CFG.cpp revision 7acf4bf00ecc31652177b3ac1d3f523346581d71
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt *G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt *R);
347  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
348  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
349                                          AddStmtChoice asc);
350  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
351  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
352  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
353  CFGBlock *VisitWhileStmt(WhileStmt *W);
354
355  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
356  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
357  CFGBlock *VisitChildren(Stmt *S);
358
359  // Visitors to walk an AST and generate destructors of temporaries in
360  // full expression.
361  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
362  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
363  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
364  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
365      bool BindToTemporary);
366  CFGBlock *
367  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
368                                            bool BindToTemporary);
369
370  // NYS == Not Yet Supported
371  CFGBlock *NYS() {
372    badCFG = true;
373    return Block;
374  }
375
376  void autoCreateBlock() { if (!Block) Block = createBlock(); }
377  CFGBlock *createBlock(bool add_successor = true);
378  CFGBlock *createNoReturnBlock();
379
380  CFGBlock *addStmt(Stmt *S) {
381    return Visit(S, AddStmtChoice::AlwaysAdd);
382  }
383  CFGBlock *addInitializer(CXXCtorInitializer *I);
384  void addAutomaticObjDtors(LocalScope::const_iterator B,
385                            LocalScope::const_iterator E, Stmt *S);
386  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
387
388  // Local scopes creation.
389  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
390
391  void addLocalScopeForStmt(Stmt *S);
392  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
393  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
394
395  void addLocalScopeAndDtors(Stmt *S);
396
397  // Interface to CFGBlock - adding CFGElements.
398  void appendStmt(CFGBlock *B, const Stmt *S) {
399    if (alwaysAdd(S) && cachedEntry)
400      cachedEntry->second = B;
401
402    // All block-level expressions should have already been IgnoreParens()ed.
403    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
404    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
405  }
406  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
407    B->appendInitializer(I, cfg->getBumpVectorContext());
408  }
409  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
410    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
411  }
412  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
413    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
414  }
415  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
416    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
417  }
418  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
419    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
420  }
421
422  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
423      LocalScope::const_iterator B, LocalScope::const_iterator E);
424
425  void addSuccessor(CFGBlock *B, CFGBlock *S) {
426    B->addSuccessor(S, cfg->getBumpVectorContext());
427  }
428
429  /// Try and evaluate an expression to an integer constant.
430  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
431    if (!BuildOpts.PruneTriviallyFalseEdges)
432      return false;
433    return !S->isTypeDependent() &&
434           !S->isValueDependent() &&
435           S->EvaluateAsRValue(outResult, *Context);
436  }
437
438  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
439  /// if we can evaluate to a known value, otherwise return -1.
440  TryResult tryEvaluateBool(Expr *S) {
441    bool Result;
442    if (!BuildOpts.PruneTriviallyFalseEdges ||
443        S->isTypeDependent() || S->isValueDependent() ||
444        !S->EvaluateAsBooleanCondition(Result, *Context))
445      return TryResult();
446    return Result;
447  }
448
449};
450
451inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
452                                     const Stmt *stmt) const {
453  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
454}
455
456bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
457  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
458
459  if (!BuildOpts.forcedBlkExprs)
460    return shouldAdd;
461
462  if (lastLookup == stmt) {
463    if (cachedEntry) {
464      assert(cachedEntry->first == stmt);
465      return true;
466    }
467    return shouldAdd;
468  }
469
470  lastLookup = stmt;
471
472  // Perform the lookup!
473  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
474
475  if (!fb) {
476    // No need to update 'cachedEntry', since it will always be null.
477    assert(cachedEntry == 0);
478    return shouldAdd;
479  }
480
481  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
482  if (itr == fb->end()) {
483    cachedEntry = 0;
484    return shouldAdd;
485  }
486
487  cachedEntry = &*itr;
488  return true;
489}
490
491// FIXME: Add support for dependent-sized array types in C++?
492// Does it even make sense to build a CFG for an uninstantiated template?
493static const VariableArrayType *FindVA(const Type *t) {
494  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
495    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
496      if (vat->getSizeExpr())
497        return vat;
498
499    t = vt->getElementType().getTypePtr();
500  }
501
502  return 0;
503}
504
505/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
506///  arbitrary statement.  Examples include a single expression or a function
507///  body (compound statement).  The ownership of the returned CFG is
508///  transferred to the caller.  If CFG construction fails, this method returns
509///  NULL.
510CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
511  assert(cfg.get());
512  if (!Statement)
513    return NULL;
514
515  // Create an empty block that will serve as the exit block for the CFG.  Since
516  // this is the first block added to the CFG, it will be implicitly registered
517  // as the exit block.
518  Succ = createBlock();
519  assert(Succ == &cfg->getExit());
520  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
521
522  if (BuildOpts.AddImplicitDtors)
523    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
524      addImplicitDtorsForDestructor(DD);
525
526  // Visit the statements and create the CFG.
527  CFGBlock *B = addStmt(Statement);
528
529  if (badCFG)
530    return NULL;
531
532  // For C++ constructor add initializers to CFG.
533  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
534    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
535        E = CD->init_rend(); I != E; ++I) {
536      B = addInitializer(*I);
537      if (badCFG)
538        return NULL;
539    }
540  }
541
542  if (B)
543    Succ = B;
544
545  // Backpatch the gotos whose label -> block mappings we didn't know when we
546  // encountered them.
547  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
548                                   E = BackpatchBlocks.end(); I != E; ++I ) {
549
550    CFGBlock *B = I->block;
551    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
552    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
553
554    // If there is no target for the goto, then we are looking at an
555    // incomplete AST.  Handle this by not registering a successor.
556    if (LI == LabelMap.end()) continue;
557
558    JumpTarget JT = LI->second;
559    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
560                                           JT.scopePosition);
561    addSuccessor(B, JT.block);
562  }
563
564  // Add successors to the Indirect Goto Dispatch block (if we have one).
565  if (CFGBlock *B = cfg->getIndirectGotoBlock())
566    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
567                              E = AddressTakenLabels.end(); I != E; ++I ) {
568
569      // Lookup the target block.
570      LabelMapTy::iterator LI = LabelMap.find(*I);
571
572      // If there is no target block that contains label, then we are looking
573      // at an incomplete AST.  Handle this by not registering a successor.
574      if (LI == LabelMap.end()) continue;
575
576      addSuccessor(B, LI->second.block);
577    }
578
579  // Create an empty entry block that has no predecessors.
580  cfg->setEntry(createBlock());
581
582  return cfg.take();
583}
584
585/// createBlock - Used to lazily create blocks that are connected
586///  to the current (global) succcessor.
587CFGBlock *CFGBuilder::createBlock(bool add_successor) {
588  CFGBlock *B = cfg->createBlock();
589  if (add_successor && Succ)
590    addSuccessor(B, Succ);
591  return B;
592}
593
594/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
595/// CFG. It is *not* connected to the current (global) successor, and instead
596/// directly tied to the exit block in order to be reachable.
597CFGBlock *CFGBuilder::createNoReturnBlock() {
598  CFGBlock *B = createBlock(false);
599  B->setHasNoReturnElement();
600  addSuccessor(B, &cfg->getExit());
601  return B;
602}
603
604/// addInitializer - Add C++ base or member initializer element to CFG.
605CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
606  if (!BuildOpts.AddInitializers)
607    return Block;
608
609  bool IsReference = false;
610  bool HasTemporaries = false;
611
612  // Destructors of temporaries in initialization expression should be called
613  // after initialization finishes.
614  Expr *Init = I->getInit();
615  if (Init) {
616    if (FieldDecl *FD = I->getAnyMember())
617      IsReference = FD->getType()->isReferenceType();
618    HasTemporaries = isa<ExprWithCleanups>(Init);
619
620    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
621      // Generate destructors for temporaries in initialization expression.
622      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
623          IsReference);
624    }
625  }
626
627  autoCreateBlock();
628  appendInitializer(Block, I);
629
630  if (Init) {
631    if (HasTemporaries) {
632      // For expression with temporaries go directly to subexpression to omit
633      // generating destructors for the second time.
634      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
635    }
636    return Visit(Init);
637  }
638
639  return Block;
640}
641
642/// addAutomaticObjDtors - Add to current block automatic objects destructors
643/// for objects in range of local scope positions. Use S as trigger statement
644/// for destructors.
645void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
646                                      LocalScope::const_iterator E, Stmt *S) {
647  if (!BuildOpts.AddImplicitDtors)
648    return;
649
650  if (B == E)
651    return;
652
653  CFGBlock::iterator InsertPos;
654
655  // We need to append the destructors in reverse order, but any one of them
656  // may be a no-return destructor which changes the CFG. As a result, buffer
657  // this sequence up and replay them in reverse order when appending onto the
658  // CFGBlock(s).
659  SmallVector<VarDecl*, 10> Decls;
660  Decls.reserve(B.distance(E));
661  for (LocalScope::const_iterator I = B; I != E; ++I)
662    Decls.push_back(*I);
663
664  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
665                                                   E = Decls.rend();
666       I != E; ++I) {
667    // If this destructor is marked as a no-return destructor, we need to
668    // create a new block for the destructor which does not have as a successor
669    // anything built thus far: control won't flow out of this block.
670    QualType Ty = (*I)->getType().getNonReferenceType();
671    if (const ArrayType *AT = Context->getAsArrayType(Ty))
672      Ty = AT->getElementType();
673    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
674    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
675      Block = createNoReturnBlock();
676    else
677      autoCreateBlock();
678
679    appendAutomaticObjDtor(Block, *I, S);
680  }
681}
682
683/// addImplicitDtorsForDestructor - Add implicit destructors generated for
684/// base and member objects in destructor.
685void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
686  assert (BuildOpts.AddImplicitDtors
687      && "Can be called only when dtors should be added");
688  const CXXRecordDecl *RD = DD->getParent();
689
690  // At the end destroy virtual base objects.
691  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
692      VE = RD->vbases_end(); VI != VE; ++VI) {
693    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
694    if (!CD->hasTrivialDestructor()) {
695      autoCreateBlock();
696      appendBaseDtor(Block, VI);
697    }
698  }
699
700  // Before virtual bases destroy direct base objects.
701  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
702      BE = RD->bases_end(); BI != BE; ++BI) {
703    if (!BI->isVirtual()) {
704      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
705      if (!CD->hasTrivialDestructor()) {
706        autoCreateBlock();
707        appendBaseDtor(Block, BI);
708      }
709    }
710  }
711
712  // First destroy member objects.
713  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
714      FE = RD->field_end(); FI != FE; ++FI) {
715    // Check for constant size array. Set type to array element type.
716    QualType QT = FI->getType();
717    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
718      if (AT->getSize() == 0)
719        continue;
720      QT = AT->getElementType();
721    }
722
723    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
724      if (!CD->hasTrivialDestructor()) {
725        autoCreateBlock();
726        appendMemberDtor(Block, *FI);
727      }
728  }
729}
730
731/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
732/// way return valid LocalScope object.
733LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
734  if (!Scope) {
735    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
736    Scope = alloc.Allocate<LocalScope>();
737    BumpVectorContext ctx(alloc);
738    new (Scope) LocalScope(ctx, ScopePos);
739  }
740  return Scope;
741}
742
743/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
744/// that should create implicit scope (e.g. if/else substatements).
745void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
746  if (!BuildOpts.AddImplicitDtors)
747    return;
748
749  LocalScope *Scope = 0;
750
751  // For compound statement we will be creating explicit scope.
752  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
753    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
754        ; BI != BE; ++BI) {
755      Stmt *SI = (*BI)->stripLabelLikeStatements();
756      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
757        Scope = addLocalScopeForDeclStmt(DS, Scope);
758    }
759    return;
760  }
761
762  // For any other statement scope will be implicit and as such will be
763  // interesting only for DeclStmt.
764  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
765    addLocalScopeForDeclStmt(DS);
766}
767
768/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
769/// reuse Scope if not NULL.
770LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
771                                                 LocalScope* Scope) {
772  if (!BuildOpts.AddImplicitDtors)
773    return Scope;
774
775  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
776      ; DI != DE; ++DI) {
777    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
778      Scope = addLocalScopeForVarDecl(VD, Scope);
779  }
780  return Scope;
781}
782
783/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
784/// create add scope for automatic objects and temporary objects bound to
785/// const reference. Will reuse Scope if not NULL.
786LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
787                                                LocalScope* Scope) {
788  if (!BuildOpts.AddImplicitDtors)
789    return Scope;
790
791  // Check if variable is local.
792  switch (VD->getStorageClass()) {
793  case SC_None:
794  case SC_Auto:
795  case SC_Register:
796    break;
797  default: return Scope;
798  }
799
800  // Check for const references bound to temporary. Set type to pointee.
801  QualType QT = VD->getType();
802  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
803    QT = RT->getPointeeType();
804    if (!QT.isConstQualified())
805      return Scope;
806    if (!VD->extendsLifetimeOfTemporary())
807      return Scope;
808  }
809
810  // Check for constant size array. Set type to array element type.
811  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
812    if (AT->getSize() == 0)
813      return Scope;
814    QT = AT->getElementType();
815  }
816
817  // Check if type is a C++ class with non-trivial destructor.
818  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
819    if (!CD->hasTrivialDestructor()) {
820      // Add the variable to scope
821      Scope = createOrReuseLocalScope(Scope);
822      Scope->addVar(VD);
823      ScopePos = Scope->begin();
824    }
825  return Scope;
826}
827
828/// addLocalScopeAndDtors - For given statement add local scope for it and
829/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
830void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
831  if (!BuildOpts.AddImplicitDtors)
832    return;
833
834  LocalScope::const_iterator scopeBeginPos = ScopePos;
835  addLocalScopeForStmt(S);
836  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
837}
838
839/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
840/// variables with automatic storage duration to CFGBlock's elements vector.
841/// Elements will be prepended to physical beginning of the vector which
842/// happens to be logical end. Use blocks terminator as statement that specifies
843/// destructors call site.
844/// FIXME: This mechanism for adding automatic destructors doesn't handle
845/// no-return destructors properly.
846void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
847    LocalScope::const_iterator B, LocalScope::const_iterator E) {
848  BumpVectorContext &C = cfg->getBumpVectorContext();
849  CFGBlock::iterator InsertPos
850    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
851  for (LocalScope::const_iterator I = B; I != E; ++I)
852    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
853                                            Blk->getTerminator());
854}
855
856/// Visit - Walk the subtree of a statement and add extra
857///   blocks for ternary operators, &&, and ||.  We also process "," and
858///   DeclStmts (which may contain nested control-flow).
859CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
860  if (!S) {
861    badCFG = true;
862    return 0;
863  }
864
865  if (Expr *E = dyn_cast<Expr>(S))
866    S = E->IgnoreParens();
867
868  switch (S->getStmtClass()) {
869    default:
870      return VisitStmt(S, asc);
871
872    case Stmt::AddrLabelExprClass:
873      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
874
875    case Stmt::BinaryConditionalOperatorClass:
876      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
877
878    case Stmt::BinaryOperatorClass:
879      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
880
881    case Stmt::BlockExprClass:
882      return VisitBlockExpr(cast<BlockExpr>(S), asc);
883
884    case Stmt::BreakStmtClass:
885      return VisitBreakStmt(cast<BreakStmt>(S));
886
887    case Stmt::CallExprClass:
888    case Stmt::CXXOperatorCallExprClass:
889    case Stmt::CXXMemberCallExprClass:
890      return VisitCallExpr(cast<CallExpr>(S), asc);
891
892    case Stmt::CaseStmtClass:
893      return VisitCaseStmt(cast<CaseStmt>(S));
894
895    case Stmt::ChooseExprClass:
896      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
897
898    case Stmt::CompoundStmtClass:
899      return VisitCompoundStmt(cast<CompoundStmt>(S));
900
901    case Stmt::ConditionalOperatorClass:
902      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
903
904    case Stmt::ContinueStmtClass:
905      return VisitContinueStmt(cast<ContinueStmt>(S));
906
907    case Stmt::CXXCatchStmtClass:
908      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
909
910    case Stmt::ExprWithCleanupsClass:
911      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
912
913    case Stmt::CXXBindTemporaryExprClass:
914      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
915
916    case Stmt::CXXConstructExprClass:
917      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
918
919    case Stmt::CXXFunctionalCastExprClass:
920      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
921
922    case Stmt::CXXTemporaryObjectExprClass:
923      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
924
925    case Stmt::CXXThrowExprClass:
926      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
927
928    case Stmt::CXXTryStmtClass:
929      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
930
931    case Stmt::CXXForRangeStmtClass:
932      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
933
934    case Stmt::DeclStmtClass:
935      return VisitDeclStmt(cast<DeclStmt>(S));
936
937    case Stmt::DefaultStmtClass:
938      return VisitDefaultStmt(cast<DefaultStmt>(S));
939
940    case Stmt::DoStmtClass:
941      return VisitDoStmt(cast<DoStmt>(S));
942
943    case Stmt::ForStmtClass:
944      return VisitForStmt(cast<ForStmt>(S));
945
946    case Stmt::GotoStmtClass:
947      return VisitGotoStmt(cast<GotoStmt>(S));
948
949    case Stmt::IfStmtClass:
950      return VisitIfStmt(cast<IfStmt>(S));
951
952    case Stmt::ImplicitCastExprClass:
953      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
954
955    case Stmt::IndirectGotoStmtClass:
956      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
957
958    case Stmt::LabelStmtClass:
959      return VisitLabelStmt(cast<LabelStmt>(S));
960
961    case Stmt::MemberExprClass:
962      return VisitMemberExpr(cast<MemberExpr>(S), asc);
963
964    case Stmt::NullStmtClass:
965      return Block;
966
967    case Stmt::ObjCAtCatchStmtClass:
968      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
969
970    case Stmt::ObjCAtSynchronizedStmtClass:
971      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
972
973    case Stmt::ObjCAtThrowStmtClass:
974      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
975
976    case Stmt::ObjCAtTryStmtClass:
977      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
978
979    case Stmt::ObjCForCollectionStmtClass:
980      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
981
982    case Stmt::OpaqueValueExprClass:
983      return Block;
984
985    case Stmt::PseudoObjectExprClass:
986      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
987
988    case Stmt::ReturnStmtClass:
989      return VisitReturnStmt(cast<ReturnStmt>(S));
990
991    case Stmt::UnaryExprOrTypeTraitExprClass:
992      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
993                                           asc);
994
995    case Stmt::StmtExprClass:
996      return VisitStmtExpr(cast<StmtExpr>(S), asc);
997
998    case Stmt::SwitchStmtClass:
999      return VisitSwitchStmt(cast<SwitchStmt>(S));
1000
1001    case Stmt::UnaryOperatorClass:
1002      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1003
1004    case Stmt::WhileStmtClass:
1005      return VisitWhileStmt(cast<WhileStmt>(S));
1006  }
1007}
1008
1009CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1010  if (asc.alwaysAdd(*this, S)) {
1011    autoCreateBlock();
1012    appendStmt(Block, S);
1013  }
1014
1015  return VisitChildren(S);
1016}
1017
1018/// VisitChildren - Visit the children of a Stmt.
1019CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1020  CFGBlock *lastBlock = Block;
1021  for (Stmt::child_range I = Terminator->children(); I; ++I)
1022    if (Stmt *child = *I)
1023      if (CFGBlock *b = Visit(child))
1024        lastBlock = b;
1025
1026  return lastBlock;
1027}
1028
1029CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1030                                         AddStmtChoice asc) {
1031  AddressTakenLabels.insert(A->getLabel());
1032
1033  if (asc.alwaysAdd(*this, A)) {
1034    autoCreateBlock();
1035    appendStmt(Block, A);
1036  }
1037
1038  return Block;
1039}
1040
1041CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1042           AddStmtChoice asc) {
1043  if (asc.alwaysAdd(*this, U)) {
1044    autoCreateBlock();
1045    appendStmt(Block, U);
1046  }
1047
1048  return Visit(U->getSubExpr(), AddStmtChoice());
1049}
1050
1051CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1052                                          AddStmtChoice asc) {
1053  if (B->isLogicalOp()) { // && or ||
1054    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1055    appendStmt(ConfluenceBlock, B);
1056
1057    if (badCFG)
1058      return 0;
1059
1060    // create the block evaluating the LHS
1061    CFGBlock *LHSBlock = createBlock(false);
1062    LHSBlock->setTerminator(B);
1063
1064    // create the block evaluating the RHS
1065    Succ = ConfluenceBlock;
1066    Block = NULL;
1067    CFGBlock *RHSBlock = addStmt(B->getRHS());
1068
1069    if (RHSBlock) {
1070      if (badCFG)
1071        return 0;
1072    } else {
1073      // Create an empty block for cases where the RHS doesn't require
1074      // any explicit statements in the CFG.
1075      RHSBlock = createBlock();
1076    }
1077
1078    // See if this is a known constant.
1079    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1080    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1081      KnownVal.negate();
1082
1083    // Now link the LHSBlock with RHSBlock.
1084    if (B->getOpcode() == BO_LOr) {
1085      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1086      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1087    } else {
1088      assert(B->getOpcode() == BO_LAnd);
1089      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1090      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1091    }
1092
1093    // Generate the blocks for evaluating the LHS.
1094    Block = LHSBlock;
1095    return addStmt(B->getLHS());
1096  }
1097
1098  if (B->getOpcode() == BO_Comma) { // ,
1099    autoCreateBlock();
1100    appendStmt(Block, B);
1101    addStmt(B->getRHS());
1102    return addStmt(B->getLHS());
1103  }
1104
1105  if (B->isAssignmentOp()) {
1106    if (asc.alwaysAdd(*this, B)) {
1107      autoCreateBlock();
1108      appendStmt(Block, B);
1109    }
1110    Visit(B->getLHS());
1111    return Visit(B->getRHS());
1112  }
1113
1114  if (asc.alwaysAdd(*this, B)) {
1115    autoCreateBlock();
1116    appendStmt(Block, B);
1117  }
1118
1119  CFGBlock *RBlock = Visit(B->getRHS());
1120  CFGBlock *LBlock = Visit(B->getLHS());
1121  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1122  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1123  // return RBlock.  Otherwise we'll incorrectly return NULL.
1124  return (LBlock ? LBlock : RBlock);
1125}
1126
1127CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1128  if (asc.alwaysAdd(*this, E)) {
1129    autoCreateBlock();
1130    appendStmt(Block, E);
1131  }
1132  return Block;
1133}
1134
1135CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1136  // "break" is a control-flow statement.  Thus we stop processing the current
1137  // block.
1138  if (badCFG)
1139    return 0;
1140
1141  // Now create a new block that ends with the break statement.
1142  Block = createBlock(false);
1143  Block->setTerminator(B);
1144
1145  // If there is no target for the break, then we are looking at an incomplete
1146  // AST.  This means that the CFG cannot be constructed.
1147  if (BreakJumpTarget.block) {
1148    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1149    addSuccessor(Block, BreakJumpTarget.block);
1150  } else
1151    badCFG = true;
1152
1153
1154  return Block;
1155}
1156
1157static bool CanThrow(Expr *E, ASTContext &Ctx) {
1158  QualType Ty = E->getType();
1159  if (Ty->isFunctionPointerType())
1160    Ty = Ty->getAs<PointerType>()->getPointeeType();
1161  else if (Ty->isBlockPointerType())
1162    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1163
1164  const FunctionType *FT = Ty->getAs<FunctionType>();
1165  if (FT) {
1166    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1167      if (Proto->isNothrow(Ctx))
1168        return false;
1169  }
1170  return true;
1171}
1172
1173CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1174  // Compute the callee type.
1175  QualType calleeType = C->getCallee()->getType();
1176  if (calleeType == Context->BoundMemberTy) {
1177    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1178
1179    // We should only get a null bound type if processing a dependent
1180    // CFG.  Recover by assuming nothing.
1181    if (!boundType.isNull()) calleeType = boundType;
1182  }
1183
1184  // If this is a call to a no-return function, this stops the block here.
1185  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1186
1187  bool AddEHEdge = false;
1188
1189  // Languages without exceptions are assumed to not throw.
1190  if (Context->getLangOptions().Exceptions) {
1191    if (BuildOpts.AddEHEdges)
1192      AddEHEdge = true;
1193  }
1194
1195  if (FunctionDecl *FD = C->getDirectCallee()) {
1196    if (FD->hasAttr<NoReturnAttr>())
1197      NoReturn = true;
1198    if (FD->hasAttr<NoThrowAttr>())
1199      AddEHEdge = false;
1200  }
1201
1202  if (!CanThrow(C->getCallee(), *Context))
1203    AddEHEdge = false;
1204
1205  if (!NoReturn && !AddEHEdge)
1206    return VisitStmt(C, asc.withAlwaysAdd(true));
1207
1208  if (Block) {
1209    Succ = Block;
1210    if (badCFG)
1211      return 0;
1212  }
1213
1214  if (NoReturn)
1215    Block = createNoReturnBlock();
1216  else
1217    Block = createBlock();
1218
1219  appendStmt(Block, C);
1220
1221  if (AddEHEdge) {
1222    // Add exceptional edges.
1223    if (TryTerminatedBlock)
1224      addSuccessor(Block, TryTerminatedBlock);
1225    else
1226      addSuccessor(Block, &cfg->getExit());
1227  }
1228
1229  return VisitChildren(C);
1230}
1231
1232CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1233                                      AddStmtChoice asc) {
1234  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1235  appendStmt(ConfluenceBlock, C);
1236  if (badCFG)
1237    return 0;
1238
1239  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1240  Succ = ConfluenceBlock;
1241  Block = NULL;
1242  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1243  if (badCFG)
1244    return 0;
1245
1246  Succ = ConfluenceBlock;
1247  Block = NULL;
1248  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1249  if (badCFG)
1250    return 0;
1251
1252  Block = createBlock(false);
1253  // See if this is a known constant.
1254  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1255  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1256  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1257  Block->setTerminator(C);
1258  return addStmt(C->getCond());
1259}
1260
1261
1262CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1263  addLocalScopeAndDtors(C);
1264  CFGBlock *LastBlock = Block;
1265
1266  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1267       I != E; ++I ) {
1268    // If we hit a segment of code just containing ';' (NullStmts), we can
1269    // get a null block back.  In such cases, just use the LastBlock
1270    if (CFGBlock *newBlock = addStmt(*I))
1271      LastBlock = newBlock;
1272
1273    if (badCFG)
1274      return NULL;
1275  }
1276
1277  return LastBlock;
1278}
1279
1280CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1281                                               AddStmtChoice asc) {
1282  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1283  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1284
1285  // Create the confluence block that will "merge" the results of the ternary
1286  // expression.
1287  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1288  appendStmt(ConfluenceBlock, C);
1289  if (badCFG)
1290    return 0;
1291
1292  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1293
1294  // Create a block for the LHS expression if there is an LHS expression.  A
1295  // GCC extension allows LHS to be NULL, causing the condition to be the
1296  // value that is returned instead.
1297  //  e.g: x ?: y is shorthand for: x ? x : y;
1298  Succ = ConfluenceBlock;
1299  Block = NULL;
1300  CFGBlock *LHSBlock = 0;
1301  const Expr *trueExpr = C->getTrueExpr();
1302  if (trueExpr != opaqueValue) {
1303    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1304    if (badCFG)
1305      return 0;
1306    Block = NULL;
1307  }
1308  else
1309    LHSBlock = ConfluenceBlock;
1310
1311  // Create the block for the RHS expression.
1312  Succ = ConfluenceBlock;
1313  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1314  if (badCFG)
1315    return 0;
1316
1317  // Create the block that will contain the condition.
1318  Block = createBlock(false);
1319
1320  // See if this is a known constant.
1321  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1322  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1323  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1324  Block->setTerminator(C);
1325  Expr *condExpr = C->getCond();
1326
1327  if (opaqueValue) {
1328    // Run the condition expression if it's not trivially expressed in
1329    // terms of the opaque value (or if there is no opaque value).
1330    if (condExpr != opaqueValue)
1331      addStmt(condExpr);
1332
1333    // Before that, run the common subexpression if there was one.
1334    // At least one of this or the above will be run.
1335    return addStmt(BCO->getCommon());
1336  }
1337
1338  return addStmt(condExpr);
1339}
1340
1341CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1342  // Check if the Decl is for an __label__.  If so, elide it from the
1343  // CFG entirely.
1344  if (isa<LabelDecl>(*DS->decl_begin()))
1345    return Block;
1346
1347  // This case also handles static_asserts.
1348  if (DS->isSingleDecl())
1349    return VisitDeclSubExpr(DS);
1350
1351  CFGBlock *B = 0;
1352
1353  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1354  typedef SmallVector<Decl*,10> BufTy;
1355  BufTy Buf(DS->decl_begin(), DS->decl_end());
1356
1357  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1358    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1359    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1360               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1361
1362    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1363    // automatically freed with the CFG.
1364    DeclGroupRef DG(*I);
1365    Decl *D = *I;
1366    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1367    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1368
1369    // Append the fake DeclStmt to block.
1370    B = VisitDeclSubExpr(DSNew);
1371  }
1372
1373  return B;
1374}
1375
1376/// VisitDeclSubExpr - Utility method to add block-level expressions for
1377/// DeclStmts and initializers in them.
1378CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1379  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1380  Decl *D = DS->getSingleDecl();
1381
1382  if (isa<StaticAssertDecl>(D)) {
1383    // static_asserts aren't added to the CFG because they do not impact
1384    // runtime semantics.
1385    return Block;
1386  }
1387
1388  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1389
1390  if (!VD) {
1391    autoCreateBlock();
1392    appendStmt(Block, DS);
1393    return Block;
1394  }
1395
1396  bool IsReference = false;
1397  bool HasTemporaries = false;
1398
1399  // Destructors of temporaries in initialization expression should be called
1400  // after initialization finishes.
1401  Expr *Init = VD->getInit();
1402  if (Init) {
1403    IsReference = VD->getType()->isReferenceType();
1404    HasTemporaries = isa<ExprWithCleanups>(Init);
1405
1406    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1407      // Generate destructors for temporaries in initialization expression.
1408      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1409          IsReference);
1410    }
1411  }
1412
1413  autoCreateBlock();
1414  appendStmt(Block, DS);
1415
1416  if (Init) {
1417    if (HasTemporaries)
1418      // For expression with temporaries go directly to subexpression to omit
1419      // generating destructors for the second time.
1420      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1421    else
1422      Visit(Init);
1423  }
1424
1425  // If the type of VD is a VLA, then we must process its size expressions.
1426  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1427       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1428    Block = addStmt(VA->getSizeExpr());
1429
1430  // Remove variable from local scope.
1431  if (ScopePos && VD == *ScopePos)
1432    ++ScopePos;
1433
1434  return Block;
1435}
1436
1437CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1438  // We may see an if statement in the middle of a basic block, or it may be the
1439  // first statement we are processing.  In either case, we create a new basic
1440  // block.  First, we create the blocks for the then...else statements, and
1441  // then we create the block containing the if statement.  If we were in the
1442  // middle of a block, we stop processing that block.  That block is then the
1443  // implicit successor for the "then" and "else" clauses.
1444
1445  // Save local scope position because in case of condition variable ScopePos
1446  // won't be restored when traversing AST.
1447  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1448
1449  // Create local scope for possible condition variable.
1450  // Store scope position. Add implicit destructor.
1451  if (VarDecl *VD = I->getConditionVariable()) {
1452    LocalScope::const_iterator BeginScopePos = ScopePos;
1453    addLocalScopeForVarDecl(VD);
1454    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1455  }
1456
1457  // The block we were processing is now finished.  Make it the successor
1458  // block.
1459  if (Block) {
1460    Succ = Block;
1461    if (badCFG)
1462      return 0;
1463  }
1464
1465  // Process the false branch.
1466  CFGBlock *ElseBlock = Succ;
1467
1468  if (Stmt *Else = I->getElse()) {
1469    SaveAndRestore<CFGBlock*> sv(Succ);
1470
1471    // NULL out Block so that the recursive call to Visit will
1472    // create a new basic block.
1473    Block = NULL;
1474
1475    // If branch is not a compound statement create implicit scope
1476    // and add destructors.
1477    if (!isa<CompoundStmt>(Else))
1478      addLocalScopeAndDtors(Else);
1479
1480    ElseBlock = addStmt(Else);
1481
1482    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1483      ElseBlock = sv.get();
1484    else if (Block) {
1485      if (badCFG)
1486        return 0;
1487    }
1488  }
1489
1490  // Process the true branch.
1491  CFGBlock *ThenBlock;
1492  {
1493    Stmt *Then = I->getThen();
1494    assert(Then);
1495    SaveAndRestore<CFGBlock*> sv(Succ);
1496    Block = NULL;
1497
1498    // If branch is not a compound statement create implicit scope
1499    // and add destructors.
1500    if (!isa<CompoundStmt>(Then))
1501      addLocalScopeAndDtors(Then);
1502
1503    ThenBlock = addStmt(Then);
1504
1505    if (!ThenBlock) {
1506      // We can reach here if the "then" body has all NullStmts.
1507      // Create an empty block so we can distinguish between true and false
1508      // branches in path-sensitive analyses.
1509      ThenBlock = createBlock(false);
1510      addSuccessor(ThenBlock, sv.get());
1511    } else if (Block) {
1512      if (badCFG)
1513        return 0;
1514    }
1515  }
1516
1517  // Now create a new block containing the if statement.
1518  Block = createBlock(false);
1519
1520  // Set the terminator of the new block to the If statement.
1521  Block->setTerminator(I);
1522
1523  // See if this is a known constant.
1524  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1525
1526  // Now add the successors.
1527  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1528  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1529
1530  // Add the condition as the last statement in the new block.  This may create
1531  // new blocks as the condition may contain control-flow.  Any newly created
1532  // blocks will be pointed to be "Block".
1533  Block = addStmt(I->getCond());
1534
1535  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1536  // and the condition variable initialization to the CFG.
1537  if (VarDecl *VD = I->getConditionVariable()) {
1538    if (Expr *Init = VD->getInit()) {
1539      autoCreateBlock();
1540      appendStmt(Block, I->getConditionVariableDeclStmt());
1541      addStmt(Init);
1542    }
1543  }
1544
1545  return Block;
1546}
1547
1548
1549CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1550  // If we were in the middle of a block we stop processing that block.
1551  //
1552  // NOTE: If a "return" appears in the middle of a block, this means that the
1553  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1554  //       for that code; a simple "mark-and-sweep" from the entry block will be
1555  //       able to report such dead blocks.
1556
1557  // Create the new block.
1558  Block = createBlock(false);
1559
1560  // The Exit block is the only successor.
1561  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1562  addSuccessor(Block, &cfg->getExit());
1563
1564  // Add the return statement to the block.  This may create new blocks if R
1565  // contains control-flow (short-circuit operations).
1566  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1567}
1568
1569CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1570  // Get the block of the labeled statement.  Add it to our map.
1571  addStmt(L->getSubStmt());
1572  CFGBlock *LabelBlock = Block;
1573
1574  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1575    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1576
1577  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1578         "label already in map");
1579  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1580
1581  // Labels partition blocks, so this is the end of the basic block we were
1582  // processing (L is the block's label).  Because this is label (and we have
1583  // already processed the substatement) there is no extra control-flow to worry
1584  // about.
1585  LabelBlock->setLabel(L);
1586  if (badCFG)
1587    return 0;
1588
1589  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1590  Block = NULL;
1591
1592  // This block is now the implicit successor of other blocks.
1593  Succ = LabelBlock;
1594
1595  return LabelBlock;
1596}
1597
1598CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1599  // Goto is a control-flow statement.  Thus we stop processing the current
1600  // block and create a new one.
1601
1602  Block = createBlock(false);
1603  Block->setTerminator(G);
1604
1605  // If we already know the mapping to the label block add the successor now.
1606  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1607
1608  if (I == LabelMap.end())
1609    // We will need to backpatch this block later.
1610    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1611  else {
1612    JumpTarget JT = I->second;
1613    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1614    addSuccessor(Block, JT.block);
1615  }
1616
1617  return Block;
1618}
1619
1620CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1621  CFGBlock *LoopSuccessor = NULL;
1622
1623  // Save local scope position because in case of condition variable ScopePos
1624  // won't be restored when traversing AST.
1625  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1626
1627  // Create local scope for init statement and possible condition variable.
1628  // Add destructor for init statement and condition variable.
1629  // Store scope position for continue statement.
1630  if (Stmt *Init = F->getInit())
1631    addLocalScopeForStmt(Init);
1632  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1633
1634  if (VarDecl *VD = F->getConditionVariable())
1635    addLocalScopeForVarDecl(VD);
1636  LocalScope::const_iterator ContinueScopePos = ScopePos;
1637
1638  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1639
1640  // "for" is a control-flow statement.  Thus we stop processing the current
1641  // block.
1642  if (Block) {
1643    if (badCFG)
1644      return 0;
1645    LoopSuccessor = Block;
1646  } else
1647    LoopSuccessor = Succ;
1648
1649  // Save the current value for the break targets.
1650  // All breaks should go to the code following the loop.
1651  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1652  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1653
1654  // Because of short-circuit evaluation, the condition of the loop can span
1655  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1656  // evaluate the condition.
1657  CFGBlock *ExitConditionBlock = createBlock(false);
1658  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1659
1660  // Set the terminator for the "exit" condition block.
1661  ExitConditionBlock->setTerminator(F);
1662
1663  // Now add the actual condition to the condition block.  Because the condition
1664  // itself may contain control-flow, new blocks may be created.
1665  if (Stmt *C = F->getCond()) {
1666    Block = ExitConditionBlock;
1667    EntryConditionBlock = addStmt(C);
1668    if (badCFG)
1669      return 0;
1670    assert(Block == EntryConditionBlock ||
1671           (Block == 0 && EntryConditionBlock == Succ));
1672
1673    // If this block contains a condition variable, add both the condition
1674    // variable and initializer to the CFG.
1675    if (VarDecl *VD = F->getConditionVariable()) {
1676      if (Expr *Init = VD->getInit()) {
1677        autoCreateBlock();
1678        appendStmt(Block, F->getConditionVariableDeclStmt());
1679        EntryConditionBlock = addStmt(Init);
1680        assert(Block == EntryConditionBlock);
1681      }
1682    }
1683
1684    if (Block) {
1685      if (badCFG)
1686        return 0;
1687    }
1688  }
1689
1690  // The condition block is the implicit successor for the loop body as well as
1691  // any code above the loop.
1692  Succ = EntryConditionBlock;
1693
1694  // See if this is a known constant.
1695  TryResult KnownVal(true);
1696
1697  if (F->getCond())
1698    KnownVal = tryEvaluateBool(F->getCond());
1699
1700  // Now create the loop body.
1701  {
1702    assert(F->getBody());
1703
1704   // Save the current values for Block, Succ, and continue targets.
1705   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1706   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1707
1708    // Create a new block to contain the (bottom) of the loop body.
1709    Block = NULL;
1710
1711    // Loop body should end with destructor of Condition variable (if any).
1712    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1713
1714    if (Stmt *I = F->getInc()) {
1715      // Generate increment code in its own basic block.  This is the target of
1716      // continue statements.
1717      Succ = addStmt(I);
1718    } else {
1719      // No increment code.  Create a special, empty, block that is used as the
1720      // target block for "looping back" to the start of the loop.
1721      assert(Succ == EntryConditionBlock);
1722      Succ = Block ? Block : createBlock();
1723    }
1724
1725    // Finish up the increment (or empty) block if it hasn't been already.
1726    if (Block) {
1727      assert(Block == Succ);
1728      if (badCFG)
1729        return 0;
1730      Block = 0;
1731    }
1732
1733    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1734
1735    // The starting block for the loop increment is the block that should
1736    // represent the 'loop target' for looping back to the start of the loop.
1737    ContinueJumpTarget.block->setLoopTarget(F);
1738
1739    // If body is not a compound statement create implicit scope
1740    // and add destructors.
1741    if (!isa<CompoundStmt>(F->getBody()))
1742      addLocalScopeAndDtors(F->getBody());
1743
1744    // Now populate the body block, and in the process create new blocks as we
1745    // walk the body of the loop.
1746    CFGBlock *BodyBlock = addStmt(F->getBody());
1747
1748    if (!BodyBlock)
1749      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1750    else if (badCFG)
1751      return 0;
1752
1753    // This new body block is a successor to our "exit" condition block.
1754    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1755  }
1756
1757  // Link up the condition block with the code that follows the loop.  (the
1758  // false branch).
1759  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1760
1761  // If the loop contains initialization, create a new block for those
1762  // statements.  This block can also contain statements that precede the loop.
1763  if (Stmt *I = F->getInit()) {
1764    Block = createBlock();
1765    return addStmt(I);
1766  }
1767
1768  // There is no loop initialization.  We are thus basically a while loop.
1769  // NULL out Block to force lazy block construction.
1770  Block = NULL;
1771  Succ = EntryConditionBlock;
1772  return EntryConditionBlock;
1773}
1774
1775CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1776  if (asc.alwaysAdd(*this, M)) {
1777    autoCreateBlock();
1778    appendStmt(Block, M);
1779  }
1780  return Visit(M->getBase());
1781}
1782
1783CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1784  // Objective-C fast enumeration 'for' statements:
1785  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1786  //
1787  //  for ( Type newVariable in collection_expression ) { statements }
1788  //
1789  //  becomes:
1790  //
1791  //   prologue:
1792  //     1. collection_expression
1793  //     T. jump to loop_entry
1794  //   loop_entry:
1795  //     1. side-effects of element expression
1796  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1797  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1798  //   TB:
1799  //     statements
1800  //     T. jump to loop_entry
1801  //   FB:
1802  //     what comes after
1803  //
1804  //  and
1805  //
1806  //  Type existingItem;
1807  //  for ( existingItem in expression ) { statements }
1808  //
1809  //  becomes:
1810  //
1811  //   the same with newVariable replaced with existingItem; the binding works
1812  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1813  //   a DeclStmt and the other returns a DeclRefExpr.
1814  //
1815
1816  CFGBlock *LoopSuccessor = 0;
1817
1818  if (Block) {
1819    if (badCFG)
1820      return 0;
1821    LoopSuccessor = Block;
1822    Block = 0;
1823  } else
1824    LoopSuccessor = Succ;
1825
1826  // Build the condition blocks.
1827  CFGBlock *ExitConditionBlock = createBlock(false);
1828
1829  // Set the terminator for the "exit" condition block.
1830  ExitConditionBlock->setTerminator(S);
1831
1832  // The last statement in the block should be the ObjCForCollectionStmt, which
1833  // performs the actual binding to 'element' and determines if there are any
1834  // more items in the collection.
1835  appendStmt(ExitConditionBlock, S);
1836  Block = ExitConditionBlock;
1837
1838  // Walk the 'element' expression to see if there are any side-effects.  We
1839  // generate new blocks as necessary.  We DON'T add the statement by default to
1840  // the CFG unless it contains control-flow.
1841  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1842                                        AddStmtChoice::NotAlwaysAdd);
1843  if (Block) {
1844    if (badCFG)
1845      return 0;
1846    Block = 0;
1847  }
1848
1849  // The condition block is the implicit successor for the loop body as well as
1850  // any code above the loop.
1851  Succ = EntryConditionBlock;
1852
1853  // Now create the true branch.
1854  {
1855    // Save the current values for Succ, continue and break targets.
1856    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1857    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1858        save_break(BreakJumpTarget);
1859
1860    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1861    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1862
1863    CFGBlock *BodyBlock = addStmt(S->getBody());
1864
1865    if (!BodyBlock)
1866      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1867    else if (Block) {
1868      if (badCFG)
1869        return 0;
1870    }
1871
1872    // This new body block is a successor to our "exit" condition block.
1873    addSuccessor(ExitConditionBlock, BodyBlock);
1874  }
1875
1876  // Link up the condition block with the code that follows the loop.
1877  // (the false branch).
1878  addSuccessor(ExitConditionBlock, LoopSuccessor);
1879
1880  // Now create a prologue block to contain the collection expression.
1881  Block = createBlock();
1882  return addStmt(S->getCollection());
1883}
1884
1885CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
1886  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1887
1888  // Inline the body.
1889  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1890
1891  // The sync body starts its own basic block.  This makes it a little easier
1892  // for diagnostic clients.
1893  if (SyncBlock) {
1894    if (badCFG)
1895      return 0;
1896
1897    Block = 0;
1898    Succ = SyncBlock;
1899  }
1900
1901  // Add the @synchronized to the CFG.
1902  autoCreateBlock();
1903  appendStmt(Block, S);
1904
1905  // Inline the sync expression.
1906  return addStmt(S->getSynchExpr());
1907}
1908
1909CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
1910  // FIXME
1911  return NYS();
1912}
1913
1914CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
1915  autoCreateBlock();
1916
1917  // Add the PseudoObject as the last thing.
1918  appendStmt(Block, E);
1919
1920  CFGBlock *lastBlock = Block;
1921
1922  // Before that, evaluate all of the semantics in order.  In
1923  // CFG-land, that means appending them in reverse order.
1924  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
1925    Expr *Semantic = E->getSemanticExpr(--i);
1926
1927    // If the semantic is an opaque value, we're being asked to bind
1928    // it to its source expression.
1929    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
1930      Semantic = OVE->getSourceExpr();
1931
1932    if (CFGBlock *B = Visit(Semantic))
1933      lastBlock = B;
1934  }
1935
1936  return lastBlock;
1937}
1938
1939CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
1940  CFGBlock *LoopSuccessor = NULL;
1941
1942  // Save local scope position because in case of condition variable ScopePos
1943  // won't be restored when traversing AST.
1944  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1945
1946  // Create local scope for possible condition variable.
1947  // Store scope position for continue statement.
1948  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1949  if (VarDecl *VD = W->getConditionVariable()) {
1950    addLocalScopeForVarDecl(VD);
1951    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1952  }
1953
1954  // "while" is a control-flow statement.  Thus we stop processing the current
1955  // block.
1956  if (Block) {
1957    if (badCFG)
1958      return 0;
1959    LoopSuccessor = Block;
1960    Block = 0;
1961  } else
1962    LoopSuccessor = Succ;
1963
1964  // Because of short-circuit evaluation, the condition of the loop can span
1965  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1966  // evaluate the condition.
1967  CFGBlock *ExitConditionBlock = createBlock(false);
1968  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1969
1970  // Set the terminator for the "exit" condition block.
1971  ExitConditionBlock->setTerminator(W);
1972
1973  // Now add the actual condition to the condition block.  Because the condition
1974  // itself may contain control-flow, new blocks may be created.  Thus we update
1975  // "Succ" after adding the condition.
1976  if (Stmt *C = W->getCond()) {
1977    Block = ExitConditionBlock;
1978    EntryConditionBlock = addStmt(C);
1979    // The condition might finish the current 'Block'.
1980    Block = EntryConditionBlock;
1981
1982    // If this block contains a condition variable, add both the condition
1983    // variable and initializer to the CFG.
1984    if (VarDecl *VD = W->getConditionVariable()) {
1985      if (Expr *Init = VD->getInit()) {
1986        autoCreateBlock();
1987        appendStmt(Block, W->getConditionVariableDeclStmt());
1988        EntryConditionBlock = addStmt(Init);
1989        assert(Block == EntryConditionBlock);
1990      }
1991    }
1992
1993    if (Block) {
1994      if (badCFG)
1995        return 0;
1996    }
1997  }
1998
1999  // The condition block is the implicit successor for the loop body as well as
2000  // any code above the loop.
2001  Succ = EntryConditionBlock;
2002
2003  // See if this is a known constant.
2004  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
2005
2006  // Process the loop body.
2007  {
2008    assert(W->getBody());
2009
2010    // Save the current values for Block, Succ, and continue and break targets
2011    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2012    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2013        save_break(BreakJumpTarget);
2014
2015    // Create an empty block to represent the transition block for looping back
2016    // to the head of the loop.
2017    Block = 0;
2018    assert(Succ == EntryConditionBlock);
2019    Succ = createBlock();
2020    Succ->setLoopTarget(W);
2021    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2022
2023    // All breaks should go to the code following the loop.
2024    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2025
2026    // NULL out Block to force lazy instantiation of blocks for the body.
2027    Block = NULL;
2028
2029    // Loop body should end with destructor of Condition variable (if any).
2030    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2031
2032    // If body is not a compound statement create implicit scope
2033    // and add destructors.
2034    if (!isa<CompoundStmt>(W->getBody()))
2035      addLocalScopeAndDtors(W->getBody());
2036
2037    // Create the body.  The returned block is the entry to the loop body.
2038    CFGBlock *BodyBlock = addStmt(W->getBody());
2039
2040    if (!BodyBlock)
2041      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2042    else if (Block) {
2043      if (badCFG)
2044        return 0;
2045    }
2046
2047    // Add the loop body entry as a successor to the condition.
2048    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2049  }
2050
2051  // Link up the condition block with the code that follows the loop.  (the
2052  // false branch).
2053  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2054
2055  // There can be no more statements in the condition block since we loop back
2056  // to this block.  NULL out Block to force lazy creation of another block.
2057  Block = NULL;
2058
2059  // Return the condition block, which is the dominating block for the loop.
2060  Succ = EntryConditionBlock;
2061  return EntryConditionBlock;
2062}
2063
2064
2065CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2066  // FIXME: For now we pretend that @catch and the code it contains does not
2067  //  exit.
2068  return Block;
2069}
2070
2071CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2072  // FIXME: This isn't complete.  We basically treat @throw like a return
2073  //  statement.
2074
2075  // If we were in the middle of a block we stop processing that block.
2076  if (badCFG)
2077    return 0;
2078
2079  // Create the new block.
2080  Block = createBlock(false);
2081
2082  // The Exit block is the only successor.
2083  addSuccessor(Block, &cfg->getExit());
2084
2085  // Add the statement to the block.  This may create new blocks if S contains
2086  // control-flow (short-circuit operations).
2087  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2088}
2089
2090CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2091  // If we were in the middle of a block we stop processing that block.
2092  if (badCFG)
2093    return 0;
2094
2095  // Create the new block.
2096  Block = createBlock(false);
2097
2098  if (TryTerminatedBlock)
2099    // The current try statement is the only successor.
2100    addSuccessor(Block, TryTerminatedBlock);
2101  else
2102    // otherwise the Exit block is the only successor.
2103    addSuccessor(Block, &cfg->getExit());
2104
2105  // Add the statement to the block.  This may create new blocks if S contains
2106  // control-flow (short-circuit operations).
2107  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2108}
2109
2110CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2111  CFGBlock *LoopSuccessor = NULL;
2112
2113  // "do...while" is a control-flow statement.  Thus we stop processing the
2114  // current block.
2115  if (Block) {
2116    if (badCFG)
2117      return 0;
2118    LoopSuccessor = Block;
2119  } else
2120    LoopSuccessor = Succ;
2121
2122  // Because of short-circuit evaluation, the condition of the loop can span
2123  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2124  // evaluate the condition.
2125  CFGBlock *ExitConditionBlock = createBlock(false);
2126  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2127
2128  // Set the terminator for the "exit" condition block.
2129  ExitConditionBlock->setTerminator(D);
2130
2131  // Now add the actual condition to the condition block.  Because the condition
2132  // itself may contain control-flow, new blocks may be created.
2133  if (Stmt *C = D->getCond()) {
2134    Block = ExitConditionBlock;
2135    EntryConditionBlock = addStmt(C);
2136    if (Block) {
2137      if (badCFG)
2138        return 0;
2139    }
2140  }
2141
2142  // The condition block is the implicit successor for the loop body.
2143  Succ = EntryConditionBlock;
2144
2145  // See if this is a known constant.
2146  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2147
2148  // Process the loop body.
2149  CFGBlock *BodyBlock = NULL;
2150  {
2151    assert(D->getBody());
2152
2153    // Save the current values for Block, Succ, and continue and break targets
2154    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2155    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2156        save_break(BreakJumpTarget);
2157
2158    // All continues within this loop should go to the condition block
2159    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2160
2161    // All breaks should go to the code following the loop.
2162    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2163
2164    // NULL out Block to force lazy instantiation of blocks for the body.
2165    Block = NULL;
2166
2167    // If body is not a compound statement create implicit scope
2168    // and add destructors.
2169    if (!isa<CompoundStmt>(D->getBody()))
2170      addLocalScopeAndDtors(D->getBody());
2171
2172    // Create the body.  The returned block is the entry to the loop body.
2173    BodyBlock = addStmt(D->getBody());
2174
2175    if (!BodyBlock)
2176      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2177    else if (Block) {
2178      if (badCFG)
2179        return 0;
2180    }
2181
2182    if (!KnownVal.isFalse()) {
2183      // Add an intermediate block between the BodyBlock and the
2184      // ExitConditionBlock to represent the "loop back" transition.  Create an
2185      // empty block to represent the transition block for looping back to the
2186      // head of the loop.
2187      // FIXME: Can we do this more efficiently without adding another block?
2188      Block = NULL;
2189      Succ = BodyBlock;
2190      CFGBlock *LoopBackBlock = createBlock();
2191      LoopBackBlock->setLoopTarget(D);
2192
2193      // Add the loop body entry as a successor to the condition.
2194      addSuccessor(ExitConditionBlock, LoopBackBlock);
2195    }
2196    else
2197      addSuccessor(ExitConditionBlock, NULL);
2198  }
2199
2200  // Link up the condition block with the code that follows the loop.
2201  // (the false branch).
2202  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2203
2204  // There can be no more statements in the body block(s) since we loop back to
2205  // the body.  NULL out Block to force lazy creation of another block.
2206  Block = NULL;
2207
2208  // Return the loop body, which is the dominating block for the loop.
2209  Succ = BodyBlock;
2210  return BodyBlock;
2211}
2212
2213CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2214  // "continue" is a control-flow statement.  Thus we stop processing the
2215  // current block.
2216  if (badCFG)
2217    return 0;
2218
2219  // Now create a new block that ends with the continue statement.
2220  Block = createBlock(false);
2221  Block->setTerminator(C);
2222
2223  // If there is no target for the continue, then we are looking at an
2224  // incomplete AST.  This means the CFG cannot be constructed.
2225  if (ContinueJumpTarget.block) {
2226    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2227    addSuccessor(Block, ContinueJumpTarget.block);
2228  } else
2229    badCFG = true;
2230
2231  return Block;
2232}
2233
2234CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2235                                                    AddStmtChoice asc) {
2236
2237  if (asc.alwaysAdd(*this, E)) {
2238    autoCreateBlock();
2239    appendStmt(Block, E);
2240  }
2241
2242  // VLA types have expressions that must be evaluated.
2243  CFGBlock *lastBlock = Block;
2244
2245  if (E->isArgumentType()) {
2246    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2247         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2248      lastBlock = addStmt(VA->getSizeExpr());
2249  }
2250  return lastBlock;
2251}
2252
2253/// VisitStmtExpr - Utility method to handle (nested) statement
2254///  expressions (a GCC extension).
2255CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2256  if (asc.alwaysAdd(*this, SE)) {
2257    autoCreateBlock();
2258    appendStmt(Block, SE);
2259  }
2260  return VisitCompoundStmt(SE->getSubStmt());
2261}
2262
2263CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2264  // "switch" is a control-flow statement.  Thus we stop processing the current
2265  // block.
2266  CFGBlock *SwitchSuccessor = NULL;
2267
2268  // Save local scope position because in case of condition variable ScopePos
2269  // won't be restored when traversing AST.
2270  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2271
2272  // Create local scope for possible condition variable.
2273  // Store scope position. Add implicit destructor.
2274  if (VarDecl *VD = Terminator->getConditionVariable()) {
2275    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2276    addLocalScopeForVarDecl(VD);
2277    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2278  }
2279
2280  if (Block) {
2281    if (badCFG)
2282      return 0;
2283    SwitchSuccessor = Block;
2284  } else SwitchSuccessor = Succ;
2285
2286  // Save the current "switch" context.
2287  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2288                            save_default(DefaultCaseBlock);
2289  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2290
2291  // Set the "default" case to be the block after the switch statement.  If the
2292  // switch statement contains a "default:", this value will be overwritten with
2293  // the block for that code.
2294  DefaultCaseBlock = SwitchSuccessor;
2295
2296  // Create a new block that will contain the switch statement.
2297  SwitchTerminatedBlock = createBlock(false);
2298
2299  // Now process the switch body.  The code after the switch is the implicit
2300  // successor.
2301  Succ = SwitchSuccessor;
2302  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2303
2304  // When visiting the body, the case statements should automatically get linked
2305  // up to the switch.  We also don't keep a pointer to the body, since all
2306  // control-flow from the switch goes to case/default statements.
2307  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2308  Block = NULL;
2309
2310  // For pruning unreachable case statements, save the current state
2311  // for tracking the condition value.
2312  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2313                                                     false);
2314
2315  // Determine if the switch condition can be explicitly evaluated.
2316  assert(Terminator->getCond() && "switch condition must be non-NULL");
2317  Expr::EvalResult result;
2318  bool b = tryEvaluate(Terminator->getCond(), result);
2319  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2320                                                    b ? &result : 0);
2321
2322  // If body is not a compound statement create implicit scope
2323  // and add destructors.
2324  if (!isa<CompoundStmt>(Terminator->getBody()))
2325    addLocalScopeAndDtors(Terminator->getBody());
2326
2327  addStmt(Terminator->getBody());
2328  if (Block) {
2329    if (badCFG)
2330      return 0;
2331  }
2332
2333  // If we have no "default:" case, the default transition is to the code
2334  // following the switch body.  Moreover, take into account if all the
2335  // cases of a switch are covered (e.g., switching on an enum value).
2336  addSuccessor(SwitchTerminatedBlock,
2337               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2338               ? 0 : DefaultCaseBlock);
2339
2340  // Add the terminator and condition in the switch block.
2341  SwitchTerminatedBlock->setTerminator(Terminator);
2342  Block = SwitchTerminatedBlock;
2343  Block = addStmt(Terminator->getCond());
2344
2345  // Finally, if the SwitchStmt contains a condition variable, add both the
2346  // SwitchStmt and the condition variable initialization to the CFG.
2347  if (VarDecl *VD = Terminator->getConditionVariable()) {
2348    if (Expr *Init = VD->getInit()) {
2349      autoCreateBlock();
2350      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2351      addStmt(Init);
2352    }
2353  }
2354
2355  return Block;
2356}
2357
2358static bool shouldAddCase(bool &switchExclusivelyCovered,
2359                          const Expr::EvalResult *switchCond,
2360                          const CaseStmt *CS,
2361                          ASTContext &Ctx) {
2362  if (!switchCond)
2363    return true;
2364
2365  bool addCase = false;
2366
2367  if (!switchExclusivelyCovered) {
2368    if (switchCond->Val.isInt()) {
2369      // Evaluate the LHS of the case value.
2370      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2371      const llvm::APSInt &condInt = switchCond->Val.getInt();
2372
2373      if (condInt == lhsInt) {
2374        addCase = true;
2375        switchExclusivelyCovered = true;
2376      }
2377      else if (condInt < lhsInt) {
2378        if (const Expr *RHS = CS->getRHS()) {
2379          // Evaluate the RHS of the case value.
2380          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2381          if (V2 <= condInt) {
2382            addCase = true;
2383            switchExclusivelyCovered = true;
2384          }
2385        }
2386      }
2387    }
2388    else
2389      addCase = true;
2390  }
2391  return addCase;
2392}
2393
2394CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2395  // CaseStmts are essentially labels, so they are the first statement in a
2396  // block.
2397  CFGBlock *TopBlock = 0, *LastBlock = 0;
2398
2399  if (Stmt *Sub = CS->getSubStmt()) {
2400    // For deeply nested chains of CaseStmts, instead of doing a recursion
2401    // (which can blow out the stack), manually unroll and create blocks
2402    // along the way.
2403    while (isa<CaseStmt>(Sub)) {
2404      CFGBlock *currentBlock = createBlock(false);
2405      currentBlock->setLabel(CS);
2406
2407      if (TopBlock)
2408        addSuccessor(LastBlock, currentBlock);
2409      else
2410        TopBlock = currentBlock;
2411
2412      addSuccessor(SwitchTerminatedBlock,
2413                   shouldAddCase(switchExclusivelyCovered, switchCond,
2414                                 CS, *Context)
2415                   ? currentBlock : 0);
2416
2417      LastBlock = currentBlock;
2418      CS = cast<CaseStmt>(Sub);
2419      Sub = CS->getSubStmt();
2420    }
2421
2422    addStmt(Sub);
2423  }
2424
2425  CFGBlock *CaseBlock = Block;
2426  if (!CaseBlock)
2427    CaseBlock = createBlock();
2428
2429  // Cases statements partition blocks, so this is the top of the basic block we
2430  // were processing (the "case XXX:" is the label).
2431  CaseBlock->setLabel(CS);
2432
2433  if (badCFG)
2434    return 0;
2435
2436  // Add this block to the list of successors for the block with the switch
2437  // statement.
2438  assert(SwitchTerminatedBlock);
2439  addSuccessor(SwitchTerminatedBlock,
2440               shouldAddCase(switchExclusivelyCovered, switchCond,
2441                             CS, *Context)
2442               ? CaseBlock : 0);
2443
2444  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2445  Block = NULL;
2446
2447  if (TopBlock) {
2448    addSuccessor(LastBlock, CaseBlock);
2449    Succ = TopBlock;
2450  } else {
2451    // This block is now the implicit successor of other blocks.
2452    Succ = CaseBlock;
2453  }
2454
2455  return Succ;
2456}
2457
2458CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2459  if (Terminator->getSubStmt())
2460    addStmt(Terminator->getSubStmt());
2461
2462  DefaultCaseBlock = Block;
2463
2464  if (!DefaultCaseBlock)
2465    DefaultCaseBlock = createBlock();
2466
2467  // Default statements partition blocks, so this is the top of the basic block
2468  // we were processing (the "default:" is the label).
2469  DefaultCaseBlock->setLabel(Terminator);
2470
2471  if (badCFG)
2472    return 0;
2473
2474  // Unlike case statements, we don't add the default block to the successors
2475  // for the switch statement immediately.  This is done when we finish
2476  // processing the switch statement.  This allows for the default case
2477  // (including a fall-through to the code after the switch statement) to always
2478  // be the last successor of a switch-terminated block.
2479
2480  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2481  Block = NULL;
2482
2483  // This block is now the implicit successor of other blocks.
2484  Succ = DefaultCaseBlock;
2485
2486  return DefaultCaseBlock;
2487}
2488
2489CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2490  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2491  // current block.
2492  CFGBlock *TrySuccessor = NULL;
2493
2494  if (Block) {
2495    if (badCFG)
2496      return 0;
2497    TrySuccessor = Block;
2498  } else TrySuccessor = Succ;
2499
2500  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2501
2502  // Create a new block that will contain the try statement.
2503  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2504  // Add the terminator in the try block.
2505  NewTryTerminatedBlock->setTerminator(Terminator);
2506
2507  bool HasCatchAll = false;
2508  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2509    // The code after the try is the implicit successor.
2510    Succ = TrySuccessor;
2511    CXXCatchStmt *CS = Terminator->getHandler(h);
2512    if (CS->getExceptionDecl() == 0) {
2513      HasCatchAll = true;
2514    }
2515    Block = NULL;
2516    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2517    if (CatchBlock == 0)
2518      return 0;
2519    // Add this block to the list of successors for the block with the try
2520    // statement.
2521    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2522  }
2523  if (!HasCatchAll) {
2524    if (PrevTryTerminatedBlock)
2525      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2526    else
2527      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2528  }
2529
2530  // The code after the try is the implicit successor.
2531  Succ = TrySuccessor;
2532
2533  // Save the current "try" context.
2534  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2535  cfg->addTryDispatchBlock(TryTerminatedBlock);
2536
2537  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2538  Block = NULL;
2539  Block = addStmt(Terminator->getTryBlock());
2540  return Block;
2541}
2542
2543CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2544  // CXXCatchStmt are treated like labels, so they are the first statement in a
2545  // block.
2546
2547  // Save local scope position because in case of exception variable ScopePos
2548  // won't be restored when traversing AST.
2549  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2550
2551  // Create local scope for possible exception variable.
2552  // Store scope position. Add implicit destructor.
2553  if (VarDecl *VD = CS->getExceptionDecl()) {
2554    LocalScope::const_iterator BeginScopePos = ScopePos;
2555    addLocalScopeForVarDecl(VD);
2556    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2557  }
2558
2559  if (CS->getHandlerBlock())
2560    addStmt(CS->getHandlerBlock());
2561
2562  CFGBlock *CatchBlock = Block;
2563  if (!CatchBlock)
2564    CatchBlock = createBlock();
2565
2566  CatchBlock->setLabel(CS);
2567
2568  if (badCFG)
2569    return 0;
2570
2571  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2572  Block = NULL;
2573
2574  return CatchBlock;
2575}
2576
2577CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2578  // C++0x for-range statements are specified as [stmt.ranged]:
2579  //
2580  // {
2581  //   auto && __range = range-init;
2582  //   for ( auto __begin = begin-expr,
2583  //         __end = end-expr;
2584  //         __begin != __end;
2585  //         ++__begin ) {
2586  //     for-range-declaration = *__begin;
2587  //     statement
2588  //   }
2589  // }
2590
2591  // Save local scope position before the addition of the implicit variables.
2592  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2593
2594  // Create local scopes and destructors for range, begin and end variables.
2595  if (Stmt *Range = S->getRangeStmt())
2596    addLocalScopeForStmt(Range);
2597  if (Stmt *BeginEnd = S->getBeginEndStmt())
2598    addLocalScopeForStmt(BeginEnd);
2599  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2600
2601  LocalScope::const_iterator ContinueScopePos = ScopePos;
2602
2603  // "for" is a control-flow statement.  Thus we stop processing the current
2604  // block.
2605  CFGBlock *LoopSuccessor = NULL;
2606  if (Block) {
2607    if (badCFG)
2608      return 0;
2609    LoopSuccessor = Block;
2610  } else
2611    LoopSuccessor = Succ;
2612
2613  // Save the current value for the break targets.
2614  // All breaks should go to the code following the loop.
2615  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2616  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2617
2618  // The block for the __begin != __end expression.
2619  CFGBlock *ConditionBlock = createBlock(false);
2620  ConditionBlock->setTerminator(S);
2621
2622  // Now add the actual condition to the condition block.
2623  if (Expr *C = S->getCond()) {
2624    Block = ConditionBlock;
2625    CFGBlock *BeginConditionBlock = addStmt(C);
2626    if (badCFG)
2627      return 0;
2628    assert(BeginConditionBlock == ConditionBlock &&
2629           "condition block in for-range was unexpectedly complex");
2630    (void)BeginConditionBlock;
2631  }
2632
2633  // The condition block is the implicit successor for the loop body as well as
2634  // any code above the loop.
2635  Succ = ConditionBlock;
2636
2637  // See if this is a known constant.
2638  TryResult KnownVal(true);
2639
2640  if (S->getCond())
2641    KnownVal = tryEvaluateBool(S->getCond());
2642
2643  // Now create the loop body.
2644  {
2645    assert(S->getBody());
2646
2647    // Save the current values for Block, Succ, and continue targets.
2648    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2649    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2650
2651    // Generate increment code in its own basic block.  This is the target of
2652    // continue statements.
2653    Block = 0;
2654    Succ = addStmt(S->getInc());
2655    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2656
2657    // The starting block for the loop increment is the block that should
2658    // represent the 'loop target' for looping back to the start of the loop.
2659    ContinueJumpTarget.block->setLoopTarget(S);
2660
2661    // Finish up the increment block and prepare to start the loop body.
2662    assert(Block);
2663    if (badCFG)
2664      return 0;
2665    Block = 0;
2666
2667
2668    // Add implicit scope and dtors for loop variable.
2669    addLocalScopeAndDtors(S->getLoopVarStmt());
2670
2671    // Populate a new block to contain the loop body and loop variable.
2672    Block = addStmt(S->getBody());
2673    if (badCFG)
2674      return 0;
2675    Block = addStmt(S->getLoopVarStmt());
2676    if (badCFG)
2677      return 0;
2678
2679    // This new body block is a successor to our condition block.
2680    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2681  }
2682
2683  // Link up the condition block with the code that follows the loop (the
2684  // false branch).
2685  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2686
2687  // Add the initialization statements.
2688  Block = createBlock();
2689  addStmt(S->getBeginEndStmt());
2690  return addStmt(S->getRangeStmt());
2691}
2692
2693CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2694    AddStmtChoice asc) {
2695  if (BuildOpts.AddImplicitDtors) {
2696    // If adding implicit destructors visit the full expression for adding
2697    // destructors of temporaries.
2698    VisitForTemporaryDtors(E->getSubExpr());
2699
2700    // Full expression has to be added as CFGStmt so it will be sequenced
2701    // before destructors of it's temporaries.
2702    asc = asc.withAlwaysAdd(true);
2703  }
2704  return Visit(E->getSubExpr(), asc);
2705}
2706
2707CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2708                                                AddStmtChoice asc) {
2709  if (asc.alwaysAdd(*this, E)) {
2710    autoCreateBlock();
2711    appendStmt(Block, E);
2712
2713    // We do not want to propagate the AlwaysAdd property.
2714    asc = asc.withAlwaysAdd(false);
2715  }
2716  return Visit(E->getSubExpr(), asc);
2717}
2718
2719CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2720                                            AddStmtChoice asc) {
2721  autoCreateBlock();
2722  if (!C->isElidable())
2723    appendStmt(Block, C);
2724
2725  return VisitChildren(C);
2726}
2727
2728CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2729                                                 AddStmtChoice asc) {
2730  if (asc.alwaysAdd(*this, E)) {
2731    autoCreateBlock();
2732    appendStmt(Block, E);
2733    // We do not want to propagate the AlwaysAdd property.
2734    asc = asc.withAlwaysAdd(false);
2735  }
2736  return Visit(E->getSubExpr(), asc);
2737}
2738
2739CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2740                                                  AddStmtChoice asc) {
2741  autoCreateBlock();
2742  appendStmt(Block, C);
2743  return VisitChildren(C);
2744}
2745
2746CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2747                                            AddStmtChoice asc) {
2748  if (asc.alwaysAdd(*this, E)) {
2749    autoCreateBlock();
2750    appendStmt(Block, E);
2751  }
2752  return Visit(E->getSubExpr(), AddStmtChoice());
2753}
2754
2755CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2756  // Lazily create the indirect-goto dispatch block if there isn't one already.
2757  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2758
2759  if (!IBlock) {
2760    IBlock = createBlock(false);
2761    cfg->setIndirectGotoBlock(IBlock);
2762  }
2763
2764  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2765  // current block and create a new one.
2766  if (badCFG)
2767    return 0;
2768
2769  Block = createBlock(false);
2770  Block->setTerminator(I);
2771  addSuccessor(Block, IBlock);
2772  return addStmt(I->getTarget());
2773}
2774
2775CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2776tryAgain:
2777  if (!E) {
2778    badCFG = true;
2779    return NULL;
2780  }
2781  switch (E->getStmtClass()) {
2782    default:
2783      return VisitChildrenForTemporaryDtors(E);
2784
2785    case Stmt::BinaryOperatorClass:
2786      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2787
2788    case Stmt::CXXBindTemporaryExprClass:
2789      return VisitCXXBindTemporaryExprForTemporaryDtors(
2790          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2791
2792    case Stmt::BinaryConditionalOperatorClass:
2793    case Stmt::ConditionalOperatorClass:
2794      return VisitConditionalOperatorForTemporaryDtors(
2795          cast<AbstractConditionalOperator>(E), BindToTemporary);
2796
2797    case Stmt::ImplicitCastExprClass:
2798      // For implicit cast we want BindToTemporary to be passed further.
2799      E = cast<CastExpr>(E)->getSubExpr();
2800      goto tryAgain;
2801
2802    case Stmt::ParenExprClass:
2803      E = cast<ParenExpr>(E)->getSubExpr();
2804      goto tryAgain;
2805
2806    case Stmt::MaterializeTemporaryExprClass:
2807      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2808      goto tryAgain;
2809  }
2810}
2811
2812CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2813  // When visiting children for destructors we want to visit them in reverse
2814  // order. Because there's no reverse iterator for children must to reverse
2815  // them in helper vector.
2816  typedef SmallVector<Stmt *, 4> ChildrenVect;
2817  ChildrenVect ChildrenRev;
2818  for (Stmt::child_range I = E->children(); I; ++I) {
2819    if (*I) ChildrenRev.push_back(*I);
2820  }
2821
2822  CFGBlock *B = Block;
2823  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2824      L = ChildrenRev.rend(); I != L; ++I) {
2825    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2826      B = R;
2827  }
2828  return B;
2829}
2830
2831CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2832  if (E->isLogicalOp()) {
2833    // Destructors for temporaries in LHS expression should be called after
2834    // those for RHS expression. Even if this will unnecessarily create a block,
2835    // this block will be used at least by the full expression.
2836    autoCreateBlock();
2837    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2838    if (badCFG)
2839      return NULL;
2840
2841    Succ = ConfluenceBlock;
2842    Block = NULL;
2843    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2844
2845    if (RHSBlock) {
2846      if (badCFG)
2847        return NULL;
2848
2849      // If RHS expression did produce destructors we need to connect created
2850      // blocks to CFG in same manner as for binary operator itself.
2851      CFGBlock *LHSBlock = createBlock(false);
2852      LHSBlock->setTerminator(CFGTerminator(E, true));
2853
2854      // For binary operator LHS block is before RHS in list of predecessors
2855      // of ConfluenceBlock.
2856      std::reverse(ConfluenceBlock->pred_begin(),
2857          ConfluenceBlock->pred_end());
2858
2859      // See if this is a known constant.
2860      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2861      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2862        KnownVal.negate();
2863
2864      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2865      // itself.
2866      if (E->getOpcode() == BO_LOr) {
2867        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2868        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2869      } else {
2870        assert (E->getOpcode() == BO_LAnd);
2871        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2872        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2873      }
2874
2875      Block = LHSBlock;
2876      return LHSBlock;
2877    }
2878
2879    Block = ConfluenceBlock;
2880    return ConfluenceBlock;
2881  }
2882
2883  if (E->isAssignmentOp()) {
2884    // For assignment operator (=) LHS expression is visited
2885    // before RHS expression. For destructors visit them in reverse order.
2886    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2887    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2888    return LHSBlock ? LHSBlock : RHSBlock;
2889  }
2890
2891  // For any other binary operator RHS expression is visited before
2892  // LHS expression (order of children). For destructors visit them in reverse
2893  // order.
2894  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2895  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2896  return RHSBlock ? RHSBlock : LHSBlock;
2897}
2898
2899CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2900    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2901  // First add destructors for temporaries in subexpression.
2902  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2903  if (!BindToTemporary) {
2904    // If lifetime of temporary is not prolonged (by assigning to constant
2905    // reference) add destructor for it.
2906
2907    // If the destructor is marked as a no-return destructor, we need to create
2908    // a new block for the destructor which does not have as a successor
2909    // anything built thus far. Control won't flow out of this block.
2910    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
2911    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
2912      Block = createNoReturnBlock();
2913    else
2914      autoCreateBlock();
2915
2916    appendTemporaryDtor(Block, E);
2917    B = Block;
2918  }
2919  return B;
2920}
2921
2922CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2923    AbstractConditionalOperator *E, bool BindToTemporary) {
2924  // First add destructors for condition expression.  Even if this will
2925  // unnecessarily create a block, this block will be used at least by the full
2926  // expression.
2927  autoCreateBlock();
2928  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2929  if (badCFG)
2930    return NULL;
2931  if (BinaryConditionalOperator *BCO
2932        = dyn_cast<BinaryConditionalOperator>(E)) {
2933    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2934    if (badCFG)
2935      return NULL;
2936  }
2937
2938  // Try to add block with destructors for LHS expression.
2939  CFGBlock *LHSBlock = NULL;
2940  Succ = ConfluenceBlock;
2941  Block = NULL;
2942  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2943  if (badCFG)
2944    return NULL;
2945
2946  // Try to add block with destructors for RHS expression;
2947  Succ = ConfluenceBlock;
2948  Block = NULL;
2949  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2950                                              BindToTemporary);
2951  if (badCFG)
2952    return NULL;
2953
2954  if (!RHSBlock && !LHSBlock) {
2955    // If neither LHS nor RHS expression had temporaries to destroy don't create
2956    // more blocks.
2957    Block = ConfluenceBlock;
2958    return Block;
2959  }
2960
2961  Block = createBlock(false);
2962  Block->setTerminator(CFGTerminator(E, true));
2963
2964  // See if this is a known constant.
2965  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2966
2967  if (LHSBlock) {
2968    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2969  } else if (KnownVal.isFalse()) {
2970    addSuccessor(Block, NULL);
2971  } else {
2972    addSuccessor(Block, ConfluenceBlock);
2973    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2974  }
2975
2976  if (!RHSBlock)
2977    RHSBlock = ConfluenceBlock;
2978  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2979
2980  return Block;
2981}
2982
2983} // end anonymous namespace
2984
2985/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2986///  no successors or predecessors.  If this is the first block created in the
2987///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2988CFGBlock *CFG::createBlock() {
2989  bool first_block = begin() == end();
2990
2991  // Create the block.
2992  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2993  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2994  Blocks.push_back(Mem, BlkBVC);
2995
2996  // If this is the first block, set it as the Entry and Exit.
2997  if (first_block)
2998    Entry = Exit = &back();
2999
3000  // Return the block.
3001  return &back();
3002}
3003
3004/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3005///  CFG is returned to the caller.
3006CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3007    const BuildOptions &BO) {
3008  CFGBuilder Builder(C, BO);
3009  return Builder.buildCFG(D, Statement);
3010}
3011
3012const CXXDestructorDecl *
3013CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3014  switch (getKind()) {
3015    case CFGElement::Invalid:
3016    case CFGElement::Statement:
3017    case CFGElement::Initializer:
3018      llvm_unreachable("getDestructorDecl should only be used with "
3019                       "ImplicitDtors");
3020    case CFGElement::AutomaticObjectDtor: {
3021      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3022      QualType ty = var->getType();
3023      ty = ty.getNonReferenceType();
3024      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3025        ty = arrayType->getElementType();
3026      }
3027      const RecordType *recordType = ty->getAs<RecordType>();
3028      const CXXRecordDecl *classDecl =
3029      cast<CXXRecordDecl>(recordType->getDecl());
3030      return classDecl->getDestructor();
3031    }
3032    case CFGElement::TemporaryDtor: {
3033      const CXXBindTemporaryExpr *bindExpr =
3034        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3035      const CXXTemporary *temp = bindExpr->getTemporary();
3036      return temp->getDestructor();
3037    }
3038    case CFGElement::BaseDtor:
3039    case CFGElement::MemberDtor:
3040
3041      // Not yet supported.
3042      return 0;
3043  }
3044  llvm_unreachable("getKind() returned bogus value");
3045  return 0;
3046}
3047
3048bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3049  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3050    QualType ty = cdecl->getType();
3051    return cast<FunctionType>(ty)->getNoReturnAttr();
3052  }
3053  return false;
3054}
3055
3056//===----------------------------------------------------------------------===//
3057// CFG: Queries for BlkExprs.
3058//===----------------------------------------------------------------------===//
3059
3060namespace {
3061  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3062}
3063
3064static void FindSubExprAssignments(const Stmt *S,
3065                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3066  if (!S)
3067    return;
3068
3069  for (Stmt::const_child_range I = S->children(); I; ++I) {
3070    const Stmt *child = *I;
3071    if (!child)
3072      continue;
3073
3074    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3075      if (B->isAssignmentOp()) Set.insert(B);
3076
3077    FindSubExprAssignments(child, Set);
3078  }
3079}
3080
3081static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3082  BlkExprMapTy* M = new BlkExprMapTy();
3083
3084  // Look for assignments that are used as subexpressions.  These are the only
3085  // assignments that we want to *possibly* register as a block-level
3086  // expression.  Basically, if an assignment occurs both in a subexpression and
3087  // at the block-level, it is a block-level expression.
3088  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3089
3090  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3091    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3092      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3093        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3094
3095  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3096
3097    // Iterate over the statements again on identify the Expr* and Stmt* at the
3098    // block-level that are block-level expressions.
3099
3100    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3101      const CFGStmt *CS = BI->getAs<CFGStmt>();
3102      if (!CS)
3103        continue;
3104      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3105        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3106
3107        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3108          // Assignment expressions that are not nested within another
3109          // expression are really "statements" whose value is never used by
3110          // another expression.
3111          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3112            continue;
3113        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3114          // Special handling for statement expressions.  The last statement in
3115          // the statement expression is also a block-level expr.
3116          const CompoundStmt *C = SE->getSubStmt();
3117          if (!C->body_empty()) {
3118            const Stmt *Last = C->body_back();
3119            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3120              Last = LastEx->IgnoreParens();
3121            unsigned x = M->size();
3122            (*M)[Last] = x;
3123          }
3124        }
3125
3126        unsigned x = M->size();
3127        (*M)[Exp] = x;
3128      }
3129    }
3130
3131    // Look at terminators.  The condition is a block-level expression.
3132
3133    Stmt *S = (*I)->getTerminatorCondition();
3134
3135    if (S && M->find(S) == M->end()) {
3136      unsigned x = M->size();
3137      (*M)[S] = x;
3138    }
3139  }
3140
3141  return M;
3142}
3143
3144CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3145  assert(S != NULL);
3146  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3147
3148  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3149  BlkExprMapTy::iterator I = M->find(S);
3150  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3151}
3152
3153unsigned CFG::getNumBlkExprs() {
3154  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3155    return M->size();
3156
3157  // We assume callers interested in the number of BlkExprs will want
3158  // the map constructed if it doesn't already exist.
3159  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3160  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3161}
3162
3163//===----------------------------------------------------------------------===//
3164// Filtered walking of the CFG.
3165//===----------------------------------------------------------------------===//
3166
3167bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3168        const CFGBlock *From, const CFGBlock *To) {
3169
3170  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3171    // If the 'To' has no label or is labeled but the label isn't a
3172    // CaseStmt then filter this edge.
3173    if (const SwitchStmt *S =
3174        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3175      if (S->isAllEnumCasesCovered()) {
3176        const Stmt *L = To->getLabel();
3177        if (!L || !isa<CaseStmt>(L))
3178          return true;
3179      }
3180    }
3181  }
3182
3183  return false;
3184}
3185
3186//===----------------------------------------------------------------------===//
3187// Cleanup: CFG dstor.
3188//===----------------------------------------------------------------------===//
3189
3190CFG::~CFG() {
3191  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3192}
3193
3194//===----------------------------------------------------------------------===//
3195// CFG pretty printing
3196//===----------------------------------------------------------------------===//
3197
3198namespace {
3199
3200class StmtPrinterHelper : public PrinterHelper  {
3201  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3202  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3203  StmtMapTy StmtMap;
3204  DeclMapTy DeclMap;
3205  signed currentBlock;
3206  unsigned currentStmt;
3207  const LangOptions &LangOpts;
3208public:
3209
3210  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3211    : currentBlock(0), currentStmt(0), LangOpts(LO)
3212  {
3213    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3214      unsigned j = 1;
3215      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3216           BI != BEnd; ++BI, ++j ) {
3217        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3218          const Stmt *stmt= SE->getStmt();
3219          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3220          StmtMap[stmt] = P;
3221
3222          switch (stmt->getStmtClass()) {
3223            case Stmt::DeclStmtClass:
3224                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3225                break;
3226            case Stmt::IfStmtClass: {
3227              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3228              if (var)
3229                DeclMap[var] = P;
3230              break;
3231            }
3232            case Stmt::ForStmtClass: {
3233              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3234              if (var)
3235                DeclMap[var] = P;
3236              break;
3237            }
3238            case Stmt::WhileStmtClass: {
3239              const VarDecl *var =
3240                cast<WhileStmt>(stmt)->getConditionVariable();
3241              if (var)
3242                DeclMap[var] = P;
3243              break;
3244            }
3245            case Stmt::SwitchStmtClass: {
3246              const VarDecl *var =
3247                cast<SwitchStmt>(stmt)->getConditionVariable();
3248              if (var)
3249                DeclMap[var] = P;
3250              break;
3251            }
3252            case Stmt::CXXCatchStmtClass: {
3253              const VarDecl *var =
3254                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3255              if (var)
3256                DeclMap[var] = P;
3257              break;
3258            }
3259            default:
3260              break;
3261          }
3262        }
3263      }
3264    }
3265  }
3266
3267
3268  virtual ~StmtPrinterHelper() {}
3269
3270  const LangOptions &getLangOpts() const { return LangOpts; }
3271  void setBlockID(signed i) { currentBlock = i; }
3272  void setStmtID(unsigned i) { currentStmt = i; }
3273
3274  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3275    StmtMapTy::iterator I = StmtMap.find(S);
3276
3277    if (I == StmtMap.end())
3278      return false;
3279
3280    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3281                          && I->second.second == currentStmt) {
3282      return false;
3283    }
3284
3285    OS << "[B" << I->second.first << "." << I->second.second << "]";
3286    return true;
3287  }
3288
3289  bool handleDecl(const Decl *D, raw_ostream &OS) {
3290    DeclMapTy::iterator I = DeclMap.find(D);
3291
3292    if (I == DeclMap.end())
3293      return false;
3294
3295    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3296                          && I->second.second == currentStmt) {
3297      return false;
3298    }
3299
3300    OS << "[B" << I->second.first << "." << I->second.second << "]";
3301    return true;
3302  }
3303};
3304} // end anonymous namespace
3305
3306
3307namespace {
3308class CFGBlockTerminatorPrint
3309  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3310
3311  raw_ostream &OS;
3312  StmtPrinterHelper* Helper;
3313  PrintingPolicy Policy;
3314public:
3315  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3316                          const PrintingPolicy &Policy)
3317    : OS(os), Helper(helper), Policy(Policy) {}
3318
3319  void VisitIfStmt(IfStmt *I) {
3320    OS << "if ";
3321    I->getCond()->printPretty(OS,Helper,Policy);
3322  }
3323
3324  // Default case.
3325  void VisitStmt(Stmt *Terminator) {
3326    Terminator->printPretty(OS, Helper, Policy);
3327  }
3328
3329  void VisitForStmt(ForStmt *F) {
3330    OS << "for (" ;
3331    if (F->getInit())
3332      OS << "...";
3333    OS << "; ";
3334    if (Stmt *C = F->getCond())
3335      C->printPretty(OS, Helper, Policy);
3336    OS << "; ";
3337    if (F->getInc())
3338      OS << "...";
3339    OS << ")";
3340  }
3341
3342  void VisitWhileStmt(WhileStmt *W) {
3343    OS << "while " ;
3344    if (Stmt *C = W->getCond())
3345      C->printPretty(OS, Helper, Policy);
3346  }
3347
3348  void VisitDoStmt(DoStmt *D) {
3349    OS << "do ... while ";
3350    if (Stmt *C = D->getCond())
3351      C->printPretty(OS, Helper, Policy);
3352  }
3353
3354  void VisitSwitchStmt(SwitchStmt *Terminator) {
3355    OS << "switch ";
3356    Terminator->getCond()->printPretty(OS, Helper, Policy);
3357  }
3358
3359  void VisitCXXTryStmt(CXXTryStmt *CS) {
3360    OS << "try ...";
3361  }
3362
3363  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3364    C->getCond()->printPretty(OS, Helper, Policy);
3365    OS << " ? ... : ...";
3366  }
3367
3368  void VisitChooseExpr(ChooseExpr *C) {
3369    OS << "__builtin_choose_expr( ";
3370    C->getCond()->printPretty(OS, Helper, Policy);
3371    OS << " )";
3372  }
3373
3374  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3375    OS << "goto *";
3376    I->getTarget()->printPretty(OS, Helper, Policy);
3377  }
3378
3379  void VisitBinaryOperator(BinaryOperator* B) {
3380    if (!B->isLogicalOp()) {
3381      VisitExpr(B);
3382      return;
3383    }
3384
3385    B->getLHS()->printPretty(OS, Helper, Policy);
3386
3387    switch (B->getOpcode()) {
3388      case BO_LOr:
3389        OS << " || ...";
3390        return;
3391      case BO_LAnd:
3392        OS << " && ...";
3393        return;
3394      default:
3395        llvm_unreachable("Invalid logical operator.");
3396    }
3397  }
3398
3399  void VisitExpr(Expr *E) {
3400    E->printPretty(OS, Helper, Policy);
3401  }
3402};
3403} // end anonymous namespace
3404
3405static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3406                       const CFGElement &E) {
3407  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3408    const Stmt *S = CS->getStmt();
3409
3410    if (Helper) {
3411
3412      // special printing for statement-expressions.
3413      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3414        const CompoundStmt *Sub = SE->getSubStmt();
3415
3416        if (Sub->children()) {
3417          OS << "({ ... ; ";
3418          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3419          OS << " })\n";
3420          return;
3421        }
3422      }
3423      // special printing for comma expressions.
3424      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3425        if (B->getOpcode() == BO_Comma) {
3426          OS << "... , ";
3427          Helper->handledStmt(B->getRHS(),OS);
3428          OS << '\n';
3429          return;
3430        }
3431      }
3432    }
3433    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3434
3435    if (isa<CXXOperatorCallExpr>(S)) {
3436      OS << " (OperatorCall)";
3437    } else if (isa<CXXBindTemporaryExpr>(S)) {
3438      OS << " (BindTemporary)";
3439    }
3440
3441    // Expressions need a newline.
3442    if (isa<Expr>(S))
3443      OS << '\n';
3444
3445  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3446    const CXXCtorInitializer *I = IE->getInitializer();
3447    if (I->isBaseInitializer())
3448      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3449    else OS << I->getAnyMember()->getName();
3450
3451    OS << "(";
3452    if (Expr *IE = I->getInit())
3453      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3454    OS << ")";
3455
3456    if (I->isBaseInitializer())
3457      OS << " (Base initializer)\n";
3458    else OS << " (Member initializer)\n";
3459
3460  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3461    const VarDecl *VD = DE->getVarDecl();
3462    Helper->handleDecl(VD, OS);
3463
3464    const Type* T = VD->getType().getTypePtr();
3465    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3466      T = RT->getPointeeType().getTypePtr();
3467    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3468      T = ET;
3469
3470    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3471    OS << " (Implicit destructor)\n";
3472
3473  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3474    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3475    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3476    OS << " (Base object destructor)\n";
3477
3478  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3479    const FieldDecl *FD = ME->getFieldDecl();
3480
3481    const Type *T = FD->getType().getTypePtr();
3482    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3483      T = ET;
3484
3485    OS << "this->" << FD->getName();
3486    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3487    OS << " (Member object destructor)\n";
3488
3489  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3490    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3491    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3492    OS << " (Temporary object destructor)\n";
3493  }
3494}
3495
3496static void print_block(raw_ostream &OS, const CFG* cfg,
3497                        const CFGBlock &B,
3498                        StmtPrinterHelper* Helper, bool print_edges) {
3499
3500  if (Helper) Helper->setBlockID(B.getBlockID());
3501
3502  // Print the header.
3503  OS << "\n [ B" << B.getBlockID();
3504
3505  if (&B == &cfg->getEntry())
3506    OS << " (ENTRY) ]\n";
3507  else if (&B == &cfg->getExit())
3508    OS << " (EXIT) ]\n";
3509  else if (&B == cfg->getIndirectGotoBlock())
3510    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3511  else
3512    OS << " ]\n";
3513
3514  // Print the label of this block.
3515  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3516
3517    if (print_edges)
3518      OS << "    ";
3519
3520    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3521      OS << L->getName();
3522    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3523      OS << "case ";
3524      C->getLHS()->printPretty(OS, Helper,
3525                               PrintingPolicy(Helper->getLangOpts()));
3526      if (C->getRHS()) {
3527        OS << " ... ";
3528        C->getRHS()->printPretty(OS, Helper,
3529                                 PrintingPolicy(Helper->getLangOpts()));
3530      }
3531    } else if (isa<DefaultStmt>(Label))
3532      OS << "default";
3533    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3534      OS << "catch (";
3535      if (CS->getExceptionDecl())
3536        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3537                                      0);
3538      else
3539        OS << "...";
3540      OS << ")";
3541
3542    } else
3543      llvm_unreachable("Invalid label statement in CFGBlock.");
3544
3545    OS << ":\n";
3546  }
3547
3548  // Iterate through the statements in the block and print them.
3549  unsigned j = 1;
3550
3551  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3552       I != E ; ++I, ++j ) {
3553
3554    // Print the statement # in the basic block and the statement itself.
3555    if (print_edges)
3556      OS << "    ";
3557
3558    OS << llvm::format("%3d", j) << ": ";
3559
3560    if (Helper)
3561      Helper->setStmtID(j);
3562
3563    print_elem(OS,Helper,*I);
3564  }
3565
3566  // Print the terminator of this block.
3567  if (B.getTerminator()) {
3568    if (print_edges)
3569      OS << "    ";
3570
3571    OS << "  T: ";
3572
3573    if (Helper) Helper->setBlockID(-1);
3574
3575    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3576                                     PrintingPolicy(Helper->getLangOpts()));
3577    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3578    OS << '\n';
3579  }
3580
3581  if (print_edges) {
3582    // Print the predecessors of this block.
3583    OS << "    Predecessors (" << B.pred_size() << "):";
3584    unsigned i = 0;
3585
3586    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3587         I != E; ++I, ++i) {
3588
3589      if (i == 8 || (i-8) == 0)
3590        OS << "\n     ";
3591
3592      OS << " B" << (*I)->getBlockID();
3593    }
3594
3595    OS << '\n';
3596
3597    // Print the successors of this block.
3598    OS << "    Successors (" << B.succ_size() << "):";
3599    i = 0;
3600
3601    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3602         I != E; ++I, ++i) {
3603
3604      if (i == 8 || (i-8) % 10 == 0)
3605        OS << "\n    ";
3606
3607      if (*I)
3608        OS << " B" << (*I)->getBlockID();
3609      else
3610        OS  << " NULL";
3611    }
3612
3613    OS << '\n';
3614  }
3615}
3616
3617
3618/// dump - A simple pretty printer of a CFG that outputs to stderr.
3619void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3620
3621/// print - A simple pretty printer of a CFG that outputs to an ostream.
3622void CFG::print(raw_ostream &OS, const LangOptions &LO) const {
3623  StmtPrinterHelper Helper(this, LO);
3624
3625  // Print the entry block.
3626  print_block(OS, this, getEntry(), &Helper, true);
3627
3628  // Iterate through the CFGBlocks and print them one by one.
3629  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3630    // Skip the entry block, because we already printed it.
3631    if (&(**I) == &getEntry() || &(**I) == &getExit())
3632      continue;
3633
3634    print_block(OS, this, **I, &Helper, true);
3635  }
3636
3637  // Print the exit block.
3638  print_block(OS, this, getExit(), &Helper, true);
3639  OS.flush();
3640}
3641
3642/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3643void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3644  print(llvm::errs(), cfg, LO);
3645}
3646
3647/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3648///   Generally this will only be called from CFG::print.
3649void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3650                     const LangOptions &LO) const {
3651  StmtPrinterHelper Helper(cfg, LO);
3652  print_block(OS, cfg, *this, &Helper, true);
3653}
3654
3655/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3656void CFGBlock::printTerminator(raw_ostream &OS,
3657                               const LangOptions &LO) const {
3658  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3659  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3660}
3661
3662Stmt *CFGBlock::getTerminatorCondition() {
3663  Stmt *Terminator = this->Terminator;
3664  if (!Terminator)
3665    return NULL;
3666
3667  Expr *E = NULL;
3668
3669  switch (Terminator->getStmtClass()) {
3670    default:
3671      break;
3672
3673    case Stmt::ForStmtClass:
3674      E = cast<ForStmt>(Terminator)->getCond();
3675      break;
3676
3677    case Stmt::WhileStmtClass:
3678      E = cast<WhileStmt>(Terminator)->getCond();
3679      break;
3680
3681    case Stmt::DoStmtClass:
3682      E = cast<DoStmt>(Terminator)->getCond();
3683      break;
3684
3685    case Stmt::IfStmtClass:
3686      E = cast<IfStmt>(Terminator)->getCond();
3687      break;
3688
3689    case Stmt::ChooseExprClass:
3690      E = cast<ChooseExpr>(Terminator)->getCond();
3691      break;
3692
3693    case Stmt::IndirectGotoStmtClass:
3694      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3695      break;
3696
3697    case Stmt::SwitchStmtClass:
3698      E = cast<SwitchStmt>(Terminator)->getCond();
3699      break;
3700
3701    case Stmt::BinaryConditionalOperatorClass:
3702      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3703      break;
3704
3705    case Stmt::ConditionalOperatorClass:
3706      E = cast<ConditionalOperator>(Terminator)->getCond();
3707      break;
3708
3709    case Stmt::BinaryOperatorClass: // '&&' and '||'
3710      E = cast<BinaryOperator>(Terminator)->getLHS();
3711      break;
3712
3713    case Stmt::ObjCForCollectionStmtClass:
3714      return Terminator;
3715  }
3716
3717  return E ? E->IgnoreParens() : NULL;
3718}
3719
3720//===----------------------------------------------------------------------===//
3721// CFG Graphviz Visualization
3722//===----------------------------------------------------------------------===//
3723
3724
3725#ifndef NDEBUG
3726static StmtPrinterHelper* GraphHelper;
3727#endif
3728
3729void CFG::viewCFG(const LangOptions &LO) const {
3730#ifndef NDEBUG
3731  StmtPrinterHelper H(this, LO);
3732  GraphHelper = &H;
3733  llvm::ViewGraph(this,"CFG");
3734  GraphHelper = NULL;
3735#endif
3736}
3737
3738namespace llvm {
3739template<>
3740struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3741
3742  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3743
3744  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3745
3746#ifndef NDEBUG
3747    std::string OutSStr;
3748    llvm::raw_string_ostream Out(OutSStr);
3749    print_block(Out,Graph, *Node, GraphHelper, false);
3750    std::string& OutStr = Out.str();
3751
3752    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3753
3754    // Process string output to make it nicer...
3755    for (unsigned i = 0; i != OutStr.length(); ++i)
3756      if (OutStr[i] == '\n') {                            // Left justify
3757        OutStr[i] = '\\';
3758        OutStr.insert(OutStr.begin()+i+1, 'l');
3759      }
3760
3761    return OutStr;
3762#else
3763    return "";
3764#endif
3765  }
3766};
3767} // end namespace llvm
3768