CFG.cpp revision 651f13cea278ec967336033dd032faef0e9fc2ec
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "llvm/ADT/DenseMap.h"
24#include <memory>
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Support/Allocator.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/GraphWriter.h"
29#include "llvm/Support/SaveAndRestore.h"
30
31using namespace clang;
32
33namespace {
34
35static SourceLocation GetEndLoc(Decl *D) {
36  if (VarDecl *VD = dyn_cast<VarDecl>(D))
37    if (Expr *Ex = VD->getInit())
38      return Ex->getSourceRange().getEnd();
39  return D->getLocation();
40}
41
42class CFGBuilder;
43
44/// The CFG builder uses a recursive algorithm to build the CFG.  When
45///  we process an expression, sometimes we know that we must add the
46///  subexpressions as block-level expressions.  For example:
47///
48///    exp1 || exp2
49///
50///  When processing the '||' expression, we know that exp1 and exp2
51///  need to be added as block-level expressions, even though they
52///  might not normally need to be.  AddStmtChoice records this
53///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
54///  the builder has an option not to add a subexpression as a
55///  block-level expression.
56///
57class AddStmtChoice {
58public:
59  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
60
61  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
62
63  bool alwaysAdd(CFGBuilder &builder,
64                 const Stmt *stmt) const;
65
66  /// Return a copy of this object, except with the 'always-add' bit
67  ///  set as specified.
68  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
69    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
70  }
71
72private:
73  Kind kind;
74};
75
76/// LocalScope - Node in tree of local scopes created for C++ implicit
77/// destructor calls generation. It contains list of automatic variables
78/// declared in the scope and link to position in previous scope this scope
79/// began in.
80///
81/// The process of creating local scopes is as follows:
82/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
83/// - Before processing statements in scope (e.g. CompoundStmt) create
84///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
85///   and set CFGBuilder::ScopePos to the end of new scope,
86/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
87///   at this VarDecl,
88/// - For every normal (without jump) end of scope add to CFGBlock destructors
89///   for objects in the current scope,
90/// - For every jump add to CFGBlock destructors for objects
91///   between CFGBuilder::ScopePos and local scope position saved for jump
92///   target. Thanks to C++ restrictions on goto jumps we can be sure that
93///   jump target position will be on the path to root from CFGBuilder::ScopePos
94///   (adding any variable that doesn't need constructor to be called to
95///   LocalScope can break this assumption),
96///
97class LocalScope {
98public:
99  typedef BumpVector<VarDecl*> AutomaticVarsTy;
100
101  /// const_iterator - Iterates local scope backwards and jumps to previous
102  /// scope on reaching the beginning of currently iterated scope.
103  class const_iterator {
104    const LocalScope* Scope;
105
106    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
107    /// Invalid iterator (with null Scope) has VarIter equal to 0.
108    unsigned VarIter;
109
110  public:
111    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
112    /// Incrementing invalid iterator is allowed and will result in invalid
113    /// iterator.
114    const_iterator()
115        : Scope(NULL), VarIter(0) {}
116
117    /// Create valid iterator. In case when S.Prev is an invalid iterator and
118    /// I is equal to 0, this will create invalid iterator.
119    const_iterator(const LocalScope& S, unsigned I)
120        : Scope(&S), VarIter(I) {
121      // Iterator to "end" of scope is not allowed. Handle it by going up
122      // in scopes tree possibly up to invalid iterator in the root.
123      if (VarIter == 0 && Scope)
124        *this = Scope->Prev;
125    }
126
127    VarDecl *const* operator->() const {
128      assert (Scope && "Dereferencing invalid iterator is not allowed");
129      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
130      return &Scope->Vars[VarIter - 1];
131    }
132    VarDecl *operator*() const {
133      return *this->operator->();
134    }
135
136    const_iterator &operator++() {
137      if (!Scope)
138        return *this;
139
140      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
141      --VarIter;
142      if (VarIter == 0)
143        *this = Scope->Prev;
144      return *this;
145    }
146    const_iterator operator++(int) {
147      const_iterator P = *this;
148      ++*this;
149      return P;
150    }
151
152    bool operator==(const const_iterator &rhs) const {
153      return Scope == rhs.Scope && VarIter == rhs.VarIter;
154    }
155    bool operator!=(const const_iterator &rhs) const {
156      return !(*this == rhs);
157    }
158
159    LLVM_EXPLICIT operator bool() const {
160      return *this != const_iterator();
161    }
162
163    int distance(const_iterator L);
164  };
165
166  friend class const_iterator;
167
168private:
169  BumpVectorContext ctx;
170
171  /// Automatic variables in order of declaration.
172  AutomaticVarsTy Vars;
173  /// Iterator to variable in previous scope that was declared just before
174  /// begin of this scope.
175  const_iterator Prev;
176
177public:
178  /// Constructs empty scope linked to previous scope in specified place.
179  LocalScope(BumpVectorContext &ctx, const_iterator P)
180      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
181
182  /// Begin of scope in direction of CFG building (backwards).
183  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
184
185  void addVar(VarDecl *VD) {
186    Vars.push_back(VD, ctx);
187  }
188};
189
190/// distance - Calculates distance from this to L. L must be reachable from this
191/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
192/// number of scopes between this and L.
193int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
194  int D = 0;
195  const_iterator F = *this;
196  while (F.Scope != L.Scope) {
197    assert (F != const_iterator()
198        && "L iterator is not reachable from F iterator.");
199    D += F.VarIter;
200    F = F.Scope->Prev;
201  }
202  D += F.VarIter - L.VarIter;
203  return D;
204}
205
206/// BlockScopePosPair - Structure for specifying position in CFG during its
207/// build process. It consists of CFGBlock that specifies position in CFG graph
208/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
209struct BlockScopePosPair {
210  BlockScopePosPair() : block(0) {}
211  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
212      : block(b), scopePosition(scopePos) {}
213
214  CFGBlock *block;
215  LocalScope::const_iterator scopePosition;
216};
217
218/// TryResult - a class representing a variant over the values
219///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
220///  and is used by the CFGBuilder to decide if a branch condition
221///  can be decided up front during CFG construction.
222class TryResult {
223  int X;
224public:
225  TryResult(bool b) : X(b ? 1 : 0) {}
226  TryResult() : X(-1) {}
227
228  bool isTrue() const { return X == 1; }
229  bool isFalse() const { return X == 0; }
230  bool isKnown() const { return X >= 0; }
231  void negate() {
232    assert(isKnown());
233    X ^= 0x1;
234  }
235};
236
237class reverse_children {
238  llvm::SmallVector<Stmt *, 12> childrenBuf;
239  ArrayRef<Stmt*> children;
240public:
241  reverse_children(Stmt *S);
242
243  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
244  iterator begin() const { return children.rbegin(); }
245  iterator end() const { return children.rend(); }
246};
247
248
249reverse_children::reverse_children(Stmt *S) {
250  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
251    children = CE->getRawSubExprs();
252    return;
253  }
254  switch (S->getStmtClass()) {
255    // Note: Fill in this switch with more cases we want to optimize.
256    case Stmt::InitListExprClass: {
257      InitListExpr *IE = cast<InitListExpr>(S);
258      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
259                                    IE->getNumInits());
260      return;
261    }
262    default:
263      break;
264  }
265
266  // Default case for all other statements.
267  for (Stmt::child_range I = S->children(); I; ++I) {
268    childrenBuf.push_back(*I);
269  }
270
271  // This needs to be done *after* childrenBuf has been populated.
272  children = childrenBuf;
273}
274
275/// CFGBuilder - This class implements CFG construction from an AST.
276///   The builder is stateful: an instance of the builder should be used to only
277///   construct a single CFG.
278///
279///   Example usage:
280///
281///     CFGBuilder builder;
282///     CFG* cfg = builder.BuildAST(stmt1);
283///
284///  CFG construction is done via a recursive walk of an AST.  We actually parse
285///  the AST in reverse order so that the successor of a basic block is
286///  constructed prior to its predecessor.  This allows us to nicely capture
287///  implicit fall-throughs without extra basic blocks.
288///
289class CFGBuilder {
290  typedef BlockScopePosPair JumpTarget;
291  typedef BlockScopePosPair JumpSource;
292
293  ASTContext *Context;
294  std::unique_ptr<CFG> cfg;
295
296  CFGBlock *Block;
297  CFGBlock *Succ;
298  JumpTarget ContinueJumpTarget;
299  JumpTarget BreakJumpTarget;
300  CFGBlock *SwitchTerminatedBlock;
301  CFGBlock *DefaultCaseBlock;
302  CFGBlock *TryTerminatedBlock;
303
304  // Current position in local scope.
305  LocalScope::const_iterator ScopePos;
306
307  // LabelMap records the mapping from Label expressions to their jump targets.
308  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
309  LabelMapTy LabelMap;
310
311  // A list of blocks that end with a "goto" that must be backpatched to their
312  // resolved targets upon completion of CFG construction.
313  typedef std::vector<JumpSource> BackpatchBlocksTy;
314  BackpatchBlocksTy BackpatchBlocks;
315
316  // A list of labels whose address has been taken (for indirect gotos).
317  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
318  LabelSetTy AddressTakenLabels;
319
320  bool badCFG;
321  const CFG::BuildOptions &BuildOpts;
322
323  // State to track for building switch statements.
324  bool switchExclusivelyCovered;
325  Expr::EvalResult *switchCond;
326
327  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
328  const Stmt *lastLookup;
329
330  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
331  // during construction of branches for chained logical operators.
332  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
333  CachedBoolEvalsTy CachedBoolEvals;
334
335public:
336  explicit CFGBuilder(ASTContext *astContext,
337                      const CFG::BuildOptions &buildOpts)
338    : Context(astContext), cfg(new CFG()), // crew a new CFG
339      Block(NULL), Succ(NULL),
340      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
341      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
342      switchExclusivelyCovered(false), switchCond(0),
343      cachedEntry(0), lastLookup(0) {}
344
345  // buildCFG - Used by external clients to construct the CFG.
346  CFG* buildCFG(const Decl *D, Stmt *Statement);
347
348  bool alwaysAdd(const Stmt *stmt);
349
350private:
351  // Visitors to walk an AST and construct the CFG.
352  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
353  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
354  CFGBlock *VisitBreakStmt(BreakStmt *B);
355  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
356  CFGBlock *VisitCaseStmt(CaseStmt *C);
357  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
358  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
359  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
360                                     AddStmtChoice asc);
361  CFGBlock *VisitContinueStmt(ContinueStmt *C);
362  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
363                                      AddStmtChoice asc);
364  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
365  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
366  CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
367  CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
368  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
369  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
370                                       AddStmtChoice asc);
371  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
372                                        AddStmtChoice asc);
373  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
374  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
375  CFGBlock *VisitDeclStmt(DeclStmt *DS);
376  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
377  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
378  CFGBlock *VisitDoStmt(DoStmt *D);
379  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
380  CFGBlock *VisitForStmt(ForStmt *F);
381  CFGBlock *VisitGotoStmt(GotoStmt *G);
382  CFGBlock *VisitIfStmt(IfStmt *I);
383  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
385  CFGBlock *VisitLabelStmt(LabelStmt *L);
386  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
387  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
388  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
389                                                         Stmt *Term,
390                                                         CFGBlock *TrueBlock,
391                                                         CFGBlock *FalseBlock);
392  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
393  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
394  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
395  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
396  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
397  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
398  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
399  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
400  CFGBlock *VisitReturnStmt(ReturnStmt *R);
401  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
402  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
403  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
404                                          AddStmtChoice asc);
405  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
406  CFGBlock *VisitWhileStmt(WhileStmt *W);
407
408  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
409  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
410  CFGBlock *VisitChildren(Stmt *S);
411  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
412
413  // Visitors to walk an AST and generate destructors of temporaries in
414  // full expression.
415  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
416  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
417  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
418  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
419      bool BindToTemporary);
420  CFGBlock *
421  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
422                                            bool BindToTemporary);
423
424  // NYS == Not Yet Supported
425  CFGBlock *NYS() {
426    badCFG = true;
427    return Block;
428  }
429
430  void autoCreateBlock() { if (!Block) Block = createBlock(); }
431  CFGBlock *createBlock(bool add_successor = true);
432  CFGBlock *createNoReturnBlock();
433
434  CFGBlock *addStmt(Stmt *S) {
435    return Visit(S, AddStmtChoice::AlwaysAdd);
436  }
437  CFGBlock *addInitializer(CXXCtorInitializer *I);
438  void addAutomaticObjDtors(LocalScope::const_iterator B,
439                            LocalScope::const_iterator E, Stmt *S);
440  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
441
442  // Local scopes creation.
443  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
444
445  void addLocalScopeForStmt(Stmt *S);
446  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
447  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
448
449  void addLocalScopeAndDtors(Stmt *S);
450
451  // Interface to CFGBlock - adding CFGElements.
452  void appendStmt(CFGBlock *B, const Stmt *S) {
453    if (alwaysAdd(S) && cachedEntry)
454      cachedEntry->second = B;
455
456    // All block-level expressions should have already been IgnoreParens()ed.
457    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
458    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
459  }
460  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
461    B->appendInitializer(I, cfg->getBumpVectorContext());
462  }
463  void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
464    B->appendNewAllocator(NE, cfg->getBumpVectorContext());
465  }
466  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
467    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
468  }
469  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
470    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
471  }
472  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
473    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
474  }
475  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
476    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
477  }
478
479  void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
480    B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
481  }
482
483  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
484      LocalScope::const_iterator B, LocalScope::const_iterator E);
485
486  void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
487    B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
488                    cfg->getBumpVectorContext());
489  }
490
491  /// Add a reachable successor to a block, with the alternate variant that is
492  /// unreachable.
493  void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
494    B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
495                    cfg->getBumpVectorContext());
496  }
497
498  /// Try and evaluate an expression to an integer constant.
499  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
500    if (!BuildOpts.PruneTriviallyFalseEdges)
501      return false;
502    return !S->isTypeDependent() &&
503           !S->isValueDependent() &&
504           S->EvaluateAsRValue(outResult, *Context);
505  }
506
507  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
508  /// if we can evaluate to a known value, otherwise return -1.
509  TryResult tryEvaluateBool(Expr *S) {
510    if (!BuildOpts.PruneTriviallyFalseEdges ||
511        S->isTypeDependent() || S->isValueDependent())
512      return TryResult();
513
514    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
515      if (Bop->isLogicalOp()) {
516        // Check the cache first.
517        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
518        if (I != CachedBoolEvals.end())
519          return I->second; // already in map;
520
521        // Retrieve result at first, or the map might be updated.
522        TryResult Result = evaluateAsBooleanConditionNoCache(S);
523        CachedBoolEvals[S] = Result; // update or insert
524        return Result;
525      }
526      else {
527        switch (Bop->getOpcode()) {
528          default: break;
529          // For 'x & 0' and 'x * 0', we can determine that
530          // the value is always false.
531          case BO_Mul:
532          case BO_And: {
533            // If either operand is zero, we know the value
534            // must be false.
535            llvm::APSInt IntVal;
536            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
537              if (IntVal.getBoolValue() == false) {
538                return TryResult(false);
539              }
540            }
541            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
542              if (IntVal.getBoolValue() == false) {
543                return TryResult(false);
544              }
545            }
546          }
547          break;
548        }
549      }
550    }
551
552    return evaluateAsBooleanConditionNoCache(S);
553  }
554
555  /// \brief Evaluate as boolean \param E without using the cache.
556  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
557    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
558      if (Bop->isLogicalOp()) {
559        TryResult LHS = tryEvaluateBool(Bop->getLHS());
560        if (LHS.isKnown()) {
561          // We were able to evaluate the LHS, see if we can get away with not
562          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
563          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
564            return LHS.isTrue();
565
566          TryResult RHS = tryEvaluateBool(Bop->getRHS());
567          if (RHS.isKnown()) {
568            if (Bop->getOpcode() == BO_LOr)
569              return LHS.isTrue() || RHS.isTrue();
570            else
571              return LHS.isTrue() && RHS.isTrue();
572          }
573        } else {
574          TryResult RHS = tryEvaluateBool(Bop->getRHS());
575          if (RHS.isKnown()) {
576            // We can't evaluate the LHS; however, sometimes the result
577            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
578            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
579              return RHS.isTrue();
580          }
581        }
582
583        return TryResult();
584      }
585    }
586
587    bool Result;
588    if (E->EvaluateAsBooleanCondition(Result, *Context))
589      return Result;
590
591    return TryResult();
592  }
593
594};
595
596inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
597                                     const Stmt *stmt) const {
598  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
599}
600
601bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
602  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
603
604  if (!BuildOpts.forcedBlkExprs)
605    return shouldAdd;
606
607  if (lastLookup == stmt) {
608    if (cachedEntry) {
609      assert(cachedEntry->first == stmt);
610      return true;
611    }
612    return shouldAdd;
613  }
614
615  lastLookup = stmt;
616
617  // Perform the lookup!
618  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
619
620  if (!fb) {
621    // No need to update 'cachedEntry', since it will always be null.
622    assert(cachedEntry == 0);
623    return shouldAdd;
624  }
625
626  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
627  if (itr == fb->end()) {
628    cachedEntry = 0;
629    return shouldAdd;
630  }
631
632  cachedEntry = &*itr;
633  return true;
634}
635
636// FIXME: Add support for dependent-sized array types in C++?
637// Does it even make sense to build a CFG for an uninstantiated template?
638static const VariableArrayType *FindVA(const Type *t) {
639  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
640    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
641      if (vat->getSizeExpr())
642        return vat;
643
644    t = vt->getElementType().getTypePtr();
645  }
646
647  return 0;
648}
649
650/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
651///  arbitrary statement.  Examples include a single expression or a function
652///  body (compound statement).  The ownership of the returned CFG is
653///  transferred to the caller.  If CFG construction fails, this method returns
654///  NULL.
655CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
656  assert(cfg.get());
657  if (!Statement)
658    return NULL;
659
660  // Create an empty block that will serve as the exit block for the CFG.  Since
661  // this is the first block added to the CFG, it will be implicitly registered
662  // as the exit block.
663  Succ = createBlock();
664  assert(Succ == &cfg->getExit());
665  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
666
667  if (BuildOpts.AddImplicitDtors)
668    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
669      addImplicitDtorsForDestructor(DD);
670
671  // Visit the statements and create the CFG.
672  CFGBlock *B = addStmt(Statement);
673
674  if (badCFG)
675    return NULL;
676
677  // For C++ constructor add initializers to CFG.
678  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
679    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
680        E = CD->init_rend(); I != E; ++I) {
681      B = addInitializer(*I);
682      if (badCFG)
683        return NULL;
684    }
685  }
686
687  if (B)
688    Succ = B;
689
690  // Backpatch the gotos whose label -> block mappings we didn't know when we
691  // encountered them.
692  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
693                                   E = BackpatchBlocks.end(); I != E; ++I ) {
694
695    CFGBlock *B = I->block;
696    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
697    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
698
699    // If there is no target for the goto, then we are looking at an
700    // incomplete AST.  Handle this by not registering a successor.
701    if (LI == LabelMap.end()) continue;
702
703    JumpTarget JT = LI->second;
704    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
705                                           JT.scopePosition);
706    addSuccessor(B, JT.block);
707  }
708
709  // Add successors to the Indirect Goto Dispatch block (if we have one).
710  if (CFGBlock *B = cfg->getIndirectGotoBlock())
711    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
712                              E = AddressTakenLabels.end(); I != E; ++I ) {
713
714      // Lookup the target block.
715      LabelMapTy::iterator LI = LabelMap.find(*I);
716
717      // If there is no target block that contains label, then we are looking
718      // at an incomplete AST.  Handle this by not registering a successor.
719      if (LI == LabelMap.end()) continue;
720
721      addSuccessor(B, LI->second.block);
722    }
723
724  // Create an empty entry block that has no predecessors.
725  cfg->setEntry(createBlock());
726
727  return cfg.release();
728}
729
730/// createBlock - Used to lazily create blocks that are connected
731///  to the current (global) succcessor.
732CFGBlock *CFGBuilder::createBlock(bool add_successor) {
733  CFGBlock *B = cfg->createBlock();
734  if (add_successor && Succ)
735    addSuccessor(B, Succ);
736  return B;
737}
738
739/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
740/// CFG. It is *not* connected to the current (global) successor, and instead
741/// directly tied to the exit block in order to be reachable.
742CFGBlock *CFGBuilder::createNoReturnBlock() {
743  CFGBlock *B = createBlock(false);
744  B->setHasNoReturnElement();
745  addSuccessor(B, &cfg->getExit(), Succ);
746  return B;
747}
748
749/// addInitializer - Add C++ base or member initializer element to CFG.
750CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
751  if (!BuildOpts.AddInitializers)
752    return Block;
753
754  bool IsReference = false;
755  bool HasTemporaries = false;
756
757  // Destructors of temporaries in initialization expression should be called
758  // after initialization finishes.
759  Expr *Init = I->getInit();
760  if (Init) {
761    if (FieldDecl *FD = I->getAnyMember())
762      IsReference = FD->getType()->isReferenceType();
763    HasTemporaries = isa<ExprWithCleanups>(Init);
764
765    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
766      // Generate destructors for temporaries in initialization expression.
767      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
768          IsReference);
769    }
770  }
771
772  autoCreateBlock();
773  appendInitializer(Block, I);
774
775  if (Init) {
776    if (HasTemporaries) {
777      // For expression with temporaries go directly to subexpression to omit
778      // generating destructors for the second time.
779      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
780    }
781    return Visit(Init);
782  }
783
784  return Block;
785}
786
787/// \brief Retrieve the type of the temporary object whose lifetime was
788/// extended by a local reference with the given initializer.
789static QualType getReferenceInitTemporaryType(ASTContext &Context,
790                                              const Expr *Init) {
791  while (true) {
792    // Skip parentheses.
793    Init = Init->IgnoreParens();
794
795    // Skip through cleanups.
796    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
797      Init = EWC->getSubExpr();
798      continue;
799    }
800
801    // Skip through the temporary-materialization expression.
802    if (const MaterializeTemporaryExpr *MTE
803          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
804      Init = MTE->GetTemporaryExpr();
805      continue;
806    }
807
808    // Skip derived-to-base and no-op casts.
809    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
810      if ((CE->getCastKind() == CK_DerivedToBase ||
811           CE->getCastKind() == CK_UncheckedDerivedToBase ||
812           CE->getCastKind() == CK_NoOp) &&
813          Init->getType()->isRecordType()) {
814        Init = CE->getSubExpr();
815        continue;
816      }
817    }
818
819    // Skip member accesses into rvalues.
820    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
821      if (!ME->isArrow() && ME->getBase()->isRValue()) {
822        Init = ME->getBase();
823        continue;
824      }
825    }
826
827    break;
828  }
829
830  return Init->getType();
831}
832
833/// addAutomaticObjDtors - Add to current block automatic objects destructors
834/// for objects in range of local scope positions. Use S as trigger statement
835/// for destructors.
836void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
837                                      LocalScope::const_iterator E, Stmt *S) {
838  if (!BuildOpts.AddImplicitDtors)
839    return;
840
841  if (B == E)
842    return;
843
844  // We need to append the destructors in reverse order, but any one of them
845  // may be a no-return destructor which changes the CFG. As a result, buffer
846  // this sequence up and replay them in reverse order when appending onto the
847  // CFGBlock(s).
848  SmallVector<VarDecl*, 10> Decls;
849  Decls.reserve(B.distance(E));
850  for (LocalScope::const_iterator I = B; I != E; ++I)
851    Decls.push_back(*I);
852
853  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
854                                                   E = Decls.rend();
855       I != E; ++I) {
856    // If this destructor is marked as a no-return destructor, we need to
857    // create a new block for the destructor which does not have as a successor
858    // anything built thus far: control won't flow out of this block.
859    QualType Ty = (*I)->getType();
860    if (Ty->isReferenceType()) {
861      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
862    }
863    Ty = Context->getBaseElementType(Ty);
864
865    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
866    if (Dtor->isNoReturn())
867      Block = createNoReturnBlock();
868    else
869      autoCreateBlock();
870
871    appendAutomaticObjDtor(Block, *I, S);
872  }
873}
874
875/// addImplicitDtorsForDestructor - Add implicit destructors generated for
876/// base and member objects in destructor.
877void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
878  assert (BuildOpts.AddImplicitDtors
879      && "Can be called only when dtors should be added");
880  const CXXRecordDecl *RD = DD->getParent();
881
882  // At the end destroy virtual base objects.
883  for (const auto &VI : RD->vbases()) {
884    const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
885    if (!CD->hasTrivialDestructor()) {
886      autoCreateBlock();
887      appendBaseDtor(Block, &VI);
888    }
889  }
890
891  // Before virtual bases destroy direct base objects.
892  for (const auto &BI : RD->bases()) {
893    if (!BI.isVirtual()) {
894      const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
895      if (!CD->hasTrivialDestructor()) {
896        autoCreateBlock();
897        appendBaseDtor(Block, &BI);
898      }
899    }
900  }
901
902  // First destroy member objects.
903  for (auto *FI : RD->fields()) {
904    // Check for constant size array. Set type to array element type.
905    QualType QT = FI->getType();
906    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
907      if (AT->getSize() == 0)
908        continue;
909      QT = AT->getElementType();
910    }
911
912    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
913      if (!CD->hasTrivialDestructor()) {
914        autoCreateBlock();
915        appendMemberDtor(Block, FI);
916      }
917  }
918}
919
920/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
921/// way return valid LocalScope object.
922LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
923  if (!Scope) {
924    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
925    Scope = alloc.Allocate<LocalScope>();
926    BumpVectorContext ctx(alloc);
927    new (Scope) LocalScope(ctx, ScopePos);
928  }
929  return Scope;
930}
931
932/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
933/// that should create implicit scope (e.g. if/else substatements).
934void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
935  if (!BuildOpts.AddImplicitDtors)
936    return;
937
938  LocalScope *Scope = 0;
939
940  // For compound statement we will be creating explicit scope.
941  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
942    for (auto *BI : CS->body()) {
943      Stmt *SI = BI->stripLabelLikeStatements();
944      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
945        Scope = addLocalScopeForDeclStmt(DS, Scope);
946    }
947    return;
948  }
949
950  // For any other statement scope will be implicit and as such will be
951  // interesting only for DeclStmt.
952  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
953    addLocalScopeForDeclStmt(DS);
954}
955
956/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
957/// reuse Scope if not NULL.
958LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
959                                                 LocalScope* Scope) {
960  if (!BuildOpts.AddImplicitDtors)
961    return Scope;
962
963  for (auto *DI : DS->decls())
964    if (VarDecl *VD = dyn_cast<VarDecl>(DI))
965      Scope = addLocalScopeForVarDecl(VD, Scope);
966  return Scope;
967}
968
969/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
970/// create add scope for automatic objects and temporary objects bound to
971/// const reference. Will reuse Scope if not NULL.
972LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
973                                                LocalScope* Scope) {
974  if (!BuildOpts.AddImplicitDtors)
975    return Scope;
976
977  // Check if variable is local.
978  switch (VD->getStorageClass()) {
979  case SC_None:
980  case SC_Auto:
981  case SC_Register:
982    break;
983  default: return Scope;
984  }
985
986  // Check for const references bound to temporary. Set type to pointee.
987  QualType QT = VD->getType();
988  if (QT.getTypePtr()->isReferenceType()) {
989    // Attempt to determine whether this declaration lifetime-extends a
990    // temporary.
991    //
992    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
993    // temporaries, and a single declaration can extend multiple temporaries.
994    // We should look at the storage duration on each nested
995    // MaterializeTemporaryExpr instead.
996    const Expr *Init = VD->getInit();
997    if (!Init)
998      return Scope;
999    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
1000      Init = EWC->getSubExpr();
1001    if (!isa<MaterializeTemporaryExpr>(Init))
1002      return Scope;
1003
1004    // Lifetime-extending a temporary.
1005    QT = getReferenceInitTemporaryType(*Context, Init);
1006  }
1007
1008  // Check for constant size array. Set type to array element type.
1009  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1010    if (AT->getSize() == 0)
1011      return Scope;
1012    QT = AT->getElementType();
1013  }
1014
1015  // Check if type is a C++ class with non-trivial destructor.
1016  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1017    if (!CD->hasTrivialDestructor()) {
1018      // Add the variable to scope
1019      Scope = createOrReuseLocalScope(Scope);
1020      Scope->addVar(VD);
1021      ScopePos = Scope->begin();
1022    }
1023  return Scope;
1024}
1025
1026/// addLocalScopeAndDtors - For given statement add local scope for it and
1027/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1028void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1029  if (!BuildOpts.AddImplicitDtors)
1030    return;
1031
1032  LocalScope::const_iterator scopeBeginPos = ScopePos;
1033  addLocalScopeForStmt(S);
1034  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1035}
1036
1037/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1038/// variables with automatic storage duration to CFGBlock's elements vector.
1039/// Elements will be prepended to physical beginning of the vector which
1040/// happens to be logical end. Use blocks terminator as statement that specifies
1041/// destructors call site.
1042/// FIXME: This mechanism for adding automatic destructors doesn't handle
1043/// no-return destructors properly.
1044void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1045    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1046  BumpVectorContext &C = cfg->getBumpVectorContext();
1047  CFGBlock::iterator InsertPos
1048    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1049  for (LocalScope::const_iterator I = B; I != E; ++I)
1050    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1051                                            Blk->getTerminator());
1052}
1053
1054/// Visit - Walk the subtree of a statement and add extra
1055///   blocks for ternary operators, &&, and ||.  We also process "," and
1056///   DeclStmts (which may contain nested control-flow).
1057CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1058  if (!S) {
1059    badCFG = true;
1060    return 0;
1061  }
1062
1063  if (Expr *E = dyn_cast<Expr>(S))
1064    S = E->IgnoreParens();
1065
1066  switch (S->getStmtClass()) {
1067    default:
1068      return VisitStmt(S, asc);
1069
1070    case Stmt::AddrLabelExprClass:
1071      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1072
1073    case Stmt::BinaryConditionalOperatorClass:
1074      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1075
1076    case Stmt::BinaryOperatorClass:
1077      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1078
1079    case Stmt::BlockExprClass:
1080      return VisitNoRecurse(cast<Expr>(S), asc);
1081
1082    case Stmt::BreakStmtClass:
1083      return VisitBreakStmt(cast<BreakStmt>(S));
1084
1085    case Stmt::CallExprClass:
1086    case Stmt::CXXOperatorCallExprClass:
1087    case Stmt::CXXMemberCallExprClass:
1088    case Stmt::UserDefinedLiteralClass:
1089      return VisitCallExpr(cast<CallExpr>(S), asc);
1090
1091    case Stmt::CaseStmtClass:
1092      return VisitCaseStmt(cast<CaseStmt>(S));
1093
1094    case Stmt::ChooseExprClass:
1095      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1096
1097    case Stmt::CompoundStmtClass:
1098      return VisitCompoundStmt(cast<CompoundStmt>(S));
1099
1100    case Stmt::ConditionalOperatorClass:
1101      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1102
1103    case Stmt::ContinueStmtClass:
1104      return VisitContinueStmt(cast<ContinueStmt>(S));
1105
1106    case Stmt::CXXCatchStmtClass:
1107      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1108
1109    case Stmt::ExprWithCleanupsClass:
1110      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1111
1112    case Stmt::CXXDefaultArgExprClass:
1113    case Stmt::CXXDefaultInitExprClass:
1114      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1115      // called function's declaration, not by the caller. If we simply add
1116      // this expression to the CFG, we could end up with the same Expr
1117      // appearing multiple times.
1118      // PR13385 / <rdar://problem/12156507>
1119      //
1120      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1121      // expression to be used in the same function (through aggregate
1122      // initialization).
1123      return VisitStmt(S, asc);
1124
1125    case Stmt::CXXBindTemporaryExprClass:
1126      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1127
1128    case Stmt::CXXConstructExprClass:
1129      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1130
1131    case Stmt::CXXNewExprClass:
1132      return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
1133
1134    case Stmt::CXXDeleteExprClass:
1135      return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
1136
1137    case Stmt::CXXFunctionalCastExprClass:
1138      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1139
1140    case Stmt::CXXTemporaryObjectExprClass:
1141      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1142
1143    case Stmt::CXXThrowExprClass:
1144      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1145
1146    case Stmt::CXXTryStmtClass:
1147      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1148
1149    case Stmt::CXXForRangeStmtClass:
1150      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1151
1152    case Stmt::DeclStmtClass:
1153      return VisitDeclStmt(cast<DeclStmt>(S));
1154
1155    case Stmt::DefaultStmtClass:
1156      return VisitDefaultStmt(cast<DefaultStmt>(S));
1157
1158    case Stmt::DoStmtClass:
1159      return VisitDoStmt(cast<DoStmt>(S));
1160
1161    case Stmt::ForStmtClass:
1162      return VisitForStmt(cast<ForStmt>(S));
1163
1164    case Stmt::GotoStmtClass:
1165      return VisitGotoStmt(cast<GotoStmt>(S));
1166
1167    case Stmt::IfStmtClass:
1168      return VisitIfStmt(cast<IfStmt>(S));
1169
1170    case Stmt::ImplicitCastExprClass:
1171      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1172
1173    case Stmt::IndirectGotoStmtClass:
1174      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1175
1176    case Stmt::LabelStmtClass:
1177      return VisitLabelStmt(cast<LabelStmt>(S));
1178
1179    case Stmt::LambdaExprClass:
1180      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1181
1182    case Stmt::MemberExprClass:
1183      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1184
1185    case Stmt::NullStmtClass:
1186      return Block;
1187
1188    case Stmt::ObjCAtCatchStmtClass:
1189      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1190
1191    case Stmt::ObjCAutoreleasePoolStmtClass:
1192    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1193
1194    case Stmt::ObjCAtSynchronizedStmtClass:
1195      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1196
1197    case Stmt::ObjCAtThrowStmtClass:
1198      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1199
1200    case Stmt::ObjCAtTryStmtClass:
1201      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1202
1203    case Stmt::ObjCForCollectionStmtClass:
1204      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1205
1206    case Stmt::OpaqueValueExprClass:
1207      return Block;
1208
1209    case Stmt::PseudoObjectExprClass:
1210      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1211
1212    case Stmt::ReturnStmtClass:
1213      return VisitReturnStmt(cast<ReturnStmt>(S));
1214
1215    case Stmt::UnaryExprOrTypeTraitExprClass:
1216      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1217                                           asc);
1218
1219    case Stmt::StmtExprClass:
1220      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1221
1222    case Stmt::SwitchStmtClass:
1223      return VisitSwitchStmt(cast<SwitchStmt>(S));
1224
1225    case Stmt::UnaryOperatorClass:
1226      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1227
1228    case Stmt::WhileStmtClass:
1229      return VisitWhileStmt(cast<WhileStmt>(S));
1230  }
1231}
1232
1233CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1234  if (asc.alwaysAdd(*this, S)) {
1235    autoCreateBlock();
1236    appendStmt(Block, S);
1237  }
1238
1239  return VisitChildren(S);
1240}
1241
1242/// VisitChildren - Visit the children of a Stmt.
1243CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1244  CFGBlock *B = Block;
1245
1246  // Visit the children in their reverse order so that they appear in
1247  // left-to-right (natural) order in the CFG.
1248  reverse_children RChildren(S);
1249  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1250       I != E; ++I) {
1251    if (Stmt *Child = *I)
1252      if (CFGBlock *R = Visit(Child))
1253        B = R;
1254  }
1255  return B;
1256}
1257
1258CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1259                                         AddStmtChoice asc) {
1260  AddressTakenLabels.insert(A->getLabel());
1261
1262  if (asc.alwaysAdd(*this, A)) {
1263    autoCreateBlock();
1264    appendStmt(Block, A);
1265  }
1266
1267  return Block;
1268}
1269
1270CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1271           AddStmtChoice asc) {
1272  if (asc.alwaysAdd(*this, U)) {
1273    autoCreateBlock();
1274    appendStmt(Block, U);
1275  }
1276
1277  return Visit(U->getSubExpr(), AddStmtChoice());
1278}
1279
1280CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1281  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1282  appendStmt(ConfluenceBlock, B);
1283
1284  if (badCFG)
1285    return 0;
1286
1287  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1288}
1289
1290std::pair<CFGBlock*, CFGBlock*>
1291CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1292                                 Stmt *Term,
1293                                 CFGBlock *TrueBlock,
1294                                 CFGBlock *FalseBlock) {
1295
1296  // Introspect the RHS.  If it is a nested logical operation, we recursively
1297  // build the CFG using this function.  Otherwise, resort to default
1298  // CFG construction behavior.
1299  Expr *RHS = B->getRHS()->IgnoreParens();
1300  CFGBlock *RHSBlock, *ExitBlock;
1301
1302  do {
1303    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1304      if (B_RHS->isLogicalOp()) {
1305        std::tie(RHSBlock, ExitBlock) =
1306          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1307        break;
1308      }
1309
1310    // The RHS is not a nested logical operation.  Don't push the terminator
1311    // down further, but instead visit RHS and construct the respective
1312    // pieces of the CFG, and link up the RHSBlock with the terminator
1313    // we have been provided.
1314    ExitBlock = RHSBlock = createBlock(false);
1315
1316    if (!Term) {
1317      assert(TrueBlock == FalseBlock);
1318      addSuccessor(RHSBlock, TrueBlock);
1319    }
1320    else {
1321      RHSBlock->setTerminator(Term);
1322      TryResult KnownVal = tryEvaluateBool(RHS);
1323      addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
1324      addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
1325    }
1326
1327    Block = RHSBlock;
1328    RHSBlock = addStmt(RHS);
1329  }
1330  while (false);
1331
1332  if (badCFG)
1333    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1334
1335  // Generate the blocks for evaluating the LHS.
1336  Expr *LHS = B->getLHS()->IgnoreParens();
1337
1338  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1339    if (B_LHS->isLogicalOp()) {
1340      if (B->getOpcode() == BO_LOr)
1341        FalseBlock = RHSBlock;
1342      else
1343        TrueBlock = RHSBlock;
1344
1345      // For the LHS, treat 'B' as the terminator that we want to sink
1346      // into the nested branch.  The RHS always gets the top-most
1347      // terminator.
1348      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1349    }
1350
1351  // Create the block evaluating the LHS.
1352  // This contains the '&&' or '||' as the terminator.
1353  CFGBlock *LHSBlock = createBlock(false);
1354  LHSBlock->setTerminator(B);
1355
1356  Block = LHSBlock;
1357  CFGBlock *EntryLHSBlock = addStmt(LHS);
1358
1359  if (badCFG)
1360    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1361
1362  // See if this is a known constant.
1363  TryResult KnownVal = tryEvaluateBool(LHS);
1364
1365  // Now link the LHSBlock with RHSBlock.
1366  if (B->getOpcode() == BO_LOr) {
1367    addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
1368    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
1369  } else {
1370    assert(B->getOpcode() == BO_LAnd);
1371    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
1372    addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
1373  }
1374
1375  return std::make_pair(EntryLHSBlock, ExitBlock);
1376}
1377
1378
1379CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1380                                          AddStmtChoice asc) {
1381   // && or ||
1382  if (B->isLogicalOp())
1383    return VisitLogicalOperator(B);
1384
1385  if (B->getOpcode() == BO_Comma) { // ,
1386    autoCreateBlock();
1387    appendStmt(Block, B);
1388    addStmt(B->getRHS());
1389    return addStmt(B->getLHS());
1390  }
1391
1392  if (B->isAssignmentOp()) {
1393    if (asc.alwaysAdd(*this, B)) {
1394      autoCreateBlock();
1395      appendStmt(Block, B);
1396    }
1397    Visit(B->getLHS());
1398    return Visit(B->getRHS());
1399  }
1400
1401  if (asc.alwaysAdd(*this, B)) {
1402    autoCreateBlock();
1403    appendStmt(Block, B);
1404  }
1405
1406  CFGBlock *RBlock = Visit(B->getRHS());
1407  CFGBlock *LBlock = Visit(B->getLHS());
1408  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1409  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1410  // return RBlock.  Otherwise we'll incorrectly return NULL.
1411  return (LBlock ? LBlock : RBlock);
1412}
1413
1414CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1415  if (asc.alwaysAdd(*this, E)) {
1416    autoCreateBlock();
1417    appendStmt(Block, E);
1418  }
1419  return Block;
1420}
1421
1422CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1423  // "break" is a control-flow statement.  Thus we stop processing the current
1424  // block.
1425  if (badCFG)
1426    return 0;
1427
1428  // Now create a new block that ends with the break statement.
1429  Block = createBlock(false);
1430  Block->setTerminator(B);
1431
1432  // If there is no target for the break, then we are looking at an incomplete
1433  // AST.  This means that the CFG cannot be constructed.
1434  if (BreakJumpTarget.block) {
1435    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1436    addSuccessor(Block, BreakJumpTarget.block);
1437  } else
1438    badCFG = true;
1439
1440
1441  return Block;
1442}
1443
1444static bool CanThrow(Expr *E, ASTContext &Ctx) {
1445  QualType Ty = E->getType();
1446  if (Ty->isFunctionPointerType())
1447    Ty = Ty->getAs<PointerType>()->getPointeeType();
1448  else if (Ty->isBlockPointerType())
1449    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1450
1451  const FunctionType *FT = Ty->getAs<FunctionType>();
1452  if (FT) {
1453    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1454      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1455          Proto->isNothrow(Ctx))
1456        return false;
1457  }
1458  return true;
1459}
1460
1461CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1462  // Compute the callee type.
1463  QualType calleeType = C->getCallee()->getType();
1464  if (calleeType == Context->BoundMemberTy) {
1465    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1466
1467    // We should only get a null bound type if processing a dependent
1468    // CFG.  Recover by assuming nothing.
1469    if (!boundType.isNull()) calleeType = boundType;
1470  }
1471
1472  // If this is a call to a no-return function, this stops the block here.
1473  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1474
1475  bool AddEHEdge = false;
1476
1477  // Languages without exceptions are assumed to not throw.
1478  if (Context->getLangOpts().Exceptions) {
1479    if (BuildOpts.AddEHEdges)
1480      AddEHEdge = true;
1481  }
1482
1483  // If this is a call to a builtin function, it might not actually evaluate
1484  // its arguments. Don't add them to the CFG if this is the case.
1485  bool OmitArguments = false;
1486
1487  if (FunctionDecl *FD = C->getDirectCallee()) {
1488    if (FD->isNoReturn())
1489      NoReturn = true;
1490    if (FD->hasAttr<NoThrowAttr>())
1491      AddEHEdge = false;
1492    if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1493      OmitArguments = true;
1494  }
1495
1496  if (!CanThrow(C->getCallee(), *Context))
1497    AddEHEdge = false;
1498
1499  if (OmitArguments) {
1500    assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1501    assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1502    autoCreateBlock();
1503    appendStmt(Block, C);
1504    return Visit(C->getCallee());
1505  }
1506
1507  if (!NoReturn && !AddEHEdge) {
1508    return VisitStmt(C, asc.withAlwaysAdd(true));
1509  }
1510
1511  if (Block) {
1512    Succ = Block;
1513    if (badCFG)
1514      return 0;
1515  }
1516
1517  if (NoReturn)
1518    Block = createNoReturnBlock();
1519  else
1520    Block = createBlock();
1521
1522  appendStmt(Block, C);
1523
1524  if (AddEHEdge) {
1525    // Add exceptional edges.
1526    if (TryTerminatedBlock)
1527      addSuccessor(Block, TryTerminatedBlock);
1528    else
1529      addSuccessor(Block, &cfg->getExit());
1530  }
1531
1532  return VisitChildren(C);
1533}
1534
1535CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1536                                      AddStmtChoice asc) {
1537  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1538  appendStmt(ConfluenceBlock, C);
1539  if (badCFG)
1540    return 0;
1541
1542  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1543  Succ = ConfluenceBlock;
1544  Block = NULL;
1545  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1546  if (badCFG)
1547    return 0;
1548
1549  Succ = ConfluenceBlock;
1550  Block = NULL;
1551  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1552  if (badCFG)
1553    return 0;
1554
1555  Block = createBlock(false);
1556  // See if this is a known constant.
1557  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1558  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1559  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1560  Block->setTerminator(C);
1561  return addStmt(C->getCond());
1562}
1563
1564
1565CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1566  addLocalScopeAndDtors(C);
1567  CFGBlock *LastBlock = Block;
1568
1569  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1570       I != E; ++I ) {
1571    // If we hit a segment of code just containing ';' (NullStmts), we can
1572    // get a null block back.  In such cases, just use the LastBlock
1573    if (CFGBlock *newBlock = addStmt(*I))
1574      LastBlock = newBlock;
1575
1576    if (badCFG)
1577      return NULL;
1578  }
1579
1580  return LastBlock;
1581}
1582
1583CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1584                                               AddStmtChoice asc) {
1585  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1586  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1587
1588  // Create the confluence block that will "merge" the results of the ternary
1589  // expression.
1590  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1591  appendStmt(ConfluenceBlock, C);
1592  if (badCFG)
1593    return 0;
1594
1595  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1596
1597  // Create a block for the LHS expression if there is an LHS expression.  A
1598  // GCC extension allows LHS to be NULL, causing the condition to be the
1599  // value that is returned instead.
1600  //  e.g: x ?: y is shorthand for: x ? x : y;
1601  Succ = ConfluenceBlock;
1602  Block = NULL;
1603  CFGBlock *LHSBlock = 0;
1604  const Expr *trueExpr = C->getTrueExpr();
1605  if (trueExpr != opaqueValue) {
1606    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1607    if (badCFG)
1608      return 0;
1609    Block = NULL;
1610  }
1611  else
1612    LHSBlock = ConfluenceBlock;
1613
1614  // Create the block for the RHS expression.
1615  Succ = ConfluenceBlock;
1616  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1617  if (badCFG)
1618    return 0;
1619
1620  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1621  if (BinaryOperator *Cond =
1622        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1623    if (Cond->isLogicalOp())
1624      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1625
1626  // Create the block that will contain the condition.
1627  Block = createBlock(false);
1628
1629  // See if this is a known constant.
1630  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1631  addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
1632  addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
1633  Block->setTerminator(C);
1634  Expr *condExpr = C->getCond();
1635
1636  if (opaqueValue) {
1637    // Run the condition expression if it's not trivially expressed in
1638    // terms of the opaque value (or if there is no opaque value).
1639    if (condExpr != opaqueValue)
1640      addStmt(condExpr);
1641
1642    // Before that, run the common subexpression if there was one.
1643    // At least one of this or the above will be run.
1644    return addStmt(BCO->getCommon());
1645  }
1646
1647  return addStmt(condExpr);
1648}
1649
1650CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1651  // Check if the Decl is for an __label__.  If so, elide it from the
1652  // CFG entirely.
1653  if (isa<LabelDecl>(*DS->decl_begin()))
1654    return Block;
1655
1656  // This case also handles static_asserts.
1657  if (DS->isSingleDecl())
1658    return VisitDeclSubExpr(DS);
1659
1660  CFGBlock *B = 0;
1661
1662  // Build an individual DeclStmt for each decl.
1663  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1664                                       E = DS->decl_rend();
1665       I != E; ++I) {
1666    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1667    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1668               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1669
1670    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1671    // automatically freed with the CFG.
1672    DeclGroupRef DG(*I);
1673    Decl *D = *I;
1674    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1675    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1676    cfg->addSyntheticDeclStmt(DSNew, DS);
1677
1678    // Append the fake DeclStmt to block.
1679    B = VisitDeclSubExpr(DSNew);
1680  }
1681
1682  return B;
1683}
1684
1685/// VisitDeclSubExpr - Utility method to add block-level expressions for
1686/// DeclStmts and initializers in them.
1687CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1688  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1689  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1690
1691  if (!VD) {
1692    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1693    // runtime semantics.
1694    return Block;
1695  }
1696
1697  bool IsReference = false;
1698  bool HasTemporaries = false;
1699
1700  // Guard static initializers under a branch.
1701  CFGBlock *blockAfterStaticInit = 0;
1702
1703  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1704    // For static variables, we need to create a branch to track
1705    // whether or not they are initialized.
1706    if (Block) {
1707      Succ = Block;
1708      Block = 0;
1709      if (badCFG)
1710        return 0;
1711    }
1712    blockAfterStaticInit = Succ;
1713  }
1714
1715  // Destructors of temporaries in initialization expression should be called
1716  // after initialization finishes.
1717  Expr *Init = VD->getInit();
1718  if (Init) {
1719    IsReference = VD->getType()->isReferenceType();
1720    HasTemporaries = isa<ExprWithCleanups>(Init);
1721
1722    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1723      // Generate destructors for temporaries in initialization expression.
1724      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1725          IsReference);
1726    }
1727  }
1728
1729  autoCreateBlock();
1730  appendStmt(Block, DS);
1731
1732  // Keep track of the last non-null block, as 'Block' can be nulled out
1733  // if the initializer expression is something like a 'while' in a
1734  // statement-expression.
1735  CFGBlock *LastBlock = Block;
1736
1737  if (Init) {
1738    if (HasTemporaries) {
1739      // For expression with temporaries go directly to subexpression to omit
1740      // generating destructors for the second time.
1741      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1742      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1743        LastBlock = newBlock;
1744    }
1745    else {
1746      if (CFGBlock *newBlock = Visit(Init))
1747        LastBlock = newBlock;
1748    }
1749  }
1750
1751  // If the type of VD is a VLA, then we must process its size expressions.
1752  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1753       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1754    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1755      LastBlock = newBlock;
1756  }
1757
1758  // Remove variable from local scope.
1759  if (ScopePos && VD == *ScopePos)
1760    ++ScopePos;
1761
1762  CFGBlock *B = LastBlock;
1763  if (blockAfterStaticInit) {
1764    Succ = B;
1765    Block = createBlock(false);
1766    Block->setTerminator(DS);
1767    addSuccessor(Block, blockAfterStaticInit);
1768    addSuccessor(Block, B);
1769    B = Block;
1770  }
1771
1772  return B;
1773}
1774
1775CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1776  // We may see an if statement in the middle of a basic block, or it may be the
1777  // first statement we are processing.  In either case, we create a new basic
1778  // block.  First, we create the blocks for the then...else statements, and
1779  // then we create the block containing the if statement.  If we were in the
1780  // middle of a block, we stop processing that block.  That block is then the
1781  // implicit successor for the "then" and "else" clauses.
1782
1783  // Save local scope position because in case of condition variable ScopePos
1784  // won't be restored when traversing AST.
1785  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1786
1787  // Create local scope for possible condition variable.
1788  // Store scope position. Add implicit destructor.
1789  if (VarDecl *VD = I->getConditionVariable()) {
1790    LocalScope::const_iterator BeginScopePos = ScopePos;
1791    addLocalScopeForVarDecl(VD);
1792    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1793  }
1794
1795  // The block we were processing is now finished.  Make it the successor
1796  // block.
1797  if (Block) {
1798    Succ = Block;
1799    if (badCFG)
1800      return 0;
1801  }
1802
1803  // Process the false branch.
1804  CFGBlock *ElseBlock = Succ;
1805
1806  if (Stmt *Else = I->getElse()) {
1807    SaveAndRestore<CFGBlock*> sv(Succ);
1808
1809    // NULL out Block so that the recursive call to Visit will
1810    // create a new basic block.
1811    Block = NULL;
1812
1813    // If branch is not a compound statement create implicit scope
1814    // and add destructors.
1815    if (!isa<CompoundStmt>(Else))
1816      addLocalScopeAndDtors(Else);
1817
1818    ElseBlock = addStmt(Else);
1819
1820    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1821      ElseBlock = sv.get();
1822    else if (Block) {
1823      if (badCFG)
1824        return 0;
1825    }
1826  }
1827
1828  // Process the true branch.
1829  CFGBlock *ThenBlock;
1830  {
1831    Stmt *Then = I->getThen();
1832    assert(Then);
1833    SaveAndRestore<CFGBlock*> sv(Succ);
1834    Block = NULL;
1835
1836    // If branch is not a compound statement create implicit scope
1837    // and add destructors.
1838    if (!isa<CompoundStmt>(Then))
1839      addLocalScopeAndDtors(Then);
1840
1841    ThenBlock = addStmt(Then);
1842
1843    if (!ThenBlock) {
1844      // We can reach here if the "then" body has all NullStmts.
1845      // Create an empty block so we can distinguish between true and false
1846      // branches in path-sensitive analyses.
1847      ThenBlock = createBlock(false);
1848      addSuccessor(ThenBlock, sv.get());
1849    } else if (Block) {
1850      if (badCFG)
1851        return 0;
1852    }
1853  }
1854
1855  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1856  // having these handle the actual control-flow jump.  Note that
1857  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1858  // we resort to the old control-flow behavior.  This special handling
1859  // removes infeasible paths from the control-flow graph by having the
1860  // control-flow transfer of '&&' or '||' go directly into the then/else
1861  // blocks directly.
1862  if (!I->getConditionVariable())
1863    if (BinaryOperator *Cond =
1864            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1865      if (Cond->isLogicalOp())
1866        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1867
1868  // Now create a new block containing the if statement.
1869  Block = createBlock(false);
1870
1871  // Set the terminator of the new block to the If statement.
1872  Block->setTerminator(I);
1873
1874  // See if this is a known constant.
1875  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1876
1877  // Add the successors.  If we know that specific branches are
1878  // unreachable, inform addSuccessor() of that knowledge.
1879  addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
1880  addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
1881
1882  // Add the condition as the last statement in the new block.  This may create
1883  // new blocks as the condition may contain control-flow.  Any newly created
1884  // blocks will be pointed to be "Block".
1885  CFGBlock *LastBlock = addStmt(I->getCond());
1886
1887  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1888  // and the condition variable initialization to the CFG.
1889  if (VarDecl *VD = I->getConditionVariable()) {
1890    if (Expr *Init = VD->getInit()) {
1891      autoCreateBlock();
1892      appendStmt(Block, I->getConditionVariableDeclStmt());
1893      LastBlock = addStmt(Init);
1894    }
1895  }
1896
1897  return LastBlock;
1898}
1899
1900
1901CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1902  // If we were in the middle of a block we stop processing that block.
1903  //
1904  // NOTE: If a "return" appears in the middle of a block, this means that the
1905  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1906  //       for that code; a simple "mark-and-sweep" from the entry block will be
1907  //       able to report such dead blocks.
1908
1909  // Create the new block.
1910  Block = createBlock(false);
1911
1912  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1913
1914  // If the one of the destructors does not return, we already have the Exit
1915  // block as a successor.
1916  if (!Block->hasNoReturnElement())
1917    addSuccessor(Block, &cfg->getExit());
1918
1919  // Add the return statement to the block.  This may create new blocks if R
1920  // contains control-flow (short-circuit operations).
1921  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1922}
1923
1924CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1925  // Get the block of the labeled statement.  Add it to our map.
1926  addStmt(L->getSubStmt());
1927  CFGBlock *LabelBlock = Block;
1928
1929  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1930    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1931
1932  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1933         "label already in map");
1934  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1935
1936  // Labels partition blocks, so this is the end of the basic block we were
1937  // processing (L is the block's label).  Because this is label (and we have
1938  // already processed the substatement) there is no extra control-flow to worry
1939  // about.
1940  LabelBlock->setLabel(L);
1941  if (badCFG)
1942    return 0;
1943
1944  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1945  Block = NULL;
1946
1947  // This block is now the implicit successor of other blocks.
1948  Succ = LabelBlock;
1949
1950  return LabelBlock;
1951}
1952
1953CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1954  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1955  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1956       et = E->capture_init_end(); it != et; ++it) {
1957    if (Expr *Init = *it) {
1958      CFGBlock *Tmp = Visit(Init);
1959      if (Tmp != 0)
1960        LastBlock = Tmp;
1961    }
1962  }
1963  return LastBlock;
1964}
1965
1966CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1967  // Goto is a control-flow statement.  Thus we stop processing the current
1968  // block and create a new one.
1969
1970  Block = createBlock(false);
1971  Block->setTerminator(G);
1972
1973  // If we already know the mapping to the label block add the successor now.
1974  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1975
1976  if (I == LabelMap.end())
1977    // We will need to backpatch this block later.
1978    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1979  else {
1980    JumpTarget JT = I->second;
1981    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1982    addSuccessor(Block, JT.block);
1983  }
1984
1985  return Block;
1986}
1987
1988CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1989  CFGBlock *LoopSuccessor = NULL;
1990
1991  // Save local scope position because in case of condition variable ScopePos
1992  // won't be restored when traversing AST.
1993  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1994
1995  // Create local scope for init statement and possible condition variable.
1996  // Add destructor for init statement and condition variable.
1997  // Store scope position for continue statement.
1998  if (Stmt *Init = F->getInit())
1999    addLocalScopeForStmt(Init);
2000  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2001
2002  if (VarDecl *VD = F->getConditionVariable())
2003    addLocalScopeForVarDecl(VD);
2004  LocalScope::const_iterator ContinueScopePos = ScopePos;
2005
2006  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
2007
2008  // "for" is a control-flow statement.  Thus we stop processing the current
2009  // block.
2010  if (Block) {
2011    if (badCFG)
2012      return 0;
2013    LoopSuccessor = Block;
2014  } else
2015    LoopSuccessor = Succ;
2016
2017  // Save the current value for the break targets.
2018  // All breaks should go to the code following the loop.
2019  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2020  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2021
2022  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2023
2024  // Now create the loop body.
2025  {
2026    assert(F->getBody());
2027
2028    // Save the current values for Block, Succ, continue and break targets.
2029    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2030    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2031
2032    // Create an empty block to represent the transition block for looping back
2033    // to the head of the loop.  If we have increment code, it will
2034    // go in this block as well.
2035    Block = Succ = TransitionBlock = createBlock(false);
2036    TransitionBlock->setLoopTarget(F);
2037
2038    if (Stmt *I = F->getInc()) {
2039      // Generate increment code in its own basic block.  This is the target of
2040      // continue statements.
2041      Succ = addStmt(I);
2042    }
2043
2044    // Finish up the increment (or empty) block if it hasn't been already.
2045    if (Block) {
2046      assert(Block == Succ);
2047      if (badCFG)
2048        return 0;
2049      Block = 0;
2050    }
2051
2052   // The starting block for the loop increment is the block that should
2053   // represent the 'loop target' for looping back to the start of the loop.
2054   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2055   ContinueJumpTarget.block->setLoopTarget(F);
2056
2057    // Loop body should end with destructor of Condition variable (if any).
2058    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2059
2060    // If body is not a compound statement create implicit scope
2061    // and add destructors.
2062    if (!isa<CompoundStmt>(F->getBody()))
2063      addLocalScopeAndDtors(F->getBody());
2064
2065    // Now populate the body block, and in the process create new blocks as we
2066    // walk the body of the loop.
2067    BodyBlock = addStmt(F->getBody());
2068
2069    if (!BodyBlock) {
2070      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2071      // Use the continue jump target as the proxy for the body.
2072      BodyBlock = ContinueJumpTarget.block;
2073    }
2074    else if (badCFG)
2075      return 0;
2076  }
2077
2078  // Because of short-circuit evaluation, the condition of the loop can span
2079  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2080  // evaluate the condition.
2081  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2082
2083  do {
2084    Expr *C = F->getCond();
2085
2086    // Specially handle logical operators, which have a slightly
2087    // more optimal CFG representation.
2088    if (BinaryOperator *Cond =
2089            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2090      if (Cond->isLogicalOp()) {
2091        std::tie(EntryConditionBlock, ExitConditionBlock) =
2092          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2093        break;
2094      }
2095
2096    // The default case when not handling logical operators.
2097    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2098    ExitConditionBlock->setTerminator(F);
2099
2100    // See if this is a known constant.
2101    TryResult KnownVal(true);
2102
2103    if (C) {
2104      // Now add the actual condition to the condition block.
2105      // Because the condition itself may contain control-flow, new blocks may
2106      // be created.  Thus we update "Succ" after adding the condition.
2107      Block = ExitConditionBlock;
2108      EntryConditionBlock = addStmt(C);
2109
2110      // If this block contains a condition variable, add both the condition
2111      // variable and initializer to the CFG.
2112      if (VarDecl *VD = F->getConditionVariable()) {
2113        if (Expr *Init = VD->getInit()) {
2114          autoCreateBlock();
2115          appendStmt(Block, F->getConditionVariableDeclStmt());
2116          EntryConditionBlock = addStmt(Init);
2117          assert(Block == EntryConditionBlock);
2118        }
2119      }
2120
2121      if (Block && badCFG)
2122        return 0;
2123
2124      KnownVal = tryEvaluateBool(C);
2125    }
2126
2127    // Add the loop body entry as a successor to the condition.
2128    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2129    // Link up the condition block with the code that follows the loop.  (the
2130    // false branch).
2131    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2132
2133  } while (false);
2134
2135  // Link up the loop-back block to the entry condition block.
2136  addSuccessor(TransitionBlock, EntryConditionBlock);
2137
2138  // The condition block is the implicit successor for any code above the loop.
2139  Succ = EntryConditionBlock;
2140
2141  // If the loop contains initialization, create a new block for those
2142  // statements.  This block can also contain statements that precede the loop.
2143  if (Stmt *I = F->getInit()) {
2144    Block = createBlock();
2145    return addStmt(I);
2146  }
2147
2148  // There is no loop initialization.  We are thus basically a while loop.
2149  // NULL out Block to force lazy block construction.
2150  Block = NULL;
2151  Succ = EntryConditionBlock;
2152  return EntryConditionBlock;
2153}
2154
2155CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2156  if (asc.alwaysAdd(*this, M)) {
2157    autoCreateBlock();
2158    appendStmt(Block, M);
2159  }
2160  return Visit(M->getBase());
2161}
2162
2163CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2164  // Objective-C fast enumeration 'for' statements:
2165  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2166  //
2167  //  for ( Type newVariable in collection_expression ) { statements }
2168  //
2169  //  becomes:
2170  //
2171  //   prologue:
2172  //     1. collection_expression
2173  //     T. jump to loop_entry
2174  //   loop_entry:
2175  //     1. side-effects of element expression
2176  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2177  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2178  //   TB:
2179  //     statements
2180  //     T. jump to loop_entry
2181  //   FB:
2182  //     what comes after
2183  //
2184  //  and
2185  //
2186  //  Type existingItem;
2187  //  for ( existingItem in expression ) { statements }
2188  //
2189  //  becomes:
2190  //
2191  //   the same with newVariable replaced with existingItem; the binding works
2192  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2193  //   a DeclStmt and the other returns a DeclRefExpr.
2194  //
2195
2196  CFGBlock *LoopSuccessor = 0;
2197
2198  if (Block) {
2199    if (badCFG)
2200      return 0;
2201    LoopSuccessor = Block;
2202    Block = 0;
2203  } else
2204    LoopSuccessor = Succ;
2205
2206  // Build the condition blocks.
2207  CFGBlock *ExitConditionBlock = createBlock(false);
2208
2209  // Set the terminator for the "exit" condition block.
2210  ExitConditionBlock->setTerminator(S);
2211
2212  // The last statement in the block should be the ObjCForCollectionStmt, which
2213  // performs the actual binding to 'element' and determines if there are any
2214  // more items in the collection.
2215  appendStmt(ExitConditionBlock, S);
2216  Block = ExitConditionBlock;
2217
2218  // Walk the 'element' expression to see if there are any side-effects.  We
2219  // generate new blocks as necessary.  We DON'T add the statement by default to
2220  // the CFG unless it contains control-flow.
2221  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2222                                        AddStmtChoice::NotAlwaysAdd);
2223  if (Block) {
2224    if (badCFG)
2225      return 0;
2226    Block = 0;
2227  }
2228
2229  // The condition block is the implicit successor for the loop body as well as
2230  // any code above the loop.
2231  Succ = EntryConditionBlock;
2232
2233  // Now create the true branch.
2234  {
2235    // Save the current values for Succ, continue and break targets.
2236    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2237    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2238                               save_break(BreakJumpTarget);
2239
2240    // Add an intermediate block between the BodyBlock and the
2241    // EntryConditionBlock to represent the "loop back" transition, for looping
2242    // back to the head of the loop.
2243    CFGBlock *LoopBackBlock = 0;
2244    Succ = LoopBackBlock = createBlock();
2245    LoopBackBlock->setLoopTarget(S);
2246
2247    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2248    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2249
2250    CFGBlock *BodyBlock = addStmt(S->getBody());
2251
2252    if (!BodyBlock)
2253      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2254    else if (Block) {
2255      if (badCFG)
2256        return 0;
2257    }
2258
2259    // This new body block is a successor to our "exit" condition block.
2260    addSuccessor(ExitConditionBlock, BodyBlock);
2261  }
2262
2263  // Link up the condition block with the code that follows the loop.
2264  // (the false branch).
2265  addSuccessor(ExitConditionBlock, LoopSuccessor);
2266
2267  // Now create a prologue block to contain the collection expression.
2268  Block = createBlock();
2269  return addStmt(S->getCollection());
2270}
2271
2272CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2273  // Inline the body.
2274  return addStmt(S->getSubStmt());
2275  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2276}
2277
2278CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2279  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2280
2281  // Inline the body.
2282  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2283
2284  // The sync body starts its own basic block.  This makes it a little easier
2285  // for diagnostic clients.
2286  if (SyncBlock) {
2287    if (badCFG)
2288      return 0;
2289
2290    Block = 0;
2291    Succ = SyncBlock;
2292  }
2293
2294  // Add the @synchronized to the CFG.
2295  autoCreateBlock();
2296  appendStmt(Block, S);
2297
2298  // Inline the sync expression.
2299  return addStmt(S->getSynchExpr());
2300}
2301
2302CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2303  // FIXME
2304  return NYS();
2305}
2306
2307CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2308  autoCreateBlock();
2309
2310  // Add the PseudoObject as the last thing.
2311  appendStmt(Block, E);
2312
2313  CFGBlock *lastBlock = Block;
2314
2315  // Before that, evaluate all of the semantics in order.  In
2316  // CFG-land, that means appending them in reverse order.
2317  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2318    Expr *Semantic = E->getSemanticExpr(--i);
2319
2320    // If the semantic is an opaque value, we're being asked to bind
2321    // it to its source expression.
2322    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2323      Semantic = OVE->getSourceExpr();
2324
2325    if (CFGBlock *B = Visit(Semantic))
2326      lastBlock = B;
2327  }
2328
2329  return lastBlock;
2330}
2331
2332CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2333  CFGBlock *LoopSuccessor = NULL;
2334
2335  // Save local scope position because in case of condition variable ScopePos
2336  // won't be restored when traversing AST.
2337  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2338
2339  // Create local scope for possible condition variable.
2340  // Store scope position for continue statement.
2341  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2342  if (VarDecl *VD = W->getConditionVariable()) {
2343    addLocalScopeForVarDecl(VD);
2344    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2345  }
2346
2347  // "while" is a control-flow statement.  Thus we stop processing the current
2348  // block.
2349  if (Block) {
2350    if (badCFG)
2351      return 0;
2352    LoopSuccessor = Block;
2353    Block = 0;
2354  } else {
2355    LoopSuccessor = Succ;
2356  }
2357
2358  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2359
2360  // Process the loop body.
2361  {
2362    assert(W->getBody());
2363
2364    // Save the current values for Block, Succ, continue and break targets.
2365    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2366    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2367                               save_break(BreakJumpTarget);
2368
2369    // Create an empty block to represent the transition block for looping back
2370    // to the head of the loop.
2371    Succ = TransitionBlock = createBlock(false);
2372    TransitionBlock->setLoopTarget(W);
2373    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2374
2375    // All breaks should go to the code following the loop.
2376    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2377
2378    // Loop body should end with destructor of Condition variable (if any).
2379    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2380
2381    // If body is not a compound statement create implicit scope
2382    // and add destructors.
2383    if (!isa<CompoundStmt>(W->getBody()))
2384      addLocalScopeAndDtors(W->getBody());
2385
2386    // Create the body.  The returned block is the entry to the loop body.
2387    BodyBlock = addStmt(W->getBody());
2388
2389    if (!BodyBlock)
2390      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2391    else if (Block && badCFG)
2392      return 0;
2393  }
2394
2395  // Because of short-circuit evaluation, the condition of the loop can span
2396  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2397  // evaluate the condition.
2398  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2399
2400  do {
2401    Expr *C = W->getCond();
2402
2403    // Specially handle logical operators, which have a slightly
2404    // more optimal CFG representation.
2405    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2406      if (Cond->isLogicalOp()) {
2407        std::tie(EntryConditionBlock, ExitConditionBlock) =
2408            VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
2409        break;
2410      }
2411
2412    // The default case when not handling logical operators.
2413    ExitConditionBlock = createBlock(false);
2414    ExitConditionBlock->setTerminator(W);
2415
2416    // Now add the actual condition to the condition block.
2417    // Because the condition itself may contain control-flow, new blocks may
2418    // be created.  Thus we update "Succ" after adding the condition.
2419    Block = ExitConditionBlock;
2420    Block = EntryConditionBlock = addStmt(C);
2421
2422    // If this block contains a condition variable, add both the condition
2423    // variable and initializer to the CFG.
2424    if (VarDecl *VD = W->getConditionVariable()) {
2425      if (Expr *Init = VD->getInit()) {
2426        autoCreateBlock();
2427        appendStmt(Block, W->getConditionVariableDeclStmt());
2428        EntryConditionBlock = addStmt(Init);
2429        assert(Block == EntryConditionBlock);
2430      }
2431    }
2432
2433    if (Block && badCFG)
2434      return 0;
2435
2436    // See if this is a known constant.
2437    const TryResult& KnownVal = tryEvaluateBool(C);
2438
2439    // Add the loop body entry as a successor to the condition.
2440    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2441    // Link up the condition block with the code that follows the loop.  (the
2442    // false branch).
2443    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2444
2445  } while(false);
2446
2447  // Link up the loop-back block to the entry condition block.
2448  addSuccessor(TransitionBlock, EntryConditionBlock);
2449
2450  // There can be no more statements in the condition block since we loop back
2451  // to this block.  NULL out Block to force lazy creation of another block.
2452  Block = NULL;
2453
2454  // Return the condition block, which is the dominating block for the loop.
2455  Succ = EntryConditionBlock;
2456  return EntryConditionBlock;
2457}
2458
2459
2460CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2461  // FIXME: For now we pretend that @catch and the code it contains does not
2462  //  exit.
2463  return Block;
2464}
2465
2466CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2467  // FIXME: This isn't complete.  We basically treat @throw like a return
2468  //  statement.
2469
2470  // If we were in the middle of a block we stop processing that block.
2471  if (badCFG)
2472    return 0;
2473
2474  // Create the new block.
2475  Block = createBlock(false);
2476
2477  // The Exit block is the only successor.
2478  addSuccessor(Block, &cfg->getExit());
2479
2480  // Add the statement to the block.  This may create new blocks if S contains
2481  // control-flow (short-circuit operations).
2482  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2483}
2484
2485CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2486  // If we were in the middle of a block we stop processing that block.
2487  if (badCFG)
2488    return 0;
2489
2490  // Create the new block.
2491  Block = createBlock(false);
2492
2493  if (TryTerminatedBlock)
2494    // The current try statement is the only successor.
2495    addSuccessor(Block, TryTerminatedBlock);
2496  else
2497    // otherwise the Exit block is the only successor.
2498    addSuccessor(Block, &cfg->getExit());
2499
2500  // Add the statement to the block.  This may create new blocks if S contains
2501  // control-flow (short-circuit operations).
2502  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2503}
2504
2505CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2506  CFGBlock *LoopSuccessor = NULL;
2507
2508  // "do...while" is a control-flow statement.  Thus we stop processing the
2509  // current block.
2510  if (Block) {
2511    if (badCFG)
2512      return 0;
2513    LoopSuccessor = Block;
2514  } else
2515    LoopSuccessor = Succ;
2516
2517  // Because of short-circuit evaluation, the condition of the loop can span
2518  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2519  // evaluate the condition.
2520  CFGBlock *ExitConditionBlock = createBlock(false);
2521  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2522
2523  // Set the terminator for the "exit" condition block.
2524  ExitConditionBlock->setTerminator(D);
2525
2526  // Now add the actual condition to the condition block.  Because the condition
2527  // itself may contain control-flow, new blocks may be created.
2528  if (Stmt *C = D->getCond()) {
2529    Block = ExitConditionBlock;
2530    EntryConditionBlock = addStmt(C);
2531    if (Block) {
2532      if (badCFG)
2533        return 0;
2534    }
2535  }
2536
2537  // The condition block is the implicit successor for the loop body.
2538  Succ = EntryConditionBlock;
2539
2540  // See if this is a known constant.
2541  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2542
2543  // Process the loop body.
2544  CFGBlock *BodyBlock = NULL;
2545  {
2546    assert(D->getBody());
2547
2548    // Save the current values for Block, Succ, and continue and break targets
2549    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2550    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2551        save_break(BreakJumpTarget);
2552
2553    // All continues within this loop should go to the condition block
2554    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2555
2556    // All breaks should go to the code following the loop.
2557    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2558
2559    // NULL out Block to force lazy instantiation of blocks for the body.
2560    Block = NULL;
2561
2562    // If body is not a compound statement create implicit scope
2563    // and add destructors.
2564    if (!isa<CompoundStmt>(D->getBody()))
2565      addLocalScopeAndDtors(D->getBody());
2566
2567    // Create the body.  The returned block is the entry to the loop body.
2568    BodyBlock = addStmt(D->getBody());
2569
2570    if (!BodyBlock)
2571      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2572    else if (Block) {
2573      if (badCFG)
2574        return 0;
2575    }
2576
2577    if (!KnownVal.isFalse()) {
2578      // Add an intermediate block between the BodyBlock and the
2579      // ExitConditionBlock to represent the "loop back" transition.  Create an
2580      // empty block to represent the transition block for looping back to the
2581      // head of the loop.
2582      // FIXME: Can we do this more efficiently without adding another block?
2583      Block = NULL;
2584      Succ = BodyBlock;
2585      CFGBlock *LoopBackBlock = createBlock();
2586      LoopBackBlock->setLoopTarget(D);
2587
2588      // Add the loop body entry as a successor to the condition.
2589      addSuccessor(ExitConditionBlock, LoopBackBlock);
2590    }
2591    else
2592      addSuccessor(ExitConditionBlock, NULL);
2593  }
2594
2595  // Link up the condition block with the code that follows the loop.
2596  // (the false branch).
2597  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2598
2599  // There can be no more statements in the body block(s) since we loop back to
2600  // the body.  NULL out Block to force lazy creation of another block.
2601  Block = NULL;
2602
2603  // Return the loop body, which is the dominating block for the loop.
2604  Succ = BodyBlock;
2605  return BodyBlock;
2606}
2607
2608CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2609  // "continue" is a control-flow statement.  Thus we stop processing the
2610  // current block.
2611  if (badCFG)
2612    return 0;
2613
2614  // Now create a new block that ends with the continue statement.
2615  Block = createBlock(false);
2616  Block->setTerminator(C);
2617
2618  // If there is no target for the continue, then we are looking at an
2619  // incomplete AST.  This means the CFG cannot be constructed.
2620  if (ContinueJumpTarget.block) {
2621    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2622    addSuccessor(Block, ContinueJumpTarget.block);
2623  } else
2624    badCFG = true;
2625
2626  return Block;
2627}
2628
2629CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2630                                                    AddStmtChoice asc) {
2631
2632  if (asc.alwaysAdd(*this, E)) {
2633    autoCreateBlock();
2634    appendStmt(Block, E);
2635  }
2636
2637  // VLA types have expressions that must be evaluated.
2638  CFGBlock *lastBlock = Block;
2639
2640  if (E->isArgumentType()) {
2641    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2642         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2643      lastBlock = addStmt(VA->getSizeExpr());
2644  }
2645  return lastBlock;
2646}
2647
2648/// VisitStmtExpr - Utility method to handle (nested) statement
2649///  expressions (a GCC extension).
2650CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2651  if (asc.alwaysAdd(*this, SE)) {
2652    autoCreateBlock();
2653    appendStmt(Block, SE);
2654  }
2655  return VisitCompoundStmt(SE->getSubStmt());
2656}
2657
2658CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2659  // "switch" is a control-flow statement.  Thus we stop processing the current
2660  // block.
2661  CFGBlock *SwitchSuccessor = NULL;
2662
2663  // Save local scope position because in case of condition variable ScopePos
2664  // won't be restored when traversing AST.
2665  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2666
2667  // Create local scope for possible condition variable.
2668  // Store scope position. Add implicit destructor.
2669  if (VarDecl *VD = Terminator->getConditionVariable()) {
2670    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2671    addLocalScopeForVarDecl(VD);
2672    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2673  }
2674
2675  if (Block) {
2676    if (badCFG)
2677      return 0;
2678    SwitchSuccessor = Block;
2679  } else SwitchSuccessor = Succ;
2680
2681  // Save the current "switch" context.
2682  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2683                            save_default(DefaultCaseBlock);
2684  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2685
2686  // Set the "default" case to be the block after the switch statement.  If the
2687  // switch statement contains a "default:", this value will be overwritten with
2688  // the block for that code.
2689  DefaultCaseBlock = SwitchSuccessor;
2690
2691  // Create a new block that will contain the switch statement.
2692  SwitchTerminatedBlock = createBlock(false);
2693
2694  // Now process the switch body.  The code after the switch is the implicit
2695  // successor.
2696  Succ = SwitchSuccessor;
2697  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2698
2699  // When visiting the body, the case statements should automatically get linked
2700  // up to the switch.  We also don't keep a pointer to the body, since all
2701  // control-flow from the switch goes to case/default statements.
2702  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2703  Block = NULL;
2704
2705  // For pruning unreachable case statements, save the current state
2706  // for tracking the condition value.
2707  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2708                                                     false);
2709
2710  // Determine if the switch condition can be explicitly evaluated.
2711  assert(Terminator->getCond() && "switch condition must be non-NULL");
2712  Expr::EvalResult result;
2713  bool b = tryEvaluate(Terminator->getCond(), result);
2714  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2715                                                    b ? &result : 0);
2716
2717  // If body is not a compound statement create implicit scope
2718  // and add destructors.
2719  if (!isa<CompoundStmt>(Terminator->getBody()))
2720    addLocalScopeAndDtors(Terminator->getBody());
2721
2722  addStmt(Terminator->getBody());
2723  if (Block) {
2724    if (badCFG)
2725      return 0;
2726  }
2727
2728  // If we have no "default:" case, the default transition is to the code
2729  // following the switch body.  Moreover, take into account if all the
2730  // cases of a switch are covered (e.g., switching on an enum value).
2731  //
2732  // Note: We add a successor to a switch that is considered covered yet has no
2733  //       case statements if the enumeration has no enumerators.
2734  bool SwitchAlwaysHasSuccessor = false;
2735  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2736  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2737                              Terminator->getSwitchCaseList();
2738  addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
2739               !SwitchAlwaysHasSuccessor);
2740
2741  // Add the terminator and condition in the switch block.
2742  SwitchTerminatedBlock->setTerminator(Terminator);
2743  Block = SwitchTerminatedBlock;
2744  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2745
2746  // Finally, if the SwitchStmt contains a condition variable, add both the
2747  // SwitchStmt and the condition variable initialization to the CFG.
2748  if (VarDecl *VD = Terminator->getConditionVariable()) {
2749    if (Expr *Init = VD->getInit()) {
2750      autoCreateBlock();
2751      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2752      LastBlock = addStmt(Init);
2753    }
2754  }
2755
2756  return LastBlock;
2757}
2758
2759static bool shouldAddCase(bool &switchExclusivelyCovered,
2760                          const Expr::EvalResult *switchCond,
2761                          const CaseStmt *CS,
2762                          ASTContext &Ctx) {
2763  if (!switchCond)
2764    return true;
2765
2766  bool addCase = false;
2767
2768  if (!switchExclusivelyCovered) {
2769    if (switchCond->Val.isInt()) {
2770      // Evaluate the LHS of the case value.
2771      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2772      const llvm::APSInt &condInt = switchCond->Val.getInt();
2773
2774      if (condInt == lhsInt) {
2775        addCase = true;
2776        switchExclusivelyCovered = true;
2777      }
2778      else if (condInt < lhsInt) {
2779        if (const Expr *RHS = CS->getRHS()) {
2780          // Evaluate the RHS of the case value.
2781          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2782          if (V2 <= condInt) {
2783            addCase = true;
2784            switchExclusivelyCovered = true;
2785          }
2786        }
2787      }
2788    }
2789    else
2790      addCase = true;
2791  }
2792  return addCase;
2793}
2794
2795CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2796  // CaseStmts are essentially labels, so they are the first statement in a
2797  // block.
2798  CFGBlock *TopBlock = 0, *LastBlock = 0;
2799
2800  if (Stmt *Sub = CS->getSubStmt()) {
2801    // For deeply nested chains of CaseStmts, instead of doing a recursion
2802    // (which can blow out the stack), manually unroll and create blocks
2803    // along the way.
2804    while (isa<CaseStmt>(Sub)) {
2805      CFGBlock *currentBlock = createBlock(false);
2806      currentBlock->setLabel(CS);
2807
2808      if (TopBlock)
2809        addSuccessor(LastBlock, currentBlock);
2810      else
2811        TopBlock = currentBlock;
2812
2813      addSuccessor(SwitchTerminatedBlock,
2814                   shouldAddCase(switchExclusivelyCovered, switchCond,
2815                                 CS, *Context)
2816                   ? currentBlock : 0);
2817
2818      LastBlock = currentBlock;
2819      CS = cast<CaseStmt>(Sub);
2820      Sub = CS->getSubStmt();
2821    }
2822
2823    addStmt(Sub);
2824  }
2825
2826  CFGBlock *CaseBlock = Block;
2827  if (!CaseBlock)
2828    CaseBlock = createBlock();
2829
2830  // Cases statements partition blocks, so this is the top of the basic block we
2831  // were processing (the "case XXX:" is the label).
2832  CaseBlock->setLabel(CS);
2833
2834  if (badCFG)
2835    return 0;
2836
2837  // Add this block to the list of successors for the block with the switch
2838  // statement.
2839  assert(SwitchTerminatedBlock);
2840  addSuccessor(SwitchTerminatedBlock, CaseBlock,
2841               shouldAddCase(switchExclusivelyCovered, switchCond,
2842                             CS, *Context));
2843
2844  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2845  Block = NULL;
2846
2847  if (TopBlock) {
2848    addSuccessor(LastBlock, CaseBlock);
2849    Succ = TopBlock;
2850  } else {
2851    // This block is now the implicit successor of other blocks.
2852    Succ = CaseBlock;
2853  }
2854
2855  return Succ;
2856}
2857
2858CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2859  if (Terminator->getSubStmt())
2860    addStmt(Terminator->getSubStmt());
2861
2862  DefaultCaseBlock = Block;
2863
2864  if (!DefaultCaseBlock)
2865    DefaultCaseBlock = createBlock();
2866
2867  // Default statements partition blocks, so this is the top of the basic block
2868  // we were processing (the "default:" is the label).
2869  DefaultCaseBlock->setLabel(Terminator);
2870
2871  if (badCFG)
2872    return 0;
2873
2874  // Unlike case statements, we don't add the default block to the successors
2875  // for the switch statement immediately.  This is done when we finish
2876  // processing the switch statement.  This allows for the default case
2877  // (including a fall-through to the code after the switch statement) to always
2878  // be the last successor of a switch-terminated block.
2879
2880  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2881  Block = NULL;
2882
2883  // This block is now the implicit successor of other blocks.
2884  Succ = DefaultCaseBlock;
2885
2886  return DefaultCaseBlock;
2887}
2888
2889CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2890  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2891  // current block.
2892  CFGBlock *TrySuccessor = NULL;
2893
2894  if (Block) {
2895    if (badCFG)
2896      return 0;
2897    TrySuccessor = Block;
2898  } else TrySuccessor = Succ;
2899
2900  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2901
2902  // Create a new block that will contain the try statement.
2903  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2904  // Add the terminator in the try block.
2905  NewTryTerminatedBlock->setTerminator(Terminator);
2906
2907  bool HasCatchAll = false;
2908  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2909    // The code after the try is the implicit successor.
2910    Succ = TrySuccessor;
2911    CXXCatchStmt *CS = Terminator->getHandler(h);
2912    if (CS->getExceptionDecl() == 0) {
2913      HasCatchAll = true;
2914    }
2915    Block = NULL;
2916    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2917    if (CatchBlock == 0)
2918      return 0;
2919    // Add this block to the list of successors for the block with the try
2920    // statement.
2921    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2922  }
2923  if (!HasCatchAll) {
2924    if (PrevTryTerminatedBlock)
2925      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2926    else
2927      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2928  }
2929
2930  // The code after the try is the implicit successor.
2931  Succ = TrySuccessor;
2932
2933  // Save the current "try" context.
2934  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2935  cfg->addTryDispatchBlock(TryTerminatedBlock);
2936
2937  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2938  Block = NULL;
2939  return addStmt(Terminator->getTryBlock());
2940}
2941
2942CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2943  // CXXCatchStmt are treated like labels, so they are the first statement in a
2944  // block.
2945
2946  // Save local scope position because in case of exception variable ScopePos
2947  // won't be restored when traversing AST.
2948  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2949
2950  // Create local scope for possible exception variable.
2951  // Store scope position. Add implicit destructor.
2952  if (VarDecl *VD = CS->getExceptionDecl()) {
2953    LocalScope::const_iterator BeginScopePos = ScopePos;
2954    addLocalScopeForVarDecl(VD);
2955    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2956  }
2957
2958  if (CS->getHandlerBlock())
2959    addStmt(CS->getHandlerBlock());
2960
2961  CFGBlock *CatchBlock = Block;
2962  if (!CatchBlock)
2963    CatchBlock = createBlock();
2964
2965  // CXXCatchStmt is more than just a label.  They have semantic meaning
2966  // as well, as they implicitly "initialize" the catch variable.  Add
2967  // it to the CFG as a CFGElement so that the control-flow of these
2968  // semantics gets captured.
2969  appendStmt(CatchBlock, CS);
2970
2971  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2972  // labels.
2973  CatchBlock->setLabel(CS);
2974
2975  // Bail out if the CFG is bad.
2976  if (badCFG)
2977    return 0;
2978
2979  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2980  Block = NULL;
2981
2982  return CatchBlock;
2983}
2984
2985CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2986  // C++0x for-range statements are specified as [stmt.ranged]:
2987  //
2988  // {
2989  //   auto && __range = range-init;
2990  //   for ( auto __begin = begin-expr,
2991  //         __end = end-expr;
2992  //         __begin != __end;
2993  //         ++__begin ) {
2994  //     for-range-declaration = *__begin;
2995  //     statement
2996  //   }
2997  // }
2998
2999  // Save local scope position before the addition of the implicit variables.
3000  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3001
3002  // Create local scopes and destructors for range, begin and end variables.
3003  if (Stmt *Range = S->getRangeStmt())
3004    addLocalScopeForStmt(Range);
3005  if (Stmt *BeginEnd = S->getBeginEndStmt())
3006    addLocalScopeForStmt(BeginEnd);
3007  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
3008
3009  LocalScope::const_iterator ContinueScopePos = ScopePos;
3010
3011  // "for" is a control-flow statement.  Thus we stop processing the current
3012  // block.
3013  CFGBlock *LoopSuccessor = NULL;
3014  if (Block) {
3015    if (badCFG)
3016      return 0;
3017    LoopSuccessor = Block;
3018  } else
3019    LoopSuccessor = Succ;
3020
3021  // Save the current value for the break targets.
3022  // All breaks should go to the code following the loop.
3023  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3024  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3025
3026  // The block for the __begin != __end expression.
3027  CFGBlock *ConditionBlock = createBlock(false);
3028  ConditionBlock->setTerminator(S);
3029
3030  // Now add the actual condition to the condition block.
3031  if (Expr *C = S->getCond()) {
3032    Block = ConditionBlock;
3033    CFGBlock *BeginConditionBlock = addStmt(C);
3034    if (badCFG)
3035      return 0;
3036    assert(BeginConditionBlock == ConditionBlock &&
3037           "condition block in for-range was unexpectedly complex");
3038    (void)BeginConditionBlock;
3039  }
3040
3041  // The condition block is the implicit successor for the loop body as well as
3042  // any code above the loop.
3043  Succ = ConditionBlock;
3044
3045  // See if this is a known constant.
3046  TryResult KnownVal(true);
3047
3048  if (S->getCond())
3049    KnownVal = tryEvaluateBool(S->getCond());
3050
3051  // Now create the loop body.
3052  {
3053    assert(S->getBody());
3054
3055    // Save the current values for Block, Succ, and continue targets.
3056    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3057    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3058
3059    // Generate increment code in its own basic block.  This is the target of
3060    // continue statements.
3061    Block = 0;
3062    Succ = addStmt(S->getInc());
3063    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3064
3065    // The starting block for the loop increment is the block that should
3066    // represent the 'loop target' for looping back to the start of the loop.
3067    ContinueJumpTarget.block->setLoopTarget(S);
3068
3069    // Finish up the increment block and prepare to start the loop body.
3070    assert(Block);
3071    if (badCFG)
3072      return 0;
3073    Block = 0;
3074
3075
3076    // Add implicit scope and dtors for loop variable.
3077    addLocalScopeAndDtors(S->getLoopVarStmt());
3078
3079    // Populate a new block to contain the loop body and loop variable.
3080    addStmt(S->getBody());
3081    if (badCFG)
3082      return 0;
3083    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3084    if (badCFG)
3085      return 0;
3086
3087    // This new body block is a successor to our condition block.
3088    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3089  }
3090
3091  // Link up the condition block with the code that follows the loop (the
3092  // false branch).
3093  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3094
3095  // Add the initialization statements.
3096  Block = createBlock();
3097  addStmt(S->getBeginEndStmt());
3098  return addStmt(S->getRangeStmt());
3099}
3100
3101CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3102    AddStmtChoice asc) {
3103  if (BuildOpts.AddTemporaryDtors) {
3104    // If adding implicit destructors visit the full expression for adding
3105    // destructors of temporaries.
3106    VisitForTemporaryDtors(E->getSubExpr());
3107
3108    // Full expression has to be added as CFGStmt so it will be sequenced
3109    // before destructors of it's temporaries.
3110    asc = asc.withAlwaysAdd(true);
3111  }
3112  return Visit(E->getSubExpr(), asc);
3113}
3114
3115CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3116                                                AddStmtChoice asc) {
3117  if (asc.alwaysAdd(*this, E)) {
3118    autoCreateBlock();
3119    appendStmt(Block, E);
3120
3121    // We do not want to propagate the AlwaysAdd property.
3122    asc = asc.withAlwaysAdd(false);
3123  }
3124  return Visit(E->getSubExpr(), asc);
3125}
3126
3127CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3128                                            AddStmtChoice asc) {
3129  autoCreateBlock();
3130  appendStmt(Block, C);
3131
3132  return VisitChildren(C);
3133}
3134
3135CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
3136                                      AddStmtChoice asc) {
3137
3138  autoCreateBlock();
3139  appendStmt(Block, NE);
3140
3141  if (NE->getInitializer())
3142    Block = Visit(NE->getInitializer());
3143  if (BuildOpts.AddCXXNewAllocator)
3144    appendNewAllocator(Block, NE);
3145  if (NE->isArray())
3146    Block = Visit(NE->getArraySize());
3147  for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
3148       E = NE->placement_arg_end(); I != E; ++I)
3149    Block = Visit(*I);
3150  return Block;
3151}
3152
3153CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
3154                                         AddStmtChoice asc) {
3155  autoCreateBlock();
3156  appendStmt(Block, DE);
3157  QualType DTy = DE->getDestroyedType();
3158  DTy = DTy.getNonReferenceType();
3159  CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
3160  if (RD) {
3161    if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
3162      appendDeleteDtor(Block, RD, DE);
3163  }
3164
3165  return VisitChildren(DE);
3166}
3167
3168CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3169                                                 AddStmtChoice asc) {
3170  if (asc.alwaysAdd(*this, E)) {
3171    autoCreateBlock();
3172    appendStmt(Block, E);
3173    // We do not want to propagate the AlwaysAdd property.
3174    asc = asc.withAlwaysAdd(false);
3175  }
3176  return Visit(E->getSubExpr(), asc);
3177}
3178
3179CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3180                                                  AddStmtChoice asc) {
3181  autoCreateBlock();
3182  appendStmt(Block, C);
3183  return VisitChildren(C);
3184}
3185
3186CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3187                                            AddStmtChoice asc) {
3188  if (asc.alwaysAdd(*this, E)) {
3189    autoCreateBlock();
3190    appendStmt(Block, E);
3191  }
3192  return Visit(E->getSubExpr(), AddStmtChoice());
3193}
3194
3195CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3196  // Lazily create the indirect-goto dispatch block if there isn't one already.
3197  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3198
3199  if (!IBlock) {
3200    IBlock = createBlock(false);
3201    cfg->setIndirectGotoBlock(IBlock);
3202  }
3203
3204  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3205  // current block and create a new one.
3206  if (badCFG)
3207    return 0;
3208
3209  Block = createBlock(false);
3210  Block->setTerminator(I);
3211  addSuccessor(Block, IBlock);
3212  return addStmt(I->getTarget());
3213}
3214
3215CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3216  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3217
3218tryAgain:
3219  if (!E) {
3220    badCFG = true;
3221    return NULL;
3222  }
3223  switch (E->getStmtClass()) {
3224    default:
3225      return VisitChildrenForTemporaryDtors(E);
3226
3227    case Stmt::BinaryOperatorClass:
3228      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3229
3230    case Stmt::CXXBindTemporaryExprClass:
3231      return VisitCXXBindTemporaryExprForTemporaryDtors(
3232          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3233
3234    case Stmt::BinaryConditionalOperatorClass:
3235    case Stmt::ConditionalOperatorClass:
3236      return VisitConditionalOperatorForTemporaryDtors(
3237          cast<AbstractConditionalOperator>(E), BindToTemporary);
3238
3239    case Stmt::ImplicitCastExprClass:
3240      // For implicit cast we want BindToTemporary to be passed further.
3241      E = cast<CastExpr>(E)->getSubExpr();
3242      goto tryAgain;
3243
3244    case Stmt::ParenExprClass:
3245      E = cast<ParenExpr>(E)->getSubExpr();
3246      goto tryAgain;
3247
3248    case Stmt::MaterializeTemporaryExprClass:
3249      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3250      goto tryAgain;
3251  }
3252}
3253
3254CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3255  // When visiting children for destructors we want to visit them in reverse
3256  // order that they will appear in the CFG.  Because the CFG is built
3257  // bottom-up, this means we visit them in their natural order, which
3258  // reverses them in the CFG.
3259  CFGBlock *B = Block;
3260  for (Stmt::child_range I = E->children(); I; ++I) {
3261    if (Stmt *Child = *I)
3262      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3263        B = R;
3264  }
3265  return B;
3266}
3267
3268CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3269  if (E->isLogicalOp()) {
3270    // Destructors for temporaries in LHS expression should be called after
3271    // those for RHS expression. Even if this will unnecessarily create a block,
3272    // this block will be used at least by the full expression.
3273    autoCreateBlock();
3274    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3275    if (badCFG)
3276      return NULL;
3277
3278    Succ = ConfluenceBlock;
3279    Block = NULL;
3280    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3281
3282    if (RHSBlock) {
3283      if (badCFG)
3284        return NULL;
3285
3286      // If RHS expression did produce destructors we need to connect created
3287      // blocks to CFG in same manner as for binary operator itself.
3288      CFGBlock *LHSBlock = createBlock(false);
3289      LHSBlock->setTerminator(CFGTerminator(E, true));
3290
3291      // For binary operator LHS block is before RHS in list of predecessors
3292      // of ConfluenceBlock.
3293      std::reverse(ConfluenceBlock->pred_begin(),
3294          ConfluenceBlock->pred_end());
3295
3296      // See if this is a known constant.
3297      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3298      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3299        KnownVal.negate();
3300
3301      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3302      // itself.
3303      if (E->getOpcode() == BO_LOr) {
3304        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3305        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3306      } else {
3307        assert (E->getOpcode() == BO_LAnd);
3308        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3309        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3310      }
3311
3312      Block = LHSBlock;
3313      return LHSBlock;
3314    }
3315
3316    Block = ConfluenceBlock;
3317    return ConfluenceBlock;
3318  }
3319
3320  if (E->isAssignmentOp()) {
3321    // For assignment operator (=) LHS expression is visited
3322    // before RHS expression. For destructors visit them in reverse order.
3323    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3324    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3325    return LHSBlock ? LHSBlock : RHSBlock;
3326  }
3327
3328  // For any other binary operator RHS expression is visited before
3329  // LHS expression (order of children). For destructors visit them in reverse
3330  // order.
3331  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3332  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3333  return RHSBlock ? RHSBlock : LHSBlock;
3334}
3335
3336CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3337    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3338  // First add destructors for temporaries in subexpression.
3339  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3340  if (!BindToTemporary) {
3341    // If lifetime of temporary is not prolonged (by assigning to constant
3342    // reference) add destructor for it.
3343
3344    // If the destructor is marked as a no-return destructor, we need to create
3345    // a new block for the destructor which does not have as a successor
3346    // anything built thus far. Control won't flow out of this block.
3347    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3348    if (Dtor->isNoReturn()) {
3349      Succ = B;
3350      Block = createNoReturnBlock();
3351    } else {
3352      autoCreateBlock();
3353    }
3354
3355    appendTemporaryDtor(Block, E);
3356    B = Block;
3357  }
3358  return B;
3359}
3360
3361CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3362    AbstractConditionalOperator *E, bool BindToTemporary) {
3363  // First add destructors for condition expression.  Even if this will
3364  // unnecessarily create a block, this block will be used at least by the full
3365  // expression.
3366  autoCreateBlock();
3367  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3368  if (badCFG)
3369    return NULL;
3370  if (BinaryConditionalOperator *BCO
3371        = dyn_cast<BinaryConditionalOperator>(E)) {
3372    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3373    if (badCFG)
3374      return NULL;
3375  }
3376
3377  // Try to add block with destructors for LHS expression.
3378  CFGBlock *LHSBlock = NULL;
3379  Succ = ConfluenceBlock;
3380  Block = NULL;
3381  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3382  if (badCFG)
3383    return NULL;
3384
3385  // Try to add block with destructors for RHS expression;
3386  Succ = ConfluenceBlock;
3387  Block = NULL;
3388  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3389                                              BindToTemporary);
3390  if (badCFG)
3391    return NULL;
3392
3393  if (!RHSBlock && !LHSBlock) {
3394    // If neither LHS nor RHS expression had temporaries to destroy don't create
3395    // more blocks.
3396    Block = ConfluenceBlock;
3397    return Block;
3398  }
3399
3400  Block = createBlock(false);
3401  Block->setTerminator(CFGTerminator(E, true));
3402  assert(Block->getTerminator().isTemporaryDtorsBranch());
3403
3404  // See if this is a known constant.
3405  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3406
3407  if (LHSBlock) {
3408    addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
3409  } else if (KnownVal.isFalse()) {
3410    addSuccessor(Block, NULL);
3411  } else {
3412    addSuccessor(Block, ConfluenceBlock);
3413    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3414  }
3415
3416  if (!RHSBlock)
3417    RHSBlock = ConfluenceBlock;
3418
3419  addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
3420
3421  return Block;
3422}
3423
3424} // end anonymous namespace
3425
3426/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3427///  no successors or predecessors.  If this is the first block created in the
3428///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3429CFGBlock *CFG::createBlock() {
3430  bool first_block = begin() == end();
3431
3432  // Create the block.
3433  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3434  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3435  Blocks.push_back(Mem, BlkBVC);
3436
3437  // If this is the first block, set it as the Entry and Exit.
3438  if (first_block)
3439    Entry = Exit = &back();
3440
3441  // Return the block.
3442  return &back();
3443}
3444
3445/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3446///  CFG is returned to the caller.
3447CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3448    const BuildOptions &BO) {
3449  CFGBuilder Builder(C, BO);
3450  return Builder.buildCFG(D, Statement);
3451}
3452
3453const CXXDestructorDecl *
3454CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3455  switch (getKind()) {
3456    case CFGElement::Statement:
3457    case CFGElement::Initializer:
3458    case CFGElement::NewAllocator:
3459      llvm_unreachable("getDestructorDecl should only be used with "
3460                       "ImplicitDtors");
3461    case CFGElement::AutomaticObjectDtor: {
3462      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3463      QualType ty = var->getType();
3464      ty = ty.getNonReferenceType();
3465      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3466        ty = arrayType->getElementType();
3467      }
3468      const RecordType *recordType = ty->getAs<RecordType>();
3469      const CXXRecordDecl *classDecl =
3470      cast<CXXRecordDecl>(recordType->getDecl());
3471      return classDecl->getDestructor();
3472    }
3473    case CFGElement::DeleteDtor: {
3474      const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
3475      QualType DTy = DE->getDestroyedType();
3476      DTy = DTy.getNonReferenceType();
3477      const CXXRecordDecl *classDecl =
3478          astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
3479      return classDecl->getDestructor();
3480    }
3481    case CFGElement::TemporaryDtor: {
3482      const CXXBindTemporaryExpr *bindExpr =
3483        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3484      const CXXTemporary *temp = bindExpr->getTemporary();
3485      return temp->getDestructor();
3486    }
3487    case CFGElement::BaseDtor:
3488    case CFGElement::MemberDtor:
3489
3490      // Not yet supported.
3491      return 0;
3492  }
3493  llvm_unreachable("getKind() returned bogus value");
3494}
3495
3496bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3497  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3498    return DD->isNoReturn();
3499  return false;
3500}
3501
3502//===----------------------------------------------------------------------===//
3503// CFGBlock operations.
3504//===----------------------------------------------------------------------===//
3505
3506CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
3507  : ReachableBlock(IsReachable ? B : 0),
3508    UnreachableBlock(!IsReachable ? B : 0,
3509                     B && IsReachable ? AB_Normal : AB_Unreachable) {}
3510
3511CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
3512  : ReachableBlock(B),
3513    UnreachableBlock(B == AlternateBlock ? 0 : AlternateBlock,
3514                     B == AlternateBlock ? AB_Alternate : AB_Normal) {}
3515
3516void CFGBlock::addSuccessor(AdjacentBlock Succ,
3517                            BumpVectorContext &C) {
3518  if (CFGBlock *B = Succ.getReachableBlock())
3519    B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
3520
3521  if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
3522    UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
3523
3524  Succs.push_back(Succ, C);
3525}
3526
3527bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3528        const CFGBlock *From, const CFGBlock *To) {
3529
3530  if (F.IgnoreNullPredecessors && !From)
3531    return true;
3532
3533  if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
3534    // If the 'To' has no label or is labeled but the label isn't a
3535    // CaseStmt then filter this edge.
3536    if (const SwitchStmt *S =
3537        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3538      if (S->isAllEnumCasesCovered()) {
3539        const Stmt *L = To->getLabel();
3540        if (!L || !isa<CaseStmt>(L))
3541          return true;
3542      }
3543    }
3544  }
3545
3546  return false;
3547}
3548
3549//===----------------------------------------------------------------------===//
3550// CFG pretty printing
3551//===----------------------------------------------------------------------===//
3552
3553namespace {
3554
3555class StmtPrinterHelper : public PrinterHelper  {
3556  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3557  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3558  StmtMapTy StmtMap;
3559  DeclMapTy DeclMap;
3560  signed currentBlock;
3561  unsigned currStmt;
3562  const LangOptions &LangOpts;
3563public:
3564
3565  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3566    : currentBlock(0), currStmt(0), LangOpts(LO)
3567  {
3568    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3569      unsigned j = 1;
3570      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3571           BI != BEnd; ++BI, ++j ) {
3572        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3573          const Stmt *stmt= SE->getStmt();
3574          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3575          StmtMap[stmt] = P;
3576
3577          switch (stmt->getStmtClass()) {
3578            case Stmt::DeclStmtClass:
3579                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3580                break;
3581            case Stmt::IfStmtClass: {
3582              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3583              if (var)
3584                DeclMap[var] = P;
3585              break;
3586            }
3587            case Stmt::ForStmtClass: {
3588              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3589              if (var)
3590                DeclMap[var] = P;
3591              break;
3592            }
3593            case Stmt::WhileStmtClass: {
3594              const VarDecl *var =
3595                cast<WhileStmt>(stmt)->getConditionVariable();
3596              if (var)
3597                DeclMap[var] = P;
3598              break;
3599            }
3600            case Stmt::SwitchStmtClass: {
3601              const VarDecl *var =
3602                cast<SwitchStmt>(stmt)->getConditionVariable();
3603              if (var)
3604                DeclMap[var] = P;
3605              break;
3606            }
3607            case Stmt::CXXCatchStmtClass: {
3608              const VarDecl *var =
3609                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3610              if (var)
3611                DeclMap[var] = P;
3612              break;
3613            }
3614            default:
3615              break;
3616          }
3617        }
3618      }
3619    }
3620  }
3621
3622
3623  virtual ~StmtPrinterHelper() {}
3624
3625  const LangOptions &getLangOpts() const { return LangOpts; }
3626  void setBlockID(signed i) { currentBlock = i; }
3627  void setStmtID(unsigned i) { currStmt = i; }
3628
3629  bool handledStmt(Stmt *S, raw_ostream &OS) override {
3630    StmtMapTy::iterator I = StmtMap.find(S);
3631
3632    if (I == StmtMap.end())
3633      return false;
3634
3635    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3636                          && I->second.second == currStmt) {
3637      return false;
3638    }
3639
3640    OS << "[B" << I->second.first << "." << I->second.second << "]";
3641    return true;
3642  }
3643
3644  bool handleDecl(const Decl *D, raw_ostream &OS) {
3645    DeclMapTy::iterator I = DeclMap.find(D);
3646
3647    if (I == DeclMap.end())
3648      return false;
3649
3650    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3651                          && I->second.second == currStmt) {
3652      return false;
3653    }
3654
3655    OS << "[B" << I->second.first << "." << I->second.second << "]";
3656    return true;
3657  }
3658};
3659} // end anonymous namespace
3660
3661
3662namespace {
3663class CFGBlockTerminatorPrint
3664  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3665
3666  raw_ostream &OS;
3667  StmtPrinterHelper* Helper;
3668  PrintingPolicy Policy;
3669public:
3670  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3671                          const PrintingPolicy &Policy)
3672    : OS(os), Helper(helper), Policy(Policy) {
3673    this->Policy.IncludeNewlines = false;
3674  }
3675
3676  void VisitIfStmt(IfStmt *I) {
3677    OS << "if ";
3678    I->getCond()->printPretty(OS,Helper,Policy);
3679  }
3680
3681  // Default case.
3682  void VisitStmt(Stmt *Terminator) {
3683    Terminator->printPretty(OS, Helper, Policy);
3684  }
3685
3686  void VisitDeclStmt(DeclStmt *DS) {
3687    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3688    OS << "static init " << VD->getName();
3689  }
3690
3691  void VisitForStmt(ForStmt *F) {
3692    OS << "for (" ;
3693    if (F->getInit())
3694      OS << "...";
3695    OS << "; ";
3696    if (Stmt *C = F->getCond())
3697      C->printPretty(OS, Helper, Policy);
3698    OS << "; ";
3699    if (F->getInc())
3700      OS << "...";
3701    OS << ")";
3702  }
3703
3704  void VisitWhileStmt(WhileStmt *W) {
3705    OS << "while " ;
3706    if (Stmt *C = W->getCond())
3707      C->printPretty(OS, Helper, Policy);
3708  }
3709
3710  void VisitDoStmt(DoStmt *D) {
3711    OS << "do ... while ";
3712    if (Stmt *C = D->getCond())
3713      C->printPretty(OS, Helper, Policy);
3714  }
3715
3716  void VisitSwitchStmt(SwitchStmt *Terminator) {
3717    OS << "switch ";
3718    Terminator->getCond()->printPretty(OS, Helper, Policy);
3719  }
3720
3721  void VisitCXXTryStmt(CXXTryStmt *CS) {
3722    OS << "try ...";
3723  }
3724
3725  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3726    C->getCond()->printPretty(OS, Helper, Policy);
3727    OS << " ? ... : ...";
3728  }
3729
3730  void VisitChooseExpr(ChooseExpr *C) {
3731    OS << "__builtin_choose_expr( ";
3732    C->getCond()->printPretty(OS, Helper, Policy);
3733    OS << " )";
3734  }
3735
3736  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3737    OS << "goto *";
3738    I->getTarget()->printPretty(OS, Helper, Policy);
3739  }
3740
3741  void VisitBinaryOperator(BinaryOperator* B) {
3742    if (!B->isLogicalOp()) {
3743      VisitExpr(B);
3744      return;
3745    }
3746
3747    B->getLHS()->printPretty(OS, Helper, Policy);
3748
3749    switch (B->getOpcode()) {
3750      case BO_LOr:
3751        OS << " || ...";
3752        return;
3753      case BO_LAnd:
3754        OS << " && ...";
3755        return;
3756      default:
3757        llvm_unreachable("Invalid logical operator.");
3758    }
3759  }
3760
3761  void VisitExpr(Expr *E) {
3762    E->printPretty(OS, Helper, Policy);
3763  }
3764
3765public:
3766  void print(CFGTerminator T) {
3767    if (T.isTemporaryDtorsBranch())
3768      OS << "(Temp Dtor) ";
3769    Visit(T.getStmt());
3770  }
3771};
3772} // end anonymous namespace
3773
3774static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
3775                       const CFGElement &E) {
3776  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3777    const Stmt *S = CS->getStmt();
3778
3779    // special printing for statement-expressions.
3780    if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3781      const CompoundStmt *Sub = SE->getSubStmt();
3782
3783      if (Sub->children()) {
3784        OS << "({ ... ; ";
3785        Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3786        OS << " })\n";
3787        return;
3788      }
3789    }
3790    // special printing for comma expressions.
3791    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3792      if (B->getOpcode() == BO_Comma) {
3793        OS << "... , ";
3794        Helper.handledStmt(B->getRHS(),OS);
3795        OS << '\n';
3796        return;
3797      }
3798    }
3799    S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
3800
3801    if (isa<CXXOperatorCallExpr>(S)) {
3802      OS << " (OperatorCall)";
3803    }
3804    else if (isa<CXXBindTemporaryExpr>(S)) {
3805      OS << " (BindTemporary)";
3806    }
3807    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3808      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3809    }
3810    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3811      OS << " (" << CE->getStmtClassName() << ", "
3812         << CE->getCastKindName()
3813         << ", " << CE->getType().getAsString()
3814         << ")";
3815    }
3816
3817    // Expressions need a newline.
3818    if (isa<Expr>(S))
3819      OS << '\n';
3820
3821  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3822    const CXXCtorInitializer *I = IE->getInitializer();
3823    if (I->isBaseInitializer())
3824      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3825    else if (I->isDelegatingInitializer())
3826      OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
3827    else OS << I->getAnyMember()->getName();
3828
3829    OS << "(";
3830    if (Expr *IE = I->getInit())
3831      IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
3832    OS << ")";
3833
3834    if (I->isBaseInitializer())
3835      OS << " (Base initializer)\n";
3836    else if (I->isDelegatingInitializer())
3837      OS << " (Delegating initializer)\n";
3838    else OS << " (Member initializer)\n";
3839
3840  } else if (Optional<CFGAutomaticObjDtor> DE =
3841                 E.getAs<CFGAutomaticObjDtor>()) {
3842    const VarDecl *VD = DE->getVarDecl();
3843    Helper.handleDecl(VD, OS);
3844
3845    const Type* T = VD->getType().getTypePtr();
3846    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3847      T = RT->getPointeeType().getTypePtr();
3848    T = T->getBaseElementTypeUnsafe();
3849
3850    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3851    OS << " (Implicit destructor)\n";
3852
3853  } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
3854    OS << "CFGNewAllocator(";
3855    if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
3856      AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
3857    OS << ")\n";
3858  } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
3859    const CXXRecordDecl *RD = DE->getCXXRecordDecl();
3860    if (!RD)
3861      return;
3862    CXXDeleteExpr *DelExpr =
3863        const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
3864    Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
3865    OS << "->~" << RD->getName().str() << "()";
3866    OS << " (Implicit destructor)\n";
3867  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3868    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3869    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3870    OS << " (Base object destructor)\n";
3871
3872  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3873    const FieldDecl *FD = ME->getFieldDecl();
3874    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3875    OS << "this->" << FD->getName();
3876    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3877    OS << " (Member object destructor)\n";
3878
3879  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3880    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3881    OS << "~";
3882    BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
3883    OS << "() (Temporary object destructor)\n";
3884  }
3885}
3886
3887static void print_block(raw_ostream &OS, const CFG* cfg,
3888                        const CFGBlock &B,
3889                        StmtPrinterHelper &Helper, bool print_edges,
3890                        bool ShowColors) {
3891
3892  Helper.setBlockID(B.getBlockID());
3893
3894  // Print the header.
3895  if (ShowColors)
3896    OS.changeColor(raw_ostream::YELLOW, true);
3897
3898  OS << "\n [B" << B.getBlockID();
3899
3900  if (&B == &cfg->getEntry())
3901    OS << " (ENTRY)]\n";
3902  else if (&B == &cfg->getExit())
3903    OS << " (EXIT)]\n";
3904  else if (&B == cfg->getIndirectGotoBlock())
3905    OS << " (INDIRECT GOTO DISPATCH)]\n";
3906  else if (B.hasNoReturnElement())
3907    OS << " (NORETURN)]\n";
3908  else
3909    OS << "]\n";
3910
3911  if (ShowColors)
3912    OS.resetColor();
3913
3914  // Print the label of this block.
3915  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3916
3917    if (print_edges)
3918      OS << "  ";
3919
3920    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3921      OS << L->getName();
3922    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3923      OS << "case ";
3924      C->getLHS()->printPretty(OS, &Helper,
3925                               PrintingPolicy(Helper.getLangOpts()));
3926      if (C->getRHS()) {
3927        OS << " ... ";
3928        C->getRHS()->printPretty(OS, &Helper,
3929                                 PrintingPolicy(Helper.getLangOpts()));
3930      }
3931    } else if (isa<DefaultStmt>(Label))
3932      OS << "default";
3933    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3934      OS << "catch (";
3935      if (CS->getExceptionDecl())
3936        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
3937                                      0);
3938      else
3939        OS << "...";
3940      OS << ")";
3941
3942    } else
3943      llvm_unreachable("Invalid label statement in CFGBlock.");
3944
3945    OS << ":\n";
3946  }
3947
3948  // Iterate through the statements in the block and print them.
3949  unsigned j = 1;
3950
3951  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3952       I != E ; ++I, ++j ) {
3953
3954    // Print the statement # in the basic block and the statement itself.
3955    if (print_edges)
3956      OS << " ";
3957
3958    OS << llvm::format("%3d", j) << ": ";
3959
3960    Helper.setStmtID(j);
3961
3962    print_elem(OS, Helper, *I);
3963  }
3964
3965  // Print the terminator of this block.
3966  if (B.getTerminator()) {
3967    if (ShowColors)
3968      OS.changeColor(raw_ostream::GREEN);
3969
3970    OS << "   T: ";
3971
3972    Helper.setBlockID(-1);
3973
3974    PrintingPolicy PP(Helper.getLangOpts());
3975    CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
3976    TPrinter.print(B.getTerminator());
3977    OS << '\n';
3978
3979    if (ShowColors)
3980      OS.resetColor();
3981  }
3982
3983  if (print_edges) {
3984    // Print the predecessors of this block.
3985    if (!B.pred_empty()) {
3986      const raw_ostream::Colors Color = raw_ostream::BLUE;
3987      if (ShowColors)
3988        OS.changeColor(Color);
3989      OS << "   Preds " ;
3990      if (ShowColors)
3991        OS.resetColor();
3992      OS << '(' << B.pred_size() << "):";
3993      unsigned i = 0;
3994
3995      if (ShowColors)
3996        OS.changeColor(Color);
3997
3998      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3999           I != E; ++I, ++i) {
4000
4001        if (i % 10 == 8)
4002          OS << "\n     ";
4003
4004        CFGBlock *B = *I;
4005        bool Reachable = true;
4006        if (!B) {
4007          Reachable = false;
4008          B = I->getPossiblyUnreachableBlock();
4009        }
4010
4011        OS << " B" << B->getBlockID();
4012        if (!Reachable)
4013          OS << "(Unreachable)";
4014      }
4015
4016      if (ShowColors)
4017        OS.resetColor();
4018
4019      OS << '\n';
4020    }
4021
4022    // Print the successors of this block.
4023    if (!B.succ_empty()) {
4024      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
4025      if (ShowColors)
4026        OS.changeColor(Color);
4027      OS << "   Succs ";
4028      if (ShowColors)
4029        OS.resetColor();
4030      OS << '(' << B.succ_size() << "):";
4031      unsigned i = 0;
4032
4033      if (ShowColors)
4034        OS.changeColor(Color);
4035
4036      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
4037           I != E; ++I, ++i) {
4038
4039        if (i % 10 == 8)
4040          OS << "\n    ";
4041
4042        CFGBlock *B = *I;
4043
4044        bool Reachable = true;
4045        if (!B) {
4046          Reachable = false;
4047          B = I->getPossiblyUnreachableBlock();
4048        }
4049
4050        if (B) {
4051          OS << " B" << B->getBlockID();
4052          if (!Reachable)
4053            OS << "(Unreachable)";
4054        }
4055        else {
4056          OS << " NULL";
4057        }
4058      }
4059
4060      if (ShowColors)
4061        OS.resetColor();
4062      OS << '\n';
4063    }
4064  }
4065}
4066
4067
4068/// dump - A simple pretty printer of a CFG that outputs to stderr.
4069void CFG::dump(const LangOptions &LO, bool ShowColors) const {
4070  print(llvm::errs(), LO, ShowColors);
4071}
4072
4073/// print - A simple pretty printer of a CFG that outputs to an ostream.
4074void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
4075  StmtPrinterHelper Helper(this, LO);
4076
4077  // Print the entry block.
4078  print_block(OS, this, getEntry(), Helper, true, ShowColors);
4079
4080  // Iterate through the CFGBlocks and print them one by one.
4081  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
4082    // Skip the entry block, because we already printed it.
4083    if (&(**I) == &getEntry() || &(**I) == &getExit())
4084      continue;
4085
4086    print_block(OS, this, **I, Helper, true, ShowColors);
4087  }
4088
4089  // Print the exit block.
4090  print_block(OS, this, getExit(), Helper, true, ShowColors);
4091  OS << '\n';
4092  OS.flush();
4093}
4094
4095/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
4096void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4097                    bool ShowColors) const {
4098  print(llvm::errs(), cfg, LO, ShowColors);
4099}
4100
4101/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4102///   Generally this will only be called from CFG::print.
4103void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4104                     const LangOptions &LO, bool ShowColors) const {
4105  StmtPrinterHelper Helper(cfg, LO);
4106  print_block(OS, cfg, *this, Helper, true, ShowColors);
4107  OS << '\n';
4108}
4109
4110/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
4111void CFGBlock::printTerminator(raw_ostream &OS,
4112                               const LangOptions &LO) const {
4113  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
4114  TPrinter.print(getTerminator());
4115}
4116
4117Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
4118  Stmt *Terminator = this->Terminator;
4119  if (!Terminator)
4120    return NULL;
4121
4122  Expr *E = NULL;
4123
4124  switch (Terminator->getStmtClass()) {
4125    default:
4126      break;
4127
4128    case Stmt::CXXForRangeStmtClass:
4129      E = cast<CXXForRangeStmt>(Terminator)->getCond();
4130      break;
4131
4132    case Stmt::ForStmtClass:
4133      E = cast<ForStmt>(Terminator)->getCond();
4134      break;
4135
4136    case Stmt::WhileStmtClass:
4137      E = cast<WhileStmt>(Terminator)->getCond();
4138      break;
4139
4140    case Stmt::DoStmtClass:
4141      E = cast<DoStmt>(Terminator)->getCond();
4142      break;
4143
4144    case Stmt::IfStmtClass:
4145      E = cast<IfStmt>(Terminator)->getCond();
4146      break;
4147
4148    case Stmt::ChooseExprClass:
4149      E = cast<ChooseExpr>(Terminator)->getCond();
4150      break;
4151
4152    case Stmt::IndirectGotoStmtClass:
4153      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4154      break;
4155
4156    case Stmt::SwitchStmtClass:
4157      E = cast<SwitchStmt>(Terminator)->getCond();
4158      break;
4159
4160    case Stmt::BinaryConditionalOperatorClass:
4161      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4162      break;
4163
4164    case Stmt::ConditionalOperatorClass:
4165      E = cast<ConditionalOperator>(Terminator)->getCond();
4166      break;
4167
4168    case Stmt::BinaryOperatorClass: // '&&' and '||'
4169      E = cast<BinaryOperator>(Terminator)->getLHS();
4170      break;
4171
4172    case Stmt::ObjCForCollectionStmtClass:
4173      return Terminator;
4174  }
4175
4176  if (!StripParens)
4177    return E;
4178
4179  return E ? E->IgnoreParens() : NULL;
4180}
4181
4182//===----------------------------------------------------------------------===//
4183// CFG Graphviz Visualization
4184//===----------------------------------------------------------------------===//
4185
4186
4187#ifndef NDEBUG
4188static StmtPrinterHelper* GraphHelper;
4189#endif
4190
4191void CFG::viewCFG(const LangOptions &LO) const {
4192#ifndef NDEBUG
4193  StmtPrinterHelper H(this, LO);
4194  GraphHelper = &H;
4195  llvm::ViewGraph(this,"CFG");
4196  GraphHelper = NULL;
4197#endif
4198}
4199
4200namespace llvm {
4201template<>
4202struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4203
4204  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4205
4206  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4207
4208#ifndef NDEBUG
4209    std::string OutSStr;
4210    llvm::raw_string_ostream Out(OutSStr);
4211    print_block(Out,Graph, *Node, *GraphHelper, false, false);
4212    std::string& OutStr = Out.str();
4213
4214    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4215
4216    // Process string output to make it nicer...
4217    for (unsigned i = 0; i != OutStr.length(); ++i)
4218      if (OutStr[i] == '\n') {                            // Left justify
4219        OutStr[i] = '\\';
4220        OutStr.insert(OutStr.begin()+i+1, 'l');
4221      }
4222
4223    return OutStr;
4224#else
4225    return "";
4226#endif
4227  }
4228};
4229} // end namespace llvm
4230