CFG.cpp revision 9260f618e72f7c70dc76312f95d679f0ed03858c
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
290  // during construction of branches for chained logical operators.
291  llvm::DenseMap<Expr *, TryResult> CachedBoolEvals;
292
293public:
294  explicit CFGBuilder(ASTContext *astContext,
295                      const CFG::BuildOptions &buildOpts)
296    : Context(astContext), cfg(new CFG()), // crew a new CFG
297      Block(NULL), Succ(NULL),
298      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
299      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
300      switchExclusivelyCovered(false), switchCond(0),
301      cachedEntry(0), lastLookup(0) {}
302
303  // buildCFG - Used by external clients to construct the CFG.
304  CFG* buildCFG(const Decl *D, Stmt *Statement);
305
306  bool alwaysAdd(const Stmt *stmt);
307
308private:
309  // Visitors to walk an AST and construct the CFG.
310  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
311  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
312  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
313  CFGBlock *VisitBreakStmt(BreakStmt *B);
314  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
315  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
316      AddStmtChoice asc);
317  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
318  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
319  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
320  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
321                                      AddStmtChoice asc);
322  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
323  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
324                                       AddStmtChoice asc);
325  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
326                                        AddStmtChoice asc);
327  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
328  CFGBlock *VisitCaseStmt(CaseStmt *C);
329  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
330  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
331  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
332                                     AddStmtChoice asc);
333  CFGBlock *VisitContinueStmt(ContinueStmt *C);
334  CFGBlock *VisitDeclStmt(DeclStmt *DS);
335  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
336  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
337  CFGBlock *VisitDoStmt(DoStmt *D);
338  CFGBlock *VisitForStmt(ForStmt *F);
339  CFGBlock *VisitGotoStmt(GotoStmt *G);
340  CFGBlock *VisitIfStmt(IfStmt *I);
341  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
342  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
343  CFGBlock *VisitLabelStmt(LabelStmt *L);
344  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
345  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
346  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
347  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
348  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
349  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
350  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
351  CFGBlock *VisitReturnStmt(ReturnStmt *R);
352  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
353  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
354                                          AddStmtChoice asc);
355  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
356  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
357  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
358  CFGBlock *VisitWhileStmt(WhileStmt *W);
359
360  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
361  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
362  CFGBlock *VisitChildren(Stmt *S);
363
364  // Visitors to walk an AST and generate destructors of temporaries in
365  // full expression.
366  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
367  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
368  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
369  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
370      bool BindToTemporary);
371  CFGBlock *
372  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
373                                            bool BindToTemporary);
374
375  // NYS == Not Yet Supported
376  CFGBlock *NYS() {
377    badCFG = true;
378    return Block;
379  }
380
381  void autoCreateBlock() { if (!Block) Block = createBlock(); }
382  CFGBlock *createBlock(bool add_successor = true);
383  CFGBlock *createNoReturnBlock();
384
385  CFGBlock *addStmt(Stmt *S) {
386    return Visit(S, AddStmtChoice::AlwaysAdd);
387  }
388  CFGBlock *addInitializer(CXXCtorInitializer *I);
389  void addAutomaticObjDtors(LocalScope::const_iterator B,
390                            LocalScope::const_iterator E, Stmt *S);
391  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
392
393  // Local scopes creation.
394  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
395
396  void addLocalScopeForStmt(Stmt *S);
397  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
398  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
399
400  void addLocalScopeAndDtors(Stmt *S);
401
402  // Interface to CFGBlock - adding CFGElements.
403  void appendStmt(CFGBlock *B, const Stmt *S) {
404    if (alwaysAdd(S) && cachedEntry)
405      cachedEntry->second = B;
406
407    // All block-level expressions should have already been IgnoreParens()ed.
408    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
409    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
410  }
411  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
412    B->appendInitializer(I, cfg->getBumpVectorContext());
413  }
414  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
415    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
416  }
417  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
418    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
419  }
420  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
421    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
422  }
423  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
424    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
425  }
426
427  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
428      LocalScope::const_iterator B, LocalScope::const_iterator E);
429
430  void addSuccessor(CFGBlock *B, CFGBlock *S) {
431    B->addSuccessor(S, cfg->getBumpVectorContext());
432  }
433
434  /// Try and evaluate an expression to an integer constant.
435  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
436    if (!BuildOpts.PruneTriviallyFalseEdges)
437      return false;
438    return !S->isTypeDependent() &&
439           !S->isValueDependent() &&
440           S->EvaluateAsRValue(outResult, *Context);
441  }
442
443  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
444  /// if we can evaluate to a known value, otherwise return -1.
445  TryResult tryEvaluateBool(Expr *S) {
446    if (!BuildOpts.PruneTriviallyFalseEdges ||
447        S->isTypeDependent() || S->isValueDependent())
448      return TryResult();
449
450    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
451      if (Bop->isLogicalOp()) {
452        // Check the cache first.
453        typedef llvm::DenseMap<Expr *, TryResult>::iterator eval_iterator;
454        eval_iterator I;
455        bool Inserted;
456        llvm::tie(I, Inserted) =
457            CachedBoolEvals.insert(std::make_pair(S, TryResult()));
458        if (!Inserted)
459          return I->second; // already in map;
460
461        // Retrieve result at first, or the map might be updated.
462        TryResult Result = evaluateAsBooleanConditionNoCache(S);
463        CachedBoolEvals[S] = Result; // update or insert
464        return Result;
465      }
466    }
467
468    return evaluateAsBooleanConditionNoCache(S);
469  }
470
471  /// \brief Evaluate as boolean \param E without using the cache.
472  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
473    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
474      if (Bop->isLogicalOp()) {
475        TryResult LHS = tryEvaluateBool(Bop->getLHS());
476        if (LHS.isKnown()) {
477          // We were able to evaluate the LHS, see if we can get away with not
478          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
479          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
480            return LHS.isTrue();
481
482          TryResult RHS = tryEvaluateBool(Bop->getRHS());
483          if (RHS.isKnown()) {
484            if (Bop->getOpcode() == BO_LOr)
485              return LHS.isTrue() || RHS.isTrue();
486            else
487              return LHS.isTrue() && RHS.isTrue();
488          }
489        } else {
490          TryResult RHS = tryEvaluateBool(Bop->getRHS());
491          if (RHS.isKnown()) {
492            // We can't evaluate the LHS; however, sometimes the result
493            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
494            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
495              return RHS.isTrue();
496          }
497        }
498
499        return TryResult();
500      }
501    }
502
503    bool Result;
504    if (E->EvaluateAsBooleanCondition(Result, *Context))
505      return Result;
506
507    return TryResult();
508  }
509
510};
511
512inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
513                                     const Stmt *stmt) const {
514  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
515}
516
517bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
518  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
519
520  if (!BuildOpts.forcedBlkExprs)
521    return shouldAdd;
522
523  if (lastLookup == stmt) {
524    if (cachedEntry) {
525      assert(cachedEntry->first == stmt);
526      return true;
527    }
528    return shouldAdd;
529  }
530
531  lastLookup = stmt;
532
533  // Perform the lookup!
534  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
535
536  if (!fb) {
537    // No need to update 'cachedEntry', since it will always be null.
538    assert(cachedEntry == 0);
539    return shouldAdd;
540  }
541
542  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
543  if (itr == fb->end()) {
544    cachedEntry = 0;
545    return shouldAdd;
546  }
547
548  cachedEntry = &*itr;
549  return true;
550}
551
552// FIXME: Add support for dependent-sized array types in C++?
553// Does it even make sense to build a CFG for an uninstantiated template?
554static const VariableArrayType *FindVA(const Type *t) {
555  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
556    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
557      if (vat->getSizeExpr())
558        return vat;
559
560    t = vt->getElementType().getTypePtr();
561  }
562
563  return 0;
564}
565
566/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
567///  arbitrary statement.  Examples include a single expression or a function
568///  body (compound statement).  The ownership of the returned CFG is
569///  transferred to the caller.  If CFG construction fails, this method returns
570///  NULL.
571CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
572  assert(cfg.get());
573  if (!Statement)
574    return NULL;
575
576  // Create an empty block that will serve as the exit block for the CFG.  Since
577  // this is the first block added to the CFG, it will be implicitly registered
578  // as the exit block.
579  Succ = createBlock();
580  assert(Succ == &cfg->getExit());
581  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
582
583  if (BuildOpts.AddImplicitDtors)
584    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
585      addImplicitDtorsForDestructor(DD);
586
587  // Visit the statements and create the CFG.
588  CFGBlock *B = addStmt(Statement);
589
590  if (badCFG)
591    return NULL;
592
593  // For C++ constructor add initializers to CFG.
594  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
595    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
596        E = CD->init_rend(); I != E; ++I) {
597      B = addInitializer(*I);
598      if (badCFG)
599        return NULL;
600    }
601  }
602
603  if (B)
604    Succ = B;
605
606  // Backpatch the gotos whose label -> block mappings we didn't know when we
607  // encountered them.
608  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
609                                   E = BackpatchBlocks.end(); I != E; ++I ) {
610
611    CFGBlock *B = I->block;
612    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
613    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
614
615    // If there is no target for the goto, then we are looking at an
616    // incomplete AST.  Handle this by not registering a successor.
617    if (LI == LabelMap.end()) continue;
618
619    JumpTarget JT = LI->second;
620    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
621                                           JT.scopePosition);
622    addSuccessor(B, JT.block);
623  }
624
625  // Add successors to the Indirect Goto Dispatch block (if we have one).
626  if (CFGBlock *B = cfg->getIndirectGotoBlock())
627    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
628                              E = AddressTakenLabels.end(); I != E; ++I ) {
629
630      // Lookup the target block.
631      LabelMapTy::iterator LI = LabelMap.find(*I);
632
633      // If there is no target block that contains label, then we are looking
634      // at an incomplete AST.  Handle this by not registering a successor.
635      if (LI == LabelMap.end()) continue;
636
637      addSuccessor(B, LI->second.block);
638    }
639
640  // Create an empty entry block that has no predecessors.
641  cfg->setEntry(createBlock());
642
643  return cfg.take();
644}
645
646/// createBlock - Used to lazily create blocks that are connected
647///  to the current (global) succcessor.
648CFGBlock *CFGBuilder::createBlock(bool add_successor) {
649  CFGBlock *B = cfg->createBlock();
650  if (add_successor && Succ)
651    addSuccessor(B, Succ);
652  return B;
653}
654
655/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
656/// CFG. It is *not* connected to the current (global) successor, and instead
657/// directly tied to the exit block in order to be reachable.
658CFGBlock *CFGBuilder::createNoReturnBlock() {
659  CFGBlock *B = createBlock(false);
660  B->setHasNoReturnElement();
661  addSuccessor(B, &cfg->getExit());
662  return B;
663}
664
665/// addInitializer - Add C++ base or member initializer element to CFG.
666CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
667  if (!BuildOpts.AddInitializers)
668    return Block;
669
670  bool IsReference = false;
671  bool HasTemporaries = false;
672
673  // Destructors of temporaries in initialization expression should be called
674  // after initialization finishes.
675  Expr *Init = I->getInit();
676  if (Init) {
677    if (FieldDecl *FD = I->getAnyMember())
678      IsReference = FD->getType()->isReferenceType();
679    HasTemporaries = isa<ExprWithCleanups>(Init);
680
681    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
682      // Generate destructors for temporaries in initialization expression.
683      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
684          IsReference);
685    }
686  }
687
688  autoCreateBlock();
689  appendInitializer(Block, I);
690
691  if (Init) {
692    if (HasTemporaries) {
693      // For expression with temporaries go directly to subexpression to omit
694      // generating destructors for the second time.
695      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
696    }
697    return Visit(Init);
698  }
699
700  return Block;
701}
702
703/// \brief Retrieve the type of the temporary object whose lifetime was
704/// extended by a local reference with the given initializer.
705static QualType getReferenceInitTemporaryType(ASTContext &Context,
706                                              const Expr *Init) {
707  while (true) {
708    // Skip parentheses.
709    Init = Init->IgnoreParens();
710
711    // Skip through cleanups.
712    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
713      Init = EWC->getSubExpr();
714      continue;
715    }
716
717    // Skip through the temporary-materialization expression.
718    if (const MaterializeTemporaryExpr *MTE
719          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
720      Init = MTE->GetTemporaryExpr();
721      continue;
722    }
723
724    // Skip derived-to-base and no-op casts.
725    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
726      if ((CE->getCastKind() == CK_DerivedToBase ||
727           CE->getCastKind() == CK_UncheckedDerivedToBase ||
728           CE->getCastKind() == CK_NoOp) &&
729          Init->getType()->isRecordType()) {
730        Init = CE->getSubExpr();
731        continue;
732      }
733    }
734
735    // Skip member accesses into rvalues.
736    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
737      if (!ME->isArrow() && ME->getBase()->isRValue()) {
738        Init = ME->getBase();
739        continue;
740      }
741    }
742
743    break;
744  }
745
746  return Init->getType();
747}
748
749/// addAutomaticObjDtors - Add to current block automatic objects destructors
750/// for objects in range of local scope positions. Use S as trigger statement
751/// for destructors.
752void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
753                                      LocalScope::const_iterator E, Stmt *S) {
754  if (!BuildOpts.AddImplicitDtors)
755    return;
756
757  if (B == E)
758    return;
759
760  // We need to append the destructors in reverse order, but any one of them
761  // may be a no-return destructor which changes the CFG. As a result, buffer
762  // this sequence up and replay them in reverse order when appending onto the
763  // CFGBlock(s).
764  SmallVector<VarDecl*, 10> Decls;
765  Decls.reserve(B.distance(E));
766  for (LocalScope::const_iterator I = B; I != E; ++I)
767    Decls.push_back(*I);
768
769  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
770                                                   E = Decls.rend();
771       I != E; ++I) {
772    // If this destructor is marked as a no-return destructor, we need to
773    // create a new block for the destructor which does not have as a successor
774    // anything built thus far: control won't flow out of this block.
775    QualType Ty;
776    if ((*I)->getType()->isReferenceType()) {
777      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
778    } else {
779      Ty = Context->getBaseElementType((*I)->getType());
780    }
781
782    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
783    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
784      Block = createNoReturnBlock();
785    else
786      autoCreateBlock();
787
788    appendAutomaticObjDtor(Block, *I, S);
789  }
790}
791
792/// addImplicitDtorsForDestructor - Add implicit destructors generated for
793/// base and member objects in destructor.
794void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
795  assert (BuildOpts.AddImplicitDtors
796      && "Can be called only when dtors should be added");
797  const CXXRecordDecl *RD = DD->getParent();
798
799  // At the end destroy virtual base objects.
800  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
801      VE = RD->vbases_end(); VI != VE; ++VI) {
802    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
803    if (!CD->hasTrivialDestructor()) {
804      autoCreateBlock();
805      appendBaseDtor(Block, VI);
806    }
807  }
808
809  // Before virtual bases destroy direct base objects.
810  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
811      BE = RD->bases_end(); BI != BE; ++BI) {
812    if (!BI->isVirtual()) {
813      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
814      if (!CD->hasTrivialDestructor()) {
815        autoCreateBlock();
816        appendBaseDtor(Block, BI);
817      }
818    }
819  }
820
821  // First destroy member objects.
822  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
823      FE = RD->field_end(); FI != FE; ++FI) {
824    // Check for constant size array. Set type to array element type.
825    QualType QT = FI->getType();
826    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
827      if (AT->getSize() == 0)
828        continue;
829      QT = AT->getElementType();
830    }
831
832    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
833      if (!CD->hasTrivialDestructor()) {
834        autoCreateBlock();
835        appendMemberDtor(Block, *FI);
836      }
837  }
838}
839
840/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
841/// way return valid LocalScope object.
842LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
843  if (!Scope) {
844    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
845    Scope = alloc.Allocate<LocalScope>();
846    BumpVectorContext ctx(alloc);
847    new (Scope) LocalScope(ctx, ScopePos);
848  }
849  return Scope;
850}
851
852/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
853/// that should create implicit scope (e.g. if/else substatements).
854void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
855  if (!BuildOpts.AddImplicitDtors)
856    return;
857
858  LocalScope *Scope = 0;
859
860  // For compound statement we will be creating explicit scope.
861  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
862    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
863        ; BI != BE; ++BI) {
864      Stmt *SI = (*BI)->stripLabelLikeStatements();
865      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
866        Scope = addLocalScopeForDeclStmt(DS, Scope);
867    }
868    return;
869  }
870
871  // For any other statement scope will be implicit and as such will be
872  // interesting only for DeclStmt.
873  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
874    addLocalScopeForDeclStmt(DS);
875}
876
877/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
878/// reuse Scope if not NULL.
879LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
880                                                 LocalScope* Scope) {
881  if (!BuildOpts.AddImplicitDtors)
882    return Scope;
883
884  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
885      ; DI != DE; ++DI) {
886    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
887      Scope = addLocalScopeForVarDecl(VD, Scope);
888  }
889  return Scope;
890}
891
892/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
893/// create add scope for automatic objects and temporary objects bound to
894/// const reference. Will reuse Scope if not NULL.
895LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
896                                                LocalScope* Scope) {
897  if (!BuildOpts.AddImplicitDtors)
898    return Scope;
899
900  // Check if variable is local.
901  switch (VD->getStorageClass()) {
902  case SC_None:
903  case SC_Auto:
904  case SC_Register:
905    break;
906  default: return Scope;
907  }
908
909  // Check for const references bound to temporary. Set type to pointee.
910  QualType QT = VD->getType();
911  if (QT.getTypePtr()->isReferenceType()) {
912    if (!VD->extendsLifetimeOfTemporary())
913      return Scope;
914
915    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
916  }
917
918  // Check for constant size array. Set type to array element type.
919  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
920    if (AT->getSize() == 0)
921      return Scope;
922    QT = AT->getElementType();
923  }
924
925  // Check if type is a C++ class with non-trivial destructor.
926  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
927    if (!CD->hasTrivialDestructor()) {
928      // Add the variable to scope
929      Scope = createOrReuseLocalScope(Scope);
930      Scope->addVar(VD);
931      ScopePos = Scope->begin();
932    }
933  return Scope;
934}
935
936/// addLocalScopeAndDtors - For given statement add local scope for it and
937/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
938void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
939  if (!BuildOpts.AddImplicitDtors)
940    return;
941
942  LocalScope::const_iterator scopeBeginPos = ScopePos;
943  addLocalScopeForStmt(S);
944  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
945}
946
947/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
948/// variables with automatic storage duration to CFGBlock's elements vector.
949/// Elements will be prepended to physical beginning of the vector which
950/// happens to be logical end. Use blocks terminator as statement that specifies
951/// destructors call site.
952/// FIXME: This mechanism for adding automatic destructors doesn't handle
953/// no-return destructors properly.
954void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
955    LocalScope::const_iterator B, LocalScope::const_iterator E) {
956  BumpVectorContext &C = cfg->getBumpVectorContext();
957  CFGBlock::iterator InsertPos
958    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
959  for (LocalScope::const_iterator I = B; I != E; ++I)
960    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
961                                            Blk->getTerminator());
962}
963
964/// Visit - Walk the subtree of a statement and add extra
965///   blocks for ternary operators, &&, and ||.  We also process "," and
966///   DeclStmts (which may contain nested control-flow).
967CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
968  if (!S) {
969    badCFG = true;
970    return 0;
971  }
972
973  if (Expr *E = dyn_cast<Expr>(S))
974    S = E->IgnoreParens();
975
976  switch (S->getStmtClass()) {
977    default:
978      return VisitStmt(S, asc);
979
980    case Stmt::AddrLabelExprClass:
981      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
982
983    case Stmt::BinaryConditionalOperatorClass:
984      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
985
986    case Stmt::BinaryOperatorClass:
987      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
988
989    case Stmt::BlockExprClass:
990      return VisitBlockExpr(cast<BlockExpr>(S), asc);
991
992    case Stmt::BreakStmtClass:
993      return VisitBreakStmt(cast<BreakStmt>(S));
994
995    case Stmt::CallExprClass:
996    case Stmt::CXXOperatorCallExprClass:
997    case Stmt::CXXMemberCallExprClass:
998    case Stmt::UserDefinedLiteralClass:
999      return VisitCallExpr(cast<CallExpr>(S), asc);
1000
1001    case Stmt::CaseStmtClass:
1002      return VisitCaseStmt(cast<CaseStmt>(S));
1003
1004    case Stmt::ChooseExprClass:
1005      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1006
1007    case Stmt::CompoundStmtClass:
1008      return VisitCompoundStmt(cast<CompoundStmt>(S));
1009
1010    case Stmt::ConditionalOperatorClass:
1011      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1012
1013    case Stmt::ContinueStmtClass:
1014      return VisitContinueStmt(cast<ContinueStmt>(S));
1015
1016    case Stmt::CXXCatchStmtClass:
1017      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1018
1019    case Stmt::ExprWithCleanupsClass:
1020      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1021
1022    case Stmt::CXXBindTemporaryExprClass:
1023      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1024
1025    case Stmt::CXXConstructExprClass:
1026      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1027
1028    case Stmt::CXXFunctionalCastExprClass:
1029      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1030
1031    case Stmt::CXXTemporaryObjectExprClass:
1032      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1033
1034    case Stmt::CXXThrowExprClass:
1035      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1036
1037    case Stmt::CXXTryStmtClass:
1038      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1039
1040    case Stmt::CXXForRangeStmtClass:
1041      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1042
1043    case Stmt::DeclStmtClass:
1044      return VisitDeclStmt(cast<DeclStmt>(S));
1045
1046    case Stmt::DefaultStmtClass:
1047      return VisitDefaultStmt(cast<DefaultStmt>(S));
1048
1049    case Stmt::DoStmtClass:
1050      return VisitDoStmt(cast<DoStmt>(S));
1051
1052    case Stmt::ForStmtClass:
1053      return VisitForStmt(cast<ForStmt>(S));
1054
1055    case Stmt::GotoStmtClass:
1056      return VisitGotoStmt(cast<GotoStmt>(S));
1057
1058    case Stmt::IfStmtClass:
1059      return VisitIfStmt(cast<IfStmt>(S));
1060
1061    case Stmt::ImplicitCastExprClass:
1062      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1063
1064    case Stmt::IndirectGotoStmtClass:
1065      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1066
1067    case Stmt::LabelStmtClass:
1068      return VisitLabelStmt(cast<LabelStmt>(S));
1069
1070    case Stmt::MemberExprClass:
1071      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1072
1073    case Stmt::NullStmtClass:
1074      return Block;
1075
1076    case Stmt::ObjCAtCatchStmtClass:
1077      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1078
1079    case Stmt::ObjCAutoreleasePoolStmtClass:
1080    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1081
1082    case Stmt::ObjCAtSynchronizedStmtClass:
1083      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1084
1085    case Stmt::ObjCAtThrowStmtClass:
1086      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1087
1088    case Stmt::ObjCAtTryStmtClass:
1089      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1090
1091    case Stmt::ObjCForCollectionStmtClass:
1092      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1093
1094    case Stmt::OpaqueValueExprClass:
1095      return Block;
1096
1097    case Stmt::PseudoObjectExprClass:
1098      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1099
1100    case Stmt::ReturnStmtClass:
1101      return VisitReturnStmt(cast<ReturnStmt>(S));
1102
1103    case Stmt::UnaryExprOrTypeTraitExprClass:
1104      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1105                                           asc);
1106
1107    case Stmt::StmtExprClass:
1108      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1109
1110    case Stmt::SwitchStmtClass:
1111      return VisitSwitchStmt(cast<SwitchStmt>(S));
1112
1113    case Stmt::UnaryOperatorClass:
1114      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1115
1116    case Stmt::WhileStmtClass:
1117      return VisitWhileStmt(cast<WhileStmt>(S));
1118  }
1119}
1120
1121CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1122  if (asc.alwaysAdd(*this, S)) {
1123    autoCreateBlock();
1124    appendStmt(Block, S);
1125  }
1126
1127  return VisitChildren(S);
1128}
1129
1130/// VisitChildren - Visit the children of a Stmt.
1131CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1132  CFGBlock *lastBlock = Block;
1133  for (Stmt::child_range I = Terminator->children(); I; ++I)
1134    if (Stmt *child = *I)
1135      if (CFGBlock *b = Visit(child))
1136        lastBlock = b;
1137
1138  return lastBlock;
1139}
1140
1141CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1142                                         AddStmtChoice asc) {
1143  AddressTakenLabels.insert(A->getLabel());
1144
1145  if (asc.alwaysAdd(*this, A)) {
1146    autoCreateBlock();
1147    appendStmt(Block, A);
1148  }
1149
1150  return Block;
1151}
1152
1153CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1154           AddStmtChoice asc) {
1155  if (asc.alwaysAdd(*this, U)) {
1156    autoCreateBlock();
1157    appendStmt(Block, U);
1158  }
1159
1160  return Visit(U->getSubExpr(), AddStmtChoice());
1161}
1162
1163CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1164                                          AddStmtChoice asc) {
1165  if (B->isLogicalOp()) { // && or ||
1166    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1167    appendStmt(ConfluenceBlock, B);
1168
1169    if (badCFG)
1170      return 0;
1171
1172    // create the block evaluating the LHS
1173    CFGBlock *LHSBlock = createBlock(false);
1174    LHSBlock->setTerminator(B);
1175
1176    // create the block evaluating the RHS
1177    Succ = ConfluenceBlock;
1178    Block = NULL;
1179    CFGBlock *RHSBlock = addStmt(B->getRHS());
1180
1181    if (RHSBlock) {
1182      if (badCFG)
1183        return 0;
1184    } else {
1185      // Create an empty block for cases where the RHS doesn't require
1186      // any explicit statements in the CFG.
1187      RHSBlock = createBlock();
1188    }
1189
1190    // Generate the blocks for evaluating the LHS.
1191    Block = LHSBlock;
1192    CFGBlock *EntryLHSBlock = addStmt(B->getLHS());
1193
1194    // See if this is a known constant.
1195    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1196    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1197      KnownVal.negate();
1198
1199    // Now link the LHSBlock with RHSBlock.
1200    if (B->getOpcode() == BO_LOr) {
1201      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1202      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1203    } else {
1204      assert(B->getOpcode() == BO_LAnd);
1205      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1206      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1207    }
1208
1209    return EntryLHSBlock;
1210  }
1211
1212  if (B->getOpcode() == BO_Comma) { // ,
1213    autoCreateBlock();
1214    appendStmt(Block, B);
1215    addStmt(B->getRHS());
1216    return addStmt(B->getLHS());
1217  }
1218
1219  if (B->isAssignmentOp()) {
1220    if (asc.alwaysAdd(*this, B)) {
1221      autoCreateBlock();
1222      appendStmt(Block, B);
1223    }
1224    Visit(B->getLHS());
1225    return Visit(B->getRHS());
1226  }
1227
1228  if (asc.alwaysAdd(*this, B)) {
1229    autoCreateBlock();
1230    appendStmt(Block, B);
1231  }
1232
1233  CFGBlock *RBlock = Visit(B->getRHS());
1234  CFGBlock *LBlock = Visit(B->getLHS());
1235  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1236  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1237  // return RBlock.  Otherwise we'll incorrectly return NULL.
1238  return (LBlock ? LBlock : RBlock);
1239}
1240
1241CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1242  if (asc.alwaysAdd(*this, E)) {
1243    autoCreateBlock();
1244    appendStmt(Block, E);
1245  }
1246  return Block;
1247}
1248
1249CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1250  // "break" is a control-flow statement.  Thus we stop processing the current
1251  // block.
1252  if (badCFG)
1253    return 0;
1254
1255  // Now create a new block that ends with the break statement.
1256  Block = createBlock(false);
1257  Block->setTerminator(B);
1258
1259  // If there is no target for the break, then we are looking at an incomplete
1260  // AST.  This means that the CFG cannot be constructed.
1261  if (BreakJumpTarget.block) {
1262    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1263    addSuccessor(Block, BreakJumpTarget.block);
1264  } else
1265    badCFG = true;
1266
1267
1268  return Block;
1269}
1270
1271static bool CanThrow(Expr *E, ASTContext &Ctx) {
1272  QualType Ty = E->getType();
1273  if (Ty->isFunctionPointerType())
1274    Ty = Ty->getAs<PointerType>()->getPointeeType();
1275  else if (Ty->isBlockPointerType())
1276    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1277
1278  const FunctionType *FT = Ty->getAs<FunctionType>();
1279  if (FT) {
1280    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1281      if (Proto->isNothrow(Ctx))
1282        return false;
1283  }
1284  return true;
1285}
1286
1287CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1288  // Compute the callee type.
1289  QualType calleeType = C->getCallee()->getType();
1290  if (calleeType == Context->BoundMemberTy) {
1291    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1292
1293    // We should only get a null bound type if processing a dependent
1294    // CFG.  Recover by assuming nothing.
1295    if (!boundType.isNull()) calleeType = boundType;
1296  }
1297
1298  // If this is a call to a no-return function, this stops the block here.
1299  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1300
1301  bool AddEHEdge = false;
1302
1303  // Languages without exceptions are assumed to not throw.
1304  if (Context->getLangOpts().Exceptions) {
1305    if (BuildOpts.AddEHEdges)
1306      AddEHEdge = true;
1307  }
1308
1309  if (FunctionDecl *FD = C->getDirectCallee()) {
1310    if (FD->hasAttr<NoReturnAttr>())
1311      NoReturn = true;
1312    if (FD->hasAttr<NoThrowAttr>())
1313      AddEHEdge = false;
1314  }
1315
1316  if (!CanThrow(C->getCallee(), *Context))
1317    AddEHEdge = false;
1318
1319  if (!NoReturn && !AddEHEdge)
1320    return VisitStmt(C, asc.withAlwaysAdd(true));
1321
1322  if (Block) {
1323    Succ = Block;
1324    if (badCFG)
1325      return 0;
1326  }
1327
1328  if (NoReturn)
1329    Block = createNoReturnBlock();
1330  else
1331    Block = createBlock();
1332
1333  appendStmt(Block, C);
1334
1335  if (AddEHEdge) {
1336    // Add exceptional edges.
1337    if (TryTerminatedBlock)
1338      addSuccessor(Block, TryTerminatedBlock);
1339    else
1340      addSuccessor(Block, &cfg->getExit());
1341  }
1342
1343  return VisitChildren(C);
1344}
1345
1346CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1347                                      AddStmtChoice asc) {
1348  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1349  appendStmt(ConfluenceBlock, C);
1350  if (badCFG)
1351    return 0;
1352
1353  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1354  Succ = ConfluenceBlock;
1355  Block = NULL;
1356  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1357  if (badCFG)
1358    return 0;
1359
1360  Succ = ConfluenceBlock;
1361  Block = NULL;
1362  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1363  if (badCFG)
1364    return 0;
1365
1366  Block = createBlock(false);
1367  // See if this is a known constant.
1368  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1369  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1370  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1371  Block->setTerminator(C);
1372  return addStmt(C->getCond());
1373}
1374
1375
1376CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1377  addLocalScopeAndDtors(C);
1378  CFGBlock *LastBlock = Block;
1379
1380  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1381       I != E; ++I ) {
1382    // If we hit a segment of code just containing ';' (NullStmts), we can
1383    // get a null block back.  In such cases, just use the LastBlock
1384    if (CFGBlock *newBlock = addStmt(*I))
1385      LastBlock = newBlock;
1386
1387    if (badCFG)
1388      return NULL;
1389  }
1390
1391  return LastBlock;
1392}
1393
1394CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1395                                               AddStmtChoice asc) {
1396  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1397  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1398
1399  // Create the confluence block that will "merge" the results of the ternary
1400  // expression.
1401  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1402  appendStmt(ConfluenceBlock, C);
1403  if (badCFG)
1404    return 0;
1405
1406  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1407
1408  // Create a block for the LHS expression if there is an LHS expression.  A
1409  // GCC extension allows LHS to be NULL, causing the condition to be the
1410  // value that is returned instead.
1411  //  e.g: x ?: y is shorthand for: x ? x : y;
1412  Succ = ConfluenceBlock;
1413  Block = NULL;
1414  CFGBlock *LHSBlock = 0;
1415  const Expr *trueExpr = C->getTrueExpr();
1416  if (trueExpr != opaqueValue) {
1417    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1418    if (badCFG)
1419      return 0;
1420    Block = NULL;
1421  }
1422  else
1423    LHSBlock = ConfluenceBlock;
1424
1425  // Create the block for the RHS expression.
1426  Succ = ConfluenceBlock;
1427  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1428  if (badCFG)
1429    return 0;
1430
1431  // Create the block that will contain the condition.
1432  Block = createBlock(false);
1433
1434  // See if this is a known constant.
1435  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1436  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1437  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1438  Block->setTerminator(C);
1439  Expr *condExpr = C->getCond();
1440
1441  if (opaqueValue) {
1442    // Run the condition expression if it's not trivially expressed in
1443    // terms of the opaque value (or if there is no opaque value).
1444    if (condExpr != opaqueValue)
1445      addStmt(condExpr);
1446
1447    // Before that, run the common subexpression if there was one.
1448    // At least one of this or the above will be run.
1449    return addStmt(BCO->getCommon());
1450  }
1451
1452  return addStmt(condExpr);
1453}
1454
1455CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1456  // Check if the Decl is for an __label__.  If so, elide it from the
1457  // CFG entirely.
1458  if (isa<LabelDecl>(*DS->decl_begin()))
1459    return Block;
1460
1461  // This case also handles static_asserts.
1462  if (DS->isSingleDecl())
1463    return VisitDeclSubExpr(DS);
1464
1465  CFGBlock *B = 0;
1466
1467  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1468  typedef SmallVector<Decl*,10> BufTy;
1469  BufTy Buf(DS->decl_begin(), DS->decl_end());
1470
1471  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1472    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1473    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1474               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1475
1476    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1477    // automatically freed with the CFG.
1478    DeclGroupRef DG(*I);
1479    Decl *D = *I;
1480    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1481    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1482
1483    // Append the fake DeclStmt to block.
1484    B = VisitDeclSubExpr(DSNew);
1485  }
1486
1487  return B;
1488}
1489
1490/// VisitDeclSubExpr - Utility method to add block-level expressions for
1491/// DeclStmts and initializers in them.
1492CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1493  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1494  Decl *D = DS->getSingleDecl();
1495
1496  if (isa<StaticAssertDecl>(D)) {
1497    // static_asserts aren't added to the CFG because they do not impact
1498    // runtime semantics.
1499    return Block;
1500  }
1501
1502  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1503
1504  if (!VD) {
1505    autoCreateBlock();
1506    appendStmt(Block, DS);
1507    return Block;
1508  }
1509
1510  bool IsReference = false;
1511  bool HasTemporaries = false;
1512
1513  // Destructors of temporaries in initialization expression should be called
1514  // after initialization finishes.
1515  Expr *Init = VD->getInit();
1516  if (Init) {
1517    IsReference = VD->getType()->isReferenceType();
1518    HasTemporaries = isa<ExprWithCleanups>(Init);
1519
1520    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1521      // Generate destructors for temporaries in initialization expression.
1522      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1523          IsReference);
1524    }
1525  }
1526
1527  autoCreateBlock();
1528  appendStmt(Block, DS);
1529
1530  // Keep track of the last non-null block, as 'Block' can be nulled out
1531  // if the initializer expression is something like a 'while' in a
1532  // statement-expression.
1533  CFGBlock *LastBlock = Block;
1534
1535  if (Init) {
1536    if (HasTemporaries) {
1537      // For expression with temporaries go directly to subexpression to omit
1538      // generating destructors for the second time.
1539      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1540      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1541        LastBlock = newBlock;
1542    }
1543    else {
1544      if (CFGBlock *newBlock = Visit(Init))
1545        LastBlock = newBlock;
1546    }
1547  }
1548
1549  // If the type of VD is a VLA, then we must process its size expressions.
1550  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1551       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1552    Block = addStmt(VA->getSizeExpr());
1553
1554  // Remove variable from local scope.
1555  if (ScopePos && VD == *ScopePos)
1556    ++ScopePos;
1557
1558  return Block ? Block : LastBlock;
1559}
1560
1561CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1562  // We may see an if statement in the middle of a basic block, or it may be the
1563  // first statement we are processing.  In either case, we create a new basic
1564  // block.  First, we create the blocks for the then...else statements, and
1565  // then we create the block containing the if statement.  If we were in the
1566  // middle of a block, we stop processing that block.  That block is then the
1567  // implicit successor for the "then" and "else" clauses.
1568
1569  // Save local scope position because in case of condition variable ScopePos
1570  // won't be restored when traversing AST.
1571  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1572
1573  // Create local scope for possible condition variable.
1574  // Store scope position. Add implicit destructor.
1575  if (VarDecl *VD = I->getConditionVariable()) {
1576    LocalScope::const_iterator BeginScopePos = ScopePos;
1577    addLocalScopeForVarDecl(VD);
1578    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1579  }
1580
1581  // The block we were processing is now finished.  Make it the successor
1582  // block.
1583  if (Block) {
1584    Succ = Block;
1585    if (badCFG)
1586      return 0;
1587  }
1588
1589  // Process the false branch.
1590  CFGBlock *ElseBlock = Succ;
1591
1592  if (Stmt *Else = I->getElse()) {
1593    SaveAndRestore<CFGBlock*> sv(Succ);
1594
1595    // NULL out Block so that the recursive call to Visit will
1596    // create a new basic block.
1597    Block = NULL;
1598
1599    // If branch is not a compound statement create implicit scope
1600    // and add destructors.
1601    if (!isa<CompoundStmt>(Else))
1602      addLocalScopeAndDtors(Else);
1603
1604    ElseBlock = addStmt(Else);
1605
1606    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1607      ElseBlock = sv.get();
1608    else if (Block) {
1609      if (badCFG)
1610        return 0;
1611    }
1612  }
1613
1614  // Process the true branch.
1615  CFGBlock *ThenBlock;
1616  {
1617    Stmt *Then = I->getThen();
1618    assert(Then);
1619    SaveAndRestore<CFGBlock*> sv(Succ);
1620    Block = NULL;
1621
1622    // If branch is not a compound statement create implicit scope
1623    // and add destructors.
1624    if (!isa<CompoundStmt>(Then))
1625      addLocalScopeAndDtors(Then);
1626
1627    ThenBlock = addStmt(Then);
1628
1629    if (!ThenBlock) {
1630      // We can reach here if the "then" body has all NullStmts.
1631      // Create an empty block so we can distinguish between true and false
1632      // branches in path-sensitive analyses.
1633      ThenBlock = createBlock(false);
1634      addSuccessor(ThenBlock, sv.get());
1635    } else if (Block) {
1636      if (badCFG)
1637        return 0;
1638    }
1639  }
1640
1641  // Now create a new block containing the if statement.
1642  Block = createBlock(false);
1643
1644  // Set the terminator of the new block to the If statement.
1645  Block->setTerminator(I);
1646
1647  // See if this is a known constant.
1648  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1649
1650  // Now add the successors.
1651  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1652  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1653
1654  // Add the condition as the last statement in the new block.  This may create
1655  // new blocks as the condition may contain control-flow.  Any newly created
1656  // blocks will be pointed to be "Block".
1657  Block = addStmt(I->getCond());
1658
1659  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1660  // and the condition variable initialization to the CFG.
1661  if (VarDecl *VD = I->getConditionVariable()) {
1662    if (Expr *Init = VD->getInit()) {
1663      autoCreateBlock();
1664      appendStmt(Block, I->getConditionVariableDeclStmt());
1665      addStmt(Init);
1666    }
1667  }
1668
1669  return Block;
1670}
1671
1672
1673CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1674  // If we were in the middle of a block we stop processing that block.
1675  //
1676  // NOTE: If a "return" appears in the middle of a block, this means that the
1677  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1678  //       for that code; a simple "mark-and-sweep" from the entry block will be
1679  //       able to report such dead blocks.
1680
1681  // Create the new block.
1682  Block = createBlock(false);
1683
1684  // The Exit block is the only successor.
1685  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1686  addSuccessor(Block, &cfg->getExit());
1687
1688  // Add the return statement to the block.  This may create new blocks if R
1689  // contains control-flow (short-circuit operations).
1690  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1691}
1692
1693CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1694  // Get the block of the labeled statement.  Add it to our map.
1695  addStmt(L->getSubStmt());
1696  CFGBlock *LabelBlock = Block;
1697
1698  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1699    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1700
1701  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1702         "label already in map");
1703  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1704
1705  // Labels partition blocks, so this is the end of the basic block we were
1706  // processing (L is the block's label).  Because this is label (and we have
1707  // already processed the substatement) there is no extra control-flow to worry
1708  // about.
1709  LabelBlock->setLabel(L);
1710  if (badCFG)
1711    return 0;
1712
1713  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1714  Block = NULL;
1715
1716  // This block is now the implicit successor of other blocks.
1717  Succ = LabelBlock;
1718
1719  return LabelBlock;
1720}
1721
1722CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1723  // Goto is a control-flow statement.  Thus we stop processing the current
1724  // block and create a new one.
1725
1726  Block = createBlock(false);
1727  Block->setTerminator(G);
1728
1729  // If we already know the mapping to the label block add the successor now.
1730  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1731
1732  if (I == LabelMap.end())
1733    // We will need to backpatch this block later.
1734    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1735  else {
1736    JumpTarget JT = I->second;
1737    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1738    addSuccessor(Block, JT.block);
1739  }
1740
1741  return Block;
1742}
1743
1744CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1745  CFGBlock *LoopSuccessor = NULL;
1746
1747  // Save local scope position because in case of condition variable ScopePos
1748  // won't be restored when traversing AST.
1749  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1750
1751  // Create local scope for init statement and possible condition variable.
1752  // Add destructor for init statement and condition variable.
1753  // Store scope position for continue statement.
1754  if (Stmt *Init = F->getInit())
1755    addLocalScopeForStmt(Init);
1756  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1757
1758  if (VarDecl *VD = F->getConditionVariable())
1759    addLocalScopeForVarDecl(VD);
1760  LocalScope::const_iterator ContinueScopePos = ScopePos;
1761
1762  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1763
1764  // "for" is a control-flow statement.  Thus we stop processing the current
1765  // block.
1766  if (Block) {
1767    if (badCFG)
1768      return 0;
1769    LoopSuccessor = Block;
1770  } else
1771    LoopSuccessor = Succ;
1772
1773  // Save the current value for the break targets.
1774  // All breaks should go to the code following the loop.
1775  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1776  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1777
1778  // Because of short-circuit evaluation, the condition of the loop can span
1779  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1780  // evaluate the condition.
1781  CFGBlock *ExitConditionBlock = createBlock(false);
1782  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1783
1784  // Set the terminator for the "exit" condition block.
1785  ExitConditionBlock->setTerminator(F);
1786
1787  // Now add the actual condition to the condition block.  Because the condition
1788  // itself may contain control-flow, new blocks may be created.
1789  if (Stmt *C = F->getCond()) {
1790    Block = ExitConditionBlock;
1791    EntryConditionBlock = addStmt(C);
1792    if (badCFG)
1793      return 0;
1794    assert(Block == EntryConditionBlock ||
1795           (Block == 0 && EntryConditionBlock == Succ));
1796
1797    // If this block contains a condition variable, add both the condition
1798    // variable and initializer to the CFG.
1799    if (VarDecl *VD = F->getConditionVariable()) {
1800      if (Expr *Init = VD->getInit()) {
1801        autoCreateBlock();
1802        appendStmt(Block, F->getConditionVariableDeclStmt());
1803        EntryConditionBlock = addStmt(Init);
1804        assert(Block == EntryConditionBlock);
1805      }
1806    }
1807
1808    if (Block) {
1809      if (badCFG)
1810        return 0;
1811    }
1812  }
1813
1814  // The condition block is the implicit successor for the loop body as well as
1815  // any code above the loop.
1816  Succ = EntryConditionBlock;
1817
1818  // See if this is a known constant.
1819  TryResult KnownVal(true);
1820
1821  if (F->getCond())
1822    KnownVal = tryEvaluateBool(F->getCond());
1823
1824  // Now create the loop body.
1825  {
1826    assert(F->getBody());
1827
1828   // Save the current values for Block, Succ, and continue targets.
1829   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1830   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1831
1832    // Create a new block to contain the (bottom) of the loop body.
1833    Block = NULL;
1834
1835    // Loop body should end with destructor of Condition variable (if any).
1836    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1837
1838    if (Stmt *I = F->getInc()) {
1839      // Generate increment code in its own basic block.  This is the target of
1840      // continue statements.
1841      Succ = addStmt(I);
1842    } else {
1843      // No increment code.  Create a special, empty, block that is used as the
1844      // target block for "looping back" to the start of the loop.
1845      assert(Succ == EntryConditionBlock);
1846      Succ = Block ? Block : createBlock();
1847    }
1848
1849    // Finish up the increment (or empty) block if it hasn't been already.
1850    if (Block) {
1851      assert(Block == Succ);
1852      if (badCFG)
1853        return 0;
1854      Block = 0;
1855    }
1856
1857    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1858
1859    // The starting block for the loop increment is the block that should
1860    // represent the 'loop target' for looping back to the start of the loop.
1861    ContinueJumpTarget.block->setLoopTarget(F);
1862
1863    // If body is not a compound statement create implicit scope
1864    // and add destructors.
1865    if (!isa<CompoundStmt>(F->getBody()))
1866      addLocalScopeAndDtors(F->getBody());
1867
1868    // Now populate the body block, and in the process create new blocks as we
1869    // walk the body of the loop.
1870    CFGBlock *BodyBlock = addStmt(F->getBody());
1871
1872    if (!BodyBlock)
1873      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1874    else if (badCFG)
1875      return 0;
1876
1877    // This new body block is a successor to our "exit" condition block.
1878    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1879  }
1880
1881  // Link up the condition block with the code that follows the loop.  (the
1882  // false branch).
1883  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1884
1885  // If the loop contains initialization, create a new block for those
1886  // statements.  This block can also contain statements that precede the loop.
1887  if (Stmt *I = F->getInit()) {
1888    Block = createBlock();
1889    return addStmt(I);
1890  }
1891
1892  // There is no loop initialization.  We are thus basically a while loop.
1893  // NULL out Block to force lazy block construction.
1894  Block = NULL;
1895  Succ = EntryConditionBlock;
1896  return EntryConditionBlock;
1897}
1898
1899CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1900  if (asc.alwaysAdd(*this, M)) {
1901    autoCreateBlock();
1902    appendStmt(Block, M);
1903  }
1904  return Visit(M->getBase());
1905}
1906
1907CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1908  // Objective-C fast enumeration 'for' statements:
1909  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1910  //
1911  //  for ( Type newVariable in collection_expression ) { statements }
1912  //
1913  //  becomes:
1914  //
1915  //   prologue:
1916  //     1. collection_expression
1917  //     T. jump to loop_entry
1918  //   loop_entry:
1919  //     1. side-effects of element expression
1920  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1921  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1922  //   TB:
1923  //     statements
1924  //     T. jump to loop_entry
1925  //   FB:
1926  //     what comes after
1927  //
1928  //  and
1929  //
1930  //  Type existingItem;
1931  //  for ( existingItem in expression ) { statements }
1932  //
1933  //  becomes:
1934  //
1935  //   the same with newVariable replaced with existingItem; the binding works
1936  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1937  //   a DeclStmt and the other returns a DeclRefExpr.
1938  //
1939
1940  CFGBlock *LoopSuccessor = 0;
1941
1942  if (Block) {
1943    if (badCFG)
1944      return 0;
1945    LoopSuccessor = Block;
1946    Block = 0;
1947  } else
1948    LoopSuccessor = Succ;
1949
1950  // Build the condition blocks.
1951  CFGBlock *ExitConditionBlock = createBlock(false);
1952
1953  // Set the terminator for the "exit" condition block.
1954  ExitConditionBlock->setTerminator(S);
1955
1956  // The last statement in the block should be the ObjCForCollectionStmt, which
1957  // performs the actual binding to 'element' and determines if there are any
1958  // more items in the collection.
1959  appendStmt(ExitConditionBlock, S);
1960  Block = ExitConditionBlock;
1961
1962  // Walk the 'element' expression to see if there are any side-effects.  We
1963  // generate new blocks as necessary.  We DON'T add the statement by default to
1964  // the CFG unless it contains control-flow.
1965  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1966                                        AddStmtChoice::NotAlwaysAdd);
1967  if (Block) {
1968    if (badCFG)
1969      return 0;
1970    Block = 0;
1971  }
1972
1973  // The condition block is the implicit successor for the loop body as well as
1974  // any code above the loop.
1975  Succ = EntryConditionBlock;
1976
1977  // Now create the true branch.
1978  {
1979    // Save the current values for Succ, continue and break targets.
1980    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1981    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1982        save_break(BreakJumpTarget);
1983
1984    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1985    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1986
1987    CFGBlock *BodyBlock = addStmt(S->getBody());
1988
1989    if (!BodyBlock)
1990      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1991    else if (Block) {
1992      if (badCFG)
1993        return 0;
1994    }
1995
1996    // This new body block is a successor to our "exit" condition block.
1997    addSuccessor(ExitConditionBlock, BodyBlock);
1998  }
1999
2000  // Link up the condition block with the code that follows the loop.
2001  // (the false branch).
2002  addSuccessor(ExitConditionBlock, LoopSuccessor);
2003
2004  // Now create a prologue block to contain the collection expression.
2005  Block = createBlock();
2006  return addStmt(S->getCollection());
2007}
2008
2009CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2010  // Inline the body.
2011  return addStmt(S->getSubStmt());
2012  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2013}
2014
2015CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2016  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2017
2018  // Inline the body.
2019  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2020
2021  // The sync body starts its own basic block.  This makes it a little easier
2022  // for diagnostic clients.
2023  if (SyncBlock) {
2024    if (badCFG)
2025      return 0;
2026
2027    Block = 0;
2028    Succ = SyncBlock;
2029  }
2030
2031  // Add the @synchronized to the CFG.
2032  autoCreateBlock();
2033  appendStmt(Block, S);
2034
2035  // Inline the sync expression.
2036  return addStmt(S->getSynchExpr());
2037}
2038
2039CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2040  // FIXME
2041  return NYS();
2042}
2043
2044CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2045  autoCreateBlock();
2046
2047  // Add the PseudoObject as the last thing.
2048  appendStmt(Block, E);
2049
2050  CFGBlock *lastBlock = Block;
2051
2052  // Before that, evaluate all of the semantics in order.  In
2053  // CFG-land, that means appending them in reverse order.
2054  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2055    Expr *Semantic = E->getSemanticExpr(--i);
2056
2057    // If the semantic is an opaque value, we're being asked to bind
2058    // it to its source expression.
2059    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2060      Semantic = OVE->getSourceExpr();
2061
2062    if (CFGBlock *B = Visit(Semantic))
2063      lastBlock = B;
2064  }
2065
2066  return lastBlock;
2067}
2068
2069CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2070  CFGBlock *LoopSuccessor = NULL;
2071
2072  // Save local scope position because in case of condition variable ScopePos
2073  // won't be restored when traversing AST.
2074  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2075
2076  // Create local scope for possible condition variable.
2077  // Store scope position for continue statement.
2078  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2079  if (VarDecl *VD = W->getConditionVariable()) {
2080    addLocalScopeForVarDecl(VD);
2081    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2082  }
2083
2084  // "while" is a control-flow statement.  Thus we stop processing the current
2085  // block.
2086  if (Block) {
2087    if (badCFG)
2088      return 0;
2089    LoopSuccessor = Block;
2090    Block = 0;
2091  } else
2092    LoopSuccessor = Succ;
2093
2094  // Because of short-circuit evaluation, the condition of the loop can span
2095  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2096  // evaluate the condition.
2097  CFGBlock *ExitConditionBlock = createBlock(false);
2098  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2099
2100  // Set the terminator for the "exit" condition block.
2101  ExitConditionBlock->setTerminator(W);
2102
2103  // Now add the actual condition to the condition block.  Because the condition
2104  // itself may contain control-flow, new blocks may be created.  Thus we update
2105  // "Succ" after adding the condition.
2106  if (Stmt *C = W->getCond()) {
2107    Block = ExitConditionBlock;
2108    EntryConditionBlock = addStmt(C);
2109    // The condition might finish the current 'Block'.
2110    Block = EntryConditionBlock;
2111
2112    // If this block contains a condition variable, add both the condition
2113    // variable and initializer to the CFG.
2114    if (VarDecl *VD = W->getConditionVariable()) {
2115      if (Expr *Init = VD->getInit()) {
2116        autoCreateBlock();
2117        appendStmt(Block, W->getConditionVariableDeclStmt());
2118        EntryConditionBlock = addStmt(Init);
2119        assert(Block == EntryConditionBlock);
2120      }
2121    }
2122
2123    if (Block) {
2124      if (badCFG)
2125        return 0;
2126    }
2127  }
2128
2129  // The condition block is the implicit successor for the loop body as well as
2130  // any code above the loop.
2131  Succ = EntryConditionBlock;
2132
2133  // See if this is a known constant.
2134  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
2135
2136  // Process the loop body.
2137  {
2138    assert(W->getBody());
2139
2140    // Save the current values for Block, Succ, and continue and break targets
2141    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2142    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2143        save_break(BreakJumpTarget);
2144
2145    // Create an empty block to represent the transition block for looping back
2146    // to the head of the loop.
2147    Block = 0;
2148    assert(Succ == EntryConditionBlock);
2149    Succ = createBlock();
2150    Succ->setLoopTarget(W);
2151    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2152
2153    // All breaks should go to the code following the loop.
2154    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2155
2156    // NULL out Block to force lazy instantiation of blocks for the body.
2157    Block = NULL;
2158
2159    // Loop body should end with destructor of Condition variable (if any).
2160    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2161
2162    // If body is not a compound statement create implicit scope
2163    // and add destructors.
2164    if (!isa<CompoundStmt>(W->getBody()))
2165      addLocalScopeAndDtors(W->getBody());
2166
2167    // Create the body.  The returned block is the entry to the loop body.
2168    CFGBlock *BodyBlock = addStmt(W->getBody());
2169
2170    if (!BodyBlock)
2171      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2172    else if (Block) {
2173      if (badCFG)
2174        return 0;
2175    }
2176
2177    // Add the loop body entry as a successor to the condition.
2178    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2179  }
2180
2181  // Link up the condition block with the code that follows the loop.  (the
2182  // false branch).
2183  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2184
2185  // There can be no more statements in the condition block since we loop back
2186  // to this block.  NULL out Block to force lazy creation of another block.
2187  Block = NULL;
2188
2189  // Return the condition block, which is the dominating block for the loop.
2190  Succ = EntryConditionBlock;
2191  return EntryConditionBlock;
2192}
2193
2194
2195CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2196  // FIXME: For now we pretend that @catch and the code it contains does not
2197  //  exit.
2198  return Block;
2199}
2200
2201CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2202  // FIXME: This isn't complete.  We basically treat @throw like a return
2203  //  statement.
2204
2205  // If we were in the middle of a block we stop processing that block.
2206  if (badCFG)
2207    return 0;
2208
2209  // Create the new block.
2210  Block = createBlock(false);
2211
2212  // The Exit block is the only successor.
2213  addSuccessor(Block, &cfg->getExit());
2214
2215  // Add the statement to the block.  This may create new blocks if S contains
2216  // control-flow (short-circuit operations).
2217  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2218}
2219
2220CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2221  // If we were in the middle of a block we stop processing that block.
2222  if (badCFG)
2223    return 0;
2224
2225  // Create the new block.
2226  Block = createBlock(false);
2227
2228  if (TryTerminatedBlock)
2229    // The current try statement is the only successor.
2230    addSuccessor(Block, TryTerminatedBlock);
2231  else
2232    // otherwise the Exit block is the only successor.
2233    addSuccessor(Block, &cfg->getExit());
2234
2235  // Add the statement to the block.  This may create new blocks if S contains
2236  // control-flow (short-circuit operations).
2237  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2238}
2239
2240CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2241  CFGBlock *LoopSuccessor = NULL;
2242
2243  // "do...while" is a control-flow statement.  Thus we stop processing the
2244  // current block.
2245  if (Block) {
2246    if (badCFG)
2247      return 0;
2248    LoopSuccessor = Block;
2249  } else
2250    LoopSuccessor = Succ;
2251
2252  // Because of short-circuit evaluation, the condition of the loop can span
2253  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2254  // evaluate the condition.
2255  CFGBlock *ExitConditionBlock = createBlock(false);
2256  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2257
2258  // Set the terminator for the "exit" condition block.
2259  ExitConditionBlock->setTerminator(D);
2260
2261  // Now add the actual condition to the condition block.  Because the condition
2262  // itself may contain control-flow, new blocks may be created.
2263  if (Stmt *C = D->getCond()) {
2264    Block = ExitConditionBlock;
2265    EntryConditionBlock = addStmt(C);
2266    if (Block) {
2267      if (badCFG)
2268        return 0;
2269    }
2270  }
2271
2272  // The condition block is the implicit successor for the loop body.
2273  Succ = EntryConditionBlock;
2274
2275  // See if this is a known constant.
2276  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2277
2278  // Process the loop body.
2279  CFGBlock *BodyBlock = NULL;
2280  {
2281    assert(D->getBody());
2282
2283    // Save the current values for Block, Succ, and continue and break targets
2284    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2285    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2286        save_break(BreakJumpTarget);
2287
2288    // All continues within this loop should go to the condition block
2289    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2290
2291    // All breaks should go to the code following the loop.
2292    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2293
2294    // NULL out Block to force lazy instantiation of blocks for the body.
2295    Block = NULL;
2296
2297    // If body is not a compound statement create implicit scope
2298    // and add destructors.
2299    if (!isa<CompoundStmt>(D->getBody()))
2300      addLocalScopeAndDtors(D->getBody());
2301
2302    // Create the body.  The returned block is the entry to the loop body.
2303    BodyBlock = addStmt(D->getBody());
2304
2305    if (!BodyBlock)
2306      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2307    else if (Block) {
2308      if (badCFG)
2309        return 0;
2310    }
2311
2312    if (!KnownVal.isFalse()) {
2313      // Add an intermediate block between the BodyBlock and the
2314      // ExitConditionBlock to represent the "loop back" transition.  Create an
2315      // empty block to represent the transition block for looping back to the
2316      // head of the loop.
2317      // FIXME: Can we do this more efficiently without adding another block?
2318      Block = NULL;
2319      Succ = BodyBlock;
2320      CFGBlock *LoopBackBlock = createBlock();
2321      LoopBackBlock->setLoopTarget(D);
2322
2323      // Add the loop body entry as a successor to the condition.
2324      addSuccessor(ExitConditionBlock, LoopBackBlock);
2325    }
2326    else
2327      addSuccessor(ExitConditionBlock, NULL);
2328  }
2329
2330  // Link up the condition block with the code that follows the loop.
2331  // (the false branch).
2332  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2333
2334  // There can be no more statements in the body block(s) since we loop back to
2335  // the body.  NULL out Block to force lazy creation of another block.
2336  Block = NULL;
2337
2338  // Return the loop body, which is the dominating block for the loop.
2339  Succ = BodyBlock;
2340  return BodyBlock;
2341}
2342
2343CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2344  // "continue" is a control-flow statement.  Thus we stop processing the
2345  // current block.
2346  if (badCFG)
2347    return 0;
2348
2349  // Now create a new block that ends with the continue statement.
2350  Block = createBlock(false);
2351  Block->setTerminator(C);
2352
2353  // If there is no target for the continue, then we are looking at an
2354  // incomplete AST.  This means the CFG cannot be constructed.
2355  if (ContinueJumpTarget.block) {
2356    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2357    addSuccessor(Block, ContinueJumpTarget.block);
2358  } else
2359    badCFG = true;
2360
2361  return Block;
2362}
2363
2364CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2365                                                    AddStmtChoice asc) {
2366
2367  if (asc.alwaysAdd(*this, E)) {
2368    autoCreateBlock();
2369    appendStmt(Block, E);
2370  }
2371
2372  // VLA types have expressions that must be evaluated.
2373  CFGBlock *lastBlock = Block;
2374
2375  if (E->isArgumentType()) {
2376    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2377         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2378      lastBlock = addStmt(VA->getSizeExpr());
2379  }
2380  return lastBlock;
2381}
2382
2383/// VisitStmtExpr - Utility method to handle (nested) statement
2384///  expressions (a GCC extension).
2385CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2386  if (asc.alwaysAdd(*this, SE)) {
2387    autoCreateBlock();
2388    appendStmt(Block, SE);
2389  }
2390  return VisitCompoundStmt(SE->getSubStmt());
2391}
2392
2393CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2394  // "switch" is a control-flow statement.  Thus we stop processing the current
2395  // block.
2396  CFGBlock *SwitchSuccessor = NULL;
2397
2398  // Save local scope position because in case of condition variable ScopePos
2399  // won't be restored when traversing AST.
2400  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2401
2402  // Create local scope for possible condition variable.
2403  // Store scope position. Add implicit destructor.
2404  if (VarDecl *VD = Terminator->getConditionVariable()) {
2405    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2406    addLocalScopeForVarDecl(VD);
2407    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2408  }
2409
2410  if (Block) {
2411    if (badCFG)
2412      return 0;
2413    SwitchSuccessor = Block;
2414  } else SwitchSuccessor = Succ;
2415
2416  // Save the current "switch" context.
2417  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2418                            save_default(DefaultCaseBlock);
2419  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2420
2421  // Set the "default" case to be the block after the switch statement.  If the
2422  // switch statement contains a "default:", this value will be overwritten with
2423  // the block for that code.
2424  DefaultCaseBlock = SwitchSuccessor;
2425
2426  // Create a new block that will contain the switch statement.
2427  SwitchTerminatedBlock = createBlock(false);
2428
2429  // Now process the switch body.  The code after the switch is the implicit
2430  // successor.
2431  Succ = SwitchSuccessor;
2432  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2433
2434  // When visiting the body, the case statements should automatically get linked
2435  // up to the switch.  We also don't keep a pointer to the body, since all
2436  // control-flow from the switch goes to case/default statements.
2437  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2438  Block = NULL;
2439
2440  // For pruning unreachable case statements, save the current state
2441  // for tracking the condition value.
2442  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2443                                                     false);
2444
2445  // Determine if the switch condition can be explicitly evaluated.
2446  assert(Terminator->getCond() && "switch condition must be non-NULL");
2447  Expr::EvalResult result;
2448  bool b = tryEvaluate(Terminator->getCond(), result);
2449  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2450                                                    b ? &result : 0);
2451
2452  // If body is not a compound statement create implicit scope
2453  // and add destructors.
2454  if (!isa<CompoundStmt>(Terminator->getBody()))
2455    addLocalScopeAndDtors(Terminator->getBody());
2456
2457  addStmt(Terminator->getBody());
2458  if (Block) {
2459    if (badCFG)
2460      return 0;
2461  }
2462
2463  // If we have no "default:" case, the default transition is to the code
2464  // following the switch body.  Moreover, take into account if all the
2465  // cases of a switch are covered (e.g., switching on an enum value).
2466  addSuccessor(SwitchTerminatedBlock,
2467               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2468               ? 0 : DefaultCaseBlock);
2469
2470  // Add the terminator and condition in the switch block.
2471  SwitchTerminatedBlock->setTerminator(Terminator);
2472  Block = SwitchTerminatedBlock;
2473  Block = addStmt(Terminator->getCond());
2474
2475  // Finally, if the SwitchStmt contains a condition variable, add both the
2476  // SwitchStmt and the condition variable initialization to the CFG.
2477  if (VarDecl *VD = Terminator->getConditionVariable()) {
2478    if (Expr *Init = VD->getInit()) {
2479      autoCreateBlock();
2480      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2481      addStmt(Init);
2482    }
2483  }
2484
2485  return Block;
2486}
2487
2488static bool shouldAddCase(bool &switchExclusivelyCovered,
2489                          const Expr::EvalResult *switchCond,
2490                          const CaseStmt *CS,
2491                          ASTContext &Ctx) {
2492  if (!switchCond)
2493    return true;
2494
2495  bool addCase = false;
2496
2497  if (!switchExclusivelyCovered) {
2498    if (switchCond->Val.isInt()) {
2499      // Evaluate the LHS of the case value.
2500      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2501      const llvm::APSInt &condInt = switchCond->Val.getInt();
2502
2503      if (condInt == lhsInt) {
2504        addCase = true;
2505        switchExclusivelyCovered = true;
2506      }
2507      else if (condInt < lhsInt) {
2508        if (const Expr *RHS = CS->getRHS()) {
2509          // Evaluate the RHS of the case value.
2510          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2511          if (V2 <= condInt) {
2512            addCase = true;
2513            switchExclusivelyCovered = true;
2514          }
2515        }
2516      }
2517    }
2518    else
2519      addCase = true;
2520  }
2521  return addCase;
2522}
2523
2524CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2525  // CaseStmts are essentially labels, so they are the first statement in a
2526  // block.
2527  CFGBlock *TopBlock = 0, *LastBlock = 0;
2528
2529  if (Stmt *Sub = CS->getSubStmt()) {
2530    // For deeply nested chains of CaseStmts, instead of doing a recursion
2531    // (which can blow out the stack), manually unroll and create blocks
2532    // along the way.
2533    while (isa<CaseStmt>(Sub)) {
2534      CFGBlock *currentBlock = createBlock(false);
2535      currentBlock->setLabel(CS);
2536
2537      if (TopBlock)
2538        addSuccessor(LastBlock, currentBlock);
2539      else
2540        TopBlock = currentBlock;
2541
2542      addSuccessor(SwitchTerminatedBlock,
2543                   shouldAddCase(switchExclusivelyCovered, switchCond,
2544                                 CS, *Context)
2545                   ? currentBlock : 0);
2546
2547      LastBlock = currentBlock;
2548      CS = cast<CaseStmt>(Sub);
2549      Sub = CS->getSubStmt();
2550    }
2551
2552    addStmt(Sub);
2553  }
2554
2555  CFGBlock *CaseBlock = Block;
2556  if (!CaseBlock)
2557    CaseBlock = createBlock();
2558
2559  // Cases statements partition blocks, so this is the top of the basic block we
2560  // were processing (the "case XXX:" is the label).
2561  CaseBlock->setLabel(CS);
2562
2563  if (badCFG)
2564    return 0;
2565
2566  // Add this block to the list of successors for the block with the switch
2567  // statement.
2568  assert(SwitchTerminatedBlock);
2569  addSuccessor(SwitchTerminatedBlock,
2570               shouldAddCase(switchExclusivelyCovered, switchCond,
2571                             CS, *Context)
2572               ? CaseBlock : 0);
2573
2574  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2575  Block = NULL;
2576
2577  if (TopBlock) {
2578    addSuccessor(LastBlock, CaseBlock);
2579    Succ = TopBlock;
2580  } else {
2581    // This block is now the implicit successor of other blocks.
2582    Succ = CaseBlock;
2583  }
2584
2585  return Succ;
2586}
2587
2588CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2589  if (Terminator->getSubStmt())
2590    addStmt(Terminator->getSubStmt());
2591
2592  DefaultCaseBlock = Block;
2593
2594  if (!DefaultCaseBlock)
2595    DefaultCaseBlock = createBlock();
2596
2597  // Default statements partition blocks, so this is the top of the basic block
2598  // we were processing (the "default:" is the label).
2599  DefaultCaseBlock->setLabel(Terminator);
2600
2601  if (badCFG)
2602    return 0;
2603
2604  // Unlike case statements, we don't add the default block to the successors
2605  // for the switch statement immediately.  This is done when we finish
2606  // processing the switch statement.  This allows for the default case
2607  // (including a fall-through to the code after the switch statement) to always
2608  // be the last successor of a switch-terminated block.
2609
2610  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2611  Block = NULL;
2612
2613  // This block is now the implicit successor of other blocks.
2614  Succ = DefaultCaseBlock;
2615
2616  return DefaultCaseBlock;
2617}
2618
2619CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2620  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2621  // current block.
2622  CFGBlock *TrySuccessor = NULL;
2623
2624  if (Block) {
2625    if (badCFG)
2626      return 0;
2627    TrySuccessor = Block;
2628  } else TrySuccessor = Succ;
2629
2630  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2631
2632  // Create a new block that will contain the try statement.
2633  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2634  // Add the terminator in the try block.
2635  NewTryTerminatedBlock->setTerminator(Terminator);
2636
2637  bool HasCatchAll = false;
2638  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2639    // The code after the try is the implicit successor.
2640    Succ = TrySuccessor;
2641    CXXCatchStmt *CS = Terminator->getHandler(h);
2642    if (CS->getExceptionDecl() == 0) {
2643      HasCatchAll = true;
2644    }
2645    Block = NULL;
2646    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2647    if (CatchBlock == 0)
2648      return 0;
2649    // Add this block to the list of successors for the block with the try
2650    // statement.
2651    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2652  }
2653  if (!HasCatchAll) {
2654    if (PrevTryTerminatedBlock)
2655      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2656    else
2657      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2658  }
2659
2660  // The code after the try is the implicit successor.
2661  Succ = TrySuccessor;
2662
2663  // Save the current "try" context.
2664  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2665  cfg->addTryDispatchBlock(TryTerminatedBlock);
2666
2667  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2668  Block = NULL;
2669  Block = addStmt(Terminator->getTryBlock());
2670  return Block;
2671}
2672
2673CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2674  // CXXCatchStmt are treated like labels, so they are the first statement in a
2675  // block.
2676
2677  // Save local scope position because in case of exception variable ScopePos
2678  // won't be restored when traversing AST.
2679  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2680
2681  // Create local scope for possible exception variable.
2682  // Store scope position. Add implicit destructor.
2683  if (VarDecl *VD = CS->getExceptionDecl()) {
2684    LocalScope::const_iterator BeginScopePos = ScopePos;
2685    addLocalScopeForVarDecl(VD);
2686    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2687  }
2688
2689  if (CS->getHandlerBlock())
2690    addStmt(CS->getHandlerBlock());
2691
2692  CFGBlock *CatchBlock = Block;
2693  if (!CatchBlock)
2694    CatchBlock = createBlock();
2695
2696  // CXXCatchStmt is more than just a label.  They have semantic meaning
2697  // as well, as they implicitly "initialize" the catch variable.  Add
2698  // it to the CFG as a CFGElement so that the control-flow of these
2699  // semantics gets captured.
2700  appendStmt(CatchBlock, CS);
2701
2702  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2703  // labels.
2704  CatchBlock->setLabel(CS);
2705
2706  // Bail out if the CFG is bad.
2707  if (badCFG)
2708    return 0;
2709
2710  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2711  Block = NULL;
2712
2713  return CatchBlock;
2714}
2715
2716CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2717  // C++0x for-range statements are specified as [stmt.ranged]:
2718  //
2719  // {
2720  //   auto && __range = range-init;
2721  //   for ( auto __begin = begin-expr,
2722  //         __end = end-expr;
2723  //         __begin != __end;
2724  //         ++__begin ) {
2725  //     for-range-declaration = *__begin;
2726  //     statement
2727  //   }
2728  // }
2729
2730  // Save local scope position before the addition of the implicit variables.
2731  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2732
2733  // Create local scopes and destructors for range, begin and end variables.
2734  if (Stmt *Range = S->getRangeStmt())
2735    addLocalScopeForStmt(Range);
2736  if (Stmt *BeginEnd = S->getBeginEndStmt())
2737    addLocalScopeForStmt(BeginEnd);
2738  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2739
2740  LocalScope::const_iterator ContinueScopePos = ScopePos;
2741
2742  // "for" is a control-flow statement.  Thus we stop processing the current
2743  // block.
2744  CFGBlock *LoopSuccessor = NULL;
2745  if (Block) {
2746    if (badCFG)
2747      return 0;
2748    LoopSuccessor = Block;
2749  } else
2750    LoopSuccessor = Succ;
2751
2752  // Save the current value for the break targets.
2753  // All breaks should go to the code following the loop.
2754  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2755  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2756
2757  // The block for the __begin != __end expression.
2758  CFGBlock *ConditionBlock = createBlock(false);
2759  ConditionBlock->setTerminator(S);
2760
2761  // Now add the actual condition to the condition block.
2762  if (Expr *C = S->getCond()) {
2763    Block = ConditionBlock;
2764    CFGBlock *BeginConditionBlock = addStmt(C);
2765    if (badCFG)
2766      return 0;
2767    assert(BeginConditionBlock == ConditionBlock &&
2768           "condition block in for-range was unexpectedly complex");
2769    (void)BeginConditionBlock;
2770  }
2771
2772  // The condition block is the implicit successor for the loop body as well as
2773  // any code above the loop.
2774  Succ = ConditionBlock;
2775
2776  // See if this is a known constant.
2777  TryResult KnownVal(true);
2778
2779  if (S->getCond())
2780    KnownVal = tryEvaluateBool(S->getCond());
2781
2782  // Now create the loop body.
2783  {
2784    assert(S->getBody());
2785
2786    // Save the current values for Block, Succ, and continue targets.
2787    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2788    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2789
2790    // Generate increment code in its own basic block.  This is the target of
2791    // continue statements.
2792    Block = 0;
2793    Succ = addStmt(S->getInc());
2794    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2795
2796    // The starting block for the loop increment is the block that should
2797    // represent the 'loop target' for looping back to the start of the loop.
2798    ContinueJumpTarget.block->setLoopTarget(S);
2799
2800    // Finish up the increment block and prepare to start the loop body.
2801    assert(Block);
2802    if (badCFG)
2803      return 0;
2804    Block = 0;
2805
2806
2807    // Add implicit scope and dtors for loop variable.
2808    addLocalScopeAndDtors(S->getLoopVarStmt());
2809
2810    // Populate a new block to contain the loop body and loop variable.
2811    Block = addStmt(S->getBody());
2812    if (badCFG)
2813      return 0;
2814    Block = addStmt(S->getLoopVarStmt());
2815    if (badCFG)
2816      return 0;
2817
2818    // This new body block is a successor to our condition block.
2819    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2820  }
2821
2822  // Link up the condition block with the code that follows the loop (the
2823  // false branch).
2824  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2825
2826  // Add the initialization statements.
2827  Block = createBlock();
2828  addStmt(S->getBeginEndStmt());
2829  return addStmt(S->getRangeStmt());
2830}
2831
2832CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2833    AddStmtChoice asc) {
2834  if (BuildOpts.AddImplicitDtors) {
2835    // If adding implicit destructors visit the full expression for adding
2836    // destructors of temporaries.
2837    VisitForTemporaryDtors(E->getSubExpr());
2838
2839    // Full expression has to be added as CFGStmt so it will be sequenced
2840    // before destructors of it's temporaries.
2841    asc = asc.withAlwaysAdd(true);
2842  }
2843  return Visit(E->getSubExpr(), asc);
2844}
2845
2846CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2847                                                AddStmtChoice asc) {
2848  if (asc.alwaysAdd(*this, E)) {
2849    autoCreateBlock();
2850    appendStmt(Block, E);
2851
2852    // We do not want to propagate the AlwaysAdd property.
2853    asc = asc.withAlwaysAdd(false);
2854  }
2855  return Visit(E->getSubExpr(), asc);
2856}
2857
2858CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2859                                            AddStmtChoice asc) {
2860  autoCreateBlock();
2861  appendStmt(Block, C);
2862
2863  return VisitChildren(C);
2864}
2865
2866CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2867                                                 AddStmtChoice asc) {
2868  if (asc.alwaysAdd(*this, E)) {
2869    autoCreateBlock();
2870    appendStmt(Block, E);
2871    // We do not want to propagate the AlwaysAdd property.
2872    asc = asc.withAlwaysAdd(false);
2873  }
2874  return Visit(E->getSubExpr(), asc);
2875}
2876
2877CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2878                                                  AddStmtChoice asc) {
2879  autoCreateBlock();
2880  appendStmt(Block, C);
2881  return VisitChildren(C);
2882}
2883
2884CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2885                                            AddStmtChoice asc) {
2886  if (asc.alwaysAdd(*this, E)) {
2887    autoCreateBlock();
2888    appendStmt(Block, E);
2889  }
2890  return Visit(E->getSubExpr(), AddStmtChoice());
2891}
2892
2893CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2894  // Lazily create the indirect-goto dispatch block if there isn't one already.
2895  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2896
2897  if (!IBlock) {
2898    IBlock = createBlock(false);
2899    cfg->setIndirectGotoBlock(IBlock);
2900  }
2901
2902  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2903  // current block and create a new one.
2904  if (badCFG)
2905    return 0;
2906
2907  Block = createBlock(false);
2908  Block->setTerminator(I);
2909  addSuccessor(Block, IBlock);
2910  return addStmt(I->getTarget());
2911}
2912
2913CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2914tryAgain:
2915  if (!E) {
2916    badCFG = true;
2917    return NULL;
2918  }
2919  switch (E->getStmtClass()) {
2920    default:
2921      return VisitChildrenForTemporaryDtors(E);
2922
2923    case Stmt::BinaryOperatorClass:
2924      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2925
2926    case Stmt::CXXBindTemporaryExprClass:
2927      return VisitCXXBindTemporaryExprForTemporaryDtors(
2928          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2929
2930    case Stmt::BinaryConditionalOperatorClass:
2931    case Stmt::ConditionalOperatorClass:
2932      return VisitConditionalOperatorForTemporaryDtors(
2933          cast<AbstractConditionalOperator>(E), BindToTemporary);
2934
2935    case Stmt::ImplicitCastExprClass:
2936      // For implicit cast we want BindToTemporary to be passed further.
2937      E = cast<CastExpr>(E)->getSubExpr();
2938      goto tryAgain;
2939
2940    case Stmt::ParenExprClass:
2941      E = cast<ParenExpr>(E)->getSubExpr();
2942      goto tryAgain;
2943
2944    case Stmt::MaterializeTemporaryExprClass:
2945      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2946      goto tryAgain;
2947  }
2948}
2949
2950CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2951  // When visiting children for destructors we want to visit them in reverse
2952  // order. Because there's no reverse iterator for children must to reverse
2953  // them in helper vector.
2954  typedef SmallVector<Stmt *, 4> ChildrenVect;
2955  ChildrenVect ChildrenRev;
2956  for (Stmt::child_range I = E->children(); I; ++I) {
2957    if (*I) ChildrenRev.push_back(*I);
2958  }
2959
2960  CFGBlock *B = Block;
2961  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2962      L = ChildrenRev.rend(); I != L; ++I) {
2963    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2964      B = R;
2965  }
2966  return B;
2967}
2968
2969CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2970  if (E->isLogicalOp()) {
2971    // Destructors for temporaries in LHS expression should be called after
2972    // those for RHS expression. Even if this will unnecessarily create a block,
2973    // this block will be used at least by the full expression.
2974    autoCreateBlock();
2975    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2976    if (badCFG)
2977      return NULL;
2978
2979    Succ = ConfluenceBlock;
2980    Block = NULL;
2981    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2982
2983    if (RHSBlock) {
2984      if (badCFG)
2985        return NULL;
2986
2987      // If RHS expression did produce destructors we need to connect created
2988      // blocks to CFG in same manner as for binary operator itself.
2989      CFGBlock *LHSBlock = createBlock(false);
2990      LHSBlock->setTerminator(CFGTerminator(E, true));
2991
2992      // For binary operator LHS block is before RHS in list of predecessors
2993      // of ConfluenceBlock.
2994      std::reverse(ConfluenceBlock->pred_begin(),
2995          ConfluenceBlock->pred_end());
2996
2997      // See if this is a known constant.
2998      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2999      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3000        KnownVal.negate();
3001
3002      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3003      // itself.
3004      if (E->getOpcode() == BO_LOr) {
3005        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3006        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3007      } else {
3008        assert (E->getOpcode() == BO_LAnd);
3009        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3010        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3011      }
3012
3013      Block = LHSBlock;
3014      return LHSBlock;
3015    }
3016
3017    Block = ConfluenceBlock;
3018    return ConfluenceBlock;
3019  }
3020
3021  if (E->isAssignmentOp()) {
3022    // For assignment operator (=) LHS expression is visited
3023    // before RHS expression. For destructors visit them in reverse order.
3024    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3025    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3026    return LHSBlock ? LHSBlock : RHSBlock;
3027  }
3028
3029  // For any other binary operator RHS expression is visited before
3030  // LHS expression (order of children). For destructors visit them in reverse
3031  // order.
3032  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3033  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3034  return RHSBlock ? RHSBlock : LHSBlock;
3035}
3036
3037CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3038    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3039  // First add destructors for temporaries in subexpression.
3040  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3041  if (!BindToTemporary) {
3042    // If lifetime of temporary is not prolonged (by assigning to constant
3043    // reference) add destructor for it.
3044
3045    // If the destructor is marked as a no-return destructor, we need to create
3046    // a new block for the destructor which does not have as a successor
3047    // anything built thus far. Control won't flow out of this block.
3048    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3049    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3050      Block = createNoReturnBlock();
3051    else
3052      autoCreateBlock();
3053
3054    appendTemporaryDtor(Block, E);
3055    B = Block;
3056  }
3057  return B;
3058}
3059
3060CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3061    AbstractConditionalOperator *E, bool BindToTemporary) {
3062  // First add destructors for condition expression.  Even if this will
3063  // unnecessarily create a block, this block will be used at least by the full
3064  // expression.
3065  autoCreateBlock();
3066  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3067  if (badCFG)
3068    return NULL;
3069  if (BinaryConditionalOperator *BCO
3070        = dyn_cast<BinaryConditionalOperator>(E)) {
3071    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3072    if (badCFG)
3073      return NULL;
3074  }
3075
3076  // Try to add block with destructors for LHS expression.
3077  CFGBlock *LHSBlock = NULL;
3078  Succ = ConfluenceBlock;
3079  Block = NULL;
3080  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3081  if (badCFG)
3082    return NULL;
3083
3084  // Try to add block with destructors for RHS expression;
3085  Succ = ConfluenceBlock;
3086  Block = NULL;
3087  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3088                                              BindToTemporary);
3089  if (badCFG)
3090    return NULL;
3091
3092  if (!RHSBlock && !LHSBlock) {
3093    // If neither LHS nor RHS expression had temporaries to destroy don't create
3094    // more blocks.
3095    Block = ConfluenceBlock;
3096    return Block;
3097  }
3098
3099  Block = createBlock(false);
3100  Block->setTerminator(CFGTerminator(E, true));
3101
3102  // See if this is a known constant.
3103  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3104
3105  if (LHSBlock) {
3106    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3107  } else if (KnownVal.isFalse()) {
3108    addSuccessor(Block, NULL);
3109  } else {
3110    addSuccessor(Block, ConfluenceBlock);
3111    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3112  }
3113
3114  if (!RHSBlock)
3115    RHSBlock = ConfluenceBlock;
3116  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3117
3118  return Block;
3119}
3120
3121} // end anonymous namespace
3122
3123/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3124///  no successors or predecessors.  If this is the first block created in the
3125///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3126CFGBlock *CFG::createBlock() {
3127  bool first_block = begin() == end();
3128
3129  // Create the block.
3130  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3131  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3132  Blocks.push_back(Mem, BlkBVC);
3133
3134  // If this is the first block, set it as the Entry and Exit.
3135  if (first_block)
3136    Entry = Exit = &back();
3137
3138  // Return the block.
3139  return &back();
3140}
3141
3142/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3143///  CFG is returned to the caller.
3144CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3145    const BuildOptions &BO) {
3146  CFGBuilder Builder(C, BO);
3147  return Builder.buildCFG(D, Statement);
3148}
3149
3150const CXXDestructorDecl *
3151CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3152  switch (getKind()) {
3153    case CFGElement::Invalid:
3154    case CFGElement::Statement:
3155    case CFGElement::Initializer:
3156      llvm_unreachable("getDestructorDecl should only be used with "
3157                       "ImplicitDtors");
3158    case CFGElement::AutomaticObjectDtor: {
3159      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3160      QualType ty = var->getType();
3161      ty = ty.getNonReferenceType();
3162      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3163        ty = arrayType->getElementType();
3164      }
3165      const RecordType *recordType = ty->getAs<RecordType>();
3166      const CXXRecordDecl *classDecl =
3167      cast<CXXRecordDecl>(recordType->getDecl());
3168      return classDecl->getDestructor();
3169    }
3170    case CFGElement::TemporaryDtor: {
3171      const CXXBindTemporaryExpr *bindExpr =
3172        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3173      const CXXTemporary *temp = bindExpr->getTemporary();
3174      return temp->getDestructor();
3175    }
3176    case CFGElement::BaseDtor:
3177    case CFGElement::MemberDtor:
3178
3179      // Not yet supported.
3180      return 0;
3181  }
3182  llvm_unreachable("getKind() returned bogus value");
3183}
3184
3185bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3186  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3187    QualType ty = cdecl->getType();
3188    return cast<FunctionType>(ty)->getNoReturnAttr();
3189  }
3190  return false;
3191}
3192
3193//===----------------------------------------------------------------------===//
3194// CFG: Queries for BlkExprs.
3195//===----------------------------------------------------------------------===//
3196
3197namespace {
3198  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3199}
3200
3201static void FindSubExprAssignments(const Stmt *S,
3202                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3203  if (!S)
3204    return;
3205
3206  for (Stmt::const_child_range I = S->children(); I; ++I) {
3207    const Stmt *child = *I;
3208    if (!child)
3209      continue;
3210
3211    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3212      if (B->isAssignmentOp()) Set.insert(B);
3213
3214    FindSubExprAssignments(child, Set);
3215  }
3216}
3217
3218static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3219  BlkExprMapTy* M = new BlkExprMapTy();
3220
3221  // Look for assignments that are used as subexpressions.  These are the only
3222  // assignments that we want to *possibly* register as a block-level
3223  // expression.  Basically, if an assignment occurs both in a subexpression and
3224  // at the block-level, it is a block-level expression.
3225  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3226
3227  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3228    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3229      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3230        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3231
3232  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3233
3234    // Iterate over the statements again on identify the Expr* and Stmt* at the
3235    // block-level that are block-level expressions.
3236
3237    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3238      const CFGStmt *CS = BI->getAs<CFGStmt>();
3239      if (!CS)
3240        continue;
3241      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3242        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3243
3244        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3245          // Assignment expressions that are not nested within another
3246          // expression are really "statements" whose value is never used by
3247          // another expression.
3248          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3249            continue;
3250        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3251          // Special handling for statement expressions.  The last statement in
3252          // the statement expression is also a block-level expr.
3253          const CompoundStmt *C = SE->getSubStmt();
3254          if (!C->body_empty()) {
3255            const Stmt *Last = C->body_back();
3256            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3257              Last = LastEx->IgnoreParens();
3258            unsigned x = M->size();
3259            (*M)[Last] = x;
3260          }
3261        }
3262
3263        unsigned x = M->size();
3264        (*M)[Exp] = x;
3265      }
3266    }
3267
3268    // Look at terminators.  The condition is a block-level expression.
3269
3270    Stmt *S = (*I)->getTerminatorCondition();
3271
3272    if (S && M->find(S) == M->end()) {
3273      unsigned x = M->size();
3274      (*M)[S] = x;
3275    }
3276  }
3277
3278  return M;
3279}
3280
3281CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3282  assert(S != NULL);
3283  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3284
3285  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3286  BlkExprMapTy::iterator I = M->find(S);
3287  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3288}
3289
3290unsigned CFG::getNumBlkExprs() {
3291  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3292    return M->size();
3293
3294  // We assume callers interested in the number of BlkExprs will want
3295  // the map constructed if it doesn't already exist.
3296  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3297  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3298}
3299
3300//===----------------------------------------------------------------------===//
3301// Filtered walking of the CFG.
3302//===----------------------------------------------------------------------===//
3303
3304bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3305        const CFGBlock *From, const CFGBlock *To) {
3306
3307  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3308    // If the 'To' has no label or is labeled but the label isn't a
3309    // CaseStmt then filter this edge.
3310    if (const SwitchStmt *S =
3311        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3312      if (S->isAllEnumCasesCovered()) {
3313        const Stmt *L = To->getLabel();
3314        if (!L || !isa<CaseStmt>(L))
3315          return true;
3316      }
3317    }
3318  }
3319
3320  return false;
3321}
3322
3323//===----------------------------------------------------------------------===//
3324// Cleanup: CFG dstor.
3325//===----------------------------------------------------------------------===//
3326
3327CFG::~CFG() {
3328  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3329}
3330
3331//===----------------------------------------------------------------------===//
3332// CFG pretty printing
3333//===----------------------------------------------------------------------===//
3334
3335namespace {
3336
3337class StmtPrinterHelper : public PrinterHelper  {
3338  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3339  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3340  StmtMapTy StmtMap;
3341  DeclMapTy DeclMap;
3342  signed currentBlock;
3343  unsigned currentStmt;
3344  const LangOptions &LangOpts;
3345public:
3346
3347  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3348    : currentBlock(0), currentStmt(0), LangOpts(LO)
3349  {
3350    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3351      unsigned j = 1;
3352      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3353           BI != BEnd; ++BI, ++j ) {
3354        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3355          const Stmt *stmt= SE->getStmt();
3356          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3357          StmtMap[stmt] = P;
3358
3359          switch (stmt->getStmtClass()) {
3360            case Stmt::DeclStmtClass:
3361                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3362                break;
3363            case Stmt::IfStmtClass: {
3364              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3365              if (var)
3366                DeclMap[var] = P;
3367              break;
3368            }
3369            case Stmt::ForStmtClass: {
3370              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3371              if (var)
3372                DeclMap[var] = P;
3373              break;
3374            }
3375            case Stmt::WhileStmtClass: {
3376              const VarDecl *var =
3377                cast<WhileStmt>(stmt)->getConditionVariable();
3378              if (var)
3379                DeclMap[var] = P;
3380              break;
3381            }
3382            case Stmt::SwitchStmtClass: {
3383              const VarDecl *var =
3384                cast<SwitchStmt>(stmt)->getConditionVariable();
3385              if (var)
3386                DeclMap[var] = P;
3387              break;
3388            }
3389            case Stmt::CXXCatchStmtClass: {
3390              const VarDecl *var =
3391                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3392              if (var)
3393                DeclMap[var] = P;
3394              break;
3395            }
3396            default:
3397              break;
3398          }
3399        }
3400      }
3401    }
3402  }
3403
3404
3405  virtual ~StmtPrinterHelper() {}
3406
3407  const LangOptions &getLangOpts() const { return LangOpts; }
3408  void setBlockID(signed i) { currentBlock = i; }
3409  void setStmtID(unsigned i) { currentStmt = i; }
3410
3411  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3412    StmtMapTy::iterator I = StmtMap.find(S);
3413
3414    if (I == StmtMap.end())
3415      return false;
3416
3417    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3418                          && I->second.second == currentStmt) {
3419      return false;
3420    }
3421
3422    OS << "[B" << I->second.first << "." << I->second.second << "]";
3423    return true;
3424  }
3425
3426  bool handleDecl(const Decl *D, raw_ostream &OS) {
3427    DeclMapTy::iterator I = DeclMap.find(D);
3428
3429    if (I == DeclMap.end())
3430      return false;
3431
3432    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3433                          && I->second.second == currentStmt) {
3434      return false;
3435    }
3436
3437    OS << "[B" << I->second.first << "." << I->second.second << "]";
3438    return true;
3439  }
3440};
3441} // end anonymous namespace
3442
3443
3444namespace {
3445class CFGBlockTerminatorPrint
3446  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3447
3448  raw_ostream &OS;
3449  StmtPrinterHelper* Helper;
3450  PrintingPolicy Policy;
3451public:
3452  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3453                          const PrintingPolicy &Policy)
3454    : OS(os), Helper(helper), Policy(Policy) {}
3455
3456  void VisitIfStmt(IfStmt *I) {
3457    OS << "if ";
3458    I->getCond()->printPretty(OS,Helper,Policy);
3459  }
3460
3461  // Default case.
3462  void VisitStmt(Stmt *Terminator) {
3463    Terminator->printPretty(OS, Helper, Policy);
3464  }
3465
3466  void VisitForStmt(ForStmt *F) {
3467    OS << "for (" ;
3468    if (F->getInit())
3469      OS << "...";
3470    OS << "; ";
3471    if (Stmt *C = F->getCond())
3472      C->printPretty(OS, Helper, Policy);
3473    OS << "; ";
3474    if (F->getInc())
3475      OS << "...";
3476    OS << ")";
3477  }
3478
3479  void VisitWhileStmt(WhileStmt *W) {
3480    OS << "while " ;
3481    if (Stmt *C = W->getCond())
3482      C->printPretty(OS, Helper, Policy);
3483  }
3484
3485  void VisitDoStmt(DoStmt *D) {
3486    OS << "do ... while ";
3487    if (Stmt *C = D->getCond())
3488      C->printPretty(OS, Helper, Policy);
3489  }
3490
3491  void VisitSwitchStmt(SwitchStmt *Terminator) {
3492    OS << "switch ";
3493    Terminator->getCond()->printPretty(OS, Helper, Policy);
3494  }
3495
3496  void VisitCXXTryStmt(CXXTryStmt *CS) {
3497    OS << "try ...";
3498  }
3499
3500  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3501    C->getCond()->printPretty(OS, Helper, Policy);
3502    OS << " ? ... : ...";
3503  }
3504
3505  void VisitChooseExpr(ChooseExpr *C) {
3506    OS << "__builtin_choose_expr( ";
3507    C->getCond()->printPretty(OS, Helper, Policy);
3508    OS << " )";
3509  }
3510
3511  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3512    OS << "goto *";
3513    I->getTarget()->printPretty(OS, Helper, Policy);
3514  }
3515
3516  void VisitBinaryOperator(BinaryOperator* B) {
3517    if (!B->isLogicalOp()) {
3518      VisitExpr(B);
3519      return;
3520    }
3521
3522    B->getLHS()->printPretty(OS, Helper, Policy);
3523
3524    switch (B->getOpcode()) {
3525      case BO_LOr:
3526        OS << " || ...";
3527        return;
3528      case BO_LAnd:
3529        OS << " && ...";
3530        return;
3531      default:
3532        llvm_unreachable("Invalid logical operator.");
3533    }
3534  }
3535
3536  void VisitExpr(Expr *E) {
3537    E->printPretty(OS, Helper, Policy);
3538  }
3539};
3540} // end anonymous namespace
3541
3542static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3543                       const CFGElement &E) {
3544  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3545    const Stmt *S = CS->getStmt();
3546
3547    if (Helper) {
3548
3549      // special printing for statement-expressions.
3550      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3551        const CompoundStmt *Sub = SE->getSubStmt();
3552
3553        if (Sub->children()) {
3554          OS << "({ ... ; ";
3555          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3556          OS << " })\n";
3557          return;
3558        }
3559      }
3560      // special printing for comma expressions.
3561      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3562        if (B->getOpcode() == BO_Comma) {
3563          OS << "... , ";
3564          Helper->handledStmt(B->getRHS(),OS);
3565          OS << '\n';
3566          return;
3567        }
3568      }
3569    }
3570    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3571
3572    if (isa<CXXOperatorCallExpr>(S)) {
3573      OS << " (OperatorCall)";
3574    }
3575    else if (isa<CXXBindTemporaryExpr>(S)) {
3576      OS << " (BindTemporary)";
3577    }
3578    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3579      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3580    }
3581    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3582      OS << " (" << CE->getStmtClassName() << ", "
3583         << CE->getCastKindName()
3584         << ", " << CE->getType().getAsString()
3585         << ")";
3586    }
3587
3588    // Expressions need a newline.
3589    if (isa<Expr>(S))
3590      OS << '\n';
3591
3592  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3593    const CXXCtorInitializer *I = IE->getInitializer();
3594    if (I->isBaseInitializer())
3595      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3596    else OS << I->getAnyMember()->getName();
3597
3598    OS << "(";
3599    if (Expr *IE = I->getInit())
3600      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3601    OS << ")";
3602
3603    if (I->isBaseInitializer())
3604      OS << " (Base initializer)\n";
3605    else OS << " (Member initializer)\n";
3606
3607  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3608    const VarDecl *VD = DE->getVarDecl();
3609    Helper->handleDecl(VD, OS);
3610
3611    const Type* T = VD->getType().getTypePtr();
3612    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3613      T = RT->getPointeeType().getTypePtr();
3614    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3615      T = ET;
3616
3617    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3618    OS << " (Implicit destructor)\n";
3619
3620  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3621    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3622    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3623    OS << " (Base object destructor)\n";
3624
3625  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3626    const FieldDecl *FD = ME->getFieldDecl();
3627
3628    const Type *T = FD->getType().getTypePtr();
3629    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3630      T = ET;
3631
3632    OS << "this->" << FD->getName();
3633    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3634    OS << " (Member object destructor)\n";
3635
3636  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3637    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3638    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3639    OS << " (Temporary object destructor)\n";
3640  }
3641}
3642
3643static void print_block(raw_ostream &OS, const CFG* cfg,
3644                        const CFGBlock &B,
3645                        StmtPrinterHelper* Helper, bool print_edges,
3646                        bool ShowColors) {
3647
3648  if (Helper)
3649    Helper->setBlockID(B.getBlockID());
3650
3651  // Print the header.
3652  if (ShowColors)
3653    OS.changeColor(raw_ostream::YELLOW, true);
3654
3655  OS << "\n [B" << B.getBlockID();
3656
3657  if (&B == &cfg->getEntry())
3658    OS << " (ENTRY)]\n";
3659  else if (&B == &cfg->getExit())
3660    OS << " (EXIT)]\n";
3661  else if (&B == cfg->getIndirectGotoBlock())
3662    OS << " (INDIRECT GOTO DISPATCH)]\n";
3663  else
3664    OS << "]\n";
3665
3666  if (ShowColors)
3667    OS.resetColor();
3668
3669  // Print the label of this block.
3670  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3671
3672    if (print_edges)
3673      OS << "  ";
3674
3675    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3676      OS << L->getName();
3677    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3678      OS << "case ";
3679      C->getLHS()->printPretty(OS, Helper,
3680                               PrintingPolicy(Helper->getLangOpts()));
3681      if (C->getRHS()) {
3682        OS << " ... ";
3683        C->getRHS()->printPretty(OS, Helper,
3684                                 PrintingPolicy(Helper->getLangOpts()));
3685      }
3686    } else if (isa<DefaultStmt>(Label))
3687      OS << "default";
3688    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3689      OS << "catch (";
3690      if (CS->getExceptionDecl())
3691        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3692                                      0);
3693      else
3694        OS << "...";
3695      OS << ")";
3696
3697    } else
3698      llvm_unreachable("Invalid label statement in CFGBlock.");
3699
3700    OS << ":\n";
3701  }
3702
3703  // Iterate through the statements in the block and print them.
3704  unsigned j = 1;
3705
3706  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3707       I != E ; ++I, ++j ) {
3708
3709    // Print the statement # in the basic block and the statement itself.
3710    if (print_edges)
3711      OS << " ";
3712
3713    OS << llvm::format("%3d", j) << ": ";
3714
3715    if (Helper)
3716      Helper->setStmtID(j);
3717
3718    print_elem(OS, Helper, *I);
3719  }
3720
3721  // Print the terminator of this block.
3722  if (B.getTerminator()) {
3723    if (ShowColors)
3724      OS.changeColor(raw_ostream::GREEN);
3725
3726    OS << "   T: ";
3727
3728    if (Helper) Helper->setBlockID(-1);
3729
3730    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3731                                     PrintingPolicy(Helper->getLangOpts()));
3732    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3733    OS << '\n';
3734
3735    if (ShowColors)
3736      OS.resetColor();
3737  }
3738
3739  if (print_edges) {
3740    // Print the predecessors of this block.
3741    if (!B.pred_empty()) {
3742      const raw_ostream::Colors Color = raw_ostream::BLUE;
3743      if (ShowColors)
3744        OS.changeColor(Color);
3745      OS << "   Preds " ;
3746      if (ShowColors)
3747        OS.resetColor();
3748      OS << '(' << B.pred_size() << "):";
3749      unsigned i = 0;
3750
3751      if (ShowColors)
3752        OS.changeColor(Color);
3753
3754      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3755           I != E; ++I, ++i) {
3756
3757        if (i == 8 || (i-8) == 0)
3758          OS << "\n     ";
3759
3760        OS << " B" << (*I)->getBlockID();
3761      }
3762
3763      if (ShowColors)
3764        OS.resetColor();
3765
3766      OS << '\n';
3767    }
3768
3769    // Print the successors of this block.
3770    if (!B.succ_empty()) {
3771      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3772      if (ShowColors)
3773        OS.changeColor(Color);
3774      OS << "   Succs ";
3775      if (ShowColors)
3776        OS.resetColor();
3777      OS << '(' << B.succ_size() << "):";
3778      unsigned i = 0;
3779
3780      if (ShowColors)
3781        OS.changeColor(Color);
3782
3783      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3784           I != E; ++I, ++i) {
3785
3786        if (i == 8 || (i-8) % 10 == 0)
3787          OS << "\n    ";
3788
3789        if (*I)
3790          OS << " B" << (*I)->getBlockID();
3791        else
3792          OS  << " NULL";
3793      }
3794
3795      if (ShowColors)
3796        OS.resetColor();
3797      OS << '\n';
3798    }
3799  }
3800}
3801
3802
3803/// dump - A simple pretty printer of a CFG that outputs to stderr.
3804void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3805  print(llvm::errs(), LO, ShowColors);
3806}
3807
3808/// print - A simple pretty printer of a CFG that outputs to an ostream.
3809void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3810  StmtPrinterHelper Helper(this, LO);
3811
3812  // Print the entry block.
3813  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3814
3815  // Iterate through the CFGBlocks and print them one by one.
3816  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3817    // Skip the entry block, because we already printed it.
3818    if (&(**I) == &getEntry() || &(**I) == &getExit())
3819      continue;
3820
3821    print_block(OS, this, **I, &Helper, true, ShowColors);
3822  }
3823
3824  // Print the exit block.
3825  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3826  OS << '\n';
3827  OS.flush();
3828}
3829
3830/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3831void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3832                    bool ShowColors) const {
3833  print(llvm::errs(), cfg, LO, ShowColors);
3834}
3835
3836/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3837///   Generally this will only be called from CFG::print.
3838void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3839                     const LangOptions &LO, bool ShowColors) const {
3840  StmtPrinterHelper Helper(cfg, LO);
3841  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3842  OS << '\n';
3843}
3844
3845/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3846void CFGBlock::printTerminator(raw_ostream &OS,
3847                               const LangOptions &LO) const {
3848  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3849  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3850}
3851
3852Stmt *CFGBlock::getTerminatorCondition() {
3853  Stmt *Terminator = this->Terminator;
3854  if (!Terminator)
3855    return NULL;
3856
3857  Expr *E = NULL;
3858
3859  switch (Terminator->getStmtClass()) {
3860    default:
3861      break;
3862
3863    case Stmt::ForStmtClass:
3864      E = cast<ForStmt>(Terminator)->getCond();
3865      break;
3866
3867    case Stmt::WhileStmtClass:
3868      E = cast<WhileStmt>(Terminator)->getCond();
3869      break;
3870
3871    case Stmt::DoStmtClass:
3872      E = cast<DoStmt>(Terminator)->getCond();
3873      break;
3874
3875    case Stmt::IfStmtClass:
3876      E = cast<IfStmt>(Terminator)->getCond();
3877      break;
3878
3879    case Stmt::ChooseExprClass:
3880      E = cast<ChooseExpr>(Terminator)->getCond();
3881      break;
3882
3883    case Stmt::IndirectGotoStmtClass:
3884      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3885      break;
3886
3887    case Stmt::SwitchStmtClass:
3888      E = cast<SwitchStmt>(Terminator)->getCond();
3889      break;
3890
3891    case Stmt::BinaryConditionalOperatorClass:
3892      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3893      break;
3894
3895    case Stmt::ConditionalOperatorClass:
3896      E = cast<ConditionalOperator>(Terminator)->getCond();
3897      break;
3898
3899    case Stmt::BinaryOperatorClass: // '&&' and '||'
3900      E = cast<BinaryOperator>(Terminator)->getLHS();
3901      break;
3902
3903    case Stmt::ObjCForCollectionStmtClass:
3904      return Terminator;
3905  }
3906
3907  return E ? E->IgnoreParens() : NULL;
3908}
3909
3910//===----------------------------------------------------------------------===//
3911// CFG Graphviz Visualization
3912//===----------------------------------------------------------------------===//
3913
3914
3915#ifndef NDEBUG
3916static StmtPrinterHelper* GraphHelper;
3917#endif
3918
3919void CFG::viewCFG(const LangOptions &LO) const {
3920#ifndef NDEBUG
3921  StmtPrinterHelper H(this, LO);
3922  GraphHelper = &H;
3923  llvm::ViewGraph(this,"CFG");
3924  GraphHelper = NULL;
3925#endif
3926}
3927
3928namespace llvm {
3929template<>
3930struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3931
3932  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3933
3934  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3935
3936#ifndef NDEBUG
3937    std::string OutSStr;
3938    llvm::raw_string_ostream Out(OutSStr);
3939    print_block(Out,Graph, *Node, GraphHelper, false, false);
3940    std::string& OutStr = Out.str();
3941
3942    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3943
3944    // Process string output to make it nicer...
3945    for (unsigned i = 0; i != OutStr.length(); ++i)
3946      if (OutStr[i] == '\n') {                            // Left justify
3947        OutStr[i] = '\\';
3948        OutStr.insert(OutStr.begin()+i+1, 'l');
3949      }
3950
3951    return OutStr;
3952#else
3953    return "";
3954#endif
3955  }
3956};
3957} // end namespace llvm
3958