CFG.cpp revision 63426e5df054d04226a5456d17d26212d8eff30e
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// LocalScope - Node in tree of local scopes created for C++ implicit
56/// destructor calls generation. It contains list of automatic variables
57/// declared in the scope and link to position in previous scope this scope
58/// began in.
59///
60/// The process of creating local scopes is as follows:
61/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
62/// - Before processing statements in scope (e.g. CompoundStmt) create
63///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
64///   and set CFGBuilder::ScopePos to the end of new scope,
65/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
66///   at this VarDecl,
67/// - For every normal (without jump) end of scope add to CFGBlock destructors
68///   for objects in the current scope,
69/// - For every jump add to CFGBlock destructors for objects
70///   between CFGBuilder::ScopePos and local scope position saved for jump
71///   target. Thanks to C++ restrictions on goto jumps we can be sure that
72///   jump target position will be on the path to root from CFGBuilder::ScopePos
73///   (adding any variable that doesn't need constructor to be called to
74///   LocalScope can break this assumption),
75///
76class LocalScope {
77public:
78  typedef llvm::SmallVector<VarDecl*, 4> AutomaticVarsTy;
79
80  /// const_iterator - Iterates local scope backwards and jumps to previous
81  /// scope on reaching the beginning of currently iterated scope.
82  class const_iterator {
83    const LocalScope* Scope;
84
85    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
86    /// Invalid iterator (with null Scope) has VarIter equal to 0.
87    unsigned VarIter;
88
89  public:
90    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
91    /// Incrementing invalid iterator is allowed and will result in invalid
92    /// iterator.
93    const_iterator()
94        : Scope(NULL), VarIter(0) {}
95
96    /// Create valid iterator. In case when S.Prev is an invalid iterator and
97    /// I is equal to 0, this will create invalid iterator.
98    const_iterator(const LocalScope& S, unsigned I)
99        : Scope(&S), VarIter(I) {
100      // Iterator to "end" of scope is not allowed. Handle it by going up
101      // in scopes tree possibly up to invalid iterator in the root.
102      if (VarIter == 0 && Scope)
103        *this = Scope->Prev;
104    }
105
106    VarDecl* const* operator->() const {
107      assert (Scope && "Dereferencing invalid iterator is not allowed");
108      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
109      return &Scope->Vars[VarIter - 1];
110    }
111    VarDecl* operator*() const {
112      return *this->operator->();
113    }
114
115    const_iterator& operator++() {
116      if (!Scope)
117        return *this;
118
119      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
120      --VarIter;
121      if (VarIter == 0)
122        *this = Scope->Prev;
123      return *this;
124    }
125    const_iterator operator++(int) {
126      const_iterator P = *this;
127      ++*this;
128      return P;
129    }
130
131    bool operator==(const const_iterator& rhs) const {
132      return Scope == rhs.Scope && VarIter == rhs.VarIter;
133    }
134    bool operator!=(const const_iterator& rhs) const {
135      return !(*this == rhs);
136    }
137
138    operator bool() const {
139      return *this != const_iterator();
140    }
141
142    int distance(const_iterator L);
143  };
144
145  friend class const_iterator;
146
147private:
148  /// Automatic variables in order of declaration.
149  AutomaticVarsTy Vars;
150  /// Iterator to variable in previous scope that was declared just before
151  /// begin of this scope.
152  const_iterator Prev;
153
154public:
155  /// Constructs empty scope linked to previous scope in specified place.
156  LocalScope(const_iterator P)
157      : Vars()
158      , Prev(P) {}
159
160  /// Begin of scope in direction of CFG building (backwards).
161  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
162
163  void addVar(VarDecl* VD) {
164    Vars.push_back(VD);
165  }
166};
167
168/// distance - Calculates distance from this to L. L must be reachable from this
169/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
170/// number of scopes between this and L.
171int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
172  int D = 0;
173  const_iterator F = *this;
174  while (F.Scope != L.Scope) {
175    assert (F != const_iterator()
176        && "L iterator is not reachable from F iterator.");
177    D += F.VarIter;
178    F = F.Scope->Prev;
179  }
180  D += F.VarIter - L.VarIter;
181  return D;
182}
183
184/// BlockScopePosPair - Structure for specifying position in CFG during its
185/// build process. It consists of CFGBlock that specifies position in CFG graph
186/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
187struct BlockScopePosPair {
188  BlockScopePosPair() {}
189  BlockScopePosPair(CFGBlock* B, LocalScope::const_iterator S)
190      : Block(B), ScopePos(S) {}
191
192  CFGBlock*                   Block;
193  LocalScope::const_iterator  ScopePos;
194};
195
196/// CFGBuilder - This class implements CFG construction from an AST.
197///   The builder is stateful: an instance of the builder should be used to only
198///   construct a single CFG.
199///
200///   Example usage:
201///
202///     CFGBuilder builder;
203///     CFG* cfg = builder.BuildAST(stmt1);
204///
205///  CFG construction is done via a recursive walk of an AST.  We actually parse
206///  the AST in reverse order so that the successor of a basic block is
207///  constructed prior to its predecessor.  This allows us to nicely capture
208///  implicit fall-throughs without extra basic blocks.
209///
210class CFGBuilder {
211  typedef BlockScopePosPair JumpTarget;
212  typedef BlockScopePosPair JumpSource;
213
214  ASTContext *Context;
215  llvm::OwningPtr<CFG> cfg;
216
217  CFGBlock* Block;
218  CFGBlock* Succ;
219  JumpTarget ContinueJumpTarget;
220  JumpTarget BreakJumpTarget;
221  CFGBlock* SwitchTerminatedBlock;
222  CFGBlock* DefaultCaseBlock;
223  CFGBlock* TryTerminatedBlock;
224
225  // Current position in local scope.
226  LocalScope::const_iterator ScopePos;
227
228  // LabelMap records the mapping from Label expressions to their jump targets.
229  typedef llvm::DenseMap<LabelStmt*, JumpTarget> LabelMapTy;
230  LabelMapTy LabelMap;
231
232  // A list of blocks that end with a "goto" that must be backpatched to their
233  // resolved targets upon completion of CFG construction.
234  typedef std::vector<JumpSource> BackpatchBlocksTy;
235  BackpatchBlocksTy BackpatchBlocks;
236
237  // A list of labels whose address has been taken (for indirect gotos).
238  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
239  LabelSetTy AddressTakenLabels;
240
241  bool badCFG;
242  CFG::BuildOptions BuildOpts;
243
244public:
245  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
246                          Block(NULL), Succ(NULL),
247                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
248                          TryTerminatedBlock(NULL), badCFG(false) {}
249
250  // buildCFG - Used by external clients to construct the CFG.
251  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
252      CFG::BuildOptions BO);
253
254private:
255  // Visitors to walk an AST and construct the CFG.
256  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
257  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
258  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
259  CFGBlock *VisitBreakStmt(BreakStmt *B);
260  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
261  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
262  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
263  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
264  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
265  CFGBlock *VisitCaseStmt(CaseStmt *C);
266  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
267  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
268  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
269  CFGBlock *VisitContinueStmt(ContinueStmt *C);
270  CFGBlock *VisitDeclStmt(DeclStmt *DS);
271  CFGBlock *VisitDeclSubExpr(Decl* D);
272  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
273  CFGBlock *VisitDoStmt(DoStmt *D);
274  CFGBlock *VisitForStmt(ForStmt *F);
275  CFGBlock *VisitGotoStmt(GotoStmt* G);
276  CFGBlock *VisitIfStmt(IfStmt *I);
277  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
278  CFGBlock *VisitLabelStmt(LabelStmt *L);
279  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
280  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
281  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
282  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
283  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
284  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
285  CFGBlock *VisitReturnStmt(ReturnStmt* R);
286  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
287  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
288  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
289  CFGBlock *VisitWhileStmt(WhileStmt *W);
290
291  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
292  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
293  CFGBlock *VisitChildren(Stmt* S);
294
295  // NYS == Not Yet Supported
296  CFGBlock* NYS() {
297    badCFG = true;
298    return Block;
299  }
300
301  void autoCreateBlock() { if (!Block) Block = createBlock(); }
302  CFGBlock *createBlock(bool add_successor = true);
303
304  CFGBlock *addStmt(Stmt *S) {
305    return Visit(S, AddStmtChoice::AlwaysAdd);
306  }
307  CFGBlock *addAutomaticObjDtors(LocalScope::const_iterator B,
308      LocalScope::const_iterator E, Stmt* S);
309
310  // Local scopes creation.
311  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
312
313  LocalScope* addLocalScopeForStmt(Stmt* S, LocalScope* Scope = NULL);
314  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
315  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
316
317  void addLocalScopeAndDtors(Stmt* S);
318
319  // Interface to CFGBlock - adding CFGElements.
320  void AppendStmt(CFGBlock *B, Stmt *S,
321                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
322    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
323  }
324
325  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
326    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
327  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
328      LocalScope::const_iterator E, Stmt* S);
329  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
330      LocalScope::const_iterator B, LocalScope::const_iterator E);
331
332  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
333    B->addSuccessor(S, cfg->getBumpVectorContext());
334  }
335
336  /// TryResult - a class representing a variant over the values
337  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
338  ///  and is used by the CFGBuilder to decide if a branch condition
339  ///  can be decided up front during CFG construction.
340  class TryResult {
341    int X;
342  public:
343    TryResult(bool b) : X(b ? 1 : 0) {}
344    TryResult() : X(-1) {}
345
346    bool isTrue() const { return X == 1; }
347    bool isFalse() const { return X == 0; }
348    bool isKnown() const { return X >= 0; }
349    void negate() {
350      assert(isKnown());
351      X ^= 0x1;
352    }
353  };
354
355  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
356  /// if we can evaluate to a known value, otherwise return -1.
357  TryResult TryEvaluateBool(Expr *S) {
358    if (!BuildOpts.PruneTriviallyFalseEdges)
359      return TryResult();
360
361    Expr::EvalResult Result;
362    if (!S->isTypeDependent() && !S->isValueDependent() &&
363        S->Evaluate(Result, *Context) && Result.Val.isInt())
364      return Result.Val.getInt().getBoolValue();
365
366    return TryResult();
367  }
368};
369
370// FIXME: Add support for dependent-sized array types in C++?
371// Does it even make sense to build a CFG for an uninstantiated template?
372static VariableArrayType* FindVA(Type* t) {
373  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
374    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
375      if (vat->getSizeExpr())
376        return vat;
377
378    t = vt->getElementType().getTypePtr();
379  }
380
381  return 0;
382}
383
384/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
385///  arbitrary statement.  Examples include a single expression or a function
386///  body (compound statement).  The ownership of the returned CFG is
387///  transferred to the caller.  If CFG construction fails, this method returns
388///  NULL.
389CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
390    CFG::BuildOptions BO) {
391
392  Context = C;
393  assert(cfg.get());
394  if (!Statement)
395    return NULL;
396
397  BuildOpts = BO;
398  if (!C->getLangOptions().CPlusPlus)
399    BuildOpts.AddImplicitDtors = false;
400
401  // Create an empty block that will serve as the exit block for the CFG.  Since
402  // this is the first block added to the CFG, it will be implicitly registered
403  // as the exit block.
404  Succ = createBlock();
405  assert(Succ == &cfg->getExit());
406  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
407
408  // Visit the statements and create the CFG.
409  CFGBlock *B = addStmt(Statement);
410
411  if (badCFG)
412    return NULL;
413
414  if (B)
415    Succ = B;
416
417  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
418    // FIXME: Add code for base initializers and member initializers.
419    (void)CD;
420  }
421
422  // Backpatch the gotos whose label -> block mappings we didn't know when we
423  // encountered them.
424  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
425                                   E = BackpatchBlocks.end(); I != E; ++I ) {
426
427    CFGBlock* B = I->Block;
428    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
429    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
430
431    // If there is no target for the goto, then we are looking at an
432    // incomplete AST.  Handle this by not registering a successor.
433    if (LI == LabelMap.end()) continue;
434
435    JumpTarget JT = LI->second;
436    prependAutomaticObjDtorsWithTerminator(B, I->ScopePos, JT.ScopePos);
437    AddSuccessor(B, JT.Block);
438  }
439
440  // Add successors to the Indirect Goto Dispatch block (if we have one).
441  if (CFGBlock* B = cfg->getIndirectGotoBlock())
442    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
443                              E = AddressTakenLabels.end(); I != E; ++I ) {
444
445      // Lookup the target block.
446      LabelMapTy::iterator LI = LabelMap.find(*I);
447
448      // If there is no target block that contains label, then we are looking
449      // at an incomplete AST.  Handle this by not registering a successor.
450      if (LI == LabelMap.end()) continue;
451
452      AddSuccessor(B, LI->second.Block);
453    }
454
455  // Create an empty entry block that has no predecessors.
456  cfg->setEntry(createBlock());
457
458  return cfg.take();
459}
460
461/// createBlock - Used to lazily create blocks that are connected
462///  to the current (global) succcessor.
463CFGBlock* CFGBuilder::createBlock(bool add_successor) {
464  CFGBlock* B = cfg->createBlock();
465  if (add_successor && Succ)
466    AddSuccessor(B, Succ);
467  return B;
468}
469
470/// addAutomaticObjDtors - Add to current block automatic objects destructors
471/// for objects in range of local scope positions. Use S as trigger statement
472/// for destructors.
473CFGBlock* CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
474    LocalScope::const_iterator E, Stmt* S) {
475  if (!BuildOpts.AddImplicitDtors)
476    return Block;
477  if (B == E)
478    return Block;
479
480  autoCreateBlock();
481  appendAutomaticObjDtors(Block, B, E, S);
482  return Block;
483}
484
485/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
486/// way return valid LocalScope object.
487LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
488  if (!Scope) {
489    Scope = cfg->getAllocator().Allocate<LocalScope>();
490    new (Scope) LocalScope(ScopePos);
491  }
492  return Scope;
493}
494
495/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
496/// that should create implicit scope (e.g. if/else substatements). Will reuse
497/// Scope if not NULL.
498LocalScope* CFGBuilder::addLocalScopeForStmt(Stmt* S, LocalScope* Scope) {
499  if (!BuildOpts.AddImplicitDtors)
500    return Scope;
501
502  // For compound statement we will be creating explicit scope.
503  if (CompoundStmt* CS = dyn_cast<CompoundStmt>(S)) {
504    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
505        ; BI != BE; ++BI) {
506      Stmt* SI = *BI;
507      if (LabelStmt* LS = dyn_cast<LabelStmt>(SI))
508        SI = LS->getSubStmt();
509      if (DeclStmt* DS = dyn_cast<DeclStmt>(SI))
510        Scope = addLocalScopeForDeclStmt(DS, Scope);
511    }
512    return Scope;
513  }
514
515  // For any other statement scope will be implicit and as such will be
516  // interesting only for DeclStmt.
517  if (LabelStmt* LS = dyn_cast<LabelStmt>(S))
518    S = LS->getSubStmt();
519  if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
520    Scope = addLocalScopeForDeclStmt(DS, Scope);
521  return Scope;
522}
523
524/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
525/// reuse Scope if not NULL.
526LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
527    LocalScope* Scope) {
528  if (!BuildOpts.AddImplicitDtors)
529    return Scope;
530
531  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
532      ; DI != DE; ++DI) {
533    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
534      Scope = addLocalScopeForVarDecl(VD, Scope);
535  }
536  return Scope;
537}
538
539/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
540/// create add scope for automatic objects and temporary objects bound to
541/// const reference. Will reuse Scope if not NULL.
542LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
543    LocalScope* Scope) {
544  if (!BuildOpts.AddImplicitDtors)
545    return Scope;
546
547  // Check if variable is local.
548  switch (VD->getStorageClass()) {
549  case SC_None:
550  case SC_Auto:
551  case SC_Register:
552    break;
553  default: return Scope;
554  }
555
556  // Check for const references bound to temporary. Set type to pointee.
557  QualType QT = VD->getType();
558  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
559    QT = RT->getPointeeType();
560    if (!QT.isConstQualified())
561      return Scope;
562    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
563      return Scope;
564  }
565
566  // Check if type is a C++ class with non-trivial destructor.
567  if (const RecordType* RT = QT.getTypePtr()->getAs<RecordType>())
568    if (const CXXRecordDecl* CD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
569      if (CD->hasTrivialDestructor())
570        return Scope;
571
572  // Add the variable to scope
573  Scope = createOrReuseLocalScope(Scope);
574  Scope->addVar(VD);
575  ScopePos = Scope->begin();
576  return Scope;
577}
578
579/// addLocalScopeAndDtors - For given statement add local scope for it and
580/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
581void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
582  if (!BuildOpts.AddImplicitDtors)
583    return;
584
585  LocalScope::const_iterator scopeBeginPos = ScopePos;
586  addLocalScopeForStmt(S, NULL);
587  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
588}
589
590/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
591/// automatic storage duration to CFGBlock's elements vector. Insertion will be
592/// performed in place specified with iterator.
593void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
594    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
595  BumpVectorContext& C = cfg->getBumpVectorContext();
596  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
597  while (B != E)
598    I = Blk->insertAutomaticObjDtor(I, *B++, S);
599}
600
601/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
602/// automatic storage duration to CFGBlock's elements vector. Elements will be
603/// appended to physical end of the vector which happens to be logical
604/// beginning.
605void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
606    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
607  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
608}
609
610/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
611/// variables with automatic storage duration to CFGBlock's elements vector.
612/// Elements will be prepended to physical beginning of the vector which
613/// happens to be logical end. Use blocks terminator as statement that specifies
614/// destructors call site.
615void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
616    LocalScope::const_iterator B, LocalScope::const_iterator E) {
617  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
618}
619
620/// Visit - Walk the subtree of a statement and add extra
621///   blocks for ternary operators, &&, and ||.  We also process "," and
622///   DeclStmts (which may contain nested control-flow).
623CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
624tryAgain:
625  if (!S) {
626    badCFG = true;
627    return 0;
628  }
629  switch (S->getStmtClass()) {
630    default:
631      return VisitStmt(S, asc);
632
633    case Stmt::AddrLabelExprClass:
634      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
635
636    case Stmt::BinaryOperatorClass:
637      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
638
639    case Stmt::BlockExprClass:
640      return VisitBlockExpr(cast<BlockExpr>(S), asc);
641
642    case Stmt::BreakStmtClass:
643      return VisitBreakStmt(cast<BreakStmt>(S));
644
645    case Stmt::CallExprClass:
646    case Stmt::CXXOperatorCallExprClass:
647      return VisitCallExpr(cast<CallExpr>(S), asc);
648
649    case Stmt::CaseStmtClass:
650      return VisitCaseStmt(cast<CaseStmt>(S));
651
652    case Stmt::ChooseExprClass:
653      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
654
655    case Stmt::CompoundStmtClass:
656      return VisitCompoundStmt(cast<CompoundStmt>(S));
657
658    case Stmt::ConditionalOperatorClass:
659      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
660
661    case Stmt::ContinueStmtClass:
662      return VisitContinueStmt(cast<ContinueStmt>(S));
663
664    case Stmt::CXXCatchStmtClass:
665      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
666
667    case Stmt::CXXExprWithTemporariesClass: {
668      // FIXME: Handle temporaries.  For now, just visit the subexpression
669      // so we don't artificially create extra blocks.
670      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
671    }
672
673    case Stmt::CXXMemberCallExprClass:
674      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
675
676    case Stmt::CXXThrowExprClass:
677      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
678
679    case Stmt::CXXTryStmtClass:
680      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
681
682    case Stmt::DeclStmtClass:
683      return VisitDeclStmt(cast<DeclStmt>(S));
684
685    case Stmt::DefaultStmtClass:
686      return VisitDefaultStmt(cast<DefaultStmt>(S));
687
688    case Stmt::DoStmtClass:
689      return VisitDoStmt(cast<DoStmt>(S));
690
691    case Stmt::ForStmtClass:
692      return VisitForStmt(cast<ForStmt>(S));
693
694    case Stmt::GotoStmtClass:
695      return VisitGotoStmt(cast<GotoStmt>(S));
696
697    case Stmt::IfStmtClass:
698      return VisitIfStmt(cast<IfStmt>(S));
699
700    case Stmt::IndirectGotoStmtClass:
701      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
702
703    case Stmt::LabelStmtClass:
704      return VisitLabelStmt(cast<LabelStmt>(S));
705
706    case Stmt::MemberExprClass:
707      return VisitMemberExpr(cast<MemberExpr>(S), asc);
708
709    case Stmt::ObjCAtCatchStmtClass:
710      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
711
712    case Stmt::ObjCAtSynchronizedStmtClass:
713      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
714
715    case Stmt::ObjCAtThrowStmtClass:
716      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
717
718    case Stmt::ObjCAtTryStmtClass:
719      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
720
721    case Stmt::ObjCForCollectionStmtClass:
722      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
723
724    case Stmt::ParenExprClass:
725      S = cast<ParenExpr>(S)->getSubExpr();
726      goto tryAgain;
727
728    case Stmt::NullStmtClass:
729      return Block;
730
731    case Stmt::ReturnStmtClass:
732      return VisitReturnStmt(cast<ReturnStmt>(S));
733
734    case Stmt::SizeOfAlignOfExprClass:
735      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
736
737    case Stmt::StmtExprClass:
738      return VisitStmtExpr(cast<StmtExpr>(S), asc);
739
740    case Stmt::SwitchStmtClass:
741      return VisitSwitchStmt(cast<SwitchStmt>(S));
742
743    case Stmt::WhileStmtClass:
744      return VisitWhileStmt(cast<WhileStmt>(S));
745  }
746}
747
748CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
749  if (asc.alwaysAdd()) {
750    autoCreateBlock();
751    AppendStmt(Block, S, asc);
752  }
753
754  return VisitChildren(S);
755}
756
757/// VisitChildren - Visit the children of a Stmt.
758CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
759  CFGBlock *B = Block;
760  for (Stmt::child_iterator I = Terminator->child_begin(),
761         E = Terminator->child_end(); I != E; ++I) {
762    if (*I) B = Visit(*I);
763  }
764  return B;
765}
766
767CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
768                                         AddStmtChoice asc) {
769  AddressTakenLabels.insert(A->getLabel());
770
771  if (asc.alwaysAdd()) {
772    autoCreateBlock();
773    AppendStmt(Block, A, asc);
774  }
775
776  return Block;
777}
778
779CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
780                                          AddStmtChoice asc) {
781  if (B->isLogicalOp()) { // && or ||
782    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
783    AppendStmt(ConfluenceBlock, B, asc);
784
785    if (badCFG)
786      return 0;
787
788    // create the block evaluating the LHS
789    CFGBlock* LHSBlock = createBlock(false);
790    LHSBlock->setTerminator(B);
791
792    // create the block evaluating the RHS
793    Succ = ConfluenceBlock;
794    Block = NULL;
795    CFGBlock* RHSBlock = addStmt(B->getRHS());
796
797    if (RHSBlock) {
798      if (badCFG)
799        return 0;
800    }
801    else {
802      // Create an empty block for cases where the RHS doesn't require
803      // any explicit statements in the CFG.
804      RHSBlock = createBlock();
805    }
806
807    // See if this is a known constant.
808    TryResult KnownVal = TryEvaluateBool(B->getLHS());
809    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
810      KnownVal.negate();
811
812    // Now link the LHSBlock with RHSBlock.
813    if (B->getOpcode() == BO_LOr) {
814      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
815      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
816    } else {
817      assert(B->getOpcode() == BO_LAnd);
818      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
819      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
820    }
821
822    // Generate the blocks for evaluating the LHS.
823    Block = LHSBlock;
824    return addStmt(B->getLHS());
825  }
826  else if (B->getOpcode() == BO_Comma) { // ,
827    autoCreateBlock();
828    AppendStmt(Block, B, asc);
829    addStmt(B->getRHS());
830    return addStmt(B->getLHS());
831  }
832  else if (B->isAssignmentOp()) {
833    if (asc.alwaysAdd()) {
834      autoCreateBlock();
835      AppendStmt(Block, B, asc);
836    }
837
838    // If visiting RHS causes us to finish 'Block' and the LHS doesn't
839    // create a new block, then we should return RBlock.  Otherwise
840    // we'll incorrectly return NULL.
841    CFGBlock *RBlock = Visit(B->getRHS());
842    CFGBlock *LBlock = Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
843    return LBlock ? LBlock : RBlock;
844  }
845
846  return VisitStmt(B, asc);
847}
848
849CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
850  if (asc.alwaysAdd()) {
851    autoCreateBlock();
852    AppendStmt(Block, E, asc);
853  }
854  return Block;
855}
856
857CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
858  // "break" is a control-flow statement.  Thus we stop processing the current
859  // block.
860  if (badCFG)
861    return 0;
862
863  // Now create a new block that ends with the break statement.
864  Block = createBlock(false);
865  Block->setTerminator(B);
866
867  // If there is no target for the break, then we are looking at an incomplete
868  // AST.  This means that the CFG cannot be constructed.
869  if (BreakJumpTarget.Block) {
870    addAutomaticObjDtors(ScopePos, BreakJumpTarget.ScopePos, B);
871    AddSuccessor(Block, BreakJumpTarget.Block);
872  } else
873    badCFG = true;
874
875
876  return Block;
877}
878
879static bool CanThrow(Expr *E) {
880  QualType Ty = E->getType();
881  if (Ty->isFunctionPointerType())
882    Ty = Ty->getAs<PointerType>()->getPointeeType();
883  else if (Ty->isBlockPointerType())
884    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
885
886  const FunctionType *FT = Ty->getAs<FunctionType>();
887  if (FT) {
888    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
889      if (Proto->hasEmptyExceptionSpec())
890        return false;
891  }
892  return true;
893}
894
895CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
896  // If this is a call to a no-return function, this stops the block here.
897  bool NoReturn = false;
898  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
899    NoReturn = true;
900  }
901
902  bool AddEHEdge = false;
903
904  // Languages without exceptions are assumed to not throw.
905  if (Context->getLangOptions().Exceptions) {
906    if (BuildOpts.AddEHEdges)
907      AddEHEdge = true;
908  }
909
910  if (FunctionDecl *FD = C->getDirectCallee()) {
911    if (FD->hasAttr<NoReturnAttr>())
912      NoReturn = true;
913    if (FD->hasAttr<NoThrowAttr>())
914      AddEHEdge = false;
915  }
916
917  if (!CanThrow(C->getCallee()))
918    AddEHEdge = false;
919
920  if (!NoReturn && !AddEHEdge) {
921    if (asc.asLValue())
922      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
923    else
924      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
925  }
926
927  if (Block) {
928    Succ = Block;
929    if (badCFG)
930      return 0;
931  }
932
933  Block = createBlock(!NoReturn);
934  AppendStmt(Block, C, asc);
935
936  if (NoReturn) {
937    // Wire this to the exit block directly.
938    AddSuccessor(Block, &cfg->getExit());
939  }
940  if (AddEHEdge) {
941    // Add exceptional edges.
942    if (TryTerminatedBlock)
943      AddSuccessor(Block, TryTerminatedBlock);
944    else
945      AddSuccessor(Block, &cfg->getExit());
946  }
947
948  return VisitChildren(C);
949}
950
951CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
952                                      AddStmtChoice asc) {
953  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
954  AppendStmt(ConfluenceBlock, C, asc);
955  if (badCFG)
956    return 0;
957
958  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
959                       : AddStmtChoice::AlwaysAdd;
960
961  Succ = ConfluenceBlock;
962  Block = NULL;
963  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
964  if (badCFG)
965    return 0;
966
967  Succ = ConfluenceBlock;
968  Block = NULL;
969  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
970  if (badCFG)
971    return 0;
972
973  Block = createBlock(false);
974  // See if this is a known constant.
975  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
976  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
977  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
978  Block->setTerminator(C);
979  return addStmt(C->getCond());
980}
981
982
983CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
984  addLocalScopeAndDtors(C);
985  CFGBlock* LastBlock = Block;
986
987  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
988       I != E; ++I ) {
989    // If we hit a segment of code just containing ';' (NullStmts), we can
990    // get a null block back.  In such cases, just use the LastBlock
991    if (CFGBlock *newBlock = addStmt(*I))
992      LastBlock = newBlock;
993
994    if (badCFG)
995      return NULL;
996  }
997
998  return LastBlock;
999}
1000
1001CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
1002                                               AddStmtChoice asc) {
1003  // Create the confluence block that will "merge" the results of the ternary
1004  // expression.
1005  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1006  AppendStmt(ConfluenceBlock, C, asc);
1007  if (badCFG)
1008    return 0;
1009
1010  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1011                       : AddStmtChoice::AlwaysAdd;
1012
1013  // Create a block for the LHS expression if there is an LHS expression.  A
1014  // GCC extension allows LHS to be NULL, causing the condition to be the
1015  // value that is returned instead.
1016  //  e.g: x ?: y is shorthand for: x ? x : y;
1017  Succ = ConfluenceBlock;
1018  Block = NULL;
1019  CFGBlock* LHSBlock = NULL;
1020  if (C->getLHS()) {
1021    LHSBlock = Visit(C->getLHS(), asc);
1022    if (badCFG)
1023      return 0;
1024    Block = NULL;
1025  }
1026
1027  // Create the block for the RHS expression.
1028  Succ = ConfluenceBlock;
1029  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
1030  if (badCFG)
1031    return 0;
1032
1033  // Create the block that will contain the condition.
1034  Block = createBlock(false);
1035
1036  // See if this is a known constant.
1037  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
1038  if (LHSBlock) {
1039    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1040  } else {
1041    if (KnownVal.isFalse()) {
1042      // If we know the condition is false, add NULL as the successor for
1043      // the block containing the condition.  In this case, the confluence
1044      // block will have just one predecessor.
1045      AddSuccessor(Block, 0);
1046      assert(ConfluenceBlock->pred_size() == 1);
1047    } else {
1048      // If we have no LHS expression, add the ConfluenceBlock as a direct
1049      // successor for the block containing the condition.  Moreover, we need to
1050      // reverse the order of the predecessors in the ConfluenceBlock because
1051      // the RHSBlock will have been added to the succcessors already, and we
1052      // want the first predecessor to the the block containing the expression
1053      // for the case when the ternary expression evaluates to true.
1054      AddSuccessor(Block, ConfluenceBlock);
1055      assert(ConfluenceBlock->pred_size() == 2);
1056      std::reverse(ConfluenceBlock->pred_begin(),
1057                   ConfluenceBlock->pred_end());
1058    }
1059  }
1060
1061  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1062  Block->setTerminator(C);
1063  return addStmt(C->getCond());
1064}
1065
1066CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1067  autoCreateBlock();
1068
1069  if (DS->isSingleDecl()) {
1070    AppendStmt(Block, DS);
1071    return VisitDeclSubExpr(DS->getSingleDecl());
1072  }
1073
1074  CFGBlock *B = 0;
1075
1076  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1077  typedef llvm::SmallVector<Decl*,10> BufTy;
1078  BufTy Buf(DS->decl_begin(), DS->decl_end());
1079
1080  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1081    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1082    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1083               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1084
1085    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1086    // automatically freed with the CFG.
1087    DeclGroupRef DG(*I);
1088    Decl *D = *I;
1089    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1090    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1091
1092    // Append the fake DeclStmt to block.
1093    AppendStmt(Block, DSNew);
1094    B = VisitDeclSubExpr(D);
1095  }
1096
1097  return B;
1098}
1099
1100/// VisitDeclSubExpr - Utility method to add block-level expressions for
1101///  initializers in Decls.
1102CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
1103  assert(Block);
1104
1105  VarDecl *VD = dyn_cast<VarDecl>(D);
1106
1107  if (!VD)
1108    return Block;
1109
1110  Expr *Init = VD->getInit();
1111
1112  if (Init) {
1113    AddStmtChoice::Kind k =
1114      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
1115                                       : AddStmtChoice::NotAlwaysAdd;
1116    Visit(Init, AddStmtChoice(k));
1117  }
1118
1119  // If the type of VD is a VLA, then we must process its size expressions.
1120  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
1121       VA = FindVA(VA->getElementType().getTypePtr()))
1122    Block = addStmt(VA->getSizeExpr());
1123
1124  // Remove variable from local scope.
1125  if (ScopePos && VD == *ScopePos)
1126    ++ScopePos;
1127
1128  return Block;
1129}
1130
1131CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1132  // We may see an if statement in the middle of a basic block, or it may be the
1133  // first statement we are processing.  In either case, we create a new basic
1134  // block.  First, we create the blocks for the then...else statements, and
1135  // then we create the block containing the if statement.  If we were in the
1136  // middle of a block, we stop processing that block.  That block is then the
1137  // implicit successor for the "then" and "else" clauses.
1138
1139  // The block we were proccessing is now finished.  Make it the successor
1140  // block.
1141  if (Block) {
1142    Succ = Block;
1143    if (badCFG)
1144      return 0;
1145  }
1146
1147  // Process the false branch.
1148  CFGBlock* ElseBlock = Succ;
1149
1150  if (Stmt* Else = I->getElse()) {
1151    SaveAndRestore<CFGBlock*> sv(Succ);
1152
1153    // NULL out Block so that the recursive call to Visit will
1154    // create a new basic block.
1155    Block = NULL;
1156    ElseBlock = addStmt(Else);
1157
1158    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1159      ElseBlock = sv.get();
1160    else if (Block) {
1161      if (badCFG)
1162        return 0;
1163    }
1164  }
1165
1166  // Process the true branch.
1167  CFGBlock* ThenBlock;
1168  {
1169    Stmt* Then = I->getThen();
1170    assert(Then);
1171    SaveAndRestore<CFGBlock*> sv(Succ);
1172    Block = NULL;
1173    ThenBlock = addStmt(Then);
1174
1175    if (!ThenBlock) {
1176      // We can reach here if the "then" body has all NullStmts.
1177      // Create an empty block so we can distinguish between true and false
1178      // branches in path-sensitive analyses.
1179      ThenBlock = createBlock(false);
1180      AddSuccessor(ThenBlock, sv.get());
1181    } else if (Block) {
1182      if (badCFG)
1183        return 0;
1184    }
1185  }
1186
1187  // Now create a new block containing the if statement.
1188  Block = createBlock(false);
1189
1190  // Set the terminator of the new block to the If statement.
1191  Block->setTerminator(I);
1192
1193  // See if this is a known constant.
1194  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
1195
1196  // Now add the successors.
1197  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1198  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1199
1200  // Add the condition as the last statement in the new block.  This may create
1201  // new blocks as the condition may contain control-flow.  Any newly created
1202  // blocks will be pointed to be "Block".
1203  Block = addStmt(I->getCond());
1204
1205  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1206  // and the condition variable initialization to the CFG.
1207  if (VarDecl *VD = I->getConditionVariable()) {
1208    if (Expr *Init = VD->getInit()) {
1209      autoCreateBlock();
1210      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1211      addStmt(Init);
1212    }
1213  }
1214
1215  return Block;
1216}
1217
1218
1219CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1220  // If we were in the middle of a block we stop processing that block.
1221  //
1222  // NOTE: If a "return" appears in the middle of a block, this means that the
1223  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1224  //       for that code; a simple "mark-and-sweep" from the entry block will be
1225  //       able to report such dead blocks.
1226
1227  // Create the new block.
1228  Block = createBlock(false);
1229
1230  // The Exit block is the only successor.
1231  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1232  AddSuccessor(Block, &cfg->getExit());
1233
1234  // Add the return statement to the block.  This may create new blocks if R
1235  // contains control-flow (short-circuit operations).
1236  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1237}
1238
1239CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
1240  // Get the block of the labeled statement.  Add it to our map.
1241  addStmt(L->getSubStmt());
1242  CFGBlock* LabelBlock = Block;
1243
1244  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1245    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1246
1247  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
1248  LabelMap[ L ] = JumpTarget(LabelBlock, ScopePos);
1249
1250  // Labels partition blocks, so this is the end of the basic block we were
1251  // processing (L is the block's label).  Because this is label (and we have
1252  // already processed the substatement) there is no extra control-flow to worry
1253  // about.
1254  LabelBlock->setLabel(L);
1255  if (badCFG)
1256    return 0;
1257
1258  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1259  Block = NULL;
1260
1261  // This block is now the implicit successor of other blocks.
1262  Succ = LabelBlock;
1263
1264  return LabelBlock;
1265}
1266
1267CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1268  // Goto is a control-flow statement.  Thus we stop processing the current
1269  // block and create a new one.
1270
1271  Block = createBlock(false);
1272  Block->setTerminator(G);
1273
1274  // If we already know the mapping to the label block add the successor now.
1275  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1276
1277  if (I == LabelMap.end())
1278    // We will need to backpatch this block later.
1279    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1280  else {
1281    JumpTarget JT = I->second;
1282    addAutomaticObjDtors(ScopePos, JT.ScopePos, G);
1283    AddSuccessor(Block, JT.Block);
1284  }
1285
1286  return Block;
1287}
1288
1289CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1290  CFGBlock* LoopSuccessor = NULL;
1291
1292  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1293
1294  // "for" is a control-flow statement.  Thus we stop processing the current
1295  // block.
1296  if (Block) {
1297    if (badCFG)
1298      return 0;
1299    LoopSuccessor = Block;
1300  } else
1301    LoopSuccessor = Succ;
1302
1303  // Save the current value for the break targets.
1304  // All breaks should go to the code following the loop.
1305  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1306  BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1307
1308  // Because of short-circuit evaluation, the condition of the loop can span
1309  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1310  // evaluate the condition.
1311  CFGBlock* ExitConditionBlock = createBlock(false);
1312  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1313
1314  // Set the terminator for the "exit" condition block.
1315  ExitConditionBlock->setTerminator(F);
1316
1317  // Now add the actual condition to the condition block.  Because the condition
1318  // itself may contain control-flow, new blocks may be created.
1319  if (Stmt* C = F->getCond()) {
1320    Block = ExitConditionBlock;
1321    EntryConditionBlock = addStmt(C);
1322    assert(Block == EntryConditionBlock ||
1323           (Block == 0 && EntryConditionBlock == Succ));
1324
1325    // If this block contains a condition variable, add both the condition
1326    // variable and initializer to the CFG.
1327    if (VarDecl *VD = F->getConditionVariable()) {
1328      if (Expr *Init = VD->getInit()) {
1329        autoCreateBlock();
1330        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1331        EntryConditionBlock = addStmt(Init);
1332        assert(Block == EntryConditionBlock);
1333      }
1334    }
1335
1336    if (Block) {
1337      if (badCFG)
1338        return 0;
1339    }
1340  }
1341
1342  // The condition block is the implicit successor for the loop body as well as
1343  // any code above the loop.
1344  Succ = EntryConditionBlock;
1345
1346  // See if this is a known constant.
1347  TryResult KnownVal(true);
1348
1349  if (F->getCond())
1350    KnownVal = TryEvaluateBool(F->getCond());
1351
1352  // Now create the loop body.
1353  {
1354    assert(F->getBody());
1355
1356   // Save the current values for Block, Succ, and continue targets.
1357   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1358   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1359
1360    // Create a new block to contain the (bottom) of the loop body.
1361    Block = NULL;
1362
1363    if (Stmt* I = F->getInc()) {
1364      // Generate increment code in its own basic block.  This is the target of
1365      // continue statements.
1366      Succ = addStmt(I);
1367    } else {
1368      // No increment code.  Create a special, empty, block that is used as the
1369      // target block for "looping back" to the start of the loop.
1370      assert(Succ == EntryConditionBlock);
1371      Succ = createBlock();
1372    }
1373
1374    // Finish up the increment (or empty) block if it hasn't been already.
1375    if (Block) {
1376      assert(Block == Succ);
1377      if (badCFG)
1378        return 0;
1379      Block = 0;
1380    }
1381
1382    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1383
1384    // The starting block for the loop increment is the block that should
1385    // represent the 'loop target' for looping back to the start of the loop.
1386    ContinueJumpTarget.Block->setLoopTarget(F);
1387
1388    // Now populate the body block, and in the process create new blocks as we
1389    // walk the body of the loop.
1390    CFGBlock* BodyBlock = addStmt(F->getBody());
1391
1392    if (!BodyBlock)
1393      BodyBlock = ContinueJumpTarget.Block;//can happen for "for (...;...;...);"
1394    else if (badCFG)
1395      return 0;
1396
1397    // This new body block is a successor to our "exit" condition block.
1398    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1399  }
1400
1401  // Link up the condition block with the code that follows the loop.  (the
1402  // false branch).
1403  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1404
1405  // If the loop contains initialization, create a new block for those
1406  // statements.  This block can also contain statements that precede the loop.
1407  if (Stmt* I = F->getInit()) {
1408    Block = createBlock();
1409    return addStmt(I);
1410  } else {
1411    // There is no loop initialization.  We are thus basically a while loop.
1412    // NULL out Block to force lazy block construction.
1413    Block = NULL;
1414    Succ = EntryConditionBlock;
1415    return EntryConditionBlock;
1416  }
1417}
1418
1419CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1420  if (asc.alwaysAdd()) {
1421    autoCreateBlock();
1422    AppendStmt(Block, M, asc);
1423  }
1424  return Visit(M->getBase(),
1425               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1426                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1427}
1428
1429CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1430  // Objective-C fast enumeration 'for' statements:
1431  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1432  //
1433  //  for ( Type newVariable in collection_expression ) { statements }
1434  //
1435  //  becomes:
1436  //
1437  //   prologue:
1438  //     1. collection_expression
1439  //     T. jump to loop_entry
1440  //   loop_entry:
1441  //     1. side-effects of element expression
1442  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1443  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1444  //   TB:
1445  //     statements
1446  //     T. jump to loop_entry
1447  //   FB:
1448  //     what comes after
1449  //
1450  //  and
1451  //
1452  //  Type existingItem;
1453  //  for ( existingItem in expression ) { statements }
1454  //
1455  //  becomes:
1456  //
1457  //   the same with newVariable replaced with existingItem; the binding works
1458  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1459  //   a DeclStmt and the other returns a DeclRefExpr.
1460  //
1461
1462  CFGBlock* LoopSuccessor = 0;
1463
1464  if (Block) {
1465    if (badCFG)
1466      return 0;
1467    LoopSuccessor = Block;
1468    Block = 0;
1469  } else
1470    LoopSuccessor = Succ;
1471
1472  // Build the condition blocks.
1473  CFGBlock* ExitConditionBlock = createBlock(false);
1474  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1475
1476  // Set the terminator for the "exit" condition block.
1477  ExitConditionBlock->setTerminator(S);
1478
1479  // The last statement in the block should be the ObjCForCollectionStmt, which
1480  // performs the actual binding to 'element' and determines if there are any
1481  // more items in the collection.
1482  AppendStmt(ExitConditionBlock, S);
1483  Block = ExitConditionBlock;
1484
1485  // Walk the 'element' expression to see if there are any side-effects.  We
1486  // generate new blocks as necesary.  We DON'T add the statement by default to
1487  // the CFG unless it contains control-flow.
1488  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1489  if (Block) {
1490    if (badCFG)
1491      return 0;
1492    Block = 0;
1493  }
1494
1495  // The condition block is the implicit successor for the loop body as well as
1496  // any code above the loop.
1497  Succ = EntryConditionBlock;
1498
1499  // Now create the true branch.
1500  {
1501    // Save the current values for Succ, continue and break targets.
1502    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1503    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1504        save_break(BreakJumpTarget);
1505
1506    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1507    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1508
1509    CFGBlock* BodyBlock = addStmt(S->getBody());
1510
1511    if (!BodyBlock)
1512      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1513    else if (Block) {
1514      if (badCFG)
1515        return 0;
1516    }
1517
1518    // This new body block is a successor to our "exit" condition block.
1519    AddSuccessor(ExitConditionBlock, BodyBlock);
1520  }
1521
1522  // Link up the condition block with the code that follows the loop.
1523  // (the false branch).
1524  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1525
1526  // Now create a prologue block to contain the collection expression.
1527  Block = createBlock();
1528  return addStmt(S->getCollection());
1529}
1530
1531CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1532  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1533
1534  // Inline the body.
1535  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1536
1537  // The sync body starts its own basic block.  This makes it a little easier
1538  // for diagnostic clients.
1539  if (SyncBlock) {
1540    if (badCFG)
1541      return 0;
1542
1543    Block = 0;
1544    Succ = SyncBlock;
1545  }
1546
1547  // Add the @synchronized to the CFG.
1548  autoCreateBlock();
1549  AppendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1550
1551  // Inline the sync expression.
1552  return addStmt(S->getSynchExpr());
1553}
1554
1555CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1556  // FIXME
1557  return NYS();
1558}
1559
1560CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1561  CFGBlock* LoopSuccessor = NULL;
1562
1563  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1564
1565  // "while" is a control-flow statement.  Thus we stop processing the current
1566  // block.
1567  if (Block) {
1568    if (badCFG)
1569      return 0;
1570    LoopSuccessor = Block;
1571  } else
1572    LoopSuccessor = Succ;
1573
1574  // Because of short-circuit evaluation, the condition of the loop can span
1575  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1576  // evaluate the condition.
1577  CFGBlock* ExitConditionBlock = createBlock(false);
1578  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1579
1580  // Set the terminator for the "exit" condition block.
1581  ExitConditionBlock->setTerminator(W);
1582
1583  // Now add the actual condition to the condition block.  Because the condition
1584  // itself may contain control-flow, new blocks may be created.  Thus we update
1585  // "Succ" after adding the condition.
1586  if (Stmt* C = W->getCond()) {
1587    Block = ExitConditionBlock;
1588    EntryConditionBlock = addStmt(C);
1589    assert(Block == EntryConditionBlock);
1590
1591    // If this block contains a condition variable, add both the condition
1592    // variable and initializer to the CFG.
1593    if (VarDecl *VD = W->getConditionVariable()) {
1594      if (Expr *Init = VD->getInit()) {
1595        autoCreateBlock();
1596        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1597        EntryConditionBlock = addStmt(Init);
1598        assert(Block == EntryConditionBlock);
1599      }
1600    }
1601
1602    if (Block) {
1603      if (badCFG)
1604        return 0;
1605    }
1606  }
1607
1608  // The condition block is the implicit successor for the loop body as well as
1609  // any code above the loop.
1610  Succ = EntryConditionBlock;
1611
1612  // See if this is a known constant.
1613  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1614
1615  // Process the loop body.
1616  {
1617    assert(W->getBody());
1618
1619    // Save the current values for Block, Succ, and continue and break targets
1620    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1621    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1622        save_break(BreakJumpTarget);
1623
1624    // Create an empty block to represent the transition block for looping back
1625    // to the head of the loop.
1626    Block = 0;
1627    assert(Succ == EntryConditionBlock);
1628    Succ = createBlock();
1629    Succ->setLoopTarget(W);
1630    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1631
1632    // All breaks should go to the code following the loop.
1633    BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1634
1635    // NULL out Block to force lazy instantiation of blocks for the body.
1636    Block = NULL;
1637
1638    // Create the body.  The returned block is the entry to the loop body.
1639    CFGBlock* BodyBlock = addStmt(W->getBody());
1640
1641    if (!BodyBlock)
1642      BodyBlock = ContinueJumpTarget.Block; // can happen for "while(...) ;"
1643    else if (Block) {
1644      if (badCFG)
1645        return 0;
1646    }
1647
1648    // Add the loop body entry as a successor to the condition.
1649    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1650  }
1651
1652  // Link up the condition block with the code that follows the loop.  (the
1653  // false branch).
1654  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1655
1656  // There can be no more statements in the condition block since we loop back
1657  // to this block.  NULL out Block to force lazy creation of another block.
1658  Block = NULL;
1659
1660  // Return the condition block, which is the dominating block for the loop.
1661  Succ = EntryConditionBlock;
1662  return EntryConditionBlock;
1663}
1664
1665
1666CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1667  // FIXME: For now we pretend that @catch and the code it contains does not
1668  //  exit.
1669  return Block;
1670}
1671
1672CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1673  // FIXME: This isn't complete.  We basically treat @throw like a return
1674  //  statement.
1675
1676  // If we were in the middle of a block we stop processing that block.
1677  if (badCFG)
1678    return 0;
1679
1680  // Create the new block.
1681  Block = createBlock(false);
1682
1683  // The Exit block is the only successor.
1684  AddSuccessor(Block, &cfg->getExit());
1685
1686  // Add the statement to the block.  This may create new blocks if S contains
1687  // control-flow (short-circuit operations).
1688  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1689}
1690
1691CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1692  // If we were in the middle of a block we stop processing that block.
1693  if (badCFG)
1694    return 0;
1695
1696  // Create the new block.
1697  Block = createBlock(false);
1698
1699  if (TryTerminatedBlock)
1700    // The current try statement is the only successor.
1701    AddSuccessor(Block, TryTerminatedBlock);
1702  else
1703    // otherwise the Exit block is the only successor.
1704    AddSuccessor(Block, &cfg->getExit());
1705
1706  // Add the statement to the block.  This may create new blocks if S contains
1707  // control-flow (short-circuit operations).
1708  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1709}
1710
1711CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1712  CFGBlock* LoopSuccessor = NULL;
1713
1714  // "do...while" is a control-flow statement.  Thus we stop processing the
1715  // current block.
1716  if (Block) {
1717    if (badCFG)
1718      return 0;
1719    LoopSuccessor = Block;
1720  } else
1721    LoopSuccessor = Succ;
1722
1723  // Because of short-circuit evaluation, the condition of the loop can span
1724  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1725  // evaluate the condition.
1726  CFGBlock* ExitConditionBlock = createBlock(false);
1727  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1728
1729  // Set the terminator for the "exit" condition block.
1730  ExitConditionBlock->setTerminator(D);
1731
1732  // Now add the actual condition to the condition block.  Because the condition
1733  // itself may contain control-flow, new blocks may be created.
1734  if (Stmt* C = D->getCond()) {
1735    Block = ExitConditionBlock;
1736    EntryConditionBlock = addStmt(C);
1737    if (Block) {
1738      if (badCFG)
1739        return 0;
1740    }
1741  }
1742
1743  // The condition block is the implicit successor for the loop body.
1744  Succ = EntryConditionBlock;
1745
1746  // See if this is a known constant.
1747  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1748
1749  // Process the loop body.
1750  CFGBlock* BodyBlock = NULL;
1751  {
1752    assert(D->getBody());
1753
1754    // Save the current values for Block, Succ, and continue and break targets
1755    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1756    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1757        save_break(BreakJumpTarget);
1758
1759    // All continues within this loop should go to the condition block
1760    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1761
1762    // All breaks should go to the code following the loop.
1763    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1764
1765    // NULL out Block to force lazy instantiation of blocks for the body.
1766    Block = NULL;
1767
1768    // Create the body.  The returned block is the entry to the loop body.
1769    BodyBlock = addStmt(D->getBody());
1770
1771    if (!BodyBlock)
1772      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1773    else if (Block) {
1774      if (badCFG)
1775        return 0;
1776    }
1777
1778    if (!KnownVal.isFalse()) {
1779      // Add an intermediate block between the BodyBlock and the
1780      // ExitConditionBlock to represent the "loop back" transition.  Create an
1781      // empty block to represent the transition block for looping back to the
1782      // head of the loop.
1783      // FIXME: Can we do this more efficiently without adding another block?
1784      Block = NULL;
1785      Succ = BodyBlock;
1786      CFGBlock *LoopBackBlock = createBlock();
1787      LoopBackBlock->setLoopTarget(D);
1788
1789      // Add the loop body entry as a successor to the condition.
1790      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1791    }
1792    else
1793      AddSuccessor(ExitConditionBlock, NULL);
1794  }
1795
1796  // Link up the condition block with the code that follows the loop.
1797  // (the false branch).
1798  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1799
1800  // There can be no more statements in the body block(s) since we loop back to
1801  // the body.  NULL out Block to force lazy creation of another block.
1802  Block = NULL;
1803
1804  // Return the loop body, which is the dominating block for the loop.
1805  Succ = BodyBlock;
1806  return BodyBlock;
1807}
1808
1809CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1810  // "continue" is a control-flow statement.  Thus we stop processing the
1811  // current block.
1812  if (badCFG)
1813    return 0;
1814
1815  // Now create a new block that ends with the continue statement.
1816  Block = createBlock(false);
1817  Block->setTerminator(C);
1818
1819  // If there is no target for the continue, then we are looking at an
1820  // incomplete AST.  This means the CFG cannot be constructed.
1821  if (ContinueJumpTarget.Block) {
1822    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.ScopePos, C);
1823    AddSuccessor(Block, ContinueJumpTarget.Block);
1824  } else
1825    badCFG = true;
1826
1827  return Block;
1828}
1829
1830CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1831                                             AddStmtChoice asc) {
1832
1833  if (asc.alwaysAdd()) {
1834    autoCreateBlock();
1835    AppendStmt(Block, E);
1836  }
1837
1838  // VLA types have expressions that must be evaluated.
1839  if (E->isArgumentType()) {
1840    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1841         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1842      addStmt(VA->getSizeExpr());
1843  }
1844
1845  return Block;
1846}
1847
1848/// VisitStmtExpr - Utility method to handle (nested) statement
1849///  expressions (a GCC extension).
1850CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1851  if (asc.alwaysAdd()) {
1852    autoCreateBlock();
1853    AppendStmt(Block, SE);
1854  }
1855  return VisitCompoundStmt(SE->getSubStmt());
1856}
1857
1858CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1859  // "switch" is a control-flow statement.  Thus we stop processing the current
1860  // block.
1861  CFGBlock* SwitchSuccessor = NULL;
1862
1863  if (Block) {
1864    if (badCFG)
1865      return 0;
1866    SwitchSuccessor = Block;
1867  } else SwitchSuccessor = Succ;
1868
1869  // Save the current "switch" context.
1870  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1871                            save_default(DefaultCaseBlock);
1872  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1873
1874  // Set the "default" case to be the block after the switch statement.  If the
1875  // switch statement contains a "default:", this value will be overwritten with
1876  // the block for that code.
1877  DefaultCaseBlock = SwitchSuccessor;
1878
1879  // Create a new block that will contain the switch statement.
1880  SwitchTerminatedBlock = createBlock(false);
1881
1882  // Now process the switch body.  The code after the switch is the implicit
1883  // successor.
1884  Succ = SwitchSuccessor;
1885  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
1886
1887  // When visiting the body, the case statements should automatically get linked
1888  // up to the switch.  We also don't keep a pointer to the body, since all
1889  // control-flow from the switch goes to case/default statements.
1890  assert(Terminator->getBody() && "switch must contain a non-NULL body");
1891  Block = NULL;
1892  addStmt(Terminator->getBody());
1893  if (Block) {
1894    if (badCFG)
1895      return 0;
1896  }
1897
1898  // If we have no "default:" case, the default transition is to the code
1899  // following the switch body.
1900  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1901
1902  // Add the terminator and condition in the switch block.
1903  SwitchTerminatedBlock->setTerminator(Terminator);
1904  assert(Terminator->getCond() && "switch condition must be non-NULL");
1905  Block = SwitchTerminatedBlock;
1906  Block = addStmt(Terminator->getCond());
1907
1908  // Finally, if the SwitchStmt contains a condition variable, add both the
1909  // SwitchStmt and the condition variable initialization to the CFG.
1910  if (VarDecl *VD = Terminator->getConditionVariable()) {
1911    if (Expr *Init = VD->getInit()) {
1912      autoCreateBlock();
1913      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1914      addStmt(Init);
1915    }
1916  }
1917
1918  return Block;
1919}
1920
1921CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1922  // CaseStmts are essentially labels, so they are the first statement in a
1923  // block.
1924  CFGBlock *TopBlock = 0, *LastBlock = 0;
1925
1926  if (Stmt *Sub = CS->getSubStmt()) {
1927    // For deeply nested chains of CaseStmts, instead of doing a recursion
1928    // (which can blow out the stack), manually unroll and create blocks
1929    // along the way.
1930    while (isa<CaseStmt>(Sub)) {
1931      CFGBlock *CurrentBlock = createBlock(false);
1932      CurrentBlock->setLabel(CS);
1933
1934      if (TopBlock)
1935        AddSuccessor(LastBlock, CurrentBlock);
1936      else
1937        TopBlock = CurrentBlock;
1938
1939      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
1940      LastBlock = CurrentBlock;
1941
1942      CS = cast<CaseStmt>(Sub);
1943      Sub = CS->getSubStmt();
1944    }
1945
1946    addStmt(Sub);
1947  }
1948
1949  CFGBlock* CaseBlock = Block;
1950  if (!CaseBlock)
1951    CaseBlock = createBlock();
1952
1953  // Cases statements partition blocks, so this is the top of the basic block we
1954  // were processing (the "case XXX:" is the label).
1955  CaseBlock->setLabel(CS);
1956
1957  if (badCFG)
1958    return 0;
1959
1960  // Add this block to the list of successors for the block with the switch
1961  // statement.
1962  assert(SwitchTerminatedBlock);
1963  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1964
1965  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1966  Block = NULL;
1967
1968  if (TopBlock) {
1969    AddSuccessor(LastBlock, CaseBlock);
1970    Succ = TopBlock;
1971  }
1972  else {
1973    // This block is now the implicit successor of other blocks.
1974    Succ = CaseBlock;
1975  }
1976
1977  return Succ;
1978}
1979
1980CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1981  if (Terminator->getSubStmt())
1982    addStmt(Terminator->getSubStmt());
1983
1984  DefaultCaseBlock = Block;
1985
1986  if (!DefaultCaseBlock)
1987    DefaultCaseBlock = createBlock();
1988
1989  // Default statements partition blocks, so this is the top of the basic block
1990  // we were processing (the "default:" is the label).
1991  DefaultCaseBlock->setLabel(Terminator);
1992
1993  if (badCFG)
1994    return 0;
1995
1996  // Unlike case statements, we don't add the default block to the successors
1997  // for the switch statement immediately.  This is done when we finish
1998  // processing the switch statement.  This allows for the default case
1999  // (including a fall-through to the code after the switch statement) to always
2000  // be the last successor of a switch-terminated block.
2001
2002  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2003  Block = NULL;
2004
2005  // This block is now the implicit successor of other blocks.
2006  Succ = DefaultCaseBlock;
2007
2008  return DefaultCaseBlock;
2009}
2010
2011CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2012  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2013  // current block.
2014  CFGBlock* TrySuccessor = NULL;
2015
2016  if (Block) {
2017    if (badCFG)
2018      return 0;
2019    TrySuccessor = Block;
2020  } else TrySuccessor = Succ;
2021
2022  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2023
2024  // Create a new block that will contain the try statement.
2025  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2026  // Add the terminator in the try block.
2027  NewTryTerminatedBlock->setTerminator(Terminator);
2028
2029  bool HasCatchAll = false;
2030  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2031    // The code after the try is the implicit successor.
2032    Succ = TrySuccessor;
2033    CXXCatchStmt *CS = Terminator->getHandler(h);
2034    if (CS->getExceptionDecl() == 0) {
2035      HasCatchAll = true;
2036    }
2037    Block = NULL;
2038    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2039    if (CatchBlock == 0)
2040      return 0;
2041    // Add this block to the list of successors for the block with the try
2042    // statement.
2043    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
2044  }
2045  if (!HasCatchAll) {
2046    if (PrevTryTerminatedBlock)
2047      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2048    else
2049      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2050  }
2051
2052  // The code after the try is the implicit successor.
2053  Succ = TrySuccessor;
2054
2055  // Save the current "try" context.
2056  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2057  TryTerminatedBlock = NewTryTerminatedBlock;
2058
2059  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2060  Block = NULL;
2061  Block = addStmt(Terminator->getTryBlock());
2062  return Block;
2063}
2064
2065CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2066  // CXXCatchStmt are treated like labels, so they are the first statement in a
2067  // block.
2068
2069  if (CS->getHandlerBlock())
2070    addStmt(CS->getHandlerBlock());
2071
2072  CFGBlock* CatchBlock = Block;
2073  if (!CatchBlock)
2074    CatchBlock = createBlock();
2075
2076  CatchBlock->setLabel(CS);
2077
2078  if (badCFG)
2079    return 0;
2080
2081  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2082  Block = NULL;
2083
2084  return CatchBlock;
2085}
2086
2087CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2088                                             AddStmtChoice asc) {
2089  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
2090                                         : AddStmtChoice::AlwaysAdd;
2091  autoCreateBlock();
2092  AppendStmt(Block, C, AddStmtChoice(K));
2093  return VisitChildren(C);
2094}
2095
2096CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2097  // Lazily create the indirect-goto dispatch block if there isn't one already.
2098  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2099
2100  if (!IBlock) {
2101    IBlock = createBlock(false);
2102    cfg->setIndirectGotoBlock(IBlock);
2103  }
2104
2105  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2106  // current block and create a new one.
2107  if (badCFG)
2108    return 0;
2109
2110  Block = createBlock(false);
2111  Block->setTerminator(I);
2112  AddSuccessor(Block, IBlock);
2113  return addStmt(I->getTarget());
2114}
2115
2116} // end anonymous namespace
2117
2118/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2119///  no successors or predecessors.  If this is the first block created in the
2120///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2121CFGBlock* CFG::createBlock() {
2122  bool first_block = begin() == end();
2123
2124  // Create the block.
2125  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2126  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2127  Blocks.push_back(Mem, BlkBVC);
2128
2129  // If this is the first block, set it as the Entry and Exit.
2130  if (first_block)
2131    Entry = Exit = &back();
2132
2133  // Return the block.
2134  return &back();
2135}
2136
2137/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2138///  CFG is returned to the caller.
2139CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2140    BuildOptions BO) {
2141  CFGBuilder Builder;
2142  return Builder.buildCFG(D, Statement, C, BO);
2143}
2144
2145//===----------------------------------------------------------------------===//
2146// CFG: Queries for BlkExprs.
2147//===----------------------------------------------------------------------===//
2148
2149namespace {
2150  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2151}
2152
2153static void FindSubExprAssignments(Stmt *S,
2154                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2155  if (!S)
2156    return;
2157
2158  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
2159    Stmt *child = *I;
2160    if (!child)
2161      continue;
2162
2163    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2164      if (B->isAssignmentOp()) Set.insert(B);
2165
2166    FindSubExprAssignments(child, Set);
2167  }
2168}
2169
2170static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2171  BlkExprMapTy* M = new BlkExprMapTy();
2172
2173  // Look for assignments that are used as subexpressions.  These are the only
2174  // assignments that we want to *possibly* register as a block-level
2175  // expression.  Basically, if an assignment occurs both in a subexpression and
2176  // at the block-level, it is a block-level expression.
2177  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2178
2179  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2180    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2181      if (CFGStmt S = BI->getAs<CFGStmt>())
2182        FindSubExprAssignments(S, SubExprAssignments);
2183
2184  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2185
2186    // Iterate over the statements again on identify the Expr* and Stmt* at the
2187    // block-level that are block-level expressions.
2188
2189    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2190      CFGStmt CS = BI->getAs<CFGStmt>();
2191      if (!CS.isValid())
2192        continue;
2193      if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2194
2195        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2196          // Assignment expressions that are not nested within another
2197          // expression are really "statements" whose value is never used by
2198          // another expression.
2199          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2200            continue;
2201        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2202          // Special handling for statement expressions.  The last statement in
2203          // the statement expression is also a block-level expr.
2204          const CompoundStmt* C = Terminator->getSubStmt();
2205          if (!C->body_empty()) {
2206            unsigned x = M->size();
2207            (*M)[C->body_back()] = x;
2208          }
2209        }
2210
2211        unsigned x = M->size();
2212        (*M)[Exp] = x;
2213      }
2214    }
2215
2216    // Look at terminators.  The condition is a block-level expression.
2217
2218    Stmt* S = (*I)->getTerminatorCondition();
2219
2220    if (S && M->find(S) == M->end()) {
2221        unsigned x = M->size();
2222        (*M)[S] = x;
2223    }
2224  }
2225
2226  return M;
2227}
2228
2229CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2230  assert(S != NULL);
2231  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2232
2233  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2234  BlkExprMapTy::iterator I = M->find(S);
2235  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2236}
2237
2238unsigned CFG::getNumBlkExprs() {
2239  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2240    return M->size();
2241  else {
2242    // We assume callers interested in the number of BlkExprs will want
2243    // the map constructed if it doesn't already exist.
2244    BlkExprMap = (void*) PopulateBlkExprMap(*this);
2245    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2246  }
2247}
2248
2249//===----------------------------------------------------------------------===//
2250// Filtered walking of the CFG.
2251//===----------------------------------------------------------------------===//
2252
2253bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2254        const CFGBlock *From, const CFGBlock *To) {
2255
2256  if (F.IgnoreDefaultsWithCoveredEnums) {
2257    // If the 'To' has no label or is labeled but the label isn't a
2258    // CaseStmt then filter this edge.
2259    if (const SwitchStmt *S =
2260  dyn_cast_or_null<SwitchStmt>(From->getTerminator())) {
2261      if (S->isAllEnumCasesCovered()) {
2262  const Stmt *L = To->getLabel();
2263  if (!L || !isa<CaseStmt>(L))
2264    return true;
2265      }
2266    }
2267  }
2268
2269  return false;
2270}
2271
2272//===----------------------------------------------------------------------===//
2273// Cleanup: CFG dstor.
2274//===----------------------------------------------------------------------===//
2275
2276CFG::~CFG() {
2277  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2278}
2279
2280//===----------------------------------------------------------------------===//
2281// CFG pretty printing
2282//===----------------------------------------------------------------------===//
2283
2284namespace {
2285
2286class StmtPrinterHelper : public PrinterHelper  {
2287  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2288  typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2289  StmtMapTy StmtMap;
2290  DeclMapTy DeclMap;
2291  signed CurrentBlock;
2292  unsigned CurrentStmt;
2293  const LangOptions &LangOpts;
2294public:
2295
2296  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2297    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
2298    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2299      unsigned j = 1;
2300      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2301           BI != BEnd; ++BI, ++j ) {
2302        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2303          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2304          StmtMap[SE] = P;
2305
2306          if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2307              DeclMap[DS->getSingleDecl()] = P;
2308
2309          } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2310            if (VarDecl* VD = IS->getConditionVariable())
2311              DeclMap[VD] = P;
2312
2313          } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2314            if (VarDecl* VD = FS->getConditionVariable())
2315              DeclMap[VD] = P;
2316
2317          } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2318            if (VarDecl* VD = WS->getConditionVariable())
2319              DeclMap[VD] = P;
2320
2321          } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2322            if (VarDecl* VD = SS->getConditionVariable())
2323              DeclMap[VD] = P;
2324
2325          } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2326            if (VarDecl* VD = CS->getExceptionDecl())
2327              DeclMap[VD] = P;
2328          }
2329        }
2330      }
2331    }
2332  }
2333
2334  virtual ~StmtPrinterHelper() {}
2335
2336  const LangOptions &getLangOpts() const { return LangOpts; }
2337  void setBlockID(signed i) { CurrentBlock = i; }
2338  void setStmtID(unsigned i) { CurrentStmt = i; }
2339
2340  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2341    StmtMapTy::iterator I = StmtMap.find(S);
2342
2343    if (I == StmtMap.end())
2344      return false;
2345
2346    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2347                          && I->second.second == CurrentStmt) {
2348      return false;
2349    }
2350
2351    OS << "[B" << I->second.first << "." << I->second.second << "]";
2352    return true;
2353  }
2354
2355  bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2356    DeclMapTy::iterator I = DeclMap.find(D);
2357
2358    if (I == DeclMap.end())
2359      return false;
2360
2361    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2362                          && I->second.second == CurrentStmt) {
2363      return false;
2364    }
2365
2366    OS << "[B" << I->second.first << "." << I->second.second << "]";
2367    return true;
2368  }
2369};
2370} // end anonymous namespace
2371
2372
2373namespace {
2374class CFGBlockTerminatorPrint
2375  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2376
2377  llvm::raw_ostream& OS;
2378  StmtPrinterHelper* Helper;
2379  PrintingPolicy Policy;
2380public:
2381  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2382                          const PrintingPolicy &Policy)
2383    : OS(os), Helper(helper), Policy(Policy) {}
2384
2385  void VisitIfStmt(IfStmt* I) {
2386    OS << "if ";
2387    I->getCond()->printPretty(OS,Helper,Policy);
2388  }
2389
2390  // Default case.
2391  void VisitStmt(Stmt* Terminator) {
2392    Terminator->printPretty(OS, Helper, Policy);
2393  }
2394
2395  void VisitForStmt(ForStmt* F) {
2396    OS << "for (" ;
2397    if (F->getInit())
2398      OS << "...";
2399    OS << "; ";
2400    if (Stmt* C = F->getCond())
2401      C->printPretty(OS, Helper, Policy);
2402    OS << "; ";
2403    if (F->getInc())
2404      OS << "...";
2405    OS << ")";
2406  }
2407
2408  void VisitWhileStmt(WhileStmt* W) {
2409    OS << "while " ;
2410    if (Stmt* C = W->getCond())
2411      C->printPretty(OS, Helper, Policy);
2412  }
2413
2414  void VisitDoStmt(DoStmt* D) {
2415    OS << "do ... while ";
2416    if (Stmt* C = D->getCond())
2417      C->printPretty(OS, Helper, Policy);
2418  }
2419
2420  void VisitSwitchStmt(SwitchStmt* Terminator) {
2421    OS << "switch ";
2422    Terminator->getCond()->printPretty(OS, Helper, Policy);
2423  }
2424
2425  void VisitCXXTryStmt(CXXTryStmt* CS) {
2426    OS << "try ...";
2427  }
2428
2429  void VisitConditionalOperator(ConditionalOperator* C) {
2430    C->getCond()->printPretty(OS, Helper, Policy);
2431    OS << " ? ... : ...";
2432  }
2433
2434  void VisitChooseExpr(ChooseExpr* C) {
2435    OS << "__builtin_choose_expr( ";
2436    C->getCond()->printPretty(OS, Helper, Policy);
2437    OS << " )";
2438  }
2439
2440  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2441    OS << "goto *";
2442    I->getTarget()->printPretty(OS, Helper, Policy);
2443  }
2444
2445  void VisitBinaryOperator(BinaryOperator* B) {
2446    if (!B->isLogicalOp()) {
2447      VisitExpr(B);
2448      return;
2449    }
2450
2451    B->getLHS()->printPretty(OS, Helper, Policy);
2452
2453    switch (B->getOpcode()) {
2454      case BO_LOr:
2455        OS << " || ...";
2456        return;
2457      case BO_LAnd:
2458        OS << " && ...";
2459        return;
2460      default:
2461        assert(false && "Invalid logical operator.");
2462    }
2463  }
2464
2465  void VisitExpr(Expr* E) {
2466    E->printPretty(OS, Helper, Policy);
2467  }
2468};
2469} // end anonymous namespace
2470
2471static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2472                       const CFGElement &E) {
2473  if (CFGStmt CS = E.getAs<CFGStmt>()) {
2474    Stmt *S = CS;
2475
2476    if (Helper) {
2477
2478      // special printing for statement-expressions.
2479      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2480        CompoundStmt* Sub = SE->getSubStmt();
2481
2482        if (Sub->child_begin() != Sub->child_end()) {
2483          OS << "({ ... ; ";
2484          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2485          OS << " })\n";
2486          return;
2487        }
2488      }
2489      // special printing for comma expressions.
2490      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2491        if (B->getOpcode() == BO_Comma) {
2492          OS << "... , ";
2493          Helper->handledStmt(B->getRHS(),OS);
2494          OS << '\n';
2495          return;
2496        }
2497      }
2498    }
2499    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2500
2501    if (isa<CXXOperatorCallExpr>(S)) {
2502      OS << " (OperatorCall)";
2503    }
2504    else if (isa<CXXBindTemporaryExpr>(S)) {
2505      OS << " (BindTemporary)";
2506    }
2507
2508    // Expressions need a newline.
2509    if (isa<Expr>(S))
2510      OS << '\n';
2511
2512  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
2513    CXXBaseOrMemberInitializer* I = IE;
2514    if (I->isBaseInitializer())
2515      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
2516    else OS << I->getMember()->getName();
2517
2518    OS << "(";
2519    if (Expr* IE = I->getInit())
2520      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2521    OS << ")";
2522
2523    if (I->isBaseInitializer())
2524      OS << " (Base initializer)\n";
2525    else OS << " (Member initializer)\n";
2526
2527  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
2528    VarDecl* VD = DE.getVarDecl();
2529    Helper->handleDecl(VD, OS);
2530
2531    Type* T = VD->getType().getTypePtr();
2532    if (const ReferenceType* RT = T->getAs<ReferenceType>())
2533      T = RT->getPointeeType().getTypePtr();
2534
2535    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
2536    OS << " (Implicit destructor)\n";
2537  }
2538 }
2539
2540static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2541                        const CFGBlock& B,
2542                        StmtPrinterHelper* Helper, bool print_edges) {
2543
2544  if (Helper) Helper->setBlockID(B.getBlockID());
2545
2546  // Print the header.
2547  OS << "\n [ B" << B.getBlockID();
2548
2549  if (&B == &cfg->getEntry())
2550    OS << " (ENTRY) ]\n";
2551  else if (&B == &cfg->getExit())
2552    OS << " (EXIT) ]\n";
2553  else if (&B == cfg->getIndirectGotoBlock())
2554    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2555  else
2556    OS << " ]\n";
2557
2558  // Print the label of this block.
2559  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2560
2561    if (print_edges)
2562      OS << "    ";
2563
2564    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2565      OS << L->getName();
2566    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2567      OS << "case ";
2568      C->getLHS()->printPretty(OS, Helper,
2569                               PrintingPolicy(Helper->getLangOpts()));
2570      if (C->getRHS()) {
2571        OS << " ... ";
2572        C->getRHS()->printPretty(OS, Helper,
2573                                 PrintingPolicy(Helper->getLangOpts()));
2574      }
2575    } else if (isa<DefaultStmt>(Label))
2576      OS << "default";
2577    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2578      OS << "catch (";
2579      if (CS->getExceptionDecl())
2580        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2581                                      0);
2582      else
2583        OS << "...";
2584      OS << ")";
2585
2586    } else
2587      assert(false && "Invalid label statement in CFGBlock.");
2588
2589    OS << ":\n";
2590  }
2591
2592  // Iterate through the statements in the block and print them.
2593  unsigned j = 1;
2594
2595  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2596       I != E ; ++I, ++j ) {
2597
2598    // Print the statement # in the basic block and the statement itself.
2599    if (print_edges)
2600      OS << "    ";
2601
2602    OS << llvm::format("%3d", j) << ": ";
2603
2604    if (Helper)
2605      Helper->setStmtID(j);
2606
2607    print_elem(OS,Helper,*I);
2608  }
2609
2610  // Print the terminator of this block.
2611  if (B.getTerminator()) {
2612    if (print_edges)
2613      OS << "    ";
2614
2615    OS << "  T: ";
2616
2617    if (Helper) Helper->setBlockID(-1);
2618
2619    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2620                                     PrintingPolicy(Helper->getLangOpts()));
2621    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2622    OS << '\n';
2623  }
2624
2625  if (print_edges) {
2626    // Print the predecessors of this block.
2627    OS << "    Predecessors (" << B.pred_size() << "):";
2628    unsigned i = 0;
2629
2630    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2631         I != E; ++I, ++i) {
2632
2633      if (i == 8 || (i-8) == 0)
2634        OS << "\n     ";
2635
2636      OS << " B" << (*I)->getBlockID();
2637    }
2638
2639    OS << '\n';
2640
2641    // Print the successors of this block.
2642    OS << "    Successors (" << B.succ_size() << "):";
2643    i = 0;
2644
2645    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2646         I != E; ++I, ++i) {
2647
2648      if (i == 8 || (i-8) % 10 == 0)
2649        OS << "\n    ";
2650
2651      if (*I)
2652        OS << " B" << (*I)->getBlockID();
2653      else
2654        OS  << " NULL";
2655    }
2656
2657    OS << '\n';
2658  }
2659}
2660
2661
2662/// dump - A simple pretty printer of a CFG that outputs to stderr.
2663void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2664
2665/// print - A simple pretty printer of a CFG that outputs to an ostream.
2666void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2667  StmtPrinterHelper Helper(this, LO);
2668
2669  // Print the entry block.
2670  print_block(OS, this, getEntry(), &Helper, true);
2671
2672  // Iterate through the CFGBlocks and print them one by one.
2673  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2674    // Skip the entry block, because we already printed it.
2675    if (&(**I) == &getEntry() || &(**I) == &getExit())
2676      continue;
2677
2678    print_block(OS, this, **I, &Helper, true);
2679  }
2680
2681  // Print the exit block.
2682  print_block(OS, this, getExit(), &Helper, true);
2683  OS.flush();
2684}
2685
2686/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2687void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2688  print(llvm::errs(), cfg, LO);
2689}
2690
2691/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2692///   Generally this will only be called from CFG::print.
2693void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2694                     const LangOptions &LO) const {
2695  StmtPrinterHelper Helper(cfg, LO);
2696  print_block(OS, cfg, *this, &Helper, true);
2697}
2698
2699/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2700void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2701                               const LangOptions &LO) const {
2702  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2703  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2704}
2705
2706Stmt* CFGBlock::getTerminatorCondition() {
2707
2708  if (!Terminator)
2709    return NULL;
2710
2711  Expr* E = NULL;
2712
2713  switch (Terminator->getStmtClass()) {
2714    default:
2715      break;
2716
2717    case Stmt::ForStmtClass:
2718      E = cast<ForStmt>(Terminator)->getCond();
2719      break;
2720
2721    case Stmt::WhileStmtClass:
2722      E = cast<WhileStmt>(Terminator)->getCond();
2723      break;
2724
2725    case Stmt::DoStmtClass:
2726      E = cast<DoStmt>(Terminator)->getCond();
2727      break;
2728
2729    case Stmt::IfStmtClass:
2730      E = cast<IfStmt>(Terminator)->getCond();
2731      break;
2732
2733    case Stmt::ChooseExprClass:
2734      E = cast<ChooseExpr>(Terminator)->getCond();
2735      break;
2736
2737    case Stmt::IndirectGotoStmtClass:
2738      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2739      break;
2740
2741    case Stmt::SwitchStmtClass:
2742      E = cast<SwitchStmt>(Terminator)->getCond();
2743      break;
2744
2745    case Stmt::ConditionalOperatorClass:
2746      E = cast<ConditionalOperator>(Terminator)->getCond();
2747      break;
2748
2749    case Stmt::BinaryOperatorClass: // '&&' and '||'
2750      E = cast<BinaryOperator>(Terminator)->getLHS();
2751      break;
2752
2753    case Stmt::ObjCForCollectionStmtClass:
2754      return Terminator;
2755  }
2756
2757  return E ? E->IgnoreParens() : NULL;
2758}
2759
2760bool CFGBlock::hasBinaryBranchTerminator() const {
2761
2762  if (!Terminator)
2763    return false;
2764
2765  Expr* E = NULL;
2766
2767  switch (Terminator->getStmtClass()) {
2768    default:
2769      return false;
2770
2771    case Stmt::ForStmtClass:
2772    case Stmt::WhileStmtClass:
2773    case Stmt::DoStmtClass:
2774    case Stmt::IfStmtClass:
2775    case Stmt::ChooseExprClass:
2776    case Stmt::ConditionalOperatorClass:
2777    case Stmt::BinaryOperatorClass:
2778      return true;
2779  }
2780
2781  return E ? E->IgnoreParens() : NULL;
2782}
2783
2784
2785//===----------------------------------------------------------------------===//
2786// CFG Graphviz Visualization
2787//===----------------------------------------------------------------------===//
2788
2789
2790#ifndef NDEBUG
2791static StmtPrinterHelper* GraphHelper;
2792#endif
2793
2794void CFG::viewCFG(const LangOptions &LO) const {
2795#ifndef NDEBUG
2796  StmtPrinterHelper H(this, LO);
2797  GraphHelper = &H;
2798  llvm::ViewGraph(this,"CFG");
2799  GraphHelper = NULL;
2800#endif
2801}
2802
2803namespace llvm {
2804template<>
2805struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2806
2807  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2808
2809  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2810
2811#ifndef NDEBUG
2812    std::string OutSStr;
2813    llvm::raw_string_ostream Out(OutSStr);
2814    print_block(Out,Graph, *Node, GraphHelper, false);
2815    std::string& OutStr = Out.str();
2816
2817    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2818
2819    // Process string output to make it nicer...
2820    for (unsigned i = 0; i != OutStr.length(); ++i)
2821      if (OutStr[i] == '\n') {                            // Left justify
2822        OutStr[i] = '\\';
2823        OutStr.insert(OutStr.begin()+i+1, 'l');
2824      }
2825
2826    return OutStr;
2827#else
2828    return "";
2829#endif
2830  }
2831};
2832} // end namespace llvm
2833