CFG.cpp revision 5e6b9b1985b2fa574dcec76c8a5b541713e05e6c
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// LocalScope - Node in tree of local scopes created for C++ implicit
56/// destructor calls generation. It contains list of automatic variables
57/// declared in the scope and link to position in previous scope this scope
58/// began in.
59///
60/// The process of creating local scopes is as follows:
61/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
62/// - Before processing statements in scope (e.g. CompoundStmt) create
63///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
64///   and set CFGBuilder::ScopePos to the end of new scope,
65/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
66///   at this VarDecl,
67/// - For every normal (without jump) end of scope add to CFGBlock destructors
68///   for objects in the current scope,
69/// - For every jump add to CFGBlock destructors for objects
70///   between CFGBuilder::ScopePos and local scope position saved for jump
71///   target. Thanks to C++ restrictions on goto jumps we can be sure that
72///   jump target position will be on the path to root from CFGBuilder::ScopePos
73///   (adding any variable that doesn't need constructor to be called to
74///   LocalScope can break this assumption),
75///
76class LocalScope {
77public:
78  typedef llvm::SmallVector<VarDecl*, 4> AutomaticVarsTy;
79
80  /// const_iterator - Iterates local scope backwards and jumps to previous
81  /// scope on reaching the beginning of currently iterated scope.
82  class const_iterator {
83    const LocalScope* Scope;
84
85    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
86    /// Invalid iterator (with null Scope) has VarIter equal to 0.
87    unsigned VarIter;
88
89  public:
90    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
91    /// Incrementing invalid iterator is allowed and will result in invalid
92    /// iterator.
93    const_iterator()
94        : Scope(NULL), VarIter(0) {}
95
96    /// Create valid iterator. In case when S.Prev is an invalid iterator and
97    /// I is equal to 0, this will create invalid iterator.
98    const_iterator(const LocalScope& S, unsigned I)
99        : Scope(&S), VarIter(I) {
100      // Iterator to "end" of scope is not allowed. Handle it by going up
101      // in scopes tree possibly up to invalid iterator in the root.
102      if (VarIter == 0 && Scope)
103        *this = Scope->Prev;
104    }
105
106    VarDecl* const* operator->() const {
107      assert (Scope && "Dereferencing invalid iterator is not allowed");
108      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
109      return &Scope->Vars[VarIter - 1];
110    }
111    VarDecl* operator*() const {
112      return *this->operator->();
113    }
114
115    const_iterator& operator++() {
116      if (!Scope)
117        return *this;
118
119      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
120      --VarIter;
121      if (VarIter == 0)
122        *this = Scope->Prev;
123      return *this;
124    }
125    const_iterator operator++(int) {
126      const_iterator P = *this;
127      ++*this;
128      return P;
129    }
130
131    bool operator==(const const_iterator& rhs) const {
132      return Scope == rhs.Scope && VarIter == rhs.VarIter;
133    }
134    bool operator!=(const const_iterator& rhs) const {
135      return !(*this == rhs);
136    }
137
138    operator bool() const {
139      return *this != const_iterator();
140    }
141
142    int distance(const_iterator L);
143  };
144
145  friend class const_iterator;
146
147private:
148  /// Automatic variables in order of declaration.
149  AutomaticVarsTy Vars;
150  /// Iterator to variable in previous scope that was declared just before
151  /// begin of this scope.
152  const_iterator Prev;
153
154public:
155  /// Constructs empty scope linked to previous scope in specified place.
156  LocalScope(const_iterator P)
157      : Vars()
158      , Prev(P) {}
159
160  /// Begin of scope in direction of CFG building (backwards).
161  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
162
163  void addVar(VarDecl* VD) {
164    Vars.push_back(VD);
165  }
166};
167
168/// distance - Calculates distance from this to L. L must be reachable from this
169/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
170/// number of scopes between this and L.
171int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
172  int D = 0;
173  const_iterator F = *this;
174  while (F.Scope != L.Scope) {
175    assert (F != const_iterator()
176        && "L iterator is not reachable from F iterator.");
177    D += F.VarIter;
178    F = F.Scope->Prev;
179  }
180  D += F.VarIter - L.VarIter;
181  return D;
182}
183
184/// BlockScopePosPair - Structure for specifying position in CFG during its
185/// build process. It consists of CFGBlock that specifies position in CFG graph
186/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
187struct BlockScopePosPair {
188  BlockScopePosPair() {}
189  BlockScopePosPair(CFGBlock* B, LocalScope::const_iterator S)
190      : Block(B), ScopePos(S) {}
191
192  CFGBlock*                   Block;
193  LocalScope::const_iterator  ScopePos;
194};
195
196/// CFGBuilder - This class implements CFG construction from an AST.
197///   The builder is stateful: an instance of the builder should be used to only
198///   construct a single CFG.
199///
200///   Example usage:
201///
202///     CFGBuilder builder;
203///     CFG* cfg = builder.BuildAST(stmt1);
204///
205///  CFG construction is done via a recursive walk of an AST.  We actually parse
206///  the AST in reverse order so that the successor of a basic block is
207///  constructed prior to its predecessor.  This allows us to nicely capture
208///  implicit fall-throughs without extra basic blocks.
209///
210class CFGBuilder {
211  typedef BlockScopePosPair JumpTarget;
212  typedef BlockScopePosPair JumpSource;
213
214  ASTContext *Context;
215  llvm::OwningPtr<CFG> cfg;
216
217  CFGBlock* Block;
218  CFGBlock* Succ;
219  JumpTarget ContinueJumpTarget;
220  JumpTarget BreakJumpTarget;
221  CFGBlock* SwitchTerminatedBlock;
222  CFGBlock* DefaultCaseBlock;
223  CFGBlock* TryTerminatedBlock;
224
225  // Current position in local scope.
226  LocalScope::const_iterator ScopePos;
227
228  // LabelMap records the mapping from Label expressions to their jump targets.
229  typedef llvm::DenseMap<LabelStmt*, JumpTarget> LabelMapTy;
230  LabelMapTy LabelMap;
231
232  // A list of blocks that end with a "goto" that must be backpatched to their
233  // resolved targets upon completion of CFG construction.
234  typedef std::vector<JumpSource> BackpatchBlocksTy;
235  BackpatchBlocksTy BackpatchBlocks;
236
237  // A list of labels whose address has been taken (for indirect gotos).
238  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
239  LabelSetTy AddressTakenLabels;
240
241  bool badCFG;
242  CFG::BuildOptions BuildOpts;
243
244public:
245  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
246                          Block(NULL), Succ(NULL),
247                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
248                          TryTerminatedBlock(NULL), badCFG(false) {}
249
250  // buildCFG - Used by external clients to construct the CFG.
251  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
252      CFG::BuildOptions BO);
253
254private:
255  // Visitors to walk an AST and construct the CFG.
256  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
257  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
258  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
259  CFGBlock *VisitBreakStmt(BreakStmt *B);
260  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
261  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
262  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
263  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
264  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
265  CFGBlock *VisitCaseStmt(CaseStmt *C);
266  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
267  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
268  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
269  CFGBlock *VisitContinueStmt(ContinueStmt *C);
270  CFGBlock *VisitDeclStmt(DeclStmt *DS);
271  CFGBlock *VisitDeclSubExpr(Decl* D);
272  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
273  CFGBlock *VisitDoStmt(DoStmt *D);
274  CFGBlock *VisitForStmt(ForStmt *F);
275  CFGBlock *VisitGotoStmt(GotoStmt* G);
276  CFGBlock *VisitIfStmt(IfStmt *I);
277  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
278  CFGBlock *VisitLabelStmt(LabelStmt *L);
279  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
280  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
281  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
282  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
283  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
284  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
285  CFGBlock *VisitReturnStmt(ReturnStmt* R);
286  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
287  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
288  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
289  CFGBlock *VisitWhileStmt(WhileStmt *W);
290
291  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
292  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
293  CFGBlock *VisitChildren(Stmt* S);
294
295  // NYS == Not Yet Supported
296  CFGBlock* NYS() {
297    badCFG = true;
298    return Block;
299  }
300
301  void autoCreateBlock() { if (!Block) Block = createBlock(); }
302  CFGBlock *createBlock(bool add_successor = true);
303
304  CFGBlock *addStmt(Stmt *S) {
305    return Visit(S, AddStmtChoice::AlwaysAdd);
306  }
307  CFGBlock *addInitializer(CXXBaseOrMemberInitializer *I);
308  void addAutomaticObjDtors(LocalScope::const_iterator B,
309                            LocalScope::const_iterator E, Stmt* S);
310  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
311
312  // Local scopes creation.
313  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
314
315  void addLocalScopeForStmt(Stmt* S);
316  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
317  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
318
319  void addLocalScopeAndDtors(Stmt* S);
320
321  // Interface to CFGBlock - adding CFGElements.
322  void AppendStmt(CFGBlock *B, Stmt *S,
323                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
324    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
325  }
326  void appendInitializer(CFGBlock *B, CXXBaseOrMemberInitializer *I) {
327    B->appendInitializer(I, cfg->getBumpVectorContext());
328  }
329  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
330    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
331  }
332  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
333    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
334  }
335
336  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
337    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
338  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
339      LocalScope::const_iterator E, Stmt* S);
340  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
341      LocalScope::const_iterator B, LocalScope::const_iterator E);
342
343  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
344    B->addSuccessor(S, cfg->getBumpVectorContext());
345  }
346
347  /// TryResult - a class representing a variant over the values
348  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
349  ///  and is used by the CFGBuilder to decide if a branch condition
350  ///  can be decided up front during CFG construction.
351  class TryResult {
352    int X;
353  public:
354    TryResult(bool b) : X(b ? 1 : 0) {}
355    TryResult() : X(-1) {}
356
357    bool isTrue() const { return X == 1; }
358    bool isFalse() const { return X == 0; }
359    bool isKnown() const { return X >= 0; }
360    void negate() {
361      assert(isKnown());
362      X ^= 0x1;
363    }
364  };
365
366  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
367  /// if we can evaluate to a known value, otherwise return -1.
368  TryResult TryEvaluateBool(Expr *S) {
369    if (!BuildOpts.PruneTriviallyFalseEdges)
370      return TryResult();
371
372    Expr::EvalResult Result;
373    if (!S->isTypeDependent() && !S->isValueDependent() &&
374        S->Evaluate(Result, *Context) && Result.Val.isInt())
375      return Result.Val.getInt().getBoolValue();
376
377    return TryResult();
378  }
379};
380
381// FIXME: Add support for dependent-sized array types in C++?
382// Does it even make sense to build a CFG for an uninstantiated template?
383static VariableArrayType* FindVA(Type* t) {
384  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
385    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
386      if (vat->getSizeExpr())
387        return vat;
388
389    t = vt->getElementType().getTypePtr();
390  }
391
392  return 0;
393}
394
395/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
396///  arbitrary statement.  Examples include a single expression or a function
397///  body (compound statement).  The ownership of the returned CFG is
398///  transferred to the caller.  If CFG construction fails, this method returns
399///  NULL.
400CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
401    CFG::BuildOptions BO) {
402
403  Context = C;
404  assert(cfg.get());
405  if (!Statement)
406    return NULL;
407
408  BuildOpts = BO;
409
410  // Create an empty block that will serve as the exit block for the CFG.  Since
411  // this is the first block added to the CFG, it will be implicitly registered
412  // as the exit block.
413  Succ = createBlock();
414  assert(Succ == &cfg->getExit());
415  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
416
417  if (BuildOpts.AddImplicitDtors)
418    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
419      addImplicitDtorsForDestructor(DD);
420
421  // Visit the statements and create the CFG.
422  CFGBlock *B = addStmt(Statement);
423
424  if (badCFG)
425    return NULL;
426
427  // For C++ constructor add initializers to CFG.
428  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
429    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
430        E = CD->init_rend(); I != E; ++I) {
431      B = addInitializer(*I);
432      if (badCFG)
433        return NULL;
434    }
435  }
436
437  if (B)
438    Succ = B;
439
440  // Backpatch the gotos whose label -> block mappings we didn't know when we
441  // encountered them.
442  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
443                                   E = BackpatchBlocks.end(); I != E; ++I ) {
444
445    CFGBlock* B = I->Block;
446    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
447    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
448
449    // If there is no target for the goto, then we are looking at an
450    // incomplete AST.  Handle this by not registering a successor.
451    if (LI == LabelMap.end()) continue;
452
453    JumpTarget JT = LI->second;
454    prependAutomaticObjDtorsWithTerminator(B, I->ScopePos, JT.ScopePos);
455    AddSuccessor(B, JT.Block);
456  }
457
458  // Add successors to the Indirect Goto Dispatch block (if we have one).
459  if (CFGBlock* B = cfg->getIndirectGotoBlock())
460    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
461                              E = AddressTakenLabels.end(); I != E; ++I ) {
462
463      // Lookup the target block.
464      LabelMapTy::iterator LI = LabelMap.find(*I);
465
466      // If there is no target block that contains label, then we are looking
467      // at an incomplete AST.  Handle this by not registering a successor.
468      if (LI == LabelMap.end()) continue;
469
470      AddSuccessor(B, LI->second.Block);
471    }
472
473  // Create an empty entry block that has no predecessors.
474  cfg->setEntry(createBlock());
475
476  return cfg.take();
477}
478
479/// createBlock - Used to lazily create blocks that are connected
480///  to the current (global) succcessor.
481CFGBlock* CFGBuilder::createBlock(bool add_successor) {
482  CFGBlock* B = cfg->createBlock();
483  if (add_successor && Succ)
484    AddSuccessor(B, Succ);
485  return B;
486}
487
488/// addInitializer - Add C++ base or member initializer element to CFG.
489CFGBlock *CFGBuilder::addInitializer(CXXBaseOrMemberInitializer *I) {
490  if (!BuildOpts.AddInitializers)
491    return Block;
492
493  autoCreateBlock();
494  appendInitializer(Block, I);
495
496  if (Expr *Init = I->getInit()) {
497    AddStmtChoice::Kind K = AddStmtChoice::NotAlwaysAdd;
498    if (FieldDecl *FD = I->getMember())
499      if (FD->getType()->isReferenceType())
500        K = AddStmtChoice::AsLValueNotAlwaysAdd;
501
502    return Visit(Init, AddStmtChoice(K));
503  }
504
505  return Block;
506}
507
508/// addAutomaticObjDtors - Add to current block automatic objects destructors
509/// for objects in range of local scope positions. Use S as trigger statement
510/// for destructors.
511void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
512                                      LocalScope::const_iterator E, Stmt* S) {
513  if (!BuildOpts.AddImplicitDtors)
514    return;
515
516  if (B == E)
517    return;
518
519  autoCreateBlock();
520  appendAutomaticObjDtors(Block, B, E, S);
521}
522
523/// addImplicitDtorsForDestructor - Add implicit destructors generated for
524/// base and member objects in destructor.
525void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
526  assert (BuildOpts.AddImplicitDtors
527      && "Can be called only when dtors should be added");
528  const CXXRecordDecl *RD = DD->getParent();
529
530  // At the end destroy virtual base objects.
531  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
532      VE = RD->vbases_end(); VI != VE; ++VI) {
533    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
534    if (!CD->hasTrivialDestructor()) {
535      autoCreateBlock();
536      appendBaseDtor(Block, VI);
537    }
538  }
539
540  // Before virtual bases destroy direct base objects.
541  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
542      BE = RD->bases_end(); BI != BE; ++BI) {
543    if (!BI->isVirtual()) {
544      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
545      if (!CD->hasTrivialDestructor()) {
546        autoCreateBlock();
547        appendBaseDtor(Block, BI);
548      }
549    }
550  }
551
552  // First destroy member objects.
553  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
554      FE = RD->field_end(); FI != FE; ++FI) {
555    if (const CXXRecordDecl *CD = FI->getType()->getAsCXXRecordDecl())
556      if (!CD->hasTrivialDestructor()) {
557        autoCreateBlock();
558        appendMemberDtor(Block, *FI);
559      }
560  }
561}
562
563/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
564/// way return valid LocalScope object.
565LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
566  if (!Scope) {
567    Scope = cfg->getAllocator().Allocate<LocalScope>();
568    new (Scope) LocalScope(ScopePos);
569  }
570  return Scope;
571}
572
573/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
574/// that should create implicit scope (e.g. if/else substatements).
575void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
576  if (!BuildOpts.AddImplicitDtors)
577    return;
578
579  LocalScope *Scope = 0;
580
581  // For compound statement we will be creating explicit scope.
582  if (CompoundStmt* CS = dyn_cast<CompoundStmt>(S)) {
583    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
584        ; BI != BE; ++BI) {
585      Stmt* SI = *BI;
586      if (LabelStmt* LS = dyn_cast<LabelStmt>(SI))
587        SI = LS->getSubStmt();
588      if (DeclStmt* DS = dyn_cast<DeclStmt>(SI))
589        Scope = addLocalScopeForDeclStmt(DS, Scope);
590    }
591    return;
592  }
593
594  // For any other statement scope will be implicit and as such will be
595  // interesting only for DeclStmt.
596  if (LabelStmt* LS = dyn_cast<LabelStmt>(S))
597    S = LS->getSubStmt();
598  if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
599    addLocalScopeForDeclStmt(DS);
600}
601
602/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
603/// reuse Scope if not NULL.
604LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
605                                                 LocalScope* Scope) {
606  if (!BuildOpts.AddImplicitDtors)
607    return Scope;
608
609  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
610      ; DI != DE; ++DI) {
611    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
612      Scope = addLocalScopeForVarDecl(VD, Scope);
613  }
614  return Scope;
615}
616
617/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
618/// create add scope for automatic objects and temporary objects bound to
619/// const reference. Will reuse Scope if not NULL.
620LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
621                                                LocalScope* Scope) {
622  if (!BuildOpts.AddImplicitDtors)
623    return Scope;
624
625  // Check if variable is local.
626  switch (VD->getStorageClass()) {
627  case SC_None:
628  case SC_Auto:
629  case SC_Register:
630    break;
631  default: return Scope;
632  }
633
634  // Check for const references bound to temporary. Set type to pointee.
635  QualType QT = VD->getType();
636  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
637    QT = RT->getPointeeType();
638    if (!QT.isConstQualified())
639      return Scope;
640    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
641      return Scope;
642  }
643
644  // Check if type is a C++ class with non-trivial destructor.
645
646  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
647    if (!CD->hasTrivialDestructor()) {
648      // Add the variable to scope
649      Scope = createOrReuseLocalScope(Scope);
650      Scope->addVar(VD);
651      ScopePos = Scope->begin();
652    }
653  return Scope;
654}
655
656/// addLocalScopeAndDtors - For given statement add local scope for it and
657/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
658void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
659  if (!BuildOpts.AddImplicitDtors)
660    return;
661
662  LocalScope::const_iterator scopeBeginPos = ScopePos;
663  addLocalScopeForStmt(S);
664  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
665}
666
667/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
668/// automatic storage duration to CFGBlock's elements vector. Insertion will be
669/// performed in place specified with iterator.
670void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
671    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
672  BumpVectorContext& C = cfg->getBumpVectorContext();
673  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
674  while (B != E)
675    I = Blk->insertAutomaticObjDtor(I, *B++, S);
676}
677
678/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
679/// automatic storage duration to CFGBlock's elements vector. Elements will be
680/// appended to physical end of the vector which happens to be logical
681/// beginning.
682void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
683    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
684  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
685}
686
687/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
688/// variables with automatic storage duration to CFGBlock's elements vector.
689/// Elements will be prepended to physical beginning of the vector which
690/// happens to be logical end. Use blocks terminator as statement that specifies
691/// destructors call site.
692void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
693    LocalScope::const_iterator B, LocalScope::const_iterator E) {
694  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
695}
696
697/// Visit - Walk the subtree of a statement and add extra
698///   blocks for ternary operators, &&, and ||.  We also process "," and
699///   DeclStmts (which may contain nested control-flow).
700CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
701tryAgain:
702  if (!S) {
703    badCFG = true;
704    return 0;
705  }
706  switch (S->getStmtClass()) {
707    default:
708      return VisitStmt(S, asc);
709
710    case Stmt::AddrLabelExprClass:
711      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
712
713    case Stmt::BinaryOperatorClass:
714      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
715
716    case Stmt::BlockExprClass:
717      return VisitBlockExpr(cast<BlockExpr>(S), asc);
718
719    case Stmt::BreakStmtClass:
720      return VisitBreakStmt(cast<BreakStmt>(S));
721
722    case Stmt::CallExprClass:
723    case Stmt::CXXOperatorCallExprClass:
724      return VisitCallExpr(cast<CallExpr>(S), asc);
725
726    case Stmt::CaseStmtClass:
727      return VisitCaseStmt(cast<CaseStmt>(S));
728
729    case Stmt::ChooseExprClass:
730      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
731
732    case Stmt::CompoundStmtClass:
733      return VisitCompoundStmt(cast<CompoundStmt>(S));
734
735    case Stmt::ConditionalOperatorClass:
736      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
737
738    case Stmt::ContinueStmtClass:
739      return VisitContinueStmt(cast<ContinueStmt>(S));
740
741    case Stmt::CXXCatchStmtClass:
742      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
743
744    case Stmt::CXXExprWithTemporariesClass: {
745      // FIXME: Handle temporaries.  For now, just visit the subexpression
746      // so we don't artificially create extra blocks.
747      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
748    }
749
750    case Stmt::CXXMemberCallExprClass:
751      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
752
753    case Stmt::CXXThrowExprClass:
754      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
755
756    case Stmt::CXXTryStmtClass:
757      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
758
759    case Stmt::DeclStmtClass:
760      return VisitDeclStmt(cast<DeclStmt>(S));
761
762    case Stmt::DefaultStmtClass:
763      return VisitDefaultStmt(cast<DefaultStmt>(S));
764
765    case Stmt::DoStmtClass:
766      return VisitDoStmt(cast<DoStmt>(S));
767
768    case Stmt::ForStmtClass:
769      return VisitForStmt(cast<ForStmt>(S));
770
771    case Stmt::GotoStmtClass:
772      return VisitGotoStmt(cast<GotoStmt>(S));
773
774    case Stmt::IfStmtClass:
775      return VisitIfStmt(cast<IfStmt>(S));
776
777    case Stmt::IndirectGotoStmtClass:
778      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
779
780    case Stmt::LabelStmtClass:
781      return VisitLabelStmt(cast<LabelStmt>(S));
782
783    case Stmt::MemberExprClass:
784      return VisitMemberExpr(cast<MemberExpr>(S), asc);
785
786    case Stmt::ObjCAtCatchStmtClass:
787      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
788
789    case Stmt::ObjCAtSynchronizedStmtClass:
790      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
791
792    case Stmt::ObjCAtThrowStmtClass:
793      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
794
795    case Stmt::ObjCAtTryStmtClass:
796      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
797
798    case Stmt::ObjCForCollectionStmtClass:
799      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
800
801    case Stmt::ParenExprClass:
802      S = cast<ParenExpr>(S)->getSubExpr();
803      goto tryAgain;
804
805    case Stmt::NullStmtClass:
806      return Block;
807
808    case Stmt::ReturnStmtClass:
809      return VisitReturnStmt(cast<ReturnStmt>(S));
810
811    case Stmt::SizeOfAlignOfExprClass:
812      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
813
814    case Stmt::StmtExprClass:
815      return VisitStmtExpr(cast<StmtExpr>(S), asc);
816
817    case Stmt::SwitchStmtClass:
818      return VisitSwitchStmt(cast<SwitchStmt>(S));
819
820    case Stmt::WhileStmtClass:
821      return VisitWhileStmt(cast<WhileStmt>(S));
822  }
823}
824
825CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
826  if (asc.alwaysAdd()) {
827    autoCreateBlock();
828    AppendStmt(Block, S, asc);
829  }
830
831  return VisitChildren(S);
832}
833
834/// VisitChildren - Visit the children of a Stmt.
835CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
836  CFGBlock *B = Block;
837  for (Stmt::child_iterator I = Terminator->child_begin(),
838         E = Terminator->child_end(); I != E; ++I) {
839    if (*I) B = Visit(*I);
840  }
841  return B;
842}
843
844CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
845                                         AddStmtChoice asc) {
846  AddressTakenLabels.insert(A->getLabel());
847
848  if (asc.alwaysAdd()) {
849    autoCreateBlock();
850    AppendStmt(Block, A, asc);
851  }
852
853  return Block;
854}
855
856CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
857                                          AddStmtChoice asc) {
858  if (B->isLogicalOp()) { // && or ||
859    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
860    AppendStmt(ConfluenceBlock, B, asc);
861
862    if (badCFG)
863      return 0;
864
865    // create the block evaluating the LHS
866    CFGBlock* LHSBlock = createBlock(false);
867    LHSBlock->setTerminator(B);
868
869    // create the block evaluating the RHS
870    Succ = ConfluenceBlock;
871    Block = NULL;
872    CFGBlock* RHSBlock = addStmt(B->getRHS());
873
874    if (RHSBlock) {
875      if (badCFG)
876        return 0;
877    }
878    else {
879      // Create an empty block for cases where the RHS doesn't require
880      // any explicit statements in the CFG.
881      RHSBlock = createBlock();
882    }
883
884    // See if this is a known constant.
885    TryResult KnownVal = TryEvaluateBool(B->getLHS());
886    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
887      KnownVal.negate();
888
889    // Now link the LHSBlock with RHSBlock.
890    if (B->getOpcode() == BO_LOr) {
891      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
892      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
893    } else {
894      assert(B->getOpcode() == BO_LAnd);
895      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
896      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
897    }
898
899    // Generate the blocks for evaluating the LHS.
900    Block = LHSBlock;
901    return addStmt(B->getLHS());
902  }
903  else if (B->getOpcode() == BO_Comma) { // ,
904    autoCreateBlock();
905    AppendStmt(Block, B, asc);
906    addStmt(B->getRHS());
907    return addStmt(B->getLHS());
908  }
909  else if (B->isAssignmentOp()) {
910    if (asc.alwaysAdd()) {
911      autoCreateBlock();
912      AppendStmt(Block, B, asc);
913    }
914
915    // If visiting RHS causes us to finish 'Block' and the LHS doesn't
916    // create a new block, then we should return RBlock.  Otherwise
917    // we'll incorrectly return NULL.
918    CFGBlock *RBlock = Visit(B->getRHS());
919    CFGBlock *LBlock = Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
920    return LBlock ? LBlock : RBlock;
921  }
922
923  return VisitStmt(B, asc);
924}
925
926CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
927  if (asc.alwaysAdd()) {
928    autoCreateBlock();
929    AppendStmt(Block, E, asc);
930  }
931  return Block;
932}
933
934CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
935  // "break" is a control-flow statement.  Thus we stop processing the current
936  // block.
937  if (badCFG)
938    return 0;
939
940  // Now create a new block that ends with the break statement.
941  Block = createBlock(false);
942  Block->setTerminator(B);
943
944  // If there is no target for the break, then we are looking at an incomplete
945  // AST.  This means that the CFG cannot be constructed.
946  if (BreakJumpTarget.Block) {
947    addAutomaticObjDtors(ScopePos, BreakJumpTarget.ScopePos, B);
948    AddSuccessor(Block, BreakJumpTarget.Block);
949  } else
950    badCFG = true;
951
952
953  return Block;
954}
955
956static bool CanThrow(Expr *E) {
957  QualType Ty = E->getType();
958  if (Ty->isFunctionPointerType())
959    Ty = Ty->getAs<PointerType>()->getPointeeType();
960  else if (Ty->isBlockPointerType())
961    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
962
963  const FunctionType *FT = Ty->getAs<FunctionType>();
964  if (FT) {
965    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
966      if (Proto->hasEmptyExceptionSpec())
967        return false;
968  }
969  return true;
970}
971
972CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
973  // If this is a call to a no-return function, this stops the block here.
974  bool NoReturn = false;
975  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
976    NoReturn = true;
977  }
978
979  bool AddEHEdge = false;
980
981  // Languages without exceptions are assumed to not throw.
982  if (Context->getLangOptions().Exceptions) {
983    if (BuildOpts.AddEHEdges)
984      AddEHEdge = true;
985  }
986
987  if (FunctionDecl *FD = C->getDirectCallee()) {
988    if (FD->hasAttr<NoReturnAttr>())
989      NoReturn = true;
990    if (FD->hasAttr<NoThrowAttr>())
991      AddEHEdge = false;
992  }
993
994  if (!CanThrow(C->getCallee()))
995    AddEHEdge = false;
996
997  if (!NoReturn && !AddEHEdge) {
998    if (asc.asLValue())
999      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
1000    else
1001      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
1002  }
1003
1004  if (Block) {
1005    Succ = Block;
1006    if (badCFG)
1007      return 0;
1008  }
1009
1010  Block = createBlock(!NoReturn);
1011  AppendStmt(Block, C, asc);
1012
1013  if (NoReturn) {
1014    // Wire this to the exit block directly.
1015    AddSuccessor(Block, &cfg->getExit());
1016  }
1017  if (AddEHEdge) {
1018    // Add exceptional edges.
1019    if (TryTerminatedBlock)
1020      AddSuccessor(Block, TryTerminatedBlock);
1021    else
1022      AddSuccessor(Block, &cfg->getExit());
1023  }
1024
1025  return VisitChildren(C);
1026}
1027
1028CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1029                                      AddStmtChoice asc) {
1030  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1031  AppendStmt(ConfluenceBlock, C, asc);
1032  if (badCFG)
1033    return 0;
1034
1035  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1036                       : AddStmtChoice::AlwaysAdd;
1037
1038  Succ = ConfluenceBlock;
1039  Block = NULL;
1040  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
1041  if (badCFG)
1042    return 0;
1043
1044  Succ = ConfluenceBlock;
1045  Block = NULL;
1046  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
1047  if (badCFG)
1048    return 0;
1049
1050  Block = createBlock(false);
1051  // See if this is a known constant.
1052  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
1053  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1054  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1055  Block->setTerminator(C);
1056  return addStmt(C->getCond());
1057}
1058
1059
1060CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1061  addLocalScopeAndDtors(C);
1062  CFGBlock* LastBlock = Block;
1063
1064  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1065       I != E; ++I ) {
1066    // If we hit a segment of code just containing ';' (NullStmts), we can
1067    // get a null block back.  In such cases, just use the LastBlock
1068    if (CFGBlock *newBlock = addStmt(*I))
1069      LastBlock = newBlock;
1070
1071    if (badCFG)
1072      return NULL;
1073  }
1074
1075  return LastBlock;
1076}
1077
1078CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
1079                                               AddStmtChoice asc) {
1080  // Create the confluence block that will "merge" the results of the ternary
1081  // expression.
1082  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1083  AppendStmt(ConfluenceBlock, C, asc);
1084  if (badCFG)
1085    return 0;
1086
1087  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1088                       : AddStmtChoice::AlwaysAdd;
1089
1090  // Create a block for the LHS expression if there is an LHS expression.  A
1091  // GCC extension allows LHS to be NULL, causing the condition to be the
1092  // value that is returned instead.
1093  //  e.g: x ?: y is shorthand for: x ? x : y;
1094  Succ = ConfluenceBlock;
1095  Block = NULL;
1096  CFGBlock* LHSBlock = NULL;
1097  if (C->getLHS()) {
1098    LHSBlock = Visit(C->getLHS(), asc);
1099    if (badCFG)
1100      return 0;
1101    Block = NULL;
1102  }
1103
1104  // Create the block for the RHS expression.
1105  Succ = ConfluenceBlock;
1106  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
1107  if (badCFG)
1108    return 0;
1109
1110  // Create the block that will contain the condition.
1111  Block = createBlock(false);
1112
1113  // See if this is a known constant.
1114  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
1115  if (LHSBlock) {
1116    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1117  } else {
1118    if (KnownVal.isFalse()) {
1119      // If we know the condition is false, add NULL as the successor for
1120      // the block containing the condition.  In this case, the confluence
1121      // block will have just one predecessor.
1122      AddSuccessor(Block, 0);
1123      assert(ConfluenceBlock->pred_size() == 1);
1124    } else {
1125      // If we have no LHS expression, add the ConfluenceBlock as a direct
1126      // successor for the block containing the condition.  Moreover, we need to
1127      // reverse the order of the predecessors in the ConfluenceBlock because
1128      // the RHSBlock will have been added to the succcessors already, and we
1129      // want the first predecessor to the the block containing the expression
1130      // for the case when the ternary expression evaluates to true.
1131      AddSuccessor(Block, ConfluenceBlock);
1132      assert(ConfluenceBlock->pred_size() == 2);
1133      std::reverse(ConfluenceBlock->pred_begin(),
1134                   ConfluenceBlock->pred_end());
1135    }
1136  }
1137
1138  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1139  Block->setTerminator(C);
1140  return addStmt(C->getCond());
1141}
1142
1143CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1144  autoCreateBlock();
1145
1146  if (DS->isSingleDecl()) {
1147    AppendStmt(Block, DS);
1148    return VisitDeclSubExpr(DS->getSingleDecl());
1149  }
1150
1151  CFGBlock *B = 0;
1152
1153  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1154  typedef llvm::SmallVector<Decl*,10> BufTy;
1155  BufTy Buf(DS->decl_begin(), DS->decl_end());
1156
1157  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1158    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1159    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1160               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1161
1162    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1163    // automatically freed with the CFG.
1164    DeclGroupRef DG(*I);
1165    Decl *D = *I;
1166    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1167    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1168
1169    // Append the fake DeclStmt to block.
1170    AppendStmt(Block, DSNew);
1171    B = VisitDeclSubExpr(D);
1172  }
1173
1174  return B;
1175}
1176
1177/// VisitDeclSubExpr - Utility method to add block-level expressions for
1178///  initializers in Decls.
1179CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
1180  assert(Block);
1181
1182  VarDecl *VD = dyn_cast<VarDecl>(D);
1183
1184  if (!VD)
1185    return Block;
1186
1187  Expr *Init = VD->getInit();
1188
1189  if (Init) {
1190    AddStmtChoice::Kind k =
1191      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
1192                                       : AddStmtChoice::NotAlwaysAdd;
1193    Visit(Init, AddStmtChoice(k));
1194  }
1195
1196  // If the type of VD is a VLA, then we must process its size expressions.
1197  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
1198       VA = FindVA(VA->getElementType().getTypePtr()))
1199    Block = addStmt(VA->getSizeExpr());
1200
1201  // Remove variable from local scope.
1202  if (ScopePos && VD == *ScopePos)
1203    ++ScopePos;
1204
1205  return Block;
1206}
1207
1208CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1209  // We may see an if statement in the middle of a basic block, or it may be the
1210  // first statement we are processing.  In either case, we create a new basic
1211  // block.  First, we create the blocks for the then...else statements, and
1212  // then we create the block containing the if statement.  If we were in the
1213  // middle of a block, we stop processing that block.  That block is then the
1214  // implicit successor for the "then" and "else" clauses.
1215
1216  // Save local scope position because in case of condition variable ScopePos
1217  // won't be restored when traversing AST.
1218  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1219
1220  // Create local scope for possible condition variable.
1221  // Store scope position. Add implicit destructor.
1222  if (VarDecl* VD = I->getConditionVariable()) {
1223    LocalScope::const_iterator BeginScopePos = ScopePos;
1224    addLocalScopeForVarDecl(VD);
1225    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1226  }
1227
1228  // The block we were proccessing is now finished.  Make it the successor
1229  // block.
1230  if (Block) {
1231    Succ = Block;
1232    if (badCFG)
1233      return 0;
1234  }
1235
1236  // Process the false branch.
1237  CFGBlock* ElseBlock = Succ;
1238
1239  if (Stmt* Else = I->getElse()) {
1240    SaveAndRestore<CFGBlock*> sv(Succ);
1241
1242    // NULL out Block so that the recursive call to Visit will
1243    // create a new basic block.
1244    Block = NULL;
1245
1246    // If branch is not a compound statement create implicit scope
1247    // and add destructors.
1248    if (!isa<CompoundStmt>(Else))
1249      addLocalScopeAndDtors(Else);
1250
1251    ElseBlock = addStmt(Else);
1252
1253    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1254      ElseBlock = sv.get();
1255    else if (Block) {
1256      if (badCFG)
1257        return 0;
1258    }
1259  }
1260
1261  // Process the true branch.
1262  CFGBlock* ThenBlock;
1263  {
1264    Stmt* Then = I->getThen();
1265    assert(Then);
1266    SaveAndRestore<CFGBlock*> sv(Succ);
1267    Block = NULL;
1268
1269    // If branch is not a compound statement create implicit scope
1270    // and add destructors.
1271    if (!isa<CompoundStmt>(Then))
1272      addLocalScopeAndDtors(Then);
1273
1274    ThenBlock = addStmt(Then);
1275
1276    if (!ThenBlock) {
1277      // We can reach here if the "then" body has all NullStmts.
1278      // Create an empty block so we can distinguish between true and false
1279      // branches in path-sensitive analyses.
1280      ThenBlock = createBlock(false);
1281      AddSuccessor(ThenBlock, sv.get());
1282    } else if (Block) {
1283      if (badCFG)
1284        return 0;
1285    }
1286  }
1287
1288  // Now create a new block containing the if statement.
1289  Block = createBlock(false);
1290
1291  // Set the terminator of the new block to the If statement.
1292  Block->setTerminator(I);
1293
1294  // See if this is a known constant.
1295  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
1296
1297  // Now add the successors.
1298  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1299  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1300
1301  // Add the condition as the last statement in the new block.  This may create
1302  // new blocks as the condition may contain control-flow.  Any newly created
1303  // blocks will be pointed to be "Block".
1304  Block = addStmt(I->getCond());
1305
1306  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1307  // and the condition variable initialization to the CFG.
1308  if (VarDecl *VD = I->getConditionVariable()) {
1309    if (Expr *Init = VD->getInit()) {
1310      autoCreateBlock();
1311      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1312      addStmt(Init);
1313    }
1314  }
1315
1316  return Block;
1317}
1318
1319
1320CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1321  // If we were in the middle of a block we stop processing that block.
1322  //
1323  // NOTE: If a "return" appears in the middle of a block, this means that the
1324  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1325  //       for that code; a simple "mark-and-sweep" from the entry block will be
1326  //       able to report such dead blocks.
1327
1328  // Create the new block.
1329  Block = createBlock(false);
1330
1331  // The Exit block is the only successor.
1332  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1333  AddSuccessor(Block, &cfg->getExit());
1334
1335  // Add the return statement to the block.  This may create new blocks if R
1336  // contains control-flow (short-circuit operations).
1337  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1338}
1339
1340CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
1341  // Get the block of the labeled statement.  Add it to our map.
1342  addStmt(L->getSubStmt());
1343  CFGBlock* LabelBlock = Block;
1344
1345  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1346    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1347
1348  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
1349  LabelMap[ L ] = JumpTarget(LabelBlock, ScopePos);
1350
1351  // Labels partition blocks, so this is the end of the basic block we were
1352  // processing (L is the block's label).  Because this is label (and we have
1353  // already processed the substatement) there is no extra control-flow to worry
1354  // about.
1355  LabelBlock->setLabel(L);
1356  if (badCFG)
1357    return 0;
1358
1359  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1360  Block = NULL;
1361
1362  // This block is now the implicit successor of other blocks.
1363  Succ = LabelBlock;
1364
1365  return LabelBlock;
1366}
1367
1368CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1369  // Goto is a control-flow statement.  Thus we stop processing the current
1370  // block and create a new one.
1371
1372  Block = createBlock(false);
1373  Block->setTerminator(G);
1374
1375  // If we already know the mapping to the label block add the successor now.
1376  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1377
1378  if (I == LabelMap.end())
1379    // We will need to backpatch this block later.
1380    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1381  else {
1382    JumpTarget JT = I->second;
1383    addAutomaticObjDtors(ScopePos, JT.ScopePos, G);
1384    AddSuccessor(Block, JT.Block);
1385  }
1386
1387  return Block;
1388}
1389
1390CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1391  CFGBlock* LoopSuccessor = NULL;
1392
1393  // Save local scope position because in case of condition variable ScopePos
1394  // won't be restored when traversing AST.
1395  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1396
1397  // Create local scope for init statement and possible condition variable.
1398  // Add destructor for init statement and condition variable.
1399  // Store scope position for continue statement.
1400  if (Stmt* Init = F->getInit())
1401    addLocalScopeForStmt(Init);
1402  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1403
1404  if (VarDecl* VD = F->getConditionVariable())
1405    addLocalScopeForVarDecl(VD);
1406  LocalScope::const_iterator ContinueScopePos = ScopePos;
1407
1408  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1409
1410  // "for" is a control-flow statement.  Thus we stop processing the current
1411  // block.
1412  if (Block) {
1413    if (badCFG)
1414      return 0;
1415    LoopSuccessor = Block;
1416  } else
1417    LoopSuccessor = Succ;
1418
1419  // Save the current value for the break targets.
1420  // All breaks should go to the code following the loop.
1421  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1422  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1423
1424  // Because of short-circuit evaluation, the condition of the loop can span
1425  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1426  // evaluate the condition.
1427  CFGBlock* ExitConditionBlock = createBlock(false);
1428  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1429
1430  // Set the terminator for the "exit" condition block.
1431  ExitConditionBlock->setTerminator(F);
1432
1433  // Now add the actual condition to the condition block.  Because the condition
1434  // itself may contain control-flow, new blocks may be created.
1435  if (Stmt* C = F->getCond()) {
1436    Block = ExitConditionBlock;
1437    EntryConditionBlock = addStmt(C);
1438    assert(Block == EntryConditionBlock ||
1439           (Block == 0 && EntryConditionBlock == Succ));
1440
1441    // If this block contains a condition variable, add both the condition
1442    // variable and initializer to the CFG.
1443    if (VarDecl *VD = F->getConditionVariable()) {
1444      if (Expr *Init = VD->getInit()) {
1445        autoCreateBlock();
1446        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1447        EntryConditionBlock = addStmt(Init);
1448        assert(Block == EntryConditionBlock);
1449      }
1450    }
1451
1452    if (Block) {
1453      if (badCFG)
1454        return 0;
1455    }
1456  }
1457
1458  // The condition block is the implicit successor for the loop body as well as
1459  // any code above the loop.
1460  Succ = EntryConditionBlock;
1461
1462  // See if this is a known constant.
1463  TryResult KnownVal(true);
1464
1465  if (F->getCond())
1466    KnownVal = TryEvaluateBool(F->getCond());
1467
1468  // Now create the loop body.
1469  {
1470    assert(F->getBody());
1471
1472   // Save the current values for Block, Succ, and continue targets.
1473   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1474   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1475
1476    // Create a new block to contain the (bottom) of the loop body.
1477    Block = NULL;
1478
1479    // Loop body should end with destructor of Condition variable (if any).
1480    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1481
1482    if (Stmt* I = F->getInc()) {
1483      // Generate increment code in its own basic block.  This is the target of
1484      // continue statements.
1485      Succ = addStmt(I);
1486    } else {
1487      // No increment code.  Create a special, empty, block that is used as the
1488      // target block for "looping back" to the start of the loop.
1489      assert(Succ == EntryConditionBlock);
1490      Succ = Block ? Block : createBlock();
1491    }
1492
1493    // Finish up the increment (or empty) block if it hasn't been already.
1494    if (Block) {
1495      assert(Block == Succ);
1496      if (badCFG)
1497        return 0;
1498      Block = 0;
1499    }
1500
1501    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1502
1503    // The starting block for the loop increment is the block that should
1504    // represent the 'loop target' for looping back to the start of the loop.
1505    ContinueJumpTarget.Block->setLoopTarget(F);
1506
1507    // If body is not a compound statement create implicit scope
1508    // and add destructors.
1509    if (!isa<CompoundStmt>(F->getBody()))
1510      addLocalScopeAndDtors(F->getBody());
1511
1512    // Now populate the body block, and in the process create new blocks as we
1513    // walk the body of the loop.
1514    CFGBlock* BodyBlock = addStmt(F->getBody());
1515
1516    if (!BodyBlock)
1517      BodyBlock = ContinueJumpTarget.Block;//can happen for "for (...;...;...);"
1518    else if (badCFG)
1519      return 0;
1520
1521    // This new body block is a successor to our "exit" condition block.
1522    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1523  }
1524
1525  // Link up the condition block with the code that follows the loop.  (the
1526  // false branch).
1527  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1528
1529  // If the loop contains initialization, create a new block for those
1530  // statements.  This block can also contain statements that precede the loop.
1531  if (Stmt* I = F->getInit()) {
1532    Block = createBlock();
1533    return addStmt(I);
1534  } else {
1535    // There is no loop initialization.  We are thus basically a while loop.
1536    // NULL out Block to force lazy block construction.
1537    Block = NULL;
1538    Succ = EntryConditionBlock;
1539    return EntryConditionBlock;
1540  }
1541}
1542
1543CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1544  if (asc.alwaysAdd()) {
1545    autoCreateBlock();
1546    AppendStmt(Block, M, asc);
1547  }
1548  return Visit(M->getBase(),
1549               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1550                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1551}
1552
1553CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1554  // Objective-C fast enumeration 'for' statements:
1555  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1556  //
1557  //  for ( Type newVariable in collection_expression ) { statements }
1558  //
1559  //  becomes:
1560  //
1561  //   prologue:
1562  //     1. collection_expression
1563  //     T. jump to loop_entry
1564  //   loop_entry:
1565  //     1. side-effects of element expression
1566  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1567  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1568  //   TB:
1569  //     statements
1570  //     T. jump to loop_entry
1571  //   FB:
1572  //     what comes after
1573  //
1574  //  and
1575  //
1576  //  Type existingItem;
1577  //  for ( existingItem in expression ) { statements }
1578  //
1579  //  becomes:
1580  //
1581  //   the same with newVariable replaced with existingItem; the binding works
1582  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1583  //   a DeclStmt and the other returns a DeclRefExpr.
1584  //
1585
1586  CFGBlock* LoopSuccessor = 0;
1587
1588  if (Block) {
1589    if (badCFG)
1590      return 0;
1591    LoopSuccessor = Block;
1592    Block = 0;
1593  } else
1594    LoopSuccessor = Succ;
1595
1596  // Build the condition blocks.
1597  CFGBlock* ExitConditionBlock = createBlock(false);
1598  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1599
1600  // Set the terminator for the "exit" condition block.
1601  ExitConditionBlock->setTerminator(S);
1602
1603  // The last statement in the block should be the ObjCForCollectionStmt, which
1604  // performs the actual binding to 'element' and determines if there are any
1605  // more items in the collection.
1606  AppendStmt(ExitConditionBlock, S);
1607  Block = ExitConditionBlock;
1608
1609  // Walk the 'element' expression to see if there are any side-effects.  We
1610  // generate new blocks as necesary.  We DON'T add the statement by default to
1611  // the CFG unless it contains control-flow.
1612  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1613  if (Block) {
1614    if (badCFG)
1615      return 0;
1616    Block = 0;
1617  }
1618
1619  // The condition block is the implicit successor for the loop body as well as
1620  // any code above the loop.
1621  Succ = EntryConditionBlock;
1622
1623  // Now create the true branch.
1624  {
1625    // Save the current values for Succ, continue and break targets.
1626    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1627    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1628        save_break(BreakJumpTarget);
1629
1630    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1631    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1632
1633    CFGBlock* BodyBlock = addStmt(S->getBody());
1634
1635    if (!BodyBlock)
1636      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1637    else if (Block) {
1638      if (badCFG)
1639        return 0;
1640    }
1641
1642    // This new body block is a successor to our "exit" condition block.
1643    AddSuccessor(ExitConditionBlock, BodyBlock);
1644  }
1645
1646  // Link up the condition block with the code that follows the loop.
1647  // (the false branch).
1648  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1649
1650  // Now create a prologue block to contain the collection expression.
1651  Block = createBlock();
1652  return addStmt(S->getCollection());
1653}
1654
1655CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1656  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1657
1658  // Inline the body.
1659  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1660
1661  // The sync body starts its own basic block.  This makes it a little easier
1662  // for diagnostic clients.
1663  if (SyncBlock) {
1664    if (badCFG)
1665      return 0;
1666
1667    Block = 0;
1668    Succ = SyncBlock;
1669  }
1670
1671  // Add the @synchronized to the CFG.
1672  autoCreateBlock();
1673  AppendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1674
1675  // Inline the sync expression.
1676  return addStmt(S->getSynchExpr());
1677}
1678
1679CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1680  // FIXME
1681  return NYS();
1682}
1683
1684CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1685  CFGBlock* LoopSuccessor = NULL;
1686
1687  // Save local scope position because in case of condition variable ScopePos
1688  // won't be restored when traversing AST.
1689  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1690
1691  // Create local scope for possible condition variable.
1692  // Store scope position for continue statement.
1693  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1694  if (VarDecl* VD = W->getConditionVariable()) {
1695    addLocalScopeForVarDecl(VD);
1696    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1697  }
1698
1699  // "while" is a control-flow statement.  Thus we stop processing the current
1700  // block.
1701  if (Block) {
1702    if (badCFG)
1703      return 0;
1704    LoopSuccessor = Block;
1705  } else
1706    LoopSuccessor = Succ;
1707
1708  // Because of short-circuit evaluation, the condition of the loop can span
1709  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1710  // evaluate the condition.
1711  CFGBlock* ExitConditionBlock = createBlock(false);
1712  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1713
1714  // Set the terminator for the "exit" condition block.
1715  ExitConditionBlock->setTerminator(W);
1716
1717  // Now add the actual condition to the condition block.  Because the condition
1718  // itself may contain control-flow, new blocks may be created.  Thus we update
1719  // "Succ" after adding the condition.
1720  if (Stmt* C = W->getCond()) {
1721    Block = ExitConditionBlock;
1722    EntryConditionBlock = addStmt(C);
1723    assert(Block == EntryConditionBlock);
1724
1725    // If this block contains a condition variable, add both the condition
1726    // variable and initializer to the CFG.
1727    if (VarDecl *VD = W->getConditionVariable()) {
1728      if (Expr *Init = VD->getInit()) {
1729        autoCreateBlock();
1730        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1731        EntryConditionBlock = addStmt(Init);
1732        assert(Block == EntryConditionBlock);
1733      }
1734    }
1735
1736    if (Block) {
1737      if (badCFG)
1738        return 0;
1739    }
1740  }
1741
1742  // The condition block is the implicit successor for the loop body as well as
1743  // any code above the loop.
1744  Succ = EntryConditionBlock;
1745
1746  // See if this is a known constant.
1747  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1748
1749  // Process the loop body.
1750  {
1751    assert(W->getBody());
1752
1753    // Save the current values for Block, Succ, and continue and break targets
1754    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1755    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1756        save_break(BreakJumpTarget);
1757
1758    // Create an empty block to represent the transition block for looping back
1759    // to the head of the loop.
1760    Block = 0;
1761    assert(Succ == EntryConditionBlock);
1762    Succ = createBlock();
1763    Succ->setLoopTarget(W);
1764    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1765
1766    // All breaks should go to the code following the loop.
1767    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1768
1769    // NULL out Block to force lazy instantiation of blocks for the body.
1770    Block = NULL;
1771
1772    // Loop body should end with destructor of Condition variable (if any).
1773    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1774
1775    // If body is not a compound statement create implicit scope
1776    // and add destructors.
1777    if (!isa<CompoundStmt>(W->getBody()))
1778      addLocalScopeAndDtors(W->getBody());
1779
1780    // Create the body.  The returned block is the entry to the loop body.
1781    CFGBlock* BodyBlock = addStmt(W->getBody());
1782
1783    if (!BodyBlock)
1784      BodyBlock = ContinueJumpTarget.Block; // can happen for "while(...) ;"
1785    else if (Block) {
1786      if (badCFG)
1787        return 0;
1788    }
1789
1790    // Add the loop body entry as a successor to the condition.
1791    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1792  }
1793
1794  // Link up the condition block with the code that follows the loop.  (the
1795  // false branch).
1796  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1797
1798  // There can be no more statements in the condition block since we loop back
1799  // to this block.  NULL out Block to force lazy creation of another block.
1800  Block = NULL;
1801
1802  // Return the condition block, which is the dominating block for the loop.
1803  Succ = EntryConditionBlock;
1804  return EntryConditionBlock;
1805}
1806
1807
1808CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1809  // FIXME: For now we pretend that @catch and the code it contains does not
1810  //  exit.
1811  return Block;
1812}
1813
1814CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1815  // FIXME: This isn't complete.  We basically treat @throw like a return
1816  //  statement.
1817
1818  // If we were in the middle of a block we stop processing that block.
1819  if (badCFG)
1820    return 0;
1821
1822  // Create the new block.
1823  Block = createBlock(false);
1824
1825  // The Exit block is the only successor.
1826  AddSuccessor(Block, &cfg->getExit());
1827
1828  // Add the statement to the block.  This may create new blocks if S contains
1829  // control-flow (short-circuit operations).
1830  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1831}
1832
1833CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1834  // If we were in the middle of a block we stop processing that block.
1835  if (badCFG)
1836    return 0;
1837
1838  // Create the new block.
1839  Block = createBlock(false);
1840
1841  if (TryTerminatedBlock)
1842    // The current try statement is the only successor.
1843    AddSuccessor(Block, TryTerminatedBlock);
1844  else
1845    // otherwise the Exit block is the only successor.
1846    AddSuccessor(Block, &cfg->getExit());
1847
1848  // Add the statement to the block.  This may create new blocks if S contains
1849  // control-flow (short-circuit operations).
1850  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1851}
1852
1853CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1854  CFGBlock* LoopSuccessor = NULL;
1855
1856  // "do...while" is a control-flow statement.  Thus we stop processing the
1857  // current block.
1858  if (Block) {
1859    if (badCFG)
1860      return 0;
1861    LoopSuccessor = Block;
1862  } else
1863    LoopSuccessor = Succ;
1864
1865  // Because of short-circuit evaluation, the condition of the loop can span
1866  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1867  // evaluate the condition.
1868  CFGBlock* ExitConditionBlock = createBlock(false);
1869  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1870
1871  // Set the terminator for the "exit" condition block.
1872  ExitConditionBlock->setTerminator(D);
1873
1874  // Now add the actual condition to the condition block.  Because the condition
1875  // itself may contain control-flow, new blocks may be created.
1876  if (Stmt* C = D->getCond()) {
1877    Block = ExitConditionBlock;
1878    EntryConditionBlock = addStmt(C);
1879    if (Block) {
1880      if (badCFG)
1881        return 0;
1882    }
1883  }
1884
1885  // The condition block is the implicit successor for the loop body.
1886  Succ = EntryConditionBlock;
1887
1888  // See if this is a known constant.
1889  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1890
1891  // Process the loop body.
1892  CFGBlock* BodyBlock = NULL;
1893  {
1894    assert(D->getBody());
1895
1896    // Save the current values for Block, Succ, and continue and break targets
1897    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1898    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1899        save_break(BreakJumpTarget);
1900
1901    // All continues within this loop should go to the condition block
1902    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1903
1904    // All breaks should go to the code following the loop.
1905    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1906
1907    // NULL out Block to force lazy instantiation of blocks for the body.
1908    Block = NULL;
1909
1910    // If body is not a compound statement create implicit scope
1911    // and add destructors.
1912    if (!isa<CompoundStmt>(D->getBody()))
1913      addLocalScopeAndDtors(D->getBody());
1914
1915    // Create the body.  The returned block is the entry to the loop body.
1916    BodyBlock = addStmt(D->getBody());
1917
1918    if (!BodyBlock)
1919      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1920    else if (Block) {
1921      if (badCFG)
1922        return 0;
1923    }
1924
1925    if (!KnownVal.isFalse()) {
1926      // Add an intermediate block between the BodyBlock and the
1927      // ExitConditionBlock to represent the "loop back" transition.  Create an
1928      // empty block to represent the transition block for looping back to the
1929      // head of the loop.
1930      // FIXME: Can we do this more efficiently without adding another block?
1931      Block = NULL;
1932      Succ = BodyBlock;
1933      CFGBlock *LoopBackBlock = createBlock();
1934      LoopBackBlock->setLoopTarget(D);
1935
1936      // Add the loop body entry as a successor to the condition.
1937      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1938    }
1939    else
1940      AddSuccessor(ExitConditionBlock, NULL);
1941  }
1942
1943  // Link up the condition block with the code that follows the loop.
1944  // (the false branch).
1945  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1946
1947  // There can be no more statements in the body block(s) since we loop back to
1948  // the body.  NULL out Block to force lazy creation of another block.
1949  Block = NULL;
1950
1951  // Return the loop body, which is the dominating block for the loop.
1952  Succ = BodyBlock;
1953  return BodyBlock;
1954}
1955
1956CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1957  // "continue" is a control-flow statement.  Thus we stop processing the
1958  // current block.
1959  if (badCFG)
1960    return 0;
1961
1962  // Now create a new block that ends with the continue statement.
1963  Block = createBlock(false);
1964  Block->setTerminator(C);
1965
1966  // If there is no target for the continue, then we are looking at an
1967  // incomplete AST.  This means the CFG cannot be constructed.
1968  if (ContinueJumpTarget.Block) {
1969    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.ScopePos, C);
1970    AddSuccessor(Block, ContinueJumpTarget.Block);
1971  } else
1972    badCFG = true;
1973
1974  return Block;
1975}
1976
1977CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1978                                             AddStmtChoice asc) {
1979
1980  if (asc.alwaysAdd()) {
1981    autoCreateBlock();
1982    AppendStmt(Block, E);
1983  }
1984
1985  // VLA types have expressions that must be evaluated.
1986  if (E->isArgumentType()) {
1987    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1988         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1989      addStmt(VA->getSizeExpr());
1990  }
1991
1992  return Block;
1993}
1994
1995/// VisitStmtExpr - Utility method to handle (nested) statement
1996///  expressions (a GCC extension).
1997CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1998  if (asc.alwaysAdd()) {
1999    autoCreateBlock();
2000    AppendStmt(Block, SE);
2001  }
2002  return VisitCompoundStmt(SE->getSubStmt());
2003}
2004
2005CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2006  // "switch" is a control-flow statement.  Thus we stop processing the current
2007  // block.
2008  CFGBlock* SwitchSuccessor = NULL;
2009
2010  // Save local scope position because in case of condition variable ScopePos
2011  // won't be restored when traversing AST.
2012  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2013
2014  // Create local scope for possible condition variable.
2015  // Store scope position. Add implicit destructor.
2016  if (VarDecl* VD = Terminator->getConditionVariable()) {
2017    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2018    addLocalScopeForVarDecl(VD);
2019    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2020  }
2021
2022  if (Block) {
2023    if (badCFG)
2024      return 0;
2025    SwitchSuccessor = Block;
2026  } else SwitchSuccessor = Succ;
2027
2028  // Save the current "switch" context.
2029  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2030                            save_default(DefaultCaseBlock);
2031  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2032
2033  // Set the "default" case to be the block after the switch statement.  If the
2034  // switch statement contains a "default:", this value will be overwritten with
2035  // the block for that code.
2036  DefaultCaseBlock = SwitchSuccessor;
2037
2038  // Create a new block that will contain the switch statement.
2039  SwitchTerminatedBlock = createBlock(false);
2040
2041  // Now process the switch body.  The code after the switch is the implicit
2042  // successor.
2043  Succ = SwitchSuccessor;
2044  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2045
2046  // When visiting the body, the case statements should automatically get linked
2047  // up to the switch.  We also don't keep a pointer to the body, since all
2048  // control-flow from the switch goes to case/default statements.
2049  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2050  Block = NULL;
2051
2052  // If body is not a compound statement create implicit scope
2053  // and add destructors.
2054  if (!isa<CompoundStmt>(Terminator->getBody()))
2055    addLocalScopeAndDtors(Terminator->getBody());
2056
2057  addStmt(Terminator->getBody());
2058  if (Block) {
2059    if (badCFG)
2060      return 0;
2061  }
2062
2063  // If we have no "default:" case, the default transition is to the code
2064  // following the switch body.
2065  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
2066
2067  // Add the terminator and condition in the switch block.
2068  SwitchTerminatedBlock->setTerminator(Terminator);
2069  assert(Terminator->getCond() && "switch condition must be non-NULL");
2070  Block = SwitchTerminatedBlock;
2071  Block = addStmt(Terminator->getCond());
2072
2073  // Finally, if the SwitchStmt contains a condition variable, add both the
2074  // SwitchStmt and the condition variable initialization to the CFG.
2075  if (VarDecl *VD = Terminator->getConditionVariable()) {
2076    if (Expr *Init = VD->getInit()) {
2077      autoCreateBlock();
2078      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
2079      addStmt(Init);
2080    }
2081  }
2082
2083  return Block;
2084}
2085
2086CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2087  // CaseStmts are essentially labels, so they are the first statement in a
2088  // block.
2089  CFGBlock *TopBlock = 0, *LastBlock = 0;
2090
2091  if (Stmt *Sub = CS->getSubStmt()) {
2092    // For deeply nested chains of CaseStmts, instead of doing a recursion
2093    // (which can blow out the stack), manually unroll and create blocks
2094    // along the way.
2095    while (isa<CaseStmt>(Sub)) {
2096      CFGBlock *CurrentBlock = createBlock(false);
2097      CurrentBlock->setLabel(CS);
2098
2099      if (TopBlock)
2100        AddSuccessor(LastBlock, CurrentBlock);
2101      else
2102        TopBlock = CurrentBlock;
2103
2104      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
2105      LastBlock = CurrentBlock;
2106
2107      CS = cast<CaseStmt>(Sub);
2108      Sub = CS->getSubStmt();
2109    }
2110
2111    addStmt(Sub);
2112  }
2113
2114  CFGBlock* CaseBlock = Block;
2115  if (!CaseBlock)
2116    CaseBlock = createBlock();
2117
2118  // Cases statements partition blocks, so this is the top of the basic block we
2119  // were processing (the "case XXX:" is the label).
2120  CaseBlock->setLabel(CS);
2121
2122  if (badCFG)
2123    return 0;
2124
2125  // Add this block to the list of successors for the block with the switch
2126  // statement.
2127  assert(SwitchTerminatedBlock);
2128  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
2129
2130  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2131  Block = NULL;
2132
2133  if (TopBlock) {
2134    AddSuccessor(LastBlock, CaseBlock);
2135    Succ = TopBlock;
2136  }
2137  else {
2138    // This block is now the implicit successor of other blocks.
2139    Succ = CaseBlock;
2140  }
2141
2142  return Succ;
2143}
2144
2145CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2146  if (Terminator->getSubStmt())
2147    addStmt(Terminator->getSubStmt());
2148
2149  DefaultCaseBlock = Block;
2150
2151  if (!DefaultCaseBlock)
2152    DefaultCaseBlock = createBlock();
2153
2154  // Default statements partition blocks, so this is the top of the basic block
2155  // we were processing (the "default:" is the label).
2156  DefaultCaseBlock->setLabel(Terminator);
2157
2158  if (badCFG)
2159    return 0;
2160
2161  // Unlike case statements, we don't add the default block to the successors
2162  // for the switch statement immediately.  This is done when we finish
2163  // processing the switch statement.  This allows for the default case
2164  // (including a fall-through to the code after the switch statement) to always
2165  // be the last successor of a switch-terminated block.
2166
2167  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2168  Block = NULL;
2169
2170  // This block is now the implicit successor of other blocks.
2171  Succ = DefaultCaseBlock;
2172
2173  return DefaultCaseBlock;
2174}
2175
2176CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2177  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2178  // current block.
2179  CFGBlock* TrySuccessor = NULL;
2180
2181  if (Block) {
2182    if (badCFG)
2183      return 0;
2184    TrySuccessor = Block;
2185  } else TrySuccessor = Succ;
2186
2187  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2188
2189  // Create a new block that will contain the try statement.
2190  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2191  // Add the terminator in the try block.
2192  NewTryTerminatedBlock->setTerminator(Terminator);
2193
2194  bool HasCatchAll = false;
2195  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2196    // The code after the try is the implicit successor.
2197    Succ = TrySuccessor;
2198    CXXCatchStmt *CS = Terminator->getHandler(h);
2199    if (CS->getExceptionDecl() == 0) {
2200      HasCatchAll = true;
2201    }
2202    Block = NULL;
2203    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2204    if (CatchBlock == 0)
2205      return 0;
2206    // Add this block to the list of successors for the block with the try
2207    // statement.
2208    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
2209  }
2210  if (!HasCatchAll) {
2211    if (PrevTryTerminatedBlock)
2212      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2213    else
2214      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2215  }
2216
2217  // The code after the try is the implicit successor.
2218  Succ = TrySuccessor;
2219
2220  // Save the current "try" context.
2221  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2222  TryTerminatedBlock = NewTryTerminatedBlock;
2223
2224  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2225  Block = NULL;
2226  Block = addStmt(Terminator->getTryBlock());
2227  return Block;
2228}
2229
2230CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2231  // CXXCatchStmt are treated like labels, so they are the first statement in a
2232  // block.
2233
2234  // Save local scope position because in case of exception variable ScopePos
2235  // won't be restored when traversing AST.
2236  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2237
2238  // Create local scope for possible exception variable.
2239  // Store scope position. Add implicit destructor.
2240  if (VarDecl* VD = CS->getExceptionDecl()) {
2241    LocalScope::const_iterator BeginScopePos = ScopePos;
2242    addLocalScopeForVarDecl(VD);
2243    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2244  }
2245
2246  if (CS->getHandlerBlock())
2247    addStmt(CS->getHandlerBlock());
2248
2249  CFGBlock* CatchBlock = Block;
2250  if (!CatchBlock)
2251    CatchBlock = createBlock();
2252
2253  CatchBlock->setLabel(CS);
2254
2255  if (badCFG)
2256    return 0;
2257
2258  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2259  Block = NULL;
2260
2261  return CatchBlock;
2262}
2263
2264CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2265                                             AddStmtChoice asc) {
2266  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
2267                                         : AddStmtChoice::AlwaysAdd;
2268  autoCreateBlock();
2269  AppendStmt(Block, C, AddStmtChoice(K));
2270  return VisitChildren(C);
2271}
2272
2273CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2274  // Lazily create the indirect-goto dispatch block if there isn't one already.
2275  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2276
2277  if (!IBlock) {
2278    IBlock = createBlock(false);
2279    cfg->setIndirectGotoBlock(IBlock);
2280  }
2281
2282  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2283  // current block and create a new one.
2284  if (badCFG)
2285    return 0;
2286
2287  Block = createBlock(false);
2288  Block->setTerminator(I);
2289  AddSuccessor(Block, IBlock);
2290  return addStmt(I->getTarget());
2291}
2292
2293} // end anonymous namespace
2294
2295/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2296///  no successors or predecessors.  If this is the first block created in the
2297///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2298CFGBlock* CFG::createBlock() {
2299  bool first_block = begin() == end();
2300
2301  // Create the block.
2302  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2303  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2304  Blocks.push_back(Mem, BlkBVC);
2305
2306  // If this is the first block, set it as the Entry and Exit.
2307  if (first_block)
2308    Entry = Exit = &back();
2309
2310  // Return the block.
2311  return &back();
2312}
2313
2314/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2315///  CFG is returned to the caller.
2316CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2317    BuildOptions BO) {
2318  CFGBuilder Builder;
2319  return Builder.buildCFG(D, Statement, C, BO);
2320}
2321
2322//===----------------------------------------------------------------------===//
2323// CFG: Queries for BlkExprs.
2324//===----------------------------------------------------------------------===//
2325
2326namespace {
2327  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2328}
2329
2330static void FindSubExprAssignments(Stmt *S,
2331                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2332  if (!S)
2333    return;
2334
2335  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
2336    Stmt *child = *I;
2337    if (!child)
2338      continue;
2339
2340    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2341      if (B->isAssignmentOp()) Set.insert(B);
2342
2343    FindSubExprAssignments(child, Set);
2344  }
2345}
2346
2347static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2348  BlkExprMapTy* M = new BlkExprMapTy();
2349
2350  // Look for assignments that are used as subexpressions.  These are the only
2351  // assignments that we want to *possibly* register as a block-level
2352  // expression.  Basically, if an assignment occurs both in a subexpression and
2353  // at the block-level, it is a block-level expression.
2354  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2355
2356  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2357    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2358      if (CFGStmt S = BI->getAs<CFGStmt>())
2359        FindSubExprAssignments(S, SubExprAssignments);
2360
2361  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2362
2363    // Iterate over the statements again on identify the Expr* and Stmt* at the
2364    // block-level that are block-level expressions.
2365
2366    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2367      CFGStmt CS = BI->getAs<CFGStmt>();
2368      if (!CS.isValid())
2369        continue;
2370      if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2371
2372        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2373          // Assignment expressions that are not nested within another
2374          // expression are really "statements" whose value is never used by
2375          // another expression.
2376          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2377            continue;
2378        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2379          // Special handling for statement expressions.  The last statement in
2380          // the statement expression is also a block-level expr.
2381          const CompoundStmt* C = Terminator->getSubStmt();
2382          if (!C->body_empty()) {
2383            unsigned x = M->size();
2384            (*M)[C->body_back()] = x;
2385          }
2386        }
2387
2388        unsigned x = M->size();
2389        (*M)[Exp] = x;
2390      }
2391    }
2392
2393    // Look at terminators.  The condition is a block-level expression.
2394
2395    Stmt* S = (*I)->getTerminatorCondition();
2396
2397    if (S && M->find(S) == M->end()) {
2398        unsigned x = M->size();
2399        (*M)[S] = x;
2400    }
2401  }
2402
2403  return M;
2404}
2405
2406CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2407  assert(S != NULL);
2408  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2409
2410  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2411  BlkExprMapTy::iterator I = M->find(S);
2412  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2413}
2414
2415unsigned CFG::getNumBlkExprs() {
2416  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2417    return M->size();
2418  else {
2419    // We assume callers interested in the number of BlkExprs will want
2420    // the map constructed if it doesn't already exist.
2421    BlkExprMap = (void*) PopulateBlkExprMap(*this);
2422    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2423  }
2424}
2425
2426//===----------------------------------------------------------------------===//
2427// Filtered walking of the CFG.
2428//===----------------------------------------------------------------------===//
2429
2430bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2431        const CFGBlock *From, const CFGBlock *To) {
2432
2433  if (F.IgnoreDefaultsWithCoveredEnums) {
2434    // If the 'To' has no label or is labeled but the label isn't a
2435    // CaseStmt then filter this edge.
2436    if (const SwitchStmt *S =
2437  dyn_cast_or_null<SwitchStmt>(From->getTerminator())) {
2438      if (S->isAllEnumCasesCovered()) {
2439  const Stmt *L = To->getLabel();
2440  if (!L || !isa<CaseStmt>(L))
2441    return true;
2442      }
2443    }
2444  }
2445
2446  return false;
2447}
2448
2449//===----------------------------------------------------------------------===//
2450// Cleanup: CFG dstor.
2451//===----------------------------------------------------------------------===//
2452
2453CFG::~CFG() {
2454  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2455}
2456
2457//===----------------------------------------------------------------------===//
2458// CFG pretty printing
2459//===----------------------------------------------------------------------===//
2460
2461namespace {
2462
2463class StmtPrinterHelper : public PrinterHelper  {
2464  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2465  typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2466  StmtMapTy StmtMap;
2467  DeclMapTy DeclMap;
2468  signed CurrentBlock;
2469  unsigned CurrentStmt;
2470  const LangOptions &LangOpts;
2471public:
2472
2473  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2474    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
2475    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2476      unsigned j = 1;
2477      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2478           BI != BEnd; ++BI, ++j ) {
2479        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2480          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2481          StmtMap[SE] = P;
2482
2483          if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2484              DeclMap[DS->getSingleDecl()] = P;
2485
2486          } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2487            if (VarDecl* VD = IS->getConditionVariable())
2488              DeclMap[VD] = P;
2489
2490          } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2491            if (VarDecl* VD = FS->getConditionVariable())
2492              DeclMap[VD] = P;
2493
2494          } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2495            if (VarDecl* VD = WS->getConditionVariable())
2496              DeclMap[VD] = P;
2497
2498          } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2499            if (VarDecl* VD = SS->getConditionVariable())
2500              DeclMap[VD] = P;
2501
2502          } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2503            if (VarDecl* VD = CS->getExceptionDecl())
2504              DeclMap[VD] = P;
2505          }
2506        }
2507      }
2508    }
2509  }
2510
2511  virtual ~StmtPrinterHelper() {}
2512
2513  const LangOptions &getLangOpts() const { return LangOpts; }
2514  void setBlockID(signed i) { CurrentBlock = i; }
2515  void setStmtID(unsigned i) { CurrentStmt = i; }
2516
2517  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2518    StmtMapTy::iterator I = StmtMap.find(S);
2519
2520    if (I == StmtMap.end())
2521      return false;
2522
2523    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2524                          && I->second.second == CurrentStmt) {
2525      return false;
2526    }
2527
2528    OS << "[B" << I->second.first << "." << I->second.second << "]";
2529    return true;
2530  }
2531
2532  bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2533    DeclMapTy::iterator I = DeclMap.find(D);
2534
2535    if (I == DeclMap.end())
2536      return false;
2537
2538    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2539                          && I->second.second == CurrentStmt) {
2540      return false;
2541    }
2542
2543    OS << "[B" << I->second.first << "." << I->second.second << "]";
2544    return true;
2545  }
2546};
2547} // end anonymous namespace
2548
2549
2550namespace {
2551class CFGBlockTerminatorPrint
2552  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2553
2554  llvm::raw_ostream& OS;
2555  StmtPrinterHelper* Helper;
2556  PrintingPolicy Policy;
2557public:
2558  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2559                          const PrintingPolicy &Policy)
2560    : OS(os), Helper(helper), Policy(Policy) {}
2561
2562  void VisitIfStmt(IfStmt* I) {
2563    OS << "if ";
2564    I->getCond()->printPretty(OS,Helper,Policy);
2565  }
2566
2567  // Default case.
2568  void VisitStmt(Stmt* Terminator) {
2569    Terminator->printPretty(OS, Helper, Policy);
2570  }
2571
2572  void VisitForStmt(ForStmt* F) {
2573    OS << "for (" ;
2574    if (F->getInit())
2575      OS << "...";
2576    OS << "; ";
2577    if (Stmt* C = F->getCond())
2578      C->printPretty(OS, Helper, Policy);
2579    OS << "; ";
2580    if (F->getInc())
2581      OS << "...";
2582    OS << ")";
2583  }
2584
2585  void VisitWhileStmt(WhileStmt* W) {
2586    OS << "while " ;
2587    if (Stmt* C = W->getCond())
2588      C->printPretty(OS, Helper, Policy);
2589  }
2590
2591  void VisitDoStmt(DoStmt* D) {
2592    OS << "do ... while ";
2593    if (Stmt* C = D->getCond())
2594      C->printPretty(OS, Helper, Policy);
2595  }
2596
2597  void VisitSwitchStmt(SwitchStmt* Terminator) {
2598    OS << "switch ";
2599    Terminator->getCond()->printPretty(OS, Helper, Policy);
2600  }
2601
2602  void VisitCXXTryStmt(CXXTryStmt* CS) {
2603    OS << "try ...";
2604  }
2605
2606  void VisitConditionalOperator(ConditionalOperator* C) {
2607    C->getCond()->printPretty(OS, Helper, Policy);
2608    OS << " ? ... : ...";
2609  }
2610
2611  void VisitChooseExpr(ChooseExpr* C) {
2612    OS << "__builtin_choose_expr( ";
2613    C->getCond()->printPretty(OS, Helper, Policy);
2614    OS << " )";
2615  }
2616
2617  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2618    OS << "goto *";
2619    I->getTarget()->printPretty(OS, Helper, Policy);
2620  }
2621
2622  void VisitBinaryOperator(BinaryOperator* B) {
2623    if (!B->isLogicalOp()) {
2624      VisitExpr(B);
2625      return;
2626    }
2627
2628    B->getLHS()->printPretty(OS, Helper, Policy);
2629
2630    switch (B->getOpcode()) {
2631      case BO_LOr:
2632        OS << " || ...";
2633        return;
2634      case BO_LAnd:
2635        OS << " && ...";
2636        return;
2637      default:
2638        assert(false && "Invalid logical operator.");
2639    }
2640  }
2641
2642  void VisitExpr(Expr* E) {
2643    E->printPretty(OS, Helper, Policy);
2644  }
2645};
2646} // end anonymous namespace
2647
2648static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2649                       const CFGElement &E) {
2650  if (CFGStmt CS = E.getAs<CFGStmt>()) {
2651    Stmt *S = CS;
2652
2653    if (Helper) {
2654
2655      // special printing for statement-expressions.
2656      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2657        CompoundStmt* Sub = SE->getSubStmt();
2658
2659        if (Sub->child_begin() != Sub->child_end()) {
2660          OS << "({ ... ; ";
2661          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2662          OS << " })\n";
2663          return;
2664        }
2665      }
2666      // special printing for comma expressions.
2667      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2668        if (B->getOpcode() == BO_Comma) {
2669          OS << "... , ";
2670          Helper->handledStmt(B->getRHS(),OS);
2671          OS << '\n';
2672          return;
2673        }
2674      }
2675    }
2676    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2677
2678    if (isa<CXXOperatorCallExpr>(S)) {
2679      OS << " (OperatorCall)";
2680    }
2681    else if (isa<CXXBindTemporaryExpr>(S)) {
2682      OS << " (BindTemporary)";
2683    }
2684
2685    // Expressions need a newline.
2686    if (isa<Expr>(S))
2687      OS << '\n';
2688
2689  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
2690    CXXBaseOrMemberInitializer* I = IE;
2691    if (I->isBaseInitializer())
2692      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
2693    else OS << I->getMember()->getName();
2694
2695    OS << "(";
2696    if (Expr* IE = I->getInit())
2697      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2698    OS << ")";
2699
2700    if (I->isBaseInitializer())
2701      OS << " (Base initializer)\n";
2702    else OS << " (Member initializer)\n";
2703
2704  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
2705    VarDecl* VD = DE.getVarDecl();
2706    Helper->handleDecl(VD, OS);
2707
2708    Type* T = VD->getType().getTypePtr();
2709    if (const ReferenceType* RT = T->getAs<ReferenceType>())
2710      T = RT->getPointeeType().getTypePtr();
2711
2712    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
2713    OS << " (Implicit destructor)\n";
2714
2715  } else if (CFGBaseDtor BE = E.getAs<CFGBaseDtor>()) {
2716    const CXXBaseSpecifier *BS = BE.getBaseSpecifier();
2717    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
2718    OS << " (Base object destructor)\n";
2719
2720  } else if (CFGMemberDtor ME = E.getAs<CFGMemberDtor>()) {
2721    FieldDecl *FD = ME.getFieldDecl();
2722    OS << "this->" << FD->getName();
2723    OS << ".~" << FD->getType()->getAsCXXRecordDecl()->getName() << "()";
2724    OS << " (Member object destructor)\n";
2725  }
2726 }
2727
2728static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2729                        const CFGBlock& B,
2730                        StmtPrinterHelper* Helper, bool print_edges) {
2731
2732  if (Helper) Helper->setBlockID(B.getBlockID());
2733
2734  // Print the header.
2735  OS << "\n [ B" << B.getBlockID();
2736
2737  if (&B == &cfg->getEntry())
2738    OS << " (ENTRY) ]\n";
2739  else if (&B == &cfg->getExit())
2740    OS << " (EXIT) ]\n";
2741  else if (&B == cfg->getIndirectGotoBlock())
2742    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2743  else
2744    OS << " ]\n";
2745
2746  // Print the label of this block.
2747  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2748
2749    if (print_edges)
2750      OS << "    ";
2751
2752    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2753      OS << L->getName();
2754    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2755      OS << "case ";
2756      C->getLHS()->printPretty(OS, Helper,
2757                               PrintingPolicy(Helper->getLangOpts()));
2758      if (C->getRHS()) {
2759        OS << " ... ";
2760        C->getRHS()->printPretty(OS, Helper,
2761                                 PrintingPolicy(Helper->getLangOpts()));
2762      }
2763    } else if (isa<DefaultStmt>(Label))
2764      OS << "default";
2765    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2766      OS << "catch (";
2767      if (CS->getExceptionDecl())
2768        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2769                                      0);
2770      else
2771        OS << "...";
2772      OS << ")";
2773
2774    } else
2775      assert(false && "Invalid label statement in CFGBlock.");
2776
2777    OS << ":\n";
2778  }
2779
2780  // Iterate through the statements in the block and print them.
2781  unsigned j = 1;
2782
2783  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2784       I != E ; ++I, ++j ) {
2785
2786    // Print the statement # in the basic block and the statement itself.
2787    if (print_edges)
2788      OS << "    ";
2789
2790    OS << llvm::format("%3d", j) << ": ";
2791
2792    if (Helper)
2793      Helper->setStmtID(j);
2794
2795    print_elem(OS,Helper,*I);
2796  }
2797
2798  // Print the terminator of this block.
2799  if (B.getTerminator()) {
2800    if (print_edges)
2801      OS << "    ";
2802
2803    OS << "  T: ";
2804
2805    if (Helper) Helper->setBlockID(-1);
2806
2807    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2808                                     PrintingPolicy(Helper->getLangOpts()));
2809    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2810    OS << '\n';
2811  }
2812
2813  if (print_edges) {
2814    // Print the predecessors of this block.
2815    OS << "    Predecessors (" << B.pred_size() << "):";
2816    unsigned i = 0;
2817
2818    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2819         I != E; ++I, ++i) {
2820
2821      if (i == 8 || (i-8) == 0)
2822        OS << "\n     ";
2823
2824      OS << " B" << (*I)->getBlockID();
2825    }
2826
2827    OS << '\n';
2828
2829    // Print the successors of this block.
2830    OS << "    Successors (" << B.succ_size() << "):";
2831    i = 0;
2832
2833    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2834         I != E; ++I, ++i) {
2835
2836      if (i == 8 || (i-8) % 10 == 0)
2837        OS << "\n    ";
2838
2839      if (*I)
2840        OS << " B" << (*I)->getBlockID();
2841      else
2842        OS  << " NULL";
2843    }
2844
2845    OS << '\n';
2846  }
2847}
2848
2849
2850/// dump - A simple pretty printer of a CFG that outputs to stderr.
2851void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2852
2853/// print - A simple pretty printer of a CFG that outputs to an ostream.
2854void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2855  StmtPrinterHelper Helper(this, LO);
2856
2857  // Print the entry block.
2858  print_block(OS, this, getEntry(), &Helper, true);
2859
2860  // Iterate through the CFGBlocks and print them one by one.
2861  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2862    // Skip the entry block, because we already printed it.
2863    if (&(**I) == &getEntry() || &(**I) == &getExit())
2864      continue;
2865
2866    print_block(OS, this, **I, &Helper, true);
2867  }
2868
2869  // Print the exit block.
2870  print_block(OS, this, getExit(), &Helper, true);
2871  OS.flush();
2872}
2873
2874/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2875void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2876  print(llvm::errs(), cfg, LO);
2877}
2878
2879/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2880///   Generally this will only be called from CFG::print.
2881void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2882                     const LangOptions &LO) const {
2883  StmtPrinterHelper Helper(cfg, LO);
2884  print_block(OS, cfg, *this, &Helper, true);
2885}
2886
2887/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2888void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2889                               const LangOptions &LO) const {
2890  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2891  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2892}
2893
2894Stmt* CFGBlock::getTerminatorCondition() {
2895
2896  if (!Terminator)
2897    return NULL;
2898
2899  Expr* E = NULL;
2900
2901  switch (Terminator->getStmtClass()) {
2902    default:
2903      break;
2904
2905    case Stmt::ForStmtClass:
2906      E = cast<ForStmt>(Terminator)->getCond();
2907      break;
2908
2909    case Stmt::WhileStmtClass:
2910      E = cast<WhileStmt>(Terminator)->getCond();
2911      break;
2912
2913    case Stmt::DoStmtClass:
2914      E = cast<DoStmt>(Terminator)->getCond();
2915      break;
2916
2917    case Stmt::IfStmtClass:
2918      E = cast<IfStmt>(Terminator)->getCond();
2919      break;
2920
2921    case Stmt::ChooseExprClass:
2922      E = cast<ChooseExpr>(Terminator)->getCond();
2923      break;
2924
2925    case Stmt::IndirectGotoStmtClass:
2926      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2927      break;
2928
2929    case Stmt::SwitchStmtClass:
2930      E = cast<SwitchStmt>(Terminator)->getCond();
2931      break;
2932
2933    case Stmt::ConditionalOperatorClass:
2934      E = cast<ConditionalOperator>(Terminator)->getCond();
2935      break;
2936
2937    case Stmt::BinaryOperatorClass: // '&&' and '||'
2938      E = cast<BinaryOperator>(Terminator)->getLHS();
2939      break;
2940
2941    case Stmt::ObjCForCollectionStmtClass:
2942      return Terminator;
2943  }
2944
2945  return E ? E->IgnoreParens() : NULL;
2946}
2947
2948bool CFGBlock::hasBinaryBranchTerminator() const {
2949
2950  if (!Terminator)
2951    return false;
2952
2953  Expr* E = NULL;
2954
2955  switch (Terminator->getStmtClass()) {
2956    default:
2957      return false;
2958
2959    case Stmt::ForStmtClass:
2960    case Stmt::WhileStmtClass:
2961    case Stmt::DoStmtClass:
2962    case Stmt::IfStmtClass:
2963    case Stmt::ChooseExprClass:
2964    case Stmt::ConditionalOperatorClass:
2965    case Stmt::BinaryOperatorClass:
2966      return true;
2967  }
2968
2969  return E ? E->IgnoreParens() : NULL;
2970}
2971
2972
2973//===----------------------------------------------------------------------===//
2974// CFG Graphviz Visualization
2975//===----------------------------------------------------------------------===//
2976
2977
2978#ifndef NDEBUG
2979static StmtPrinterHelper* GraphHelper;
2980#endif
2981
2982void CFG::viewCFG(const LangOptions &LO) const {
2983#ifndef NDEBUG
2984  StmtPrinterHelper H(this, LO);
2985  GraphHelper = &H;
2986  llvm::ViewGraph(this,"CFG");
2987  GraphHelper = NULL;
2988#endif
2989}
2990
2991namespace llvm {
2992template<>
2993struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2994
2995  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2996
2997  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2998
2999#ifndef NDEBUG
3000    std::string OutSStr;
3001    llvm::raw_string_ostream Out(OutSStr);
3002    print_block(Out,Graph, *Node, GraphHelper, false);
3003    std::string& OutStr = Out.str();
3004
3005    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3006
3007    // Process string output to make it nicer...
3008    for (unsigned i = 0; i != OutStr.length(); ++i)
3009      if (OutStr[i] == '\n') {                            // Left justify
3010        OutStr[i] = '\\';
3011        OutStr.insert(OutStr.begin()+i+1, 'l');
3012      }
3013
3014    return OutStr;
3015#else
3016    return "";
3017#endif
3018  }
3019};
3020} // end namespace llvm
3021