CFG.cpp revision a8d459e8a68b1270b0c35fb73e8cc090b2b69e36
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl* D) {
33  if (VarDecl* VD = dyn_cast<VarDecl>(D))
34    if (Expr* Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl* const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl* operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator& operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator& rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator& rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl* VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock* Block;
256  CFGBlock* Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock* SwitchTerminatedBlock;
260  CFGBlock* DefaultCaseBlock;
261  CFGBlock* TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
316                                      AddStmtChoice asc);
317  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
318  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
319                                       AddStmtChoice asc);
320  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
321                                        AddStmtChoice asc);
322  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt* G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt* R);
347  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
348                                          AddStmtChoice asc);
349  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
350  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
351  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
352  CFGBlock *VisitWhileStmt(WhileStmt *W);
353
354  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
355  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
356  CFGBlock *VisitChildren(Stmt* S);
357
358  // Visitors to walk an AST and generate destructors of temporaries in
359  // full expression.
360  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
361  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
362  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
363  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
364      bool BindToTemporary);
365  CFGBlock *
366  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
367                                            bool BindToTemporary);
368
369  // NYS == Not Yet Supported
370  CFGBlock* NYS() {
371    badCFG = true;
372    return Block;
373  }
374
375  void autoCreateBlock() { if (!Block) Block = createBlock(); }
376  CFGBlock *createBlock(bool add_successor = true);
377
378  CFGBlock *addStmt(Stmt *S) {
379    return Visit(S, AddStmtChoice::AlwaysAdd);
380  }
381  CFGBlock *addInitializer(CXXCtorInitializer *I);
382  void addAutomaticObjDtors(LocalScope::const_iterator B,
383                            LocalScope::const_iterator E, Stmt* S);
384  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
385
386  // Local scopes creation.
387  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
388
389  void addLocalScopeForStmt(Stmt* S);
390  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
391  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
392
393  void addLocalScopeAndDtors(Stmt* S);
394
395  // Interface to CFGBlock - adding CFGElements.
396  void appendStmt(CFGBlock *B, Stmt *S) {
397    if (alwaysAdd(S))
398      cachedEntry->second = B;
399
400    B->appendStmt(S, cfg->getBumpVectorContext());
401  }
402  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
403    B->appendInitializer(I, cfg->getBumpVectorContext());
404  }
405  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
406    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
407  }
408  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
409    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
410  }
411  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
412    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
413  }
414
415  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
416    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
417  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
418      LocalScope::const_iterator E, Stmt* S);
419  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
420      LocalScope::const_iterator B, LocalScope::const_iterator E);
421
422  void addSuccessor(CFGBlock *B, CFGBlock *S) {
423    B->addSuccessor(S, cfg->getBumpVectorContext());
424  }
425
426  /// Try and evaluate an expression to an integer constant.
427  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
428    if (!BuildOpts.PruneTriviallyFalseEdges)
429      return false;
430    return !S->isTypeDependent() &&
431    !S->isValueDependent() &&
432    S->Evaluate(outResult, *Context);
433  }
434
435  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
436  /// if we can evaluate to a known value, otherwise return -1.
437  TryResult tryEvaluateBool(Expr *S) {
438    Expr::EvalResult Result;
439    if (!tryEvaluate(S, Result))
440      return TryResult();
441
442    if (Result.Val.isInt())
443      return Result.Val.getInt().getBoolValue();
444
445    if (Result.Val.isLValue()) {
446      Expr *e = Result.Val.getLValueBase();
447      const CharUnits &c = Result.Val.getLValueOffset();
448      if (!e && c.isZero())
449        return false;
450    }
451    return TryResult();
452  }
453
454};
455
456inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
457                                     const Stmt *stmt) const {
458  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
459}
460
461bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
462  if (!BuildOpts.forcedBlkExprs)
463    return false;
464
465  if (lastLookup == stmt) {
466    if (cachedEntry) {
467      assert(cachedEntry->first == stmt);
468      return true;
469    }
470    return false;
471  }
472
473  lastLookup = stmt;
474
475  // Perform the lookup!
476  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
477
478  if (!fb) {
479    // No need to update 'cachedEntry', since it will always be null.
480    assert(cachedEntry == 0);
481    return false;
482  }
483
484  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
485  if (itr == fb->end()) {
486    cachedEntry = 0;
487    return false;
488  }
489
490  cachedEntry = &*itr;
491  return true;
492}
493
494// FIXME: Add support for dependent-sized array types in C++?
495// Does it even make sense to build a CFG for an uninstantiated template?
496static const VariableArrayType *FindVA(const Type *t) {
497  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
498    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
499      if (vat->getSizeExpr())
500        return vat;
501
502    t = vt->getElementType().getTypePtr();
503  }
504
505  return 0;
506}
507
508/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
509///  arbitrary statement.  Examples include a single expression or a function
510///  body (compound statement).  The ownership of the returned CFG is
511///  transferred to the caller.  If CFG construction fails, this method returns
512///  NULL.
513CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement) {
514  assert(cfg.get());
515  if (!Statement)
516    return NULL;
517
518  // Create an empty block that will serve as the exit block for the CFG.  Since
519  // this is the first block added to the CFG, it will be implicitly registered
520  // as the exit block.
521  Succ = createBlock();
522  assert(Succ == &cfg->getExit());
523  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
524
525  if (BuildOpts.AddImplicitDtors)
526    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
527      addImplicitDtorsForDestructor(DD);
528
529  // Visit the statements and create the CFG.
530  CFGBlock *B = addStmt(Statement);
531
532  if (badCFG)
533    return NULL;
534
535  // For C++ constructor add initializers to CFG.
536  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
537    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
538        E = CD->init_rend(); I != E; ++I) {
539      B = addInitializer(*I);
540      if (badCFG)
541        return NULL;
542    }
543  }
544
545  if (B)
546    Succ = B;
547
548  // Backpatch the gotos whose label -> block mappings we didn't know when we
549  // encountered them.
550  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
551                                   E = BackpatchBlocks.end(); I != E; ++I ) {
552
553    CFGBlock* B = I->block;
554    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
555    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
556
557    // If there is no target for the goto, then we are looking at an
558    // incomplete AST.  Handle this by not registering a successor.
559    if (LI == LabelMap.end()) continue;
560
561    JumpTarget JT = LI->second;
562    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
563                                           JT.scopePosition);
564    addSuccessor(B, JT.block);
565  }
566
567  // Add successors to the Indirect Goto Dispatch block (if we have one).
568  if (CFGBlock* B = cfg->getIndirectGotoBlock())
569    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
570                              E = AddressTakenLabels.end(); I != E; ++I ) {
571
572      // Lookup the target block.
573      LabelMapTy::iterator LI = LabelMap.find(*I);
574
575      // If there is no target block that contains label, then we are looking
576      // at an incomplete AST.  Handle this by not registering a successor.
577      if (LI == LabelMap.end()) continue;
578
579      addSuccessor(B, LI->second.block);
580    }
581
582  // Create an empty entry block that has no predecessors.
583  cfg->setEntry(createBlock());
584
585  return cfg.take();
586}
587
588/// createBlock - Used to lazily create blocks that are connected
589///  to the current (global) succcessor.
590CFGBlock* CFGBuilder::createBlock(bool add_successor) {
591  CFGBlock* B = cfg->createBlock();
592  if (add_successor && Succ)
593    addSuccessor(B, Succ);
594  return B;
595}
596
597/// addInitializer - Add C++ base or member initializer element to CFG.
598CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
599  if (!BuildOpts.AddInitializers)
600    return Block;
601
602  bool IsReference = false;
603  bool HasTemporaries = false;
604
605  // Destructors of temporaries in initialization expression should be called
606  // after initialization finishes.
607  Expr *Init = I->getInit();
608  if (Init) {
609    if (FieldDecl *FD = I->getAnyMember())
610      IsReference = FD->getType()->isReferenceType();
611    HasTemporaries = isa<ExprWithCleanups>(Init);
612
613    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
614      // Generate destructors for temporaries in initialization expression.
615      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
616          IsReference);
617    }
618  }
619
620  autoCreateBlock();
621  appendInitializer(Block, I);
622
623  if (Init) {
624    if (HasTemporaries) {
625      // For expression with temporaries go directly to subexpression to omit
626      // generating destructors for the second time.
627      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
628    }
629    return Visit(Init);
630  }
631
632  return Block;
633}
634
635/// addAutomaticObjDtors - Add to current block automatic objects destructors
636/// for objects in range of local scope positions. Use S as trigger statement
637/// for destructors.
638void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
639                                      LocalScope::const_iterator E, Stmt* S) {
640  if (!BuildOpts.AddImplicitDtors)
641    return;
642
643  if (B == E)
644    return;
645
646  autoCreateBlock();
647  appendAutomaticObjDtors(Block, B, E, S);
648}
649
650/// addImplicitDtorsForDestructor - Add implicit destructors generated for
651/// base and member objects in destructor.
652void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
653  assert (BuildOpts.AddImplicitDtors
654      && "Can be called only when dtors should be added");
655  const CXXRecordDecl *RD = DD->getParent();
656
657  // At the end destroy virtual base objects.
658  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
659      VE = RD->vbases_end(); VI != VE; ++VI) {
660    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
661    if (!CD->hasTrivialDestructor()) {
662      autoCreateBlock();
663      appendBaseDtor(Block, VI);
664    }
665  }
666
667  // Before virtual bases destroy direct base objects.
668  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
669      BE = RD->bases_end(); BI != BE; ++BI) {
670    if (!BI->isVirtual()) {
671      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
672      if (!CD->hasTrivialDestructor()) {
673        autoCreateBlock();
674        appendBaseDtor(Block, BI);
675      }
676    }
677  }
678
679  // First destroy member objects.
680  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
681      FE = RD->field_end(); FI != FE; ++FI) {
682    // Check for constant size array. Set type to array element type.
683    QualType QT = FI->getType();
684    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
685      if (AT->getSize() == 0)
686        continue;
687      QT = AT->getElementType();
688    }
689
690    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
691      if (!CD->hasTrivialDestructor()) {
692        autoCreateBlock();
693        appendMemberDtor(Block, *FI);
694      }
695  }
696}
697
698/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
699/// way return valid LocalScope object.
700LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
701  if (!Scope) {
702    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
703    Scope = alloc.Allocate<LocalScope>();
704    BumpVectorContext ctx(alloc);
705    new (Scope) LocalScope(ctx, ScopePos);
706  }
707  return Scope;
708}
709
710/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
711/// that should create implicit scope (e.g. if/else substatements).
712void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
713  if (!BuildOpts.AddImplicitDtors)
714    return;
715
716  LocalScope *Scope = 0;
717
718  // For compound statement we will be creating explicit scope.
719  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
720    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
721        ; BI != BE; ++BI) {
722      Stmt *SI = *BI;
723      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
724        SI = LS->getSubStmt();
725      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
726        Scope = addLocalScopeForDeclStmt(DS, Scope);
727    }
728    return;
729  }
730
731  // For any other statement scope will be implicit and as such will be
732  // interesting only for DeclStmt.
733  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
734    S = LS->getSubStmt();
735  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
736    addLocalScopeForDeclStmt(DS);
737}
738
739/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
740/// reuse Scope if not NULL.
741LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
742                                                 LocalScope* Scope) {
743  if (!BuildOpts.AddImplicitDtors)
744    return Scope;
745
746  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
747      ; DI != DE; ++DI) {
748    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
749      Scope = addLocalScopeForVarDecl(VD, Scope);
750  }
751  return Scope;
752}
753
754/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
755/// create add scope for automatic objects and temporary objects bound to
756/// const reference. Will reuse Scope if not NULL.
757LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
758                                                LocalScope* Scope) {
759  if (!BuildOpts.AddImplicitDtors)
760    return Scope;
761
762  // Check if variable is local.
763  switch (VD->getStorageClass()) {
764  case SC_None:
765  case SC_Auto:
766  case SC_Register:
767    break;
768  default: return Scope;
769  }
770
771  // Check for const references bound to temporary. Set type to pointee.
772  QualType QT = VD->getType();
773  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
774    QT = RT->getPointeeType();
775    if (!QT.isConstQualified())
776      return Scope;
777    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
778      return Scope;
779  }
780
781  // Check for constant size array. Set type to array element type.
782  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
783    if (AT->getSize() == 0)
784      return Scope;
785    QT = AT->getElementType();
786  }
787
788  // Check if type is a C++ class with non-trivial destructor.
789  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
790    if (!CD->hasTrivialDestructor()) {
791      // Add the variable to scope
792      Scope = createOrReuseLocalScope(Scope);
793      Scope->addVar(VD);
794      ScopePos = Scope->begin();
795    }
796  return Scope;
797}
798
799/// addLocalScopeAndDtors - For given statement add local scope for it and
800/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
801void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
802  if (!BuildOpts.AddImplicitDtors)
803    return;
804
805  LocalScope::const_iterator scopeBeginPos = ScopePos;
806  addLocalScopeForStmt(S);
807  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
808}
809
810/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
811/// automatic storage duration to CFGBlock's elements vector. Insertion will be
812/// performed in place specified with iterator.
813void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
814    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
815  BumpVectorContext& C = cfg->getBumpVectorContext();
816  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
817  while (B != E)
818    I = Blk->insertAutomaticObjDtor(I, *B++, S);
819}
820
821/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
822/// automatic storage duration to CFGBlock's elements vector. Elements will be
823/// appended to physical end of the vector which happens to be logical
824/// beginning.
825void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
826    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
827  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
828}
829
830/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
831/// variables with automatic storage duration to CFGBlock's elements vector.
832/// Elements will be prepended to physical beginning of the vector which
833/// happens to be logical end. Use blocks terminator as statement that specifies
834/// destructors call site.
835void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
836    LocalScope::const_iterator B, LocalScope::const_iterator E) {
837  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
838}
839
840/// Visit - Walk the subtree of a statement and add extra
841///   blocks for ternary operators, &&, and ||.  We also process "," and
842///   DeclStmts (which may contain nested control-flow).
843CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
844tryAgain:
845  if (!S) {
846    badCFG = true;
847    return 0;
848  }
849  switch (S->getStmtClass()) {
850    default:
851      return VisitStmt(S, asc);
852
853    case Stmt::AddrLabelExprClass:
854      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
855
856    case Stmt::BinaryConditionalOperatorClass:
857      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
858
859    case Stmt::BinaryOperatorClass:
860      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
861
862    case Stmt::BlockExprClass:
863      return VisitBlockExpr(cast<BlockExpr>(S), asc);
864
865    case Stmt::BreakStmtClass:
866      return VisitBreakStmt(cast<BreakStmt>(S));
867
868    case Stmt::CallExprClass:
869    case Stmt::CXXOperatorCallExprClass:
870      return VisitCallExpr(cast<CallExpr>(S), asc);
871
872    case Stmt::CaseStmtClass:
873      return VisitCaseStmt(cast<CaseStmt>(S));
874
875    case Stmt::ChooseExprClass:
876      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
877
878    case Stmt::CompoundStmtClass:
879      return VisitCompoundStmt(cast<CompoundStmt>(S));
880
881    case Stmt::ConditionalOperatorClass:
882      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
883
884    case Stmt::ContinueStmtClass:
885      return VisitContinueStmt(cast<ContinueStmt>(S));
886
887    case Stmt::CXXCatchStmtClass:
888      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
889
890    case Stmt::ExprWithCleanupsClass:
891      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
892
893    case Stmt::CXXBindTemporaryExprClass:
894      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
895
896    case Stmt::CXXConstructExprClass:
897      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
898
899    case Stmt::CXXFunctionalCastExprClass:
900      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
901
902    case Stmt::CXXTemporaryObjectExprClass:
903      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
904
905    case Stmt::CXXMemberCallExprClass:
906      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
907
908    case Stmt::CXXThrowExprClass:
909      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
910
911    case Stmt::CXXTryStmtClass:
912      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
913
914    case Stmt::DeclStmtClass:
915      return VisitDeclStmt(cast<DeclStmt>(S));
916
917    case Stmt::DefaultStmtClass:
918      return VisitDefaultStmt(cast<DefaultStmt>(S));
919
920    case Stmt::DoStmtClass:
921      return VisitDoStmt(cast<DoStmt>(S));
922
923    case Stmt::ForStmtClass:
924      return VisitForStmt(cast<ForStmt>(S));
925
926    case Stmt::GotoStmtClass:
927      return VisitGotoStmt(cast<GotoStmt>(S));
928
929    case Stmt::IfStmtClass:
930      return VisitIfStmt(cast<IfStmt>(S));
931
932    case Stmt::ImplicitCastExprClass:
933      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
934
935    case Stmt::IndirectGotoStmtClass:
936      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
937
938    case Stmt::LabelStmtClass:
939      return VisitLabelStmt(cast<LabelStmt>(S));
940
941    case Stmt::MemberExprClass:
942      return VisitMemberExpr(cast<MemberExpr>(S), asc);
943
944    case Stmt::ObjCAtCatchStmtClass:
945      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
946
947    case Stmt::ObjCAtSynchronizedStmtClass:
948      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
949
950    case Stmt::ObjCAtThrowStmtClass:
951      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
952
953    case Stmt::ObjCAtTryStmtClass:
954      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
955
956    case Stmt::ObjCForCollectionStmtClass:
957      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
958
959    case Stmt::ParenExprClass:
960      S = cast<ParenExpr>(S)->getSubExpr();
961      goto tryAgain;
962
963    case Stmt::NullStmtClass:
964      return Block;
965
966    case Stmt::ReturnStmtClass:
967      return VisitReturnStmt(cast<ReturnStmt>(S));
968
969    case Stmt::UnaryExprOrTypeTraitExprClass:
970      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
971                                           asc);
972
973    case Stmt::StmtExprClass:
974      return VisitStmtExpr(cast<StmtExpr>(S), asc);
975
976    case Stmt::SwitchStmtClass:
977      return VisitSwitchStmt(cast<SwitchStmt>(S));
978
979    case Stmt::UnaryOperatorClass:
980      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
981
982    case Stmt::WhileStmtClass:
983      return VisitWhileStmt(cast<WhileStmt>(S));
984  }
985}
986
987CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
988  if (asc.alwaysAdd(*this, S)) {
989    autoCreateBlock();
990    appendStmt(Block, S);
991  }
992
993  return VisitChildren(S);
994}
995
996/// VisitChildren - Visit the children of a Stmt.
997CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
998  CFGBlock *lastBlock = Block;
999  for (Stmt::child_range I = Terminator->children(); I; ++I)
1000    if (Stmt *child = *I)
1001      if (CFGBlock *b = Visit(child))
1002        lastBlock = b;
1003
1004  return lastBlock;
1005}
1006
1007CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1008                                         AddStmtChoice asc) {
1009  AddressTakenLabels.insert(A->getLabel());
1010
1011  if (asc.alwaysAdd(*this, A)) {
1012    autoCreateBlock();
1013    appendStmt(Block, A);
1014  }
1015
1016  return Block;
1017}
1018
1019CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1020           AddStmtChoice asc) {
1021  if (asc.alwaysAdd(*this, U)) {
1022    autoCreateBlock();
1023    appendStmt(Block, U);
1024  }
1025
1026  return Visit(U->getSubExpr(), AddStmtChoice());
1027}
1028
1029CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1030                                          AddStmtChoice asc) {
1031  if (B->isLogicalOp()) { // && or ||
1032    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1033    appendStmt(ConfluenceBlock, B);
1034
1035    if (badCFG)
1036      return 0;
1037
1038    // create the block evaluating the LHS
1039    CFGBlock* LHSBlock = createBlock(false);
1040    LHSBlock->setTerminator(B);
1041
1042    // create the block evaluating the RHS
1043    Succ = ConfluenceBlock;
1044    Block = NULL;
1045    CFGBlock* RHSBlock = addStmt(B->getRHS());
1046
1047    if (RHSBlock) {
1048      if (badCFG)
1049        return 0;
1050    } else {
1051      // Create an empty block for cases where the RHS doesn't require
1052      // any explicit statements in the CFG.
1053      RHSBlock = createBlock();
1054    }
1055
1056    // See if this is a known constant.
1057    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1058    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1059      KnownVal.negate();
1060
1061    // Now link the LHSBlock with RHSBlock.
1062    if (B->getOpcode() == BO_LOr) {
1063      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1064      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1065    } else {
1066      assert(B->getOpcode() == BO_LAnd);
1067      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1068      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1069    }
1070
1071    // Generate the blocks for evaluating the LHS.
1072    Block = LHSBlock;
1073    return addStmt(B->getLHS());
1074  }
1075
1076  if (B->getOpcode() == BO_Comma) { // ,
1077    autoCreateBlock();
1078    appendStmt(Block, B);
1079    addStmt(B->getRHS());
1080    return addStmt(B->getLHS());
1081  }
1082
1083  if (B->isAssignmentOp()) {
1084    if (asc.alwaysAdd(*this, B)) {
1085      autoCreateBlock();
1086      appendStmt(Block, B);
1087    }
1088    Visit(B->getLHS());
1089    return Visit(B->getRHS());
1090  }
1091
1092  if (asc.alwaysAdd(*this, B)) {
1093    autoCreateBlock();
1094    appendStmt(Block, B);
1095  }
1096
1097  CFGBlock *RBlock = Visit(B->getRHS());
1098  CFGBlock *LBlock = Visit(B->getLHS());
1099  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1100  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1101  // return RBlock.  Otherwise we'll incorrectly return NULL.
1102  return (LBlock ? LBlock : RBlock);
1103}
1104
1105CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1106  if (asc.alwaysAdd(*this, E)) {
1107    autoCreateBlock();
1108    appendStmt(Block, E);
1109  }
1110  return Block;
1111}
1112
1113CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1114  // "break" is a control-flow statement.  Thus we stop processing the current
1115  // block.
1116  if (badCFG)
1117    return 0;
1118
1119  // Now create a new block that ends with the break statement.
1120  Block = createBlock(false);
1121  Block->setTerminator(B);
1122
1123  // If there is no target for the break, then we are looking at an incomplete
1124  // AST.  This means that the CFG cannot be constructed.
1125  if (BreakJumpTarget.block) {
1126    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1127    addSuccessor(Block, BreakJumpTarget.block);
1128  } else
1129    badCFG = true;
1130
1131
1132  return Block;
1133}
1134
1135static bool CanThrow(Expr *E, ASTContext &Ctx) {
1136  QualType Ty = E->getType();
1137  if (Ty->isFunctionPointerType())
1138    Ty = Ty->getAs<PointerType>()->getPointeeType();
1139  else if (Ty->isBlockPointerType())
1140    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1141
1142  const FunctionType *FT = Ty->getAs<FunctionType>();
1143  if (FT) {
1144    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1145      if (Proto->isNothrow(Ctx))
1146        return false;
1147  }
1148  return true;
1149}
1150
1151CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1152  // If this is a call to a no-return function, this stops the block here.
1153  bool NoReturn = false;
1154  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
1155    NoReturn = true;
1156  }
1157
1158  bool AddEHEdge = false;
1159
1160  // Languages without exceptions are assumed to not throw.
1161  if (Context->getLangOptions().Exceptions) {
1162    if (BuildOpts.AddEHEdges)
1163      AddEHEdge = true;
1164  }
1165
1166  if (FunctionDecl *FD = C->getDirectCallee()) {
1167    if (FD->hasAttr<NoReturnAttr>())
1168      NoReturn = true;
1169    if (FD->hasAttr<NoThrowAttr>())
1170      AddEHEdge = false;
1171  }
1172
1173  if (!CanThrow(C->getCallee(), *Context))
1174    AddEHEdge = false;
1175
1176  if (!NoReturn && !AddEHEdge)
1177    return VisitStmt(C, asc.withAlwaysAdd(true));
1178
1179  if (Block) {
1180    Succ = Block;
1181    if (badCFG)
1182      return 0;
1183  }
1184
1185  Block = createBlock(!NoReturn);
1186  appendStmt(Block, C);
1187
1188  if (NoReturn) {
1189    // Wire this to the exit block directly.
1190    addSuccessor(Block, &cfg->getExit());
1191  }
1192  if (AddEHEdge) {
1193    // Add exceptional edges.
1194    if (TryTerminatedBlock)
1195      addSuccessor(Block, TryTerminatedBlock);
1196    else
1197      addSuccessor(Block, &cfg->getExit());
1198  }
1199
1200  return VisitChildren(C);
1201}
1202
1203CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1204                                      AddStmtChoice asc) {
1205  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1206  appendStmt(ConfluenceBlock, C);
1207  if (badCFG)
1208    return 0;
1209
1210  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1211  Succ = ConfluenceBlock;
1212  Block = NULL;
1213  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1214  if (badCFG)
1215    return 0;
1216
1217  Succ = ConfluenceBlock;
1218  Block = NULL;
1219  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1220  if (badCFG)
1221    return 0;
1222
1223  Block = createBlock(false);
1224  // See if this is a known constant.
1225  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1226  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1227  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1228  Block->setTerminator(C);
1229  return addStmt(C->getCond());
1230}
1231
1232
1233CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1234  addLocalScopeAndDtors(C);
1235  CFGBlock* LastBlock = Block;
1236
1237  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1238       I != E; ++I ) {
1239    // If we hit a segment of code just containing ';' (NullStmts), we can
1240    // get a null block back.  In such cases, just use the LastBlock
1241    if (CFGBlock *newBlock = addStmt(*I))
1242      LastBlock = newBlock;
1243
1244    if (badCFG)
1245      return NULL;
1246  }
1247
1248  return LastBlock;
1249}
1250
1251CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1252                                               AddStmtChoice asc) {
1253  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1254  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1255
1256  // Create the confluence block that will "merge" the results of the ternary
1257  // expression.
1258  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1259  appendStmt(ConfluenceBlock, C);
1260  if (badCFG)
1261    return 0;
1262
1263  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1264
1265  // Create a block for the LHS expression if there is an LHS expression.  A
1266  // GCC extension allows LHS to be NULL, causing the condition to be the
1267  // value that is returned instead.
1268  //  e.g: x ?: y is shorthand for: x ? x : y;
1269  Succ = ConfluenceBlock;
1270  Block = NULL;
1271  CFGBlock* LHSBlock = 0;
1272  const Expr *trueExpr = C->getTrueExpr();
1273  if (trueExpr != opaqueValue) {
1274    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1275    if (badCFG)
1276      return 0;
1277    Block = NULL;
1278  }
1279  else
1280    LHSBlock = ConfluenceBlock;
1281
1282  // Create the block for the RHS expression.
1283  Succ = ConfluenceBlock;
1284  CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1285  if (badCFG)
1286    return 0;
1287
1288  // Create the block that will contain the condition.
1289  Block = createBlock(false);
1290
1291  // See if this is a known constant.
1292  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1293  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1294  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1295  Block->setTerminator(C);
1296  Expr *condExpr = C->getCond();
1297
1298  if (opaqueValue) {
1299    // Run the condition expression if it's not trivially expressed in
1300    // terms of the opaque value (or if there is no opaque value).
1301    if (condExpr != opaqueValue)
1302      addStmt(condExpr);
1303
1304    // Before that, run the common subexpression if there was one.
1305    // At least one of this or the above will be run.
1306    return addStmt(BCO->getCommon());
1307  }
1308
1309  return addStmt(condExpr);
1310}
1311
1312CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1313  if (DS->isSingleDecl())
1314    return VisitDeclSubExpr(DS);
1315
1316  CFGBlock *B = 0;
1317
1318  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1319  typedef llvm::SmallVector<Decl*,10> BufTy;
1320  BufTy Buf(DS->decl_begin(), DS->decl_end());
1321
1322  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1323    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1324    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1325               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1326
1327    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1328    // automatically freed with the CFG.
1329    DeclGroupRef DG(*I);
1330    Decl *D = *I;
1331    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1332    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1333
1334    // Append the fake DeclStmt to block.
1335    B = VisitDeclSubExpr(DSNew);
1336  }
1337
1338  return B;
1339}
1340
1341/// VisitDeclSubExpr - Utility method to add block-level expressions for
1342/// DeclStmts and initializers in them.
1343CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1344  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1345
1346  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1347
1348  if (!VD) {
1349    autoCreateBlock();
1350    appendStmt(Block, DS);
1351    return Block;
1352  }
1353
1354  bool IsReference = false;
1355  bool HasTemporaries = false;
1356
1357  // Destructors of temporaries in initialization expression should be called
1358  // after initialization finishes.
1359  Expr *Init = VD->getInit();
1360  if (Init) {
1361    IsReference = VD->getType()->isReferenceType();
1362    HasTemporaries = isa<ExprWithCleanups>(Init);
1363
1364    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1365      // Generate destructors for temporaries in initialization expression.
1366      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1367          IsReference);
1368    }
1369  }
1370
1371  autoCreateBlock();
1372  appendStmt(Block, DS);
1373
1374  if (Init) {
1375    if (HasTemporaries)
1376      // For expression with temporaries go directly to subexpression to omit
1377      // generating destructors for the second time.
1378      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1379    else
1380      Visit(Init);
1381  }
1382
1383  // If the type of VD is a VLA, then we must process its size expressions.
1384  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1385       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1386    Block = addStmt(VA->getSizeExpr());
1387
1388  // Remove variable from local scope.
1389  if (ScopePos && VD == *ScopePos)
1390    ++ScopePos;
1391
1392  return Block;
1393}
1394
1395CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1396  // We may see an if statement in the middle of a basic block, or it may be the
1397  // first statement we are processing.  In either case, we create a new basic
1398  // block.  First, we create the blocks for the then...else statements, and
1399  // then we create the block containing the if statement.  If we were in the
1400  // middle of a block, we stop processing that block.  That block is then the
1401  // implicit successor for the "then" and "else" clauses.
1402
1403  // Save local scope position because in case of condition variable ScopePos
1404  // won't be restored when traversing AST.
1405  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1406
1407  // Create local scope for possible condition variable.
1408  // Store scope position. Add implicit destructor.
1409  if (VarDecl* VD = I->getConditionVariable()) {
1410    LocalScope::const_iterator BeginScopePos = ScopePos;
1411    addLocalScopeForVarDecl(VD);
1412    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1413  }
1414
1415  // The block we were proccessing is now finished.  Make it the successor
1416  // block.
1417  if (Block) {
1418    Succ = Block;
1419    if (badCFG)
1420      return 0;
1421  }
1422
1423  // Process the false branch.
1424  CFGBlock* ElseBlock = Succ;
1425
1426  if (Stmt* Else = I->getElse()) {
1427    SaveAndRestore<CFGBlock*> sv(Succ);
1428
1429    // NULL out Block so that the recursive call to Visit will
1430    // create a new basic block.
1431    Block = NULL;
1432
1433    // If branch is not a compound statement create implicit scope
1434    // and add destructors.
1435    if (!isa<CompoundStmt>(Else))
1436      addLocalScopeAndDtors(Else);
1437
1438    ElseBlock = addStmt(Else);
1439
1440    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1441      ElseBlock = sv.get();
1442    else if (Block) {
1443      if (badCFG)
1444        return 0;
1445    }
1446  }
1447
1448  // Process the true branch.
1449  CFGBlock* ThenBlock;
1450  {
1451    Stmt* Then = I->getThen();
1452    assert(Then);
1453    SaveAndRestore<CFGBlock*> sv(Succ);
1454    Block = NULL;
1455
1456    // If branch is not a compound statement create implicit scope
1457    // and add destructors.
1458    if (!isa<CompoundStmt>(Then))
1459      addLocalScopeAndDtors(Then);
1460
1461    ThenBlock = addStmt(Then);
1462
1463    if (!ThenBlock) {
1464      // We can reach here if the "then" body has all NullStmts.
1465      // Create an empty block so we can distinguish between true and false
1466      // branches in path-sensitive analyses.
1467      ThenBlock = createBlock(false);
1468      addSuccessor(ThenBlock, sv.get());
1469    } else if (Block) {
1470      if (badCFG)
1471        return 0;
1472    }
1473  }
1474
1475  // Now create a new block containing the if statement.
1476  Block = createBlock(false);
1477
1478  // Set the terminator of the new block to the If statement.
1479  Block->setTerminator(I);
1480
1481  // See if this is a known constant.
1482  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1483
1484  // Now add the successors.
1485  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1486  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1487
1488  // Add the condition as the last statement in the new block.  This may create
1489  // new blocks as the condition may contain control-flow.  Any newly created
1490  // blocks will be pointed to be "Block".
1491  Block = addStmt(I->getCond());
1492
1493  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1494  // and the condition variable initialization to the CFG.
1495  if (VarDecl *VD = I->getConditionVariable()) {
1496    if (Expr *Init = VD->getInit()) {
1497      autoCreateBlock();
1498      appendStmt(Block, I);
1499      addStmt(Init);
1500    }
1501  }
1502
1503  return Block;
1504}
1505
1506
1507CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1508  // If we were in the middle of a block we stop processing that block.
1509  //
1510  // NOTE: If a "return" appears in the middle of a block, this means that the
1511  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1512  //       for that code; a simple "mark-and-sweep" from the entry block will be
1513  //       able to report such dead blocks.
1514
1515  // Create the new block.
1516  Block = createBlock(false);
1517
1518  // The Exit block is the only successor.
1519  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1520  addSuccessor(Block, &cfg->getExit());
1521
1522  // Add the return statement to the block.  This may create new blocks if R
1523  // contains control-flow (short-circuit operations).
1524  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1525}
1526
1527CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1528  // Get the block of the labeled statement.  Add it to our map.
1529  addStmt(L->getSubStmt());
1530  CFGBlock *LabelBlock = Block;
1531
1532  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1533    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1534
1535  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1536         "label already in map");
1537  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1538
1539  // Labels partition blocks, so this is the end of the basic block we were
1540  // processing (L is the block's label).  Because this is label (and we have
1541  // already processed the substatement) there is no extra control-flow to worry
1542  // about.
1543  LabelBlock->setLabel(L);
1544  if (badCFG)
1545    return 0;
1546
1547  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1548  Block = NULL;
1549
1550  // This block is now the implicit successor of other blocks.
1551  Succ = LabelBlock;
1552
1553  return LabelBlock;
1554}
1555
1556CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1557  // Goto is a control-flow statement.  Thus we stop processing the current
1558  // block and create a new one.
1559
1560  Block = createBlock(false);
1561  Block->setTerminator(G);
1562
1563  // If we already know the mapping to the label block add the successor now.
1564  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1565
1566  if (I == LabelMap.end())
1567    // We will need to backpatch this block later.
1568    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1569  else {
1570    JumpTarget JT = I->second;
1571    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1572    addSuccessor(Block, JT.block);
1573  }
1574
1575  return Block;
1576}
1577
1578CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1579  CFGBlock* LoopSuccessor = NULL;
1580
1581  // Save local scope position because in case of condition variable ScopePos
1582  // won't be restored when traversing AST.
1583  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1584
1585  // Create local scope for init statement and possible condition variable.
1586  // Add destructor for init statement and condition variable.
1587  // Store scope position for continue statement.
1588  if (Stmt* Init = F->getInit())
1589    addLocalScopeForStmt(Init);
1590  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1591
1592  if (VarDecl* VD = F->getConditionVariable())
1593    addLocalScopeForVarDecl(VD);
1594  LocalScope::const_iterator ContinueScopePos = ScopePos;
1595
1596  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1597
1598  // "for" is a control-flow statement.  Thus we stop processing the current
1599  // block.
1600  if (Block) {
1601    if (badCFG)
1602      return 0;
1603    LoopSuccessor = Block;
1604  } else
1605    LoopSuccessor = Succ;
1606
1607  // Save the current value for the break targets.
1608  // All breaks should go to the code following the loop.
1609  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1610  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1611
1612  // Because of short-circuit evaluation, the condition of the loop can span
1613  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1614  // evaluate the condition.
1615  CFGBlock* ExitConditionBlock = createBlock(false);
1616  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1617
1618  // Set the terminator for the "exit" condition block.
1619  ExitConditionBlock->setTerminator(F);
1620
1621  // Now add the actual condition to the condition block.  Because the condition
1622  // itself may contain control-flow, new blocks may be created.
1623  if (Stmt* C = F->getCond()) {
1624    Block = ExitConditionBlock;
1625    EntryConditionBlock = addStmt(C);
1626    if (badCFG)
1627      return 0;
1628    assert(Block == EntryConditionBlock ||
1629           (Block == 0 && EntryConditionBlock == Succ));
1630
1631    // If this block contains a condition variable, add both the condition
1632    // variable and initializer to the CFG.
1633    if (VarDecl *VD = F->getConditionVariable()) {
1634      if (Expr *Init = VD->getInit()) {
1635        autoCreateBlock();
1636        appendStmt(Block, F);
1637        EntryConditionBlock = addStmt(Init);
1638        assert(Block == EntryConditionBlock);
1639      }
1640    }
1641
1642    if (Block) {
1643      if (badCFG)
1644        return 0;
1645    }
1646  }
1647
1648  // The condition block is the implicit successor for the loop body as well as
1649  // any code above the loop.
1650  Succ = EntryConditionBlock;
1651
1652  // See if this is a known constant.
1653  TryResult KnownVal(true);
1654
1655  if (F->getCond())
1656    KnownVal = tryEvaluateBool(F->getCond());
1657
1658  // Now create the loop body.
1659  {
1660    assert(F->getBody());
1661
1662   // Save the current values for Block, Succ, and continue targets.
1663   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1664   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1665
1666    // Create a new block to contain the (bottom) of the loop body.
1667    Block = NULL;
1668
1669    // Loop body should end with destructor of Condition variable (if any).
1670    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1671
1672    if (Stmt* I = F->getInc()) {
1673      // Generate increment code in its own basic block.  This is the target of
1674      // continue statements.
1675      Succ = addStmt(I);
1676    } else {
1677      // No increment code.  Create a special, empty, block that is used as the
1678      // target block for "looping back" to the start of the loop.
1679      assert(Succ == EntryConditionBlock);
1680      Succ = Block ? Block : createBlock();
1681    }
1682
1683    // Finish up the increment (or empty) block if it hasn't been already.
1684    if (Block) {
1685      assert(Block == Succ);
1686      if (badCFG)
1687        return 0;
1688      Block = 0;
1689    }
1690
1691    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1692
1693    // The starting block for the loop increment is the block that should
1694    // represent the 'loop target' for looping back to the start of the loop.
1695    ContinueJumpTarget.block->setLoopTarget(F);
1696
1697    // If body is not a compound statement create implicit scope
1698    // and add destructors.
1699    if (!isa<CompoundStmt>(F->getBody()))
1700      addLocalScopeAndDtors(F->getBody());
1701
1702    // Now populate the body block, and in the process create new blocks as we
1703    // walk the body of the loop.
1704    CFGBlock* BodyBlock = addStmt(F->getBody());
1705
1706    if (!BodyBlock)
1707      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1708    else if (badCFG)
1709      return 0;
1710
1711    // This new body block is a successor to our "exit" condition block.
1712    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1713  }
1714
1715  // Link up the condition block with the code that follows the loop.  (the
1716  // false branch).
1717  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1718
1719  // If the loop contains initialization, create a new block for those
1720  // statements.  This block can also contain statements that precede the loop.
1721  if (Stmt* I = F->getInit()) {
1722    Block = createBlock();
1723    return addStmt(I);
1724  }
1725
1726  // There is no loop initialization.  We are thus basically a while loop.
1727  // NULL out Block to force lazy block construction.
1728  Block = NULL;
1729  Succ = EntryConditionBlock;
1730  return EntryConditionBlock;
1731}
1732
1733CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1734  if (asc.alwaysAdd(*this, M)) {
1735    autoCreateBlock();
1736    appendStmt(Block, M);
1737  }
1738  return Visit(M->getBase());
1739}
1740
1741CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1742  // Objective-C fast enumeration 'for' statements:
1743  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1744  //
1745  //  for ( Type newVariable in collection_expression ) { statements }
1746  //
1747  //  becomes:
1748  //
1749  //   prologue:
1750  //     1. collection_expression
1751  //     T. jump to loop_entry
1752  //   loop_entry:
1753  //     1. side-effects of element expression
1754  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1755  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1756  //   TB:
1757  //     statements
1758  //     T. jump to loop_entry
1759  //   FB:
1760  //     what comes after
1761  //
1762  //  and
1763  //
1764  //  Type existingItem;
1765  //  for ( existingItem in expression ) { statements }
1766  //
1767  //  becomes:
1768  //
1769  //   the same with newVariable replaced with existingItem; the binding works
1770  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1771  //   a DeclStmt and the other returns a DeclRefExpr.
1772  //
1773
1774  CFGBlock* LoopSuccessor = 0;
1775
1776  if (Block) {
1777    if (badCFG)
1778      return 0;
1779    LoopSuccessor = Block;
1780    Block = 0;
1781  } else
1782    LoopSuccessor = Succ;
1783
1784  // Build the condition blocks.
1785  CFGBlock* ExitConditionBlock = createBlock(false);
1786  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1787
1788  // Set the terminator for the "exit" condition block.
1789  ExitConditionBlock->setTerminator(S);
1790
1791  // The last statement in the block should be the ObjCForCollectionStmt, which
1792  // performs the actual binding to 'element' and determines if there are any
1793  // more items in the collection.
1794  appendStmt(ExitConditionBlock, S);
1795  Block = ExitConditionBlock;
1796
1797  // Walk the 'element' expression to see if there are any side-effects.  We
1798  // generate new blocks as necesary.  We DON'T add the statement by default to
1799  // the CFG unless it contains control-flow.
1800  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1801  if (Block) {
1802    if (badCFG)
1803      return 0;
1804    Block = 0;
1805  }
1806
1807  // The condition block is the implicit successor for the loop body as well as
1808  // any code above the loop.
1809  Succ = EntryConditionBlock;
1810
1811  // Now create the true branch.
1812  {
1813    // Save the current values for Succ, continue and break targets.
1814    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1815    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1816        save_break(BreakJumpTarget);
1817
1818    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1819    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1820
1821    CFGBlock* BodyBlock = addStmt(S->getBody());
1822
1823    if (!BodyBlock)
1824      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1825    else if (Block) {
1826      if (badCFG)
1827        return 0;
1828    }
1829
1830    // This new body block is a successor to our "exit" condition block.
1831    addSuccessor(ExitConditionBlock, BodyBlock);
1832  }
1833
1834  // Link up the condition block with the code that follows the loop.
1835  // (the false branch).
1836  addSuccessor(ExitConditionBlock, LoopSuccessor);
1837
1838  // Now create a prologue block to contain the collection expression.
1839  Block = createBlock();
1840  return addStmt(S->getCollection());
1841}
1842
1843CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1844  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1845
1846  // Inline the body.
1847  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1848
1849  // The sync body starts its own basic block.  This makes it a little easier
1850  // for diagnostic clients.
1851  if (SyncBlock) {
1852    if (badCFG)
1853      return 0;
1854
1855    Block = 0;
1856    Succ = SyncBlock;
1857  }
1858
1859  // Add the @synchronized to the CFG.
1860  autoCreateBlock();
1861  appendStmt(Block, S);
1862
1863  // Inline the sync expression.
1864  return addStmt(S->getSynchExpr());
1865}
1866
1867CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1868  // FIXME
1869  return NYS();
1870}
1871
1872CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1873  CFGBlock* LoopSuccessor = NULL;
1874
1875  // Save local scope position because in case of condition variable ScopePos
1876  // won't be restored when traversing AST.
1877  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1878
1879  // Create local scope for possible condition variable.
1880  // Store scope position for continue statement.
1881  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1882  if (VarDecl* VD = W->getConditionVariable()) {
1883    addLocalScopeForVarDecl(VD);
1884    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1885  }
1886
1887  // "while" is a control-flow statement.  Thus we stop processing the current
1888  // block.
1889  if (Block) {
1890    if (badCFG)
1891      return 0;
1892    LoopSuccessor = Block;
1893    Block = 0;
1894  } else
1895    LoopSuccessor = Succ;
1896
1897  // Because of short-circuit evaluation, the condition of the loop can span
1898  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1899  // evaluate the condition.
1900  CFGBlock* ExitConditionBlock = createBlock(false);
1901  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1902
1903  // Set the terminator for the "exit" condition block.
1904  ExitConditionBlock->setTerminator(W);
1905
1906  // Now add the actual condition to the condition block.  Because the condition
1907  // itself may contain control-flow, new blocks may be created.  Thus we update
1908  // "Succ" after adding the condition.
1909  if (Stmt* C = W->getCond()) {
1910    Block = ExitConditionBlock;
1911    EntryConditionBlock = addStmt(C);
1912    // The condition might finish the current 'Block'.
1913    Block = EntryConditionBlock;
1914
1915    // If this block contains a condition variable, add both the condition
1916    // variable and initializer to the CFG.
1917    if (VarDecl *VD = W->getConditionVariable()) {
1918      if (Expr *Init = VD->getInit()) {
1919        autoCreateBlock();
1920        appendStmt(Block, W);
1921        EntryConditionBlock = addStmt(Init);
1922        assert(Block == EntryConditionBlock);
1923      }
1924    }
1925
1926    if (Block) {
1927      if (badCFG)
1928        return 0;
1929    }
1930  }
1931
1932  // The condition block is the implicit successor for the loop body as well as
1933  // any code above the loop.
1934  Succ = EntryConditionBlock;
1935
1936  // See if this is a known constant.
1937  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1938
1939  // Process the loop body.
1940  {
1941    assert(W->getBody());
1942
1943    // Save the current values for Block, Succ, and continue and break targets
1944    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1945    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1946        save_break(BreakJumpTarget);
1947
1948    // Create an empty block to represent the transition block for looping back
1949    // to the head of the loop.
1950    Block = 0;
1951    assert(Succ == EntryConditionBlock);
1952    Succ = createBlock();
1953    Succ->setLoopTarget(W);
1954    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1955
1956    // All breaks should go to the code following the loop.
1957    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1958
1959    // NULL out Block to force lazy instantiation of blocks for the body.
1960    Block = NULL;
1961
1962    // Loop body should end with destructor of Condition variable (if any).
1963    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1964
1965    // If body is not a compound statement create implicit scope
1966    // and add destructors.
1967    if (!isa<CompoundStmt>(W->getBody()))
1968      addLocalScopeAndDtors(W->getBody());
1969
1970    // Create the body.  The returned block is the entry to the loop body.
1971    CFGBlock* BodyBlock = addStmt(W->getBody());
1972
1973    if (!BodyBlock)
1974      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1975    else if (Block) {
1976      if (badCFG)
1977        return 0;
1978    }
1979
1980    // Add the loop body entry as a successor to the condition.
1981    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1982  }
1983
1984  // Link up the condition block with the code that follows the loop.  (the
1985  // false branch).
1986  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1987
1988  // There can be no more statements in the condition block since we loop back
1989  // to this block.  NULL out Block to force lazy creation of another block.
1990  Block = NULL;
1991
1992  // Return the condition block, which is the dominating block for the loop.
1993  Succ = EntryConditionBlock;
1994  return EntryConditionBlock;
1995}
1996
1997
1998CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1999  // FIXME: For now we pretend that @catch and the code it contains does not
2000  //  exit.
2001  return Block;
2002}
2003
2004CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
2005  // FIXME: This isn't complete.  We basically treat @throw like a return
2006  //  statement.
2007
2008  // If we were in the middle of a block we stop processing that block.
2009  if (badCFG)
2010    return 0;
2011
2012  // Create the new block.
2013  Block = createBlock(false);
2014
2015  // The Exit block is the only successor.
2016  addSuccessor(Block, &cfg->getExit());
2017
2018  // Add the statement to the block.  This may create new blocks if S contains
2019  // control-flow (short-circuit operations).
2020  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2021}
2022
2023CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
2024  // If we were in the middle of a block we stop processing that block.
2025  if (badCFG)
2026    return 0;
2027
2028  // Create the new block.
2029  Block = createBlock(false);
2030
2031  if (TryTerminatedBlock)
2032    // The current try statement is the only successor.
2033    addSuccessor(Block, TryTerminatedBlock);
2034  else
2035    // otherwise the Exit block is the only successor.
2036    addSuccessor(Block, &cfg->getExit());
2037
2038  // Add the statement to the block.  This may create new blocks if S contains
2039  // control-flow (short-circuit operations).
2040  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2041}
2042
2043CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
2044  CFGBlock* LoopSuccessor = NULL;
2045
2046  // "do...while" is a control-flow statement.  Thus we stop processing the
2047  // current block.
2048  if (Block) {
2049    if (badCFG)
2050      return 0;
2051    LoopSuccessor = Block;
2052  } else
2053    LoopSuccessor = Succ;
2054
2055  // Because of short-circuit evaluation, the condition of the loop can span
2056  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2057  // evaluate the condition.
2058  CFGBlock* ExitConditionBlock = createBlock(false);
2059  CFGBlock* EntryConditionBlock = ExitConditionBlock;
2060
2061  // Set the terminator for the "exit" condition block.
2062  ExitConditionBlock->setTerminator(D);
2063
2064  // Now add the actual condition to the condition block.  Because the condition
2065  // itself may contain control-flow, new blocks may be created.
2066  if (Stmt* C = D->getCond()) {
2067    Block = ExitConditionBlock;
2068    EntryConditionBlock = addStmt(C);
2069    if (Block) {
2070      if (badCFG)
2071        return 0;
2072    }
2073  }
2074
2075  // The condition block is the implicit successor for the loop body.
2076  Succ = EntryConditionBlock;
2077
2078  // See if this is a known constant.
2079  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2080
2081  // Process the loop body.
2082  CFGBlock* BodyBlock = NULL;
2083  {
2084    assert(D->getBody());
2085
2086    // Save the current values for Block, Succ, and continue and break targets
2087    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2088    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2089        save_break(BreakJumpTarget);
2090
2091    // All continues within this loop should go to the condition block
2092    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2093
2094    // All breaks should go to the code following the loop.
2095    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2096
2097    // NULL out Block to force lazy instantiation of blocks for the body.
2098    Block = NULL;
2099
2100    // If body is not a compound statement create implicit scope
2101    // and add destructors.
2102    if (!isa<CompoundStmt>(D->getBody()))
2103      addLocalScopeAndDtors(D->getBody());
2104
2105    // Create the body.  The returned block is the entry to the loop body.
2106    BodyBlock = addStmt(D->getBody());
2107
2108    if (!BodyBlock)
2109      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2110    else if (Block) {
2111      if (badCFG)
2112        return 0;
2113    }
2114
2115    if (!KnownVal.isFalse()) {
2116      // Add an intermediate block between the BodyBlock and the
2117      // ExitConditionBlock to represent the "loop back" transition.  Create an
2118      // empty block to represent the transition block for looping back to the
2119      // head of the loop.
2120      // FIXME: Can we do this more efficiently without adding another block?
2121      Block = NULL;
2122      Succ = BodyBlock;
2123      CFGBlock *LoopBackBlock = createBlock();
2124      LoopBackBlock->setLoopTarget(D);
2125
2126      // Add the loop body entry as a successor to the condition.
2127      addSuccessor(ExitConditionBlock, LoopBackBlock);
2128    }
2129    else
2130      addSuccessor(ExitConditionBlock, NULL);
2131  }
2132
2133  // Link up the condition block with the code that follows the loop.
2134  // (the false branch).
2135  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2136
2137  // There can be no more statements in the body block(s) since we loop back to
2138  // the body.  NULL out Block to force lazy creation of another block.
2139  Block = NULL;
2140
2141  // Return the loop body, which is the dominating block for the loop.
2142  Succ = BodyBlock;
2143  return BodyBlock;
2144}
2145
2146CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2147  // "continue" is a control-flow statement.  Thus we stop processing the
2148  // current block.
2149  if (badCFG)
2150    return 0;
2151
2152  // Now create a new block that ends with the continue statement.
2153  Block = createBlock(false);
2154  Block->setTerminator(C);
2155
2156  // If there is no target for the continue, then we are looking at an
2157  // incomplete AST.  This means the CFG cannot be constructed.
2158  if (ContinueJumpTarget.block) {
2159    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2160    addSuccessor(Block, ContinueJumpTarget.block);
2161  } else
2162    badCFG = true;
2163
2164  return Block;
2165}
2166
2167CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2168                                                    AddStmtChoice asc) {
2169
2170  if (asc.alwaysAdd(*this, E)) {
2171    autoCreateBlock();
2172    appendStmt(Block, E);
2173  }
2174
2175  // VLA types have expressions that must be evaluated.
2176  if (E->isArgumentType()) {
2177    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2178         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2179      addStmt(VA->getSizeExpr());
2180  }
2181
2182  return Block;
2183}
2184
2185/// VisitStmtExpr - Utility method to handle (nested) statement
2186///  expressions (a GCC extension).
2187CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2188  if (asc.alwaysAdd(*this, SE)) {
2189    autoCreateBlock();
2190    appendStmt(Block, SE);
2191  }
2192  return VisitCompoundStmt(SE->getSubStmt());
2193}
2194
2195CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2196  // "switch" is a control-flow statement.  Thus we stop processing the current
2197  // block.
2198  CFGBlock* SwitchSuccessor = NULL;
2199
2200  // Save local scope position because in case of condition variable ScopePos
2201  // won't be restored when traversing AST.
2202  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2203
2204  // Create local scope for possible condition variable.
2205  // Store scope position. Add implicit destructor.
2206  if (VarDecl* VD = Terminator->getConditionVariable()) {
2207    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2208    addLocalScopeForVarDecl(VD);
2209    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2210  }
2211
2212  if (Block) {
2213    if (badCFG)
2214      return 0;
2215    SwitchSuccessor = Block;
2216  } else SwitchSuccessor = Succ;
2217
2218  // Save the current "switch" context.
2219  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2220                            save_default(DefaultCaseBlock);
2221  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2222
2223  // Set the "default" case to be the block after the switch statement.  If the
2224  // switch statement contains a "default:", this value will be overwritten with
2225  // the block for that code.
2226  DefaultCaseBlock = SwitchSuccessor;
2227
2228  // Create a new block that will contain the switch statement.
2229  SwitchTerminatedBlock = createBlock(false);
2230
2231  // Now process the switch body.  The code after the switch is the implicit
2232  // successor.
2233  Succ = SwitchSuccessor;
2234  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2235
2236  // When visiting the body, the case statements should automatically get linked
2237  // up to the switch.  We also don't keep a pointer to the body, since all
2238  // control-flow from the switch goes to case/default statements.
2239  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2240  Block = NULL;
2241
2242  // For pruning unreachable case statements, save the current state
2243  // for tracking the condition value.
2244  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2245                                                     false);
2246
2247  // Determine if the switch condition can be explicitly evaluated.
2248  assert(Terminator->getCond() && "switch condition must be non-NULL");
2249  Expr::EvalResult result;
2250  bool b = tryEvaluate(Terminator->getCond(), result);
2251  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2252                                                    b ? &result : 0);
2253
2254  // If body is not a compound statement create implicit scope
2255  // and add destructors.
2256  if (!isa<CompoundStmt>(Terminator->getBody()))
2257    addLocalScopeAndDtors(Terminator->getBody());
2258
2259  addStmt(Terminator->getBody());
2260  if (Block) {
2261    if (badCFG)
2262      return 0;
2263  }
2264
2265  // If we have no "default:" case, the default transition is to the code
2266  // following the switch body.  Moreover, take into account if all the
2267  // cases of a switch are covered (e.g., switching on an enum value).
2268  addSuccessor(SwitchTerminatedBlock,
2269               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2270               ? 0 : DefaultCaseBlock);
2271
2272  // Add the terminator and condition in the switch block.
2273  SwitchTerminatedBlock->setTerminator(Terminator);
2274  Block = SwitchTerminatedBlock;
2275  Block = addStmt(Terminator->getCond());
2276
2277  // Finally, if the SwitchStmt contains a condition variable, add both the
2278  // SwitchStmt and the condition variable initialization to the CFG.
2279  if (VarDecl *VD = Terminator->getConditionVariable()) {
2280    if (Expr *Init = VD->getInit()) {
2281      autoCreateBlock();
2282      appendStmt(Block, Terminator);
2283      addStmt(Init);
2284    }
2285  }
2286
2287  return Block;
2288}
2289
2290static bool shouldAddCase(bool &switchExclusivelyCovered,
2291                          const Expr::EvalResult *switchCond,
2292                          const CaseStmt *CS,
2293                          ASTContext &Ctx) {
2294  if (!switchCond)
2295    return true;
2296
2297  bool addCase = false;
2298
2299  if (!switchExclusivelyCovered) {
2300    if (switchCond->Val.isInt()) {
2301      // Evaluate the LHS of the case value.
2302      Expr::EvalResult V1;
2303      CS->getLHS()->Evaluate(V1, Ctx);
2304      assert(V1.Val.isInt());
2305      const llvm::APSInt &condInt = switchCond->Val.getInt();
2306      const llvm::APSInt &lhsInt = V1.Val.getInt();
2307
2308      if (condInt == lhsInt) {
2309        addCase = true;
2310        switchExclusivelyCovered = true;
2311      }
2312      else if (condInt < lhsInt) {
2313        if (const Expr *RHS = CS->getRHS()) {
2314          // Evaluate the RHS of the case value.
2315          Expr::EvalResult V2;
2316          RHS->Evaluate(V2, Ctx);
2317          assert(V2.Val.isInt());
2318          if (V2.Val.getInt() <= condInt) {
2319            addCase = true;
2320            switchExclusivelyCovered = true;
2321          }
2322        }
2323      }
2324    }
2325    else
2326      addCase = true;
2327  }
2328  return addCase;
2329}
2330
2331CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2332  // CaseStmts are essentially labels, so they are the first statement in a
2333  // block.
2334  CFGBlock *TopBlock = 0, *LastBlock = 0;
2335
2336  if (Stmt *Sub = CS->getSubStmt()) {
2337    // For deeply nested chains of CaseStmts, instead of doing a recursion
2338    // (which can blow out the stack), manually unroll and create blocks
2339    // along the way.
2340    while (isa<CaseStmt>(Sub)) {
2341      CFGBlock *currentBlock = createBlock(false);
2342      currentBlock->setLabel(CS);
2343
2344      if (TopBlock)
2345        addSuccessor(LastBlock, currentBlock);
2346      else
2347        TopBlock = currentBlock;
2348
2349      addSuccessor(SwitchTerminatedBlock,
2350                   shouldAddCase(switchExclusivelyCovered, switchCond,
2351                                 CS, *Context)
2352                   ? currentBlock : 0);
2353
2354      LastBlock = currentBlock;
2355      CS = cast<CaseStmt>(Sub);
2356      Sub = CS->getSubStmt();
2357    }
2358
2359    addStmt(Sub);
2360  }
2361
2362  CFGBlock* CaseBlock = Block;
2363  if (!CaseBlock)
2364    CaseBlock = createBlock();
2365
2366  // Cases statements partition blocks, so this is the top of the basic block we
2367  // were processing (the "case XXX:" is the label).
2368  CaseBlock->setLabel(CS);
2369
2370  if (badCFG)
2371    return 0;
2372
2373  // Add this block to the list of successors for the block with the switch
2374  // statement.
2375  assert(SwitchTerminatedBlock);
2376  addSuccessor(SwitchTerminatedBlock,
2377               shouldAddCase(switchExclusivelyCovered, switchCond,
2378                             CS, *Context)
2379               ? CaseBlock : 0);
2380
2381  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2382  Block = NULL;
2383
2384  if (TopBlock) {
2385    addSuccessor(LastBlock, CaseBlock);
2386    Succ = TopBlock;
2387  } else {
2388    // This block is now the implicit successor of other blocks.
2389    Succ = CaseBlock;
2390  }
2391
2392  return Succ;
2393}
2394
2395CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2396  if (Terminator->getSubStmt())
2397    addStmt(Terminator->getSubStmt());
2398
2399  DefaultCaseBlock = Block;
2400
2401  if (!DefaultCaseBlock)
2402    DefaultCaseBlock = createBlock();
2403
2404  // Default statements partition blocks, so this is the top of the basic block
2405  // we were processing (the "default:" is the label).
2406  DefaultCaseBlock->setLabel(Terminator);
2407
2408  if (badCFG)
2409    return 0;
2410
2411  // Unlike case statements, we don't add the default block to the successors
2412  // for the switch statement immediately.  This is done when we finish
2413  // processing the switch statement.  This allows for the default case
2414  // (including a fall-through to the code after the switch statement) to always
2415  // be the last successor of a switch-terminated block.
2416
2417  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2418  Block = NULL;
2419
2420  // This block is now the implicit successor of other blocks.
2421  Succ = DefaultCaseBlock;
2422
2423  return DefaultCaseBlock;
2424}
2425
2426CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2427  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2428  // current block.
2429  CFGBlock* TrySuccessor = NULL;
2430
2431  if (Block) {
2432    if (badCFG)
2433      return 0;
2434    TrySuccessor = Block;
2435  } else TrySuccessor = Succ;
2436
2437  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2438
2439  // Create a new block that will contain the try statement.
2440  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2441  // Add the terminator in the try block.
2442  NewTryTerminatedBlock->setTerminator(Terminator);
2443
2444  bool HasCatchAll = false;
2445  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2446    // The code after the try is the implicit successor.
2447    Succ = TrySuccessor;
2448    CXXCatchStmt *CS = Terminator->getHandler(h);
2449    if (CS->getExceptionDecl() == 0) {
2450      HasCatchAll = true;
2451    }
2452    Block = NULL;
2453    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2454    if (CatchBlock == 0)
2455      return 0;
2456    // Add this block to the list of successors for the block with the try
2457    // statement.
2458    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2459  }
2460  if (!HasCatchAll) {
2461    if (PrevTryTerminatedBlock)
2462      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2463    else
2464      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2465  }
2466
2467  // The code after the try is the implicit successor.
2468  Succ = TrySuccessor;
2469
2470  // Save the current "try" context.
2471  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2472  TryTerminatedBlock = NewTryTerminatedBlock;
2473
2474  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2475  Block = NULL;
2476  Block = addStmt(Terminator->getTryBlock());
2477  return Block;
2478}
2479
2480CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2481  // CXXCatchStmt are treated like labels, so they are the first statement in a
2482  // block.
2483
2484  // Save local scope position because in case of exception variable ScopePos
2485  // won't be restored when traversing AST.
2486  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2487
2488  // Create local scope for possible exception variable.
2489  // Store scope position. Add implicit destructor.
2490  if (VarDecl* VD = CS->getExceptionDecl()) {
2491    LocalScope::const_iterator BeginScopePos = ScopePos;
2492    addLocalScopeForVarDecl(VD);
2493    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2494  }
2495
2496  if (CS->getHandlerBlock())
2497    addStmt(CS->getHandlerBlock());
2498
2499  CFGBlock* CatchBlock = Block;
2500  if (!CatchBlock)
2501    CatchBlock = createBlock();
2502
2503  CatchBlock->setLabel(CS);
2504
2505  if (badCFG)
2506    return 0;
2507
2508  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2509  Block = NULL;
2510
2511  return CatchBlock;
2512}
2513
2514CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2515    AddStmtChoice asc) {
2516  if (BuildOpts.AddImplicitDtors) {
2517    // If adding implicit destructors visit the full expression for adding
2518    // destructors of temporaries.
2519    VisitForTemporaryDtors(E->getSubExpr());
2520
2521    // Full expression has to be added as CFGStmt so it will be sequenced
2522    // before destructors of it's temporaries.
2523    asc = asc.withAlwaysAdd(true);
2524  }
2525  return Visit(E->getSubExpr(), asc);
2526}
2527
2528CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2529                                                AddStmtChoice asc) {
2530  if (asc.alwaysAdd(*this, E)) {
2531    autoCreateBlock();
2532    appendStmt(Block, E);
2533
2534    // We do not want to propagate the AlwaysAdd property.
2535    asc = asc.withAlwaysAdd(false);
2536  }
2537  return Visit(E->getSubExpr(), asc);
2538}
2539
2540CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2541                                            AddStmtChoice asc) {
2542  autoCreateBlock();
2543  if (!C->isElidable())
2544    appendStmt(Block, C);
2545
2546  return VisitChildren(C);
2547}
2548
2549CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2550                                                 AddStmtChoice asc) {
2551  if (asc.alwaysAdd(*this, E)) {
2552    autoCreateBlock();
2553    appendStmt(Block, E);
2554    // We do not want to propagate the AlwaysAdd property.
2555    asc = asc.withAlwaysAdd(false);
2556  }
2557  return Visit(E->getSubExpr(), asc);
2558}
2559
2560CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2561                                                  AddStmtChoice asc) {
2562  autoCreateBlock();
2563  appendStmt(Block, C);
2564  return VisitChildren(C);
2565}
2566
2567CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2568                                             AddStmtChoice asc) {
2569  autoCreateBlock();
2570  appendStmt(Block, C);
2571  return VisitChildren(C);
2572}
2573
2574CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2575                                            AddStmtChoice asc) {
2576  if (asc.alwaysAdd(*this, E)) {
2577    autoCreateBlock();
2578    appendStmt(Block, E);
2579  }
2580  return Visit(E->getSubExpr(), AddStmtChoice());
2581}
2582
2583CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2584  // Lazily create the indirect-goto dispatch block if there isn't one already.
2585  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2586
2587  if (!IBlock) {
2588    IBlock = createBlock(false);
2589    cfg->setIndirectGotoBlock(IBlock);
2590  }
2591
2592  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2593  // current block and create a new one.
2594  if (badCFG)
2595    return 0;
2596
2597  Block = createBlock(false);
2598  Block->setTerminator(I);
2599  addSuccessor(Block, IBlock);
2600  return addStmt(I->getTarget());
2601}
2602
2603CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2604tryAgain:
2605  if (!E) {
2606    badCFG = true;
2607    return NULL;
2608  }
2609  switch (E->getStmtClass()) {
2610    default:
2611      return VisitChildrenForTemporaryDtors(E);
2612
2613    case Stmt::BinaryOperatorClass:
2614      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2615
2616    case Stmt::CXXBindTemporaryExprClass:
2617      return VisitCXXBindTemporaryExprForTemporaryDtors(
2618          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2619
2620    case Stmt::BinaryConditionalOperatorClass:
2621    case Stmt::ConditionalOperatorClass:
2622      return VisitConditionalOperatorForTemporaryDtors(
2623          cast<AbstractConditionalOperator>(E), BindToTemporary);
2624
2625    case Stmt::ImplicitCastExprClass:
2626      // For implicit cast we want BindToTemporary to be passed further.
2627      E = cast<CastExpr>(E)->getSubExpr();
2628      goto tryAgain;
2629
2630    case Stmt::ParenExprClass:
2631      E = cast<ParenExpr>(E)->getSubExpr();
2632      goto tryAgain;
2633  }
2634}
2635
2636CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2637  // When visiting children for destructors we want to visit them in reverse
2638  // order. Because there's no reverse iterator for children must to reverse
2639  // them in helper vector.
2640  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2641  ChildrenVect ChildrenRev;
2642  for (Stmt::child_range I = E->children(); I; ++I) {
2643    if (*I) ChildrenRev.push_back(*I);
2644  }
2645
2646  CFGBlock *B = Block;
2647  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2648      L = ChildrenRev.rend(); I != L; ++I) {
2649    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2650      B = R;
2651  }
2652  return B;
2653}
2654
2655CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2656  if (E->isLogicalOp()) {
2657    // Destructors for temporaries in LHS expression should be called after
2658    // those for RHS expression. Even if this will unnecessarily create a block,
2659    // this block will be used at least by the full expression.
2660    autoCreateBlock();
2661    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2662    if (badCFG)
2663      return NULL;
2664
2665    Succ = ConfluenceBlock;
2666    Block = NULL;
2667    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2668
2669    if (RHSBlock) {
2670      if (badCFG)
2671        return NULL;
2672
2673      // If RHS expression did produce destructors we need to connect created
2674      // blocks to CFG in same manner as for binary operator itself.
2675      CFGBlock *LHSBlock = createBlock(false);
2676      LHSBlock->setTerminator(CFGTerminator(E, true));
2677
2678      // For binary operator LHS block is before RHS in list of predecessors
2679      // of ConfluenceBlock.
2680      std::reverse(ConfluenceBlock->pred_begin(),
2681          ConfluenceBlock->pred_end());
2682
2683      // See if this is a known constant.
2684      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2685      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2686        KnownVal.negate();
2687
2688      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2689      // itself.
2690      if (E->getOpcode() == BO_LOr) {
2691        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2692        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2693      } else {
2694        assert (E->getOpcode() == BO_LAnd);
2695        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2696        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2697      }
2698
2699      Block = LHSBlock;
2700      return LHSBlock;
2701    }
2702
2703    Block = ConfluenceBlock;
2704    return ConfluenceBlock;
2705  }
2706
2707  if (E->isAssignmentOp()) {
2708    // For assignment operator (=) LHS expression is visited
2709    // before RHS expression. For destructors visit them in reverse order.
2710    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2711    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2712    return LHSBlock ? LHSBlock : RHSBlock;
2713  }
2714
2715  // For any other binary operator RHS expression is visited before
2716  // LHS expression (order of children). For destructors visit them in reverse
2717  // order.
2718  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2719  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2720  return RHSBlock ? RHSBlock : LHSBlock;
2721}
2722
2723CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2724    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2725  // First add destructors for temporaries in subexpression.
2726  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2727  if (!BindToTemporary) {
2728    // If lifetime of temporary is not prolonged (by assigning to constant
2729    // reference) add destructor for it.
2730    autoCreateBlock();
2731    appendTemporaryDtor(Block, E);
2732    B = Block;
2733  }
2734  return B;
2735}
2736
2737CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2738    AbstractConditionalOperator *E, bool BindToTemporary) {
2739  // First add destructors for condition expression.  Even if this will
2740  // unnecessarily create a block, this block will be used at least by the full
2741  // expression.
2742  autoCreateBlock();
2743  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2744  if (badCFG)
2745    return NULL;
2746  if (BinaryConditionalOperator *BCO
2747        = dyn_cast<BinaryConditionalOperator>(E)) {
2748    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2749    if (badCFG)
2750      return NULL;
2751  }
2752
2753  // Try to add block with destructors for LHS expression.
2754  CFGBlock *LHSBlock = NULL;
2755  Succ = ConfluenceBlock;
2756  Block = NULL;
2757  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2758  if (badCFG)
2759    return NULL;
2760
2761  // Try to add block with destructors for RHS expression;
2762  Succ = ConfluenceBlock;
2763  Block = NULL;
2764  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2765                                              BindToTemporary);
2766  if (badCFG)
2767    return NULL;
2768
2769  if (!RHSBlock && !LHSBlock) {
2770    // If neither LHS nor RHS expression had temporaries to destroy don't create
2771    // more blocks.
2772    Block = ConfluenceBlock;
2773    return Block;
2774  }
2775
2776  Block = createBlock(false);
2777  Block->setTerminator(CFGTerminator(E, true));
2778
2779  // See if this is a known constant.
2780  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2781
2782  if (LHSBlock) {
2783    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2784  } else if (KnownVal.isFalse()) {
2785    addSuccessor(Block, NULL);
2786  } else {
2787    addSuccessor(Block, ConfluenceBlock);
2788    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2789  }
2790
2791  if (!RHSBlock)
2792    RHSBlock = ConfluenceBlock;
2793  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2794
2795  return Block;
2796}
2797
2798} // end anonymous namespace
2799
2800/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2801///  no successors or predecessors.  If this is the first block created in the
2802///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2803CFGBlock* CFG::createBlock() {
2804  bool first_block = begin() == end();
2805
2806  // Create the block.
2807  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2808  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2809  Blocks.push_back(Mem, BlkBVC);
2810
2811  // If this is the first block, set it as the Entry and Exit.
2812  if (first_block)
2813    Entry = Exit = &back();
2814
2815  // Return the block.
2816  return &back();
2817}
2818
2819/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2820///  CFG is returned to the caller.
2821CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2822    const BuildOptions &BO) {
2823  CFGBuilder Builder(C, BO);
2824  return Builder.buildCFG(D, Statement);
2825}
2826
2827const CXXDestructorDecl *
2828CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2829  switch (getKind()) {
2830    case CFGElement::Invalid:
2831    case CFGElement::Statement:
2832    case CFGElement::Initializer:
2833      llvm_unreachable("getDestructorDecl should only be used with "
2834                       "ImplicitDtors");
2835    case CFGElement::AutomaticObjectDtor: {
2836      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2837      QualType ty = var->getType();
2838      ty = ty.getNonReferenceType();
2839      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2840        ty = arrayType->getElementType();
2841      }
2842      const RecordType *recordType = ty->getAs<RecordType>();
2843      const CXXRecordDecl *classDecl =
2844      cast<CXXRecordDecl>(recordType->getDecl());
2845      return classDecl->getDestructor();
2846    }
2847    case CFGElement::TemporaryDtor: {
2848      const CXXBindTemporaryExpr *bindExpr =
2849        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
2850      const CXXTemporary *temp = bindExpr->getTemporary();
2851      return temp->getDestructor();
2852    }
2853    case CFGElement::BaseDtor:
2854    case CFGElement::MemberDtor:
2855
2856      // Not yet supported.
2857      return 0;
2858  }
2859  llvm_unreachable("getKind() returned bogus value");
2860  return 0;
2861}
2862
2863bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
2864  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
2865    QualType ty = cdecl->getType();
2866    return cast<FunctionType>(ty)->getNoReturnAttr();
2867  }
2868  return false;
2869}
2870
2871//===----------------------------------------------------------------------===//
2872// CFG: Queries for BlkExprs.
2873//===----------------------------------------------------------------------===//
2874
2875namespace {
2876  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2877}
2878
2879static void FindSubExprAssignments(Stmt *S,
2880                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2881  if (!S)
2882    return;
2883
2884  for (Stmt::child_range I = S->children(); I; ++I) {
2885    Stmt *child = *I;
2886    if (!child)
2887      continue;
2888
2889    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2890      if (B->isAssignmentOp()) Set.insert(B);
2891
2892    FindSubExprAssignments(child, Set);
2893  }
2894}
2895
2896static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2897  BlkExprMapTy* M = new BlkExprMapTy();
2898
2899  // Look for assignments that are used as subexpressions.  These are the only
2900  // assignments that we want to *possibly* register as a block-level
2901  // expression.  Basically, if an assignment occurs both in a subexpression and
2902  // at the block-level, it is a block-level expression.
2903  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2904
2905  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2906    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2907      if (const CFGStmt *S = BI->getAs<CFGStmt>())
2908        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
2909
2910  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2911
2912    // Iterate over the statements again on identify the Expr* and Stmt* at the
2913    // block-level that are block-level expressions.
2914
2915    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2916      const CFGStmt *CS = BI->getAs<CFGStmt>();
2917      if (!CS)
2918        continue;
2919      if (Expr* Exp = dyn_cast<Expr>(CS->getStmt())) {
2920
2921        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2922          // Assignment expressions that are not nested within another
2923          // expression are really "statements" whose value is never used by
2924          // another expression.
2925          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2926            continue;
2927        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2928          // Special handling for statement expressions.  The last statement in
2929          // the statement expression is also a block-level expr.
2930          const CompoundStmt* C = Terminator->getSubStmt();
2931          if (!C->body_empty()) {
2932            unsigned x = M->size();
2933            (*M)[C->body_back()] = x;
2934          }
2935        }
2936
2937        unsigned x = M->size();
2938        (*M)[Exp] = x;
2939      }
2940    }
2941
2942    // Look at terminators.  The condition is a block-level expression.
2943
2944    Stmt* S = (*I)->getTerminatorCondition();
2945
2946    if (S && M->find(S) == M->end()) {
2947        unsigned x = M->size();
2948        (*M)[S] = x;
2949    }
2950  }
2951
2952  return M;
2953}
2954
2955CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2956  assert(S != NULL);
2957  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2958
2959  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2960  BlkExprMapTy::iterator I = M->find(S);
2961  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2962}
2963
2964unsigned CFG::getNumBlkExprs() {
2965  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2966    return M->size();
2967
2968  // We assume callers interested in the number of BlkExprs will want
2969  // the map constructed if it doesn't already exist.
2970  BlkExprMap = (void*) PopulateBlkExprMap(*this);
2971  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2972}
2973
2974//===----------------------------------------------------------------------===//
2975// Filtered walking of the CFG.
2976//===----------------------------------------------------------------------===//
2977
2978bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2979        const CFGBlock *From, const CFGBlock *To) {
2980
2981  if (To && F.IgnoreDefaultsWithCoveredEnums) {
2982    // If the 'To' has no label or is labeled but the label isn't a
2983    // CaseStmt then filter this edge.
2984    if (const SwitchStmt *S =
2985        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
2986      if (S->isAllEnumCasesCovered()) {
2987        const Stmt *L = To->getLabel();
2988        if (!L || !isa<CaseStmt>(L))
2989          return true;
2990      }
2991    }
2992  }
2993
2994  return false;
2995}
2996
2997//===----------------------------------------------------------------------===//
2998// Cleanup: CFG dstor.
2999//===----------------------------------------------------------------------===//
3000
3001CFG::~CFG() {
3002  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3003}
3004
3005//===----------------------------------------------------------------------===//
3006// CFG pretty printing
3007//===----------------------------------------------------------------------===//
3008
3009namespace {
3010
3011class StmtPrinterHelper : public PrinterHelper  {
3012  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3013  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3014  StmtMapTy StmtMap;
3015  DeclMapTy DeclMap;
3016  signed currentBlock;
3017  unsigned currentStmt;
3018  const LangOptions &LangOpts;
3019public:
3020
3021  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3022    : currentBlock(0), currentStmt(0), LangOpts(LO)
3023  {
3024    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3025      unsigned j = 1;
3026      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3027           BI != BEnd; ++BI, ++j ) {
3028        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3029          const Stmt *stmt= SE->getStmt();
3030          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3031          StmtMap[stmt] = P;
3032
3033          switch (stmt->getStmtClass()) {
3034            case Stmt::DeclStmtClass:
3035                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3036                break;
3037            case Stmt::IfStmtClass: {
3038              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3039              if (var)
3040                DeclMap[var] = P;
3041              break;
3042            }
3043            case Stmt::ForStmtClass: {
3044              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3045              if (var)
3046                DeclMap[var] = P;
3047              break;
3048            }
3049            case Stmt::WhileStmtClass: {
3050              const VarDecl *var =
3051                cast<WhileStmt>(stmt)->getConditionVariable();
3052              if (var)
3053                DeclMap[var] = P;
3054              break;
3055            }
3056            case Stmt::SwitchStmtClass: {
3057              const VarDecl *var =
3058                cast<SwitchStmt>(stmt)->getConditionVariable();
3059              if (var)
3060                DeclMap[var] = P;
3061              break;
3062            }
3063            case Stmt::CXXCatchStmtClass: {
3064              const VarDecl *var =
3065                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3066              if (var)
3067                DeclMap[var] = P;
3068              break;
3069            }
3070            default:
3071              break;
3072          }
3073        }
3074      }
3075    }
3076  }
3077
3078
3079  virtual ~StmtPrinterHelper() {}
3080
3081  const LangOptions &getLangOpts() const { return LangOpts; }
3082  void setBlockID(signed i) { currentBlock = i; }
3083  void setStmtID(unsigned i) { currentStmt = i; }
3084
3085  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
3086    StmtMapTy::iterator I = StmtMap.find(S);
3087
3088    if (I == StmtMap.end())
3089      return false;
3090
3091    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3092                          && I->second.second == currentStmt) {
3093      return false;
3094    }
3095
3096    OS << "[B" << I->second.first << "." << I->second.second << "]";
3097    return true;
3098  }
3099
3100  bool handleDecl(const Decl* D, llvm::raw_ostream& OS) {
3101    DeclMapTy::iterator I = DeclMap.find(D);
3102
3103    if (I == DeclMap.end())
3104      return false;
3105
3106    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3107                          && I->second.second == currentStmt) {
3108      return false;
3109    }
3110
3111    OS << "[B" << I->second.first << "." << I->second.second << "]";
3112    return true;
3113  }
3114};
3115} // end anonymous namespace
3116
3117
3118namespace {
3119class CFGBlockTerminatorPrint
3120  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3121
3122  llvm::raw_ostream& OS;
3123  StmtPrinterHelper* Helper;
3124  PrintingPolicy Policy;
3125public:
3126  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
3127                          const PrintingPolicy &Policy)
3128    : OS(os), Helper(helper), Policy(Policy) {}
3129
3130  void VisitIfStmt(IfStmt* I) {
3131    OS << "if ";
3132    I->getCond()->printPretty(OS,Helper,Policy);
3133  }
3134
3135  // Default case.
3136  void VisitStmt(Stmt* Terminator) {
3137    Terminator->printPretty(OS, Helper, Policy);
3138  }
3139
3140  void VisitForStmt(ForStmt* F) {
3141    OS << "for (" ;
3142    if (F->getInit())
3143      OS << "...";
3144    OS << "; ";
3145    if (Stmt* C = F->getCond())
3146      C->printPretty(OS, Helper, Policy);
3147    OS << "; ";
3148    if (F->getInc())
3149      OS << "...";
3150    OS << ")";
3151  }
3152
3153  void VisitWhileStmt(WhileStmt* W) {
3154    OS << "while " ;
3155    if (Stmt* C = W->getCond())
3156      C->printPretty(OS, Helper, Policy);
3157  }
3158
3159  void VisitDoStmt(DoStmt* D) {
3160    OS << "do ... while ";
3161    if (Stmt* C = D->getCond())
3162      C->printPretty(OS, Helper, Policy);
3163  }
3164
3165  void VisitSwitchStmt(SwitchStmt* Terminator) {
3166    OS << "switch ";
3167    Terminator->getCond()->printPretty(OS, Helper, Policy);
3168  }
3169
3170  void VisitCXXTryStmt(CXXTryStmt* CS) {
3171    OS << "try ...";
3172  }
3173
3174  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3175    C->getCond()->printPretty(OS, Helper, Policy);
3176    OS << " ? ... : ...";
3177  }
3178
3179  void VisitChooseExpr(ChooseExpr* C) {
3180    OS << "__builtin_choose_expr( ";
3181    C->getCond()->printPretty(OS, Helper, Policy);
3182    OS << " )";
3183  }
3184
3185  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
3186    OS << "goto *";
3187    I->getTarget()->printPretty(OS, Helper, Policy);
3188  }
3189
3190  void VisitBinaryOperator(BinaryOperator* B) {
3191    if (!B->isLogicalOp()) {
3192      VisitExpr(B);
3193      return;
3194    }
3195
3196    B->getLHS()->printPretty(OS, Helper, Policy);
3197
3198    switch (B->getOpcode()) {
3199      case BO_LOr:
3200        OS << " || ...";
3201        return;
3202      case BO_LAnd:
3203        OS << " && ...";
3204        return;
3205      default:
3206        assert(false && "Invalid logical operator.");
3207    }
3208  }
3209
3210  void VisitExpr(Expr* E) {
3211    E->printPretty(OS, Helper, Policy);
3212  }
3213};
3214} // end anonymous namespace
3215
3216static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3217                       const CFGElement &E) {
3218  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3219    Stmt *S = CS->getStmt();
3220
3221    if (Helper) {
3222
3223      // special printing for statement-expressions.
3224      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3225        CompoundStmt* Sub = SE->getSubStmt();
3226
3227        if (Sub->children()) {
3228          OS << "({ ... ; ";
3229          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3230          OS << " })\n";
3231          return;
3232        }
3233      }
3234      // special printing for comma expressions.
3235      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3236        if (B->getOpcode() == BO_Comma) {
3237          OS << "... , ";
3238          Helper->handledStmt(B->getRHS(),OS);
3239          OS << '\n';
3240          return;
3241        }
3242      }
3243    }
3244    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3245
3246    if (isa<CXXOperatorCallExpr>(S)) {
3247      OS << " (OperatorCall)";
3248    } else if (isa<CXXBindTemporaryExpr>(S)) {
3249      OS << " (BindTemporary)";
3250    }
3251
3252    // Expressions need a newline.
3253    if (isa<Expr>(S))
3254      OS << '\n';
3255
3256  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3257    const CXXCtorInitializer *I = IE->getInitializer();
3258    if (I->isBaseInitializer())
3259      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3260    else OS << I->getAnyMember()->getName();
3261
3262    OS << "(";
3263    if (Expr* IE = I->getInit())
3264      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3265    OS << ")";
3266
3267    if (I->isBaseInitializer())
3268      OS << " (Base initializer)\n";
3269    else OS << " (Member initializer)\n";
3270
3271  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3272    const VarDecl* VD = DE->getVarDecl();
3273    Helper->handleDecl(VD, OS);
3274
3275    const Type* T = VD->getType().getTypePtr();
3276    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3277      T = RT->getPointeeType().getTypePtr();
3278    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3279      T = ET;
3280
3281    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3282    OS << " (Implicit destructor)\n";
3283
3284  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3285    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3286    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3287    OS << " (Base object destructor)\n";
3288
3289  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3290    const FieldDecl *FD = ME->getFieldDecl();
3291
3292    const Type *T = FD->getType().getTypePtr();
3293    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3294      T = ET;
3295
3296    OS << "this->" << FD->getName();
3297    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3298    OS << " (Member object destructor)\n";
3299
3300  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3301    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3302    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3303    OS << " (Temporary object destructor)\n";
3304  }
3305}
3306
3307static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3308                        const CFGBlock& B,
3309                        StmtPrinterHelper* Helper, bool print_edges) {
3310
3311  if (Helper) Helper->setBlockID(B.getBlockID());
3312
3313  // Print the header.
3314  OS << "\n [ B" << B.getBlockID();
3315
3316  if (&B == &cfg->getEntry())
3317    OS << " (ENTRY) ]\n";
3318  else if (&B == &cfg->getExit())
3319    OS << " (EXIT) ]\n";
3320  else if (&B == cfg->getIndirectGotoBlock())
3321    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3322  else
3323    OS << " ]\n";
3324
3325  // Print the label of this block.
3326  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3327
3328    if (print_edges)
3329      OS << "    ";
3330
3331    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3332      OS << L->getName();
3333    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3334      OS << "case ";
3335      C->getLHS()->printPretty(OS, Helper,
3336                               PrintingPolicy(Helper->getLangOpts()));
3337      if (C->getRHS()) {
3338        OS << " ... ";
3339        C->getRHS()->printPretty(OS, Helper,
3340                                 PrintingPolicy(Helper->getLangOpts()));
3341      }
3342    } else if (isa<DefaultStmt>(Label))
3343      OS << "default";
3344    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3345      OS << "catch (";
3346      if (CS->getExceptionDecl())
3347        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3348                                      0);
3349      else
3350        OS << "...";
3351      OS << ")";
3352
3353    } else
3354      assert(false && "Invalid label statement in CFGBlock.");
3355
3356    OS << ":\n";
3357  }
3358
3359  // Iterate through the statements in the block and print them.
3360  unsigned j = 1;
3361
3362  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3363       I != E ; ++I, ++j ) {
3364
3365    // Print the statement # in the basic block and the statement itself.
3366    if (print_edges)
3367      OS << "    ";
3368
3369    OS << llvm::format("%3d", j) << ": ";
3370
3371    if (Helper)
3372      Helper->setStmtID(j);
3373
3374    print_elem(OS,Helper,*I);
3375  }
3376
3377  // Print the terminator of this block.
3378  if (B.getTerminator()) {
3379    if (print_edges)
3380      OS << "    ";
3381
3382    OS << "  T: ";
3383
3384    if (Helper) Helper->setBlockID(-1);
3385
3386    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3387                                     PrintingPolicy(Helper->getLangOpts()));
3388    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3389    OS << '\n';
3390  }
3391
3392  if (print_edges) {
3393    // Print the predecessors of this block.
3394    OS << "    Predecessors (" << B.pred_size() << "):";
3395    unsigned i = 0;
3396
3397    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3398         I != E; ++I, ++i) {
3399
3400      if (i == 8 || (i-8) == 0)
3401        OS << "\n     ";
3402
3403      OS << " B" << (*I)->getBlockID();
3404    }
3405
3406    OS << '\n';
3407
3408    // Print the successors of this block.
3409    OS << "    Successors (" << B.succ_size() << "):";
3410    i = 0;
3411
3412    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3413         I != E; ++I, ++i) {
3414
3415      if (i == 8 || (i-8) % 10 == 0)
3416        OS << "\n    ";
3417
3418      if (*I)
3419        OS << " B" << (*I)->getBlockID();
3420      else
3421        OS  << " NULL";
3422    }
3423
3424    OS << '\n';
3425  }
3426}
3427
3428
3429/// dump - A simple pretty printer of a CFG that outputs to stderr.
3430void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3431
3432/// print - A simple pretty printer of a CFG that outputs to an ostream.
3433void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3434  StmtPrinterHelper Helper(this, LO);
3435
3436  // Print the entry block.
3437  print_block(OS, this, getEntry(), &Helper, true);
3438
3439  // Iterate through the CFGBlocks and print them one by one.
3440  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3441    // Skip the entry block, because we already printed it.
3442    if (&(**I) == &getEntry() || &(**I) == &getExit())
3443      continue;
3444
3445    print_block(OS, this, **I, &Helper, true);
3446  }
3447
3448  // Print the exit block.
3449  print_block(OS, this, getExit(), &Helper, true);
3450  OS.flush();
3451}
3452
3453/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3454void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3455  print(llvm::errs(), cfg, LO);
3456}
3457
3458/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3459///   Generally this will only be called from CFG::print.
3460void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3461                     const LangOptions &LO) const {
3462  StmtPrinterHelper Helper(cfg, LO);
3463  print_block(OS, cfg, *this, &Helper, true);
3464}
3465
3466/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3467void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3468                               const LangOptions &LO) const {
3469  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3470  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3471}
3472
3473Stmt* CFGBlock::getTerminatorCondition() {
3474  Stmt *Terminator = this->Terminator;
3475  if (!Terminator)
3476    return NULL;
3477
3478  Expr* E = NULL;
3479
3480  switch (Terminator->getStmtClass()) {
3481    default:
3482      break;
3483
3484    case Stmt::ForStmtClass:
3485      E = cast<ForStmt>(Terminator)->getCond();
3486      break;
3487
3488    case Stmt::WhileStmtClass:
3489      E = cast<WhileStmt>(Terminator)->getCond();
3490      break;
3491
3492    case Stmt::DoStmtClass:
3493      E = cast<DoStmt>(Terminator)->getCond();
3494      break;
3495
3496    case Stmt::IfStmtClass:
3497      E = cast<IfStmt>(Terminator)->getCond();
3498      break;
3499
3500    case Stmt::ChooseExprClass:
3501      E = cast<ChooseExpr>(Terminator)->getCond();
3502      break;
3503
3504    case Stmt::IndirectGotoStmtClass:
3505      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3506      break;
3507
3508    case Stmt::SwitchStmtClass:
3509      E = cast<SwitchStmt>(Terminator)->getCond();
3510      break;
3511
3512    case Stmt::BinaryConditionalOperatorClass:
3513      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3514      break;
3515
3516    case Stmt::ConditionalOperatorClass:
3517      E = cast<ConditionalOperator>(Terminator)->getCond();
3518      break;
3519
3520    case Stmt::BinaryOperatorClass: // '&&' and '||'
3521      E = cast<BinaryOperator>(Terminator)->getLHS();
3522      break;
3523
3524    case Stmt::ObjCForCollectionStmtClass:
3525      return Terminator;
3526  }
3527
3528  return E ? E->IgnoreParens() : NULL;
3529}
3530
3531bool CFGBlock::hasBinaryBranchTerminator() const {
3532  const Stmt *Terminator = this->Terminator;
3533  if (!Terminator)
3534    return false;
3535
3536  Expr* E = NULL;
3537
3538  switch (Terminator->getStmtClass()) {
3539    default:
3540      return false;
3541
3542    case Stmt::ForStmtClass:
3543    case Stmt::WhileStmtClass:
3544    case Stmt::DoStmtClass:
3545    case Stmt::IfStmtClass:
3546    case Stmt::ChooseExprClass:
3547    case Stmt::BinaryConditionalOperatorClass:
3548    case Stmt::ConditionalOperatorClass:
3549    case Stmt::BinaryOperatorClass:
3550      return true;
3551  }
3552
3553  return E ? E->IgnoreParens() : NULL;
3554}
3555
3556
3557//===----------------------------------------------------------------------===//
3558// CFG Graphviz Visualization
3559//===----------------------------------------------------------------------===//
3560
3561
3562#ifndef NDEBUG
3563static StmtPrinterHelper* GraphHelper;
3564#endif
3565
3566void CFG::viewCFG(const LangOptions &LO) const {
3567#ifndef NDEBUG
3568  StmtPrinterHelper H(this, LO);
3569  GraphHelper = &H;
3570  llvm::ViewGraph(this,"CFG");
3571  GraphHelper = NULL;
3572#endif
3573}
3574
3575namespace llvm {
3576template<>
3577struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3578
3579  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3580
3581  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3582
3583#ifndef NDEBUG
3584    std::string OutSStr;
3585    llvm::raw_string_ostream Out(OutSStr);
3586    print_block(Out,Graph, *Node, GraphHelper, false);
3587    std::string& OutStr = Out.str();
3588
3589    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3590
3591    // Process string output to make it nicer...
3592    for (unsigned i = 0; i != OutStr.length(); ++i)
3593      if (OutStr[i] == '\n') {                            // Left justify
3594        OutStr[i] = '\\';
3595        OutStr.insert(OutStr.begin()+i+1, 'l');
3596      }
3597
3598    return OutStr;
3599#else
3600    return "";
3601#endif
3602  }
3603};
3604} // end namespace llvm
3605