CFG.cpp revision a7be2f4c745120d6ee5adfd19ef259919bdc3f7f
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/OwningPtr.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/Support/Allocator.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/GraphWriter.h"
29#include "llvm/Support/SaveAndRestore.h"
30
31using namespace clang;
32
33namespace {
34
35static SourceLocation GetEndLoc(Decl *D) {
36  if (VarDecl *VD = dyn_cast<VarDecl>(D))
37    if (Expr *Ex = VD->getInit())
38      return Ex->getSourceRange().getEnd();
39  return D->getLocation();
40}
41
42class CFGBuilder;
43
44/// The CFG builder uses a recursive algorithm to build the CFG.  When
45///  we process an expression, sometimes we know that we must add the
46///  subexpressions as block-level expressions.  For example:
47///
48///    exp1 || exp2
49///
50///  When processing the '||' expression, we know that exp1 and exp2
51///  need to be added as block-level expressions, even though they
52///  might not normally need to be.  AddStmtChoice records this
53///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
54///  the builder has an option not to add a subexpression as a
55///  block-level expression.
56///
57class AddStmtChoice {
58public:
59  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
60
61  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
62
63  bool alwaysAdd(CFGBuilder &builder,
64                 const Stmt *stmt) const;
65
66  /// Return a copy of this object, except with the 'always-add' bit
67  ///  set as specified.
68  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
69    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
70  }
71
72private:
73  Kind kind;
74};
75
76/// LocalScope - Node in tree of local scopes created for C++ implicit
77/// destructor calls generation. It contains list of automatic variables
78/// declared in the scope and link to position in previous scope this scope
79/// began in.
80///
81/// The process of creating local scopes is as follows:
82/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
83/// - Before processing statements in scope (e.g. CompoundStmt) create
84///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
85///   and set CFGBuilder::ScopePos to the end of new scope,
86/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
87///   at this VarDecl,
88/// - For every normal (without jump) end of scope add to CFGBlock destructors
89///   for objects in the current scope,
90/// - For every jump add to CFGBlock destructors for objects
91///   between CFGBuilder::ScopePos and local scope position saved for jump
92///   target. Thanks to C++ restrictions on goto jumps we can be sure that
93///   jump target position will be on the path to root from CFGBuilder::ScopePos
94///   (adding any variable that doesn't need constructor to be called to
95///   LocalScope can break this assumption),
96///
97class LocalScope {
98public:
99  typedef BumpVector<VarDecl*> AutomaticVarsTy;
100
101  /// const_iterator - Iterates local scope backwards and jumps to previous
102  /// scope on reaching the beginning of currently iterated scope.
103  class const_iterator {
104    const LocalScope* Scope;
105
106    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
107    /// Invalid iterator (with null Scope) has VarIter equal to 0.
108    unsigned VarIter;
109
110  public:
111    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
112    /// Incrementing invalid iterator is allowed and will result in invalid
113    /// iterator.
114    const_iterator()
115        : Scope(NULL), VarIter(0) {}
116
117    /// Create valid iterator. In case when S.Prev is an invalid iterator and
118    /// I is equal to 0, this will create invalid iterator.
119    const_iterator(const LocalScope& S, unsigned I)
120        : Scope(&S), VarIter(I) {
121      // Iterator to "end" of scope is not allowed. Handle it by going up
122      // in scopes tree possibly up to invalid iterator in the root.
123      if (VarIter == 0 && Scope)
124        *this = Scope->Prev;
125    }
126
127    VarDecl *const* operator->() const {
128      assert (Scope && "Dereferencing invalid iterator is not allowed");
129      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
130      return &Scope->Vars[VarIter - 1];
131    }
132    VarDecl *operator*() const {
133      return *this->operator->();
134    }
135
136    const_iterator &operator++() {
137      if (!Scope)
138        return *this;
139
140      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
141      --VarIter;
142      if (VarIter == 0)
143        *this = Scope->Prev;
144      return *this;
145    }
146    const_iterator operator++(int) {
147      const_iterator P = *this;
148      ++*this;
149      return P;
150    }
151
152    bool operator==(const const_iterator &rhs) const {
153      return Scope == rhs.Scope && VarIter == rhs.VarIter;
154    }
155    bool operator!=(const const_iterator &rhs) const {
156      return !(*this == rhs);
157    }
158
159    LLVM_EXPLICIT operator bool() const {
160      return *this != const_iterator();
161    }
162
163    int distance(const_iterator L);
164  };
165
166  friend class const_iterator;
167
168private:
169  BumpVectorContext ctx;
170
171  /// Automatic variables in order of declaration.
172  AutomaticVarsTy Vars;
173  /// Iterator to variable in previous scope that was declared just before
174  /// begin of this scope.
175  const_iterator Prev;
176
177public:
178  /// Constructs empty scope linked to previous scope in specified place.
179  LocalScope(BumpVectorContext &ctx, const_iterator P)
180      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
181
182  /// Begin of scope in direction of CFG building (backwards).
183  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
184
185  void addVar(VarDecl *VD) {
186    Vars.push_back(VD, ctx);
187  }
188};
189
190/// distance - Calculates distance from this to L. L must be reachable from this
191/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
192/// number of scopes between this and L.
193int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
194  int D = 0;
195  const_iterator F = *this;
196  while (F.Scope != L.Scope) {
197    assert (F != const_iterator()
198        && "L iterator is not reachable from F iterator.");
199    D += F.VarIter;
200    F = F.Scope->Prev;
201  }
202  D += F.VarIter - L.VarIter;
203  return D;
204}
205
206/// BlockScopePosPair - Structure for specifying position in CFG during its
207/// build process. It consists of CFGBlock that specifies position in CFG graph
208/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
209struct BlockScopePosPair {
210  BlockScopePosPair() : block(0) {}
211  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
212      : block(b), scopePosition(scopePos) {}
213
214  CFGBlock *block;
215  LocalScope::const_iterator scopePosition;
216};
217
218/// TryResult - a class representing a variant over the values
219///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
220///  and is used by the CFGBuilder to decide if a branch condition
221///  can be decided up front during CFG construction.
222class TryResult {
223  int X;
224public:
225  TryResult(bool b) : X(b ? 1 : 0) {}
226  TryResult() : X(-1) {}
227
228  bool isTrue() const { return X == 1; }
229  bool isFalse() const { return X == 0; }
230  bool isKnown() const { return X >= 0; }
231  void negate() {
232    assert(isKnown());
233    X ^= 0x1;
234  }
235};
236
237class reverse_children {
238  llvm::SmallVector<Stmt *, 12> childrenBuf;
239  ArrayRef<Stmt*> children;
240public:
241  reverse_children(Stmt *S);
242
243  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
244  iterator begin() const { return children.rbegin(); }
245  iterator end() const { return children.rend(); }
246};
247
248
249reverse_children::reverse_children(Stmt *S) {
250  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
251    children = CE->getRawSubExprs();
252    return;
253  }
254  switch (S->getStmtClass()) {
255    // Note: Fill in this switch with more cases we want to optimize.
256    case Stmt::InitListExprClass: {
257      InitListExpr *IE = cast<InitListExpr>(S);
258      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
259                                    IE->getNumInits());
260      return;
261    }
262    default:
263      break;
264  }
265
266  // Default case for all other statements.
267  for (Stmt::child_range I = S->children(); I; ++I) {
268    childrenBuf.push_back(*I);
269  }
270
271  // This needs to be done *after* childrenBuf has been populated.
272  children = childrenBuf;
273}
274
275/// CFGBuilder - This class implements CFG construction from an AST.
276///   The builder is stateful: an instance of the builder should be used to only
277///   construct a single CFG.
278///
279///   Example usage:
280///
281///     CFGBuilder builder;
282///     CFG* cfg = builder.BuildAST(stmt1);
283///
284///  CFG construction is done via a recursive walk of an AST.  We actually parse
285///  the AST in reverse order so that the successor of a basic block is
286///  constructed prior to its predecessor.  This allows us to nicely capture
287///  implicit fall-throughs without extra basic blocks.
288///
289class CFGBuilder {
290  typedef BlockScopePosPair JumpTarget;
291  typedef BlockScopePosPair JumpSource;
292
293  ASTContext *Context;
294  OwningPtr<CFG> cfg;
295
296  CFGBlock *Block;
297  CFGBlock *Succ;
298  JumpTarget ContinueJumpTarget;
299  JumpTarget BreakJumpTarget;
300  CFGBlock *SwitchTerminatedBlock;
301  CFGBlock *DefaultCaseBlock;
302  CFGBlock *TryTerminatedBlock;
303
304  // Current position in local scope.
305  LocalScope::const_iterator ScopePos;
306
307  // LabelMap records the mapping from Label expressions to their jump targets.
308  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
309  LabelMapTy LabelMap;
310
311  // A list of blocks that end with a "goto" that must be backpatched to their
312  // resolved targets upon completion of CFG construction.
313  typedef std::vector<JumpSource> BackpatchBlocksTy;
314  BackpatchBlocksTy BackpatchBlocks;
315
316  // A list of labels whose address has been taken (for indirect gotos).
317  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
318  LabelSetTy AddressTakenLabels;
319
320  bool badCFG;
321  const CFG::BuildOptions &BuildOpts;
322
323  // State to track for building switch statements.
324  bool switchExclusivelyCovered;
325  Expr::EvalResult *switchCond;
326
327  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
328  const Stmt *lastLookup;
329
330  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
331  // during construction of branches for chained logical operators.
332  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
333  CachedBoolEvalsTy CachedBoolEvals;
334
335public:
336  explicit CFGBuilder(ASTContext *astContext,
337                      const CFG::BuildOptions &buildOpts)
338    : Context(astContext), cfg(new CFG()), // crew a new CFG
339      Block(NULL), Succ(NULL),
340      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
341      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
342      switchExclusivelyCovered(false), switchCond(0),
343      cachedEntry(0), lastLookup(0) {}
344
345  // buildCFG - Used by external clients to construct the CFG.
346  CFG* buildCFG(const Decl *D, Stmt *Statement);
347
348  bool alwaysAdd(const Stmt *stmt);
349
350private:
351  // Visitors to walk an AST and construct the CFG.
352  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
353  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
354  CFGBlock *VisitBreakStmt(BreakStmt *B);
355  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
356  CFGBlock *VisitCaseStmt(CaseStmt *C);
357  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
358  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
359  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
360                                     AddStmtChoice asc);
361  CFGBlock *VisitContinueStmt(ContinueStmt *C);
362  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
363                                      AddStmtChoice asc);
364  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
365  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
366  CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
367  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
368  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
369                                       AddStmtChoice asc);
370  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
371                                        AddStmtChoice asc);
372  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
373  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
374  CFGBlock *VisitDeclStmt(DeclStmt *DS);
375  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
376  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
377  CFGBlock *VisitDoStmt(DoStmt *D);
378  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
379  CFGBlock *VisitForStmt(ForStmt *F);
380  CFGBlock *VisitGotoStmt(GotoStmt *G);
381  CFGBlock *VisitIfStmt(IfStmt *I);
382  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
383  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
384  CFGBlock *VisitLabelStmt(LabelStmt *L);
385  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
386  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
387  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
388                                                         Stmt *Term,
389                                                         CFGBlock *TrueBlock,
390                                                         CFGBlock *FalseBlock);
391  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
392  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
393  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
394  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
395  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
396  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
397  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
398  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
399  CFGBlock *VisitReturnStmt(ReturnStmt *R);
400  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
401  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
402  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
403                                          AddStmtChoice asc);
404  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
405  CFGBlock *VisitWhileStmt(WhileStmt *W);
406
407  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
408  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
409  CFGBlock *VisitChildren(Stmt *S);
410  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
411
412  // Visitors to walk an AST and generate destructors of temporaries in
413  // full expression.
414  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
415  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
416  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
417  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
418      bool BindToTemporary);
419  CFGBlock *
420  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
421                                            bool BindToTemporary);
422
423  // NYS == Not Yet Supported
424  CFGBlock *NYS() {
425    badCFG = true;
426    return Block;
427  }
428
429  void autoCreateBlock() { if (!Block) Block = createBlock(); }
430  CFGBlock *createBlock(bool add_successor = true);
431  CFGBlock *createNoReturnBlock();
432
433  CFGBlock *addStmt(Stmt *S) {
434    return Visit(S, AddStmtChoice::AlwaysAdd);
435  }
436  CFGBlock *addInitializer(CXXCtorInitializer *I);
437  void addAutomaticObjDtors(LocalScope::const_iterator B,
438                            LocalScope::const_iterator E, Stmt *S);
439  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
440
441  // Local scopes creation.
442  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
443
444  void addLocalScopeForStmt(Stmt *S);
445  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
446  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
447
448  void addLocalScopeAndDtors(Stmt *S);
449
450  // Interface to CFGBlock - adding CFGElements.
451  void appendStmt(CFGBlock *B, const Stmt *S) {
452    if (alwaysAdd(S) && cachedEntry)
453      cachedEntry->second = B;
454
455    // All block-level expressions should have already been IgnoreParens()ed.
456    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
457    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
458  }
459  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
460    B->appendInitializer(I, cfg->getBumpVectorContext());
461  }
462  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
463    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
464  }
465  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
466    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
467  }
468  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
469    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
470  }
471  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
472    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
473  }
474
475  void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
476    B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
477  }
478
479  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
480      LocalScope::const_iterator B, LocalScope::const_iterator E);
481
482  void addSuccessor(CFGBlock *B, CFGBlock *S) {
483    B->addSuccessor(S, cfg->getBumpVectorContext());
484  }
485
486  /// Try and evaluate an expression to an integer constant.
487  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
488    if (!BuildOpts.PruneTriviallyFalseEdges)
489      return false;
490    return !S->isTypeDependent() &&
491           !S->isValueDependent() &&
492           S->EvaluateAsRValue(outResult, *Context);
493  }
494
495  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
496  /// if we can evaluate to a known value, otherwise return -1.
497  TryResult tryEvaluateBool(Expr *S) {
498    if (!BuildOpts.PruneTriviallyFalseEdges ||
499        S->isTypeDependent() || S->isValueDependent())
500      return TryResult();
501
502    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
503      if (Bop->isLogicalOp()) {
504        // Check the cache first.
505        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
506        if (I != CachedBoolEvals.end())
507          return I->second; // already in map;
508
509        // Retrieve result at first, or the map might be updated.
510        TryResult Result = evaluateAsBooleanConditionNoCache(S);
511        CachedBoolEvals[S] = Result; // update or insert
512        return Result;
513      }
514      else {
515        switch (Bop->getOpcode()) {
516          default: break;
517          // For 'x & 0' and 'x * 0', we can determine that
518          // the value is always false.
519          case BO_Mul:
520          case BO_And: {
521            // If either operand is zero, we know the value
522            // must be false.
523            llvm::APSInt IntVal;
524            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
525              if (IntVal.getBoolValue() == false) {
526                return TryResult(false);
527              }
528            }
529            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
530              if (IntVal.getBoolValue() == false) {
531                return TryResult(false);
532              }
533            }
534          }
535          break;
536        }
537      }
538    }
539
540    return evaluateAsBooleanConditionNoCache(S);
541  }
542
543  /// \brief Evaluate as boolean \param E without using the cache.
544  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
545    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
546      if (Bop->isLogicalOp()) {
547        TryResult LHS = tryEvaluateBool(Bop->getLHS());
548        if (LHS.isKnown()) {
549          // We were able to evaluate the LHS, see if we can get away with not
550          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
551          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
552            return LHS.isTrue();
553
554          TryResult RHS = tryEvaluateBool(Bop->getRHS());
555          if (RHS.isKnown()) {
556            if (Bop->getOpcode() == BO_LOr)
557              return LHS.isTrue() || RHS.isTrue();
558            else
559              return LHS.isTrue() && RHS.isTrue();
560          }
561        } else {
562          TryResult RHS = tryEvaluateBool(Bop->getRHS());
563          if (RHS.isKnown()) {
564            // We can't evaluate the LHS; however, sometimes the result
565            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
566            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
567              return RHS.isTrue();
568          }
569        }
570
571        return TryResult();
572      }
573    }
574
575    bool Result;
576    if (E->EvaluateAsBooleanCondition(Result, *Context))
577      return Result;
578
579    return TryResult();
580  }
581
582};
583
584inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
585                                     const Stmt *stmt) const {
586  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
587}
588
589bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
590  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
591
592  if (!BuildOpts.forcedBlkExprs)
593    return shouldAdd;
594
595  if (lastLookup == stmt) {
596    if (cachedEntry) {
597      assert(cachedEntry->first == stmt);
598      return true;
599    }
600    return shouldAdd;
601  }
602
603  lastLookup = stmt;
604
605  // Perform the lookup!
606  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
607
608  if (!fb) {
609    // No need to update 'cachedEntry', since it will always be null.
610    assert(cachedEntry == 0);
611    return shouldAdd;
612  }
613
614  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
615  if (itr == fb->end()) {
616    cachedEntry = 0;
617    return shouldAdd;
618  }
619
620  cachedEntry = &*itr;
621  return true;
622}
623
624// FIXME: Add support for dependent-sized array types in C++?
625// Does it even make sense to build a CFG for an uninstantiated template?
626static const VariableArrayType *FindVA(const Type *t) {
627  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
628    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
629      if (vat->getSizeExpr())
630        return vat;
631
632    t = vt->getElementType().getTypePtr();
633  }
634
635  return 0;
636}
637
638/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
639///  arbitrary statement.  Examples include a single expression or a function
640///  body (compound statement).  The ownership of the returned CFG is
641///  transferred to the caller.  If CFG construction fails, this method returns
642///  NULL.
643CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
644  assert(cfg.get());
645  if (!Statement)
646    return NULL;
647
648  // Create an empty block that will serve as the exit block for the CFG.  Since
649  // this is the first block added to the CFG, it will be implicitly registered
650  // as the exit block.
651  Succ = createBlock();
652  assert(Succ == &cfg->getExit());
653  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
654
655  if (BuildOpts.AddImplicitDtors)
656    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
657      addImplicitDtorsForDestructor(DD);
658
659  // Visit the statements and create the CFG.
660  CFGBlock *B = addStmt(Statement);
661
662  if (badCFG)
663    return NULL;
664
665  // For C++ constructor add initializers to CFG.
666  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
667    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
668        E = CD->init_rend(); I != E; ++I) {
669      B = addInitializer(*I);
670      if (badCFG)
671        return NULL;
672    }
673  }
674
675  if (B)
676    Succ = B;
677
678  // Backpatch the gotos whose label -> block mappings we didn't know when we
679  // encountered them.
680  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
681                                   E = BackpatchBlocks.end(); I != E; ++I ) {
682
683    CFGBlock *B = I->block;
684    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
685    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
686
687    // If there is no target for the goto, then we are looking at an
688    // incomplete AST.  Handle this by not registering a successor.
689    if (LI == LabelMap.end()) continue;
690
691    JumpTarget JT = LI->second;
692    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
693                                           JT.scopePosition);
694    addSuccessor(B, JT.block);
695  }
696
697  // Add successors to the Indirect Goto Dispatch block (if we have one).
698  if (CFGBlock *B = cfg->getIndirectGotoBlock())
699    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
700                              E = AddressTakenLabels.end(); I != E; ++I ) {
701
702      // Lookup the target block.
703      LabelMapTy::iterator LI = LabelMap.find(*I);
704
705      // If there is no target block that contains label, then we are looking
706      // at an incomplete AST.  Handle this by not registering a successor.
707      if (LI == LabelMap.end()) continue;
708
709      addSuccessor(B, LI->second.block);
710    }
711
712  // Create an empty entry block that has no predecessors.
713  cfg->setEntry(createBlock());
714
715  return cfg.take();
716}
717
718/// createBlock - Used to lazily create blocks that are connected
719///  to the current (global) succcessor.
720CFGBlock *CFGBuilder::createBlock(bool add_successor) {
721  CFGBlock *B = cfg->createBlock();
722  if (add_successor && Succ)
723    addSuccessor(B, Succ);
724  return B;
725}
726
727/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
728/// CFG. It is *not* connected to the current (global) successor, and instead
729/// directly tied to the exit block in order to be reachable.
730CFGBlock *CFGBuilder::createNoReturnBlock() {
731  CFGBlock *B = createBlock(false);
732  B->setHasNoReturnElement();
733  addSuccessor(B, &cfg->getExit());
734  return B;
735}
736
737/// addInitializer - Add C++ base or member initializer element to CFG.
738CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
739  if (!BuildOpts.AddInitializers)
740    return Block;
741
742  bool IsReference = false;
743  bool HasTemporaries = false;
744
745  // Destructors of temporaries in initialization expression should be called
746  // after initialization finishes.
747  Expr *Init = I->getInit();
748  if (Init) {
749    if (FieldDecl *FD = I->getAnyMember())
750      IsReference = FD->getType()->isReferenceType();
751    HasTemporaries = isa<ExprWithCleanups>(Init);
752
753    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
754      // Generate destructors for temporaries in initialization expression.
755      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
756          IsReference);
757    }
758  }
759
760  autoCreateBlock();
761  appendInitializer(Block, I);
762
763  if (Init) {
764    if (HasTemporaries) {
765      // For expression with temporaries go directly to subexpression to omit
766      // generating destructors for the second time.
767      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
768    }
769    return Visit(Init);
770  }
771
772  return Block;
773}
774
775/// \brief Retrieve the type of the temporary object whose lifetime was
776/// extended by a local reference with the given initializer.
777static QualType getReferenceInitTemporaryType(ASTContext &Context,
778                                              const Expr *Init) {
779  while (true) {
780    // Skip parentheses.
781    Init = Init->IgnoreParens();
782
783    // Skip through cleanups.
784    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
785      Init = EWC->getSubExpr();
786      continue;
787    }
788
789    // Skip through the temporary-materialization expression.
790    if (const MaterializeTemporaryExpr *MTE
791          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
792      Init = MTE->GetTemporaryExpr();
793      continue;
794    }
795
796    // Skip derived-to-base and no-op casts.
797    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
798      if ((CE->getCastKind() == CK_DerivedToBase ||
799           CE->getCastKind() == CK_UncheckedDerivedToBase ||
800           CE->getCastKind() == CK_NoOp) &&
801          Init->getType()->isRecordType()) {
802        Init = CE->getSubExpr();
803        continue;
804      }
805    }
806
807    // Skip member accesses into rvalues.
808    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
809      if (!ME->isArrow() && ME->getBase()->isRValue()) {
810        Init = ME->getBase();
811        continue;
812      }
813    }
814
815    break;
816  }
817
818  return Init->getType();
819}
820
821/// addAutomaticObjDtors - Add to current block automatic objects destructors
822/// for objects in range of local scope positions. Use S as trigger statement
823/// for destructors.
824void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
825                                      LocalScope::const_iterator E, Stmt *S) {
826  if (!BuildOpts.AddImplicitDtors)
827    return;
828
829  if (B == E)
830    return;
831
832  // We need to append the destructors in reverse order, but any one of them
833  // may be a no-return destructor which changes the CFG. As a result, buffer
834  // this sequence up and replay them in reverse order when appending onto the
835  // CFGBlock(s).
836  SmallVector<VarDecl*, 10> Decls;
837  Decls.reserve(B.distance(E));
838  for (LocalScope::const_iterator I = B; I != E; ++I)
839    Decls.push_back(*I);
840
841  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
842                                                   E = Decls.rend();
843       I != E; ++I) {
844    // If this destructor is marked as a no-return destructor, we need to
845    // create a new block for the destructor which does not have as a successor
846    // anything built thus far: control won't flow out of this block.
847    QualType Ty = (*I)->getType();
848    if (Ty->isReferenceType()) {
849      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
850    }
851    Ty = Context->getBaseElementType(Ty);
852
853    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
854    if (Dtor->isNoReturn())
855      Block = createNoReturnBlock();
856    else
857      autoCreateBlock();
858
859    appendAutomaticObjDtor(Block, *I, S);
860  }
861}
862
863/// addImplicitDtorsForDestructor - Add implicit destructors generated for
864/// base and member objects in destructor.
865void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
866  assert (BuildOpts.AddImplicitDtors
867      && "Can be called only when dtors should be added");
868  const CXXRecordDecl *RD = DD->getParent();
869
870  // At the end destroy virtual base objects.
871  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
872      VE = RD->vbases_end(); VI != VE; ++VI) {
873    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
874    if (!CD->hasTrivialDestructor()) {
875      autoCreateBlock();
876      appendBaseDtor(Block, VI);
877    }
878  }
879
880  // Before virtual bases destroy direct base objects.
881  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
882      BE = RD->bases_end(); BI != BE; ++BI) {
883    if (!BI->isVirtual()) {
884      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
885      if (!CD->hasTrivialDestructor()) {
886        autoCreateBlock();
887        appendBaseDtor(Block, BI);
888      }
889    }
890  }
891
892  // First destroy member objects.
893  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
894      FE = RD->field_end(); FI != FE; ++FI) {
895    // Check for constant size array. Set type to array element type.
896    QualType QT = FI->getType();
897    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
898      if (AT->getSize() == 0)
899        continue;
900      QT = AT->getElementType();
901    }
902
903    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
904      if (!CD->hasTrivialDestructor()) {
905        autoCreateBlock();
906        appendMemberDtor(Block, *FI);
907      }
908  }
909}
910
911/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
912/// way return valid LocalScope object.
913LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
914  if (!Scope) {
915    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
916    Scope = alloc.Allocate<LocalScope>();
917    BumpVectorContext ctx(alloc);
918    new (Scope) LocalScope(ctx, ScopePos);
919  }
920  return Scope;
921}
922
923/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
924/// that should create implicit scope (e.g. if/else substatements).
925void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
926  if (!BuildOpts.AddImplicitDtors)
927    return;
928
929  LocalScope *Scope = 0;
930
931  // For compound statement we will be creating explicit scope.
932  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
933    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
934        ; BI != BE; ++BI) {
935      Stmt *SI = (*BI)->stripLabelLikeStatements();
936      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
937        Scope = addLocalScopeForDeclStmt(DS, Scope);
938    }
939    return;
940  }
941
942  // For any other statement scope will be implicit and as such will be
943  // interesting only for DeclStmt.
944  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
945    addLocalScopeForDeclStmt(DS);
946}
947
948/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
949/// reuse Scope if not NULL.
950LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
951                                                 LocalScope* Scope) {
952  if (!BuildOpts.AddImplicitDtors)
953    return Scope;
954
955  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
956      ; DI != DE; ++DI) {
957    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
958      Scope = addLocalScopeForVarDecl(VD, Scope);
959  }
960  return Scope;
961}
962
963/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
964/// create add scope for automatic objects and temporary objects bound to
965/// const reference. Will reuse Scope if not NULL.
966LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
967                                                LocalScope* Scope) {
968  if (!BuildOpts.AddImplicitDtors)
969    return Scope;
970
971  // Check if variable is local.
972  switch (VD->getStorageClass()) {
973  case SC_None:
974  case SC_Auto:
975  case SC_Register:
976    break;
977  default: return Scope;
978  }
979
980  // Check for const references bound to temporary. Set type to pointee.
981  QualType QT = VD->getType();
982  if (QT.getTypePtr()->isReferenceType()) {
983    // Attempt to determine whether this declaration lifetime-extends a
984    // temporary.
985    //
986    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
987    // temporaries, and a single declaration can extend multiple temporaries.
988    // We should look at the storage duration on each nested
989    // MaterializeTemporaryExpr instead.
990    const Expr *Init = VD->getInit();
991    if (!Init)
992      return Scope;
993    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
994      Init = EWC->getSubExpr();
995    if (!isa<MaterializeTemporaryExpr>(Init))
996      return Scope;
997
998    // Lifetime-extending a temporary.
999    QT = getReferenceInitTemporaryType(*Context, Init);
1000  }
1001
1002  // Check for constant size array. Set type to array element type.
1003  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1004    if (AT->getSize() == 0)
1005      return Scope;
1006    QT = AT->getElementType();
1007  }
1008
1009  // Check if type is a C++ class with non-trivial destructor.
1010  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1011    if (!CD->hasTrivialDestructor()) {
1012      // Add the variable to scope
1013      Scope = createOrReuseLocalScope(Scope);
1014      Scope->addVar(VD);
1015      ScopePos = Scope->begin();
1016    }
1017  return Scope;
1018}
1019
1020/// addLocalScopeAndDtors - For given statement add local scope for it and
1021/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1022void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1023  if (!BuildOpts.AddImplicitDtors)
1024    return;
1025
1026  LocalScope::const_iterator scopeBeginPos = ScopePos;
1027  addLocalScopeForStmt(S);
1028  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1029}
1030
1031/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1032/// variables with automatic storage duration to CFGBlock's elements vector.
1033/// Elements will be prepended to physical beginning of the vector which
1034/// happens to be logical end. Use blocks terminator as statement that specifies
1035/// destructors call site.
1036/// FIXME: This mechanism for adding automatic destructors doesn't handle
1037/// no-return destructors properly.
1038void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1039    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1040  BumpVectorContext &C = cfg->getBumpVectorContext();
1041  CFGBlock::iterator InsertPos
1042    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1043  for (LocalScope::const_iterator I = B; I != E; ++I)
1044    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1045                                            Blk->getTerminator());
1046}
1047
1048/// Visit - Walk the subtree of a statement and add extra
1049///   blocks for ternary operators, &&, and ||.  We also process "," and
1050///   DeclStmts (which may contain nested control-flow).
1051CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1052  if (!S) {
1053    badCFG = true;
1054    return 0;
1055  }
1056
1057  if (Expr *E = dyn_cast<Expr>(S))
1058    S = E->IgnoreParens();
1059
1060  switch (S->getStmtClass()) {
1061    default:
1062      return VisitStmt(S, asc);
1063
1064    case Stmt::AddrLabelExprClass:
1065      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1066
1067    case Stmt::BinaryConditionalOperatorClass:
1068      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1069
1070    case Stmt::BinaryOperatorClass:
1071      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1072
1073    case Stmt::BlockExprClass:
1074      return VisitNoRecurse(cast<Expr>(S), asc);
1075
1076    case Stmt::BreakStmtClass:
1077      return VisitBreakStmt(cast<BreakStmt>(S));
1078
1079    case Stmt::CallExprClass:
1080    case Stmt::CXXOperatorCallExprClass:
1081    case Stmt::CXXMemberCallExprClass:
1082    case Stmt::UserDefinedLiteralClass:
1083      return VisitCallExpr(cast<CallExpr>(S), asc);
1084
1085    case Stmt::CaseStmtClass:
1086      return VisitCaseStmt(cast<CaseStmt>(S));
1087
1088    case Stmt::ChooseExprClass:
1089      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1090
1091    case Stmt::CompoundStmtClass:
1092      return VisitCompoundStmt(cast<CompoundStmt>(S));
1093
1094    case Stmt::ConditionalOperatorClass:
1095      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1096
1097    case Stmt::ContinueStmtClass:
1098      return VisitContinueStmt(cast<ContinueStmt>(S));
1099
1100    case Stmt::CXXCatchStmtClass:
1101      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1102
1103    case Stmt::ExprWithCleanupsClass:
1104      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1105
1106    case Stmt::CXXDefaultArgExprClass:
1107    case Stmt::CXXDefaultInitExprClass:
1108      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1109      // called function's declaration, not by the caller. If we simply add
1110      // this expression to the CFG, we could end up with the same Expr
1111      // appearing multiple times.
1112      // PR13385 / <rdar://problem/12156507>
1113      //
1114      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1115      // expression to be used in the same function (through aggregate
1116      // initialization).
1117      return VisitStmt(S, asc);
1118
1119    case Stmt::CXXBindTemporaryExprClass:
1120      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1121
1122    case Stmt::CXXConstructExprClass:
1123      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1124
1125    case Stmt::CXXDeleteExprClass:
1126      return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
1127
1128    case Stmt::CXXFunctionalCastExprClass:
1129      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1130
1131    case Stmt::CXXTemporaryObjectExprClass:
1132      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1133
1134    case Stmt::CXXThrowExprClass:
1135      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1136
1137    case Stmt::CXXTryStmtClass:
1138      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1139
1140    case Stmt::CXXForRangeStmtClass:
1141      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1142
1143    case Stmt::DeclStmtClass:
1144      return VisitDeclStmt(cast<DeclStmt>(S));
1145
1146    case Stmt::DefaultStmtClass:
1147      return VisitDefaultStmt(cast<DefaultStmt>(S));
1148
1149    case Stmt::DoStmtClass:
1150      return VisitDoStmt(cast<DoStmt>(S));
1151
1152    case Stmt::ForStmtClass:
1153      return VisitForStmt(cast<ForStmt>(S));
1154
1155    case Stmt::GotoStmtClass:
1156      return VisitGotoStmt(cast<GotoStmt>(S));
1157
1158    case Stmt::IfStmtClass:
1159      return VisitIfStmt(cast<IfStmt>(S));
1160
1161    case Stmt::ImplicitCastExprClass:
1162      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1163
1164    case Stmt::IndirectGotoStmtClass:
1165      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1166
1167    case Stmt::LabelStmtClass:
1168      return VisitLabelStmt(cast<LabelStmt>(S));
1169
1170    case Stmt::LambdaExprClass:
1171      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1172
1173    case Stmt::MemberExprClass:
1174      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1175
1176    case Stmt::NullStmtClass:
1177      return Block;
1178
1179    case Stmt::ObjCAtCatchStmtClass:
1180      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1181
1182    case Stmt::ObjCAutoreleasePoolStmtClass:
1183    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1184
1185    case Stmt::ObjCAtSynchronizedStmtClass:
1186      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1187
1188    case Stmt::ObjCAtThrowStmtClass:
1189      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1190
1191    case Stmt::ObjCAtTryStmtClass:
1192      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1193
1194    case Stmt::ObjCForCollectionStmtClass:
1195      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1196
1197    case Stmt::OpaqueValueExprClass:
1198      return Block;
1199
1200    case Stmt::PseudoObjectExprClass:
1201      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1202
1203    case Stmt::ReturnStmtClass:
1204      return VisitReturnStmt(cast<ReturnStmt>(S));
1205
1206    case Stmt::UnaryExprOrTypeTraitExprClass:
1207      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1208                                           asc);
1209
1210    case Stmt::StmtExprClass:
1211      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1212
1213    case Stmt::SwitchStmtClass:
1214      return VisitSwitchStmt(cast<SwitchStmt>(S));
1215
1216    case Stmt::UnaryOperatorClass:
1217      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1218
1219    case Stmt::WhileStmtClass:
1220      return VisitWhileStmt(cast<WhileStmt>(S));
1221  }
1222}
1223
1224CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1225  if (asc.alwaysAdd(*this, S)) {
1226    autoCreateBlock();
1227    appendStmt(Block, S);
1228  }
1229
1230  return VisitChildren(S);
1231}
1232
1233/// VisitChildren - Visit the children of a Stmt.
1234CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1235  CFGBlock *B = Block;
1236
1237  // Visit the children in their reverse order so that they appear in
1238  // left-to-right (natural) order in the CFG.
1239  reverse_children RChildren(S);
1240  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1241       I != E; ++I) {
1242    if (Stmt *Child = *I)
1243      if (CFGBlock *R = Visit(Child))
1244        B = R;
1245  }
1246  return B;
1247}
1248
1249CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1250                                         AddStmtChoice asc) {
1251  AddressTakenLabels.insert(A->getLabel());
1252
1253  if (asc.alwaysAdd(*this, A)) {
1254    autoCreateBlock();
1255    appendStmt(Block, A);
1256  }
1257
1258  return Block;
1259}
1260
1261CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1262           AddStmtChoice asc) {
1263  if (asc.alwaysAdd(*this, U)) {
1264    autoCreateBlock();
1265    appendStmt(Block, U);
1266  }
1267
1268  return Visit(U->getSubExpr(), AddStmtChoice());
1269}
1270
1271CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1272  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1273  appendStmt(ConfluenceBlock, B);
1274
1275  if (badCFG)
1276    return 0;
1277
1278  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1279}
1280
1281std::pair<CFGBlock*, CFGBlock*>
1282CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1283                                 Stmt *Term,
1284                                 CFGBlock *TrueBlock,
1285                                 CFGBlock *FalseBlock) {
1286
1287  // Introspect the RHS.  If it is a nested logical operation, we recursively
1288  // build the CFG using this function.  Otherwise, resort to default
1289  // CFG construction behavior.
1290  Expr *RHS = B->getRHS()->IgnoreParens();
1291  CFGBlock *RHSBlock, *ExitBlock;
1292
1293  do {
1294    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1295      if (B_RHS->isLogicalOp()) {
1296        llvm::tie(RHSBlock, ExitBlock) =
1297          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1298        break;
1299      }
1300
1301    // The RHS is not a nested logical operation.  Don't push the terminator
1302    // down further, but instead visit RHS and construct the respective
1303    // pieces of the CFG, and link up the RHSBlock with the terminator
1304    // we have been provided.
1305    ExitBlock = RHSBlock = createBlock(false);
1306
1307    if (!Term) {
1308      assert(TrueBlock == FalseBlock);
1309      addSuccessor(RHSBlock, TrueBlock);
1310    }
1311    else {
1312      RHSBlock->setTerminator(Term);
1313      TryResult KnownVal = tryEvaluateBool(RHS);
1314      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1315      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1316    }
1317
1318    Block = RHSBlock;
1319    RHSBlock = addStmt(RHS);
1320  }
1321  while (false);
1322
1323  if (badCFG)
1324    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1325
1326  // Generate the blocks for evaluating the LHS.
1327  Expr *LHS = B->getLHS()->IgnoreParens();
1328
1329  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1330    if (B_LHS->isLogicalOp()) {
1331      if (B->getOpcode() == BO_LOr)
1332        FalseBlock = RHSBlock;
1333      else
1334        TrueBlock = RHSBlock;
1335
1336      // For the LHS, treat 'B' as the terminator that we want to sink
1337      // into the nested branch.  The RHS always gets the top-most
1338      // terminator.
1339      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1340    }
1341
1342  // Create the block evaluating the LHS.
1343  // This contains the '&&' or '||' as the terminator.
1344  CFGBlock *LHSBlock = createBlock(false);
1345  LHSBlock->setTerminator(B);
1346
1347  Block = LHSBlock;
1348  CFGBlock *EntryLHSBlock = addStmt(LHS);
1349
1350  if (badCFG)
1351    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1352
1353  // See if this is a known constant.
1354  TryResult KnownVal = tryEvaluateBool(LHS);
1355
1356  // Now link the LHSBlock with RHSBlock.
1357  if (B->getOpcode() == BO_LOr) {
1358    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1359    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1360  } else {
1361    assert(B->getOpcode() == BO_LAnd);
1362    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1363    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1364  }
1365
1366  return std::make_pair(EntryLHSBlock, ExitBlock);
1367}
1368
1369
1370CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1371                                          AddStmtChoice asc) {
1372   // && or ||
1373  if (B->isLogicalOp())
1374    return VisitLogicalOperator(B);
1375
1376  if (B->getOpcode() == BO_Comma) { // ,
1377    autoCreateBlock();
1378    appendStmt(Block, B);
1379    addStmt(B->getRHS());
1380    return addStmt(B->getLHS());
1381  }
1382
1383  if (B->isAssignmentOp()) {
1384    if (asc.alwaysAdd(*this, B)) {
1385      autoCreateBlock();
1386      appendStmt(Block, B);
1387    }
1388    Visit(B->getLHS());
1389    return Visit(B->getRHS());
1390  }
1391
1392  if (asc.alwaysAdd(*this, B)) {
1393    autoCreateBlock();
1394    appendStmt(Block, B);
1395  }
1396
1397  CFGBlock *RBlock = Visit(B->getRHS());
1398  CFGBlock *LBlock = Visit(B->getLHS());
1399  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1400  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1401  // return RBlock.  Otherwise we'll incorrectly return NULL.
1402  return (LBlock ? LBlock : RBlock);
1403}
1404
1405CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1406  if (asc.alwaysAdd(*this, E)) {
1407    autoCreateBlock();
1408    appendStmt(Block, E);
1409  }
1410  return Block;
1411}
1412
1413CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1414  // "break" is a control-flow statement.  Thus we stop processing the current
1415  // block.
1416  if (badCFG)
1417    return 0;
1418
1419  // Now create a new block that ends with the break statement.
1420  Block = createBlock(false);
1421  Block->setTerminator(B);
1422
1423  // If there is no target for the break, then we are looking at an incomplete
1424  // AST.  This means that the CFG cannot be constructed.
1425  if (BreakJumpTarget.block) {
1426    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1427    addSuccessor(Block, BreakJumpTarget.block);
1428  } else
1429    badCFG = true;
1430
1431
1432  return Block;
1433}
1434
1435static bool CanThrow(Expr *E, ASTContext &Ctx) {
1436  QualType Ty = E->getType();
1437  if (Ty->isFunctionPointerType())
1438    Ty = Ty->getAs<PointerType>()->getPointeeType();
1439  else if (Ty->isBlockPointerType())
1440    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1441
1442  const FunctionType *FT = Ty->getAs<FunctionType>();
1443  if (FT) {
1444    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1445      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1446          Proto->isNothrow(Ctx))
1447        return false;
1448  }
1449  return true;
1450}
1451
1452CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1453  // Compute the callee type.
1454  QualType calleeType = C->getCallee()->getType();
1455  if (calleeType == Context->BoundMemberTy) {
1456    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1457
1458    // We should only get a null bound type if processing a dependent
1459    // CFG.  Recover by assuming nothing.
1460    if (!boundType.isNull()) calleeType = boundType;
1461  }
1462
1463  // If this is a call to a no-return function, this stops the block here.
1464  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1465
1466  bool AddEHEdge = false;
1467
1468  // Languages without exceptions are assumed to not throw.
1469  if (Context->getLangOpts().Exceptions) {
1470    if (BuildOpts.AddEHEdges)
1471      AddEHEdge = true;
1472  }
1473
1474  // If this is a call to a builtin function, it might not actually evaluate
1475  // its arguments. Don't add them to the CFG if this is the case.
1476  bool OmitArguments = false;
1477
1478  if (FunctionDecl *FD = C->getDirectCallee()) {
1479    if (FD->isNoReturn())
1480      NoReturn = true;
1481    if (FD->hasAttr<NoThrowAttr>())
1482      AddEHEdge = false;
1483    if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1484      OmitArguments = true;
1485  }
1486
1487  if (!CanThrow(C->getCallee(), *Context))
1488    AddEHEdge = false;
1489
1490  if (OmitArguments) {
1491    assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1492    assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1493    autoCreateBlock();
1494    appendStmt(Block, C);
1495    return Visit(C->getCallee());
1496  }
1497
1498  if (!NoReturn && !AddEHEdge) {
1499    return VisitStmt(C, asc.withAlwaysAdd(true));
1500  }
1501
1502  if (Block) {
1503    Succ = Block;
1504    if (badCFG)
1505      return 0;
1506  }
1507
1508  if (NoReturn)
1509    Block = createNoReturnBlock();
1510  else
1511    Block = createBlock();
1512
1513  appendStmt(Block, C);
1514
1515  if (AddEHEdge) {
1516    // Add exceptional edges.
1517    if (TryTerminatedBlock)
1518      addSuccessor(Block, TryTerminatedBlock);
1519    else
1520      addSuccessor(Block, &cfg->getExit());
1521  }
1522
1523  return VisitChildren(C);
1524}
1525
1526CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1527                                      AddStmtChoice asc) {
1528  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1529  appendStmt(ConfluenceBlock, C);
1530  if (badCFG)
1531    return 0;
1532
1533  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1534  Succ = ConfluenceBlock;
1535  Block = NULL;
1536  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1537  if (badCFG)
1538    return 0;
1539
1540  Succ = ConfluenceBlock;
1541  Block = NULL;
1542  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1543  if (badCFG)
1544    return 0;
1545
1546  Block = createBlock(false);
1547  // See if this is a known constant.
1548  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1549  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1550  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1551  Block->setTerminator(C);
1552  return addStmt(C->getCond());
1553}
1554
1555
1556CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1557  addLocalScopeAndDtors(C);
1558  CFGBlock *LastBlock = Block;
1559
1560  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1561       I != E; ++I ) {
1562    // If we hit a segment of code just containing ';' (NullStmts), we can
1563    // get a null block back.  In such cases, just use the LastBlock
1564    if (CFGBlock *newBlock = addStmt(*I))
1565      LastBlock = newBlock;
1566
1567    if (badCFG)
1568      return NULL;
1569  }
1570
1571  return LastBlock;
1572}
1573
1574CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1575                                               AddStmtChoice asc) {
1576  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1577  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1578
1579  // Create the confluence block that will "merge" the results of the ternary
1580  // expression.
1581  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1582  appendStmt(ConfluenceBlock, C);
1583  if (badCFG)
1584    return 0;
1585
1586  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1587
1588  // Create a block for the LHS expression if there is an LHS expression.  A
1589  // GCC extension allows LHS to be NULL, causing the condition to be the
1590  // value that is returned instead.
1591  //  e.g: x ?: y is shorthand for: x ? x : y;
1592  Succ = ConfluenceBlock;
1593  Block = NULL;
1594  CFGBlock *LHSBlock = 0;
1595  const Expr *trueExpr = C->getTrueExpr();
1596  if (trueExpr != opaqueValue) {
1597    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1598    if (badCFG)
1599      return 0;
1600    Block = NULL;
1601  }
1602  else
1603    LHSBlock = ConfluenceBlock;
1604
1605  // Create the block for the RHS expression.
1606  Succ = ConfluenceBlock;
1607  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1608  if (badCFG)
1609    return 0;
1610
1611  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1612  if (BinaryOperator *Cond =
1613        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1614    if (Cond->isLogicalOp())
1615      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1616
1617  // Create the block that will contain the condition.
1618  Block = createBlock(false);
1619
1620  // See if this is a known constant.
1621  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1622  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1623  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1624  Block->setTerminator(C);
1625  Expr *condExpr = C->getCond();
1626
1627  if (opaqueValue) {
1628    // Run the condition expression if it's not trivially expressed in
1629    // terms of the opaque value (or if there is no opaque value).
1630    if (condExpr != opaqueValue)
1631      addStmt(condExpr);
1632
1633    // Before that, run the common subexpression if there was one.
1634    // At least one of this or the above will be run.
1635    return addStmt(BCO->getCommon());
1636  }
1637
1638  return addStmt(condExpr);
1639}
1640
1641CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1642  // Check if the Decl is for an __label__.  If so, elide it from the
1643  // CFG entirely.
1644  if (isa<LabelDecl>(*DS->decl_begin()))
1645    return Block;
1646
1647  // This case also handles static_asserts.
1648  if (DS->isSingleDecl())
1649    return VisitDeclSubExpr(DS);
1650
1651  CFGBlock *B = 0;
1652
1653  // Build an individual DeclStmt for each decl.
1654  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1655                                       E = DS->decl_rend();
1656       I != E; ++I) {
1657    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1658    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1659               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1660
1661    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1662    // automatically freed with the CFG.
1663    DeclGroupRef DG(*I);
1664    Decl *D = *I;
1665    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1666    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1667    cfg->addSyntheticDeclStmt(DSNew, DS);
1668
1669    // Append the fake DeclStmt to block.
1670    B = VisitDeclSubExpr(DSNew);
1671  }
1672
1673  return B;
1674}
1675
1676/// VisitDeclSubExpr - Utility method to add block-level expressions for
1677/// DeclStmts and initializers in them.
1678CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1679  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1680  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1681
1682  if (!VD) {
1683    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1684    // runtime semantics.
1685    return Block;
1686  }
1687
1688  bool IsReference = false;
1689  bool HasTemporaries = false;
1690
1691  // Guard static initializers under a branch.
1692  CFGBlock *blockAfterStaticInit = 0;
1693
1694  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1695    // For static variables, we need to create a branch to track
1696    // whether or not they are initialized.
1697    if (Block) {
1698      Succ = Block;
1699      Block = 0;
1700      if (badCFG)
1701        return 0;
1702    }
1703    blockAfterStaticInit = Succ;
1704  }
1705
1706  // Destructors of temporaries in initialization expression should be called
1707  // after initialization finishes.
1708  Expr *Init = VD->getInit();
1709  if (Init) {
1710    IsReference = VD->getType()->isReferenceType();
1711    HasTemporaries = isa<ExprWithCleanups>(Init);
1712
1713    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1714      // Generate destructors for temporaries in initialization expression.
1715      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1716          IsReference);
1717    }
1718  }
1719
1720  autoCreateBlock();
1721  appendStmt(Block, DS);
1722
1723  // Keep track of the last non-null block, as 'Block' can be nulled out
1724  // if the initializer expression is something like a 'while' in a
1725  // statement-expression.
1726  CFGBlock *LastBlock = Block;
1727
1728  if (Init) {
1729    if (HasTemporaries) {
1730      // For expression with temporaries go directly to subexpression to omit
1731      // generating destructors for the second time.
1732      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1733      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1734        LastBlock = newBlock;
1735    }
1736    else {
1737      if (CFGBlock *newBlock = Visit(Init))
1738        LastBlock = newBlock;
1739    }
1740  }
1741
1742  // If the type of VD is a VLA, then we must process its size expressions.
1743  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1744       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1745    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1746      LastBlock = newBlock;
1747  }
1748
1749  // Remove variable from local scope.
1750  if (ScopePos && VD == *ScopePos)
1751    ++ScopePos;
1752
1753  CFGBlock *B = LastBlock;
1754  if (blockAfterStaticInit) {
1755    Succ = B;
1756    Block = createBlock(false);
1757    Block->setTerminator(DS);
1758    addSuccessor(Block, blockAfterStaticInit);
1759    addSuccessor(Block, B);
1760    B = Block;
1761  }
1762
1763  return B;
1764}
1765
1766CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1767  // We may see an if statement in the middle of a basic block, or it may be the
1768  // first statement we are processing.  In either case, we create a new basic
1769  // block.  First, we create the blocks for the then...else statements, and
1770  // then we create the block containing the if statement.  If we were in the
1771  // middle of a block, we stop processing that block.  That block is then the
1772  // implicit successor for the "then" and "else" clauses.
1773
1774  // Save local scope position because in case of condition variable ScopePos
1775  // won't be restored when traversing AST.
1776  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1777
1778  // Create local scope for possible condition variable.
1779  // Store scope position. Add implicit destructor.
1780  if (VarDecl *VD = I->getConditionVariable()) {
1781    LocalScope::const_iterator BeginScopePos = ScopePos;
1782    addLocalScopeForVarDecl(VD);
1783    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1784  }
1785
1786  // The block we were processing is now finished.  Make it the successor
1787  // block.
1788  if (Block) {
1789    Succ = Block;
1790    if (badCFG)
1791      return 0;
1792  }
1793
1794  // Process the false branch.
1795  CFGBlock *ElseBlock = Succ;
1796
1797  if (Stmt *Else = I->getElse()) {
1798    SaveAndRestore<CFGBlock*> sv(Succ);
1799
1800    // NULL out Block so that the recursive call to Visit will
1801    // create a new basic block.
1802    Block = NULL;
1803
1804    // If branch is not a compound statement create implicit scope
1805    // and add destructors.
1806    if (!isa<CompoundStmt>(Else))
1807      addLocalScopeAndDtors(Else);
1808
1809    ElseBlock = addStmt(Else);
1810
1811    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1812      ElseBlock = sv.get();
1813    else if (Block) {
1814      if (badCFG)
1815        return 0;
1816    }
1817  }
1818
1819  // Process the true branch.
1820  CFGBlock *ThenBlock;
1821  {
1822    Stmt *Then = I->getThen();
1823    assert(Then);
1824    SaveAndRestore<CFGBlock*> sv(Succ);
1825    Block = NULL;
1826
1827    // If branch is not a compound statement create implicit scope
1828    // and add destructors.
1829    if (!isa<CompoundStmt>(Then))
1830      addLocalScopeAndDtors(Then);
1831
1832    ThenBlock = addStmt(Then);
1833
1834    if (!ThenBlock) {
1835      // We can reach here if the "then" body has all NullStmts.
1836      // Create an empty block so we can distinguish between true and false
1837      // branches in path-sensitive analyses.
1838      ThenBlock = createBlock(false);
1839      addSuccessor(ThenBlock, sv.get());
1840    } else if (Block) {
1841      if (badCFG)
1842        return 0;
1843    }
1844  }
1845
1846  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1847  // having these handle the actual control-flow jump.  Note that
1848  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1849  // we resort to the old control-flow behavior.  This special handling
1850  // removes infeasible paths from the control-flow graph by having the
1851  // control-flow transfer of '&&' or '||' go directly into the then/else
1852  // blocks directly.
1853  if (!I->getConditionVariable())
1854    if (BinaryOperator *Cond =
1855            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1856      if (Cond->isLogicalOp())
1857        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1858
1859  // Now create a new block containing the if statement.
1860  Block = createBlock(false);
1861
1862  // Set the terminator of the new block to the If statement.
1863  Block->setTerminator(I);
1864
1865  // See if this is a known constant.
1866  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1867
1868  // Now add the successors.
1869  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1870  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1871
1872  // Add the condition as the last statement in the new block.  This may create
1873  // new blocks as the condition may contain control-flow.  Any newly created
1874  // blocks will be pointed to be "Block".
1875  CFGBlock *LastBlock = addStmt(I->getCond());
1876
1877  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1878  // and the condition variable initialization to the CFG.
1879  if (VarDecl *VD = I->getConditionVariable()) {
1880    if (Expr *Init = VD->getInit()) {
1881      autoCreateBlock();
1882      appendStmt(Block, I->getConditionVariableDeclStmt());
1883      LastBlock = addStmt(Init);
1884    }
1885  }
1886
1887  return LastBlock;
1888}
1889
1890
1891CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1892  // If we were in the middle of a block we stop processing that block.
1893  //
1894  // NOTE: If a "return" appears in the middle of a block, this means that the
1895  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1896  //       for that code; a simple "mark-and-sweep" from the entry block will be
1897  //       able to report such dead blocks.
1898
1899  // Create the new block.
1900  Block = createBlock(false);
1901
1902  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1903
1904  // If the one of the destructors does not return, we already have the Exit
1905  // block as a successor.
1906  if (!Block->hasNoReturnElement())
1907    addSuccessor(Block, &cfg->getExit());
1908
1909  // Add the return statement to the block.  This may create new blocks if R
1910  // contains control-flow (short-circuit operations).
1911  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1912}
1913
1914CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1915  // Get the block of the labeled statement.  Add it to our map.
1916  addStmt(L->getSubStmt());
1917  CFGBlock *LabelBlock = Block;
1918
1919  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1920    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1921
1922  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1923         "label already in map");
1924  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1925
1926  // Labels partition blocks, so this is the end of the basic block we were
1927  // processing (L is the block's label).  Because this is label (and we have
1928  // already processed the substatement) there is no extra control-flow to worry
1929  // about.
1930  LabelBlock->setLabel(L);
1931  if (badCFG)
1932    return 0;
1933
1934  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1935  Block = NULL;
1936
1937  // This block is now the implicit successor of other blocks.
1938  Succ = LabelBlock;
1939
1940  return LabelBlock;
1941}
1942
1943CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1944  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1945  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1946       et = E->capture_init_end(); it != et; ++it) {
1947    if (Expr *Init = *it) {
1948      CFGBlock *Tmp = Visit(Init);
1949      if (Tmp != 0)
1950        LastBlock = Tmp;
1951    }
1952  }
1953  return LastBlock;
1954}
1955
1956CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1957  // Goto is a control-flow statement.  Thus we stop processing the current
1958  // block and create a new one.
1959
1960  Block = createBlock(false);
1961  Block->setTerminator(G);
1962
1963  // If we already know the mapping to the label block add the successor now.
1964  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1965
1966  if (I == LabelMap.end())
1967    // We will need to backpatch this block later.
1968    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1969  else {
1970    JumpTarget JT = I->second;
1971    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1972    addSuccessor(Block, JT.block);
1973  }
1974
1975  return Block;
1976}
1977
1978CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1979  CFGBlock *LoopSuccessor = NULL;
1980
1981  // Save local scope position because in case of condition variable ScopePos
1982  // won't be restored when traversing AST.
1983  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1984
1985  // Create local scope for init statement and possible condition variable.
1986  // Add destructor for init statement and condition variable.
1987  // Store scope position for continue statement.
1988  if (Stmt *Init = F->getInit())
1989    addLocalScopeForStmt(Init);
1990  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1991
1992  if (VarDecl *VD = F->getConditionVariable())
1993    addLocalScopeForVarDecl(VD);
1994  LocalScope::const_iterator ContinueScopePos = ScopePos;
1995
1996  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1997
1998  // "for" is a control-flow statement.  Thus we stop processing the current
1999  // block.
2000  if (Block) {
2001    if (badCFG)
2002      return 0;
2003    LoopSuccessor = Block;
2004  } else
2005    LoopSuccessor = Succ;
2006
2007  // Save the current value for the break targets.
2008  // All breaks should go to the code following the loop.
2009  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2010  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2011
2012  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2013
2014  // Now create the loop body.
2015  {
2016    assert(F->getBody());
2017
2018    // Save the current values for Block, Succ, continue and break targets.
2019    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2020    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2021
2022    // Create an empty block to represent the transition block for looping back
2023    // to the head of the loop.  If we have increment code, it will
2024    // go in this block as well.
2025    Block = Succ = TransitionBlock = createBlock(false);
2026    TransitionBlock->setLoopTarget(F);
2027
2028    if (Stmt *I = F->getInc()) {
2029      // Generate increment code in its own basic block.  This is the target of
2030      // continue statements.
2031      Succ = addStmt(I);
2032    }
2033
2034    // Finish up the increment (or empty) block if it hasn't been already.
2035    if (Block) {
2036      assert(Block == Succ);
2037      if (badCFG)
2038        return 0;
2039      Block = 0;
2040    }
2041
2042   // The starting block for the loop increment is the block that should
2043   // represent the 'loop target' for looping back to the start of the loop.
2044   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2045   ContinueJumpTarget.block->setLoopTarget(F);
2046
2047    // Loop body should end with destructor of Condition variable (if any).
2048    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2049
2050    // If body is not a compound statement create implicit scope
2051    // and add destructors.
2052    if (!isa<CompoundStmt>(F->getBody()))
2053      addLocalScopeAndDtors(F->getBody());
2054
2055    // Now populate the body block, and in the process create new blocks as we
2056    // walk the body of the loop.
2057    BodyBlock = addStmt(F->getBody());
2058
2059    if (!BodyBlock) {
2060      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2061      // Use the continue jump target as the proxy for the body.
2062      BodyBlock = ContinueJumpTarget.block;
2063    }
2064    else if (badCFG)
2065      return 0;
2066  }
2067
2068  // Because of short-circuit evaluation, the condition of the loop can span
2069  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2070  // evaluate the condition.
2071  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2072
2073  do {
2074    Expr *C = F->getCond();
2075
2076    // Specially handle logical operators, which have a slightly
2077    // more optimal CFG representation.
2078    if (BinaryOperator *Cond =
2079            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2080      if (Cond->isLogicalOp()) {
2081        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2082          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2083        break;
2084      }
2085
2086    // The default case when not handling logical operators.
2087    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2088    ExitConditionBlock->setTerminator(F);
2089
2090    // See if this is a known constant.
2091    TryResult KnownVal(true);
2092
2093    if (C) {
2094      // Now add the actual condition to the condition block.
2095      // Because the condition itself may contain control-flow, new blocks may
2096      // be created.  Thus we update "Succ" after adding the condition.
2097      Block = ExitConditionBlock;
2098      EntryConditionBlock = addStmt(C);
2099
2100      // If this block contains a condition variable, add both the condition
2101      // variable and initializer to the CFG.
2102      if (VarDecl *VD = F->getConditionVariable()) {
2103        if (Expr *Init = VD->getInit()) {
2104          autoCreateBlock();
2105          appendStmt(Block, F->getConditionVariableDeclStmt());
2106          EntryConditionBlock = addStmt(Init);
2107          assert(Block == EntryConditionBlock);
2108        }
2109      }
2110
2111      if (Block && badCFG)
2112        return 0;
2113
2114      KnownVal = tryEvaluateBool(C);
2115    }
2116
2117    // Add the loop body entry as a successor to the condition.
2118    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2119    // Link up the condition block with the code that follows the loop.  (the
2120    // false branch).
2121    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2122
2123  } while (false);
2124
2125  // Link up the loop-back block to the entry condition block.
2126  addSuccessor(TransitionBlock, EntryConditionBlock);
2127
2128  // The condition block is the implicit successor for any code above the loop.
2129  Succ = EntryConditionBlock;
2130
2131  // If the loop contains initialization, create a new block for those
2132  // statements.  This block can also contain statements that precede the loop.
2133  if (Stmt *I = F->getInit()) {
2134    Block = createBlock();
2135    return addStmt(I);
2136  }
2137
2138  // There is no loop initialization.  We are thus basically a while loop.
2139  // NULL out Block to force lazy block construction.
2140  Block = NULL;
2141  Succ = EntryConditionBlock;
2142  return EntryConditionBlock;
2143}
2144
2145CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2146  if (asc.alwaysAdd(*this, M)) {
2147    autoCreateBlock();
2148    appendStmt(Block, M);
2149  }
2150  return Visit(M->getBase());
2151}
2152
2153CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2154  // Objective-C fast enumeration 'for' statements:
2155  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2156  //
2157  //  for ( Type newVariable in collection_expression ) { statements }
2158  //
2159  //  becomes:
2160  //
2161  //   prologue:
2162  //     1. collection_expression
2163  //     T. jump to loop_entry
2164  //   loop_entry:
2165  //     1. side-effects of element expression
2166  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2167  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2168  //   TB:
2169  //     statements
2170  //     T. jump to loop_entry
2171  //   FB:
2172  //     what comes after
2173  //
2174  //  and
2175  //
2176  //  Type existingItem;
2177  //  for ( existingItem in expression ) { statements }
2178  //
2179  //  becomes:
2180  //
2181  //   the same with newVariable replaced with existingItem; the binding works
2182  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2183  //   a DeclStmt and the other returns a DeclRefExpr.
2184  //
2185
2186  CFGBlock *LoopSuccessor = 0;
2187
2188  if (Block) {
2189    if (badCFG)
2190      return 0;
2191    LoopSuccessor = Block;
2192    Block = 0;
2193  } else
2194    LoopSuccessor = Succ;
2195
2196  // Build the condition blocks.
2197  CFGBlock *ExitConditionBlock = createBlock(false);
2198
2199  // Set the terminator for the "exit" condition block.
2200  ExitConditionBlock->setTerminator(S);
2201
2202  // The last statement in the block should be the ObjCForCollectionStmt, which
2203  // performs the actual binding to 'element' and determines if there are any
2204  // more items in the collection.
2205  appendStmt(ExitConditionBlock, S);
2206  Block = ExitConditionBlock;
2207
2208  // Walk the 'element' expression to see if there are any side-effects.  We
2209  // generate new blocks as necessary.  We DON'T add the statement by default to
2210  // the CFG unless it contains control-flow.
2211  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2212                                        AddStmtChoice::NotAlwaysAdd);
2213  if (Block) {
2214    if (badCFG)
2215      return 0;
2216    Block = 0;
2217  }
2218
2219  // The condition block is the implicit successor for the loop body as well as
2220  // any code above the loop.
2221  Succ = EntryConditionBlock;
2222
2223  // Now create the true branch.
2224  {
2225    // Save the current values for Succ, continue and break targets.
2226    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2227    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2228                               save_break(BreakJumpTarget);
2229
2230    // Add an intermediate block between the BodyBlock and the
2231    // EntryConditionBlock to represent the "loop back" transition, for looping
2232    // back to the head of the loop.
2233    CFGBlock *LoopBackBlock = 0;
2234    Succ = LoopBackBlock = createBlock();
2235    LoopBackBlock->setLoopTarget(S);
2236
2237    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2238    ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2239
2240    CFGBlock *BodyBlock = addStmt(S->getBody());
2241
2242    if (!BodyBlock)
2243      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2244    else if (Block) {
2245      if (badCFG)
2246        return 0;
2247    }
2248
2249    // This new body block is a successor to our "exit" condition block.
2250    addSuccessor(ExitConditionBlock, BodyBlock);
2251  }
2252
2253  // Link up the condition block with the code that follows the loop.
2254  // (the false branch).
2255  addSuccessor(ExitConditionBlock, LoopSuccessor);
2256
2257  // Now create a prologue block to contain the collection expression.
2258  Block = createBlock();
2259  return addStmt(S->getCollection());
2260}
2261
2262CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2263  // Inline the body.
2264  return addStmt(S->getSubStmt());
2265  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2266}
2267
2268CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2269  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2270
2271  // Inline the body.
2272  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2273
2274  // The sync body starts its own basic block.  This makes it a little easier
2275  // for diagnostic clients.
2276  if (SyncBlock) {
2277    if (badCFG)
2278      return 0;
2279
2280    Block = 0;
2281    Succ = SyncBlock;
2282  }
2283
2284  // Add the @synchronized to the CFG.
2285  autoCreateBlock();
2286  appendStmt(Block, S);
2287
2288  // Inline the sync expression.
2289  return addStmt(S->getSynchExpr());
2290}
2291
2292CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2293  // FIXME
2294  return NYS();
2295}
2296
2297CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2298  autoCreateBlock();
2299
2300  // Add the PseudoObject as the last thing.
2301  appendStmt(Block, E);
2302
2303  CFGBlock *lastBlock = Block;
2304
2305  // Before that, evaluate all of the semantics in order.  In
2306  // CFG-land, that means appending them in reverse order.
2307  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2308    Expr *Semantic = E->getSemanticExpr(--i);
2309
2310    // If the semantic is an opaque value, we're being asked to bind
2311    // it to its source expression.
2312    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2313      Semantic = OVE->getSourceExpr();
2314
2315    if (CFGBlock *B = Visit(Semantic))
2316      lastBlock = B;
2317  }
2318
2319  return lastBlock;
2320}
2321
2322CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2323  CFGBlock *LoopSuccessor = NULL;
2324
2325  // Save local scope position because in case of condition variable ScopePos
2326  // won't be restored when traversing AST.
2327  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2328
2329  // Create local scope for possible condition variable.
2330  // Store scope position for continue statement.
2331  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2332  if (VarDecl *VD = W->getConditionVariable()) {
2333    addLocalScopeForVarDecl(VD);
2334    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2335  }
2336
2337  // "while" is a control-flow statement.  Thus we stop processing the current
2338  // block.
2339  if (Block) {
2340    if (badCFG)
2341      return 0;
2342    LoopSuccessor = Block;
2343    Block = 0;
2344  } else {
2345    LoopSuccessor = Succ;
2346  }
2347
2348  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2349
2350  // Process the loop body.
2351  {
2352    assert(W->getBody());
2353
2354    // Save the current values for Block, Succ, continue and break targets.
2355    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2356    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2357                               save_break(BreakJumpTarget);
2358
2359    // Create an empty block to represent the transition block for looping back
2360    // to the head of the loop.
2361    Succ = TransitionBlock = createBlock(false);
2362    TransitionBlock->setLoopTarget(W);
2363    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2364
2365    // All breaks should go to the code following the loop.
2366    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2367
2368    // Loop body should end with destructor of Condition variable (if any).
2369    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2370
2371    // If body is not a compound statement create implicit scope
2372    // and add destructors.
2373    if (!isa<CompoundStmt>(W->getBody()))
2374      addLocalScopeAndDtors(W->getBody());
2375
2376    // Create the body.  The returned block is the entry to the loop body.
2377    BodyBlock = addStmt(W->getBody());
2378
2379    if (!BodyBlock)
2380      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2381    else if (Block && badCFG)
2382      return 0;
2383  }
2384
2385  // Because of short-circuit evaluation, the condition of the loop can span
2386  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2387  // evaluate the condition.
2388  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2389
2390  do {
2391    Expr *C = W->getCond();
2392
2393    // Specially handle logical operators, which have a slightly
2394    // more optimal CFG representation.
2395    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2396      if (Cond->isLogicalOp()) {
2397        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2398          VisitLogicalOperator(Cond, W, BodyBlock,
2399                               LoopSuccessor);
2400        break;
2401      }
2402
2403    // The default case when not handling logical operators.
2404    ExitConditionBlock = createBlock(false);
2405    ExitConditionBlock->setTerminator(W);
2406
2407    // Now add the actual condition to the condition block.
2408    // Because the condition itself may contain control-flow, new blocks may
2409    // be created.  Thus we update "Succ" after adding the condition.
2410    Block = ExitConditionBlock;
2411    Block = EntryConditionBlock = addStmt(C);
2412
2413    // If this block contains a condition variable, add both the condition
2414    // variable and initializer to the CFG.
2415    if (VarDecl *VD = W->getConditionVariable()) {
2416      if (Expr *Init = VD->getInit()) {
2417        autoCreateBlock();
2418        appendStmt(Block, W->getConditionVariableDeclStmt());
2419        EntryConditionBlock = addStmt(Init);
2420        assert(Block == EntryConditionBlock);
2421      }
2422    }
2423
2424    if (Block && badCFG)
2425      return 0;
2426
2427    // See if this is a known constant.
2428    const TryResult& KnownVal = tryEvaluateBool(C);
2429
2430    // Add the loop body entry as a successor to the condition.
2431    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2432    // Link up the condition block with the code that follows the loop.  (the
2433    // false branch).
2434    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2435
2436  } while(false);
2437
2438  // Link up the loop-back block to the entry condition block.
2439  addSuccessor(TransitionBlock, EntryConditionBlock);
2440
2441  // There can be no more statements in the condition block since we loop back
2442  // to this block.  NULL out Block to force lazy creation of another block.
2443  Block = NULL;
2444
2445  // Return the condition block, which is the dominating block for the loop.
2446  Succ = EntryConditionBlock;
2447  return EntryConditionBlock;
2448}
2449
2450
2451CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2452  // FIXME: For now we pretend that @catch and the code it contains does not
2453  //  exit.
2454  return Block;
2455}
2456
2457CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2458  // FIXME: This isn't complete.  We basically treat @throw like a return
2459  //  statement.
2460
2461  // If we were in the middle of a block we stop processing that block.
2462  if (badCFG)
2463    return 0;
2464
2465  // Create the new block.
2466  Block = createBlock(false);
2467
2468  // The Exit block is the only successor.
2469  addSuccessor(Block, &cfg->getExit());
2470
2471  // Add the statement to the block.  This may create new blocks if S contains
2472  // control-flow (short-circuit operations).
2473  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2474}
2475
2476CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2477  // If we were in the middle of a block we stop processing that block.
2478  if (badCFG)
2479    return 0;
2480
2481  // Create the new block.
2482  Block = createBlock(false);
2483
2484  if (TryTerminatedBlock)
2485    // The current try statement is the only successor.
2486    addSuccessor(Block, TryTerminatedBlock);
2487  else
2488    // otherwise the Exit block is the only successor.
2489    addSuccessor(Block, &cfg->getExit());
2490
2491  // Add the statement to the block.  This may create new blocks if S contains
2492  // control-flow (short-circuit operations).
2493  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2494}
2495
2496CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2497  CFGBlock *LoopSuccessor = NULL;
2498
2499  // "do...while" is a control-flow statement.  Thus we stop processing the
2500  // current block.
2501  if (Block) {
2502    if (badCFG)
2503      return 0;
2504    LoopSuccessor = Block;
2505  } else
2506    LoopSuccessor = Succ;
2507
2508  // Because of short-circuit evaluation, the condition of the loop can span
2509  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2510  // evaluate the condition.
2511  CFGBlock *ExitConditionBlock = createBlock(false);
2512  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2513
2514  // Set the terminator for the "exit" condition block.
2515  ExitConditionBlock->setTerminator(D);
2516
2517  // Now add the actual condition to the condition block.  Because the condition
2518  // itself may contain control-flow, new blocks may be created.
2519  if (Stmt *C = D->getCond()) {
2520    Block = ExitConditionBlock;
2521    EntryConditionBlock = addStmt(C);
2522    if (Block) {
2523      if (badCFG)
2524        return 0;
2525    }
2526  }
2527
2528  // The condition block is the implicit successor for the loop body.
2529  Succ = EntryConditionBlock;
2530
2531  // See if this is a known constant.
2532  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2533
2534  // Process the loop body.
2535  CFGBlock *BodyBlock = NULL;
2536  {
2537    assert(D->getBody());
2538
2539    // Save the current values for Block, Succ, and continue and break targets
2540    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2541    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2542        save_break(BreakJumpTarget);
2543
2544    // All continues within this loop should go to the condition block
2545    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2546
2547    // All breaks should go to the code following the loop.
2548    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2549
2550    // NULL out Block to force lazy instantiation of blocks for the body.
2551    Block = NULL;
2552
2553    // If body is not a compound statement create implicit scope
2554    // and add destructors.
2555    if (!isa<CompoundStmt>(D->getBody()))
2556      addLocalScopeAndDtors(D->getBody());
2557
2558    // Create the body.  The returned block is the entry to the loop body.
2559    BodyBlock = addStmt(D->getBody());
2560
2561    if (!BodyBlock)
2562      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2563    else if (Block) {
2564      if (badCFG)
2565        return 0;
2566    }
2567
2568    if (!KnownVal.isFalse()) {
2569      // Add an intermediate block between the BodyBlock and the
2570      // ExitConditionBlock to represent the "loop back" transition.  Create an
2571      // empty block to represent the transition block for looping back to the
2572      // head of the loop.
2573      // FIXME: Can we do this more efficiently without adding another block?
2574      Block = NULL;
2575      Succ = BodyBlock;
2576      CFGBlock *LoopBackBlock = createBlock();
2577      LoopBackBlock->setLoopTarget(D);
2578
2579      // Add the loop body entry as a successor to the condition.
2580      addSuccessor(ExitConditionBlock, LoopBackBlock);
2581    }
2582    else
2583      addSuccessor(ExitConditionBlock, NULL);
2584  }
2585
2586  // Link up the condition block with the code that follows the loop.
2587  // (the false branch).
2588  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2589
2590  // There can be no more statements in the body block(s) since we loop back to
2591  // the body.  NULL out Block to force lazy creation of another block.
2592  Block = NULL;
2593
2594  // Return the loop body, which is the dominating block for the loop.
2595  Succ = BodyBlock;
2596  return BodyBlock;
2597}
2598
2599CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2600  // "continue" is a control-flow statement.  Thus we stop processing the
2601  // current block.
2602  if (badCFG)
2603    return 0;
2604
2605  // Now create a new block that ends with the continue statement.
2606  Block = createBlock(false);
2607  Block->setTerminator(C);
2608
2609  // If there is no target for the continue, then we are looking at an
2610  // incomplete AST.  This means the CFG cannot be constructed.
2611  if (ContinueJumpTarget.block) {
2612    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2613    addSuccessor(Block, ContinueJumpTarget.block);
2614  } else
2615    badCFG = true;
2616
2617  return Block;
2618}
2619
2620CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2621                                                    AddStmtChoice asc) {
2622
2623  if (asc.alwaysAdd(*this, E)) {
2624    autoCreateBlock();
2625    appendStmt(Block, E);
2626  }
2627
2628  // VLA types have expressions that must be evaluated.
2629  CFGBlock *lastBlock = Block;
2630
2631  if (E->isArgumentType()) {
2632    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2633         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2634      lastBlock = addStmt(VA->getSizeExpr());
2635  }
2636  return lastBlock;
2637}
2638
2639/// VisitStmtExpr - Utility method to handle (nested) statement
2640///  expressions (a GCC extension).
2641CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2642  if (asc.alwaysAdd(*this, SE)) {
2643    autoCreateBlock();
2644    appendStmt(Block, SE);
2645  }
2646  return VisitCompoundStmt(SE->getSubStmt());
2647}
2648
2649CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2650  // "switch" is a control-flow statement.  Thus we stop processing the current
2651  // block.
2652  CFGBlock *SwitchSuccessor = NULL;
2653
2654  // Save local scope position because in case of condition variable ScopePos
2655  // won't be restored when traversing AST.
2656  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2657
2658  // Create local scope for possible condition variable.
2659  // Store scope position. Add implicit destructor.
2660  if (VarDecl *VD = Terminator->getConditionVariable()) {
2661    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2662    addLocalScopeForVarDecl(VD);
2663    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2664  }
2665
2666  if (Block) {
2667    if (badCFG)
2668      return 0;
2669    SwitchSuccessor = Block;
2670  } else SwitchSuccessor = Succ;
2671
2672  // Save the current "switch" context.
2673  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2674                            save_default(DefaultCaseBlock);
2675  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2676
2677  // Set the "default" case to be the block after the switch statement.  If the
2678  // switch statement contains a "default:", this value will be overwritten with
2679  // the block for that code.
2680  DefaultCaseBlock = SwitchSuccessor;
2681
2682  // Create a new block that will contain the switch statement.
2683  SwitchTerminatedBlock = createBlock(false);
2684
2685  // Now process the switch body.  The code after the switch is the implicit
2686  // successor.
2687  Succ = SwitchSuccessor;
2688  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2689
2690  // When visiting the body, the case statements should automatically get linked
2691  // up to the switch.  We also don't keep a pointer to the body, since all
2692  // control-flow from the switch goes to case/default statements.
2693  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2694  Block = NULL;
2695
2696  // For pruning unreachable case statements, save the current state
2697  // for tracking the condition value.
2698  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2699                                                     false);
2700
2701  // Determine if the switch condition can be explicitly evaluated.
2702  assert(Terminator->getCond() && "switch condition must be non-NULL");
2703  Expr::EvalResult result;
2704  bool b = tryEvaluate(Terminator->getCond(), result);
2705  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2706                                                    b ? &result : 0);
2707
2708  // If body is not a compound statement create implicit scope
2709  // and add destructors.
2710  if (!isa<CompoundStmt>(Terminator->getBody()))
2711    addLocalScopeAndDtors(Terminator->getBody());
2712
2713  addStmt(Terminator->getBody());
2714  if (Block) {
2715    if (badCFG)
2716      return 0;
2717  }
2718
2719  // If we have no "default:" case, the default transition is to the code
2720  // following the switch body.  Moreover, take into account if all the
2721  // cases of a switch are covered (e.g., switching on an enum value).
2722  //
2723  // Note: We add a successor to a switch that is considered covered yet has no
2724  //       case statements if the enumeration has no enumerators.
2725  bool SwitchAlwaysHasSuccessor = false;
2726  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2727  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2728                              Terminator->getSwitchCaseList();
2729  addSuccessor(SwitchTerminatedBlock,
2730               SwitchAlwaysHasSuccessor ? 0 : DefaultCaseBlock);
2731
2732  // Add the terminator and condition in the switch block.
2733  SwitchTerminatedBlock->setTerminator(Terminator);
2734  Block = SwitchTerminatedBlock;
2735  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2736
2737  // Finally, if the SwitchStmt contains a condition variable, add both the
2738  // SwitchStmt and the condition variable initialization to the CFG.
2739  if (VarDecl *VD = Terminator->getConditionVariable()) {
2740    if (Expr *Init = VD->getInit()) {
2741      autoCreateBlock();
2742      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2743      LastBlock = addStmt(Init);
2744    }
2745  }
2746
2747  return LastBlock;
2748}
2749
2750static bool shouldAddCase(bool &switchExclusivelyCovered,
2751                          const Expr::EvalResult *switchCond,
2752                          const CaseStmt *CS,
2753                          ASTContext &Ctx) {
2754  if (!switchCond)
2755    return true;
2756
2757  bool addCase = false;
2758
2759  if (!switchExclusivelyCovered) {
2760    if (switchCond->Val.isInt()) {
2761      // Evaluate the LHS of the case value.
2762      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2763      const llvm::APSInt &condInt = switchCond->Val.getInt();
2764
2765      if (condInt == lhsInt) {
2766        addCase = true;
2767        switchExclusivelyCovered = true;
2768      }
2769      else if (condInt < lhsInt) {
2770        if (const Expr *RHS = CS->getRHS()) {
2771          // Evaluate the RHS of the case value.
2772          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2773          if (V2 <= condInt) {
2774            addCase = true;
2775            switchExclusivelyCovered = true;
2776          }
2777        }
2778      }
2779    }
2780    else
2781      addCase = true;
2782  }
2783  return addCase;
2784}
2785
2786CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2787  // CaseStmts are essentially labels, so they are the first statement in a
2788  // block.
2789  CFGBlock *TopBlock = 0, *LastBlock = 0;
2790
2791  if (Stmt *Sub = CS->getSubStmt()) {
2792    // For deeply nested chains of CaseStmts, instead of doing a recursion
2793    // (which can blow out the stack), manually unroll and create blocks
2794    // along the way.
2795    while (isa<CaseStmt>(Sub)) {
2796      CFGBlock *currentBlock = createBlock(false);
2797      currentBlock->setLabel(CS);
2798
2799      if (TopBlock)
2800        addSuccessor(LastBlock, currentBlock);
2801      else
2802        TopBlock = currentBlock;
2803
2804      addSuccessor(SwitchTerminatedBlock,
2805                   shouldAddCase(switchExclusivelyCovered, switchCond,
2806                                 CS, *Context)
2807                   ? currentBlock : 0);
2808
2809      LastBlock = currentBlock;
2810      CS = cast<CaseStmt>(Sub);
2811      Sub = CS->getSubStmt();
2812    }
2813
2814    addStmt(Sub);
2815  }
2816
2817  CFGBlock *CaseBlock = Block;
2818  if (!CaseBlock)
2819    CaseBlock = createBlock();
2820
2821  // Cases statements partition blocks, so this is the top of the basic block we
2822  // were processing (the "case XXX:" is the label).
2823  CaseBlock->setLabel(CS);
2824
2825  if (badCFG)
2826    return 0;
2827
2828  // Add this block to the list of successors for the block with the switch
2829  // statement.
2830  assert(SwitchTerminatedBlock);
2831  addSuccessor(SwitchTerminatedBlock,
2832               shouldAddCase(switchExclusivelyCovered, switchCond,
2833                             CS, *Context)
2834               ? CaseBlock : 0);
2835
2836  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2837  Block = NULL;
2838
2839  if (TopBlock) {
2840    addSuccessor(LastBlock, CaseBlock);
2841    Succ = TopBlock;
2842  } else {
2843    // This block is now the implicit successor of other blocks.
2844    Succ = CaseBlock;
2845  }
2846
2847  return Succ;
2848}
2849
2850CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2851  if (Terminator->getSubStmt())
2852    addStmt(Terminator->getSubStmt());
2853
2854  DefaultCaseBlock = Block;
2855
2856  if (!DefaultCaseBlock)
2857    DefaultCaseBlock = createBlock();
2858
2859  // Default statements partition blocks, so this is the top of the basic block
2860  // we were processing (the "default:" is the label).
2861  DefaultCaseBlock->setLabel(Terminator);
2862
2863  if (badCFG)
2864    return 0;
2865
2866  // Unlike case statements, we don't add the default block to the successors
2867  // for the switch statement immediately.  This is done when we finish
2868  // processing the switch statement.  This allows for the default case
2869  // (including a fall-through to the code after the switch statement) to always
2870  // be the last successor of a switch-terminated block.
2871
2872  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2873  Block = NULL;
2874
2875  // This block is now the implicit successor of other blocks.
2876  Succ = DefaultCaseBlock;
2877
2878  return DefaultCaseBlock;
2879}
2880
2881CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2882  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2883  // current block.
2884  CFGBlock *TrySuccessor = NULL;
2885
2886  if (Block) {
2887    if (badCFG)
2888      return 0;
2889    TrySuccessor = Block;
2890  } else TrySuccessor = Succ;
2891
2892  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2893
2894  // Create a new block that will contain the try statement.
2895  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2896  // Add the terminator in the try block.
2897  NewTryTerminatedBlock->setTerminator(Terminator);
2898
2899  bool HasCatchAll = false;
2900  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2901    // The code after the try is the implicit successor.
2902    Succ = TrySuccessor;
2903    CXXCatchStmt *CS = Terminator->getHandler(h);
2904    if (CS->getExceptionDecl() == 0) {
2905      HasCatchAll = true;
2906    }
2907    Block = NULL;
2908    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2909    if (CatchBlock == 0)
2910      return 0;
2911    // Add this block to the list of successors for the block with the try
2912    // statement.
2913    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2914  }
2915  if (!HasCatchAll) {
2916    if (PrevTryTerminatedBlock)
2917      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2918    else
2919      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2920  }
2921
2922  // The code after the try is the implicit successor.
2923  Succ = TrySuccessor;
2924
2925  // Save the current "try" context.
2926  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2927  cfg->addTryDispatchBlock(TryTerminatedBlock);
2928
2929  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2930  Block = NULL;
2931  return addStmt(Terminator->getTryBlock());
2932}
2933
2934CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2935  // CXXCatchStmt are treated like labels, so they are the first statement in a
2936  // block.
2937
2938  // Save local scope position because in case of exception variable ScopePos
2939  // won't be restored when traversing AST.
2940  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2941
2942  // Create local scope for possible exception variable.
2943  // Store scope position. Add implicit destructor.
2944  if (VarDecl *VD = CS->getExceptionDecl()) {
2945    LocalScope::const_iterator BeginScopePos = ScopePos;
2946    addLocalScopeForVarDecl(VD);
2947    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2948  }
2949
2950  if (CS->getHandlerBlock())
2951    addStmt(CS->getHandlerBlock());
2952
2953  CFGBlock *CatchBlock = Block;
2954  if (!CatchBlock)
2955    CatchBlock = createBlock();
2956
2957  // CXXCatchStmt is more than just a label.  They have semantic meaning
2958  // as well, as they implicitly "initialize" the catch variable.  Add
2959  // it to the CFG as a CFGElement so that the control-flow of these
2960  // semantics gets captured.
2961  appendStmt(CatchBlock, CS);
2962
2963  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2964  // labels.
2965  CatchBlock->setLabel(CS);
2966
2967  // Bail out if the CFG is bad.
2968  if (badCFG)
2969    return 0;
2970
2971  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2972  Block = NULL;
2973
2974  return CatchBlock;
2975}
2976
2977CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2978  // C++0x for-range statements are specified as [stmt.ranged]:
2979  //
2980  // {
2981  //   auto && __range = range-init;
2982  //   for ( auto __begin = begin-expr,
2983  //         __end = end-expr;
2984  //         __begin != __end;
2985  //         ++__begin ) {
2986  //     for-range-declaration = *__begin;
2987  //     statement
2988  //   }
2989  // }
2990
2991  // Save local scope position before the addition of the implicit variables.
2992  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2993
2994  // Create local scopes and destructors for range, begin and end variables.
2995  if (Stmt *Range = S->getRangeStmt())
2996    addLocalScopeForStmt(Range);
2997  if (Stmt *BeginEnd = S->getBeginEndStmt())
2998    addLocalScopeForStmt(BeginEnd);
2999  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
3000
3001  LocalScope::const_iterator ContinueScopePos = ScopePos;
3002
3003  // "for" is a control-flow statement.  Thus we stop processing the current
3004  // block.
3005  CFGBlock *LoopSuccessor = NULL;
3006  if (Block) {
3007    if (badCFG)
3008      return 0;
3009    LoopSuccessor = Block;
3010  } else
3011    LoopSuccessor = Succ;
3012
3013  // Save the current value for the break targets.
3014  // All breaks should go to the code following the loop.
3015  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3016  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3017
3018  // The block for the __begin != __end expression.
3019  CFGBlock *ConditionBlock = createBlock(false);
3020  ConditionBlock->setTerminator(S);
3021
3022  // Now add the actual condition to the condition block.
3023  if (Expr *C = S->getCond()) {
3024    Block = ConditionBlock;
3025    CFGBlock *BeginConditionBlock = addStmt(C);
3026    if (badCFG)
3027      return 0;
3028    assert(BeginConditionBlock == ConditionBlock &&
3029           "condition block in for-range was unexpectedly complex");
3030    (void)BeginConditionBlock;
3031  }
3032
3033  // The condition block is the implicit successor for the loop body as well as
3034  // any code above the loop.
3035  Succ = ConditionBlock;
3036
3037  // See if this is a known constant.
3038  TryResult KnownVal(true);
3039
3040  if (S->getCond())
3041    KnownVal = tryEvaluateBool(S->getCond());
3042
3043  // Now create the loop body.
3044  {
3045    assert(S->getBody());
3046
3047    // Save the current values for Block, Succ, and continue targets.
3048    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3049    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3050
3051    // Generate increment code in its own basic block.  This is the target of
3052    // continue statements.
3053    Block = 0;
3054    Succ = addStmt(S->getInc());
3055    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3056
3057    // The starting block for the loop increment is the block that should
3058    // represent the 'loop target' for looping back to the start of the loop.
3059    ContinueJumpTarget.block->setLoopTarget(S);
3060
3061    // Finish up the increment block and prepare to start the loop body.
3062    assert(Block);
3063    if (badCFG)
3064      return 0;
3065    Block = 0;
3066
3067
3068    // Add implicit scope and dtors for loop variable.
3069    addLocalScopeAndDtors(S->getLoopVarStmt());
3070
3071    // Populate a new block to contain the loop body and loop variable.
3072    addStmt(S->getBody());
3073    if (badCFG)
3074      return 0;
3075    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3076    if (badCFG)
3077      return 0;
3078
3079    // This new body block is a successor to our condition block.
3080    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3081  }
3082
3083  // Link up the condition block with the code that follows the loop (the
3084  // false branch).
3085  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3086
3087  // Add the initialization statements.
3088  Block = createBlock();
3089  addStmt(S->getBeginEndStmt());
3090  return addStmt(S->getRangeStmt());
3091}
3092
3093CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3094    AddStmtChoice asc) {
3095  if (BuildOpts.AddTemporaryDtors) {
3096    // If adding implicit destructors visit the full expression for adding
3097    // destructors of temporaries.
3098    VisitForTemporaryDtors(E->getSubExpr());
3099
3100    // Full expression has to be added as CFGStmt so it will be sequenced
3101    // before destructors of it's temporaries.
3102    asc = asc.withAlwaysAdd(true);
3103  }
3104  return Visit(E->getSubExpr(), asc);
3105}
3106
3107CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3108                                                AddStmtChoice asc) {
3109  if (asc.alwaysAdd(*this, E)) {
3110    autoCreateBlock();
3111    appendStmt(Block, E);
3112
3113    // We do not want to propagate the AlwaysAdd property.
3114    asc = asc.withAlwaysAdd(false);
3115  }
3116  return Visit(E->getSubExpr(), asc);
3117}
3118
3119CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3120                                            AddStmtChoice asc) {
3121  autoCreateBlock();
3122  appendStmt(Block, C);
3123
3124  return VisitChildren(C);
3125}
3126
3127
3128CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
3129                                         AddStmtChoice asc) {
3130  autoCreateBlock();
3131  appendStmt(Block, DE);
3132  QualType DTy = DE->getDestroyedType();
3133  DTy = DTy.getNonReferenceType();
3134  CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
3135  if (RD) {
3136    if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
3137      appendDeleteDtor(Block, RD, DE);
3138  }
3139
3140  return VisitChildren(DE);
3141}
3142
3143CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3144                                                 AddStmtChoice asc) {
3145  if (asc.alwaysAdd(*this, E)) {
3146    autoCreateBlock();
3147    appendStmt(Block, E);
3148    // We do not want to propagate the AlwaysAdd property.
3149    asc = asc.withAlwaysAdd(false);
3150  }
3151  return Visit(E->getSubExpr(), asc);
3152}
3153
3154CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3155                                                  AddStmtChoice asc) {
3156  autoCreateBlock();
3157  appendStmt(Block, C);
3158  return VisitChildren(C);
3159}
3160
3161CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3162                                            AddStmtChoice asc) {
3163  if (asc.alwaysAdd(*this, E)) {
3164    autoCreateBlock();
3165    appendStmt(Block, E);
3166  }
3167  return Visit(E->getSubExpr(), AddStmtChoice());
3168}
3169
3170CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3171  // Lazily create the indirect-goto dispatch block if there isn't one already.
3172  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3173
3174  if (!IBlock) {
3175    IBlock = createBlock(false);
3176    cfg->setIndirectGotoBlock(IBlock);
3177  }
3178
3179  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3180  // current block and create a new one.
3181  if (badCFG)
3182    return 0;
3183
3184  Block = createBlock(false);
3185  Block->setTerminator(I);
3186  addSuccessor(Block, IBlock);
3187  return addStmt(I->getTarget());
3188}
3189
3190CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3191  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3192
3193tryAgain:
3194  if (!E) {
3195    badCFG = true;
3196    return NULL;
3197  }
3198  switch (E->getStmtClass()) {
3199    default:
3200      return VisitChildrenForTemporaryDtors(E);
3201
3202    case Stmt::BinaryOperatorClass:
3203      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3204
3205    case Stmt::CXXBindTemporaryExprClass:
3206      return VisitCXXBindTemporaryExprForTemporaryDtors(
3207          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3208
3209    case Stmt::BinaryConditionalOperatorClass:
3210    case Stmt::ConditionalOperatorClass:
3211      return VisitConditionalOperatorForTemporaryDtors(
3212          cast<AbstractConditionalOperator>(E), BindToTemporary);
3213
3214    case Stmt::ImplicitCastExprClass:
3215      // For implicit cast we want BindToTemporary to be passed further.
3216      E = cast<CastExpr>(E)->getSubExpr();
3217      goto tryAgain;
3218
3219    case Stmt::ParenExprClass:
3220      E = cast<ParenExpr>(E)->getSubExpr();
3221      goto tryAgain;
3222
3223    case Stmt::MaterializeTemporaryExprClass:
3224      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3225      goto tryAgain;
3226  }
3227}
3228
3229CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3230  // When visiting children for destructors we want to visit them in reverse
3231  // order that they will appear in the CFG.  Because the CFG is built
3232  // bottom-up, this means we visit them in their natural order, which
3233  // reverses them in the CFG.
3234  CFGBlock *B = Block;
3235  for (Stmt::child_range I = E->children(); I; ++I) {
3236    if (Stmt *Child = *I)
3237      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3238        B = R;
3239  }
3240  return B;
3241}
3242
3243CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3244  if (E->isLogicalOp()) {
3245    // Destructors for temporaries in LHS expression should be called after
3246    // those for RHS expression. Even if this will unnecessarily create a block,
3247    // this block will be used at least by the full expression.
3248    autoCreateBlock();
3249    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3250    if (badCFG)
3251      return NULL;
3252
3253    Succ = ConfluenceBlock;
3254    Block = NULL;
3255    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3256
3257    if (RHSBlock) {
3258      if (badCFG)
3259        return NULL;
3260
3261      // If RHS expression did produce destructors we need to connect created
3262      // blocks to CFG in same manner as for binary operator itself.
3263      CFGBlock *LHSBlock = createBlock(false);
3264      LHSBlock->setTerminator(CFGTerminator(E, true));
3265
3266      // For binary operator LHS block is before RHS in list of predecessors
3267      // of ConfluenceBlock.
3268      std::reverse(ConfluenceBlock->pred_begin(),
3269          ConfluenceBlock->pred_end());
3270
3271      // See if this is a known constant.
3272      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3273      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3274        KnownVal.negate();
3275
3276      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3277      // itself.
3278      if (E->getOpcode() == BO_LOr) {
3279        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3280        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3281      } else {
3282        assert (E->getOpcode() == BO_LAnd);
3283        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3284        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3285      }
3286
3287      Block = LHSBlock;
3288      return LHSBlock;
3289    }
3290
3291    Block = ConfluenceBlock;
3292    return ConfluenceBlock;
3293  }
3294
3295  if (E->isAssignmentOp()) {
3296    // For assignment operator (=) LHS expression is visited
3297    // before RHS expression. For destructors visit them in reverse order.
3298    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3299    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3300    return LHSBlock ? LHSBlock : RHSBlock;
3301  }
3302
3303  // For any other binary operator RHS expression is visited before
3304  // LHS expression (order of children). For destructors visit them in reverse
3305  // order.
3306  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3307  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3308  return RHSBlock ? RHSBlock : LHSBlock;
3309}
3310
3311CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3312    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3313  // First add destructors for temporaries in subexpression.
3314  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3315  if (!BindToTemporary) {
3316    // If lifetime of temporary is not prolonged (by assigning to constant
3317    // reference) add destructor for it.
3318
3319    // If the destructor is marked as a no-return destructor, we need to create
3320    // a new block for the destructor which does not have as a successor
3321    // anything built thus far. Control won't flow out of this block.
3322    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3323    if (Dtor->isNoReturn())
3324      Block = createNoReturnBlock();
3325    else
3326      autoCreateBlock();
3327
3328    appendTemporaryDtor(Block, E);
3329    B = Block;
3330  }
3331  return B;
3332}
3333
3334CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3335    AbstractConditionalOperator *E, bool BindToTemporary) {
3336  // First add destructors for condition expression.  Even if this will
3337  // unnecessarily create a block, this block will be used at least by the full
3338  // expression.
3339  autoCreateBlock();
3340  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3341  if (badCFG)
3342    return NULL;
3343  if (BinaryConditionalOperator *BCO
3344        = dyn_cast<BinaryConditionalOperator>(E)) {
3345    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3346    if (badCFG)
3347      return NULL;
3348  }
3349
3350  // Try to add block with destructors for LHS expression.
3351  CFGBlock *LHSBlock = NULL;
3352  Succ = ConfluenceBlock;
3353  Block = NULL;
3354  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3355  if (badCFG)
3356    return NULL;
3357
3358  // Try to add block with destructors for RHS expression;
3359  Succ = ConfluenceBlock;
3360  Block = NULL;
3361  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3362                                              BindToTemporary);
3363  if (badCFG)
3364    return NULL;
3365
3366  if (!RHSBlock && !LHSBlock) {
3367    // If neither LHS nor RHS expression had temporaries to destroy don't create
3368    // more blocks.
3369    Block = ConfluenceBlock;
3370    return Block;
3371  }
3372
3373  Block = createBlock(false);
3374  Block->setTerminator(CFGTerminator(E, true));
3375
3376  // See if this is a known constant.
3377  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3378
3379  if (LHSBlock) {
3380    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3381  } else if (KnownVal.isFalse()) {
3382    addSuccessor(Block, NULL);
3383  } else {
3384    addSuccessor(Block, ConfluenceBlock);
3385    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3386  }
3387
3388  if (!RHSBlock)
3389    RHSBlock = ConfluenceBlock;
3390  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3391
3392  return Block;
3393}
3394
3395} // end anonymous namespace
3396
3397/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3398///  no successors or predecessors.  If this is the first block created in the
3399///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3400CFGBlock *CFG::createBlock() {
3401  bool first_block = begin() == end();
3402
3403  // Create the block.
3404  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3405  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3406  Blocks.push_back(Mem, BlkBVC);
3407
3408  // If this is the first block, set it as the Entry and Exit.
3409  if (first_block)
3410    Entry = Exit = &back();
3411
3412  // Return the block.
3413  return &back();
3414}
3415
3416/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3417///  CFG is returned to the caller.
3418CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3419    const BuildOptions &BO) {
3420  CFGBuilder Builder(C, BO);
3421  return Builder.buildCFG(D, Statement);
3422}
3423
3424const CXXDestructorDecl *
3425CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3426  switch (getKind()) {
3427    case CFGElement::Statement:
3428    case CFGElement::Initializer:
3429      llvm_unreachable("getDestructorDecl should only be used with "
3430                       "ImplicitDtors");
3431    case CFGElement::AutomaticObjectDtor: {
3432      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3433      QualType ty = var->getType();
3434      ty = ty.getNonReferenceType();
3435      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3436        ty = arrayType->getElementType();
3437      }
3438      const RecordType *recordType = ty->getAs<RecordType>();
3439      const CXXRecordDecl *classDecl =
3440      cast<CXXRecordDecl>(recordType->getDecl());
3441      return classDecl->getDestructor();
3442    }
3443    case CFGElement::DeleteDtor: {
3444      const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
3445      QualType DTy = DE->getDestroyedType();
3446      DTy = DTy.getNonReferenceType();
3447      const CXXRecordDecl *classDecl =
3448          astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
3449      return classDecl->getDestructor();
3450    }
3451    case CFGElement::TemporaryDtor: {
3452      const CXXBindTemporaryExpr *bindExpr =
3453        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3454      const CXXTemporary *temp = bindExpr->getTemporary();
3455      return temp->getDestructor();
3456    }
3457    case CFGElement::BaseDtor:
3458    case CFGElement::MemberDtor:
3459
3460      // Not yet supported.
3461      return 0;
3462  }
3463  llvm_unreachable("getKind() returned bogus value");
3464}
3465
3466bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3467  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3468    return DD->isNoReturn();
3469  return false;
3470}
3471
3472//===----------------------------------------------------------------------===//
3473// Filtered walking of the CFG.
3474//===----------------------------------------------------------------------===//
3475
3476bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3477        const CFGBlock *From, const CFGBlock *To) {
3478
3479  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3480    // If the 'To' has no label or is labeled but the label isn't a
3481    // CaseStmt then filter this edge.
3482    if (const SwitchStmt *S =
3483        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3484      if (S->isAllEnumCasesCovered()) {
3485        const Stmt *L = To->getLabel();
3486        if (!L || !isa<CaseStmt>(L))
3487          return true;
3488      }
3489    }
3490  }
3491
3492  return false;
3493}
3494
3495//===----------------------------------------------------------------------===//
3496// CFG pretty printing
3497//===----------------------------------------------------------------------===//
3498
3499namespace {
3500
3501class StmtPrinterHelper : public PrinterHelper  {
3502  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3503  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3504  StmtMapTy StmtMap;
3505  DeclMapTy DeclMap;
3506  signed currentBlock;
3507  unsigned currStmt;
3508  const LangOptions &LangOpts;
3509public:
3510
3511  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3512    : currentBlock(0), currStmt(0), LangOpts(LO)
3513  {
3514    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3515      unsigned j = 1;
3516      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3517           BI != BEnd; ++BI, ++j ) {
3518        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3519          const Stmt *stmt= SE->getStmt();
3520          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3521          StmtMap[stmt] = P;
3522
3523          switch (stmt->getStmtClass()) {
3524            case Stmt::DeclStmtClass:
3525                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3526                break;
3527            case Stmt::IfStmtClass: {
3528              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3529              if (var)
3530                DeclMap[var] = P;
3531              break;
3532            }
3533            case Stmt::ForStmtClass: {
3534              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3535              if (var)
3536                DeclMap[var] = P;
3537              break;
3538            }
3539            case Stmt::WhileStmtClass: {
3540              const VarDecl *var =
3541                cast<WhileStmt>(stmt)->getConditionVariable();
3542              if (var)
3543                DeclMap[var] = P;
3544              break;
3545            }
3546            case Stmt::SwitchStmtClass: {
3547              const VarDecl *var =
3548                cast<SwitchStmt>(stmt)->getConditionVariable();
3549              if (var)
3550                DeclMap[var] = P;
3551              break;
3552            }
3553            case Stmt::CXXCatchStmtClass: {
3554              const VarDecl *var =
3555                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3556              if (var)
3557                DeclMap[var] = P;
3558              break;
3559            }
3560            default:
3561              break;
3562          }
3563        }
3564      }
3565    }
3566  }
3567
3568
3569  virtual ~StmtPrinterHelper() {}
3570
3571  const LangOptions &getLangOpts() const { return LangOpts; }
3572  void setBlockID(signed i) { currentBlock = i; }
3573  void setStmtID(unsigned i) { currStmt = i; }
3574
3575  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3576    StmtMapTy::iterator I = StmtMap.find(S);
3577
3578    if (I == StmtMap.end())
3579      return false;
3580
3581    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3582                          && I->second.second == currStmt) {
3583      return false;
3584    }
3585
3586    OS << "[B" << I->second.first << "." << I->second.second << "]";
3587    return true;
3588  }
3589
3590  bool handleDecl(const Decl *D, raw_ostream &OS) {
3591    DeclMapTy::iterator I = DeclMap.find(D);
3592
3593    if (I == DeclMap.end())
3594      return false;
3595
3596    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3597                          && I->second.second == currStmt) {
3598      return false;
3599    }
3600
3601    OS << "[B" << I->second.first << "." << I->second.second << "]";
3602    return true;
3603  }
3604};
3605} // end anonymous namespace
3606
3607
3608namespace {
3609class CFGBlockTerminatorPrint
3610  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3611
3612  raw_ostream &OS;
3613  StmtPrinterHelper* Helper;
3614  PrintingPolicy Policy;
3615public:
3616  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3617                          const PrintingPolicy &Policy)
3618    : OS(os), Helper(helper), Policy(Policy) {}
3619
3620  void VisitIfStmt(IfStmt *I) {
3621    OS << "if ";
3622    I->getCond()->printPretty(OS,Helper,Policy);
3623  }
3624
3625  // Default case.
3626  void VisitStmt(Stmt *Terminator) {
3627    Terminator->printPretty(OS, Helper, Policy);
3628  }
3629
3630  void VisitDeclStmt(DeclStmt *DS) {
3631    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3632    OS << "static init " << VD->getName();
3633  }
3634
3635  void VisitForStmt(ForStmt *F) {
3636    OS << "for (" ;
3637    if (F->getInit())
3638      OS << "...";
3639    OS << "; ";
3640    if (Stmt *C = F->getCond())
3641      C->printPretty(OS, Helper, Policy);
3642    OS << "; ";
3643    if (F->getInc())
3644      OS << "...";
3645    OS << ")";
3646  }
3647
3648  void VisitWhileStmt(WhileStmt *W) {
3649    OS << "while " ;
3650    if (Stmt *C = W->getCond())
3651      C->printPretty(OS, Helper, Policy);
3652  }
3653
3654  void VisitDoStmt(DoStmt *D) {
3655    OS << "do ... while ";
3656    if (Stmt *C = D->getCond())
3657      C->printPretty(OS, Helper, Policy);
3658  }
3659
3660  void VisitSwitchStmt(SwitchStmt *Terminator) {
3661    OS << "switch ";
3662    Terminator->getCond()->printPretty(OS, Helper, Policy);
3663  }
3664
3665  void VisitCXXTryStmt(CXXTryStmt *CS) {
3666    OS << "try ...";
3667  }
3668
3669  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3670    C->getCond()->printPretty(OS, Helper, Policy);
3671    OS << " ? ... : ...";
3672  }
3673
3674  void VisitChooseExpr(ChooseExpr *C) {
3675    OS << "__builtin_choose_expr( ";
3676    C->getCond()->printPretty(OS, Helper, Policy);
3677    OS << " )";
3678  }
3679
3680  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3681    OS << "goto *";
3682    I->getTarget()->printPretty(OS, Helper, Policy);
3683  }
3684
3685  void VisitBinaryOperator(BinaryOperator* B) {
3686    if (!B->isLogicalOp()) {
3687      VisitExpr(B);
3688      return;
3689    }
3690
3691    B->getLHS()->printPretty(OS, Helper, Policy);
3692
3693    switch (B->getOpcode()) {
3694      case BO_LOr:
3695        OS << " || ...";
3696        return;
3697      case BO_LAnd:
3698        OS << " && ...";
3699        return;
3700      default:
3701        llvm_unreachable("Invalid logical operator.");
3702    }
3703  }
3704
3705  void VisitExpr(Expr *E) {
3706    E->printPretty(OS, Helper, Policy);
3707  }
3708};
3709} // end anonymous namespace
3710
3711static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3712                       const CFGElement &E) {
3713  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3714    const Stmt *S = CS->getStmt();
3715
3716    if (Helper) {
3717
3718      // special printing for statement-expressions.
3719      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3720        const CompoundStmt *Sub = SE->getSubStmt();
3721
3722        if (Sub->children()) {
3723          OS << "({ ... ; ";
3724          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3725          OS << " })\n";
3726          return;
3727        }
3728      }
3729      // special printing for comma expressions.
3730      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3731        if (B->getOpcode() == BO_Comma) {
3732          OS << "... , ";
3733          Helper->handledStmt(B->getRHS(),OS);
3734          OS << '\n';
3735          return;
3736        }
3737      }
3738    }
3739    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3740
3741    if (isa<CXXOperatorCallExpr>(S)) {
3742      OS << " (OperatorCall)";
3743    }
3744    else if (isa<CXXBindTemporaryExpr>(S)) {
3745      OS << " (BindTemporary)";
3746    }
3747    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3748      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3749    }
3750    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3751      OS << " (" << CE->getStmtClassName() << ", "
3752         << CE->getCastKindName()
3753         << ", " << CE->getType().getAsString()
3754         << ")";
3755    }
3756
3757    // Expressions need a newline.
3758    if (isa<Expr>(S))
3759      OS << '\n';
3760
3761  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3762    const CXXCtorInitializer *I = IE->getInitializer();
3763    if (I->isBaseInitializer())
3764      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3765    else OS << I->getAnyMember()->getName();
3766
3767    OS << "(";
3768    if (Expr *IE = I->getInit())
3769      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3770    OS << ")";
3771
3772    if (I->isBaseInitializer())
3773      OS << " (Base initializer)\n";
3774    else OS << " (Member initializer)\n";
3775
3776  } else if (Optional<CFGAutomaticObjDtor> DE =
3777                 E.getAs<CFGAutomaticObjDtor>()) {
3778    const VarDecl *VD = DE->getVarDecl();
3779    Helper->handleDecl(VD, OS);
3780
3781    const Type* T = VD->getType().getTypePtr();
3782    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3783      T = RT->getPointeeType().getTypePtr();
3784    T = T->getBaseElementTypeUnsafe();
3785
3786    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3787    OS << " (Implicit destructor)\n";
3788
3789  } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
3790    const CXXRecordDecl *RD = DE->getCXXRecordDecl();
3791    if (!RD)
3792      return;
3793    CXXDeleteExpr *DelExpr =
3794        const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
3795    Helper->handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
3796    OS << "->~" << RD->getName().str() << "()";
3797    OS << " (Implicit destructor)\n";
3798  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3799    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3800    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3801    OS << " (Base object destructor)\n";
3802
3803  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3804    const FieldDecl *FD = ME->getFieldDecl();
3805    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3806    OS << "this->" << FD->getName();
3807    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3808    OS << " (Member object destructor)\n";
3809
3810  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3811    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3812    OS << "~";
3813    BT->getType().print(OS, PrintingPolicy(Helper->getLangOpts()));
3814    OS << "() (Temporary object destructor)\n";
3815  }
3816}
3817
3818static void print_block(raw_ostream &OS, const CFG* cfg,
3819                        const CFGBlock &B,
3820                        StmtPrinterHelper* Helper, bool print_edges,
3821                        bool ShowColors) {
3822
3823  if (Helper)
3824    Helper->setBlockID(B.getBlockID());
3825
3826  // Print the header.
3827  if (ShowColors)
3828    OS.changeColor(raw_ostream::YELLOW, true);
3829
3830  OS << "\n [B" << B.getBlockID();
3831
3832  if (&B == &cfg->getEntry())
3833    OS << " (ENTRY)]\n";
3834  else if (&B == &cfg->getExit())
3835    OS << " (EXIT)]\n";
3836  else if (&B == cfg->getIndirectGotoBlock())
3837    OS << " (INDIRECT GOTO DISPATCH)]\n";
3838  else
3839    OS << "]\n";
3840
3841  if (ShowColors)
3842    OS.resetColor();
3843
3844  // Print the label of this block.
3845  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3846
3847    if (print_edges)
3848      OS << "  ";
3849
3850    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3851      OS << L->getName();
3852    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3853      OS << "case ";
3854      C->getLHS()->printPretty(OS, Helper,
3855                               PrintingPolicy(Helper->getLangOpts()));
3856      if (C->getRHS()) {
3857        OS << " ... ";
3858        C->getRHS()->printPretty(OS, Helper,
3859                                 PrintingPolicy(Helper->getLangOpts()));
3860      }
3861    } else if (isa<DefaultStmt>(Label))
3862      OS << "default";
3863    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3864      OS << "catch (";
3865      if (CS->getExceptionDecl())
3866        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3867                                      0);
3868      else
3869        OS << "...";
3870      OS << ")";
3871
3872    } else
3873      llvm_unreachable("Invalid label statement in CFGBlock.");
3874
3875    OS << ":\n";
3876  }
3877
3878  // Iterate through the statements in the block and print them.
3879  unsigned j = 1;
3880
3881  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3882       I != E ; ++I, ++j ) {
3883
3884    // Print the statement # in the basic block and the statement itself.
3885    if (print_edges)
3886      OS << " ";
3887
3888    OS << llvm::format("%3d", j) << ": ";
3889
3890    if (Helper)
3891      Helper->setStmtID(j);
3892
3893    print_elem(OS, Helper, *I);
3894  }
3895
3896  // Print the terminator of this block.
3897  if (B.getTerminator()) {
3898    if (ShowColors)
3899      OS.changeColor(raw_ostream::GREEN);
3900
3901    OS << "   T: ";
3902
3903    if (Helper) Helper->setBlockID(-1);
3904
3905    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3906    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3907    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3908    OS << '\n';
3909
3910    if (ShowColors)
3911      OS.resetColor();
3912  }
3913
3914  if (print_edges) {
3915    // Print the predecessors of this block.
3916    if (!B.pred_empty()) {
3917      const raw_ostream::Colors Color = raw_ostream::BLUE;
3918      if (ShowColors)
3919        OS.changeColor(Color);
3920      OS << "   Preds " ;
3921      if (ShowColors)
3922        OS.resetColor();
3923      OS << '(' << B.pred_size() << "):";
3924      unsigned i = 0;
3925
3926      if (ShowColors)
3927        OS.changeColor(Color);
3928
3929      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3930           I != E; ++I, ++i) {
3931
3932        if (i % 10 == 8)
3933          OS << "\n     ";
3934
3935        OS << " B" << (*I)->getBlockID();
3936      }
3937
3938      if (ShowColors)
3939        OS.resetColor();
3940
3941      OS << '\n';
3942    }
3943
3944    // Print the successors of this block.
3945    if (!B.succ_empty()) {
3946      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3947      if (ShowColors)
3948        OS.changeColor(Color);
3949      OS << "   Succs ";
3950      if (ShowColors)
3951        OS.resetColor();
3952      OS << '(' << B.succ_size() << "):";
3953      unsigned i = 0;
3954
3955      if (ShowColors)
3956        OS.changeColor(Color);
3957
3958      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3959           I != E; ++I, ++i) {
3960
3961        if (i % 10 == 8)
3962          OS << "\n    ";
3963
3964        if (*I)
3965          OS << " B" << (*I)->getBlockID();
3966        else
3967          OS  << " NULL";
3968      }
3969
3970      if (ShowColors)
3971        OS.resetColor();
3972      OS << '\n';
3973    }
3974  }
3975}
3976
3977
3978/// dump - A simple pretty printer of a CFG that outputs to stderr.
3979void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3980  print(llvm::errs(), LO, ShowColors);
3981}
3982
3983/// print - A simple pretty printer of a CFG that outputs to an ostream.
3984void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3985  StmtPrinterHelper Helper(this, LO);
3986
3987  // Print the entry block.
3988  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3989
3990  // Iterate through the CFGBlocks and print them one by one.
3991  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3992    // Skip the entry block, because we already printed it.
3993    if (&(**I) == &getEntry() || &(**I) == &getExit())
3994      continue;
3995
3996    print_block(OS, this, **I, &Helper, true, ShowColors);
3997  }
3998
3999  // Print the exit block.
4000  print_block(OS, this, getExit(), &Helper, true, ShowColors);
4001  OS << '\n';
4002  OS.flush();
4003}
4004
4005/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
4006void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4007                    bool ShowColors) const {
4008  print(llvm::errs(), cfg, LO, ShowColors);
4009}
4010
4011/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4012///   Generally this will only be called from CFG::print.
4013void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4014                     const LangOptions &LO, bool ShowColors) const {
4015  StmtPrinterHelper Helper(cfg, LO);
4016  print_block(OS, cfg, *this, &Helper, true, ShowColors);
4017  OS << '\n';
4018}
4019
4020/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
4021void CFGBlock::printTerminator(raw_ostream &OS,
4022                               const LangOptions &LO) const {
4023  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
4024  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
4025}
4026
4027Stmt *CFGBlock::getTerminatorCondition() {
4028  Stmt *Terminator = this->Terminator;
4029  if (!Terminator)
4030    return NULL;
4031
4032  Expr *E = NULL;
4033
4034  switch (Terminator->getStmtClass()) {
4035    default:
4036      break;
4037
4038    case Stmt::CXXForRangeStmtClass:
4039      E = cast<CXXForRangeStmt>(Terminator)->getCond();
4040      break;
4041
4042    case Stmt::ForStmtClass:
4043      E = cast<ForStmt>(Terminator)->getCond();
4044      break;
4045
4046    case Stmt::WhileStmtClass:
4047      E = cast<WhileStmt>(Terminator)->getCond();
4048      break;
4049
4050    case Stmt::DoStmtClass:
4051      E = cast<DoStmt>(Terminator)->getCond();
4052      break;
4053
4054    case Stmt::IfStmtClass:
4055      E = cast<IfStmt>(Terminator)->getCond();
4056      break;
4057
4058    case Stmt::ChooseExprClass:
4059      E = cast<ChooseExpr>(Terminator)->getCond();
4060      break;
4061
4062    case Stmt::IndirectGotoStmtClass:
4063      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4064      break;
4065
4066    case Stmt::SwitchStmtClass:
4067      E = cast<SwitchStmt>(Terminator)->getCond();
4068      break;
4069
4070    case Stmt::BinaryConditionalOperatorClass:
4071      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4072      break;
4073
4074    case Stmt::ConditionalOperatorClass:
4075      E = cast<ConditionalOperator>(Terminator)->getCond();
4076      break;
4077
4078    case Stmt::BinaryOperatorClass: // '&&' and '||'
4079      E = cast<BinaryOperator>(Terminator)->getLHS();
4080      break;
4081
4082    case Stmt::ObjCForCollectionStmtClass:
4083      return Terminator;
4084  }
4085
4086  return E ? E->IgnoreParens() : NULL;
4087}
4088
4089//===----------------------------------------------------------------------===//
4090// CFG Graphviz Visualization
4091//===----------------------------------------------------------------------===//
4092
4093
4094#ifndef NDEBUG
4095static StmtPrinterHelper* GraphHelper;
4096#endif
4097
4098void CFG::viewCFG(const LangOptions &LO) const {
4099#ifndef NDEBUG
4100  StmtPrinterHelper H(this, LO);
4101  GraphHelper = &H;
4102  llvm::ViewGraph(this,"CFG");
4103  GraphHelper = NULL;
4104#endif
4105}
4106
4107namespace llvm {
4108template<>
4109struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4110
4111  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4112
4113  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4114
4115#ifndef NDEBUG
4116    std::string OutSStr;
4117    llvm::raw_string_ostream Out(OutSStr);
4118    print_block(Out,Graph, *Node, GraphHelper, false, false);
4119    std::string& OutStr = Out.str();
4120
4121    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4122
4123    // Process string output to make it nicer...
4124    for (unsigned i = 0; i != OutStr.length(); ++i)
4125      if (OutStr[i] == '\n') {                            // Left justify
4126        OutStr[i] = '\\';
4127        OutStr.insert(OutStr.begin()+i+1, 'l');
4128      }
4129
4130    return OutStr;
4131#else
4132    return "";
4133#endif
4134  }
4135};
4136} // end namespace llvm
4137