CFG.cpp revision 95ab9e306f4deefeabd89ea61987f4a8d67e0890
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/OwningPtr.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Support/Allocator.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/GraphWriter.h"
29#include "llvm/Support/SaveAndRestore.h"
30
31using namespace clang;
32
33namespace {
34
35static SourceLocation GetEndLoc(Decl *D) {
36  if (VarDecl *VD = dyn_cast<VarDecl>(D))
37    if (Expr *Ex = VD->getInit())
38      return Ex->getSourceRange().getEnd();
39  return D->getLocation();
40}
41
42class CFGBuilder;
43
44/// The CFG builder uses a recursive algorithm to build the CFG.  When
45///  we process an expression, sometimes we know that we must add the
46///  subexpressions as block-level expressions.  For example:
47///
48///    exp1 || exp2
49///
50///  When processing the '||' expression, we know that exp1 and exp2
51///  need to be added as block-level expressions, even though they
52///  might not normally need to be.  AddStmtChoice records this
53///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
54///  the builder has an option not to add a subexpression as a
55///  block-level expression.
56///
57class AddStmtChoice {
58public:
59  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
60
61  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
62
63  bool alwaysAdd(CFGBuilder &builder,
64                 const Stmt *stmt) const;
65
66  /// Return a copy of this object, except with the 'always-add' bit
67  ///  set as specified.
68  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
69    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
70  }
71
72private:
73  Kind kind;
74};
75
76/// LocalScope - Node in tree of local scopes created for C++ implicit
77/// destructor calls generation. It contains list of automatic variables
78/// declared in the scope and link to position in previous scope this scope
79/// began in.
80///
81/// The process of creating local scopes is as follows:
82/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
83/// - Before processing statements in scope (e.g. CompoundStmt) create
84///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
85///   and set CFGBuilder::ScopePos to the end of new scope,
86/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
87///   at this VarDecl,
88/// - For every normal (without jump) end of scope add to CFGBlock destructors
89///   for objects in the current scope,
90/// - For every jump add to CFGBlock destructors for objects
91///   between CFGBuilder::ScopePos and local scope position saved for jump
92///   target. Thanks to C++ restrictions on goto jumps we can be sure that
93///   jump target position will be on the path to root from CFGBuilder::ScopePos
94///   (adding any variable that doesn't need constructor to be called to
95///   LocalScope can break this assumption),
96///
97class LocalScope {
98public:
99  typedef BumpVector<VarDecl*> AutomaticVarsTy;
100
101  /// const_iterator - Iterates local scope backwards and jumps to previous
102  /// scope on reaching the beginning of currently iterated scope.
103  class const_iterator {
104    const LocalScope* Scope;
105
106    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
107    /// Invalid iterator (with null Scope) has VarIter equal to 0.
108    unsigned VarIter;
109
110  public:
111    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
112    /// Incrementing invalid iterator is allowed and will result in invalid
113    /// iterator.
114    const_iterator()
115        : Scope(NULL), VarIter(0) {}
116
117    /// Create valid iterator. In case when S.Prev is an invalid iterator and
118    /// I is equal to 0, this will create invalid iterator.
119    const_iterator(const LocalScope& S, unsigned I)
120        : Scope(&S), VarIter(I) {
121      // Iterator to "end" of scope is not allowed. Handle it by going up
122      // in scopes tree possibly up to invalid iterator in the root.
123      if (VarIter == 0 && Scope)
124        *this = Scope->Prev;
125    }
126
127    VarDecl *const* operator->() const {
128      assert (Scope && "Dereferencing invalid iterator is not allowed");
129      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
130      return &Scope->Vars[VarIter - 1];
131    }
132    VarDecl *operator*() const {
133      return *this->operator->();
134    }
135
136    const_iterator &operator++() {
137      if (!Scope)
138        return *this;
139
140      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
141      --VarIter;
142      if (VarIter == 0)
143        *this = Scope->Prev;
144      return *this;
145    }
146    const_iterator operator++(int) {
147      const_iterator P = *this;
148      ++*this;
149      return P;
150    }
151
152    bool operator==(const const_iterator &rhs) const {
153      return Scope == rhs.Scope && VarIter == rhs.VarIter;
154    }
155    bool operator!=(const const_iterator &rhs) const {
156      return !(*this == rhs);
157    }
158
159    LLVM_EXPLICIT operator bool() const {
160      return *this != const_iterator();
161    }
162
163    int distance(const_iterator L);
164  };
165
166  friend class const_iterator;
167
168private:
169  BumpVectorContext ctx;
170
171  /// Automatic variables in order of declaration.
172  AutomaticVarsTy Vars;
173  /// Iterator to variable in previous scope that was declared just before
174  /// begin of this scope.
175  const_iterator Prev;
176
177public:
178  /// Constructs empty scope linked to previous scope in specified place.
179  LocalScope(BumpVectorContext &ctx, const_iterator P)
180      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
181
182  /// Begin of scope in direction of CFG building (backwards).
183  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
184
185  void addVar(VarDecl *VD) {
186    Vars.push_back(VD, ctx);
187  }
188};
189
190/// distance - Calculates distance from this to L. L must be reachable from this
191/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
192/// number of scopes between this and L.
193int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
194  int D = 0;
195  const_iterator F = *this;
196  while (F.Scope != L.Scope) {
197    assert (F != const_iterator()
198        && "L iterator is not reachable from F iterator.");
199    D += F.VarIter;
200    F = F.Scope->Prev;
201  }
202  D += F.VarIter - L.VarIter;
203  return D;
204}
205
206/// BlockScopePosPair - Structure for specifying position in CFG during its
207/// build process. It consists of CFGBlock that specifies position in CFG graph
208/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
209struct BlockScopePosPair {
210  BlockScopePosPair() : block(0) {}
211  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
212      : block(b), scopePosition(scopePos) {}
213
214  CFGBlock *block;
215  LocalScope::const_iterator scopePosition;
216};
217
218/// TryResult - a class representing a variant over the values
219///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
220///  and is used by the CFGBuilder to decide if a branch condition
221///  can be decided up front during CFG construction.
222class TryResult {
223  int X;
224public:
225  TryResult(bool b) : X(b ? 1 : 0) {}
226  TryResult() : X(-1) {}
227
228  bool isTrue() const { return X == 1; }
229  bool isFalse() const { return X == 0; }
230  bool isKnown() const { return X >= 0; }
231  void negate() {
232    assert(isKnown());
233    X ^= 0x1;
234  }
235};
236
237class reverse_children {
238  llvm::SmallVector<Stmt *, 12> childrenBuf;
239  ArrayRef<Stmt*> children;
240public:
241  reverse_children(Stmt *S);
242
243  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
244  iterator begin() const { return children.rbegin(); }
245  iterator end() const { return children.rend(); }
246};
247
248
249reverse_children::reverse_children(Stmt *S) {
250  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
251    children = CE->getRawSubExprs();
252    return;
253  }
254  switch (S->getStmtClass()) {
255    // Note: Fill in this switch with more cases we want to optimize.
256    case Stmt::InitListExprClass: {
257      InitListExpr *IE = cast<InitListExpr>(S);
258      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
259                                    IE->getNumInits());
260      return;
261    }
262    default:
263      break;
264  }
265
266  // Default case for all other statements.
267  for (Stmt::child_range I = S->children(); I; ++I) {
268    childrenBuf.push_back(*I);
269  }
270
271  // This needs to be done *after* childrenBuf has been populated.
272  children = childrenBuf;
273}
274
275/// CFGBuilder - This class implements CFG construction from an AST.
276///   The builder is stateful: an instance of the builder should be used to only
277///   construct a single CFG.
278///
279///   Example usage:
280///
281///     CFGBuilder builder;
282///     CFG* cfg = builder.BuildAST(stmt1);
283///
284///  CFG construction is done via a recursive walk of an AST.  We actually parse
285///  the AST in reverse order so that the successor of a basic block is
286///  constructed prior to its predecessor.  This allows us to nicely capture
287///  implicit fall-throughs without extra basic blocks.
288///
289class CFGBuilder {
290  typedef BlockScopePosPair JumpTarget;
291  typedef BlockScopePosPair JumpSource;
292
293  ASTContext *Context;
294  OwningPtr<CFG> cfg;
295
296  CFGBlock *Block;
297  CFGBlock *Succ;
298  JumpTarget ContinueJumpTarget;
299  JumpTarget BreakJumpTarget;
300  CFGBlock *SwitchTerminatedBlock;
301  CFGBlock *DefaultCaseBlock;
302  CFGBlock *TryTerminatedBlock;
303
304  // Current position in local scope.
305  LocalScope::const_iterator ScopePos;
306
307  // LabelMap records the mapping from Label expressions to their jump targets.
308  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
309  LabelMapTy LabelMap;
310
311  // A list of blocks that end with a "goto" that must be backpatched to their
312  // resolved targets upon completion of CFG construction.
313  typedef std::vector<JumpSource> BackpatchBlocksTy;
314  BackpatchBlocksTy BackpatchBlocks;
315
316  // A list of labels whose address has been taken (for indirect gotos).
317  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
318  LabelSetTy AddressTakenLabels;
319
320  bool badCFG;
321  const CFG::BuildOptions &BuildOpts;
322
323  // State to track for building switch statements.
324  bool switchExclusivelyCovered;
325  Expr::EvalResult *switchCond;
326
327  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
328  const Stmt *lastLookup;
329
330  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
331  // during construction of branches for chained logical operators.
332  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
333  CachedBoolEvalsTy CachedBoolEvals;
334
335public:
336  explicit CFGBuilder(ASTContext *astContext,
337                      const CFG::BuildOptions &buildOpts)
338    : Context(astContext), cfg(new CFG()), // crew a new CFG
339      Block(NULL), Succ(NULL),
340      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
341      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
342      switchExclusivelyCovered(false), switchCond(0),
343      cachedEntry(0), lastLookup(0) {}
344
345  // buildCFG - Used by external clients to construct the CFG.
346  CFG* buildCFG(const Decl *D, Stmt *Statement);
347
348  bool alwaysAdd(const Stmt *stmt);
349
350private:
351  // Visitors to walk an AST and construct the CFG.
352  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
353  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
354  CFGBlock *VisitBreakStmt(BreakStmt *B);
355  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
356  CFGBlock *VisitCaseStmt(CaseStmt *C);
357  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
358  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
359  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
360                                     AddStmtChoice asc);
361  CFGBlock *VisitContinueStmt(ContinueStmt *C);
362  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
363                                      AddStmtChoice asc);
364  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
365  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
366  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
367  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
368                                       AddStmtChoice asc);
369  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
370                                        AddStmtChoice asc);
371  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
372  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
373  CFGBlock *VisitDeclStmt(DeclStmt *DS);
374  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
375  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
376  CFGBlock *VisitDoStmt(DoStmt *D);
377  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
378  CFGBlock *VisitForStmt(ForStmt *F);
379  CFGBlock *VisitGotoStmt(GotoStmt *G);
380  CFGBlock *VisitIfStmt(IfStmt *I);
381  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
382  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
383  CFGBlock *VisitLabelStmt(LabelStmt *L);
384  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
385  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
386  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
387                                                         Stmt *Term,
388                                                         CFGBlock *TrueBlock,
389                                                         CFGBlock *FalseBlock);
390  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
391  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
392  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
393  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
394  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
395  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
396  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
397  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
398  CFGBlock *VisitReturnStmt(ReturnStmt *R);
399  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
400  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
401  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
402                                          AddStmtChoice asc);
403  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
404  CFGBlock *VisitWhileStmt(WhileStmt *W);
405
406  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
407  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
408  CFGBlock *VisitChildren(Stmt *S);
409  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
410
411  // Visitors to walk an AST and generate destructors of temporaries in
412  // full expression.
413  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
414  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
415  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
416  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
417      bool BindToTemporary);
418  CFGBlock *
419  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
420                                            bool BindToTemporary);
421
422  // NYS == Not Yet Supported
423  CFGBlock *NYS() {
424    badCFG = true;
425    return Block;
426  }
427
428  void autoCreateBlock() { if (!Block) Block = createBlock(); }
429  CFGBlock *createBlock(bool add_successor = true);
430  CFGBlock *createNoReturnBlock();
431
432  CFGBlock *addStmt(Stmt *S) {
433    return Visit(S, AddStmtChoice::AlwaysAdd);
434  }
435  CFGBlock *addInitializer(CXXCtorInitializer *I);
436  void addAutomaticObjDtors(LocalScope::const_iterator B,
437                            LocalScope::const_iterator E, Stmt *S);
438  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
439
440  // Local scopes creation.
441  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
442
443  void addLocalScopeForStmt(Stmt *S);
444  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
445  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
446
447  void addLocalScopeAndDtors(Stmt *S);
448
449  // Interface to CFGBlock - adding CFGElements.
450  void appendStmt(CFGBlock *B, const Stmt *S) {
451    if (alwaysAdd(S) && cachedEntry)
452      cachedEntry->second = B;
453
454    // All block-level expressions should have already been IgnoreParens()ed.
455    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
456    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
457  }
458  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
459    B->appendInitializer(I, cfg->getBumpVectorContext());
460  }
461  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
462    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
463  }
464  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
465    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
466  }
467  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
468    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
469  }
470  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
471    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
472  }
473
474  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
475      LocalScope::const_iterator B, LocalScope::const_iterator E);
476
477  void addSuccessor(CFGBlock *B, CFGBlock *S) {
478    B->addSuccessor(S, cfg->getBumpVectorContext());
479  }
480
481  /// Try and evaluate an expression to an integer constant.
482  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
483    if (!BuildOpts.PruneTriviallyFalseEdges)
484      return false;
485    return !S->isTypeDependent() &&
486           !S->isValueDependent() &&
487           S->EvaluateAsRValue(outResult, *Context);
488  }
489
490  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
491  /// if we can evaluate to a known value, otherwise return -1.
492  TryResult tryEvaluateBool(Expr *S) {
493    if (!BuildOpts.PruneTriviallyFalseEdges ||
494        S->isTypeDependent() || S->isValueDependent())
495      return TryResult();
496
497    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
498      if (Bop->isLogicalOp()) {
499        // Check the cache first.
500        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
501        if (I != CachedBoolEvals.end())
502          return I->second; // already in map;
503
504        // Retrieve result at first, or the map might be updated.
505        TryResult Result = evaluateAsBooleanConditionNoCache(S);
506        CachedBoolEvals[S] = Result; // update or insert
507        return Result;
508      }
509      else {
510        switch (Bop->getOpcode()) {
511          default: break;
512          // For 'x & 0' and 'x * 0', we can determine that
513          // the value is always false.
514          case BO_Mul:
515          case BO_And: {
516            // If either operand is zero, we know the value
517            // must be false.
518            llvm::APSInt IntVal;
519            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
520              if (IntVal.getBoolValue() == false) {
521                return TryResult(false);
522              }
523            }
524            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
525              if (IntVal.getBoolValue() == false) {
526                return TryResult(false);
527              }
528            }
529          }
530          break;
531        }
532      }
533    }
534
535    return evaluateAsBooleanConditionNoCache(S);
536  }
537
538  /// \brief Evaluate as boolean \param E without using the cache.
539  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
540    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
541      if (Bop->isLogicalOp()) {
542        TryResult LHS = tryEvaluateBool(Bop->getLHS());
543        if (LHS.isKnown()) {
544          // We were able to evaluate the LHS, see if we can get away with not
545          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
546          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
547            return LHS.isTrue();
548
549          TryResult RHS = tryEvaluateBool(Bop->getRHS());
550          if (RHS.isKnown()) {
551            if (Bop->getOpcode() == BO_LOr)
552              return LHS.isTrue() || RHS.isTrue();
553            else
554              return LHS.isTrue() && RHS.isTrue();
555          }
556        } else {
557          TryResult RHS = tryEvaluateBool(Bop->getRHS());
558          if (RHS.isKnown()) {
559            // We can't evaluate the LHS; however, sometimes the result
560            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
561            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
562              return RHS.isTrue();
563          }
564        }
565
566        return TryResult();
567      }
568    }
569
570    bool Result;
571    if (E->EvaluateAsBooleanCondition(Result, *Context))
572      return Result;
573
574    return TryResult();
575  }
576
577};
578
579inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
580                                     const Stmt *stmt) const {
581  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
582}
583
584bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
585  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
586
587  if (!BuildOpts.forcedBlkExprs)
588    return shouldAdd;
589
590  if (lastLookup == stmt) {
591    if (cachedEntry) {
592      assert(cachedEntry->first == stmt);
593      return true;
594    }
595    return shouldAdd;
596  }
597
598  lastLookup = stmt;
599
600  // Perform the lookup!
601  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
602
603  if (!fb) {
604    // No need to update 'cachedEntry', since it will always be null.
605    assert(cachedEntry == 0);
606    return shouldAdd;
607  }
608
609  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
610  if (itr == fb->end()) {
611    cachedEntry = 0;
612    return shouldAdd;
613  }
614
615  cachedEntry = &*itr;
616  return true;
617}
618
619// FIXME: Add support for dependent-sized array types in C++?
620// Does it even make sense to build a CFG for an uninstantiated template?
621static const VariableArrayType *FindVA(const Type *t) {
622  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
623    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
624      if (vat->getSizeExpr())
625        return vat;
626
627    t = vt->getElementType().getTypePtr();
628  }
629
630  return 0;
631}
632
633/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
634///  arbitrary statement.  Examples include a single expression or a function
635///  body (compound statement).  The ownership of the returned CFG is
636///  transferred to the caller.  If CFG construction fails, this method returns
637///  NULL.
638CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
639  assert(cfg.get());
640  if (!Statement)
641    return NULL;
642
643  // Create an empty block that will serve as the exit block for the CFG.  Since
644  // this is the first block added to the CFG, it will be implicitly registered
645  // as the exit block.
646  Succ = createBlock();
647  assert(Succ == &cfg->getExit());
648  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
649
650  if (BuildOpts.AddImplicitDtors)
651    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
652      addImplicitDtorsForDestructor(DD);
653
654  // Visit the statements and create the CFG.
655  CFGBlock *B = addStmt(Statement);
656
657  if (badCFG)
658    return NULL;
659
660  // For C++ constructor add initializers to CFG.
661  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
662    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
663        E = CD->init_rend(); I != E; ++I) {
664      B = addInitializer(*I);
665      if (badCFG)
666        return NULL;
667    }
668  }
669
670  if (B)
671    Succ = B;
672
673  // Backpatch the gotos whose label -> block mappings we didn't know when we
674  // encountered them.
675  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
676                                   E = BackpatchBlocks.end(); I != E; ++I ) {
677
678    CFGBlock *B = I->block;
679    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
680    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
681
682    // If there is no target for the goto, then we are looking at an
683    // incomplete AST.  Handle this by not registering a successor.
684    if (LI == LabelMap.end()) continue;
685
686    JumpTarget JT = LI->second;
687    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
688                                           JT.scopePosition);
689    addSuccessor(B, JT.block);
690  }
691
692  // Add successors to the Indirect Goto Dispatch block (if we have one).
693  if (CFGBlock *B = cfg->getIndirectGotoBlock())
694    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
695                              E = AddressTakenLabels.end(); I != E; ++I ) {
696
697      // Lookup the target block.
698      LabelMapTy::iterator LI = LabelMap.find(*I);
699
700      // If there is no target block that contains label, then we are looking
701      // at an incomplete AST.  Handle this by not registering a successor.
702      if (LI == LabelMap.end()) continue;
703
704      addSuccessor(B, LI->second.block);
705    }
706
707  // Create an empty entry block that has no predecessors.
708  cfg->setEntry(createBlock());
709
710  return cfg.take();
711}
712
713/// createBlock - Used to lazily create blocks that are connected
714///  to the current (global) succcessor.
715CFGBlock *CFGBuilder::createBlock(bool add_successor) {
716  CFGBlock *B = cfg->createBlock();
717  if (add_successor && Succ)
718    addSuccessor(B, Succ);
719  return B;
720}
721
722/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
723/// CFG. It is *not* connected to the current (global) successor, and instead
724/// directly tied to the exit block in order to be reachable.
725CFGBlock *CFGBuilder::createNoReturnBlock() {
726  CFGBlock *B = createBlock(false);
727  B->setHasNoReturnElement();
728  addSuccessor(B, &cfg->getExit());
729  return B;
730}
731
732/// addInitializer - Add C++ base or member initializer element to CFG.
733CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
734  if (!BuildOpts.AddInitializers)
735    return Block;
736
737  bool IsReference = false;
738  bool HasTemporaries = false;
739
740  // Destructors of temporaries in initialization expression should be called
741  // after initialization finishes.
742  Expr *Init = I->getInit();
743  if (Init) {
744    if (FieldDecl *FD = I->getAnyMember())
745      IsReference = FD->getType()->isReferenceType();
746    HasTemporaries = isa<ExprWithCleanups>(Init);
747
748    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
749      // Generate destructors for temporaries in initialization expression.
750      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
751          IsReference);
752    }
753  }
754
755  autoCreateBlock();
756  appendInitializer(Block, I);
757
758  if (Init) {
759    if (HasTemporaries) {
760      // For expression with temporaries go directly to subexpression to omit
761      // generating destructors for the second time.
762      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
763    }
764    return Visit(Init);
765  }
766
767  return Block;
768}
769
770/// \brief Retrieve the type of the temporary object whose lifetime was
771/// extended by a local reference with the given initializer.
772static QualType getReferenceInitTemporaryType(ASTContext &Context,
773                                              const Expr *Init) {
774  while (true) {
775    // Skip parentheses.
776    Init = Init->IgnoreParens();
777
778    // Skip through cleanups.
779    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
780      Init = EWC->getSubExpr();
781      continue;
782    }
783
784    // Skip through the temporary-materialization expression.
785    if (const MaterializeTemporaryExpr *MTE
786          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
787      Init = MTE->GetTemporaryExpr();
788      continue;
789    }
790
791    // Skip derived-to-base and no-op casts.
792    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
793      if ((CE->getCastKind() == CK_DerivedToBase ||
794           CE->getCastKind() == CK_UncheckedDerivedToBase ||
795           CE->getCastKind() == CK_NoOp) &&
796          Init->getType()->isRecordType()) {
797        Init = CE->getSubExpr();
798        continue;
799      }
800    }
801
802    // Skip member accesses into rvalues.
803    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
804      if (!ME->isArrow() && ME->getBase()->isRValue()) {
805        Init = ME->getBase();
806        continue;
807      }
808    }
809
810    break;
811  }
812
813  return Init->getType();
814}
815
816/// addAutomaticObjDtors - Add to current block automatic objects destructors
817/// for objects in range of local scope positions. Use S as trigger statement
818/// for destructors.
819void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
820                                      LocalScope::const_iterator E, Stmt *S) {
821  if (!BuildOpts.AddImplicitDtors)
822    return;
823
824  if (B == E)
825    return;
826
827  // We need to append the destructors in reverse order, but any one of them
828  // may be a no-return destructor which changes the CFG. As a result, buffer
829  // this sequence up and replay them in reverse order when appending onto the
830  // CFGBlock(s).
831  SmallVector<VarDecl*, 10> Decls;
832  Decls.reserve(B.distance(E));
833  for (LocalScope::const_iterator I = B; I != E; ++I)
834    Decls.push_back(*I);
835
836  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
837                                                   E = Decls.rend();
838       I != E; ++I) {
839    // If this destructor is marked as a no-return destructor, we need to
840    // create a new block for the destructor which does not have as a successor
841    // anything built thus far: control won't flow out of this block.
842    QualType Ty = (*I)->getType();
843    if (Ty->isReferenceType()) {
844      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
845    }
846    Ty = Context->getBaseElementType(Ty);
847
848    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
849    if (Dtor->isNoReturn())
850      Block = createNoReturnBlock();
851    else
852      autoCreateBlock();
853
854    appendAutomaticObjDtor(Block, *I, S);
855  }
856}
857
858/// addImplicitDtorsForDestructor - Add implicit destructors generated for
859/// base and member objects in destructor.
860void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
861  assert (BuildOpts.AddImplicitDtors
862      && "Can be called only when dtors should be added");
863  const CXXRecordDecl *RD = DD->getParent();
864
865  // At the end destroy virtual base objects.
866  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
867      VE = RD->vbases_end(); VI != VE; ++VI) {
868    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
869    if (!CD->hasTrivialDestructor()) {
870      autoCreateBlock();
871      appendBaseDtor(Block, VI);
872    }
873  }
874
875  // Before virtual bases destroy direct base objects.
876  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
877      BE = RD->bases_end(); BI != BE; ++BI) {
878    if (!BI->isVirtual()) {
879      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
880      if (!CD->hasTrivialDestructor()) {
881        autoCreateBlock();
882        appendBaseDtor(Block, BI);
883      }
884    }
885  }
886
887  // First destroy member objects.
888  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
889      FE = RD->field_end(); FI != FE; ++FI) {
890    // Check for constant size array. Set type to array element type.
891    QualType QT = FI->getType();
892    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
893      if (AT->getSize() == 0)
894        continue;
895      QT = AT->getElementType();
896    }
897
898    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
899      if (!CD->hasTrivialDestructor()) {
900        autoCreateBlock();
901        appendMemberDtor(Block, *FI);
902      }
903  }
904}
905
906/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
907/// way return valid LocalScope object.
908LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
909  if (!Scope) {
910    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
911    Scope = alloc.Allocate<LocalScope>();
912    BumpVectorContext ctx(alloc);
913    new (Scope) LocalScope(ctx, ScopePos);
914  }
915  return Scope;
916}
917
918/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
919/// that should create implicit scope (e.g. if/else substatements).
920void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
921  if (!BuildOpts.AddImplicitDtors)
922    return;
923
924  LocalScope *Scope = 0;
925
926  // For compound statement we will be creating explicit scope.
927  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
928    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
929        ; BI != BE; ++BI) {
930      Stmt *SI = (*BI)->stripLabelLikeStatements();
931      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
932        Scope = addLocalScopeForDeclStmt(DS, Scope);
933    }
934    return;
935  }
936
937  // For any other statement scope will be implicit and as such will be
938  // interesting only for DeclStmt.
939  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
940    addLocalScopeForDeclStmt(DS);
941}
942
943/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
944/// reuse Scope if not NULL.
945LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
946                                                 LocalScope* Scope) {
947  if (!BuildOpts.AddImplicitDtors)
948    return Scope;
949
950  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
951      ; DI != DE; ++DI) {
952    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
953      Scope = addLocalScopeForVarDecl(VD, Scope);
954  }
955  return Scope;
956}
957
958/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
959/// create add scope for automatic objects and temporary objects bound to
960/// const reference. Will reuse Scope if not NULL.
961LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
962                                                LocalScope* Scope) {
963  if (!BuildOpts.AddImplicitDtors)
964    return Scope;
965
966  // Check if variable is local.
967  switch (VD->getStorageClass()) {
968  case SC_None:
969  case SC_Auto:
970  case SC_Register:
971    break;
972  default: return Scope;
973  }
974
975  // Check for const references bound to temporary. Set type to pointee.
976  QualType QT = VD->getType();
977  if (QT.getTypePtr()->isReferenceType()) {
978    // Attempt to determine whether this declaration lifetime-extends a
979    // temporary.
980    //
981    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
982    // temporaries, and a single declaration can extend multiple temporaries.
983    // We should look at the storage duration on each nested
984    // MaterializeTemporaryExpr instead.
985    const Expr *Init = VD->getInit();
986    if (!Init)
987      return Scope;
988    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
989      Init = EWC->getSubExpr();
990    if (!isa<MaterializeTemporaryExpr>(Init))
991      return Scope;
992
993    // Lifetime-extending a temporary.
994    QT = getReferenceInitTemporaryType(*Context, Init);
995  }
996
997  // Check for constant size array. Set type to array element type.
998  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
999    if (AT->getSize() == 0)
1000      return Scope;
1001    QT = AT->getElementType();
1002  }
1003
1004  // Check if type is a C++ class with non-trivial destructor.
1005  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1006    if (!CD->hasTrivialDestructor()) {
1007      // Add the variable to scope
1008      Scope = createOrReuseLocalScope(Scope);
1009      Scope->addVar(VD);
1010      ScopePos = Scope->begin();
1011    }
1012  return Scope;
1013}
1014
1015/// addLocalScopeAndDtors - For given statement add local scope for it and
1016/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1017void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1018  if (!BuildOpts.AddImplicitDtors)
1019    return;
1020
1021  LocalScope::const_iterator scopeBeginPos = ScopePos;
1022  addLocalScopeForStmt(S);
1023  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1024}
1025
1026/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1027/// variables with automatic storage duration to CFGBlock's elements vector.
1028/// Elements will be prepended to physical beginning of the vector which
1029/// happens to be logical end. Use blocks terminator as statement that specifies
1030/// destructors call site.
1031/// FIXME: This mechanism for adding automatic destructors doesn't handle
1032/// no-return destructors properly.
1033void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1034    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1035  BumpVectorContext &C = cfg->getBumpVectorContext();
1036  CFGBlock::iterator InsertPos
1037    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1038  for (LocalScope::const_iterator I = B; I != E; ++I)
1039    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1040                                            Blk->getTerminator());
1041}
1042
1043/// Visit - Walk the subtree of a statement and add extra
1044///   blocks for ternary operators, &&, and ||.  We also process "," and
1045///   DeclStmts (which may contain nested control-flow).
1046CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1047  if (!S) {
1048    badCFG = true;
1049    return 0;
1050  }
1051
1052  if (Expr *E = dyn_cast<Expr>(S))
1053    S = E->IgnoreParens();
1054
1055  switch (S->getStmtClass()) {
1056    default:
1057      return VisitStmt(S, asc);
1058
1059    case Stmt::AddrLabelExprClass:
1060      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1061
1062    case Stmt::BinaryConditionalOperatorClass:
1063      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1064
1065    case Stmt::BinaryOperatorClass:
1066      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1067
1068    case Stmt::BlockExprClass:
1069      return VisitNoRecurse(cast<Expr>(S), asc);
1070
1071    case Stmt::BreakStmtClass:
1072      return VisitBreakStmt(cast<BreakStmt>(S));
1073
1074    case Stmt::CallExprClass:
1075    case Stmt::CXXOperatorCallExprClass:
1076    case Stmt::CXXMemberCallExprClass:
1077    case Stmt::UserDefinedLiteralClass:
1078      return VisitCallExpr(cast<CallExpr>(S), asc);
1079
1080    case Stmt::CaseStmtClass:
1081      return VisitCaseStmt(cast<CaseStmt>(S));
1082
1083    case Stmt::ChooseExprClass:
1084      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1085
1086    case Stmt::CompoundStmtClass:
1087      return VisitCompoundStmt(cast<CompoundStmt>(S));
1088
1089    case Stmt::ConditionalOperatorClass:
1090      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1091
1092    case Stmt::ContinueStmtClass:
1093      return VisitContinueStmt(cast<ContinueStmt>(S));
1094
1095    case Stmt::CXXCatchStmtClass:
1096      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1097
1098    case Stmt::ExprWithCleanupsClass:
1099      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1100
1101    case Stmt::CXXDefaultArgExprClass:
1102    case Stmt::CXXDefaultInitExprClass:
1103      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1104      // called function's declaration, not by the caller. If we simply add
1105      // this expression to the CFG, we could end up with the same Expr
1106      // appearing multiple times.
1107      // PR13385 / <rdar://problem/12156507>
1108      //
1109      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1110      // expression to be used in the same function (through aggregate
1111      // initialization).
1112      return VisitStmt(S, asc);
1113
1114    case Stmt::CXXBindTemporaryExprClass:
1115      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1116
1117    case Stmt::CXXConstructExprClass:
1118      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1119
1120    case Stmt::CXXFunctionalCastExprClass:
1121      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1122
1123    case Stmt::CXXTemporaryObjectExprClass:
1124      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1125
1126    case Stmt::CXXThrowExprClass:
1127      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1128
1129    case Stmt::CXXTryStmtClass:
1130      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1131
1132    case Stmt::CXXForRangeStmtClass:
1133      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1134
1135    case Stmt::DeclStmtClass:
1136      return VisitDeclStmt(cast<DeclStmt>(S));
1137
1138    case Stmt::DefaultStmtClass:
1139      return VisitDefaultStmt(cast<DefaultStmt>(S));
1140
1141    case Stmt::DoStmtClass:
1142      return VisitDoStmt(cast<DoStmt>(S));
1143
1144    case Stmt::ForStmtClass:
1145      return VisitForStmt(cast<ForStmt>(S));
1146
1147    case Stmt::GotoStmtClass:
1148      return VisitGotoStmt(cast<GotoStmt>(S));
1149
1150    case Stmt::IfStmtClass:
1151      return VisitIfStmt(cast<IfStmt>(S));
1152
1153    case Stmt::ImplicitCastExprClass:
1154      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1155
1156    case Stmt::IndirectGotoStmtClass:
1157      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1158
1159    case Stmt::LabelStmtClass:
1160      return VisitLabelStmt(cast<LabelStmt>(S));
1161
1162    case Stmt::LambdaExprClass:
1163      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1164
1165    case Stmt::MemberExprClass:
1166      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1167
1168    case Stmt::NullStmtClass:
1169      return Block;
1170
1171    case Stmt::ObjCAtCatchStmtClass:
1172      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1173
1174    case Stmt::ObjCAutoreleasePoolStmtClass:
1175    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1176
1177    case Stmt::ObjCAtSynchronizedStmtClass:
1178      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1179
1180    case Stmt::ObjCAtThrowStmtClass:
1181      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1182
1183    case Stmt::ObjCAtTryStmtClass:
1184      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1185
1186    case Stmt::ObjCForCollectionStmtClass:
1187      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1188
1189    case Stmt::OpaqueValueExprClass:
1190      return Block;
1191
1192    case Stmt::PseudoObjectExprClass:
1193      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1194
1195    case Stmt::ReturnStmtClass:
1196      return VisitReturnStmt(cast<ReturnStmt>(S));
1197
1198    case Stmt::UnaryExprOrTypeTraitExprClass:
1199      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1200                                           asc);
1201
1202    case Stmt::StmtExprClass:
1203      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1204
1205    case Stmt::SwitchStmtClass:
1206      return VisitSwitchStmt(cast<SwitchStmt>(S));
1207
1208    case Stmt::UnaryOperatorClass:
1209      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1210
1211    case Stmt::WhileStmtClass:
1212      return VisitWhileStmt(cast<WhileStmt>(S));
1213  }
1214}
1215
1216CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1217  if (asc.alwaysAdd(*this, S)) {
1218    autoCreateBlock();
1219    appendStmt(Block, S);
1220  }
1221
1222  return VisitChildren(S);
1223}
1224
1225/// VisitChildren - Visit the children of a Stmt.
1226CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1227  CFGBlock *B = Block;
1228
1229  // Visit the children in their reverse order so that they appear in
1230  // left-to-right (natural) order in the CFG.
1231  reverse_children RChildren(S);
1232  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1233       I != E; ++I) {
1234    if (Stmt *Child = *I)
1235      if (CFGBlock *R = Visit(Child))
1236        B = R;
1237  }
1238  return B;
1239}
1240
1241CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1242                                         AddStmtChoice asc) {
1243  AddressTakenLabels.insert(A->getLabel());
1244
1245  if (asc.alwaysAdd(*this, A)) {
1246    autoCreateBlock();
1247    appendStmt(Block, A);
1248  }
1249
1250  return Block;
1251}
1252
1253CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1254           AddStmtChoice asc) {
1255  if (asc.alwaysAdd(*this, U)) {
1256    autoCreateBlock();
1257    appendStmt(Block, U);
1258  }
1259
1260  return Visit(U->getSubExpr(), AddStmtChoice());
1261}
1262
1263CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1264  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1265  appendStmt(ConfluenceBlock, B);
1266
1267  if (badCFG)
1268    return 0;
1269
1270  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1271}
1272
1273std::pair<CFGBlock*, CFGBlock*>
1274CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1275                                 Stmt *Term,
1276                                 CFGBlock *TrueBlock,
1277                                 CFGBlock *FalseBlock) {
1278
1279  // Introspect the RHS.  If it is a nested logical operation, we recursively
1280  // build the CFG using this function.  Otherwise, resort to default
1281  // CFG construction behavior.
1282  Expr *RHS = B->getRHS()->IgnoreParens();
1283  CFGBlock *RHSBlock, *ExitBlock;
1284
1285  do {
1286    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1287      if (B_RHS->isLogicalOp()) {
1288        llvm::tie(RHSBlock, ExitBlock) =
1289          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1290        break;
1291      }
1292
1293    // The RHS is not a nested logical operation.  Don't push the terminator
1294    // down further, but instead visit RHS and construct the respective
1295    // pieces of the CFG, and link up the RHSBlock with the terminator
1296    // we have been provided.
1297    ExitBlock = RHSBlock = createBlock(false);
1298
1299    if (!Term) {
1300      assert(TrueBlock == FalseBlock);
1301      addSuccessor(RHSBlock, TrueBlock);
1302    }
1303    else {
1304      RHSBlock->setTerminator(Term);
1305      TryResult KnownVal = tryEvaluateBool(RHS);
1306      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1307      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1308    }
1309
1310    Block = RHSBlock;
1311    RHSBlock = addStmt(RHS);
1312  }
1313  while (false);
1314
1315  if (badCFG)
1316    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1317
1318  // Generate the blocks for evaluating the LHS.
1319  Expr *LHS = B->getLHS()->IgnoreParens();
1320
1321  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1322    if (B_LHS->isLogicalOp()) {
1323      if (B->getOpcode() == BO_LOr)
1324        FalseBlock = RHSBlock;
1325      else
1326        TrueBlock = RHSBlock;
1327
1328      // For the LHS, treat 'B' as the terminator that we want to sink
1329      // into the nested branch.  The RHS always gets the top-most
1330      // terminator.
1331      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1332    }
1333
1334  // Create the block evaluating the LHS.
1335  // This contains the '&&' or '||' as the terminator.
1336  CFGBlock *LHSBlock = createBlock(false);
1337  LHSBlock->setTerminator(B);
1338
1339  Block = LHSBlock;
1340  CFGBlock *EntryLHSBlock = addStmt(LHS);
1341
1342  if (badCFG)
1343    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1344
1345  // See if this is a known constant.
1346  TryResult KnownVal = tryEvaluateBool(LHS);
1347
1348  // Now link the LHSBlock with RHSBlock.
1349  if (B->getOpcode() == BO_LOr) {
1350    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1351    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1352  } else {
1353    assert(B->getOpcode() == BO_LAnd);
1354    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1355    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1356  }
1357
1358  return std::make_pair(EntryLHSBlock, ExitBlock);
1359}
1360
1361
1362CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1363                                          AddStmtChoice asc) {
1364   // && or ||
1365  if (B->isLogicalOp())
1366    return VisitLogicalOperator(B);
1367
1368  if (B->getOpcode() == BO_Comma) { // ,
1369    autoCreateBlock();
1370    appendStmt(Block, B);
1371    addStmt(B->getRHS());
1372    return addStmt(B->getLHS());
1373  }
1374
1375  if (B->isAssignmentOp()) {
1376    if (asc.alwaysAdd(*this, B)) {
1377      autoCreateBlock();
1378      appendStmt(Block, B);
1379    }
1380    Visit(B->getLHS());
1381    return Visit(B->getRHS());
1382  }
1383
1384  if (asc.alwaysAdd(*this, B)) {
1385    autoCreateBlock();
1386    appendStmt(Block, B);
1387  }
1388
1389  CFGBlock *RBlock = Visit(B->getRHS());
1390  CFGBlock *LBlock = Visit(B->getLHS());
1391  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1392  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1393  // return RBlock.  Otherwise we'll incorrectly return NULL.
1394  return (LBlock ? LBlock : RBlock);
1395}
1396
1397CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1398  if (asc.alwaysAdd(*this, E)) {
1399    autoCreateBlock();
1400    appendStmt(Block, E);
1401  }
1402  return Block;
1403}
1404
1405CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1406  // "break" is a control-flow statement.  Thus we stop processing the current
1407  // block.
1408  if (badCFG)
1409    return 0;
1410
1411  // Now create a new block that ends with the break statement.
1412  Block = createBlock(false);
1413  Block->setTerminator(B);
1414
1415  // If there is no target for the break, then we are looking at an incomplete
1416  // AST.  This means that the CFG cannot be constructed.
1417  if (BreakJumpTarget.block) {
1418    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1419    addSuccessor(Block, BreakJumpTarget.block);
1420  } else
1421    badCFG = true;
1422
1423
1424  return Block;
1425}
1426
1427static bool CanThrow(Expr *E, ASTContext &Ctx) {
1428  QualType Ty = E->getType();
1429  if (Ty->isFunctionPointerType())
1430    Ty = Ty->getAs<PointerType>()->getPointeeType();
1431  else if (Ty->isBlockPointerType())
1432    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1433
1434  const FunctionType *FT = Ty->getAs<FunctionType>();
1435  if (FT) {
1436    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1437      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1438          Proto->isNothrow(Ctx))
1439        return false;
1440  }
1441  return true;
1442}
1443
1444CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1445  // Compute the callee type.
1446  QualType calleeType = C->getCallee()->getType();
1447  if (calleeType == Context->BoundMemberTy) {
1448    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1449
1450    // We should only get a null bound type if processing a dependent
1451    // CFG.  Recover by assuming nothing.
1452    if (!boundType.isNull()) calleeType = boundType;
1453  }
1454
1455  // If this is a call to a no-return function, this stops the block here.
1456  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1457
1458  bool AddEHEdge = false;
1459
1460  // Languages without exceptions are assumed to not throw.
1461  if (Context->getLangOpts().Exceptions) {
1462    if (BuildOpts.AddEHEdges)
1463      AddEHEdge = true;
1464  }
1465
1466  // If this is a call to a builtin function, it might not actually evaluate
1467  // its arguments. Don't add them to the CFG if this is the case.
1468  bool OmitArguments = false;
1469
1470  if (FunctionDecl *FD = C->getDirectCallee()) {
1471    if (FD->isNoReturn())
1472      NoReturn = true;
1473    if (FD->hasAttr<NoThrowAttr>())
1474      AddEHEdge = false;
1475    if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1476      OmitArguments = true;
1477  }
1478
1479  if (!CanThrow(C->getCallee(), *Context))
1480    AddEHEdge = false;
1481
1482  if (OmitArguments) {
1483    assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1484    assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1485    autoCreateBlock();
1486    appendStmt(Block, C);
1487    return Visit(C->getCallee());
1488  }
1489
1490  if (!NoReturn && !AddEHEdge) {
1491    return VisitStmt(C, asc.withAlwaysAdd(true));
1492  }
1493
1494  if (Block) {
1495    Succ = Block;
1496    if (badCFG)
1497      return 0;
1498  }
1499
1500  if (NoReturn)
1501    Block = createNoReturnBlock();
1502  else
1503    Block = createBlock();
1504
1505  appendStmt(Block, C);
1506
1507  if (AddEHEdge) {
1508    // Add exceptional edges.
1509    if (TryTerminatedBlock)
1510      addSuccessor(Block, TryTerminatedBlock);
1511    else
1512      addSuccessor(Block, &cfg->getExit());
1513  }
1514
1515  return VisitChildren(C);
1516}
1517
1518CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1519                                      AddStmtChoice asc) {
1520  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1521  appendStmt(ConfluenceBlock, C);
1522  if (badCFG)
1523    return 0;
1524
1525  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1526  Succ = ConfluenceBlock;
1527  Block = NULL;
1528  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1529  if (badCFG)
1530    return 0;
1531
1532  Succ = ConfluenceBlock;
1533  Block = NULL;
1534  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1535  if (badCFG)
1536    return 0;
1537
1538  Block = createBlock(false);
1539  // See if this is a known constant.
1540  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1541  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1542  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1543  Block->setTerminator(C);
1544  return addStmt(C->getCond());
1545}
1546
1547
1548CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1549  addLocalScopeAndDtors(C);
1550  CFGBlock *LastBlock = Block;
1551
1552  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1553       I != E; ++I ) {
1554    // If we hit a segment of code just containing ';' (NullStmts), we can
1555    // get a null block back.  In such cases, just use the LastBlock
1556    if (CFGBlock *newBlock = addStmt(*I))
1557      LastBlock = newBlock;
1558
1559    if (badCFG)
1560      return NULL;
1561  }
1562
1563  return LastBlock;
1564}
1565
1566CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1567                                               AddStmtChoice asc) {
1568  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1569  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1570
1571  // Create the confluence block that will "merge" the results of the ternary
1572  // expression.
1573  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1574  appendStmt(ConfluenceBlock, C);
1575  if (badCFG)
1576    return 0;
1577
1578  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1579
1580  // Create a block for the LHS expression if there is an LHS expression.  A
1581  // GCC extension allows LHS to be NULL, causing the condition to be the
1582  // value that is returned instead.
1583  //  e.g: x ?: y is shorthand for: x ? x : y;
1584  Succ = ConfluenceBlock;
1585  Block = NULL;
1586  CFGBlock *LHSBlock = 0;
1587  const Expr *trueExpr = C->getTrueExpr();
1588  if (trueExpr != opaqueValue) {
1589    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1590    if (badCFG)
1591      return 0;
1592    Block = NULL;
1593  }
1594  else
1595    LHSBlock = ConfluenceBlock;
1596
1597  // Create the block for the RHS expression.
1598  Succ = ConfluenceBlock;
1599  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1600  if (badCFG)
1601    return 0;
1602
1603  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1604  if (BinaryOperator *Cond =
1605        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1606    if (Cond->isLogicalOp())
1607      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1608
1609  // Create the block that will contain the condition.
1610  Block = createBlock(false);
1611
1612  // See if this is a known constant.
1613  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1614  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1615  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1616  Block->setTerminator(C);
1617  Expr *condExpr = C->getCond();
1618
1619  if (opaqueValue) {
1620    // Run the condition expression if it's not trivially expressed in
1621    // terms of the opaque value (or if there is no opaque value).
1622    if (condExpr != opaqueValue)
1623      addStmt(condExpr);
1624
1625    // Before that, run the common subexpression if there was one.
1626    // At least one of this or the above will be run.
1627    return addStmt(BCO->getCommon());
1628  }
1629
1630  return addStmt(condExpr);
1631}
1632
1633CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1634  // Check if the Decl is for an __label__.  If so, elide it from the
1635  // CFG entirely.
1636  if (isa<LabelDecl>(*DS->decl_begin()))
1637    return Block;
1638
1639  // This case also handles static_asserts.
1640  if (DS->isSingleDecl())
1641    return VisitDeclSubExpr(DS);
1642
1643  CFGBlock *B = 0;
1644
1645  // Build an individual DeclStmt for each decl.
1646  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1647                                       E = DS->decl_rend();
1648       I != E; ++I) {
1649    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1650    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1651               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1652
1653    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1654    // automatically freed with the CFG.
1655    DeclGroupRef DG(*I);
1656    Decl *D = *I;
1657    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1658    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1659    cfg->addSyntheticDeclStmt(DSNew, DS);
1660
1661    // Append the fake DeclStmt to block.
1662    B = VisitDeclSubExpr(DSNew);
1663  }
1664
1665  return B;
1666}
1667
1668/// VisitDeclSubExpr - Utility method to add block-level expressions for
1669/// DeclStmts and initializers in them.
1670CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1671  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1672  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1673
1674  if (!VD) {
1675    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1676    // runtime semantics.
1677    return Block;
1678  }
1679
1680  bool IsReference = false;
1681  bool HasTemporaries = false;
1682
1683  // Guard static initializers under a branch.
1684  CFGBlock *blockAfterStaticInit = 0;
1685
1686  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1687    // For static variables, we need to create a branch to track
1688    // whether or not they are initialized.
1689    if (Block) {
1690      Succ = Block;
1691      Block = 0;
1692      if (badCFG)
1693        return 0;
1694    }
1695    blockAfterStaticInit = Succ;
1696  }
1697
1698  // Destructors of temporaries in initialization expression should be called
1699  // after initialization finishes.
1700  Expr *Init = VD->getInit();
1701  if (Init) {
1702    IsReference = VD->getType()->isReferenceType();
1703    HasTemporaries = isa<ExprWithCleanups>(Init);
1704
1705    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1706      // Generate destructors for temporaries in initialization expression.
1707      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1708          IsReference);
1709    }
1710  }
1711
1712  autoCreateBlock();
1713  appendStmt(Block, DS);
1714
1715  // Keep track of the last non-null block, as 'Block' can be nulled out
1716  // if the initializer expression is something like a 'while' in a
1717  // statement-expression.
1718  CFGBlock *LastBlock = Block;
1719
1720  if (Init) {
1721    if (HasTemporaries) {
1722      // For expression with temporaries go directly to subexpression to omit
1723      // generating destructors for the second time.
1724      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1725      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1726        LastBlock = newBlock;
1727    }
1728    else {
1729      if (CFGBlock *newBlock = Visit(Init))
1730        LastBlock = newBlock;
1731    }
1732  }
1733
1734  // If the type of VD is a VLA, then we must process its size expressions.
1735  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1736       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1737    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1738      LastBlock = newBlock;
1739  }
1740
1741  // Remove variable from local scope.
1742  if (ScopePos && VD == *ScopePos)
1743    ++ScopePos;
1744
1745  CFGBlock *B = LastBlock;
1746  if (blockAfterStaticInit) {
1747    Succ = B;
1748    Block = createBlock(false);
1749    Block->setTerminator(DS);
1750    addSuccessor(Block, blockAfterStaticInit);
1751    addSuccessor(Block, B);
1752    B = Block;
1753  }
1754
1755  return B;
1756}
1757
1758CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1759  // We may see an if statement in the middle of a basic block, or it may be the
1760  // first statement we are processing.  In either case, we create a new basic
1761  // block.  First, we create the blocks for the then...else statements, and
1762  // then we create the block containing the if statement.  If we were in the
1763  // middle of a block, we stop processing that block.  That block is then the
1764  // implicit successor for the "then" and "else" clauses.
1765
1766  // Save local scope position because in case of condition variable ScopePos
1767  // won't be restored when traversing AST.
1768  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1769
1770  // Create local scope for possible condition variable.
1771  // Store scope position. Add implicit destructor.
1772  if (VarDecl *VD = I->getConditionVariable()) {
1773    LocalScope::const_iterator BeginScopePos = ScopePos;
1774    addLocalScopeForVarDecl(VD);
1775    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1776  }
1777
1778  // The block we were processing is now finished.  Make it the successor
1779  // block.
1780  if (Block) {
1781    Succ = Block;
1782    if (badCFG)
1783      return 0;
1784  }
1785
1786  // Process the false branch.
1787  CFGBlock *ElseBlock = Succ;
1788
1789  if (Stmt *Else = I->getElse()) {
1790    SaveAndRestore<CFGBlock*> sv(Succ);
1791
1792    // NULL out Block so that the recursive call to Visit will
1793    // create a new basic block.
1794    Block = NULL;
1795
1796    // If branch is not a compound statement create implicit scope
1797    // and add destructors.
1798    if (!isa<CompoundStmt>(Else))
1799      addLocalScopeAndDtors(Else);
1800
1801    ElseBlock = addStmt(Else);
1802
1803    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1804      ElseBlock = sv.get();
1805    else if (Block) {
1806      if (badCFG)
1807        return 0;
1808    }
1809  }
1810
1811  // Process the true branch.
1812  CFGBlock *ThenBlock;
1813  {
1814    Stmt *Then = I->getThen();
1815    assert(Then);
1816    SaveAndRestore<CFGBlock*> sv(Succ);
1817    Block = NULL;
1818
1819    // If branch is not a compound statement create implicit scope
1820    // and add destructors.
1821    if (!isa<CompoundStmt>(Then))
1822      addLocalScopeAndDtors(Then);
1823
1824    ThenBlock = addStmt(Then);
1825
1826    if (!ThenBlock) {
1827      // We can reach here if the "then" body has all NullStmts.
1828      // Create an empty block so we can distinguish between true and false
1829      // branches in path-sensitive analyses.
1830      ThenBlock = createBlock(false);
1831      addSuccessor(ThenBlock, sv.get());
1832    } else if (Block) {
1833      if (badCFG)
1834        return 0;
1835    }
1836  }
1837
1838  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1839  // having these handle the actual control-flow jump.  Note that
1840  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1841  // we resort to the old control-flow behavior.  This special handling
1842  // removes infeasible paths from the control-flow graph by having the
1843  // control-flow transfer of '&&' or '||' go directly into the then/else
1844  // blocks directly.
1845  if (!I->getConditionVariable())
1846    if (BinaryOperator *Cond =
1847            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1848      if (Cond->isLogicalOp())
1849        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1850
1851  // Now create a new block containing the if statement.
1852  Block = createBlock(false);
1853
1854  // Set the terminator of the new block to the If statement.
1855  Block->setTerminator(I);
1856
1857  // See if this is a known constant.
1858  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1859
1860  // Now add the successors.
1861  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1862  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1863
1864  // Add the condition as the last statement in the new block.  This may create
1865  // new blocks as the condition may contain control-flow.  Any newly created
1866  // blocks will be pointed to be "Block".
1867  CFGBlock *LastBlock = addStmt(I->getCond());
1868
1869  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1870  // and the condition variable initialization to the CFG.
1871  if (VarDecl *VD = I->getConditionVariable()) {
1872    if (Expr *Init = VD->getInit()) {
1873      autoCreateBlock();
1874      appendStmt(Block, I->getConditionVariableDeclStmt());
1875      LastBlock = addStmt(Init);
1876    }
1877  }
1878
1879  return LastBlock;
1880}
1881
1882
1883CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1884  // If we were in the middle of a block we stop processing that block.
1885  //
1886  // NOTE: If a "return" appears in the middle of a block, this means that the
1887  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1888  //       for that code; a simple "mark-and-sweep" from the entry block will be
1889  //       able to report such dead blocks.
1890
1891  // Create the new block.
1892  Block = createBlock(false);
1893
1894  // The Exit block is the only successor.
1895  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1896  addSuccessor(Block, &cfg->getExit());
1897
1898  // Add the return statement to the block.  This may create new blocks if R
1899  // contains control-flow (short-circuit operations).
1900  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1901}
1902
1903CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1904  // Get the block of the labeled statement.  Add it to our map.
1905  addStmt(L->getSubStmt());
1906  CFGBlock *LabelBlock = Block;
1907
1908  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1909    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1910
1911  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1912         "label already in map");
1913  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1914
1915  // Labels partition blocks, so this is the end of the basic block we were
1916  // processing (L is the block's label).  Because this is label (and we have
1917  // already processed the substatement) there is no extra control-flow to worry
1918  // about.
1919  LabelBlock->setLabel(L);
1920  if (badCFG)
1921    return 0;
1922
1923  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1924  Block = NULL;
1925
1926  // This block is now the implicit successor of other blocks.
1927  Succ = LabelBlock;
1928
1929  return LabelBlock;
1930}
1931
1932CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1933  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1934  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1935       et = E->capture_init_end(); it != et; ++it) {
1936    if (Expr *Init = *it) {
1937      CFGBlock *Tmp = Visit(Init);
1938      if (Tmp != 0)
1939        LastBlock = Tmp;
1940    }
1941  }
1942  return LastBlock;
1943}
1944
1945CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1946  // Goto is a control-flow statement.  Thus we stop processing the current
1947  // block and create a new one.
1948
1949  Block = createBlock(false);
1950  Block->setTerminator(G);
1951
1952  // If we already know the mapping to the label block add the successor now.
1953  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1954
1955  if (I == LabelMap.end())
1956    // We will need to backpatch this block later.
1957    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1958  else {
1959    JumpTarget JT = I->second;
1960    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1961    addSuccessor(Block, JT.block);
1962  }
1963
1964  return Block;
1965}
1966
1967CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1968  CFGBlock *LoopSuccessor = NULL;
1969
1970  // Save local scope position because in case of condition variable ScopePos
1971  // won't be restored when traversing AST.
1972  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1973
1974  // Create local scope for init statement and possible condition variable.
1975  // Add destructor for init statement and condition variable.
1976  // Store scope position for continue statement.
1977  if (Stmt *Init = F->getInit())
1978    addLocalScopeForStmt(Init);
1979  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1980
1981  if (VarDecl *VD = F->getConditionVariable())
1982    addLocalScopeForVarDecl(VD);
1983  LocalScope::const_iterator ContinueScopePos = ScopePos;
1984
1985  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1986
1987  // "for" is a control-flow statement.  Thus we stop processing the current
1988  // block.
1989  if (Block) {
1990    if (badCFG)
1991      return 0;
1992    LoopSuccessor = Block;
1993  } else
1994    LoopSuccessor = Succ;
1995
1996  // Save the current value for the break targets.
1997  // All breaks should go to the code following the loop.
1998  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1999  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2000
2001  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2002
2003  // Now create the loop body.
2004  {
2005    assert(F->getBody());
2006
2007    // Save the current values for Block, Succ, continue and break targets.
2008    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2009    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2010
2011    // Create an empty block to represent the transition block for looping back
2012    // to the head of the loop.  If we have increment code, it will
2013    // go in this block as well.
2014    Block = Succ = TransitionBlock = createBlock(false);
2015    TransitionBlock->setLoopTarget(F);
2016
2017    if (Stmt *I = F->getInc()) {
2018      // Generate increment code in its own basic block.  This is the target of
2019      // continue statements.
2020      Succ = addStmt(I);
2021    }
2022
2023    // Finish up the increment (or empty) block if it hasn't been already.
2024    if (Block) {
2025      assert(Block == Succ);
2026      if (badCFG)
2027        return 0;
2028      Block = 0;
2029    }
2030
2031   // The starting block for the loop increment is the block that should
2032   // represent the 'loop target' for looping back to the start of the loop.
2033   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2034   ContinueJumpTarget.block->setLoopTarget(F);
2035
2036    // Loop body should end with destructor of Condition variable (if any).
2037    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2038
2039    // If body is not a compound statement create implicit scope
2040    // and add destructors.
2041    if (!isa<CompoundStmt>(F->getBody()))
2042      addLocalScopeAndDtors(F->getBody());
2043
2044    // Now populate the body block, and in the process create new blocks as we
2045    // walk the body of the loop.
2046    BodyBlock = addStmt(F->getBody());
2047
2048    if (!BodyBlock) {
2049      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2050      // Use the continue jump target as the proxy for the body.
2051      BodyBlock = ContinueJumpTarget.block;
2052    }
2053    else if (badCFG)
2054      return 0;
2055  }
2056
2057  // Because of short-circuit evaluation, the condition of the loop can span
2058  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2059  // evaluate the condition.
2060  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2061
2062  do {
2063    Expr *C = F->getCond();
2064
2065    // Specially handle logical operators, which have a slightly
2066    // more optimal CFG representation.
2067    if (BinaryOperator *Cond =
2068            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2069      if (Cond->isLogicalOp()) {
2070        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2071          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2072        break;
2073      }
2074
2075    // The default case when not handling logical operators.
2076    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2077    ExitConditionBlock->setTerminator(F);
2078
2079    // See if this is a known constant.
2080    TryResult KnownVal(true);
2081
2082    if (C) {
2083      // Now add the actual condition to the condition block.
2084      // Because the condition itself may contain control-flow, new blocks may
2085      // be created.  Thus we update "Succ" after adding the condition.
2086      Block = ExitConditionBlock;
2087      EntryConditionBlock = addStmt(C);
2088
2089      // If this block contains a condition variable, add both the condition
2090      // variable and initializer to the CFG.
2091      if (VarDecl *VD = F->getConditionVariable()) {
2092        if (Expr *Init = VD->getInit()) {
2093          autoCreateBlock();
2094          appendStmt(Block, F->getConditionVariableDeclStmt());
2095          EntryConditionBlock = addStmt(Init);
2096          assert(Block == EntryConditionBlock);
2097        }
2098      }
2099
2100      if (Block && badCFG)
2101        return 0;
2102
2103      KnownVal = tryEvaluateBool(C);
2104    }
2105
2106    // Add the loop body entry as a successor to the condition.
2107    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2108    // Link up the condition block with the code that follows the loop.  (the
2109    // false branch).
2110    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2111
2112  } while (false);
2113
2114  // Link up the loop-back block to the entry condition block.
2115  addSuccessor(TransitionBlock, EntryConditionBlock);
2116
2117  // The condition block is the implicit successor for any code above the loop.
2118  Succ = EntryConditionBlock;
2119
2120  // If the loop contains initialization, create a new block for those
2121  // statements.  This block can also contain statements that precede the loop.
2122  if (Stmt *I = F->getInit()) {
2123    Block = createBlock();
2124    return addStmt(I);
2125  }
2126
2127  // There is no loop initialization.  We are thus basically a while loop.
2128  // NULL out Block to force lazy block construction.
2129  Block = NULL;
2130  Succ = EntryConditionBlock;
2131  return EntryConditionBlock;
2132}
2133
2134CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2135  if (asc.alwaysAdd(*this, M)) {
2136    autoCreateBlock();
2137    appendStmt(Block, M);
2138  }
2139  return Visit(M->getBase());
2140}
2141
2142CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2143  // Objective-C fast enumeration 'for' statements:
2144  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2145  //
2146  //  for ( Type newVariable in collection_expression ) { statements }
2147  //
2148  //  becomes:
2149  //
2150  //   prologue:
2151  //     1. collection_expression
2152  //     T. jump to loop_entry
2153  //   loop_entry:
2154  //     1. side-effects of element expression
2155  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2156  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2157  //   TB:
2158  //     statements
2159  //     T. jump to loop_entry
2160  //   FB:
2161  //     what comes after
2162  //
2163  //  and
2164  //
2165  //  Type existingItem;
2166  //  for ( existingItem in expression ) { statements }
2167  //
2168  //  becomes:
2169  //
2170  //   the same with newVariable replaced with existingItem; the binding works
2171  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2172  //   a DeclStmt and the other returns a DeclRefExpr.
2173  //
2174
2175  CFGBlock *LoopSuccessor = 0;
2176
2177  if (Block) {
2178    if (badCFG)
2179      return 0;
2180    LoopSuccessor = Block;
2181    Block = 0;
2182  } else
2183    LoopSuccessor = Succ;
2184
2185  // Build the condition blocks.
2186  CFGBlock *ExitConditionBlock = createBlock(false);
2187
2188  // Set the terminator for the "exit" condition block.
2189  ExitConditionBlock->setTerminator(S);
2190
2191  // The last statement in the block should be the ObjCForCollectionStmt, which
2192  // performs the actual binding to 'element' and determines if there are any
2193  // more items in the collection.
2194  appendStmt(ExitConditionBlock, S);
2195  Block = ExitConditionBlock;
2196
2197  // Walk the 'element' expression to see if there are any side-effects.  We
2198  // generate new blocks as necessary.  We DON'T add the statement by default to
2199  // the CFG unless it contains control-flow.
2200  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2201                                        AddStmtChoice::NotAlwaysAdd);
2202  if (Block) {
2203    if (badCFG)
2204      return 0;
2205    Block = 0;
2206  }
2207
2208  // The condition block is the implicit successor for the loop body as well as
2209  // any code above the loop.
2210  Succ = EntryConditionBlock;
2211
2212  // Now create the true branch.
2213  {
2214    // Save the current values for Succ, continue and break targets.
2215    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2216    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2217                               save_break(BreakJumpTarget);
2218
2219    // Add an intermediate block between the BodyBlock and the
2220    // EntryConditionBlock to represent the "loop back" transition, for looping
2221    // back to the head of the loop.
2222    CFGBlock *LoopBackBlock = 0;
2223    Succ = LoopBackBlock = createBlock();
2224    LoopBackBlock->setLoopTarget(S);
2225
2226    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2227    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2228
2229    CFGBlock *BodyBlock = addStmt(S->getBody());
2230
2231    if (!BodyBlock)
2232      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2233    else if (Block) {
2234      if (badCFG)
2235        return 0;
2236    }
2237
2238    // This new body block is a successor to our "exit" condition block.
2239    addSuccessor(ExitConditionBlock, BodyBlock);
2240  }
2241
2242  // Link up the condition block with the code that follows the loop.
2243  // (the false branch).
2244  addSuccessor(ExitConditionBlock, LoopSuccessor);
2245
2246  // Now create a prologue block to contain the collection expression.
2247  Block = createBlock();
2248  return addStmt(S->getCollection());
2249}
2250
2251CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2252  // Inline the body.
2253  return addStmt(S->getSubStmt());
2254  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2255}
2256
2257CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2258  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2259
2260  // Inline the body.
2261  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2262
2263  // The sync body starts its own basic block.  This makes it a little easier
2264  // for diagnostic clients.
2265  if (SyncBlock) {
2266    if (badCFG)
2267      return 0;
2268
2269    Block = 0;
2270    Succ = SyncBlock;
2271  }
2272
2273  // Add the @synchronized to the CFG.
2274  autoCreateBlock();
2275  appendStmt(Block, S);
2276
2277  // Inline the sync expression.
2278  return addStmt(S->getSynchExpr());
2279}
2280
2281CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2282  // FIXME
2283  return NYS();
2284}
2285
2286CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2287  autoCreateBlock();
2288
2289  // Add the PseudoObject as the last thing.
2290  appendStmt(Block, E);
2291
2292  CFGBlock *lastBlock = Block;
2293
2294  // Before that, evaluate all of the semantics in order.  In
2295  // CFG-land, that means appending them in reverse order.
2296  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2297    Expr *Semantic = E->getSemanticExpr(--i);
2298
2299    // If the semantic is an opaque value, we're being asked to bind
2300    // it to its source expression.
2301    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2302      Semantic = OVE->getSourceExpr();
2303
2304    if (CFGBlock *B = Visit(Semantic))
2305      lastBlock = B;
2306  }
2307
2308  return lastBlock;
2309}
2310
2311CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2312  CFGBlock *LoopSuccessor = NULL;
2313
2314  // Save local scope position because in case of condition variable ScopePos
2315  // won't be restored when traversing AST.
2316  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2317
2318  // Create local scope for possible condition variable.
2319  // Store scope position for continue statement.
2320  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2321  if (VarDecl *VD = W->getConditionVariable()) {
2322    addLocalScopeForVarDecl(VD);
2323    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2324  }
2325
2326  // "while" is a control-flow statement.  Thus we stop processing the current
2327  // block.
2328  if (Block) {
2329    if (badCFG)
2330      return 0;
2331    LoopSuccessor = Block;
2332    Block = 0;
2333  } else {
2334    LoopSuccessor = Succ;
2335  }
2336
2337  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2338
2339  // Process the loop body.
2340  {
2341    assert(W->getBody());
2342
2343    // Save the current values for Block, Succ, continue and break targets.
2344    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2345    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2346                               save_break(BreakJumpTarget);
2347
2348    // Create an empty block to represent the transition block for looping back
2349    // to the head of the loop.
2350    Succ = TransitionBlock = createBlock(false);
2351    TransitionBlock->setLoopTarget(W);
2352    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2353
2354    // All breaks should go to the code following the loop.
2355    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2356
2357    // Loop body should end with destructor of Condition variable (if any).
2358    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2359
2360    // If body is not a compound statement create implicit scope
2361    // and add destructors.
2362    if (!isa<CompoundStmt>(W->getBody()))
2363      addLocalScopeAndDtors(W->getBody());
2364
2365    // Create the body.  The returned block is the entry to the loop body.
2366    BodyBlock = addStmt(W->getBody());
2367
2368    if (!BodyBlock)
2369      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2370    else if (Block && badCFG)
2371      return 0;
2372  }
2373
2374  // Because of short-circuit evaluation, the condition of the loop can span
2375  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2376  // evaluate the condition.
2377  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2378
2379  do {
2380    Expr *C = W->getCond();
2381
2382    // Specially handle logical operators, which have a slightly
2383    // more optimal CFG representation.
2384    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2385      if (Cond->isLogicalOp()) {
2386        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2387          VisitLogicalOperator(Cond, W, BodyBlock,
2388                               LoopSuccessor);
2389        break;
2390      }
2391
2392    // The default case when not handling logical operators.
2393    ExitConditionBlock = createBlock(false);
2394    ExitConditionBlock->setTerminator(W);
2395
2396    // Now add the actual condition to the condition block.
2397    // Because the condition itself may contain control-flow, new blocks may
2398    // be created.  Thus we update "Succ" after adding the condition.
2399    Block = ExitConditionBlock;
2400    Block = EntryConditionBlock = addStmt(C);
2401
2402    // If this block contains a condition variable, add both the condition
2403    // variable and initializer to the CFG.
2404    if (VarDecl *VD = W->getConditionVariable()) {
2405      if (Expr *Init = VD->getInit()) {
2406        autoCreateBlock();
2407        appendStmt(Block, W->getConditionVariableDeclStmt());
2408        EntryConditionBlock = addStmt(Init);
2409        assert(Block == EntryConditionBlock);
2410      }
2411    }
2412
2413    if (Block && badCFG)
2414      return 0;
2415
2416    // See if this is a known constant.
2417    const TryResult& KnownVal = tryEvaluateBool(C);
2418
2419    // Add the loop body entry as a successor to the condition.
2420    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2421    // Link up the condition block with the code that follows the loop.  (the
2422    // false branch).
2423    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2424
2425  } while(false);
2426
2427  // Link up the loop-back block to the entry condition block.
2428  addSuccessor(TransitionBlock, EntryConditionBlock);
2429
2430  // There can be no more statements in the condition block since we loop back
2431  // to this block.  NULL out Block to force lazy creation of another block.
2432  Block = NULL;
2433
2434  // Return the condition block, which is the dominating block for the loop.
2435  Succ = EntryConditionBlock;
2436  return EntryConditionBlock;
2437}
2438
2439
2440CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2441  // FIXME: For now we pretend that @catch and the code it contains does not
2442  //  exit.
2443  return Block;
2444}
2445
2446CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2447  // FIXME: This isn't complete.  We basically treat @throw like a return
2448  //  statement.
2449
2450  // If we were in the middle of a block we stop processing that block.
2451  if (badCFG)
2452    return 0;
2453
2454  // Create the new block.
2455  Block = createBlock(false);
2456
2457  // The Exit block is the only successor.
2458  addSuccessor(Block, &cfg->getExit());
2459
2460  // Add the statement to the block.  This may create new blocks if S contains
2461  // control-flow (short-circuit operations).
2462  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2463}
2464
2465CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2466  // If we were in the middle of a block we stop processing that block.
2467  if (badCFG)
2468    return 0;
2469
2470  // Create the new block.
2471  Block = createBlock(false);
2472
2473  if (TryTerminatedBlock)
2474    // The current try statement is the only successor.
2475    addSuccessor(Block, TryTerminatedBlock);
2476  else
2477    // otherwise the Exit block is the only successor.
2478    addSuccessor(Block, &cfg->getExit());
2479
2480  // Add the statement to the block.  This may create new blocks if S contains
2481  // control-flow (short-circuit operations).
2482  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2483}
2484
2485CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2486  CFGBlock *LoopSuccessor = NULL;
2487
2488  // "do...while" is a control-flow statement.  Thus we stop processing the
2489  // current block.
2490  if (Block) {
2491    if (badCFG)
2492      return 0;
2493    LoopSuccessor = Block;
2494  } else
2495    LoopSuccessor = Succ;
2496
2497  // Because of short-circuit evaluation, the condition of the loop can span
2498  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2499  // evaluate the condition.
2500  CFGBlock *ExitConditionBlock = createBlock(false);
2501  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2502
2503  // Set the terminator for the "exit" condition block.
2504  ExitConditionBlock->setTerminator(D);
2505
2506  // Now add the actual condition to the condition block.  Because the condition
2507  // itself may contain control-flow, new blocks may be created.
2508  if (Stmt *C = D->getCond()) {
2509    Block = ExitConditionBlock;
2510    EntryConditionBlock = addStmt(C);
2511    if (Block) {
2512      if (badCFG)
2513        return 0;
2514    }
2515  }
2516
2517  // The condition block is the implicit successor for the loop body.
2518  Succ = EntryConditionBlock;
2519
2520  // See if this is a known constant.
2521  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2522
2523  // Process the loop body.
2524  CFGBlock *BodyBlock = NULL;
2525  {
2526    assert(D->getBody());
2527
2528    // Save the current values for Block, Succ, and continue and break targets
2529    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2530    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2531        save_break(BreakJumpTarget);
2532
2533    // All continues within this loop should go to the condition block
2534    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2535
2536    // All breaks should go to the code following the loop.
2537    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2538
2539    // NULL out Block to force lazy instantiation of blocks for the body.
2540    Block = NULL;
2541
2542    // If body is not a compound statement create implicit scope
2543    // and add destructors.
2544    if (!isa<CompoundStmt>(D->getBody()))
2545      addLocalScopeAndDtors(D->getBody());
2546
2547    // Create the body.  The returned block is the entry to the loop body.
2548    BodyBlock = addStmt(D->getBody());
2549
2550    if (!BodyBlock)
2551      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2552    else if (Block) {
2553      if (badCFG)
2554        return 0;
2555    }
2556
2557    if (!KnownVal.isFalse()) {
2558      // Add an intermediate block between the BodyBlock and the
2559      // ExitConditionBlock to represent the "loop back" transition.  Create an
2560      // empty block to represent the transition block for looping back to the
2561      // head of the loop.
2562      // FIXME: Can we do this more efficiently without adding another block?
2563      Block = NULL;
2564      Succ = BodyBlock;
2565      CFGBlock *LoopBackBlock = createBlock();
2566      LoopBackBlock->setLoopTarget(D);
2567
2568      // Add the loop body entry as a successor to the condition.
2569      addSuccessor(ExitConditionBlock, LoopBackBlock);
2570    }
2571    else
2572      addSuccessor(ExitConditionBlock, NULL);
2573  }
2574
2575  // Link up the condition block with the code that follows the loop.
2576  // (the false branch).
2577  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2578
2579  // There can be no more statements in the body block(s) since we loop back to
2580  // the body.  NULL out Block to force lazy creation of another block.
2581  Block = NULL;
2582
2583  // Return the loop body, which is the dominating block for the loop.
2584  Succ = BodyBlock;
2585  return BodyBlock;
2586}
2587
2588CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2589  // "continue" is a control-flow statement.  Thus we stop processing the
2590  // current block.
2591  if (badCFG)
2592    return 0;
2593
2594  // Now create a new block that ends with the continue statement.
2595  Block = createBlock(false);
2596  Block->setTerminator(C);
2597
2598  // If there is no target for the continue, then we are looking at an
2599  // incomplete AST.  This means the CFG cannot be constructed.
2600  if (ContinueJumpTarget.block) {
2601    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2602    addSuccessor(Block, ContinueJumpTarget.block);
2603  } else
2604    badCFG = true;
2605
2606  return Block;
2607}
2608
2609CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2610                                                    AddStmtChoice asc) {
2611
2612  if (asc.alwaysAdd(*this, E)) {
2613    autoCreateBlock();
2614    appendStmt(Block, E);
2615  }
2616
2617  // VLA types have expressions that must be evaluated.
2618  CFGBlock *lastBlock = Block;
2619
2620  if (E->isArgumentType()) {
2621    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2622         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2623      lastBlock = addStmt(VA->getSizeExpr());
2624  }
2625  return lastBlock;
2626}
2627
2628/// VisitStmtExpr - Utility method to handle (nested) statement
2629///  expressions (a GCC extension).
2630CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2631  if (asc.alwaysAdd(*this, SE)) {
2632    autoCreateBlock();
2633    appendStmt(Block, SE);
2634  }
2635  return VisitCompoundStmt(SE->getSubStmt());
2636}
2637
2638CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2639  // "switch" is a control-flow statement.  Thus we stop processing the current
2640  // block.
2641  CFGBlock *SwitchSuccessor = NULL;
2642
2643  // Save local scope position because in case of condition variable ScopePos
2644  // won't be restored when traversing AST.
2645  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2646
2647  // Create local scope for possible condition variable.
2648  // Store scope position. Add implicit destructor.
2649  if (VarDecl *VD = Terminator->getConditionVariable()) {
2650    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2651    addLocalScopeForVarDecl(VD);
2652    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2653  }
2654
2655  if (Block) {
2656    if (badCFG)
2657      return 0;
2658    SwitchSuccessor = Block;
2659  } else SwitchSuccessor = Succ;
2660
2661  // Save the current "switch" context.
2662  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2663                            save_default(DefaultCaseBlock);
2664  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2665
2666  // Set the "default" case to be the block after the switch statement.  If the
2667  // switch statement contains a "default:", this value will be overwritten with
2668  // the block for that code.
2669  DefaultCaseBlock = SwitchSuccessor;
2670
2671  // Create a new block that will contain the switch statement.
2672  SwitchTerminatedBlock = createBlock(false);
2673
2674  // Now process the switch body.  The code after the switch is the implicit
2675  // successor.
2676  Succ = SwitchSuccessor;
2677  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2678
2679  // When visiting the body, the case statements should automatically get linked
2680  // up to the switch.  We also don't keep a pointer to the body, since all
2681  // control-flow from the switch goes to case/default statements.
2682  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2683  Block = NULL;
2684
2685  // For pruning unreachable case statements, save the current state
2686  // for tracking the condition value.
2687  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2688                                                     false);
2689
2690  // Determine if the switch condition can be explicitly evaluated.
2691  assert(Terminator->getCond() && "switch condition must be non-NULL");
2692  Expr::EvalResult result;
2693  bool b = tryEvaluate(Terminator->getCond(), result);
2694  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2695                                                    b ? &result : 0);
2696
2697  // If body is not a compound statement create implicit scope
2698  // and add destructors.
2699  if (!isa<CompoundStmt>(Terminator->getBody()))
2700    addLocalScopeAndDtors(Terminator->getBody());
2701
2702  addStmt(Terminator->getBody());
2703  if (Block) {
2704    if (badCFG)
2705      return 0;
2706  }
2707
2708  // If we have no "default:" case, the default transition is to the code
2709  // following the switch body.  Moreover, take into account if all the
2710  // cases of a switch are covered (e.g., switching on an enum value).
2711  //
2712  // Note: We add a successor to a switch that is considered covered yet has no
2713  //       case statements if the enumeration has no enumerators.
2714  bool SwitchAlwaysHasSuccessor = false;
2715  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2716  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2717                              Terminator->getSwitchCaseList();
2718  addSuccessor(SwitchTerminatedBlock,
2719               SwitchAlwaysHasSuccessor ? 0 : DefaultCaseBlock);
2720
2721  // Add the terminator and condition in the switch block.
2722  SwitchTerminatedBlock->setTerminator(Terminator);
2723  Block = SwitchTerminatedBlock;
2724  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2725
2726  // Finally, if the SwitchStmt contains a condition variable, add both the
2727  // SwitchStmt and the condition variable initialization to the CFG.
2728  if (VarDecl *VD = Terminator->getConditionVariable()) {
2729    if (Expr *Init = VD->getInit()) {
2730      autoCreateBlock();
2731      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2732      LastBlock = addStmt(Init);
2733    }
2734  }
2735
2736  return LastBlock;
2737}
2738
2739static bool shouldAddCase(bool &switchExclusivelyCovered,
2740                          const Expr::EvalResult *switchCond,
2741                          const CaseStmt *CS,
2742                          ASTContext &Ctx) {
2743  if (!switchCond)
2744    return true;
2745
2746  bool addCase = false;
2747
2748  if (!switchExclusivelyCovered) {
2749    if (switchCond->Val.isInt()) {
2750      // Evaluate the LHS of the case value.
2751      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2752      const llvm::APSInt &condInt = switchCond->Val.getInt();
2753
2754      if (condInt == lhsInt) {
2755        addCase = true;
2756        switchExclusivelyCovered = true;
2757      }
2758      else if (condInt < lhsInt) {
2759        if (const Expr *RHS = CS->getRHS()) {
2760          // Evaluate the RHS of the case value.
2761          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2762          if (V2 <= condInt) {
2763            addCase = true;
2764            switchExclusivelyCovered = true;
2765          }
2766        }
2767      }
2768    }
2769    else
2770      addCase = true;
2771  }
2772  return addCase;
2773}
2774
2775CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2776  // CaseStmts are essentially labels, so they are the first statement in a
2777  // block.
2778  CFGBlock *TopBlock = 0, *LastBlock = 0;
2779
2780  if (Stmt *Sub = CS->getSubStmt()) {
2781    // For deeply nested chains of CaseStmts, instead of doing a recursion
2782    // (which can blow out the stack), manually unroll and create blocks
2783    // along the way.
2784    while (isa<CaseStmt>(Sub)) {
2785      CFGBlock *currentBlock = createBlock(false);
2786      currentBlock->setLabel(CS);
2787
2788      if (TopBlock)
2789        addSuccessor(LastBlock, currentBlock);
2790      else
2791        TopBlock = currentBlock;
2792
2793      addSuccessor(SwitchTerminatedBlock,
2794                   shouldAddCase(switchExclusivelyCovered, switchCond,
2795                                 CS, *Context)
2796                   ? currentBlock : 0);
2797
2798      LastBlock = currentBlock;
2799      CS = cast<CaseStmt>(Sub);
2800      Sub = CS->getSubStmt();
2801    }
2802
2803    addStmt(Sub);
2804  }
2805
2806  CFGBlock *CaseBlock = Block;
2807  if (!CaseBlock)
2808    CaseBlock = createBlock();
2809
2810  // Cases statements partition blocks, so this is the top of the basic block we
2811  // were processing (the "case XXX:" is the label).
2812  CaseBlock->setLabel(CS);
2813
2814  if (badCFG)
2815    return 0;
2816
2817  // Add this block to the list of successors for the block with the switch
2818  // statement.
2819  assert(SwitchTerminatedBlock);
2820  addSuccessor(SwitchTerminatedBlock,
2821               shouldAddCase(switchExclusivelyCovered, switchCond,
2822                             CS, *Context)
2823               ? CaseBlock : 0);
2824
2825  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2826  Block = NULL;
2827
2828  if (TopBlock) {
2829    addSuccessor(LastBlock, CaseBlock);
2830    Succ = TopBlock;
2831  } else {
2832    // This block is now the implicit successor of other blocks.
2833    Succ = CaseBlock;
2834  }
2835
2836  return Succ;
2837}
2838
2839CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2840  if (Terminator->getSubStmt())
2841    addStmt(Terminator->getSubStmt());
2842
2843  DefaultCaseBlock = Block;
2844
2845  if (!DefaultCaseBlock)
2846    DefaultCaseBlock = createBlock();
2847
2848  // Default statements partition blocks, so this is the top of the basic block
2849  // we were processing (the "default:" is the label).
2850  DefaultCaseBlock->setLabel(Terminator);
2851
2852  if (badCFG)
2853    return 0;
2854
2855  // Unlike case statements, we don't add the default block to the successors
2856  // for the switch statement immediately.  This is done when we finish
2857  // processing the switch statement.  This allows for the default case
2858  // (including a fall-through to the code after the switch statement) to always
2859  // be the last successor of a switch-terminated block.
2860
2861  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2862  Block = NULL;
2863
2864  // This block is now the implicit successor of other blocks.
2865  Succ = DefaultCaseBlock;
2866
2867  return DefaultCaseBlock;
2868}
2869
2870CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2871  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2872  // current block.
2873  CFGBlock *TrySuccessor = NULL;
2874
2875  if (Block) {
2876    if (badCFG)
2877      return 0;
2878    TrySuccessor = Block;
2879  } else TrySuccessor = Succ;
2880
2881  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2882
2883  // Create a new block that will contain the try statement.
2884  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2885  // Add the terminator in the try block.
2886  NewTryTerminatedBlock->setTerminator(Terminator);
2887
2888  bool HasCatchAll = false;
2889  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2890    // The code after the try is the implicit successor.
2891    Succ = TrySuccessor;
2892    CXXCatchStmt *CS = Terminator->getHandler(h);
2893    if (CS->getExceptionDecl() == 0) {
2894      HasCatchAll = true;
2895    }
2896    Block = NULL;
2897    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2898    if (CatchBlock == 0)
2899      return 0;
2900    // Add this block to the list of successors for the block with the try
2901    // statement.
2902    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2903  }
2904  if (!HasCatchAll) {
2905    if (PrevTryTerminatedBlock)
2906      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2907    else
2908      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2909  }
2910
2911  // The code after the try is the implicit successor.
2912  Succ = TrySuccessor;
2913
2914  // Save the current "try" context.
2915  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2916  cfg->addTryDispatchBlock(TryTerminatedBlock);
2917
2918  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2919  Block = NULL;
2920  return addStmt(Terminator->getTryBlock());
2921}
2922
2923CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2924  // CXXCatchStmt are treated like labels, so they are the first statement in a
2925  // block.
2926
2927  // Save local scope position because in case of exception variable ScopePos
2928  // won't be restored when traversing AST.
2929  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2930
2931  // Create local scope for possible exception variable.
2932  // Store scope position. Add implicit destructor.
2933  if (VarDecl *VD = CS->getExceptionDecl()) {
2934    LocalScope::const_iterator BeginScopePos = ScopePos;
2935    addLocalScopeForVarDecl(VD);
2936    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2937  }
2938
2939  if (CS->getHandlerBlock())
2940    addStmt(CS->getHandlerBlock());
2941
2942  CFGBlock *CatchBlock = Block;
2943  if (!CatchBlock)
2944    CatchBlock = createBlock();
2945
2946  // CXXCatchStmt is more than just a label.  They have semantic meaning
2947  // as well, as they implicitly "initialize" the catch variable.  Add
2948  // it to the CFG as a CFGElement so that the control-flow of these
2949  // semantics gets captured.
2950  appendStmt(CatchBlock, CS);
2951
2952  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2953  // labels.
2954  CatchBlock->setLabel(CS);
2955
2956  // Bail out if the CFG is bad.
2957  if (badCFG)
2958    return 0;
2959
2960  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2961  Block = NULL;
2962
2963  return CatchBlock;
2964}
2965
2966CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2967  // C++0x for-range statements are specified as [stmt.ranged]:
2968  //
2969  // {
2970  //   auto && __range = range-init;
2971  //   for ( auto __begin = begin-expr,
2972  //         __end = end-expr;
2973  //         __begin != __end;
2974  //         ++__begin ) {
2975  //     for-range-declaration = *__begin;
2976  //     statement
2977  //   }
2978  // }
2979
2980  // Save local scope position before the addition of the implicit variables.
2981  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2982
2983  // Create local scopes and destructors for range, begin and end variables.
2984  if (Stmt *Range = S->getRangeStmt())
2985    addLocalScopeForStmt(Range);
2986  if (Stmt *BeginEnd = S->getBeginEndStmt())
2987    addLocalScopeForStmt(BeginEnd);
2988  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2989
2990  LocalScope::const_iterator ContinueScopePos = ScopePos;
2991
2992  // "for" is a control-flow statement.  Thus we stop processing the current
2993  // block.
2994  CFGBlock *LoopSuccessor = NULL;
2995  if (Block) {
2996    if (badCFG)
2997      return 0;
2998    LoopSuccessor = Block;
2999  } else
3000    LoopSuccessor = Succ;
3001
3002  // Save the current value for the break targets.
3003  // All breaks should go to the code following the loop.
3004  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3005  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3006
3007  // The block for the __begin != __end expression.
3008  CFGBlock *ConditionBlock = createBlock(false);
3009  ConditionBlock->setTerminator(S);
3010
3011  // Now add the actual condition to the condition block.
3012  if (Expr *C = S->getCond()) {
3013    Block = ConditionBlock;
3014    CFGBlock *BeginConditionBlock = addStmt(C);
3015    if (badCFG)
3016      return 0;
3017    assert(BeginConditionBlock == ConditionBlock &&
3018           "condition block in for-range was unexpectedly complex");
3019    (void)BeginConditionBlock;
3020  }
3021
3022  // The condition block is the implicit successor for the loop body as well as
3023  // any code above the loop.
3024  Succ = ConditionBlock;
3025
3026  // See if this is a known constant.
3027  TryResult KnownVal(true);
3028
3029  if (S->getCond())
3030    KnownVal = tryEvaluateBool(S->getCond());
3031
3032  // Now create the loop body.
3033  {
3034    assert(S->getBody());
3035
3036    // Save the current values for Block, Succ, and continue targets.
3037    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3038    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3039
3040    // Generate increment code in its own basic block.  This is the target of
3041    // continue statements.
3042    Block = 0;
3043    Succ = addStmt(S->getInc());
3044    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3045
3046    // The starting block for the loop increment is the block that should
3047    // represent the 'loop target' for looping back to the start of the loop.
3048    ContinueJumpTarget.block->setLoopTarget(S);
3049
3050    // Finish up the increment block and prepare to start the loop body.
3051    assert(Block);
3052    if (badCFG)
3053      return 0;
3054    Block = 0;
3055
3056
3057    // Add implicit scope and dtors for loop variable.
3058    addLocalScopeAndDtors(S->getLoopVarStmt());
3059
3060    // Populate a new block to contain the loop body and loop variable.
3061    addStmt(S->getBody());
3062    if (badCFG)
3063      return 0;
3064    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3065    if (badCFG)
3066      return 0;
3067
3068    // This new body block is a successor to our condition block.
3069    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3070  }
3071
3072  // Link up the condition block with the code that follows the loop (the
3073  // false branch).
3074  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3075
3076  // Add the initialization statements.
3077  Block = createBlock();
3078  addStmt(S->getBeginEndStmt());
3079  return addStmt(S->getRangeStmt());
3080}
3081
3082CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3083    AddStmtChoice asc) {
3084  if (BuildOpts.AddTemporaryDtors) {
3085    // If adding implicit destructors visit the full expression for adding
3086    // destructors of temporaries.
3087    VisitForTemporaryDtors(E->getSubExpr());
3088
3089    // Full expression has to be added as CFGStmt so it will be sequenced
3090    // before destructors of it's temporaries.
3091    asc = asc.withAlwaysAdd(true);
3092  }
3093  return Visit(E->getSubExpr(), asc);
3094}
3095
3096CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3097                                                AddStmtChoice asc) {
3098  if (asc.alwaysAdd(*this, E)) {
3099    autoCreateBlock();
3100    appendStmt(Block, E);
3101
3102    // We do not want to propagate the AlwaysAdd property.
3103    asc = asc.withAlwaysAdd(false);
3104  }
3105  return Visit(E->getSubExpr(), asc);
3106}
3107
3108CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3109                                            AddStmtChoice asc) {
3110  autoCreateBlock();
3111  appendStmt(Block, C);
3112
3113  return VisitChildren(C);
3114}
3115
3116CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3117                                                 AddStmtChoice asc) {
3118  if (asc.alwaysAdd(*this, E)) {
3119    autoCreateBlock();
3120    appendStmt(Block, E);
3121    // We do not want to propagate the AlwaysAdd property.
3122    asc = asc.withAlwaysAdd(false);
3123  }
3124  return Visit(E->getSubExpr(), asc);
3125}
3126
3127CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3128                                                  AddStmtChoice asc) {
3129  autoCreateBlock();
3130  appendStmt(Block, C);
3131  return VisitChildren(C);
3132}
3133
3134CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3135                                            AddStmtChoice asc) {
3136  if (asc.alwaysAdd(*this, E)) {
3137    autoCreateBlock();
3138    appendStmt(Block, E);
3139  }
3140  return Visit(E->getSubExpr(), AddStmtChoice());
3141}
3142
3143CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3144  // Lazily create the indirect-goto dispatch block if there isn't one already.
3145  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3146
3147  if (!IBlock) {
3148    IBlock = createBlock(false);
3149    cfg->setIndirectGotoBlock(IBlock);
3150  }
3151
3152  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3153  // current block and create a new one.
3154  if (badCFG)
3155    return 0;
3156
3157  Block = createBlock(false);
3158  Block->setTerminator(I);
3159  addSuccessor(Block, IBlock);
3160  return addStmt(I->getTarget());
3161}
3162
3163CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3164  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3165
3166tryAgain:
3167  if (!E) {
3168    badCFG = true;
3169    return NULL;
3170  }
3171  switch (E->getStmtClass()) {
3172    default:
3173      return VisitChildrenForTemporaryDtors(E);
3174
3175    case Stmt::BinaryOperatorClass:
3176      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3177
3178    case Stmt::CXXBindTemporaryExprClass:
3179      return VisitCXXBindTemporaryExprForTemporaryDtors(
3180          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3181
3182    case Stmt::BinaryConditionalOperatorClass:
3183    case Stmt::ConditionalOperatorClass:
3184      return VisitConditionalOperatorForTemporaryDtors(
3185          cast<AbstractConditionalOperator>(E), BindToTemporary);
3186
3187    case Stmt::ImplicitCastExprClass:
3188      // For implicit cast we want BindToTemporary to be passed further.
3189      E = cast<CastExpr>(E)->getSubExpr();
3190      goto tryAgain;
3191
3192    case Stmt::ParenExprClass:
3193      E = cast<ParenExpr>(E)->getSubExpr();
3194      goto tryAgain;
3195
3196    case Stmt::MaterializeTemporaryExprClass:
3197      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3198      goto tryAgain;
3199  }
3200}
3201
3202CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3203  // When visiting children for destructors we want to visit them in reverse
3204  // order that they will appear in the CFG.  Because the CFG is built
3205  // bottom-up, this means we visit them in their natural order, which
3206  // reverses them in the CFG.
3207  CFGBlock *B = Block;
3208  for (Stmt::child_range I = E->children(); I; ++I) {
3209    if (Stmt *Child = *I)
3210      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3211        B = R;
3212  }
3213  return B;
3214}
3215
3216CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3217  if (E->isLogicalOp()) {
3218    // Destructors for temporaries in LHS expression should be called after
3219    // those for RHS expression. Even if this will unnecessarily create a block,
3220    // this block will be used at least by the full expression.
3221    autoCreateBlock();
3222    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3223    if (badCFG)
3224      return NULL;
3225
3226    Succ = ConfluenceBlock;
3227    Block = NULL;
3228    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3229
3230    if (RHSBlock) {
3231      if (badCFG)
3232        return NULL;
3233
3234      // If RHS expression did produce destructors we need to connect created
3235      // blocks to CFG in same manner as for binary operator itself.
3236      CFGBlock *LHSBlock = createBlock(false);
3237      LHSBlock->setTerminator(CFGTerminator(E, true));
3238
3239      // For binary operator LHS block is before RHS in list of predecessors
3240      // of ConfluenceBlock.
3241      std::reverse(ConfluenceBlock->pred_begin(),
3242          ConfluenceBlock->pred_end());
3243
3244      // See if this is a known constant.
3245      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3246      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3247        KnownVal.negate();
3248
3249      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3250      // itself.
3251      if (E->getOpcode() == BO_LOr) {
3252        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3253        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3254      } else {
3255        assert (E->getOpcode() == BO_LAnd);
3256        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3257        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3258      }
3259
3260      Block = LHSBlock;
3261      return LHSBlock;
3262    }
3263
3264    Block = ConfluenceBlock;
3265    return ConfluenceBlock;
3266  }
3267
3268  if (E->isAssignmentOp()) {
3269    // For assignment operator (=) LHS expression is visited
3270    // before RHS expression. For destructors visit them in reverse order.
3271    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3272    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3273    return LHSBlock ? LHSBlock : RHSBlock;
3274  }
3275
3276  // For any other binary operator RHS expression is visited before
3277  // LHS expression (order of children). For destructors visit them in reverse
3278  // order.
3279  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3280  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3281  return RHSBlock ? RHSBlock : LHSBlock;
3282}
3283
3284CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3285    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3286  // First add destructors for temporaries in subexpression.
3287  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3288  if (!BindToTemporary) {
3289    // If lifetime of temporary is not prolonged (by assigning to constant
3290    // reference) add destructor for it.
3291
3292    // If the destructor is marked as a no-return destructor, we need to create
3293    // a new block for the destructor which does not have as a successor
3294    // anything built thus far. Control won't flow out of this block.
3295    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3296    if (Dtor->isNoReturn())
3297      Block = createNoReturnBlock();
3298    else
3299      autoCreateBlock();
3300
3301    appendTemporaryDtor(Block, E);
3302    B = Block;
3303  }
3304  return B;
3305}
3306
3307CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3308    AbstractConditionalOperator *E, bool BindToTemporary) {
3309  // First add destructors for condition expression.  Even if this will
3310  // unnecessarily create a block, this block will be used at least by the full
3311  // expression.
3312  autoCreateBlock();
3313  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3314  if (badCFG)
3315    return NULL;
3316  if (BinaryConditionalOperator *BCO
3317        = dyn_cast<BinaryConditionalOperator>(E)) {
3318    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3319    if (badCFG)
3320      return NULL;
3321  }
3322
3323  // Try to add block with destructors for LHS expression.
3324  CFGBlock *LHSBlock = NULL;
3325  Succ = ConfluenceBlock;
3326  Block = NULL;
3327  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3328  if (badCFG)
3329    return NULL;
3330
3331  // Try to add block with destructors for RHS expression;
3332  Succ = ConfluenceBlock;
3333  Block = NULL;
3334  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3335                                              BindToTemporary);
3336  if (badCFG)
3337    return NULL;
3338
3339  if (!RHSBlock && !LHSBlock) {
3340    // If neither LHS nor RHS expression had temporaries to destroy don't create
3341    // more blocks.
3342    Block = ConfluenceBlock;
3343    return Block;
3344  }
3345
3346  Block = createBlock(false);
3347  Block->setTerminator(CFGTerminator(E, true));
3348
3349  // See if this is a known constant.
3350  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3351
3352  if (LHSBlock) {
3353    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3354  } else if (KnownVal.isFalse()) {
3355    addSuccessor(Block, NULL);
3356  } else {
3357    addSuccessor(Block, ConfluenceBlock);
3358    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3359  }
3360
3361  if (!RHSBlock)
3362    RHSBlock = ConfluenceBlock;
3363  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3364
3365  return Block;
3366}
3367
3368} // end anonymous namespace
3369
3370/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3371///  no successors or predecessors.  If this is the first block created in the
3372///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3373CFGBlock *CFG::createBlock() {
3374  bool first_block = begin() == end();
3375
3376  // Create the block.
3377  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3378  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3379  Blocks.push_back(Mem, BlkBVC);
3380
3381  // If this is the first block, set it as the Entry and Exit.
3382  if (first_block)
3383    Entry = Exit = &back();
3384
3385  // Return the block.
3386  return &back();
3387}
3388
3389/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3390///  CFG is returned to the caller.
3391CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3392    const BuildOptions &BO) {
3393  CFGBuilder Builder(C, BO);
3394  return Builder.buildCFG(D, Statement);
3395}
3396
3397const CXXDestructorDecl *
3398CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3399  switch (getKind()) {
3400    case CFGElement::Statement:
3401    case CFGElement::Initializer:
3402      llvm_unreachable("getDestructorDecl should only be used with "
3403                       "ImplicitDtors");
3404    case CFGElement::AutomaticObjectDtor: {
3405      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3406      QualType ty = var->getType();
3407      ty = ty.getNonReferenceType();
3408      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3409        ty = arrayType->getElementType();
3410      }
3411      const RecordType *recordType = ty->getAs<RecordType>();
3412      const CXXRecordDecl *classDecl =
3413      cast<CXXRecordDecl>(recordType->getDecl());
3414      return classDecl->getDestructor();
3415    }
3416    case CFGElement::TemporaryDtor: {
3417      const CXXBindTemporaryExpr *bindExpr =
3418        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3419      const CXXTemporary *temp = bindExpr->getTemporary();
3420      return temp->getDestructor();
3421    }
3422    case CFGElement::BaseDtor:
3423    case CFGElement::MemberDtor:
3424
3425      // Not yet supported.
3426      return 0;
3427  }
3428  llvm_unreachable("getKind() returned bogus value");
3429}
3430
3431bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3432  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3433    return DD->isNoReturn();
3434  return false;
3435}
3436
3437//===----------------------------------------------------------------------===//
3438// Filtered walking of the CFG.
3439//===----------------------------------------------------------------------===//
3440
3441bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3442        const CFGBlock *From, const CFGBlock *To) {
3443
3444  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3445    // If the 'To' has no label or is labeled but the label isn't a
3446    // CaseStmt then filter this edge.
3447    if (const SwitchStmt *S =
3448        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3449      if (S->isAllEnumCasesCovered()) {
3450        const Stmt *L = To->getLabel();
3451        if (!L || !isa<CaseStmt>(L))
3452          return true;
3453      }
3454    }
3455  }
3456
3457  return false;
3458}
3459
3460//===----------------------------------------------------------------------===//
3461// CFG pretty printing
3462//===----------------------------------------------------------------------===//
3463
3464namespace {
3465
3466class StmtPrinterHelper : public PrinterHelper  {
3467  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3468  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3469  StmtMapTy StmtMap;
3470  DeclMapTy DeclMap;
3471  signed currentBlock;
3472  unsigned currStmt;
3473  const LangOptions &LangOpts;
3474public:
3475
3476  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3477    : currentBlock(0), currStmt(0), LangOpts(LO)
3478  {
3479    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3480      unsigned j = 1;
3481      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3482           BI != BEnd; ++BI, ++j ) {
3483        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3484          const Stmt *stmt= SE->getStmt();
3485          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3486          StmtMap[stmt] = P;
3487
3488          switch (stmt->getStmtClass()) {
3489            case Stmt::DeclStmtClass:
3490                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3491                break;
3492            case Stmt::IfStmtClass: {
3493              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3494              if (var)
3495                DeclMap[var] = P;
3496              break;
3497            }
3498            case Stmt::ForStmtClass: {
3499              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3500              if (var)
3501                DeclMap[var] = P;
3502              break;
3503            }
3504            case Stmt::WhileStmtClass: {
3505              const VarDecl *var =
3506                cast<WhileStmt>(stmt)->getConditionVariable();
3507              if (var)
3508                DeclMap[var] = P;
3509              break;
3510            }
3511            case Stmt::SwitchStmtClass: {
3512              const VarDecl *var =
3513                cast<SwitchStmt>(stmt)->getConditionVariable();
3514              if (var)
3515                DeclMap[var] = P;
3516              break;
3517            }
3518            case Stmt::CXXCatchStmtClass: {
3519              const VarDecl *var =
3520                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3521              if (var)
3522                DeclMap[var] = P;
3523              break;
3524            }
3525            default:
3526              break;
3527          }
3528        }
3529      }
3530    }
3531  }
3532
3533
3534  virtual ~StmtPrinterHelper() {}
3535
3536  const LangOptions &getLangOpts() const { return LangOpts; }
3537  void setBlockID(signed i) { currentBlock = i; }
3538  void setStmtID(unsigned i) { currStmt = i; }
3539
3540  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3541    StmtMapTy::iterator I = StmtMap.find(S);
3542
3543    if (I == StmtMap.end())
3544      return false;
3545
3546    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3547                          && I->second.second == currStmt) {
3548      return false;
3549    }
3550
3551    OS << "[B" << I->second.first << "." << I->second.second << "]";
3552    return true;
3553  }
3554
3555  bool handleDecl(const Decl *D, raw_ostream &OS) {
3556    DeclMapTy::iterator I = DeclMap.find(D);
3557
3558    if (I == DeclMap.end())
3559      return false;
3560
3561    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3562                          && I->second.second == currStmt) {
3563      return false;
3564    }
3565
3566    OS << "[B" << I->second.first << "." << I->second.second << "]";
3567    return true;
3568  }
3569};
3570} // end anonymous namespace
3571
3572
3573namespace {
3574class CFGBlockTerminatorPrint
3575  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3576
3577  raw_ostream &OS;
3578  StmtPrinterHelper* Helper;
3579  PrintingPolicy Policy;
3580public:
3581  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3582                          const PrintingPolicy &Policy)
3583    : OS(os), Helper(helper), Policy(Policy) {}
3584
3585  void VisitIfStmt(IfStmt *I) {
3586    OS << "if ";
3587    I->getCond()->printPretty(OS,Helper,Policy);
3588  }
3589
3590  // Default case.
3591  void VisitStmt(Stmt *Terminator) {
3592    Terminator->printPretty(OS, Helper, Policy);
3593  }
3594
3595  void VisitDeclStmt(DeclStmt *DS) {
3596    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3597    OS << "static init " << VD->getName();
3598  }
3599
3600  void VisitForStmt(ForStmt *F) {
3601    OS << "for (" ;
3602    if (F->getInit())
3603      OS << "...";
3604    OS << "; ";
3605    if (Stmt *C = F->getCond())
3606      C->printPretty(OS, Helper, Policy);
3607    OS << "; ";
3608    if (F->getInc())
3609      OS << "...";
3610    OS << ")";
3611  }
3612
3613  void VisitWhileStmt(WhileStmt *W) {
3614    OS << "while " ;
3615    if (Stmt *C = W->getCond())
3616      C->printPretty(OS, Helper, Policy);
3617  }
3618
3619  void VisitDoStmt(DoStmt *D) {
3620    OS << "do ... while ";
3621    if (Stmt *C = D->getCond())
3622      C->printPretty(OS, Helper, Policy);
3623  }
3624
3625  void VisitSwitchStmt(SwitchStmt *Terminator) {
3626    OS << "switch ";
3627    Terminator->getCond()->printPretty(OS, Helper, Policy);
3628  }
3629
3630  void VisitCXXTryStmt(CXXTryStmt *CS) {
3631    OS << "try ...";
3632  }
3633
3634  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3635    C->getCond()->printPretty(OS, Helper, Policy);
3636    OS << " ? ... : ...";
3637  }
3638
3639  void VisitChooseExpr(ChooseExpr *C) {
3640    OS << "__builtin_choose_expr( ";
3641    C->getCond()->printPretty(OS, Helper, Policy);
3642    OS << " )";
3643  }
3644
3645  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3646    OS << "goto *";
3647    I->getTarget()->printPretty(OS, Helper, Policy);
3648  }
3649
3650  void VisitBinaryOperator(BinaryOperator* B) {
3651    if (!B->isLogicalOp()) {
3652      VisitExpr(B);
3653      return;
3654    }
3655
3656    B->getLHS()->printPretty(OS, Helper, Policy);
3657
3658    switch (B->getOpcode()) {
3659      case BO_LOr:
3660        OS << " || ...";
3661        return;
3662      case BO_LAnd:
3663        OS << " && ...";
3664        return;
3665      default:
3666        llvm_unreachable("Invalid logical operator.");
3667    }
3668  }
3669
3670  void VisitExpr(Expr *E) {
3671    E->printPretty(OS, Helper, Policy);
3672  }
3673};
3674} // end anonymous namespace
3675
3676static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3677                       const CFGElement &E) {
3678  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3679    const Stmt *S = CS->getStmt();
3680
3681    if (Helper) {
3682
3683      // special printing for statement-expressions.
3684      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3685        const CompoundStmt *Sub = SE->getSubStmt();
3686
3687        if (Sub->children()) {
3688          OS << "({ ... ; ";
3689          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3690          OS << " })\n";
3691          return;
3692        }
3693      }
3694      // special printing for comma expressions.
3695      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3696        if (B->getOpcode() == BO_Comma) {
3697          OS << "... , ";
3698          Helper->handledStmt(B->getRHS(),OS);
3699          OS << '\n';
3700          return;
3701        }
3702      }
3703    }
3704    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3705
3706    if (isa<CXXOperatorCallExpr>(S)) {
3707      OS << " (OperatorCall)";
3708    }
3709    else if (isa<CXXBindTemporaryExpr>(S)) {
3710      OS << " (BindTemporary)";
3711    }
3712    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3713      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3714    }
3715    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3716      OS << " (" << CE->getStmtClassName() << ", "
3717         << CE->getCastKindName()
3718         << ", " << CE->getType().getAsString()
3719         << ")";
3720    }
3721
3722    // Expressions need a newline.
3723    if (isa<Expr>(S))
3724      OS << '\n';
3725
3726  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3727    const CXXCtorInitializer *I = IE->getInitializer();
3728    if (I->isBaseInitializer())
3729      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3730    else OS << I->getAnyMember()->getName();
3731
3732    OS << "(";
3733    if (Expr *IE = I->getInit())
3734      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3735    OS << ")";
3736
3737    if (I->isBaseInitializer())
3738      OS << " (Base initializer)\n";
3739    else OS << " (Member initializer)\n";
3740
3741  } else if (Optional<CFGAutomaticObjDtor> DE =
3742                 E.getAs<CFGAutomaticObjDtor>()) {
3743    const VarDecl *VD = DE->getVarDecl();
3744    Helper->handleDecl(VD, OS);
3745
3746    const Type* T = VD->getType().getTypePtr();
3747    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3748      T = RT->getPointeeType().getTypePtr();
3749    T = T->getBaseElementTypeUnsafe();
3750
3751    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3752    OS << " (Implicit destructor)\n";
3753
3754  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3755    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3756    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3757    OS << " (Base object destructor)\n";
3758
3759  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3760    const FieldDecl *FD = ME->getFieldDecl();
3761    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3762    OS << "this->" << FD->getName();
3763    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3764    OS << " (Member object destructor)\n";
3765
3766  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3767    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3768    OS << "~";
3769    BT->getType().print(OS, PrintingPolicy(Helper->getLangOpts()));
3770    OS << "() (Temporary object destructor)\n";
3771  }
3772}
3773
3774static void print_block(raw_ostream &OS, const CFG* cfg,
3775                        const CFGBlock &B,
3776                        StmtPrinterHelper* Helper, bool print_edges,
3777                        bool ShowColors) {
3778
3779  if (Helper)
3780    Helper->setBlockID(B.getBlockID());
3781
3782  // Print the header.
3783  if (ShowColors)
3784    OS.changeColor(raw_ostream::YELLOW, true);
3785
3786  OS << "\n [B" << B.getBlockID();
3787
3788  if (&B == &cfg->getEntry())
3789    OS << " (ENTRY)]\n";
3790  else if (&B == &cfg->getExit())
3791    OS << " (EXIT)]\n";
3792  else if (&B == cfg->getIndirectGotoBlock())
3793    OS << " (INDIRECT GOTO DISPATCH)]\n";
3794  else
3795    OS << "]\n";
3796
3797  if (ShowColors)
3798    OS.resetColor();
3799
3800  // Print the label of this block.
3801  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3802
3803    if (print_edges)
3804      OS << "  ";
3805
3806    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3807      OS << L->getName();
3808    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3809      OS << "case ";
3810      C->getLHS()->printPretty(OS, Helper,
3811                               PrintingPolicy(Helper->getLangOpts()));
3812      if (C->getRHS()) {
3813        OS << " ... ";
3814        C->getRHS()->printPretty(OS, Helper,
3815                                 PrintingPolicy(Helper->getLangOpts()));
3816      }
3817    } else if (isa<DefaultStmt>(Label))
3818      OS << "default";
3819    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3820      OS << "catch (";
3821      if (CS->getExceptionDecl())
3822        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3823                                      0);
3824      else
3825        OS << "...";
3826      OS << ")";
3827
3828    } else
3829      llvm_unreachable("Invalid label statement in CFGBlock.");
3830
3831    OS << ":\n";
3832  }
3833
3834  // Iterate through the statements in the block and print them.
3835  unsigned j = 1;
3836
3837  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3838       I != E ; ++I, ++j ) {
3839
3840    // Print the statement # in the basic block and the statement itself.
3841    if (print_edges)
3842      OS << " ";
3843
3844    OS << llvm::format("%3d", j) << ": ";
3845
3846    if (Helper)
3847      Helper->setStmtID(j);
3848
3849    print_elem(OS, Helper, *I);
3850  }
3851
3852  // Print the terminator of this block.
3853  if (B.getTerminator()) {
3854    if (ShowColors)
3855      OS.changeColor(raw_ostream::GREEN);
3856
3857    OS << "   T: ";
3858
3859    if (Helper) Helper->setBlockID(-1);
3860
3861    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3862    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3863    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3864    OS << '\n';
3865
3866    if (ShowColors)
3867      OS.resetColor();
3868  }
3869
3870  if (print_edges) {
3871    // Print the predecessors of this block.
3872    if (!B.pred_empty()) {
3873      const raw_ostream::Colors Color = raw_ostream::BLUE;
3874      if (ShowColors)
3875        OS.changeColor(Color);
3876      OS << "   Preds " ;
3877      if (ShowColors)
3878        OS.resetColor();
3879      OS << '(' << B.pred_size() << "):";
3880      unsigned i = 0;
3881
3882      if (ShowColors)
3883        OS.changeColor(Color);
3884
3885      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3886           I != E; ++I, ++i) {
3887
3888        if (i % 10 == 8)
3889          OS << "\n     ";
3890
3891        OS << " B" << (*I)->getBlockID();
3892      }
3893
3894      if (ShowColors)
3895        OS.resetColor();
3896
3897      OS << '\n';
3898    }
3899
3900    // Print the successors of this block.
3901    if (!B.succ_empty()) {
3902      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3903      if (ShowColors)
3904        OS.changeColor(Color);
3905      OS << "   Succs ";
3906      if (ShowColors)
3907        OS.resetColor();
3908      OS << '(' << B.succ_size() << "):";
3909      unsigned i = 0;
3910
3911      if (ShowColors)
3912        OS.changeColor(Color);
3913
3914      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3915           I != E; ++I, ++i) {
3916
3917        if (i % 10 == 8)
3918          OS << "\n    ";
3919
3920        if (*I)
3921          OS << " B" << (*I)->getBlockID();
3922        else
3923          OS  << " NULL";
3924      }
3925
3926      if (ShowColors)
3927        OS.resetColor();
3928      OS << '\n';
3929    }
3930  }
3931}
3932
3933
3934/// dump - A simple pretty printer of a CFG that outputs to stderr.
3935void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3936  print(llvm::errs(), LO, ShowColors);
3937}
3938
3939/// print - A simple pretty printer of a CFG that outputs to an ostream.
3940void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3941  StmtPrinterHelper Helper(this, LO);
3942
3943  // Print the entry block.
3944  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3945
3946  // Iterate through the CFGBlocks and print them one by one.
3947  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3948    // Skip the entry block, because we already printed it.
3949    if (&(**I) == &getEntry() || &(**I) == &getExit())
3950      continue;
3951
3952    print_block(OS, this, **I, &Helper, true, ShowColors);
3953  }
3954
3955  // Print the exit block.
3956  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3957  OS << '\n';
3958  OS.flush();
3959}
3960
3961/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3962void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3963                    bool ShowColors) const {
3964  print(llvm::errs(), cfg, LO, ShowColors);
3965}
3966
3967/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3968///   Generally this will only be called from CFG::print.
3969void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3970                     const LangOptions &LO, bool ShowColors) const {
3971  StmtPrinterHelper Helper(cfg, LO);
3972  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3973  OS << '\n';
3974}
3975
3976/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3977void CFGBlock::printTerminator(raw_ostream &OS,
3978                               const LangOptions &LO) const {
3979  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3980  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3981}
3982
3983Stmt *CFGBlock::getTerminatorCondition() {
3984  Stmt *Terminator = this->Terminator;
3985  if (!Terminator)
3986    return NULL;
3987
3988  Expr *E = NULL;
3989
3990  switch (Terminator->getStmtClass()) {
3991    default:
3992      break;
3993
3994    case Stmt::CXXForRangeStmtClass:
3995      E = cast<CXXForRangeStmt>(Terminator)->getCond();
3996      break;
3997
3998    case Stmt::ForStmtClass:
3999      E = cast<ForStmt>(Terminator)->getCond();
4000      break;
4001
4002    case Stmt::WhileStmtClass:
4003      E = cast<WhileStmt>(Terminator)->getCond();
4004      break;
4005
4006    case Stmt::DoStmtClass:
4007      E = cast<DoStmt>(Terminator)->getCond();
4008      break;
4009
4010    case Stmt::IfStmtClass:
4011      E = cast<IfStmt>(Terminator)->getCond();
4012      break;
4013
4014    case Stmt::ChooseExprClass:
4015      E = cast<ChooseExpr>(Terminator)->getCond();
4016      break;
4017
4018    case Stmt::IndirectGotoStmtClass:
4019      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4020      break;
4021
4022    case Stmt::SwitchStmtClass:
4023      E = cast<SwitchStmt>(Terminator)->getCond();
4024      break;
4025
4026    case Stmt::BinaryConditionalOperatorClass:
4027      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4028      break;
4029
4030    case Stmt::ConditionalOperatorClass:
4031      E = cast<ConditionalOperator>(Terminator)->getCond();
4032      break;
4033
4034    case Stmt::BinaryOperatorClass: // '&&' and '||'
4035      E = cast<BinaryOperator>(Terminator)->getLHS();
4036      break;
4037
4038    case Stmt::ObjCForCollectionStmtClass:
4039      return Terminator;
4040  }
4041
4042  return E ? E->IgnoreParens() : NULL;
4043}
4044
4045//===----------------------------------------------------------------------===//
4046// CFG Graphviz Visualization
4047//===----------------------------------------------------------------------===//
4048
4049
4050#ifndef NDEBUG
4051static StmtPrinterHelper* GraphHelper;
4052#endif
4053
4054void CFG::viewCFG(const LangOptions &LO) const {
4055#ifndef NDEBUG
4056  StmtPrinterHelper H(this, LO);
4057  GraphHelper = &H;
4058  llvm::ViewGraph(this,"CFG");
4059  GraphHelper = NULL;
4060#endif
4061}
4062
4063namespace llvm {
4064template<>
4065struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4066
4067  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4068
4069  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4070
4071#ifndef NDEBUG
4072    std::string OutSStr;
4073    llvm::raw_string_ostream Out(OutSStr);
4074    print_block(Out,Graph, *Node, GraphHelper, false, false);
4075    std::string& OutStr = Out.str();
4076
4077    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4078
4079    // Process string output to make it nicer...
4080    for (unsigned i = 0; i != OutStr.length(); ++i)
4081      if (OutStr[i] == '\n') {                            // Left justify
4082        OutStr[i] = '\\';
4083        OutStr.insert(OutStr.begin()+i+1, 'l');
4084      }
4085
4086    return OutStr;
4087#else
4088    return "";
4089#endif
4090  }
4091};
4092} // end namespace llvm
4093