (const Expr *RHS = CS->getRHS()) {
2339          // Evaluate the RHS of the case value.
2340          Expr::EvalResult V2;
2341          RHS->Evaluate(V2, Ctx);
2342          assert(V2.Val.isInt());
2343          if (V2.Val.getInt() <= condInt) {
2344            addCase = true;
2345            switchExclusivelyCovered = true;
2346          }
2347        }
2348      }
2349    }
2350    else
2351      addCase = true;
2352  }
2353  return addCase;
2354}
2355
2356CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2357  // CaseStmts are essentially labels, so they are the first statement in a
2358  // block.
2359  CFGBlock *TopBlock = 0, *LastBlock = 0;
2360
2361  if (Stmt *Sub = CS->getSubStmt()) {
2362    // For deeply nested chains of CaseStmts, instead of doing a recursion
2363    // (which can blow out the stack), manually unroll and create blocks
2364    // along the way.
2365    while (isa<CaseStmt>(Sub)) {
2366      CFGBlock *currentBlock = createBlock(false);
2367      currentBlock->setLabel(CS);
2368
2369      if (TopBlock)
2370        addSuccessor(LastBlock, currentBlock);
2371      else
2372        TopBlock = currentBlock;
2373
2374      addSuccessor(SwitchTerminatedBlock,
2375                   shouldAddCase(switchExclusivelyCovered, switchCond,
2376                                 CS, *Context)
2377                   ? currentBlock : 0);
2378
2379      LastBlock = currentBlock;
2380      CS = cast<CaseStmt>(Sub);
2381      Sub = CS->getSubStmt();
2382    }
2383
2384    addStmt(Sub);
2385  }
2386
2387  CFGBlock *CaseBlock = Block;
2388  if (!CaseBlock)
2389    CaseBlock = createBlock();
2390
2391  // Cases statements partition blocks, so this is the top of the basic block we
2392  // were processing (the "case XXX:" is the label).
2393  CaseBlock->setLabel(CS);
2394
2395  if (badCFG)
2396    return 0;
2397
2398  // Add this block to the list of successors for the block with the switch
2399  // statement.
2400  assert(SwitchTerminatedBlock);
2401  addSuccessor(SwitchTerminatedBlock,
2402               shouldAddCase(switchExclusivelyCovered, switchCond,
2403                             CS, *Context)
2404               ? CaseBlock : 0);
2405
2406  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2407  Block = NULL;
2408
2409  if (TopBlock) {
2410    addSuccessor(LastBlock, CaseBlock);
2411    Succ = TopBlock;
2412  } else {
2413    // This block is now the implicit successor of other blocks.
2414    Succ = CaseBlock;
2415  }
2416
2417  return Succ;
2418}
2419
2420CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2421  if (Terminator->getSubStmt())
2422    addStmt(Terminator->getSubStmt());
2423
2424  DefaultCaseBlock = Block;
2425
2426  if (!DefaultCaseBlock)
2427    DefaultCaseBlock = createBlock();
2428
2429  // Default statements partition blocks, so this is the top of the basic block
2430  // we were processing (the "default:" is the label).
2431  DefaultCaseBlock->setLabel(Terminator);
2432
2433  if (badCFG)
2434    return 0;
2435
2436  // Unlike case statements, we don't add the default block to the successors
2437  // for the switch statement immediately.  This is done when we finish
2438  // processing the switch statement.  This allows for the default case
2439  // (including a fall-through to the code after the switch statement) to always
2440  // be the last successor of a switch-terminated block.
2441
2442  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2443  Block = NULL;
2444
2445  // This block is now the implicit successor of other blocks.
2446  Succ = DefaultCaseBlock;
2447
2448  return DefaultCaseBlock;
2449}
2450
2451CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2452  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2453  // current block.
2454  CFGBlock *TrySuccessor = NULL;
2455
2456  if (Block) {
2457    if (badCFG)
2458      return 0;
2459    TrySuccessor = Block;
2460  } else TrySuccessor = Succ;
2461
2462  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2463
2464  // Create a new block that will contain the try statement.
2465  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2466  // Add the terminator in the try block.
2467  NewTryTerminatedBlock->setTerminator(Terminator);
2468
2469  bool HasCatchAll = false;
2470  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2471    // The code after the try is the implicit successor.
2472    Succ = TrySuccessor;
2473    CXXCatchStmt *CS = Terminator->getHandler(h);
2474    if (CS->getExceptionDecl() == 0) {
2475      HasCatchAll = true;
2476    }
2477    Block = NULL;
2478    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2479    if (CatchBlock == 0)
2480      return 0;
2481    // Add this block to the list of successors for the block with the try
2482    // statement.
2483    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2484  }
2485  if (!HasCatchAll) {
2486    if (PrevTryTerminatedBlock)
2487      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2488    else
2489      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2490  }
2491
2492  // The code after the try is the implicit successor.
2493  Succ = TrySuccessor;
2494
2495  // Save the current "try" context.
2496  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2497  TryTerminatedBlock = NewTryTerminatedBlock;
2498
2499  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2500  Block = NULL;
2501  Block = addStmt(Terminator->getTryBlock());
2502  return Block;
2503}
2504
2505CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2506  // CXXCatchStmt are treated like labels, so they are the first statement in a
2507  // block.
2508
2509  // Save local scope position because in case of exception variable ScopePos
2510  // won't be restored when traversing AST.
2511  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2512
2513  // Create local scope for possible exception variable.
2514  // Store scope position. Add implicit destructor.
2515  if (VarDecl *VD = CS->getExceptionDecl()) {
2516    LocalScope::const_iterator BeginScopePos = ScopePos;
2517    addLocalScopeForVarDecl(VD);
2518    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2519  }
2520
2521  if (CS->getHandlerBlock())
2522    addStmt(CS->getHandlerBlock());
2523
2524  CFGBlock *CatchBlock = Block;
2525  if (!CatchBlock)
2526    CatchBlock = createBlock();
2527
2528  CatchBlock->setLabel(CS);
2529
2530  if (badCFG)
2531    return 0;
2532
2533  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2534  Block = NULL;
2535
2536  return CatchBlock;
2537}
2538
2539CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2540  // C++0x for-range statements are specified as [stmt.ranged]:
2541  //
2542  // {
2543  //   auto && __range = range-init;
2544  //   for ( auto __begin = begin-expr,
2545  //         __end = end-expr;
2546  //         __begin != __end;
2547  //         ++__begin ) {
2548  //     for-range-declaration = *__begin;
2549  //     statement
2550  //   }
2551  // }
2552
2553  // Save local scope position before the addition of the implicit variables.
2554  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2555
2556  // Create local scopes and destructors for range, begin and end variables.
2557  if (Stmt *Range = S->getRangeStmt())
2558    addLocalScopeForStmt(Range);
2559  if (Stmt *BeginEnd = S->getBeginEndStmt())
2560    addLocalScopeForStmt(BeginEnd);
2561  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2562
2563  LocalScope::const_iterator ContinueScopePos = ScopePos;
2564
2565  // "for" is a control-flow statement.  Thus we stop processing the current
2566  // block.
2567  CFGBlock *LoopSuccessor = NULL;
2568  if (Block) {
2569    if (badCFG)
2570      return 0;
2571    LoopSuccessor = Block;
2572  } else
2573    LoopSuccessor = Succ;
2574
2575  // Save the current value for the break targets.
2576  // All breaks should go to the code following the loop.
2577  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2578  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2579
2580  // The block for the __begin != __end expression.
2581  CFGBlock *ConditionBlock = createBlock(false);
2582  ConditionBlock->setTerminator(S);
2583
2584  // Now add the actual condition to the condition block.
2585  if (Expr *C = S->getCond()) {
2586    Block = ConditionBlock;
2587    CFGBlock *BeginConditionBlock = addStmt(C);
2588    if (badCFG)
2589      return 0;
2590    assert(BeginConditionBlock == ConditionBlock &&
2591           "condition block in for-range was unexpectedly complex");
2592    (void)BeginConditionBlock;
2593  }
2594
2595  // The condition block is the implicit successor for the loop body as well as
2596  // any code above the loop.
2597  Succ = ConditionBlock;
2598
2599  // See if this is a known constant.
2600  TryResult KnownVal(true);
2601
2602  if (S->getCond())
2603    KnownVal = tryEvaluateBool(S->getCond());
2604
2605  // Now create the loop body.
2606  {
2607    assert(S->getBody());
2608
2609    // Save the current values for Block, Succ, and continue targets.
2610    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2611    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2612
2613    // Generate increment code in its own basic block.  This is the target of
2614    // continue statements.
2615    Block = 0;
2616    Succ = addStmt(S->getInc());
2617    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2618
2619    // The starting block for the loop increment is the block that should
2620    // represent the 'loop target' for looping back to the start of the loop.
2621    ContinueJumpTarget.block->setLoopTarget(S);
2622
2623    // Finish up the increment block and prepare to start the loop body.
2624    assert(Block);
2625    if (badCFG)
2626      return 0;
2627    Block = 0;
2628
2629
2630    // Add implicit scope and dtors for loop variable.
2631    addLocalScopeAndDtors(S->getLoopVarStmt());
2632
2633    // Populate a new block to contain the loop body and loop variable.
2634    Block = addStmt(S->getBody());
2635    if (badCFG)
2636      return 0;
2637    Block = addStmt(S->getLoopVarStmt());
2638    if (badCFG)
2639      return 0;
2640
2641    // This new body block is a successor to our condition block.
2642    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2643  }
2644
2645  // Link up the condition block with the code that follows the loop (the
2646  // false branch).
2647  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2648
2649  // Add the initialization statements.
2650  Block = createBlock();
2651  addStmt(S->getBeginEndStmt());
2652  return addStmt(S->getRangeStmt());
2653}
2654
2655CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2656    AddStmtChoice asc) {
2657  if (BuildOpts.AddImplicitDtors) {
2658    // If adding implicit destructors visit the full expression for adding
2659    // destructors of temporaries.
2660    VisitForTemporaryDtors(E->getSubExpr());
2661
2662    // Full expression has to be added as CFGStmt so it will be sequenced
2663    // before destructors of it's temporaries.
2664    asc = asc.withAlwaysAdd(true);
2665  }
2666  return Visit(E->getSubExpr(), asc);
2667}
2668
2669CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2670                                                AddStmtChoice asc) {
2671  if (asc.alwaysAdd(*this, E)) {
2672    autoCreateBlock();
2673    appendStmt(Block, E);
2674
2675    // We do not want to propagate the AlwaysAdd property.
2676    asc = asc.withAlwaysAdd(false);
2677  }
2678  return Visit(E->getSubExpr(), asc);
2679}
2680
2681CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2682                                            AddStmtChoice asc) {
2683  autoCreateBlock();
2684  if (!C->isElidable())
2685    appendStmt(Block, C);
2686
2687  return VisitChildren(C);
2688}
2689
2690CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2691                                                 AddStmtChoice asc) {
2692  if (asc.alwaysAdd(*this, E)) {
2693    autoCreateBlock();
2694    appendStmt(Block, E);
2695    // We do not want to propagate the AlwaysAdd property.
2696    asc = asc.withAlwaysAdd(false);
2697  }
2698  return Visit(E->getSubExpr(), asc);
2699}
2700
2701CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2702                                                  AddStmtChoice asc) {
2703  autoCreateBlock();
2704  appendStmt(Block, C);
2705  return VisitChildren(C);
2706}
2707
2708CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2709                                            AddStmtChoice asc) {
2710  if (asc.alwaysAdd(*this, E)) {
2711    autoCreateBlock();
2712    appendStmt(Block, E);
2713  }
2714  return Visit(E->getSubExpr(), AddStmtChoice());
2715}
2716
2717CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2718  // Lazily create the indirect-goto dispatch block if there isn't one already.
2719  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2720
2721  if (!IBlock) {
2722    IBlock = createBlock(false);
2723    cfg->setIndirectGotoBlock(IBlock);
2724  }
2725
2726  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2727  // current block and create a new one.
2728  if (badCFG)
2729    return 0;
2730
2731  Block = createBlock(false);
2732  Block->setTerminator(I);
2733  addSuccessor(Block, IBlock);
2734  return addStmt(I->getTarget());
2735}
2736
2737CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2738tryAgain:
2739  if (!E) {
2740    badCFG = true;
2741    return NULL;
2742  }
2743  switch (E->getStmtClass()) {
2744    default:
2745      return VisitChildrenForTemporaryDtors(E);
2746
2747    case Stmt::BinaryOperatorClass:
2748      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2749
2750    case Stmt::CXXBindTemporaryExprClass:
2751      return VisitCXXBindTemporaryExprForTemporaryDtors(
2752          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2753
2754    case Stmt::BinaryConditionalOperatorClass:
2755    case Stmt::ConditionalOperatorClass:
2756      return VisitConditionalOperatorForTemporaryDtors(
2757          cast<AbstractConditionalOperator>(E), BindToTemporary);
2758
2759    case Stmt::ImplicitCastExprClass:
2760      // For implicit cast we want BindToTemporary to be passed further.
2761      E = cast<CastExpr>(E)->getSubExpr();
2762      goto tryAgain;
2763
2764    case Stmt::ParenExprClass:
2765      E = cast<ParenExpr>(E)->getSubExpr();
2766      goto tryAgain;
2767
2768    case Stmt::MaterializeTemporaryExprClass:
2769      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2770      goto tryAgain;
2771  }
2772}
2773
2774CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2775  // When visiting children for destructors we want to visit them in reverse
2776  // order. Because there's no reverse iterator for children must to reverse
2777  // them in helper vector.
2778  typedef SmallVector<Stmt *, 4> ChildrenVect;
2779  ChildrenVect ChildrenRev;
2780  for (Stmt::child_range I = E->children(); I; ++I) {
2781    if (*I) ChildrenRev.push_back(*I);
2782  }
2783
2784  CFGBlock *B = Block;
2785  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2786      L = ChildrenRev.rend(); I != L; ++I) {
2787    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2788      B = R;
2789  }
2790  return B;
2791}
2792
2793CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2794  if (E->isLogicalOp()) {
2795    // Destructors for temporaries in LHS expression should be called after
2796    // those for RHS expression. Even if this will unnecessarily create a block,
2797    // this block will be used at least by the full expression.
2798    autoCreateBlock();
2799    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2800    if (badCFG)
2801      return NULL;
2802
2803    Succ = ConfluenceBlock;
2804    Block = NULL;
2805    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2806
2807    if (RHSBlock) {
2808      if (badCFG)
2809        return NULL;
2810
2811      // If RHS expression did produce destructors we need to connect created
2812      // blocks to CFG in same manner as for binary operator itself.
2813      CFGBlock *LHSBlock = createBlock(false);
2814      LHSBlock->setTerminator(CFGTerminator(E, true));
2815
2816      // For binary operator LHS block is before RHS in list of predecessors
2817      // of ConfluenceBlock.
2818      std::reverse(ConfluenceBlock->pred_begin(),
2819          ConfluenceBlock->pred_end());
2820
2821      // See if this is a known constant.
2822      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2823      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2824        KnownVal.negate();
2825
2826      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2827      // itself.
2828      if (E->getOpcode() == BO_LOr) {
2829        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2830        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2831      } else {
2832        assert (E->getOpcode() == BO_LAnd);
2833        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2834        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2835      }
2836
2837      Block = LHSBlock;
2838      return LHSBlock;
2839    }
2840
2841    Block = ConfluenceBlock;
2842    return ConfluenceBlock;
2843  }
2844
2845  if (E->isAssignmentOp()) {
2846    // For assignment operator (=) LHS expression is visited
2847    // before RHS expression. For destructors visit them in reverse order.
2848    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2849    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2850    return LHSBlock ? LHSBlock : RHSBlock;
2851  }
2852
2853  // For any other binary operator RHS expression is visited before
2854  // LHS expression (order of children). For destructors visit them in reverse
2855  // order.
2856  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2857  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2858  return RHSBlock ? RHSBlock : LHSBlock;
2859}
2860
2861CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2862    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2863  // First add destructors for temporaries in subexpression.
2864  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2865  if (!BindToTemporary) {
2866    // If lifetime of temporary is not prolonged (by assigning to constant
2867    // reference) add destructor for it.
2868    autoCreateBlock();
2869    appendTemporaryDtor(Block, E);
2870    B = Block;
2871  }
2872  return B;
2873}
2874
2875CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2876    AbstractConditionalOperator *E, bool BindToTemporary) {
2877  // First add destructors for condition expression.  Even if this will
2878  // unnecessarily create a block, this block will be used at least by the full
2879  // expression.
2880  autoCreateBlock();
2881  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2882  if (badCFG)
2883    return NULL;
2884  if (BinaryConditionalOperator *BCO
2885        = dyn_cast<BinaryConditionalOperator>(E)) {
2886    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2887    if (badCFG)
2888      return NULL;
2889  }
2890
2891  // Try to add block with destructors for LHS expression.
2892  CFGBlock *LHSBlock = NULL;
2893  Succ = ConfluenceBlock;
2894  Block = NULL;
2895  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2896  if (badCFG)
2897    return NULL;
2898
2899  // Try to add block with destructors for RHS expression;
2900  Succ = ConfluenceBlock;
2901  Block = NULL;
2902  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2903                                              BindToTemporary);
2904  if (badCFG)
2905    return NULL;
2906
2907  if (!RHSBlock && !LHSBlock) {
2908    // If neither LHS nor RHS expression had temporaries to destroy don't create
2909    // more blocks.
2910    Block = ConfluenceBlock;
2911    return Block;
2912  }
2913
2914  Block = createBlock(false);
2915  Block->setTerminator(CFGTerminator(E, true));
2916
2917  // See if this is a known constant.
2918  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2919
2920  if (LHSBlock) {
2921    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2922  } else if (KnownVal.isFalse()) {
2923    addSuccessor(Block, NULL);
2924  } else {
2925    addSuccessor(Block, ConfluenceBlock);
2926    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2927  }
2928
2929  if (!RHSBlock)
2930    RHSBlock = ConfluenceBlock;
2931  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2932
2933  return Block;
2934}
2935
2936} // end anonymous namespace
2937
2938/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2939///  no successors or predecessors.  If this is the first block created in the
2940///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2941CFGBlock *CFG::createBlock() {
2942  bool first_block = begin() == end();
2943
2944  // Create the block.
2945  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2946  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2947  Blocks.push_back(Mem, BlkBVC);
2948
2949  // If this is the first block, set it as the Entry and Exit.
2950  if (first_block)
2951    Entry = Exit = &back();
2952
2953  // Return the block.
2954  return &back();
2955}
2956
2957/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2958///  CFG is returned to the caller.
2959CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
2960    const BuildOptions &BO) {
2961  CFGBuilder Builder(C, BO);
2962  return Builder.buildCFG(D, Statement);
2963}
2964
2965const CXXDestructorDecl *
2966CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2967  switch (getKind()) {
2968    case CFGElement::Invalid:
2969    case CFGElement::Statement:
2970    case CFGElement::Initializer:
2971      llvm_unreachable("getDestructorDecl should only be used with "
2972                       "ImplicitDtors");
2973    case CFGElement::AutomaticObjectDtor: {
2974      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2975      QualType ty = var->getType();
2976      ty = ty.getNonReferenceType();
2977      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2978        ty = arrayType->getElementType();
2979      }
2980      const RecordType *recordType = ty->getAs<RecordType>();
2981      const CXXRecordDecl *classDecl =
2982      cast<CXXRecordDecl>(recordType->getDecl());
2983      return classDecl->getDestructor();
2984    }
2985    case CFGElement::TemporaryDtor: {
2986      const CXXBindTemporaryExpr *bindExpr =
2987        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
2988      const CXXTemporary *temp = bindExpr->getTemporary();
2989      return temp->getDestructor();
2990    }
2991    case CFGElement::BaseDtor:
2992    case CFGElement::MemberDtor:
2993
2994      // Not yet supported.
2995      return 0;
2996  }
2997  llvm_unreachable("getKind() returned bogus value");
2998  return 0;
2999}
3000
3001bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3002  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3003    QualType ty = cdecl->getType();
3004    return cast<FunctionType>(ty)->getNoReturnAttr();
3005  }
3006  return false;
3007}
3008
3009//===----------------------------------------------------------------------===//
3010// CFG: Queries for BlkExprs.
3011//===----------------------------------------------------------------------===//
3012
3013namespace {
3014  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3015}
3016
3017static void FindSubExprAssignments(Stmt *S,
3018                                   llvm::SmallPtrSet<Expr*,50>& Set) {
3019  if (!S)
3020    return;
3021
3022  for (Stmt::child_range I = S->children(); I; ++I) {
3023    Stmt *child = *I;
3024    if (!child)
3025      continue;
3026
3027    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3028      if (B->isAssignmentOp()) Set.insert(B);
3029
3030    FindSubExprAssignments(child, Set);
3031  }
3032}
3033
3034static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3035  BlkExprMapTy* M = new BlkExprMapTy();
3036
3037  // Look for assignments that are used as subexpressions.  These are the only
3038  // assignments that we want to *possibly* register as a block-level
3039  // expression.  Basically, if an assignment occurs both in a subexpression and
3040  // at the block-level, it is a block-level expression.
3041  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
3042
3043  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3044    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3045      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3046        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3047
3048  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3049
3050    // Iterate over the statements again on identify the Expr* and Stmt* at the
3051    // block-level that are block-level expressions.
3052
3053    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3054      const CFGStmt *CS = BI->getAs<CFGStmt>();
3055      if (!CS)
3056        continue;
3057      if (Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3058        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3059
3060        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3061          // Assignment expressions that are not nested within another
3062          // expression are really "statements" whose value is never used by
3063          // another expression.
3064          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3065            continue;
3066        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3067          // Special handling for statement expressions.  The last statement in
3068          // the statement expression is also a block-level expr.
3069          const CompoundStmt *C = SE->getSubStmt();
3070          if (!C->body_empty()) {
3071            const Stmt *Last = C->body_back();
3072            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3073              Last = LastEx->IgnoreParens();
3074            unsigned x = M->size();
3075            (*M)[Last] = x;
3076          }
3077        }
3078
3079        unsigned x = M->size();
3080        (*M)[Exp] = x;
3081      }
3082    }
3083
3084    // Look at terminators.  The condition is a block-level expression.
3085
3086    Stmt *S = (*I)->getTerminatorCondition();
3087
3088    if (S && M->find(S) == M->end()) {
3089      unsigned x = M->size();
3090      (*M)[S] = x;
3091    }
3092  }
3093
3094  return M;
3095}
3096
3097CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3098  assert(S != NULL);
3099  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3100
3101  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3102  BlkExprMapTy::iterator I = M->find(S);
3103  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3104}
3105
3106unsigned CFG::getNumBlkExprs() {
3107  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3108    return M->size();
3109
3110  // We assume callers interested in the number of BlkExprs will want
3111  // the map constructed if it doesn't already exist.
3112  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3113  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3114}
3115
3116//===----------------------------------------------------------------------===//
3117// Filtered walking of the CFG.
3118//===----------------------------------------------------------------------===//
3119
3120bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3121        const CFGBlock *From, const CFGBlock *To) {
3122
3123  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3124    // If the 'To' has no label or is labeled but the label isn't a
3125    // CaseStmt then filter this edge.
3126    if (const SwitchStmt *S =
3127        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3128      if (S->isAllEnumCasesCovered()) {
3129        const Stmt *L = To->getLabel();
3130        if (!L || !isa<CaseStmt>(L))
3131          return true;
3132      }
3133    }
3134  }
3135
3136  return false;
3137}
3138
3139//===----------------------------------------------------------------------===//
3140// Cleanup: CFG dstor.
3141//===----------------------------------------------------------------------===//
3142
3143CFG::~CFG() {
3144  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3145}
3146
3147//===----------------------------------------------------------------------===//
3148// CFG pretty printing
3149//===----------------------------------------------------------------------===//
3150
3151namespace {
3152
3153class StmtPrinterHelper : public PrinterHelper  {
3154  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3155  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3156  StmtMapTy StmtMap;
3157  DeclMapTy DeclMap;
3158  signed currentBlock;
3159  unsigned currentStmt;
3160  const LangOptions &LangOpts;
3161public:
3162
3163  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3164    : currentBlock(0), currentStmt(0), LangOpts(LO)
3165  {
3166    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3167      unsigned j = 1;
3168      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3169           BI != BEnd; ++BI, ++j ) {
3170        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3171          const Stmt *stmt= SE->getStmt();
3172          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3173          StmtMap[stmt] = P;
3174
3175          switch (stmt->getStmtClass()) {
3176            case Stmt::DeclStmtClass:
3177                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3178                break;
3179            case Stmt::IfStmtClass: {
3180              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3181              if (var)
3182                DeclMap[var] = P;
3183              break;
3184            }
3185            case Stmt::ForStmtClass: {
3186              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3187              if (var)
3188                DeclMap[var] = P;
3189              break;
3190            }
3191            case Stmt::WhileStmtClass: {
3192              const VarDecl *var =
3193                cast<WhileStmt>(stmt)->getConditionVariable();
3194              if (var)
3195                DeclMap[var] = P;
3196              break;
3197            }
3198            case Stmt::SwitchStmtClass: {
3199              const VarDecl *var =
3200                cast<SwitchStmt>(stmt)->getConditionVariable();
3201              if (var)
3202                DeclMap[var] = P;
3203              break;
3204            }
3205            case Stmt::CXXCatchStmtClass: {
3206              const VarDecl *var =
3207                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3208              if (var)
3209                DeclMap[var] = P;
3210              break;
3211            }
3212            default:
3213              break;
3214          }
3215        }
3216      }
3217    }
3218  }
3219
3220
3221  virtual ~StmtPrinterHelper() {}
3222
3223  const LangOptions &getLangOpts() const { return LangOpts; }
3224  void setBlockID(signed i) { currentBlock = i; }
3225  void setStmtID(unsigned i) { currentStmt = i; }
3226
3227  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3228    StmtMapTy::iterator I = StmtMap.find(S);
3229
3230    if (I == StmtMap.end())
3231      return false;
3232
3233    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3234                          && I->second.second == currentStmt) {
3235      return false;
3236    }
3237
3238    OS << "[B" << I->second.first << "." << I->second.second << "]";
3239    return true;
3240  }
3241
3242  bool handleDecl(const Decl *D, raw_ostream &OS) {
3243    DeclMapTy::iterator I = DeclMap.find(D);
3244
3245    if (I == DeclMap.end())
3246      return false;
3247
3248    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3249                          && I->second.second == currentStmt) {
3250      return false;
3251    }
3252
3253    OS << "[B" << I->second.first << "." << I->second.second << "]";
3254    return true;
3255  }
3256};
3257} // end anonymous namespace
3258
3259
3260namespace {
3261class CFGBlockTerminatorPrint
3262  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3263
3264  raw_ostream &OS;
3265  StmtPrinterHelper* Helper;
3266  PrintingPolicy Policy;
3267public:
3268  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3269                          const PrintingPolicy &Policy)
3270    : OS(os), Helper(helper), Policy(Policy) {}
3271
3272  void VisitIfStmt(IfStmt *I) {
3273    OS << "if ";
3274    I->getCond()->printPretty(OS,Helper,Policy);
3275  }
3276
3277  // Default case.
3278  void VisitStmt(Stmt *Terminator) {
3279    Terminator->printPretty(OS, Helper, Policy);
3280  }
3281
3282  void VisitForStmt(ForStmt *F) {
3283    OS << "for (" ;
3284    if (F->getInit())
3285      OS << "...";
3286    OS << "; ";
3287    if (Stmt *C = F->getCond())
3288      C->printPretty(OS, Helper, Policy);
3289    OS << "; ";
3290    if (F->getInc())
3291      OS << "...";
3292    OS << ")";
3293  }
3294
3295  void VisitWhileStmt(WhileStmt *W) {
3296    OS << "while " ;
3297    if (Stmt *C = W->getCond())
3298      C->printPretty(OS, Helper, Policy);
3299  }
3300
3301  void VisitDoStmt(DoStmt *D) {
3302    OS << "do ... while ";
3303    if (Stmt *C = D->getCond())
3304      C->printPretty(OS, Helper, Policy);
3305  }
3306
3307  void VisitSwitchStmt(SwitchStmt *Terminator) {
3308    OS << "switch ";
3309    Terminator->getCond()->printPretty(OS, Helper, Policy);
3310  }
3311
3312  void VisitCXXTryStmt(CXXTryStmt *CS) {
3313    OS << "try ...";
3314  }
3315
3316  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3317    C->getCond()->printPretty(OS, Helper, Policy);
3318    OS << " ? ... : ...";
3319  }
3320
3321  void VisitChooseExpr(ChooseExpr *C) {
3322    OS << "__builtin_choose_expr( ";
3323    C->getCond()->printPretty(OS, Helper, Policy);
3324    OS << " )";
3325  }
3326
3327  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3328    OS << "goto *";
3329    I->getTarget()->printPretty(OS, Helper, Policy);
3330  }
3331
3332  void VisitBinaryOperator(BinaryOperator* B) {
3333    if (!B->isLogicalOp()) {
3334      VisitExpr(B);
3335      return;
3336    }
3337
3338    B->getLHS()->printPretty(OS, Helper, Policy);
3339
3340    switch (B->getOpcode()) {
3341      case BO_LOr:
3342        OS << " || ...";
3343        return;
3344      case BO_LAnd:
3345        OS << " && ...";
3346        return;
3347      default:
3348        assert(false && "Invalid logical operator.");
3349    }
3350  }
3351
3352  void VisitExpr(Expr *E) {
3353    E->printPretty(OS, Helper, Policy);
3354  }
3355};
3356} // end anonymous namespace
3357
3358static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3359                       const CFGElement &E) {
3360  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3361    Stmt *S = CS->getStmt();
3362
3363    if (Helper) {
3364
3365      // special printing for statement-expressions.
3366      if (StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3367        CompoundStmt *Sub = SE->getSubStmt();
3368
3369        if (Sub->children()) {
3370          OS << "({ ... ; ";
3371          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3372          OS << " })\n";
3373          return;
3374        }
3375      }
3376      // special printing for comma expressions.
3377      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3378        if (B->getOpcode() == BO_Comma) {
3379          OS << "... , ";
3380          Helper->handledStmt(B->getRHS(),OS);
3381          OS << '\n';
3382          return;
3383        }
3384      }
3385    }
3386    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3387
3388    if (isa<CXXOperatorCallExpr>(S)) {
3389      OS << " (OperatorCall)";
3390    } else if (isa<CXXBindTemporaryExpr>(S)) {
3391      OS << " (BindTemporary)";
3392    }
3393
3394    // Expressions need a newline.
3395    if (isa<Expr>(S))
3396      OS << '\n';
3397
3398  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3399    const CXXCtorInitializer *I = IE->getInitializer();
3400    if (I->isBaseInitializer())
3401      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3402    else OS << I->getAnyMember()->getName();
3403
3404    OS << "(";
3405    if (Expr *IE = I->getInit())
3406      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3407    OS << ")";
3408
3409    if (I->isBaseInitializer())
3410      OS << " (Base initializer)\n";
3411    else OS << " (Member initializer)\n";
3412
3413  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3414    const VarDecl *VD = DE->getVarDecl();
3415    Helper->handleDecl(VD, OS);
3416
3417    const Type* T = VD->getType().getTypePtr();
3418    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3419      T = RT->getPointeeType().getTypePtr();
3420    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3421      T = ET;
3422
3423    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3424    OS << " (Implicit destructor)\n";
3425
3426  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3427    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3428    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3429    OS << " (Base object destructor)\n";
3430
3431  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3432    const FieldDecl *FD = ME->getFieldDecl();
3433
3434    const Type *T = FD->getType().getTypePtr();
3435    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3436      T = ET;
3437
3438    OS << "this->" << FD->getName();
3439    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3440    OS << " (Member object destructor)\n";
3441
3442  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3443    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3444    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3445    OS << " (Temporary object destructor)\n";
3446  }
3447}
3448
3449static void print_block(raw_ostream &OS, const CFG* cfg,
3450                        const CFGBlock &B,
3451                        StmtPrinterHelper* Helper, bool print_edges) {
3452
3453  if (Helper) Helper->setBlockID(B.getBlockID());
3454
3455  // Print the header.
3456  OS << "\n [ B" << B.getBlockID();
3457
3458  if (&B == &cfg->getEntry())
3459    OS << " (ENTRY) ]\n";
3460  else if (&B == &cfg->getExit())
3461    OS << " (EXIT) ]\n";
3462  else if (&B == cfg->getIndirectGotoBlock())
3463    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3464  else
3465    OS << " ]\n";
3466
3467  // Print the label of this block.
3468  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3469
3470    if (print_edges)
3471      OS << "    ";
3472
3473    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3474      OS << L->getName();
3475    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3476      OS << "case ";
3477      C->getLHS()->printPretty(OS, Helper,
3478                               PrintingPolicy(Helper->getLangOpts()));
3479      if (C->getRHS()) {
3480        OS << " ... ";
3481        C->getRHS()->printPretty(OS, Helper,
3482                                 PrintingPolicy(Helper->getLangOpts()));
3483      }
3484    } else if (isa<DefaultStmt>(Label))
3485      OS << "default";
3486    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3487      OS << "catch (";
3488      if (CS->getExceptionDecl())
3489        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3490                                      0);
3491      else
3492        OS << "...";
3493      OS << ")";
3494
3495    } else
3496      assert(false && "Invalid label statement in CFGBlock.");
3497
3498    OS << ":\n";
3499  }
3500
3501  // Iterate through the statements in the block and print them.
3502  unsigned j = 1;
3503
3504  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3505       I != E ; ++I, ++j ) {
3506
3507    // Print the statement # in the basic block and the statement itself.
3508    if (print_edges)
3509      OS << "    ";
3510
3511    OS << llvm::format("%3d", j) << ": ";
3512
3513    if (Helper)
3514      Helper->setStmtID(j);
3515
3516    print_elem(OS,Helper,*I);
3517  }
3518
3519  // Print the terminator of this block.
3520  if (B.getTerminator()) {
3521    if (print_edges)
3522      OS << "    ";
3523
3524    OS << "  T: ";
3525
3526    if (Helper) Helper->setBlockID(-1);
3527
3528    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3529                                     PrintingPolicy(Helper->getLangOpts()));
3530    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3531    OS << '\n';
3532  }
3533
3534  if (print_edges) {
3535    // Print the predecessors of this block.
3536    OS << "    Predecessors (" << B.pred_size() << "):";
3537    unsigned i = 0;
3538
3539    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3540         I != E; ++I, ++i) {
3541
3542      if (i == 8 || (i-8) == 0)
3543        OS << "\n     ";
3544
3545      OS << " B" << (*I)->getBlockID();
3546    }
3547
3548    OS << '\n';
3549
3550    // Print the successors of this block.
3551    OS << "    Successors (" << B.succ_size() << "):";
3552    i = 0;
3553
3554    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3555         I != E; ++I, ++i) {
3556
3557      if (i == 8 || (i-8) % 10 == 0)
3558        OS << "\n    ";
3559
3560      if (*I)
3561        OS << " B" << (*I)->getBlockID();
3562      else
3563        OS  << " NULL";
3564    }
3565
3566    OS << '\n';
3567  }
3568}
3569
3570
3571/// dump - A simple pretty printer of a CFG that outputs to stderr.
3572void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3573
3574/// print - A simple pretty printer of a CFG that outputs to an ostream.
3575void CFG::print(raw_ostream &OS, const LangOptions &LO) const {
3576  StmtPrinterHelper Helper(this, LO);
3577
3578  // Print the entry block.
3579  print_block(OS, this, getEntry(), &Helper, true);
3580
3581  // Iterate through the CFGBlocks and print them one by one.
3582  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3583    // Skip the entry block, because we already printed it.
3584    if (&(**I) == &getEntry() || &(**I) == &getExit())
3585      continue;
3586
3587    print_block(OS, this, **I, &Helper, true);
3588  }
3589
3590  // Print the exit block.
3591  print_block(OS, this, getExit(), &Helper, true);
3592  OS.flush();
3593}
3594
3595/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3596void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3597  print(llvm::errs(), cfg, LO);
3598}
3599
3600/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3601///   Generally this will only be called from CFG::print.
3602void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3603                     const LangOptions &LO) const {
3604  StmtPrinterHelper Helper(cfg, LO);
3605  print_block(OS, cfg, *this, &Helper, true);
3606}
3607
3608/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3609void CFGBlock::printTerminator(raw_ostream &OS,
3610                               const LangOptions &LO) const {
3611  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3612  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3613}
3614
3615Stmt *CFGBlock::getTerminatorCondition() {
3616  Stmt *Terminator = this->Terminator;
3617  if (!Terminator)
3618    return NULL;
3619
3620  Expr *E = NULL;
3621
3622  switch (Terminator->getStmtClass()) {
3623    default:
3624      break;
3625
3626    case Stmt::ForStmtClass:
3627      E = cast<ForStmt>(Terminator)->getCond();
3628      break;
3629
3630    case Stmt::WhileStmtClass:
3631      E = cast<WhileStmt>(Terminator)->getCond();
3632      break;
3633
3634    case Stmt::DoStmtClass:
3635      E = cast<DoStmt>(Terminator)->getCond();
3636      break;
3637
3638    case Stmt::IfStmtClass:
3639      E = cast<IfStmt>(Terminator)->getCond();
3640      break;
3641
3642    case Stmt::ChooseExprClass:
3643      E = cast<ChooseExpr>(Terminator)->getCond();
3644      break;
3645
3646    case Stmt::IndirectGotoStmtClass:
3647      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3648      break;
3649
3650    case Stmt::SwitchStmtClass:
3651      E = cast<SwitchStmt>(Terminator)->getCond();
3652      break;
3653
3654    case Stmt::BinaryConditionalOperatorClass:
3655      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3656      break;
3657
3658    case Stmt::ConditionalOperatorClass:
3659      E = cast<ConditionalOperator>(Terminator)->getCond();
3660      break;
3661
3662    case Stmt::BinaryOperatorClass: // '&&' and '||'
3663      E = cast<BinaryOperator>(Terminator)->getLHS();
3664      break;
3665
3666    case Stmt::ObjCForCollectionStmtClass:
3667      return Terminator;
3668  }
3669
3670  return E ? E->IgnoreParens() : NULL;
3671}
3672
3673//===----------------------------------------------------------------------===//
3674// CFG Graphviz Visualization
3675//===----------------------------------------------------------------------===//
3676
3677
3678#ifndef NDEBUG
3679static StmtPrinterHelper* GraphHelper;
3680#endif
3681
3682void CFG::viewCFG(const LangOptions &LO) const {
3683#ifndef NDEBUG
3684  StmtPrinterHelper H(this, LO);
3685  GraphHelper = &H;
3686  llvm::ViewGraph(this,"CFG");
3687  GraphHelper = NULL;
3688#endif
3689}
3690
3691namespace llvm {
3692template<>
3693struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3694
3695  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3696
3697  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3698
3699#ifndef NDEBUG
3700    std::string OutSStr;
3701    llvm::raw_string_ostream Out(OutSStr);
3702    print_block(Out,Graph, *Node, GraphHelper, false);
3703    std::string& OutStr = Out.str();
3704
3705    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3706
3707    // Process string output to make it nicer...
3708    for (unsigned i = 0; i != OutStr.length(); ++i)
3709      if (OutStr[i] == '\n') {                            // Left justify
3710        OutStr[i] = '\\';
3711        OutStr.insert(OutStr.begin()+i+1, 'l');
3712      }
3713
3714    return OutStr;
3715#else
3716    return "";
3717#endif
3718  }
3719};
3720} // end namespace llvm
3721