CFG.cpp revision 6c2497248bc4f7fd8e5fb0a206d20abbf0e16645
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/StmtVisitor.h"
18#include "clang/AST/PrettyPrinter.h"
19#include "llvm/Support/GraphWriter.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25
26using namespace clang;
27
28namespace {
29
30static SourceLocation GetEndLoc(Decl* D) {
31  if (VarDecl* VD = dyn_cast<VarDecl>(D))
32    if (Expr* Ex = VD->getInit())
33      return Ex->getSourceRange().getEnd();
34
35  return D->getLocation();
36}
37
38/// CFGBuilder - This class implements CFG construction from an AST.
39///   The builder is stateful: an instance of the builder should be used to only
40///   construct a single CFG.
41///
42///   Example usage:
43///
44///     CFGBuilder builder;
45///     CFG* cfg = builder.BuildAST(stmt1);
46///
47///  CFG construction is done via a recursive walk of an AST.  We actually parse
48///  the AST in reverse order so that the successor of a basic block is
49///  constructed prior to its predecessor.  This allows us to nicely capture
50///  implicit fall-throughs without extra basic blocks.
51///
52class VISIBILITY_HIDDEN CFGBuilder {
53  ASTContext *Context;
54  CFG* cfg;
55  CFGBlock* Block;
56  CFGBlock* Succ;
57  CFGBlock* ContinueTargetBlock;
58  CFGBlock* BreakTargetBlock;
59  CFGBlock* SwitchTerminatedBlock;
60  CFGBlock* DefaultCaseBlock;
61
62  // LabelMap records the mapping from Label expressions to their blocks.
63  typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
64  LabelMapTy LabelMap;
65
66  // A list of blocks that end with a "goto" that must be backpatched to their
67  // resolved targets upon completion of CFG construction.
68  typedef std::vector<CFGBlock*> BackpatchBlocksTy;
69  BackpatchBlocksTy BackpatchBlocks;
70
71  // A list of labels whose address has been taken (for indirect gotos).
72  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
73  LabelSetTy AddressTakenLabels;
74
75public:
76  explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL),
77                          ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
78                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) {
79    // Create an empty CFG.
80    cfg = new CFG();
81  }
82
83  ~CFGBuilder() { delete cfg; }
84
85  // buildCFG - Used by external clients to construct the CFG.
86  CFG* buildCFG(Stmt *Statement, ASTContext *C);
87
88private:
89  // Visitors to walk an AST and construct the CFG.
90  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd);
91  CFGBlock *VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd);
92  CFGBlock *VisitBlockExpr(BlockExpr* E, bool alwaysAdd);
93  CFGBlock *VisitBlockDeclRefExpr(BlockDeclRefExpr* E, bool alwaysAdd);
94  CFGBlock *VisitBreakStmt(BreakStmt *B);
95  CFGBlock *VisitCallExpr(CallExpr *C, bool alwaysAdd);
96  CFGBlock *VisitCaseStmt(CaseStmt *C);
97  CFGBlock *VisitChooseExpr(ChooseExpr *C);
98  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
99  CFGBlock *VisitConditionalOperator(ConditionalOperator *C);
100  CFGBlock *VisitContinueStmt(ContinueStmt *C);
101  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
102  CFGBlock *VisitDeclStmt(DeclStmt *DS);
103  CFGBlock *VisitDeclSubExpr(Decl* D);
104  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
105  CFGBlock *VisitDoStmt(DoStmt *D);
106  CFGBlock *VisitForStmt(ForStmt *F);
107  CFGBlock *VisitGotoStmt(GotoStmt* G);
108  CFGBlock *VisitIfStmt(IfStmt *I);
109  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
110  CFGBlock *VisitLabelStmt(LabelStmt *L);
111  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
112  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
113  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
114  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
115  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
116  CFGBlock *VisitReturnStmt(ReturnStmt* R);
117  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, bool alwaysAdd);
118  CFGBlock *VisitStmtExpr(StmtExpr *S, bool alwaysAdd);
119  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
120  CFGBlock *VisitWhileStmt(WhileStmt *W);
121
122  CFGBlock *Visit(Stmt *S, bool alwaysAdd = false);
123  CFGBlock *VisitStmt(Stmt *S, bool alwaysAdd);
124  CFGBlock *VisitChildren(Stmt* S);
125
126  // NYS == Not Yet Supported
127  CFGBlock* NYS() {
128    badCFG = true;
129    return Block;
130  }
131
132  void autoCreateBlock() { if (!Block) Block = createBlock(); }
133  CFGBlock *createBlock(bool add_successor = true);
134  bool FinishBlock(CFGBlock* B);
135  CFGBlock *addStmt(Stmt *S) { return Visit(S, true); }
136
137
138  /// TryResult - a class representing a variant over the values
139  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
140  ///  and is used by the CFGBuilder to decide if a branch condition
141  ///  can be decided up front during CFG construction.
142  class TryResult {
143    int X;
144  public:
145    TryResult(bool b) : X(b ? 1 : 0) {}
146    TryResult() : X(-1) {}
147
148    bool isTrue() const { return X == 1; }
149    bool isFalse() const { return X == 0; }
150    bool isKnown() const { return X >= 0; }
151    void negate() {
152      assert(isKnown());
153      X ^= 0x1;
154    }
155  };
156
157  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
158  /// if we can evaluate to a known value, otherwise return -1.
159  TryResult TryEvaluateBool(Expr *S) {
160    Expr::EvalResult Result;
161    if (!S->isTypeDependent() && !S->isValueDependent() &&
162        S->Evaluate(Result, *Context) && Result.Val.isInt())
163      return Result.Val.getInt().getBoolValue();
164
165    return TryResult();
166  }
167
168  bool badCFG;
169};
170
171// FIXME: Add support for dependent-sized array types in C++?
172// Does it even make sense to build a CFG for an uninstantiated template?
173static VariableArrayType* FindVA(Type* t) {
174  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
175    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
176      if (vat->getSizeExpr())
177        return vat;
178
179    t = vt->getElementType().getTypePtr();
180  }
181
182  return 0;
183}
184
185/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
186///  arbitrary statement.  Examples include a single expression or a function
187///  body (compound statement).  The ownership of the returned CFG is
188///  transferred to the caller.  If CFG construction fails, this method returns
189///  NULL.
190CFG* CFGBuilder::buildCFG(Stmt* Statement, ASTContext* C) {
191  Context = C;
192  assert(cfg);
193  if (!Statement)
194    return NULL;
195
196  badCFG = false;
197
198  // Create an empty block that will serve as the exit block for the CFG.  Since
199  // this is the first block added to the CFG, it will be implicitly registered
200  // as the exit block.
201  Succ = createBlock();
202  assert (Succ == &cfg->getExit());
203  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
204
205  // Visit the statements and create the CFG.
206  CFGBlock* B = addStmt(Statement);
207  if (!B) B = Succ;
208
209  if (B) {
210    // Finalize the last constructed block.  This usually involves reversing the
211    // order of the statements in the block.
212    if (Block) FinishBlock(B);
213
214    // Backpatch the gotos whose label -> block mappings we didn't know when we
215    // encountered them.
216    for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
217         E = BackpatchBlocks.end(); I != E; ++I ) {
218
219      CFGBlock* B = *I;
220      GotoStmt* G = cast<GotoStmt>(B->getTerminator());
221      LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
222
223      // If there is no target for the goto, then we are looking at an
224      // incomplete AST.  Handle this by not registering a successor.
225      if (LI == LabelMap.end()) continue;
226
227      B->addSuccessor(LI->second);
228    }
229
230    // Add successors to the Indirect Goto Dispatch block (if we have one).
231    if (CFGBlock* B = cfg->getIndirectGotoBlock())
232      for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
233           E = AddressTakenLabels.end(); I != E; ++I ) {
234
235        // Lookup the target block.
236        LabelMapTy::iterator LI = LabelMap.find(*I);
237
238        // If there is no target block that contains label, then we are looking
239        // at an incomplete AST.  Handle this by not registering a successor.
240        if (LI == LabelMap.end()) continue;
241
242        B->addSuccessor(LI->second);
243      }
244
245    Succ = B;
246  }
247
248  // Create an empty entry block that has no predecessors.
249  cfg->setEntry(createBlock());
250
251  if (badCFG) {
252    delete cfg;
253    cfg = NULL;
254    return NULL;
255  }
256
257  // NULL out cfg so that repeated calls to the builder will fail and that the
258  // ownership of the constructed CFG is passed to the caller.
259  CFG* t = cfg;
260  cfg = NULL;
261  return t;
262}
263
264/// createBlock - Used to lazily create blocks that are connected
265///  to the current (global) succcessor.
266CFGBlock* CFGBuilder::createBlock(bool add_successor) {
267  CFGBlock* B = cfg->createBlock();
268  if (add_successor && Succ)
269    B->addSuccessor(Succ);
270  return B;
271}
272
273/// FinishBlock - "Finalize" the block by checking if we have a bad CFG.
274bool CFGBuilder::FinishBlock(CFGBlock* B) {
275  if (badCFG)
276    return false;
277
278  assert(B);
279  return true;
280}
281
282/// Visit - Walk the subtree of a statement and add extra
283///   blocks for ternary operators, &&, and ||.  We also process "," and
284///   DeclStmts (which may contain nested control-flow).
285CFGBlock* CFGBuilder::Visit(Stmt * S, bool alwaysAdd) {
286tryAgain:
287  switch (S->getStmtClass()) {
288    default:
289      return VisitStmt(S, alwaysAdd);
290
291    case Stmt::AddrLabelExprClass:
292      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), alwaysAdd);
293
294    case Stmt::BinaryOperatorClass:
295      return VisitBinaryOperator(cast<BinaryOperator>(S), alwaysAdd);
296
297    case Stmt::BlockExprClass:
298      return VisitBlockExpr(cast<BlockExpr>(S), alwaysAdd);
299
300    case Stmt::BlockDeclRefExprClass:
301      return VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), alwaysAdd);
302
303    case Stmt::BreakStmtClass:
304      return VisitBreakStmt(cast<BreakStmt>(S));
305
306    case Stmt::CallExprClass:
307      return VisitCallExpr(cast<CallExpr>(S), alwaysAdd);
308
309    case Stmt::CaseStmtClass:
310      return VisitCaseStmt(cast<CaseStmt>(S));
311
312    case Stmt::ChooseExprClass:
313      return VisitChooseExpr(cast<ChooseExpr>(S));
314
315    case Stmt::CompoundStmtClass:
316      return VisitCompoundStmt(cast<CompoundStmt>(S));
317
318    case Stmt::ConditionalOperatorClass:
319      return VisitConditionalOperator(cast<ConditionalOperator>(S));
320
321    case Stmt::ContinueStmtClass:
322      return VisitContinueStmt(cast<ContinueStmt>(S));
323
324    case Stmt::DeclStmtClass:
325      return VisitDeclStmt(cast<DeclStmt>(S));
326
327    case Stmt::DefaultStmtClass:
328      return VisitDefaultStmt(cast<DefaultStmt>(S));
329
330    case Stmt::DoStmtClass:
331      return VisitDoStmt(cast<DoStmt>(S));
332
333    case Stmt::ForStmtClass:
334      return VisitForStmt(cast<ForStmt>(S));
335
336    case Stmt::GotoStmtClass:
337      return VisitGotoStmt(cast<GotoStmt>(S));
338
339    case Stmt::IfStmtClass:
340      return VisitIfStmt(cast<IfStmt>(S));
341
342    case Stmt::IndirectGotoStmtClass:
343      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
344
345    case Stmt::LabelStmtClass:
346      return VisitLabelStmt(cast<LabelStmt>(S));
347
348    case Stmt::ObjCAtCatchStmtClass:
349      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
350
351  case Stmt::CXXThrowExprClass:
352    return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
353
354    case Stmt::ObjCAtSynchronizedStmtClass:
355      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
356
357    case Stmt::ObjCAtThrowStmtClass:
358      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
359
360    case Stmt::ObjCAtTryStmtClass:
361      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
362
363    case Stmt::ObjCForCollectionStmtClass:
364      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
365
366    case Stmt::ParenExprClass:
367      S = cast<ParenExpr>(S)->getSubExpr();
368      goto tryAgain;
369
370    case Stmt::NullStmtClass:
371      return Block;
372
373    case Stmt::ReturnStmtClass:
374      return VisitReturnStmt(cast<ReturnStmt>(S));
375
376    case Stmt::SizeOfAlignOfExprClass:
377      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), alwaysAdd);
378
379    case Stmt::StmtExprClass:
380      return VisitStmtExpr(cast<StmtExpr>(S), alwaysAdd);
381
382    case Stmt::SwitchStmtClass:
383      return VisitSwitchStmt(cast<SwitchStmt>(S));
384
385    case Stmt::WhileStmtClass:
386      return VisitWhileStmt(cast<WhileStmt>(S));
387  }
388}
389
390CFGBlock *CFGBuilder::VisitStmt(Stmt *S, bool alwaysAdd) {
391  if (alwaysAdd) {
392    autoCreateBlock();
393    Block->appendStmt(S);
394  }
395
396  return VisitChildren(S);
397}
398
399/// VisitChildren - Visit the children of a Stmt.
400CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
401  CFGBlock *B = Block;
402  for (Stmt::child_iterator I = Terminator->child_begin(),
403         E = Terminator->child_end(); I != E; ++I) {
404    if (*I) B = Visit(*I);
405  }
406  return B;
407}
408
409CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd) {
410  AddressTakenLabels.insert(A->getLabel());
411
412  if (alwaysAdd) {
413    autoCreateBlock();
414    Block->appendStmt(A);
415  }
416
417  return Block;
418}
419
420CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd) {
421  if (B->isLogicalOp()) { // && or ||
422    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
423    ConfluenceBlock->appendStmt(B);
424
425    if (!FinishBlock(ConfluenceBlock))
426      return 0;
427
428    // create the block evaluating the LHS
429    CFGBlock* LHSBlock = createBlock(false);
430    LHSBlock->setTerminator(B);
431
432    // create the block evaluating the RHS
433    Succ = ConfluenceBlock;
434    Block = NULL;
435    CFGBlock* RHSBlock = addStmt(B->getRHS());
436    if (!FinishBlock(RHSBlock))
437      return 0;
438
439    // See if this is a known constant.
440    TryResult KnownVal = TryEvaluateBool(B->getLHS());
441    if (KnownVal.isKnown() && (B->getOpcode() == BinaryOperator::LOr))
442      KnownVal.negate();
443
444    // Now link the LHSBlock with RHSBlock.
445    if (B->getOpcode() == BinaryOperator::LOr) {
446      LHSBlock->addSuccessor(KnownVal.isTrue() ? NULL : ConfluenceBlock);
447      LHSBlock->addSuccessor(KnownVal.isFalse() ? NULL : RHSBlock);
448    } else {
449      assert (B->getOpcode() == BinaryOperator::LAnd);
450      LHSBlock->addSuccessor(KnownVal.isFalse() ? NULL : RHSBlock);
451      LHSBlock->addSuccessor(KnownVal.isTrue() ? NULL : ConfluenceBlock);
452    }
453
454    // Generate the blocks for evaluating the LHS.
455    Block = LHSBlock;
456    return addStmt(B->getLHS());
457  }
458  else if (B->getOpcode() == BinaryOperator::Comma) { // ,
459    autoCreateBlock();
460    Block->appendStmt(B);
461    addStmt(B->getRHS());
462    return addStmt(B->getLHS());
463  }
464
465  return VisitStmt(B, alwaysAdd);
466}
467
468CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr* E, bool alwaysAdd) {
469  // FIXME
470  return NYS();
471}
472
473CFGBlock *CFGBuilder::VisitBlockDeclRefExpr(BlockDeclRefExpr* E,
474                                            bool alwaysAdd) {
475  // FIXME
476  return NYS();
477}
478
479CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
480  // "break" is a control-flow statement.  Thus we stop processing the current
481  // block.
482  if (Block && !FinishBlock(Block))
483      return 0;
484
485  // Now create a new block that ends with the break statement.
486  Block = createBlock(false);
487  Block->setTerminator(B);
488
489  // If there is no target for the break, then we are looking at an incomplete
490  // AST.  This means that the CFG cannot be constructed.
491  if (BreakTargetBlock)
492    Block->addSuccessor(BreakTargetBlock);
493  else
494    badCFG = true;
495
496
497  return Block;
498}
499
500CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, bool alwaysAdd) {
501  // If this is a call to a no-return function, this stops the block here.
502  bool NoReturn = false;
503  if (C->getCallee()->getType().getNoReturnAttr()) {
504    NoReturn = true;
505  }
506
507  if (FunctionDecl *FD = C->getDirectCallee())
508    if (FD->hasAttr<NoReturnAttr>())
509      NoReturn = true;
510
511  if (!NoReturn)
512    return VisitStmt(C, alwaysAdd);
513
514  if (Block && !FinishBlock(Block))
515    return 0;
516
517  // Create new block with no successor for the remaining pieces.
518  Block = createBlock(false);
519  Block->appendStmt(C);
520
521  // Wire this to the exit block directly.
522  Block->addSuccessor(&cfg->getExit());
523
524  return VisitChildren(C);
525}
526
527CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C) {
528  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
529  ConfluenceBlock->appendStmt(C);
530  if (!FinishBlock(ConfluenceBlock))
531    return 0;
532
533  Succ = ConfluenceBlock;
534  Block = NULL;
535  CFGBlock* LHSBlock = addStmt(C->getLHS());
536  if (!FinishBlock(LHSBlock))
537    return 0;
538
539  Succ = ConfluenceBlock;
540  Block = NULL;
541  CFGBlock* RHSBlock = addStmt(C->getRHS());
542  if (!FinishBlock(RHSBlock))
543    return 0;
544
545  Block = createBlock(false);
546  // See if this is a known constant.
547  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
548  Block->addSuccessor(KnownVal.isFalse() ? NULL : LHSBlock);
549  Block->addSuccessor(KnownVal.isTrue() ? NULL : RHSBlock);
550  Block->setTerminator(C);
551  return addStmt(C->getCond());
552}
553
554
555CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
556  CFGBlock* LastBlock = Block;
557
558  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
559       I != E; ++I ) {
560    LastBlock = addStmt(*I);
561
562    if (badCFG)
563      return NULL;
564  }
565  return LastBlock;
566}
567
568CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C) {
569  // Create the confluence block that will "merge" the results of the ternary
570  // expression.
571  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
572  ConfluenceBlock->appendStmt(C);
573  if (!FinishBlock(ConfluenceBlock))
574    return 0;
575
576  // Create a block for the LHS expression if there is an LHS expression.  A
577  // GCC extension allows LHS to be NULL, causing the condition to be the
578  // value that is returned instead.
579  //  e.g: x ?: y is shorthand for: x ? x : y;
580  Succ = ConfluenceBlock;
581  Block = NULL;
582  CFGBlock* LHSBlock = NULL;
583  if (C->getLHS()) {
584    LHSBlock = addStmt(C->getLHS());
585    if (!FinishBlock(LHSBlock))
586      return 0;
587    Block = NULL;
588  }
589
590  // Create the block for the RHS expression.
591  Succ = ConfluenceBlock;
592  CFGBlock* RHSBlock = addStmt(C->getRHS());
593  if (!FinishBlock(RHSBlock))
594    return 0;
595
596  // Create the block that will contain the condition.
597  Block = createBlock(false);
598
599  // See if this is a known constant.
600  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
601  if (LHSBlock) {
602    Block->addSuccessor(KnownVal.isFalse() ? NULL : LHSBlock);
603  } else {
604    if (KnownVal.isFalse()) {
605      // If we know the condition is false, add NULL as the successor for
606      // the block containing the condition.  In this case, the confluence
607      // block will have just one predecessor.
608      Block->addSuccessor(0);
609      assert(ConfluenceBlock->pred_size() == 1);
610    } else {
611      // If we have no LHS expression, add the ConfluenceBlock as a direct
612      // successor for the block containing the condition.  Moreover, we need to
613      // reverse the order of the predecessors in the ConfluenceBlock because
614      // the RHSBlock will have been added to the succcessors already, and we
615      // want the first predecessor to the the block containing the expression
616      // for the case when the ternary expression evaluates to true.
617      Block->addSuccessor(ConfluenceBlock);
618      assert(ConfluenceBlock->pred_size() == 2);
619      std::reverse(ConfluenceBlock->pred_begin(),
620                   ConfluenceBlock->pred_end());
621    }
622  }
623
624  Block->addSuccessor(KnownVal.isTrue() ? NULL : RHSBlock);
625  Block->setTerminator(C);
626  return addStmt(C->getCond());
627}
628
629CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
630  autoCreateBlock();
631
632  if (DS->isSingleDecl()) {
633    Block->appendStmt(DS);
634    return VisitDeclSubExpr(DS->getSingleDecl());
635  }
636
637  CFGBlock *B = 0;
638
639  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
640  typedef llvm::SmallVector<Decl*,10> BufTy;
641  BufTy Buf(DS->decl_begin(), DS->decl_end());
642
643  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
644    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
645    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
646               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
647
648    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
649    // automatically freed with the CFG.
650    DeclGroupRef DG(*I);
651    Decl *D = *I;
652    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
653    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
654
655    // Append the fake DeclStmt to block.
656    Block->appendStmt(DSNew);
657    B = VisitDeclSubExpr(D);
658  }
659
660  return B;
661}
662
663/// VisitDeclSubExpr - Utility method to add block-level expressions for
664///  initializers in Decls.
665CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
666  assert(Block);
667
668  VarDecl *VD = dyn_cast<VarDecl>(D);
669
670  if (!VD)
671    return Block;
672
673  Expr *Init = VD->getInit();
674
675  if (Init) {
676    // Optimization: Don't create separate block-level statements for literals.
677    switch (Init->getStmtClass()) {
678      case Stmt::IntegerLiteralClass:
679      case Stmt::CharacterLiteralClass:
680      case Stmt::StringLiteralClass:
681        break;
682      default:
683        Block = addStmt(Init);
684    }
685  }
686
687  // If the type of VD is a VLA, then we must process its size expressions.
688  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
689       VA = FindVA(VA->getElementType().getTypePtr()))
690    Block = addStmt(VA->getSizeExpr());
691
692  return Block;
693}
694
695CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
696  // We may see an if statement in the middle of a basic block, or it may be the
697  // first statement we are processing.  In either case, we create a new basic
698  // block.  First, we create the blocks for the then...else statements, and
699  // then we create the block containing the if statement.  If we were in the
700  // middle of a block, we stop processing that block.  That block is then the
701  // implicit successor for the "then" and "else" clauses.
702
703  // The block we were proccessing is now finished.  Make it the successor
704  // block.
705  if (Block) {
706    Succ = Block;
707    if (!FinishBlock(Block))
708      return 0;
709  }
710
711  // Process the false branch.
712  CFGBlock* ElseBlock = Succ;
713
714  if (Stmt* Else = I->getElse()) {
715    SaveAndRestore<CFGBlock*> sv(Succ);
716
717    // NULL out Block so that the recursive call to Visit will
718    // create a new basic block.
719    Block = NULL;
720    ElseBlock = addStmt(Else);
721
722    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
723      ElseBlock = sv.get();
724    else if (Block) {
725      if (!FinishBlock(ElseBlock))
726        return 0;
727    }
728  }
729
730  // Process the true branch.
731  CFGBlock* ThenBlock;
732  {
733    Stmt* Then = I->getThen();
734    assert (Then);
735    SaveAndRestore<CFGBlock*> sv(Succ);
736    Block = NULL;
737    ThenBlock = addStmt(Then);
738
739    if (!ThenBlock) {
740      // We can reach here if the "then" body has all NullStmts.
741      // Create an empty block so we can distinguish between true and false
742      // branches in path-sensitive analyses.
743      ThenBlock = createBlock(false);
744      ThenBlock->addSuccessor(sv.get());
745    } else if (Block) {
746      if (!FinishBlock(ThenBlock))
747        return 0;
748    }
749  }
750
751  // Now create a new block containing the if statement.
752  Block = createBlock(false);
753
754  // Set the terminator of the new block to the If statement.
755  Block->setTerminator(I);
756
757  // See if this is a known constant.
758  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
759
760  // Now add the successors.
761  Block->addSuccessor(KnownVal.isFalse() ? NULL : ThenBlock);
762  Block->addSuccessor(KnownVal.isTrue()? NULL : ElseBlock);
763
764  // Add the condition as the last statement in the new block.  This may create
765  // new blocks as the condition may contain control-flow.  Any newly created
766  // blocks will be pointed to be "Block".
767  return addStmt(I->getCond());
768}
769
770
771CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
772  // If we were in the middle of a block we stop processing that block.
773  //
774  // NOTE: If a "return" appears in the middle of a block, this means that the
775  //       code afterwards is DEAD (unreachable).  We still keep a basic block
776  //       for that code; a simple "mark-and-sweep" from the entry block will be
777  //       able to report such dead blocks.
778  if (Block)
779    FinishBlock(Block);
780
781  // Create the new block.
782  Block = createBlock(false);
783
784  // The Exit block is the only successor.
785  Block->addSuccessor(&cfg->getExit());
786
787  // Add the return statement to the block.  This may create new blocks if R
788  // contains control-flow (short-circuit operations).
789  return VisitStmt(R, true);
790}
791
792CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
793  // Get the block of the labeled statement.  Add it to our map.
794  addStmt(L->getSubStmt());
795  CFGBlock* LabelBlock = Block;
796
797  if (!LabelBlock)              // This can happen when the body is empty, i.e.
798    LabelBlock = createBlock(); // scopes that only contains NullStmts.
799
800  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
801  LabelMap[ L ] = LabelBlock;
802
803  // Labels partition blocks, so this is the end of the basic block we were
804  // processing (L is the block's label).  Because this is label (and we have
805  // already processed the substatement) there is no extra control-flow to worry
806  // about.
807  LabelBlock->setLabel(L);
808  if (!FinishBlock(LabelBlock))
809    return 0;
810
811  // We set Block to NULL to allow lazy creation of a new block (if necessary);
812  Block = NULL;
813
814  // This block is now the implicit successor of other blocks.
815  Succ = LabelBlock;
816
817  return LabelBlock;
818}
819
820CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
821  // Goto is a control-flow statement.  Thus we stop processing the current
822  // block and create a new one.
823  if (Block)
824    FinishBlock(Block);
825
826  Block = createBlock(false);
827  Block->setTerminator(G);
828
829  // If we already know the mapping to the label block add the successor now.
830  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
831
832  if (I == LabelMap.end())
833    // We will need to backpatch this block later.
834    BackpatchBlocks.push_back(Block);
835  else
836    Block->addSuccessor(I->second);
837
838  return Block;
839}
840
841CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
842  CFGBlock* LoopSuccessor = NULL;
843
844  // "for" is a control-flow statement.  Thus we stop processing the current
845  // block.
846  if (Block) {
847    if (!FinishBlock(Block))
848      return 0;
849    LoopSuccessor = Block;
850  } else
851    LoopSuccessor = Succ;
852
853  // Because of short-circuit evaluation, the condition of the loop can span
854  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
855  // evaluate the condition.
856  CFGBlock* ExitConditionBlock = createBlock(false);
857  CFGBlock* EntryConditionBlock = ExitConditionBlock;
858
859  // Set the terminator for the "exit" condition block.
860  ExitConditionBlock->setTerminator(F);
861
862  // Now add the actual condition to the condition block.  Because the condition
863  // itself may contain control-flow, new blocks may be created.
864  if (Stmt* C = F->getCond()) {
865    Block = ExitConditionBlock;
866    EntryConditionBlock = addStmt(C);
867    if (Block) {
868      if (!FinishBlock(EntryConditionBlock))
869        return 0;
870    }
871  }
872
873  // The condition block is the implicit successor for the loop body as well as
874  // any code above the loop.
875  Succ = EntryConditionBlock;
876
877  // See if this is a known constant.
878  TryResult KnownVal(true);
879
880  if (F->getCond())
881    KnownVal = TryEvaluateBool(F->getCond());
882
883  // Now create the loop body.
884  {
885    assert (F->getBody());
886
887    // Save the current values for Block, Succ, and continue and break targets
888    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
889    save_continue(ContinueTargetBlock),
890    save_break(BreakTargetBlock);
891
892    // Create a new block to contain the (bottom) of the loop body.
893    Block = NULL;
894
895    if (Stmt* I = F->getInc()) {
896      // Generate increment code in its own basic block.  This is the target of
897      // continue statements.
898      Succ = addStmt(I);
899    } else {
900      // No increment code.  Create a special, empty, block that is used as the
901      // target block for "looping back" to the start of the loop.
902      assert(Succ == EntryConditionBlock);
903      Succ = createBlock();
904    }
905
906    // Finish up the increment (or empty) block if it hasn't been already.
907    if (Block) {
908      assert(Block == Succ);
909      if (!FinishBlock(Block))
910        return 0;
911      Block = 0;
912    }
913
914    ContinueTargetBlock = Succ;
915
916    // The starting block for the loop increment is the block that should
917    // represent the 'loop target' for looping back to the start of the loop.
918    ContinueTargetBlock->setLoopTarget(F);
919
920    // All breaks should go to the code following the loop.
921    BreakTargetBlock = LoopSuccessor;
922
923    // Now populate the body block, and in the process create new blocks as we
924    // walk the body of the loop.
925    CFGBlock* BodyBlock = addStmt(F->getBody());
926
927    if (!BodyBlock)
928      BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;"
929    else if (Block && !FinishBlock(BodyBlock))
930      return 0;
931
932    // This new body block is a successor to our "exit" condition block.
933    ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : BodyBlock);
934  }
935
936  // Link up the condition block with the code that follows the loop.  (the
937  // false branch).
938  ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor);
939
940  // If the loop contains initialization, create a new block for those
941  // statements.  This block can also contain statements that precede the loop.
942  if (Stmt* I = F->getInit()) {
943    Block = createBlock();
944    return addStmt(I);
945  } else {
946    // There is no loop initialization.  We are thus basically a while loop.
947    // NULL out Block to force lazy block construction.
948    Block = NULL;
949    Succ = EntryConditionBlock;
950    return EntryConditionBlock;
951  }
952}
953
954CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
955  // Objective-C fast enumeration 'for' statements:
956  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
957  //
958  //  for ( Type newVariable in collection_expression ) { statements }
959  //
960  //  becomes:
961  //
962  //   prologue:
963  //     1. collection_expression
964  //     T. jump to loop_entry
965  //   loop_entry:
966  //     1. side-effects of element expression
967  //     1. ObjCForCollectionStmt [performs binding to newVariable]
968  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
969  //   TB:
970  //     statements
971  //     T. jump to loop_entry
972  //   FB:
973  //     what comes after
974  //
975  //  and
976  //
977  //  Type existingItem;
978  //  for ( existingItem in expression ) { statements }
979  //
980  //  becomes:
981  //
982  //   the same with newVariable replaced with existingItem; the binding works
983  //   the same except that for one ObjCForCollectionStmt::getElement() returns
984  //   a DeclStmt and the other returns a DeclRefExpr.
985  //
986
987  CFGBlock* LoopSuccessor = 0;
988
989  if (Block) {
990    if (!FinishBlock(Block))
991      return 0;
992    LoopSuccessor = Block;
993    Block = 0;
994  } else
995    LoopSuccessor = Succ;
996
997  // Build the condition blocks.
998  CFGBlock* ExitConditionBlock = createBlock(false);
999  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1000
1001  // Set the terminator for the "exit" condition block.
1002  ExitConditionBlock->setTerminator(S);
1003
1004  // The last statement in the block should be the ObjCForCollectionStmt, which
1005  // performs the actual binding to 'element' and determines if there are any
1006  // more items in the collection.
1007  ExitConditionBlock->appendStmt(S);
1008  Block = ExitConditionBlock;
1009
1010  // Walk the 'element' expression to see if there are any side-effects.  We
1011  // generate new blocks as necesary.  We DON'T add the statement by default to
1012  // the CFG unless it contains control-flow.
1013  EntryConditionBlock = Visit(S->getElement(), false);
1014  if (Block) {
1015    if (!FinishBlock(EntryConditionBlock))
1016      return 0;
1017    Block = 0;
1018  }
1019
1020  // The condition block is the implicit successor for the loop body as well as
1021  // any code above the loop.
1022  Succ = EntryConditionBlock;
1023
1024  // Now create the true branch.
1025  {
1026    // Save the current values for Succ, continue and break targets.
1027    SaveAndRestore<CFGBlock*> save_Succ(Succ),
1028      save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
1029
1030    BreakTargetBlock = LoopSuccessor;
1031    ContinueTargetBlock = EntryConditionBlock;
1032
1033    CFGBlock* BodyBlock = addStmt(S->getBody());
1034
1035    if (!BodyBlock)
1036      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1037    else if (Block) {
1038      if (!FinishBlock(BodyBlock))
1039        return 0;
1040    }
1041
1042    // This new body block is a successor to our "exit" condition block.
1043    ExitConditionBlock->addSuccessor(BodyBlock);
1044  }
1045
1046  // Link up the condition block with the code that follows the loop.
1047  // (the false branch).
1048  ExitConditionBlock->addSuccessor(LoopSuccessor);
1049
1050  // Now create a prologue block to contain the collection expression.
1051  Block = createBlock();
1052  return addStmt(S->getCollection());
1053}
1054
1055CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1056  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1057
1058  // Inline the body.
1059  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1060
1061  // The sync body starts its own basic block.  This makes it a little easier
1062  // for diagnostic clients.
1063  if (SyncBlock) {
1064    if (!FinishBlock(SyncBlock))
1065      return 0;
1066
1067    Block = 0;
1068  }
1069
1070  Succ = SyncBlock;
1071
1072  // Inline the sync expression.
1073  return addStmt(S->getSynchExpr());
1074}
1075
1076CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1077  // FIXME
1078  return NYS();
1079}
1080
1081CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1082  CFGBlock* LoopSuccessor = NULL;
1083
1084  // "while" is a control-flow statement.  Thus we stop processing the current
1085  // block.
1086  if (Block) {
1087    if (!FinishBlock(Block))
1088      return 0;
1089    LoopSuccessor = Block;
1090  } else
1091    LoopSuccessor = Succ;
1092
1093  // Because of short-circuit evaluation, the condition of the loop can span
1094  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1095  // evaluate the condition.
1096  CFGBlock* ExitConditionBlock = createBlock(false);
1097  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1098
1099  // Set the terminator for the "exit" condition block.
1100  ExitConditionBlock->setTerminator(W);
1101
1102  // Now add the actual condition to the condition block.  Because the condition
1103  // itself may contain control-flow, new blocks may be created.  Thus we update
1104  // "Succ" after adding the condition.
1105  if (Stmt* C = W->getCond()) {
1106    Block = ExitConditionBlock;
1107    EntryConditionBlock = addStmt(C);
1108    assert(Block == EntryConditionBlock);
1109    if (Block) {
1110      if (!FinishBlock(EntryConditionBlock))
1111        return 0;
1112    }
1113  }
1114
1115  // The condition block is the implicit successor for the loop body as well as
1116  // any code above the loop.
1117  Succ = EntryConditionBlock;
1118
1119  // See if this is a known constant.
1120  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1121
1122  // Process the loop body.
1123  {
1124    assert(W->getBody());
1125
1126    // Save the current values for Block, Succ, and continue and break targets
1127    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1128                              save_continue(ContinueTargetBlock),
1129                              save_break(BreakTargetBlock);
1130
1131    // Create an empty block to represent the transition block for looping back
1132    // to the head of the loop.
1133    Block = 0;
1134    assert(Succ == EntryConditionBlock);
1135    Succ = createBlock();
1136    Succ->setLoopTarget(W);
1137    ContinueTargetBlock = Succ;
1138
1139    // All breaks should go to the code following the loop.
1140    BreakTargetBlock = LoopSuccessor;
1141
1142    // NULL out Block to force lazy instantiation of blocks for the body.
1143    Block = NULL;
1144
1145    // Create the body.  The returned block is the entry to the loop body.
1146    CFGBlock* BodyBlock = addStmt(W->getBody());
1147
1148    if (!BodyBlock)
1149      BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;"
1150    else if (Block) {
1151      if (!FinishBlock(BodyBlock))
1152        return 0;
1153    }
1154
1155    // Add the loop body entry as a successor to the condition.
1156    ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : BodyBlock);
1157  }
1158
1159  // Link up the condition block with the code that follows the loop.  (the
1160  // false branch).
1161  ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor);
1162
1163  // There can be no more statements in the condition block since we loop back
1164  // to this block.  NULL out Block to force lazy creation of another block.
1165  Block = NULL;
1166
1167  // Return the condition block, which is the dominating block for the loop.
1168  Succ = EntryConditionBlock;
1169  return EntryConditionBlock;
1170}
1171
1172
1173CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1174  // FIXME: For now we pretend that @catch and the code it contains does not
1175  //  exit.
1176  return Block;
1177}
1178
1179CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1180  // FIXME: This isn't complete.  We basically treat @throw like a return
1181  //  statement.
1182
1183  // If we were in the middle of a block we stop processing that block.
1184  if (Block && !FinishBlock(Block))
1185    return 0;
1186
1187  // Create the new block.
1188  Block = createBlock(false);
1189
1190  // The Exit block is the only successor.
1191  Block->addSuccessor(&cfg->getExit());
1192
1193  // Add the statement to the block.  This may create new blocks if S contains
1194  // control-flow (short-circuit operations).
1195  return VisitStmt(S, true);
1196}
1197
1198CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1199  // If we were in the middle of a block we stop processing that block.
1200  if (Block && !FinishBlock(Block))
1201    return 0;
1202
1203  // Create the new block.
1204  Block = createBlock(false);
1205
1206  // The Exit block is the only successor.
1207  Block->addSuccessor(&cfg->getExit());
1208
1209  // Add the statement to the block.  This may create new blocks if S contains
1210  // control-flow (short-circuit operations).
1211  return VisitStmt(T, true);
1212}
1213
1214CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1215  CFGBlock* LoopSuccessor = NULL;
1216
1217  // "do...while" is a control-flow statement.  Thus we stop processing the
1218  // current block.
1219  if (Block) {
1220    if (!FinishBlock(Block))
1221      return 0;
1222    LoopSuccessor = Block;
1223  } else
1224    LoopSuccessor = Succ;
1225
1226  // Because of short-circuit evaluation, the condition of the loop can span
1227  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1228  // evaluate the condition.
1229  CFGBlock* ExitConditionBlock = createBlock(false);
1230  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1231
1232  // Set the terminator for the "exit" condition block.
1233  ExitConditionBlock->setTerminator(D);
1234
1235  // Now add the actual condition to the condition block.  Because the condition
1236  // itself may contain control-flow, new blocks may be created.
1237  if (Stmt* C = D->getCond()) {
1238    Block = ExitConditionBlock;
1239    EntryConditionBlock = addStmt(C);
1240    if (Block) {
1241      if (!FinishBlock(EntryConditionBlock))
1242        return 0;
1243    }
1244  }
1245
1246  // The condition block is the implicit successor for the loop body.
1247  Succ = EntryConditionBlock;
1248
1249  // See if this is a known constant.
1250  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1251
1252  // Process the loop body.
1253  CFGBlock* BodyBlock = NULL;
1254  {
1255    assert (D->getBody());
1256
1257    // Save the current values for Block, Succ, and continue and break targets
1258    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
1259    save_continue(ContinueTargetBlock),
1260    save_break(BreakTargetBlock);
1261
1262    // All continues within this loop should go to the condition block
1263    ContinueTargetBlock = EntryConditionBlock;
1264
1265    // All breaks should go to the code following the loop.
1266    BreakTargetBlock = LoopSuccessor;
1267
1268    // NULL out Block to force lazy instantiation of blocks for the body.
1269    Block = NULL;
1270
1271    // Create the body.  The returned block is the entry to the loop body.
1272    BodyBlock = addStmt(D->getBody());
1273
1274    if (!BodyBlock)
1275      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1276    else if (Block) {
1277      if (!FinishBlock(BodyBlock))
1278        return 0;
1279    }
1280
1281    // Add an intermediate block between the BodyBlock and the
1282    // ExitConditionBlock to represent the "loop back" transition.  Create an
1283    // empty block to represent the transition block for looping back to the
1284    // head of the loop.
1285    // FIXME: Can we do this more efficiently without adding another block?
1286    Block = NULL;
1287    Succ = BodyBlock;
1288    CFGBlock *LoopBackBlock = createBlock();
1289    LoopBackBlock->setLoopTarget(D);
1290
1291    // Add the loop body entry as a successor to the condition.
1292    ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : LoopBackBlock);
1293  }
1294
1295  // Link up the condition block with the code that follows the loop.
1296  // (the false branch).
1297  ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor);
1298
1299  // There can be no more statements in the body block(s) since we loop back to
1300  // the body.  NULL out Block to force lazy creation of another block.
1301  Block = NULL;
1302
1303  // Return the loop body, which is the dominating block for the loop.
1304  Succ = BodyBlock;
1305  return BodyBlock;
1306}
1307
1308CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1309  // "continue" is a control-flow statement.  Thus we stop processing the
1310  // current block.
1311  if (Block && !FinishBlock(Block))
1312      return 0;
1313
1314  // Now create a new block that ends with the continue statement.
1315  Block = createBlock(false);
1316  Block->setTerminator(C);
1317
1318  // If there is no target for the continue, then we are looking at an
1319  // incomplete AST.  This means the CFG cannot be constructed.
1320  if (ContinueTargetBlock)
1321    Block->addSuccessor(ContinueTargetBlock);
1322  else
1323    badCFG = true;
1324
1325  return Block;
1326}
1327
1328CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1329                                             bool alwaysAdd) {
1330
1331  if (alwaysAdd) {
1332    autoCreateBlock();
1333    Block->appendStmt(E);
1334  }
1335
1336  // VLA types have expressions that must be evaluated.
1337  if (E->isArgumentType()) {
1338    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1339         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1340      addStmt(VA->getSizeExpr());
1341  }
1342
1343  return Block;
1344}
1345
1346/// VisitStmtExpr - Utility method to handle (nested) statement
1347///  expressions (a GCC extension).
1348CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, bool alwaysAdd) {
1349  if (alwaysAdd) {
1350    autoCreateBlock();
1351    Block->appendStmt(SE);
1352  }
1353  return VisitCompoundStmt(SE->getSubStmt());
1354}
1355
1356CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1357  // "switch" is a control-flow statement.  Thus we stop processing the current
1358  // block.
1359  CFGBlock* SwitchSuccessor = NULL;
1360
1361  if (Block) {
1362    if (!FinishBlock(Block))
1363      return 0;
1364    SwitchSuccessor = Block;
1365  } else SwitchSuccessor = Succ;
1366
1367  // Save the current "switch" context.
1368  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1369                            save_break(BreakTargetBlock),
1370                            save_default(DefaultCaseBlock);
1371
1372  // Set the "default" case to be the block after the switch statement.  If the
1373  // switch statement contains a "default:", this value will be overwritten with
1374  // the block for that code.
1375  DefaultCaseBlock = SwitchSuccessor;
1376
1377  // Create a new block that will contain the switch statement.
1378  SwitchTerminatedBlock = createBlock(false);
1379
1380  // Now process the switch body.  The code after the switch is the implicit
1381  // successor.
1382  Succ = SwitchSuccessor;
1383  BreakTargetBlock = SwitchSuccessor;
1384
1385  // When visiting the body, the case statements should automatically get linked
1386  // up to the switch.  We also don't keep a pointer to the body, since all
1387  // control-flow from the switch goes to case/default statements.
1388  assert (Terminator->getBody() && "switch must contain a non-NULL body");
1389  Block = NULL;
1390  CFGBlock *BodyBlock = addStmt(Terminator->getBody());
1391  if (Block) {
1392    if (!FinishBlock(BodyBlock))
1393      return 0;
1394  }
1395
1396  // If we have no "default:" case, the default transition is to the code
1397  // following the switch body.
1398  SwitchTerminatedBlock->addSuccessor(DefaultCaseBlock);
1399
1400  // Add the terminator and condition in the switch block.
1401  SwitchTerminatedBlock->setTerminator(Terminator);
1402  assert (Terminator->getCond() && "switch condition must be non-NULL");
1403  Block = SwitchTerminatedBlock;
1404
1405  return addStmt(Terminator->getCond());
1406}
1407
1408CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1409  // CaseStmts are essentially labels, so they are the first statement in a
1410  // block.
1411
1412  if (CS->getSubStmt())
1413    addStmt(CS->getSubStmt());
1414
1415  CFGBlock* CaseBlock = Block;
1416  if (!CaseBlock)
1417    CaseBlock = createBlock();
1418
1419  // Cases statements partition blocks, so this is the top of the basic block we
1420  // were processing (the "case XXX:" is the label).
1421  CaseBlock->setLabel(CS);
1422
1423  if (!FinishBlock(CaseBlock))
1424    return 0;
1425
1426  // Add this block to the list of successors for the block with the switch
1427  // statement.
1428  assert(SwitchTerminatedBlock);
1429  SwitchTerminatedBlock->addSuccessor(CaseBlock);
1430
1431  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1432  Block = NULL;
1433
1434  // This block is now the implicit successor of other blocks.
1435  Succ = CaseBlock;
1436
1437  return CaseBlock;
1438}
1439
1440CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1441  if (Terminator->getSubStmt())
1442    addStmt(Terminator->getSubStmt());
1443
1444  DefaultCaseBlock = Block;
1445
1446  if (!DefaultCaseBlock)
1447    DefaultCaseBlock = createBlock();
1448
1449  // Default statements partition blocks, so this is the top of the basic block
1450  // we were processing (the "default:" is the label).
1451  DefaultCaseBlock->setLabel(Terminator);
1452
1453  if (!FinishBlock(DefaultCaseBlock))
1454    return 0;
1455
1456  // Unlike case statements, we don't add the default block to the successors
1457  // for the switch statement immediately.  This is done when we finish
1458  // processing the switch statement.  This allows for the default case
1459  // (including a fall-through to the code after the switch statement) to always
1460  // be the last successor of a switch-terminated block.
1461
1462  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1463  Block = NULL;
1464
1465  // This block is now the implicit successor of other blocks.
1466  Succ = DefaultCaseBlock;
1467
1468  return DefaultCaseBlock;
1469}
1470
1471CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1472  // Lazily create the indirect-goto dispatch block if there isn't one already.
1473  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
1474
1475  if (!IBlock) {
1476    IBlock = createBlock(false);
1477    cfg->setIndirectGotoBlock(IBlock);
1478  }
1479
1480  // IndirectGoto is a control-flow statement.  Thus we stop processing the
1481  // current block and create a new one.
1482  if (Block && !FinishBlock(Block))
1483    return 0;
1484
1485  Block = createBlock(false);
1486  Block->setTerminator(I);
1487  Block->addSuccessor(IBlock);
1488  return addStmt(I->getTarget());
1489}
1490
1491} // end anonymous namespace
1492
1493/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
1494///  no successors or predecessors.  If this is the first block created in the
1495///  CFG, it is automatically set to be the Entry and Exit of the CFG.
1496CFGBlock* CFG::createBlock() {
1497  bool first_block = begin() == end();
1498
1499  // Create the block.
1500  Blocks.push_front(CFGBlock(NumBlockIDs++));
1501
1502  // If this is the first block, set it as the Entry and Exit.
1503  if (first_block) Entry = Exit = &front();
1504
1505  // Return the block.
1506  return &front();
1507}
1508
1509/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
1510///  CFG is returned to the caller.
1511CFG* CFG::buildCFG(Stmt* Statement, ASTContext *C) {
1512  CFGBuilder Builder;
1513  return Builder.buildCFG(Statement, C);
1514}
1515
1516//===----------------------------------------------------------------------===//
1517// CFG: Queries for BlkExprs.
1518//===----------------------------------------------------------------------===//
1519
1520namespace {
1521  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
1522}
1523
1524static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) {
1525  if (!Terminator)
1526    return;
1527
1528  for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) {
1529    if (!*I) continue;
1530
1531    if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I))
1532      if (B->isAssignmentOp()) Set.insert(B);
1533
1534    FindSubExprAssignments(*I, Set);
1535  }
1536}
1537
1538static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
1539  BlkExprMapTy* M = new BlkExprMapTy();
1540
1541  // Look for assignments that are used as subexpressions.  These are the only
1542  // assignments that we want to *possibly* register as a block-level
1543  // expression.  Basically, if an assignment occurs both in a subexpression and
1544  // at the block-level, it is a block-level expression.
1545  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
1546
1547  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
1548    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
1549      FindSubExprAssignments(*BI, SubExprAssignments);
1550
1551  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
1552
1553    // Iterate over the statements again on identify the Expr* and Stmt* at the
1554    // block-level that are block-level expressions.
1555
1556    for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI)
1557      if (Expr* Exp = dyn_cast<Expr>(*BI)) {
1558
1559        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
1560          // Assignment expressions that are not nested within another
1561          // expression are really "statements" whose value is never used by
1562          // another expression.
1563          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
1564            continue;
1565        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
1566          // Special handling for statement expressions.  The last statement in
1567          // the statement expression is also a block-level expr.
1568          const CompoundStmt* C = Terminator->getSubStmt();
1569          if (!C->body_empty()) {
1570            unsigned x = M->size();
1571            (*M)[C->body_back()] = x;
1572          }
1573        }
1574
1575        unsigned x = M->size();
1576        (*M)[Exp] = x;
1577      }
1578
1579    // Look at terminators.  The condition is a block-level expression.
1580
1581    Stmt* S = I->getTerminatorCondition();
1582
1583    if (S && M->find(S) == M->end()) {
1584        unsigned x = M->size();
1585        (*M)[S] = x;
1586    }
1587  }
1588
1589  return M;
1590}
1591
1592CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
1593  assert(S != NULL);
1594  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
1595
1596  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
1597  BlkExprMapTy::iterator I = M->find(S);
1598
1599  if (I == M->end()) return CFG::BlkExprNumTy();
1600  else return CFG::BlkExprNumTy(I->second);
1601}
1602
1603unsigned CFG::getNumBlkExprs() {
1604  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
1605    return M->size();
1606  else {
1607    // We assume callers interested in the number of BlkExprs will want
1608    // the map constructed if it doesn't already exist.
1609    BlkExprMap = (void*) PopulateBlkExprMap(*this);
1610    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
1611  }
1612}
1613
1614//===----------------------------------------------------------------------===//
1615// Cleanup: CFG dstor.
1616//===----------------------------------------------------------------------===//
1617
1618CFG::~CFG() {
1619  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
1620}
1621
1622//===----------------------------------------------------------------------===//
1623// CFG pretty printing
1624//===----------------------------------------------------------------------===//
1625
1626namespace {
1627
1628class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper  {
1629
1630  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
1631  StmtMapTy StmtMap;
1632  signed CurrentBlock;
1633  unsigned CurrentStmt;
1634  const LangOptions &LangOpts;
1635public:
1636
1637  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
1638    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
1639    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
1640      unsigned j = 1;
1641      for (CFGBlock::const_iterator BI = I->begin(), BEnd = I->end() ;
1642           BI != BEnd; ++BI, ++j )
1643        StmtMap[*BI] = std::make_pair(I->getBlockID(),j);
1644      }
1645  }
1646
1647  virtual ~StmtPrinterHelper() {}
1648
1649  const LangOptions &getLangOpts() const { return LangOpts; }
1650  void setBlockID(signed i) { CurrentBlock = i; }
1651  void setStmtID(unsigned i) { CurrentStmt = i; }
1652
1653  virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
1654
1655    StmtMapTy::iterator I = StmtMap.find(Terminator);
1656
1657    if (I == StmtMap.end())
1658      return false;
1659
1660    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
1661                          && I->second.second == CurrentStmt)
1662      return false;
1663
1664      OS << "[B" << I->second.first << "." << I->second.second << "]";
1665    return true;
1666  }
1667};
1668} // end anonymous namespace
1669
1670
1671namespace {
1672class VISIBILITY_HIDDEN CFGBlockTerminatorPrint
1673  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
1674
1675  llvm::raw_ostream& OS;
1676  StmtPrinterHelper* Helper;
1677  PrintingPolicy Policy;
1678
1679public:
1680  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
1681                          const PrintingPolicy &Policy)
1682    : OS(os), Helper(helper), Policy(Policy) {}
1683
1684  void VisitIfStmt(IfStmt* I) {
1685    OS << "if ";
1686    I->getCond()->printPretty(OS,Helper,Policy);
1687  }
1688
1689  // Default case.
1690  void VisitStmt(Stmt* Terminator) {
1691    Terminator->printPretty(OS, Helper, Policy);
1692  }
1693
1694  void VisitForStmt(ForStmt* F) {
1695    OS << "for (" ;
1696    if (F->getInit()) OS << "...";
1697    OS << "; ";
1698    if (Stmt* C = F->getCond()) C->printPretty(OS, Helper, Policy);
1699    OS << "; ";
1700    if (F->getInc()) OS << "...";
1701    OS << ")";
1702  }
1703
1704  void VisitWhileStmt(WhileStmt* W) {
1705    OS << "while " ;
1706    if (Stmt* C = W->getCond()) C->printPretty(OS, Helper, Policy);
1707  }
1708
1709  void VisitDoStmt(DoStmt* D) {
1710    OS << "do ... while ";
1711    if (Stmt* C = D->getCond()) C->printPretty(OS, Helper, Policy);
1712  }
1713
1714  void VisitSwitchStmt(SwitchStmt* Terminator) {
1715    OS << "switch ";
1716    Terminator->getCond()->printPretty(OS, Helper, Policy);
1717  }
1718
1719  void VisitConditionalOperator(ConditionalOperator* C) {
1720    C->getCond()->printPretty(OS, Helper, Policy);
1721    OS << " ? ... : ...";
1722  }
1723
1724  void VisitChooseExpr(ChooseExpr* C) {
1725    OS << "__builtin_choose_expr( ";
1726    C->getCond()->printPretty(OS, Helper, Policy);
1727    OS << " )";
1728  }
1729
1730  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
1731    OS << "goto *";
1732    I->getTarget()->printPretty(OS, Helper, Policy);
1733  }
1734
1735  void VisitBinaryOperator(BinaryOperator* B) {
1736    if (!B->isLogicalOp()) {
1737      VisitExpr(B);
1738      return;
1739    }
1740
1741    B->getLHS()->printPretty(OS, Helper, Policy);
1742
1743    switch (B->getOpcode()) {
1744      case BinaryOperator::LOr:
1745        OS << " || ...";
1746        return;
1747      case BinaryOperator::LAnd:
1748        OS << " && ...";
1749        return;
1750      default:
1751        assert(false && "Invalid logical operator.");
1752    }
1753  }
1754
1755  void VisitExpr(Expr* E) {
1756    E->printPretty(OS, Helper, Policy);
1757  }
1758};
1759} // end anonymous namespace
1760
1761
1762static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
1763                       Stmt* Terminator) {
1764  if (Helper) {
1765    // special printing for statement-expressions.
1766    if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) {
1767      CompoundStmt* Sub = SE->getSubStmt();
1768
1769      if (Sub->child_begin() != Sub->child_end()) {
1770        OS << "({ ... ; ";
1771        Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
1772        OS << " })\n";
1773        return;
1774      }
1775    }
1776
1777    // special printing for comma expressions.
1778    if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) {
1779      if (B->getOpcode() == BinaryOperator::Comma) {
1780        OS << "... , ";
1781        Helper->handledStmt(B->getRHS(),OS);
1782        OS << '\n';
1783        return;
1784      }
1785    }
1786  }
1787
1788  Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
1789
1790  // Expressions need a newline.
1791  if (isa<Expr>(Terminator)) OS << '\n';
1792}
1793
1794static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
1795                        const CFGBlock& B,
1796                        StmtPrinterHelper* Helper, bool print_edges) {
1797
1798  if (Helper) Helper->setBlockID(B.getBlockID());
1799
1800  // Print the header.
1801  OS << "\n [ B" << B.getBlockID();
1802
1803  if (&B == &cfg->getEntry())
1804    OS << " (ENTRY) ]\n";
1805  else if (&B == &cfg->getExit())
1806    OS << " (EXIT) ]\n";
1807  else if (&B == cfg->getIndirectGotoBlock())
1808    OS << " (INDIRECT GOTO DISPATCH) ]\n";
1809  else
1810    OS << " ]\n";
1811
1812  // Print the label of this block.
1813  if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) {
1814
1815    if (print_edges)
1816      OS << "    ";
1817
1818    if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator))
1819      OS << L->getName();
1820    else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) {
1821      OS << "case ";
1822      C->getLHS()->printPretty(OS, Helper,
1823                               PrintingPolicy(Helper->getLangOpts()));
1824      if (C->getRHS()) {
1825        OS << " ... ";
1826        C->getRHS()->printPretty(OS, Helper,
1827                                 PrintingPolicy(Helper->getLangOpts()));
1828      }
1829    } else if (isa<DefaultStmt>(Terminator))
1830      OS << "default";
1831    else
1832      assert(false && "Invalid label statement in CFGBlock.");
1833
1834    OS << ":\n";
1835  }
1836
1837  // Iterate through the statements in the block and print them.
1838  unsigned j = 1;
1839
1840  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
1841       I != E ; ++I, ++j ) {
1842
1843    // Print the statement # in the basic block and the statement itself.
1844    if (print_edges)
1845      OS << "    ";
1846
1847    OS << llvm::format("%3d", j) << ": ";
1848
1849    if (Helper)
1850      Helper->setStmtID(j);
1851
1852    print_stmt(OS,Helper,*I);
1853  }
1854
1855  // Print the terminator of this block.
1856  if (B.getTerminator()) {
1857    if (print_edges)
1858      OS << "    ";
1859
1860    OS << "  T: ";
1861
1862    if (Helper) Helper->setBlockID(-1);
1863
1864    CFGBlockTerminatorPrint TPrinter(OS, Helper,
1865                                     PrintingPolicy(Helper->getLangOpts()));
1866    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
1867    OS << '\n';
1868  }
1869
1870  if (print_edges) {
1871    // Print the predecessors of this block.
1872    OS << "    Predecessors (" << B.pred_size() << "):";
1873    unsigned i = 0;
1874
1875    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
1876         I != E; ++I, ++i) {
1877
1878      if (i == 8 || (i-8) == 0)
1879        OS << "\n     ";
1880
1881      OS << " B" << (*I)->getBlockID();
1882    }
1883
1884    OS << '\n';
1885
1886    // Print the successors of this block.
1887    OS << "    Successors (" << B.succ_size() << "):";
1888    i = 0;
1889
1890    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
1891         I != E; ++I, ++i) {
1892
1893      if (i == 8 || (i-8) % 10 == 0)
1894        OS << "\n    ";
1895
1896      if (*I)
1897        OS << " B" << (*I)->getBlockID();
1898      else
1899        OS  << " NULL";
1900    }
1901
1902    OS << '\n';
1903  }
1904}
1905
1906
1907/// dump - A simple pretty printer of a CFG that outputs to stderr.
1908void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
1909
1910/// print - A simple pretty printer of a CFG that outputs to an ostream.
1911void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
1912  StmtPrinterHelper Helper(this, LO);
1913
1914  // Print the entry block.
1915  print_block(OS, this, getEntry(), &Helper, true);
1916
1917  // Iterate through the CFGBlocks and print them one by one.
1918  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
1919    // Skip the entry block, because we already printed it.
1920    if (&(*I) == &getEntry() || &(*I) == &getExit())
1921      continue;
1922
1923    print_block(OS, this, *I, &Helper, true);
1924  }
1925
1926  // Print the exit block.
1927  print_block(OS, this, getExit(), &Helper, true);
1928  OS.flush();
1929}
1930
1931/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
1932void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
1933  print(llvm::errs(), cfg, LO);
1934}
1935
1936/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
1937///   Generally this will only be called from CFG::print.
1938void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
1939                     const LangOptions &LO) const {
1940  StmtPrinterHelper Helper(cfg, LO);
1941  print_block(OS, cfg, *this, &Helper, true);
1942}
1943
1944/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
1945void CFGBlock::printTerminator(llvm::raw_ostream &OS,
1946                               const LangOptions &LO) const {
1947  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
1948  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
1949}
1950
1951Stmt* CFGBlock::getTerminatorCondition() {
1952
1953  if (!Terminator)
1954    return NULL;
1955
1956  Expr* E = NULL;
1957
1958  switch (Terminator->getStmtClass()) {
1959    default:
1960      break;
1961
1962    case Stmt::ForStmtClass:
1963      E = cast<ForStmt>(Terminator)->getCond();
1964      break;
1965
1966    case Stmt::WhileStmtClass:
1967      E = cast<WhileStmt>(Terminator)->getCond();
1968      break;
1969
1970    case Stmt::DoStmtClass:
1971      E = cast<DoStmt>(Terminator)->getCond();
1972      break;
1973
1974    case Stmt::IfStmtClass:
1975      E = cast<IfStmt>(Terminator)->getCond();
1976      break;
1977
1978    case Stmt::ChooseExprClass:
1979      E = cast<ChooseExpr>(Terminator)->getCond();
1980      break;
1981
1982    case Stmt::IndirectGotoStmtClass:
1983      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
1984      break;
1985
1986    case Stmt::SwitchStmtClass:
1987      E = cast<SwitchStmt>(Terminator)->getCond();
1988      break;
1989
1990    case Stmt::ConditionalOperatorClass:
1991      E = cast<ConditionalOperator>(Terminator)->getCond();
1992      break;
1993
1994    case Stmt::BinaryOperatorClass: // '&&' and '||'
1995      E = cast<BinaryOperator>(Terminator)->getLHS();
1996      break;
1997
1998    case Stmt::ObjCForCollectionStmtClass:
1999      return Terminator;
2000  }
2001
2002  return E ? E->IgnoreParens() : NULL;
2003}
2004
2005bool CFGBlock::hasBinaryBranchTerminator() const {
2006
2007  if (!Terminator)
2008    return false;
2009
2010  Expr* E = NULL;
2011
2012  switch (Terminator->getStmtClass()) {
2013    default:
2014      return false;
2015
2016    case Stmt::ForStmtClass:
2017    case Stmt::WhileStmtClass:
2018    case Stmt::DoStmtClass:
2019    case Stmt::IfStmtClass:
2020    case Stmt::ChooseExprClass:
2021    case Stmt::ConditionalOperatorClass:
2022    case Stmt::BinaryOperatorClass:
2023      return true;
2024  }
2025
2026  return E ? E->IgnoreParens() : NULL;
2027}
2028
2029
2030//===----------------------------------------------------------------------===//
2031// CFG Graphviz Visualization
2032//===----------------------------------------------------------------------===//
2033
2034
2035#ifndef NDEBUG
2036static StmtPrinterHelper* GraphHelper;
2037#endif
2038
2039void CFG::viewCFG(const LangOptions &LO) const {
2040#ifndef NDEBUG
2041  StmtPrinterHelper H(this, LO);
2042  GraphHelper = &H;
2043  llvm::ViewGraph(this,"CFG");
2044  GraphHelper = NULL;
2045#endif
2046}
2047
2048namespace llvm {
2049template<>
2050struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2051  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph,
2052                                  bool ShortNames) {
2053
2054#ifndef NDEBUG
2055    std::string OutSStr;
2056    llvm::raw_string_ostream Out(OutSStr);
2057    print_block(Out,Graph, *Node, GraphHelper, false);
2058    std::string& OutStr = Out.str();
2059
2060    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2061
2062    // Process string output to make it nicer...
2063    for (unsigned i = 0; i != OutStr.length(); ++i)
2064      if (OutStr[i] == '\n') {                            // Left justify
2065        OutStr[i] = '\\';
2066        OutStr.insert(OutStr.begin()+i+1, 'l');
2067      }
2068
2069    return OutStr;
2070#else
2071    return "";
2072#endif
2073  }
2074};
2075} // end namespace llvm
2076