CFG.cpp revision ad762fcdc16b9e4705b12b09d92b8c026212b906
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl* D) {
33  if (VarDecl* VD = dyn_cast<VarDecl>(D))
34    if (Expr* Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl* const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl* operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator& operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator& rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator& rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl* VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock* Block;
256  CFGBlock* Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock* SwitchTerminatedBlock;
260  CFGBlock* DefaultCaseBlock;
261  CFGBlock* TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
325  CFGBlock *VisitCaseStmt(CaseStmt *C);
326  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
327  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
328  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
329                                     AddStmtChoice asc);
330  CFGBlock *VisitContinueStmt(ContinueStmt *C);
331  CFGBlock *VisitDeclStmt(DeclStmt *DS);
332  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
333  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
334  CFGBlock *VisitDoStmt(DoStmt *D);
335  CFGBlock *VisitForStmt(ForStmt *F);
336  CFGBlock *VisitGotoStmt(GotoStmt* G);
337  CFGBlock *VisitIfStmt(IfStmt *I);
338  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
339  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
340  CFGBlock *VisitLabelStmt(LabelStmt *L);
341  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
342  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
343  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
344  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
345  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
346  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
347  CFGBlock *VisitReturnStmt(ReturnStmt* R);
348  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
349                                          AddStmtChoice asc);
350  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
351  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
352  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
353  CFGBlock *VisitWhileStmt(WhileStmt *W);
354
355  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
356  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
357  CFGBlock *VisitChildren(Stmt* S);
358
359  // Visitors to walk an AST and generate destructors of temporaries in
360  // full expression.
361  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
362  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
363  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
364  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
365      bool BindToTemporary);
366  CFGBlock *
367  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
368                                            bool BindToTemporary);
369
370  // NYS == Not Yet Supported
371  CFGBlock* NYS() {
372    badCFG = true;
373    return Block;
374  }
375
376  void autoCreateBlock() { if (!Block) Block = createBlock(); }
377  CFGBlock *createBlock(bool add_successor = true);
378
379  CFGBlock *addStmt(Stmt *S) {
380    return Visit(S, AddStmtChoice::AlwaysAdd);
381  }
382  CFGBlock *addInitializer(CXXCtorInitializer *I);
383  void addAutomaticObjDtors(LocalScope::const_iterator B,
384                            LocalScope::const_iterator E, Stmt* S);
385  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
386
387  // Local scopes creation.
388  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
389
390  void addLocalScopeForStmt(Stmt* S);
391  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
392  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
393
394  void addLocalScopeAndDtors(Stmt* S);
395
396  // Interface to CFGBlock - adding CFGElements.
397  void appendStmt(CFGBlock *B, const Stmt *S) {
398    if (alwaysAdd(S))
399      cachedEntry->second = B;
400
401    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
402  }
403  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
404    B->appendInitializer(I, cfg->getBumpVectorContext());
405  }
406  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
407    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
408  }
409  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
410    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
411  }
412  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
413    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
414  }
415
416  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
417    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
418  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
419      LocalScope::const_iterator E, Stmt* S);
420  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
421      LocalScope::const_iterator B, LocalScope::const_iterator E);
422
423  void addSuccessor(CFGBlock *B, CFGBlock *S) {
424    B->addSuccessor(S, cfg->getBumpVectorContext());
425  }
426
427  /// Try and evaluate an expression to an integer constant.
428  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
429    if (!BuildOpts.PruneTriviallyFalseEdges)
430      return false;
431    return !S->isTypeDependent() &&
432           !S->isValueDependent() &&
433           S->Evaluate(outResult, *Context);
434  }
435
436  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
437  /// if we can evaluate to a known value, otherwise return -1.
438  TryResult tryEvaluateBool(Expr *S) {
439    Expr::EvalResult Result;
440    if (!tryEvaluate(S, Result))
441      return TryResult();
442
443    if (Result.Val.isInt())
444      return Result.Val.getInt().getBoolValue();
445
446    if (Result.Val.isLValue()) {
447      Expr *e = Result.Val.getLValueBase();
448      const CharUnits &c = Result.Val.getLValueOffset();
449      if (!e && c.isZero())
450        return false;
451    }
452    return TryResult();
453  }
454
455};
456
457inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
458                                     const Stmt *stmt) const {
459  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
460}
461
462bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
463  if (!BuildOpts.forcedBlkExprs)
464    return false;
465
466  if (lastLookup == stmt) {
467    if (cachedEntry) {
468      assert(cachedEntry->first == stmt);
469      return true;
470    }
471    return false;
472  }
473
474  lastLookup = stmt;
475
476  // Perform the lookup!
477  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
478
479  if (!fb) {
480    // No need to update 'cachedEntry', since it will always be null.
481    assert(cachedEntry == 0);
482    return false;
483  }
484
485  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
486  if (itr == fb->end()) {
487    cachedEntry = 0;
488    return false;
489  }
490
491  cachedEntry = &*itr;
492  return true;
493}
494
495// FIXME: Add support for dependent-sized array types in C++?
496// Does it even make sense to build a CFG for an uninstantiated template?
497static const VariableArrayType *FindVA(const Type *t) {
498  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
499    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
500      if (vat->getSizeExpr())
501        return vat;
502
503    t = vt->getElementType().getTypePtr();
504  }
505
506  return 0;
507}
508
509/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
510///  arbitrary statement.  Examples include a single expression or a function
511///  body (compound statement).  The ownership of the returned CFG is
512///  transferred to the caller.  If CFG construction fails, this method returns
513///  NULL.
514CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement) {
515  assert(cfg.get());
516  if (!Statement)
517    return NULL;
518
519  // Create an empty block that will serve as the exit block for the CFG.  Since
520  // this is the first block added to the CFG, it will be implicitly registered
521  // as the exit block.
522  Succ = createBlock();
523  assert(Succ == &cfg->getExit());
524  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
525
526  if (BuildOpts.AddImplicitDtors)
527    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
528      addImplicitDtorsForDestructor(DD);
529
530  // Visit the statements and create the CFG.
531  CFGBlock *B = addStmt(Statement);
532
533  if (badCFG)
534    return NULL;
535
536  // For C++ constructor add initializers to CFG.
537  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
538    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
539        E = CD->init_rend(); I != E; ++I) {
540      B = addInitializer(*I);
541      if (badCFG)
542        return NULL;
543    }
544  }
545
546  if (B)
547    Succ = B;
548
549  // Backpatch the gotos whose label -> block mappings we didn't know when we
550  // encountered them.
551  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
552                                   E = BackpatchBlocks.end(); I != E; ++I ) {
553
554    CFGBlock* B = I->block;
555    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
556    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
557
558    // If there is no target for the goto, then we are looking at an
559    // incomplete AST.  Handle this by not registering a successor.
560    if (LI == LabelMap.end()) continue;
561
562    JumpTarget JT = LI->second;
563    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
564                                           JT.scopePosition);
565    addSuccessor(B, JT.block);
566  }
567
568  // Add successors to the Indirect Goto Dispatch block (if we have one).
569  if (CFGBlock* B = cfg->getIndirectGotoBlock())
570    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
571                              E = AddressTakenLabels.end(); I != E; ++I ) {
572
573      // Lookup the target block.
574      LabelMapTy::iterator LI = LabelMap.find(*I);
575
576      // If there is no target block that contains label, then we are looking
577      // at an incomplete AST.  Handle this by not registering a successor.
578      if (LI == LabelMap.end()) continue;
579
580      addSuccessor(B, LI->second.block);
581    }
582
583  // Create an empty entry block that has no predecessors.
584  cfg->setEntry(createBlock());
585
586  return cfg.take();
587}
588
589/// createBlock - Used to lazily create blocks that are connected
590///  to the current (global) succcessor.
591CFGBlock* CFGBuilder::createBlock(bool add_successor) {
592  CFGBlock* B = cfg->createBlock();
593  if (add_successor && Succ)
594    addSuccessor(B, Succ);
595  return B;
596}
597
598/// addInitializer - Add C++ base or member initializer element to CFG.
599CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
600  if (!BuildOpts.AddInitializers)
601    return Block;
602
603  bool IsReference = false;
604  bool HasTemporaries = false;
605
606  // Destructors of temporaries in initialization expression should be called
607  // after initialization finishes.
608  Expr *Init = I->getInit();
609  if (Init) {
610    if (FieldDecl *FD = I->getAnyMember())
611      IsReference = FD->getType()->isReferenceType();
612    HasTemporaries = isa<ExprWithCleanups>(Init);
613
614    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
615      // Generate destructors for temporaries in initialization expression.
616      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
617          IsReference);
618    }
619  }
620
621  autoCreateBlock();
622  appendInitializer(Block, I);
623
624  if (Init) {
625    if (HasTemporaries) {
626      // For expression with temporaries go directly to subexpression to omit
627      // generating destructors for the second time.
628      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
629    }
630    return Visit(Init);
631  }
632
633  return Block;
634}
635
636/// addAutomaticObjDtors - Add to current block automatic objects destructors
637/// for objects in range of local scope positions. Use S as trigger statement
638/// for destructors.
639void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
640                                      LocalScope::const_iterator E, Stmt* S) {
641  if (!BuildOpts.AddImplicitDtors)
642    return;
643
644  if (B == E)
645    return;
646
647  autoCreateBlock();
648  appendAutomaticObjDtors(Block, B, E, S);
649}
650
651/// addImplicitDtorsForDestructor - Add implicit destructors generated for
652/// base and member objects in destructor.
653void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
654  assert (BuildOpts.AddImplicitDtors
655      && "Can be called only when dtors should be added");
656  const CXXRecordDecl *RD = DD->getParent();
657
658  // At the end destroy virtual base objects.
659  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
660      VE = RD->vbases_end(); VI != VE; ++VI) {
661    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
662    if (!CD->hasTrivialDestructor()) {
663      autoCreateBlock();
664      appendBaseDtor(Block, VI);
665    }
666  }
667
668  // Before virtual bases destroy direct base objects.
669  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
670      BE = RD->bases_end(); BI != BE; ++BI) {
671    if (!BI->isVirtual()) {
672      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
673      if (!CD->hasTrivialDestructor()) {
674        autoCreateBlock();
675        appendBaseDtor(Block, BI);
676      }
677    }
678  }
679
680  // First destroy member objects.
681  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
682      FE = RD->field_end(); FI != FE; ++FI) {
683    // Check for constant size array. Set type to array element type.
684    QualType QT = FI->getType();
685    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
686      if (AT->getSize() == 0)
687        continue;
688      QT = AT->getElementType();
689    }
690
691    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
692      if (!CD->hasTrivialDestructor()) {
693        autoCreateBlock();
694        appendMemberDtor(Block, *FI);
695      }
696  }
697}
698
699/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
700/// way return valid LocalScope object.
701LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
702  if (!Scope) {
703    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
704    Scope = alloc.Allocate<LocalScope>();
705    BumpVectorContext ctx(alloc);
706    new (Scope) LocalScope(ctx, ScopePos);
707  }
708  return Scope;
709}
710
711/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
712/// that should create implicit scope (e.g. if/else substatements).
713void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
714  if (!BuildOpts.AddImplicitDtors)
715    return;
716
717  LocalScope *Scope = 0;
718
719  // For compound statement we will be creating explicit scope.
720  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
721    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
722        ; BI != BE; ++BI) {
723      Stmt *SI = *BI;
724      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
725        SI = LS->getSubStmt();
726      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
727        Scope = addLocalScopeForDeclStmt(DS, Scope);
728    }
729    return;
730  }
731
732  // For any other statement scope will be implicit and as such will be
733  // interesting only for DeclStmt.
734  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
735    S = LS->getSubStmt();
736  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
737    addLocalScopeForDeclStmt(DS);
738}
739
740/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
741/// reuse Scope if not NULL.
742LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
743                                                 LocalScope* Scope) {
744  if (!BuildOpts.AddImplicitDtors)
745    return Scope;
746
747  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
748      ; DI != DE; ++DI) {
749    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
750      Scope = addLocalScopeForVarDecl(VD, Scope);
751  }
752  return Scope;
753}
754
755/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
756/// create add scope for automatic objects and temporary objects bound to
757/// const reference. Will reuse Scope if not NULL.
758LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
759                                                LocalScope* Scope) {
760  if (!BuildOpts.AddImplicitDtors)
761    return Scope;
762
763  // Check if variable is local.
764  switch (VD->getStorageClass()) {
765  case SC_None:
766  case SC_Auto:
767  case SC_Register:
768    break;
769  default: return Scope;
770  }
771
772  // Check for const references bound to temporary. Set type to pointee.
773  QualType QT = VD->getType();
774  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
775    QT = RT->getPointeeType();
776    if (!QT.isConstQualified())
777      return Scope;
778    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
779      return Scope;
780  }
781
782  // Check for constant size array. Set type to array element type.
783  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
784    if (AT->getSize() == 0)
785      return Scope;
786    QT = AT->getElementType();
787  }
788
789  // Check if type is a C++ class with non-trivial destructor.
790  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
791    if (!CD->hasTrivialDestructor()) {
792      // Add the variable to scope
793      Scope = createOrReuseLocalScope(Scope);
794      Scope->addVar(VD);
795      ScopePos = Scope->begin();
796    }
797  return Scope;
798}
799
800/// addLocalScopeAndDtors - For given statement add local scope for it and
801/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
802void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
803  if (!BuildOpts.AddImplicitDtors)
804    return;
805
806  LocalScope::const_iterator scopeBeginPos = ScopePos;
807  addLocalScopeForStmt(S);
808  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
809}
810
811/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
812/// automatic storage duration to CFGBlock's elements vector. Insertion will be
813/// performed in place specified with iterator.
814void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
815    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
816  BumpVectorContext& C = cfg->getBumpVectorContext();
817  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
818  while (B != E)
819    I = Blk->insertAutomaticObjDtor(I, *B++, S);
820}
821
822/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
823/// automatic storage duration to CFGBlock's elements vector. Elements will be
824/// appended to physical end of the vector which happens to be logical
825/// beginning.
826void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
827    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
828  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
829}
830
831/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
832/// variables with automatic storage duration to CFGBlock's elements vector.
833/// Elements will be prepended to physical beginning of the vector which
834/// happens to be logical end. Use blocks terminator as statement that specifies
835/// destructors call site.
836void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
837    LocalScope::const_iterator B, LocalScope::const_iterator E) {
838  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
839}
840
841/// Visit - Walk the subtree of a statement and add extra
842///   blocks for ternary operators, &&, and ||.  We also process "," and
843///   DeclStmts (which may contain nested control-flow).
844CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
845tryAgain:
846  if (!S) {
847    badCFG = true;
848    return 0;
849  }
850  switch (S->getStmtClass()) {
851    default:
852      return VisitStmt(S, asc);
853
854    case Stmt::AddrLabelExprClass:
855      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
856
857    case Stmt::BinaryConditionalOperatorClass:
858      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
859
860    case Stmt::BinaryOperatorClass:
861      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
862
863    case Stmt::BlockExprClass:
864      return VisitBlockExpr(cast<BlockExpr>(S), asc);
865
866    case Stmt::BreakStmtClass:
867      return VisitBreakStmt(cast<BreakStmt>(S));
868
869    case Stmt::CallExprClass:
870    case Stmt::CXXOperatorCallExprClass:
871      return VisitCallExpr(cast<CallExpr>(S), asc);
872
873    case Stmt::CaseStmtClass:
874      return VisitCaseStmt(cast<CaseStmt>(S));
875
876    case Stmt::ChooseExprClass:
877      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
878
879    case Stmt::CompoundStmtClass:
880      return VisitCompoundStmt(cast<CompoundStmt>(S));
881
882    case Stmt::ConditionalOperatorClass:
883      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
884
885    case Stmt::ContinueStmtClass:
886      return VisitContinueStmt(cast<ContinueStmt>(S));
887
888    case Stmt::CXXCatchStmtClass:
889      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
890
891    case Stmt::ExprWithCleanupsClass:
892      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
893
894    case Stmt::CXXBindTemporaryExprClass:
895      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
896
897    case Stmt::CXXConstructExprClass:
898      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
899
900    case Stmt::CXXFunctionalCastExprClass:
901      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
902
903    case Stmt::CXXTemporaryObjectExprClass:
904      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
905
906    case Stmt::CXXMemberCallExprClass:
907      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
908
909    case Stmt::CXXThrowExprClass:
910      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
911
912    case Stmt::CXXTryStmtClass:
913      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
914
915    case Stmt::CXXForRangeStmtClass:
916      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
917
918    case Stmt::DeclStmtClass:
919      return VisitDeclStmt(cast<DeclStmt>(S));
920
921    case Stmt::DefaultStmtClass:
922      return VisitDefaultStmt(cast<DefaultStmt>(S));
923
924    case Stmt::DoStmtClass:
925      return VisitDoStmt(cast<DoStmt>(S));
926
927    case Stmt::ForStmtClass:
928      return VisitForStmt(cast<ForStmt>(S));
929
930    case Stmt::GotoStmtClass:
931      return VisitGotoStmt(cast<GotoStmt>(S));
932
933    case Stmt::IfStmtClass:
934      return VisitIfStmt(cast<IfStmt>(S));
935
936    case Stmt::ImplicitCastExprClass:
937      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
938
939    case Stmt::IndirectGotoStmtClass:
940      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
941
942    case Stmt::LabelStmtClass:
943      return VisitLabelStmt(cast<LabelStmt>(S));
944
945    case Stmt::MemberExprClass:
946      return VisitMemberExpr(cast<MemberExpr>(S), asc);
947
948    case Stmt::ObjCAtCatchStmtClass:
949      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
950
951    case Stmt::ObjCAtSynchronizedStmtClass:
952      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
953
954    case Stmt::ObjCAtThrowStmtClass:
955      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
956
957    case Stmt::ObjCAtTryStmtClass:
958      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
959
960    case Stmt::ObjCForCollectionStmtClass:
961      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
962
963    case Stmt::ParenExprClass:
964      S = cast<ParenExpr>(S)->getSubExpr();
965      goto tryAgain;
966
967    case Stmt::NullStmtClass:
968      return Block;
969
970    case Stmt::ReturnStmtClass:
971      return VisitReturnStmt(cast<ReturnStmt>(S));
972
973    case Stmt::UnaryExprOrTypeTraitExprClass:
974      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
975                                           asc);
976
977    case Stmt::StmtExprClass:
978      return VisitStmtExpr(cast<StmtExpr>(S), asc);
979
980    case Stmt::SwitchStmtClass:
981      return VisitSwitchStmt(cast<SwitchStmt>(S));
982
983    case Stmt::UnaryOperatorClass:
984      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
985
986    case Stmt::WhileStmtClass:
987      return VisitWhileStmt(cast<WhileStmt>(S));
988  }
989}
990
991CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
992  if (asc.alwaysAdd(*this, S)) {
993    autoCreateBlock();
994    appendStmt(Block, S);
995  }
996
997  return VisitChildren(S);
998}
999
1000/// VisitChildren - Visit the children of a Stmt.
1001CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
1002  CFGBlock *lastBlock = Block;
1003  for (Stmt::child_range I = Terminator->children(); I; ++I)
1004    if (Stmt *child = *I)
1005      if (CFGBlock *b = Visit(child))
1006        lastBlock = b;
1007
1008  return lastBlock;
1009}
1010
1011CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1012                                         AddStmtChoice asc) {
1013  AddressTakenLabels.insert(A->getLabel());
1014
1015  if (asc.alwaysAdd(*this, A)) {
1016    autoCreateBlock();
1017    appendStmt(Block, A);
1018  }
1019
1020  return Block;
1021}
1022
1023CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1024           AddStmtChoice asc) {
1025  if (asc.alwaysAdd(*this, U)) {
1026    autoCreateBlock();
1027    appendStmt(Block, U);
1028  }
1029
1030  return Visit(U->getSubExpr(), AddStmtChoice());
1031}
1032
1033CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1034                                          AddStmtChoice asc) {
1035  if (B->isLogicalOp()) { // && or ||
1036    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1037    appendStmt(ConfluenceBlock, B);
1038
1039    if (badCFG)
1040      return 0;
1041
1042    // create the block evaluating the LHS
1043    CFGBlock* LHSBlock = createBlock(false);
1044    LHSBlock->setTerminator(B);
1045
1046    // create the block evaluating the RHS
1047    Succ = ConfluenceBlock;
1048    Block = NULL;
1049    CFGBlock* RHSBlock = addStmt(B->getRHS());
1050
1051    if (RHSBlock) {
1052      if (badCFG)
1053        return 0;
1054    } else {
1055      // Create an empty block for cases where the RHS doesn't require
1056      // any explicit statements in the CFG.
1057      RHSBlock = createBlock();
1058    }
1059
1060    // See if this is a known constant.
1061    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1062    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1063      KnownVal.negate();
1064
1065    // Now link the LHSBlock with RHSBlock.
1066    if (B->getOpcode() == BO_LOr) {
1067      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1068      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1069    } else {
1070      assert(B->getOpcode() == BO_LAnd);
1071      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1072      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1073    }
1074
1075    // Generate the blocks for evaluating the LHS.
1076    Block = LHSBlock;
1077    return addStmt(B->getLHS());
1078  }
1079
1080  if (B->getOpcode() == BO_Comma) { // ,
1081    autoCreateBlock();
1082    appendStmt(Block, B);
1083    addStmt(B->getRHS());
1084    return addStmt(B->getLHS());
1085  }
1086
1087  if (B->isAssignmentOp()) {
1088    if (asc.alwaysAdd(*this, B)) {
1089      autoCreateBlock();
1090      appendStmt(Block, B);
1091    }
1092    Visit(B->getLHS());
1093    return Visit(B->getRHS());
1094  }
1095
1096  if (asc.alwaysAdd(*this, B)) {
1097    autoCreateBlock();
1098    appendStmt(Block, B);
1099  }
1100
1101  CFGBlock *RBlock = Visit(B->getRHS());
1102  CFGBlock *LBlock = Visit(B->getLHS());
1103  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1104  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1105  // return RBlock.  Otherwise we'll incorrectly return NULL.
1106  return (LBlock ? LBlock : RBlock);
1107}
1108
1109CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1110  if (asc.alwaysAdd(*this, E)) {
1111    autoCreateBlock();
1112    appendStmt(Block, E);
1113  }
1114  return Block;
1115}
1116
1117CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1118  // "break" is a control-flow statement.  Thus we stop processing the current
1119  // block.
1120  if (badCFG)
1121    return 0;
1122
1123  // Now create a new block that ends with the break statement.
1124  Block = createBlock(false);
1125  Block->setTerminator(B);
1126
1127  // If there is no target for the break, then we are looking at an incomplete
1128  // AST.  This means that the CFG cannot be constructed.
1129  if (BreakJumpTarget.block) {
1130    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1131    addSuccessor(Block, BreakJumpTarget.block);
1132  } else
1133    badCFG = true;
1134
1135
1136  return Block;
1137}
1138
1139static bool CanThrow(Expr *E, ASTContext &Ctx) {
1140  QualType Ty = E->getType();
1141  if (Ty->isFunctionPointerType())
1142    Ty = Ty->getAs<PointerType>()->getPointeeType();
1143  else if (Ty->isBlockPointerType())
1144    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1145
1146  const FunctionType *FT = Ty->getAs<FunctionType>();
1147  if (FT) {
1148    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1149      if (Proto->isNothrow(Ctx))
1150        return false;
1151  }
1152  return true;
1153}
1154
1155CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1156  // If this is a call to a no-return function, this stops the block here.
1157  bool NoReturn = false;
1158  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
1159    NoReturn = true;
1160  }
1161
1162  bool AddEHEdge = false;
1163
1164  // Languages without exceptions are assumed to not throw.
1165  if (Context->getLangOptions().Exceptions) {
1166    if (BuildOpts.AddEHEdges)
1167      AddEHEdge = true;
1168  }
1169
1170  if (FunctionDecl *FD = C->getDirectCallee()) {
1171    if (FD->hasAttr<NoReturnAttr>())
1172      NoReturn = true;
1173    if (FD->hasAttr<NoThrowAttr>())
1174      AddEHEdge = false;
1175  }
1176
1177  if (!CanThrow(C->getCallee(), *Context))
1178    AddEHEdge = false;
1179
1180  if (!NoReturn && !AddEHEdge)
1181    return VisitStmt(C, asc.withAlwaysAdd(true));
1182
1183  if (Block) {
1184    Succ = Block;
1185    if (badCFG)
1186      return 0;
1187  }
1188
1189  Block = createBlock(!NoReturn);
1190  appendStmt(Block, C);
1191
1192  if (NoReturn) {
1193    // Wire this to the exit block directly.
1194    addSuccessor(Block, &cfg->getExit());
1195  }
1196  if (AddEHEdge) {
1197    // Add exceptional edges.
1198    if (TryTerminatedBlock)
1199      addSuccessor(Block, TryTerminatedBlock);
1200    else
1201      addSuccessor(Block, &cfg->getExit());
1202  }
1203
1204  return VisitChildren(C);
1205}
1206
1207CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1208                                      AddStmtChoice asc) {
1209  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1210  appendStmt(ConfluenceBlock, C);
1211  if (badCFG)
1212    return 0;
1213
1214  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1215  Succ = ConfluenceBlock;
1216  Block = NULL;
1217  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1218  if (badCFG)
1219    return 0;
1220
1221  Succ = ConfluenceBlock;
1222  Block = NULL;
1223  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1224  if (badCFG)
1225    return 0;
1226
1227  Block = createBlock(false);
1228  // See if this is a known constant.
1229  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1230  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1231  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1232  Block->setTerminator(C);
1233  return addStmt(C->getCond());
1234}
1235
1236
1237CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1238  addLocalScopeAndDtors(C);
1239  CFGBlock* LastBlock = Block;
1240
1241  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1242       I != E; ++I ) {
1243    // If we hit a segment of code just containing ';' (NullStmts), we can
1244    // get a null block back.  In such cases, just use the LastBlock
1245    if (CFGBlock *newBlock = addStmt(*I))
1246      LastBlock = newBlock;
1247
1248    if (badCFG)
1249      return NULL;
1250  }
1251
1252  return LastBlock;
1253}
1254
1255CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1256                                               AddStmtChoice asc) {
1257  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1258  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1259
1260  // Create the confluence block that will "merge" the results of the ternary
1261  // expression.
1262  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1263  appendStmt(ConfluenceBlock, C);
1264  if (badCFG)
1265    return 0;
1266
1267  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1268
1269  // Create a block for the LHS expression if there is an LHS expression.  A
1270  // GCC extension allows LHS to be NULL, causing the condition to be the
1271  // value that is returned instead.
1272  //  e.g: x ?: y is shorthand for: x ? x : y;
1273  Succ = ConfluenceBlock;
1274  Block = NULL;
1275  CFGBlock* LHSBlock = 0;
1276  const Expr *trueExpr = C->getTrueExpr();
1277  if (trueExpr != opaqueValue) {
1278    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1279    if (badCFG)
1280      return 0;
1281    Block = NULL;
1282  }
1283  else
1284    LHSBlock = ConfluenceBlock;
1285
1286  // Create the block for the RHS expression.
1287  Succ = ConfluenceBlock;
1288  CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1289  if (badCFG)
1290    return 0;
1291
1292  // Create the block that will contain the condition.
1293  Block = createBlock(false);
1294
1295  // See if this is a known constant.
1296  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1297  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1298  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1299  Block->setTerminator(C);
1300  Expr *condExpr = C->getCond();
1301
1302  if (opaqueValue) {
1303    // Run the condition expression if it's not trivially expressed in
1304    // terms of the opaque value (or if there is no opaque value).
1305    if (condExpr != opaqueValue)
1306      addStmt(condExpr);
1307
1308    // Before that, run the common subexpression if there was one.
1309    // At least one of this or the above will be run.
1310    return addStmt(BCO->getCommon());
1311  }
1312
1313  return addStmt(condExpr);
1314}
1315
1316CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1317  if (DS->isSingleDecl())
1318    return VisitDeclSubExpr(DS);
1319
1320  CFGBlock *B = 0;
1321
1322  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1323  typedef llvm::SmallVector<Decl*,10> BufTy;
1324  BufTy Buf(DS->decl_begin(), DS->decl_end());
1325
1326  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1327    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1328    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1329               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1330
1331    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1332    // automatically freed with the CFG.
1333    DeclGroupRef DG(*I);
1334    Decl *D = *I;
1335    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1336    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1337
1338    // Append the fake DeclStmt to block.
1339    B = VisitDeclSubExpr(DSNew);
1340  }
1341
1342  return B;
1343}
1344
1345/// VisitDeclSubExpr - Utility method to add block-level expressions for
1346/// DeclStmts and initializers in them.
1347CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1348  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1349
1350  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1351
1352  if (!VD) {
1353    autoCreateBlock();
1354    appendStmt(Block, DS);
1355    return Block;
1356  }
1357
1358  bool IsReference = false;
1359  bool HasTemporaries = false;
1360
1361  // Destructors of temporaries in initialization expression should be called
1362  // after initialization finishes.
1363  Expr *Init = VD->getInit();
1364  if (Init) {
1365    IsReference = VD->getType()->isReferenceType();
1366    HasTemporaries = isa<ExprWithCleanups>(Init);
1367
1368    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1369      // Generate destructors for temporaries in initialization expression.
1370      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1371          IsReference);
1372    }
1373  }
1374
1375  autoCreateBlock();
1376  appendStmt(Block, DS);
1377
1378  if (Init) {
1379    if (HasTemporaries)
1380      // For expression with temporaries go directly to subexpression to omit
1381      // generating destructors for the second time.
1382      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1383    else
1384      Visit(Init);
1385  }
1386
1387  // If the type of VD is a VLA, then we must process its size expressions.
1388  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1389       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1390    Block = addStmt(VA->getSizeExpr());
1391
1392  // Remove variable from local scope.
1393  if (ScopePos && VD == *ScopePos)
1394    ++ScopePos;
1395
1396  return Block;
1397}
1398
1399CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1400  // We may see an if statement in the middle of a basic block, or it may be the
1401  // first statement we are processing.  In either case, we create a new basic
1402  // block.  First, we create the blocks for the then...else statements, and
1403  // then we create the block containing the if statement.  If we were in the
1404  // middle of a block, we stop processing that block.  That block is then the
1405  // implicit successor for the "then" and "else" clauses.
1406
1407  // Save local scope position because in case of condition variable ScopePos
1408  // won't be restored when traversing AST.
1409  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1410
1411  // Create local scope for possible condition variable.
1412  // Store scope position. Add implicit destructor.
1413  if (VarDecl* VD = I->getConditionVariable()) {
1414    LocalScope::const_iterator BeginScopePos = ScopePos;
1415    addLocalScopeForVarDecl(VD);
1416    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1417  }
1418
1419  // The block we were proccessing is now finished.  Make it the successor
1420  // block.
1421  if (Block) {
1422    Succ = Block;
1423    if (badCFG)
1424      return 0;
1425  }
1426
1427  // Process the false branch.
1428  CFGBlock* ElseBlock = Succ;
1429
1430  if (Stmt* Else = I->getElse()) {
1431    SaveAndRestore<CFGBlock*> sv(Succ);
1432
1433    // NULL out Block so that the recursive call to Visit will
1434    // create a new basic block.
1435    Block = NULL;
1436
1437    // If branch is not a compound statement create implicit scope
1438    // and add destructors.
1439    if (!isa<CompoundStmt>(Else))
1440      addLocalScopeAndDtors(Else);
1441
1442    ElseBlock = addStmt(Else);
1443
1444    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1445      ElseBlock = sv.get();
1446    else if (Block) {
1447      if (badCFG)
1448        return 0;
1449    }
1450  }
1451
1452  // Process the true branch.
1453  CFGBlock* ThenBlock;
1454  {
1455    Stmt* Then = I->getThen();
1456    assert(Then);
1457    SaveAndRestore<CFGBlock*> sv(Succ);
1458    Block = NULL;
1459
1460    // If branch is not a compound statement create implicit scope
1461    // and add destructors.
1462    if (!isa<CompoundStmt>(Then))
1463      addLocalScopeAndDtors(Then);
1464
1465    ThenBlock = addStmt(Then);
1466
1467    if (!ThenBlock) {
1468      // We can reach here if the "then" body has all NullStmts.
1469      // Create an empty block so we can distinguish between true and false
1470      // branches in path-sensitive analyses.
1471      ThenBlock = createBlock(false);
1472      addSuccessor(ThenBlock, sv.get());
1473    } else if (Block) {
1474      if (badCFG)
1475        return 0;
1476    }
1477  }
1478
1479  // Now create a new block containing the if statement.
1480  Block = createBlock(false);
1481
1482  // Set the terminator of the new block to the If statement.
1483  Block->setTerminator(I);
1484
1485  // See if this is a known constant.
1486  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1487
1488  // Now add the successors.
1489  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1490  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1491
1492  // Add the condition as the last statement in the new block.  This may create
1493  // new blocks as the condition may contain control-flow.  Any newly created
1494  // blocks will be pointed to be "Block".
1495  Block = addStmt(I->getCond());
1496
1497  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1498  // and the condition variable initialization to the CFG.
1499  if (VarDecl *VD = I->getConditionVariable()) {
1500    if (Expr *Init = VD->getInit()) {
1501      autoCreateBlock();
1502      appendStmt(Block, I->getConditionVariableDeclStmt());
1503      addStmt(Init);
1504    }
1505  }
1506
1507  return Block;
1508}
1509
1510
1511CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1512  // If we were in the middle of a block we stop processing that block.
1513  //
1514  // NOTE: If a "return" appears in the middle of a block, this means that the
1515  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1516  //       for that code; a simple "mark-and-sweep" from the entry block will be
1517  //       able to report such dead blocks.
1518
1519  // Create the new block.
1520  Block = createBlock(false);
1521
1522  // The Exit block is the only successor.
1523  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1524  addSuccessor(Block, &cfg->getExit());
1525
1526  // Add the return statement to the block.  This may create new blocks if R
1527  // contains control-flow (short-circuit operations).
1528  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1529}
1530
1531CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1532  // Get the block of the labeled statement.  Add it to our map.
1533  addStmt(L->getSubStmt());
1534  CFGBlock *LabelBlock = Block;
1535
1536  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1537    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1538
1539  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1540         "label already in map");
1541  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1542
1543  // Labels partition blocks, so this is the end of the basic block we were
1544  // processing (L is the block's label).  Because this is label (and we have
1545  // already processed the substatement) there is no extra control-flow to worry
1546  // about.
1547  LabelBlock->setLabel(L);
1548  if (badCFG)
1549    return 0;
1550
1551  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1552  Block = NULL;
1553
1554  // This block is now the implicit successor of other blocks.
1555  Succ = LabelBlock;
1556
1557  return LabelBlock;
1558}
1559
1560CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1561  // Goto is a control-flow statement.  Thus we stop processing the current
1562  // block and create a new one.
1563
1564  Block = createBlock(false);
1565  Block->setTerminator(G);
1566
1567  // If we already know the mapping to the label block add the successor now.
1568  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1569
1570  if (I == LabelMap.end())
1571    // We will need to backpatch this block later.
1572    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1573  else {
1574    JumpTarget JT = I->second;
1575    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1576    addSuccessor(Block, JT.block);
1577  }
1578
1579  return Block;
1580}
1581
1582CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1583  CFGBlock* LoopSuccessor = NULL;
1584
1585  // Save local scope position because in case of condition variable ScopePos
1586  // won't be restored when traversing AST.
1587  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1588
1589  // Create local scope for init statement and possible condition variable.
1590  // Add destructor for init statement and condition variable.
1591  // Store scope position for continue statement.
1592  if (Stmt* Init = F->getInit())
1593    addLocalScopeForStmt(Init);
1594  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1595
1596  if (VarDecl* VD = F->getConditionVariable())
1597    addLocalScopeForVarDecl(VD);
1598  LocalScope::const_iterator ContinueScopePos = ScopePos;
1599
1600  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1601
1602  // "for" is a control-flow statement.  Thus we stop processing the current
1603  // block.
1604  if (Block) {
1605    if (badCFG)
1606      return 0;
1607    LoopSuccessor = Block;
1608  } else
1609    LoopSuccessor = Succ;
1610
1611  // Save the current value for the break targets.
1612  // All breaks should go to the code following the loop.
1613  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1614  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1615
1616  // Because of short-circuit evaluation, the condition of the loop can span
1617  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1618  // evaluate the condition.
1619  CFGBlock* ExitConditionBlock = createBlock(false);
1620  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1621
1622  // Set the terminator for the "exit" condition block.
1623  ExitConditionBlock->setTerminator(F);
1624
1625  // Now add the actual condition to the condition block.  Because the condition
1626  // itself may contain control-flow, new blocks may be created.
1627  if (Stmt* C = F->getCond()) {
1628    Block = ExitConditionBlock;
1629    EntryConditionBlock = addStmt(C);
1630    if (badCFG)
1631      return 0;
1632    assert(Block == EntryConditionBlock ||
1633           (Block == 0 && EntryConditionBlock == Succ));
1634
1635    // If this block contains a condition variable, add both the condition
1636    // variable and initializer to the CFG.
1637    if (VarDecl *VD = F->getConditionVariable()) {
1638      if (Expr *Init = VD->getInit()) {
1639        autoCreateBlock();
1640        appendStmt(Block, F->getConditionVariableDeclStmt());
1641        EntryConditionBlock = addStmt(Init);
1642        assert(Block == EntryConditionBlock);
1643      }
1644    }
1645
1646    if (Block) {
1647      if (badCFG)
1648        return 0;
1649    }
1650  }
1651
1652  // The condition block is the implicit successor for the loop body as well as
1653  // any code above the loop.
1654  Succ = EntryConditionBlock;
1655
1656  // See if this is a known constant.
1657  TryResult KnownVal(true);
1658
1659  if (F->getCond())
1660    KnownVal = tryEvaluateBool(F->getCond());
1661
1662  // Now create the loop body.
1663  {
1664    assert(F->getBody());
1665
1666   // Save the current values for Block, Succ, and continue targets.
1667   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1668   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1669
1670    // Create a new block to contain the (bottom) of the loop body.
1671    Block = NULL;
1672
1673    // Loop body should end with destructor of Condition variable (if any).
1674    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1675
1676    if (Stmt* I = F->getInc()) {
1677      // Generate increment code in its own basic block.  This is the target of
1678      // continue statements.
1679      Succ = addStmt(I);
1680    } else {
1681      // No increment code.  Create a special, empty, block that is used as the
1682      // target block for "looping back" to the start of the loop.
1683      assert(Succ == EntryConditionBlock);
1684      Succ = Block ? Block : createBlock();
1685    }
1686
1687    // Finish up the increment (or empty) block if it hasn't been already.
1688    if (Block) {
1689      assert(Block == Succ);
1690      if (badCFG)
1691        return 0;
1692      Block = 0;
1693    }
1694
1695    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1696
1697    // The starting block for the loop increment is the block that should
1698    // represent the 'loop target' for looping back to the start of the loop.
1699    ContinueJumpTarget.block->setLoopTarget(F);
1700
1701    // If body is not a compound statement create implicit scope
1702    // and add destructors.
1703    if (!isa<CompoundStmt>(F->getBody()))
1704      addLocalScopeAndDtors(F->getBody());
1705
1706    // Now populate the body block, and in the process create new blocks as we
1707    // walk the body of the loop.
1708    CFGBlock* BodyBlock = addStmt(F->getBody());
1709
1710    if (!BodyBlock)
1711      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1712    else if (badCFG)
1713      return 0;
1714
1715    // This new body block is a successor to our "exit" condition block.
1716    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1717  }
1718
1719  // Link up the condition block with the code that follows the loop.  (the
1720  // false branch).
1721  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1722
1723  // If the loop contains initialization, create a new block for those
1724  // statements.  This block can also contain statements that precede the loop.
1725  if (Stmt* I = F->getInit()) {
1726    Block = createBlock();
1727    return addStmt(I);
1728  }
1729
1730  // There is no loop initialization.  We are thus basically a while loop.
1731  // NULL out Block to force lazy block construction.
1732  Block = NULL;
1733  Succ = EntryConditionBlock;
1734  return EntryConditionBlock;
1735}
1736
1737CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1738  if (asc.alwaysAdd(*this, M)) {
1739    autoCreateBlock();
1740    appendStmt(Block, M);
1741  }
1742  return Visit(M->getBase());
1743}
1744
1745CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1746  // Objective-C fast enumeration 'for' statements:
1747  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1748  //
1749  //  for ( Type newVariable in collection_expression ) { statements }
1750  //
1751  //  becomes:
1752  //
1753  //   prologue:
1754  //     1. collection_expression
1755  //     T. jump to loop_entry
1756  //   loop_entry:
1757  //     1. side-effects of element expression
1758  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1759  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1760  //   TB:
1761  //     statements
1762  //     T. jump to loop_entry
1763  //   FB:
1764  //     what comes after
1765  //
1766  //  and
1767  //
1768  //  Type existingItem;
1769  //  for ( existingItem in expression ) { statements }
1770  //
1771  //  becomes:
1772  //
1773  //   the same with newVariable replaced with existingItem; the binding works
1774  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1775  //   a DeclStmt and the other returns a DeclRefExpr.
1776  //
1777
1778  CFGBlock* LoopSuccessor = 0;
1779
1780  if (Block) {
1781    if (badCFG)
1782      return 0;
1783    LoopSuccessor = Block;
1784    Block = 0;
1785  } else
1786    LoopSuccessor = Succ;
1787
1788  // Build the condition blocks.
1789  CFGBlock* ExitConditionBlock = createBlock(false);
1790  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1791
1792  // Set the terminator for the "exit" condition block.
1793  ExitConditionBlock->setTerminator(S);
1794
1795  // The last statement in the block should be the ObjCForCollectionStmt, which
1796  // performs the actual binding to 'element' and determines if there are any
1797  // more items in the collection.
1798  appendStmt(ExitConditionBlock, S);
1799  Block = ExitConditionBlock;
1800
1801  // Walk the 'element' expression to see if there are any side-effects.  We
1802  // generate new blocks as necesary.  We DON'T add the statement by default to
1803  // the CFG unless it contains control-flow.
1804  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1805  if (Block) {
1806    if (badCFG)
1807      return 0;
1808    Block = 0;
1809  }
1810
1811  // The condition block is the implicit successor for the loop body as well as
1812  // any code above the loop.
1813  Succ = EntryConditionBlock;
1814
1815  // Now create the true branch.
1816  {
1817    // Save the current values for Succ, continue and break targets.
1818    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1819    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1820        save_break(BreakJumpTarget);
1821
1822    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1823    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1824
1825    CFGBlock* BodyBlock = addStmt(S->getBody());
1826
1827    if (!BodyBlock)
1828      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1829    else if (Block) {
1830      if (badCFG)
1831        return 0;
1832    }
1833
1834    // This new body block is a successor to our "exit" condition block.
1835    addSuccessor(ExitConditionBlock, BodyBlock);
1836  }
1837
1838  // Link up the condition block with the code that follows the loop.
1839  // (the false branch).
1840  addSuccessor(ExitConditionBlock, LoopSuccessor);
1841
1842  // Now create a prologue block to contain the collection expression.
1843  Block = createBlock();
1844  return addStmt(S->getCollection());
1845}
1846
1847CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1848  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1849
1850  // Inline the body.
1851  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1852
1853  // The sync body starts its own basic block.  This makes it a little easier
1854  // for diagnostic clients.
1855  if (SyncBlock) {
1856    if (badCFG)
1857      return 0;
1858
1859    Block = 0;
1860    Succ = SyncBlock;
1861  }
1862
1863  // Add the @synchronized to the CFG.
1864  autoCreateBlock();
1865  appendStmt(Block, S);
1866
1867  // Inline the sync expression.
1868  return addStmt(S->getSynchExpr());
1869}
1870
1871CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1872  // FIXME
1873  return NYS();
1874}
1875
1876CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1877  CFGBlock* LoopSuccessor = NULL;
1878
1879  // Save local scope position because in case of condition variable ScopePos
1880  // won't be restored when traversing AST.
1881  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1882
1883  // Create local scope for possible condition variable.
1884  // Store scope position for continue statement.
1885  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1886  if (VarDecl* VD = W->getConditionVariable()) {
1887    addLocalScopeForVarDecl(VD);
1888    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1889  }
1890
1891  // "while" is a control-flow statement.  Thus we stop processing the current
1892  // block.
1893  if (Block) {
1894    if (badCFG)
1895      return 0;
1896    LoopSuccessor = Block;
1897    Block = 0;
1898  } else
1899    LoopSuccessor = Succ;
1900
1901  // Because of short-circuit evaluation, the condition of the loop can span
1902  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1903  // evaluate the condition.
1904  CFGBlock* ExitConditionBlock = createBlock(false);
1905  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1906
1907  // Set the terminator for the "exit" condition block.
1908  ExitConditionBlock->setTerminator(W);
1909
1910  // Now add the actual condition to the condition block.  Because the condition
1911  // itself may contain control-flow, new blocks may be created.  Thus we update
1912  // "Succ" after adding the condition.
1913  if (Stmt* C = W->getCond()) {
1914    Block = ExitConditionBlock;
1915    EntryConditionBlock = addStmt(C);
1916    // The condition might finish the current 'Block'.
1917    Block = EntryConditionBlock;
1918
1919    // If this block contains a condition variable, add both the condition
1920    // variable and initializer to the CFG.
1921    if (VarDecl *VD = W->getConditionVariable()) {
1922      if (Expr *Init = VD->getInit()) {
1923        autoCreateBlock();
1924        appendStmt(Block, W->getConditionVariableDeclStmt());
1925        EntryConditionBlock = addStmt(Init);
1926        assert(Block == EntryConditionBlock);
1927      }
1928    }
1929
1930    if (Block) {
1931      if (badCFG)
1932        return 0;
1933    }
1934  }
1935
1936  // The condition block is the implicit successor for the loop body as well as
1937  // any code above the loop.
1938  Succ = EntryConditionBlock;
1939
1940  // See if this is a known constant.
1941  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1942
1943  // Process the loop body.
1944  {
1945    assert(W->getBody());
1946
1947    // Save the current values for Block, Succ, and continue and break targets
1948    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1949    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1950        save_break(BreakJumpTarget);
1951
1952    // Create an empty block to represent the transition block for looping back
1953    // to the head of the loop.
1954    Block = 0;
1955    assert(Succ == EntryConditionBlock);
1956    Succ = createBlock();
1957    Succ->setLoopTarget(W);
1958    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1959
1960    // All breaks should go to the code following the loop.
1961    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1962
1963    // NULL out Block to force lazy instantiation of blocks for the body.
1964    Block = NULL;
1965
1966    // Loop body should end with destructor of Condition variable (if any).
1967    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1968
1969    // If body is not a compound statement create implicit scope
1970    // and add destructors.
1971    if (!isa<CompoundStmt>(W->getBody()))
1972      addLocalScopeAndDtors(W->getBody());
1973
1974    // Create the body.  The returned block is the entry to the loop body.
1975    CFGBlock* BodyBlock = addStmt(W->getBody());
1976
1977    if (!BodyBlock)
1978      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1979    else if (Block) {
1980      if (badCFG)
1981        return 0;
1982    }
1983
1984    // Add the loop body entry as a successor to the condition.
1985    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1986  }
1987
1988  // Link up the condition block with the code that follows the loop.  (the
1989  // false branch).
1990  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1991
1992  // There can be no more statements in the condition block since we loop back
1993  // to this block.  NULL out Block to force lazy creation of another block.
1994  Block = NULL;
1995
1996  // Return the condition block, which is the dominating block for the loop.
1997  Succ = EntryConditionBlock;
1998  return EntryConditionBlock;
1999}
2000
2001
2002CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
2003  // FIXME: For now we pretend that @catch and the code it contains does not
2004  //  exit.
2005  return Block;
2006}
2007
2008CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
2009  // FIXME: This isn't complete.  We basically treat @throw like a return
2010  //  statement.
2011
2012  // If we were in the middle of a block we stop processing that block.
2013  if (badCFG)
2014    return 0;
2015
2016  // Create the new block.
2017  Block = createBlock(false);
2018
2019  // The Exit block is the only successor.
2020  addSuccessor(Block, &cfg->getExit());
2021
2022  // Add the statement to the block.  This may create new blocks if S contains
2023  // control-flow (short-circuit operations).
2024  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2025}
2026
2027CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
2028  // If we were in the middle of a block we stop processing that block.
2029  if (badCFG)
2030    return 0;
2031
2032  // Create the new block.
2033  Block = createBlock(false);
2034
2035  if (TryTerminatedBlock)
2036    // The current try statement is the only successor.
2037    addSuccessor(Block, TryTerminatedBlock);
2038  else
2039    // otherwise the Exit block is the only successor.
2040    addSuccessor(Block, &cfg->getExit());
2041
2042  // Add the statement to the block.  This may create new blocks if S contains
2043  // control-flow (short-circuit operations).
2044  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2045}
2046
2047CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
2048  CFGBlock* LoopSuccessor = NULL;
2049
2050  // "do...while" is a control-flow statement.  Thus we stop processing the
2051  // current block.
2052  if (Block) {
2053    if (badCFG)
2054      return 0;
2055    LoopSuccessor = Block;
2056  } else
2057    LoopSuccessor = Succ;
2058
2059  // Because of short-circuit evaluation, the condition of the loop can span
2060  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2061  // evaluate the condition.
2062  CFGBlock* ExitConditionBlock = createBlock(false);
2063  CFGBlock* EntryConditionBlock = ExitConditionBlock;
2064
2065  // Set the terminator for the "exit" condition block.
2066  ExitConditionBlock->setTerminator(D);
2067
2068  // Now add the actual condition to the condition block.  Because the condition
2069  // itself may contain control-flow, new blocks may be created.
2070  if (Stmt* C = D->getCond()) {
2071    Block = ExitConditionBlock;
2072    EntryConditionBlock = addStmt(C);
2073    if (Block) {
2074      if (badCFG)
2075        return 0;
2076    }
2077  }
2078
2079  // The condition block is the implicit successor for the loop body.
2080  Succ = EntryConditionBlock;
2081
2082  // See if this is a known constant.
2083  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2084
2085  // Process the loop body.
2086  CFGBlock* BodyBlock = NULL;
2087  {
2088    assert(D->getBody());
2089
2090    // Save the current values for Block, Succ, and continue and break targets
2091    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2092    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2093        save_break(BreakJumpTarget);
2094
2095    // All continues within this loop should go to the condition block
2096    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2097
2098    // All breaks should go to the code following the loop.
2099    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2100
2101    // NULL out Block to force lazy instantiation of blocks for the body.
2102    Block = NULL;
2103
2104    // If body is not a compound statement create implicit scope
2105    // and add destructors.
2106    if (!isa<CompoundStmt>(D->getBody()))
2107      addLocalScopeAndDtors(D->getBody());
2108
2109    // Create the body.  The returned block is the entry to the loop body.
2110    BodyBlock = addStmt(D->getBody());
2111
2112    if (!BodyBlock)
2113      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2114    else if (Block) {
2115      if (badCFG)
2116        return 0;
2117    }
2118
2119    if (!KnownVal.isFalse()) {
2120      // Add an intermediate block between the BodyBlock and the
2121      // ExitConditionBlock to represent the "loop back" transition.  Create an
2122      // empty block to represent the transition block for looping back to the
2123      // head of the loop.
2124      // FIXME: Can we do this more efficiently without adding another block?
2125      Block = NULL;
2126      Succ = BodyBlock;
2127      CFGBlock *LoopBackBlock = createBlock();
2128      LoopBackBlock->setLoopTarget(D);
2129
2130      // Add the loop body entry as a successor to the condition.
2131      addSuccessor(ExitConditionBlock, LoopBackBlock);
2132    }
2133    else
2134      addSuccessor(ExitConditionBlock, NULL);
2135  }
2136
2137  // Link up the condition block with the code that follows the loop.
2138  // (the false branch).
2139  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2140
2141  // There can be no more statements in the body block(s) since we loop back to
2142  // the body.  NULL out Block to force lazy creation of another block.
2143  Block = NULL;
2144
2145  // Return the loop body, which is the dominating block for the loop.
2146  Succ = BodyBlock;
2147  return BodyBlock;
2148}
2149
2150CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2151  // "continue" is a control-flow statement.  Thus we stop processing the
2152  // current block.
2153  if (badCFG)
2154    return 0;
2155
2156  // Now create a new block that ends with the continue statement.
2157  Block = createBlock(false);
2158  Block->setTerminator(C);
2159
2160  // If there is no target for the continue, then we are looking at an
2161  // incomplete AST.  This means the CFG cannot be constructed.
2162  if (ContinueJumpTarget.block) {
2163    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2164    addSuccessor(Block, ContinueJumpTarget.block);
2165  } else
2166    badCFG = true;
2167
2168  return Block;
2169}
2170
2171CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2172                                                    AddStmtChoice asc) {
2173
2174  if (asc.alwaysAdd(*this, E)) {
2175    autoCreateBlock();
2176    appendStmt(Block, E);
2177  }
2178
2179  // VLA types have expressions that must be evaluated.
2180  CFGBlock *lastBlock = Block;
2181
2182  if (E->isArgumentType()) {
2183    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2184         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2185      lastBlock = addStmt(VA->getSizeExpr());
2186  }
2187
2188  return lastBlock;
2189}
2190
2191/// VisitStmtExpr - Utility method to handle (nested) statement
2192///  expressions (a GCC extension).
2193CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2194  if (asc.alwaysAdd(*this, SE)) {
2195    autoCreateBlock();
2196    appendStmt(Block, SE);
2197  }
2198  return VisitCompoundStmt(SE->getSubStmt());
2199}
2200
2201CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2202  // "switch" is a control-flow statement.  Thus we stop processing the current
2203  // block.
2204  CFGBlock* SwitchSuccessor = NULL;
2205
2206  // Save local scope position because in case of condition variable ScopePos
2207  // won't be restored when traversing AST.
2208  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2209
2210  // Create local scope for possible condition variable.
2211  // Store scope position. Add implicit destructor.
2212  if (VarDecl* VD = Terminator->getConditionVariable()) {
2213    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2214    addLocalScopeForVarDecl(VD);
2215    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2216  }
2217
2218  if (Block) {
2219    if (badCFG)
2220      return 0;
2221    SwitchSuccessor = Block;
2222  } else SwitchSuccessor = Succ;
2223
2224  // Save the current "switch" context.
2225  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2226                            save_default(DefaultCaseBlock);
2227  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2228
2229  // Set the "default" case to be the block after the switch statement.  If the
2230  // switch statement contains a "default:", this value will be overwritten with
2231  // the block for that code.
2232  DefaultCaseBlock = SwitchSuccessor;
2233
2234  // Create a new block that will contain the switch statement.
2235  SwitchTerminatedBlock = createBlock(false);
2236
2237  // Now process the switch body.  The code after the switch is the implicit
2238  // successor.
2239  Succ = SwitchSuccessor;
2240  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2241
2242  // When visiting the body, the case statements should automatically get linked
2243  // up to the switch.  We also don't keep a pointer to the body, since all
2244  // control-flow from the switch goes to case/default statements.
2245  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2246  Block = NULL;
2247
2248  // For pruning unreachable case statements, save the current state
2249  // for tracking the condition value.
2250  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2251                                                     false);
2252
2253  // Determine if the switch condition can be explicitly evaluated.
2254  assert(Terminator->getCond() && "switch condition must be non-NULL");
2255  Expr::EvalResult result;
2256  bool b = tryEvaluate(Terminator->getCond(), result);
2257  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2258                                                    b ? &result : 0);
2259
2260  // If body is not a compound statement create implicit scope
2261  // and add destructors.
2262  if (!isa<CompoundStmt>(Terminator->getBody()))
2263    addLocalScopeAndDtors(Terminator->getBody());
2264
2265  addStmt(Terminator->getBody());
2266  if (Block) {
2267    if (badCFG)
2268      return 0;
2269  }
2270
2271  // If we have no "default:" case, the default transition is to the code
2272  // following the switch body.  Moreover, take into account if all the
2273  // cases of a switch are covered (e.g., switching on an enum value).
2274  addSuccessor(SwitchTerminatedBlock,
2275               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2276               ? 0 : DefaultCaseBlock);
2277
2278  // Add the terminator and condition in the switch block.
2279  SwitchTerminatedBlock->setTerminator(Terminator);
2280  Block = SwitchTerminatedBlock;
2281  Block = addStmt(Terminator->getCond());
2282
2283  // Finally, if the SwitchStmt contains a condition variable, add both the
2284  // SwitchStmt and the condition variable initialization to the CFG.
2285  if (VarDecl *VD = Terminator->getConditionVariable()) {
2286    if (Expr *Init = VD->getInit()) {
2287      autoCreateBlock();
2288      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2289      addStmt(Init);
2290    }
2291  }
2292
2293  return Block;
2294}
2295
2296static bool shouldAddCase(bool &switchExclusivelyCovered,
2297                          const Expr::EvalResult *switchCond,
2298                          const CaseStmt *CS,
2299                          ASTContext &Ctx) {
2300  if (!switchCond)
2301    return true;
2302
2303  bool addCase = false;
2304
2305  if (!switchExclusivelyCovered) {
2306    if (switchCond->Val.isInt()) {
2307      // Evaluate the LHS of the case value.
2308      Expr::EvalResult V1;
2309      CS->getLHS()->Evaluate(V1, Ctx);
2310      assert(V1.Val.isInt());
2311      const llvm::APSInt &condInt = switchCond->Val.getInt();
2312      const llvm::APSInt &lhsInt = V1.Val.getInt();
2313
2314      if (condInt == lhsInt) {
2315        addCase = true;
2316        switchExclusivelyCovered = true;
2317      }
2318      else if (condInt < lhsInt) {
2319        if (const Expr *RHS = CS->getRHS()) {
2320          // Evaluate the RHS of the case value.
2321          Expr::EvalResult V2;
2322          RHS->Evaluate(V2, Ctx);
2323          assert(V2.Val.isInt());
2324          if (V2.Val.getInt() <= condInt) {
2325            addCase = true;
2326            switchExclusivelyCovered = true;
2327          }
2328        }
2329      }
2330    }
2331    else
2332      addCase = true;
2333  }
2334  return addCase;
2335}
2336
2337CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2338  // CaseStmts are essentially labels, so they are the first statement in a
2339  // block.
2340  CFGBlock *TopBlock = 0, *LastBlock = 0;
2341
2342  if (Stmt *Sub = CS->getSubStmt()) {
2343    // For deeply nested chains of CaseStmts, instead of doing a recursion
2344    // (which can blow out the stack), manually unroll and create blocks
2345    // along the way.
2346    while (isa<CaseStmt>(Sub)) {
2347      CFGBlock *currentBlock = createBlock(false);
2348      currentBlock->setLabel(CS);
2349
2350      if (TopBlock)
2351        addSuccessor(LastBlock, currentBlock);
2352      else
2353        TopBlock = currentBlock;
2354
2355      addSuccessor(SwitchTerminatedBlock,
2356                   shouldAddCase(switchExclusivelyCovered, switchCond,
2357                                 CS, *Context)
2358                   ? currentBlock : 0);
2359
2360      LastBlock = currentBlock;
2361      CS = cast<CaseStmt>(Sub);
2362      Sub = CS->getSubStmt();
2363    }
2364
2365    addStmt(Sub);
2366  }
2367
2368  CFGBlock* CaseBlock = Block;
2369  if (!CaseBlock)
2370    CaseBlock = createBlock();
2371
2372  // Cases statements partition blocks, so this is the top of the basic block we
2373  // were processing (the "case XXX:" is the label).
2374  CaseBlock->setLabel(CS);
2375
2376  if (badCFG)
2377    return 0;
2378
2379  // Add this block to the list of successors for the block with the switch
2380  // statement.
2381  assert(SwitchTerminatedBlock);
2382  addSuccessor(SwitchTerminatedBlock,
2383               shouldAddCase(switchExclusivelyCovered, switchCond,
2384                             CS, *Context)
2385               ? CaseBlock : 0);
2386
2387  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2388  Block = NULL;
2389
2390  if (TopBlock) {
2391    addSuccessor(LastBlock, CaseBlock);
2392    Succ = TopBlock;
2393  } else {
2394    // This block is now the implicit successor of other blocks.
2395    Succ = CaseBlock;
2396  }
2397
2398  return Succ;
2399}
2400
2401CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2402  if (Terminator->getSubStmt())
2403    addStmt(Terminator->getSubStmt());
2404
2405  DefaultCaseBlock = Block;
2406
2407  if (!DefaultCaseBlock)
2408    DefaultCaseBlock = createBlock();
2409
2410  // Default statements partition blocks, so this is the top of the basic block
2411  // we were processing (the "default:" is the label).
2412  DefaultCaseBlock->setLabel(Terminator);
2413
2414  if (badCFG)
2415    return 0;
2416
2417  // Unlike case statements, we don't add the default block to the successors
2418  // for the switch statement immediately.  This is done when we finish
2419  // processing the switch statement.  This allows for the default case
2420  // (including a fall-through to the code after the switch statement) to always
2421  // be the last successor of a switch-terminated block.
2422
2423  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2424  Block = NULL;
2425
2426  // This block is now the implicit successor of other blocks.
2427  Succ = DefaultCaseBlock;
2428
2429  return DefaultCaseBlock;
2430}
2431
2432CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2433  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2434  // current block.
2435  CFGBlock* TrySuccessor = NULL;
2436
2437  if (Block) {
2438    if (badCFG)
2439      return 0;
2440    TrySuccessor = Block;
2441  } else TrySuccessor = Succ;
2442
2443  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2444
2445  // Create a new block that will contain the try statement.
2446  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2447  // Add the terminator in the try block.
2448  NewTryTerminatedBlock->setTerminator(Terminator);
2449
2450  bool HasCatchAll = false;
2451  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2452    // The code after the try is the implicit successor.
2453    Succ = TrySuccessor;
2454    CXXCatchStmt *CS = Terminator->getHandler(h);
2455    if (CS->getExceptionDecl() == 0) {
2456      HasCatchAll = true;
2457    }
2458    Block = NULL;
2459    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2460    if (CatchBlock == 0)
2461      return 0;
2462    // Add this block to the list of successors for the block with the try
2463    // statement.
2464    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2465  }
2466  if (!HasCatchAll) {
2467    if (PrevTryTerminatedBlock)
2468      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2469    else
2470      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2471  }
2472
2473  // The code after the try is the implicit successor.
2474  Succ = TrySuccessor;
2475
2476  // Save the current "try" context.
2477  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2478  TryTerminatedBlock = NewTryTerminatedBlock;
2479
2480  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2481  Block = NULL;
2482  Block = addStmt(Terminator->getTryBlock());
2483  return Block;
2484}
2485
2486CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2487  // CXXCatchStmt are treated like labels, so they are the first statement in a
2488  // block.
2489
2490  // Save local scope position because in case of exception variable ScopePos
2491  // won't be restored when traversing AST.
2492  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2493
2494  // Create local scope for possible exception variable.
2495  // Store scope position. Add implicit destructor.
2496  if (VarDecl* VD = CS->getExceptionDecl()) {
2497    LocalScope::const_iterator BeginScopePos = ScopePos;
2498    addLocalScopeForVarDecl(VD);
2499    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2500  }
2501
2502  if (CS->getHandlerBlock())
2503    addStmt(CS->getHandlerBlock());
2504
2505  CFGBlock* CatchBlock = Block;
2506  if (!CatchBlock)
2507    CatchBlock = createBlock();
2508
2509  CatchBlock->setLabel(CS);
2510
2511  if (badCFG)
2512    return 0;
2513
2514  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2515  Block = NULL;
2516
2517  return CatchBlock;
2518}
2519
2520CFGBlock* CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt* S) {
2521  // C++0x for-range statements are specified as [stmt.ranged]:
2522  //
2523  // {
2524  //   auto && __range = range-init;
2525  //   for ( auto __begin = begin-expr,
2526  //         __end = end-expr;
2527  //         __begin != __end;
2528  //         ++__begin ) {
2529  //     for-range-declaration = *__begin;
2530  //     statement
2531  //   }
2532  // }
2533
2534  // Save local scope position before the addition of the implicit variables.
2535  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2536
2537  // Create local scopes and destructors for range, begin and end variables.
2538  if (Stmt *Range = S->getRangeStmt())
2539    addLocalScopeForStmt(Range);
2540  if (Stmt *BeginEnd = S->getBeginEndStmt())
2541    addLocalScopeForStmt(BeginEnd);
2542  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2543
2544  LocalScope::const_iterator ContinueScopePos = ScopePos;
2545
2546  // "for" is a control-flow statement.  Thus we stop processing the current
2547  // block.
2548  CFGBlock* LoopSuccessor = NULL;
2549  if (Block) {
2550    if (badCFG)
2551      return 0;
2552    LoopSuccessor = Block;
2553  } else
2554    LoopSuccessor = Succ;
2555
2556  // Save the current value for the break targets.
2557  // All breaks should go to the code following the loop.
2558  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2559  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2560
2561  // The block for the __begin != __end expression.
2562  CFGBlock* ConditionBlock = createBlock(false);
2563  ConditionBlock->setTerminator(S);
2564
2565  // Now add the actual condition to the condition block.
2566  if (Expr *C = S->getCond()) {
2567    Block = ConditionBlock;
2568    CFGBlock *BeginConditionBlock = addStmt(C);
2569    if (badCFG)
2570      return 0;
2571    assert(BeginConditionBlock == ConditionBlock &&
2572           "condition block in for-range was unexpectedly complex");
2573    (void)BeginConditionBlock;
2574  }
2575
2576  // The condition block is the implicit successor for the loop body as well as
2577  // any code above the loop.
2578  Succ = ConditionBlock;
2579
2580  // See if this is a known constant.
2581  TryResult KnownVal(true);
2582
2583  if (S->getCond())
2584    KnownVal = tryEvaluateBool(S->getCond());
2585
2586  // Now create the loop body.
2587  {
2588    assert(S->getBody());
2589
2590    // Save the current values for Block, Succ, and continue targets.
2591    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2592    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2593
2594    // Generate increment code in its own basic block.  This is the target of
2595    // continue statements.
2596    Block = 0;
2597    Succ = addStmt(S->getInc());
2598    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2599
2600    // The starting block for the loop increment is the block that should
2601    // represent the 'loop target' for looping back to the start of the loop.
2602    ContinueJumpTarget.block->setLoopTarget(S);
2603
2604    // Finish up the increment block and prepare to start the loop body.
2605    assert(Block);
2606    if (badCFG)
2607      return 0;
2608    Block = 0;
2609
2610
2611    // Add implicit scope and dtors for loop variable.
2612    addLocalScopeAndDtors(S->getLoopVarStmt());
2613
2614    // Populate a new block to contain the loop body and loop variable.
2615    Block = addStmt(S->getBody());
2616    if (badCFG)
2617      return 0;
2618    Block = addStmt(S->getLoopVarStmt());
2619    if (badCFG)
2620      return 0;
2621
2622    // This new body block is a successor to our condition block.
2623    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2624  }
2625
2626  // Link up the condition block with the code that follows the loop (the
2627  // false branch).
2628  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2629
2630  // Add the initialization statements.
2631  Block = createBlock();
2632  addStmt(S->getRangeStmt());
2633  return addStmt(S->getBeginEndStmt());
2634}
2635
2636CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2637    AddStmtChoice asc) {
2638  if (BuildOpts.AddImplicitDtors) {
2639    // If adding implicit destructors visit the full expression for adding
2640    // destructors of temporaries.
2641    VisitForTemporaryDtors(E->getSubExpr());
2642
2643    // Full expression has to be added as CFGStmt so it will be sequenced
2644    // before destructors of it's temporaries.
2645    asc = asc.withAlwaysAdd(true);
2646  }
2647  return Visit(E->getSubExpr(), asc);
2648}
2649
2650CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2651                                                AddStmtChoice asc) {
2652  if (asc.alwaysAdd(*this, E)) {
2653    autoCreateBlock();
2654    appendStmt(Block, E);
2655
2656    // We do not want to propagate the AlwaysAdd property.
2657    asc = asc.withAlwaysAdd(false);
2658  }
2659  return Visit(E->getSubExpr(), asc);
2660}
2661
2662CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2663                                            AddStmtChoice asc) {
2664  autoCreateBlock();
2665  if (!C->isElidable())
2666    appendStmt(Block, C);
2667
2668  return VisitChildren(C);
2669}
2670
2671CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2672                                                 AddStmtChoice asc) {
2673  if (asc.alwaysAdd(*this, E)) {
2674    autoCreateBlock();
2675    appendStmt(Block, E);
2676    // We do not want to propagate the AlwaysAdd property.
2677    asc = asc.withAlwaysAdd(false);
2678  }
2679  return Visit(E->getSubExpr(), asc);
2680}
2681
2682CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2683                                                  AddStmtChoice asc) {
2684  autoCreateBlock();
2685  appendStmt(Block, C);
2686  return VisitChildren(C);
2687}
2688
2689CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2690                                             AddStmtChoice asc) {
2691  autoCreateBlock();
2692  appendStmt(Block, C);
2693  return VisitChildren(C);
2694}
2695
2696CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2697                                            AddStmtChoice asc) {
2698  if (asc.alwaysAdd(*this, E)) {
2699    autoCreateBlock();
2700    appendStmt(Block, E);
2701  }
2702  return Visit(E->getSubExpr(), AddStmtChoice());
2703}
2704
2705CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2706  // Lazily create the indirect-goto dispatch block if there isn't one already.
2707  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2708
2709  if (!IBlock) {
2710    IBlock = createBlock(false);
2711    cfg->setIndirectGotoBlock(IBlock);
2712  }
2713
2714  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2715  // current block and create a new one.
2716  if (badCFG)
2717    return 0;
2718
2719  Block = createBlock(false);
2720  Block->setTerminator(I);
2721  addSuccessor(Block, IBlock);
2722  return addStmt(I->getTarget());
2723}
2724
2725CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2726tryAgain:
2727  if (!E) {
2728    badCFG = true;
2729    return NULL;
2730  }
2731  switch (E->getStmtClass()) {
2732    default:
2733      return VisitChildrenForTemporaryDtors(E);
2734
2735    case Stmt::BinaryOperatorClass:
2736      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2737
2738    case Stmt::CXXBindTemporaryExprClass:
2739      return VisitCXXBindTemporaryExprForTemporaryDtors(
2740          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2741
2742    case Stmt::BinaryConditionalOperatorClass:
2743    case Stmt::ConditionalOperatorClass:
2744      return VisitConditionalOperatorForTemporaryDtors(
2745          cast<AbstractConditionalOperator>(E), BindToTemporary);
2746
2747    case Stmt::ImplicitCastExprClass:
2748      // For implicit cast we want BindToTemporary to be passed further.
2749      E = cast<CastExpr>(E)->getSubExpr();
2750      goto tryAgain;
2751
2752    case Stmt::ParenExprClass:
2753      E = cast<ParenExpr>(E)->getSubExpr();
2754      goto tryAgain;
2755  }
2756}
2757
2758CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2759  // When visiting children for destructors we want to visit them in reverse
2760  // order. Because there's no reverse iterator for children must to reverse
2761  // them in helper vector.
2762  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2763  ChildrenVect ChildrenRev;
2764  for (Stmt::child_range I = E->children(); I; ++I) {
2765    if (*I) ChildrenRev.push_back(*I);
2766  }
2767
2768  CFGBlock *B = Block;
2769  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2770      L = ChildrenRev.rend(); I != L; ++I) {
2771    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2772      B = R;
2773  }
2774  return B;
2775}
2776
2777CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2778  if (E->isLogicalOp()) {
2779    // Destructors for temporaries in LHS expression should be called after
2780    // those for RHS expression. Even if this will unnecessarily create a block,
2781    // this block will be used at least by the full expression.
2782    autoCreateBlock();
2783    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2784    if (badCFG)
2785      return NULL;
2786
2787    Succ = ConfluenceBlock;
2788    Block = NULL;
2789    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2790
2791    if (RHSBlock) {
2792      if (badCFG)
2793        return NULL;
2794
2795      // If RHS expression did produce destructors we need to connect created
2796      // blocks to CFG in same manner as for binary operator itself.
2797      CFGBlock *LHSBlock = createBlock(false);
2798      LHSBlock->setTerminator(CFGTerminator(E, true));
2799
2800      // For binary operator LHS block is before RHS in list of predecessors
2801      // of ConfluenceBlock.
2802      std::reverse(ConfluenceBlock->pred_begin(),
2803          ConfluenceBlock->pred_end());
2804
2805      // See if this is a known constant.
2806      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2807      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2808        KnownVal.negate();
2809
2810      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2811      // itself.
2812      if (E->getOpcode() == BO_LOr) {
2813        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2814        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2815      } else {
2816        assert (E->getOpcode() == BO_LAnd);
2817        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2818        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2819      }
2820
2821      Block = LHSBlock;
2822      return LHSBlock;
2823    }
2824
2825    Block = ConfluenceBlock;
2826    return ConfluenceBlock;
2827  }
2828
2829  if (E->isAssignmentOp()) {
2830    // For assignment operator (=) LHS expression is visited
2831    // before RHS expression. For destructors visit them in reverse order.
2832    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2833    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2834    return LHSBlock ? LHSBlock : RHSBlock;
2835  }
2836
2837  // For any other binary operator RHS expression is visited before
2838  // LHS expression (order of children). For destructors visit them in reverse
2839  // order.
2840  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2841  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2842  return RHSBlock ? RHSBlock : LHSBlock;
2843}
2844
2845CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2846    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2847  // First add destructors for temporaries in subexpression.
2848  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2849  if (!BindToTemporary) {
2850    // If lifetime of temporary is not prolonged (by assigning to constant
2851    // reference) add destructor for it.
2852    autoCreateBlock();
2853    appendTemporaryDtor(Block, E);
2854    B = Block;
2855  }
2856  return B;
2857}
2858
2859CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2860    AbstractConditionalOperator *E, bool BindToTemporary) {
2861  // First add destructors for condition expression.  Even if this will
2862  // unnecessarily create a block, this block will be used at least by the full
2863  // expression.
2864  autoCreateBlock();
2865  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2866  if (badCFG)
2867    return NULL;
2868  if (BinaryConditionalOperator *BCO
2869        = dyn_cast<BinaryConditionalOperator>(E)) {
2870    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2871    if (badCFG)
2872      return NULL;
2873  }
2874
2875  // Try to add block with destructors for LHS expression.
2876  CFGBlock *LHSBlock = NULL;
2877  Succ = ConfluenceBlock;
2878  Block = NULL;
2879  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2880  if (badCFG)
2881    return NULL;
2882
2883  // Try to add block with destructors for RHS expression;
2884  Succ = ConfluenceBlock;
2885  Block = NULL;
2886  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2887                                              BindToTemporary);
2888  if (badCFG)
2889    return NULL;
2890
2891  if (!RHSBlock && !LHSBlock) {
2892    // If neither LHS nor RHS expression had temporaries to destroy don't create
2893    // more blocks.
2894    Block = ConfluenceBlock;
2895    return Block;
2896  }
2897
2898  Block = createBlock(false);
2899  Block->setTerminator(CFGTerminator(E, true));
2900
2901  // See if this is a known constant.
2902  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2903
2904  if (LHSBlock) {
2905    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2906  } else if (KnownVal.isFalse()) {
2907    addSuccessor(Block, NULL);
2908  } else {
2909    addSuccessor(Block, ConfluenceBlock);
2910    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2911  }
2912
2913  if (!RHSBlock)
2914    RHSBlock = ConfluenceBlock;
2915  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2916
2917  return Block;
2918}
2919
2920} // end anonymous namespace
2921
2922/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2923///  no successors or predecessors.  If this is the first block created in the
2924///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2925CFGBlock* CFG::createBlock() {
2926  bool first_block = begin() == end();
2927
2928  // Create the block.
2929  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2930  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2931  Blocks.push_back(Mem, BlkBVC);
2932
2933  // If this is the first block, set it as the Entry and Exit.
2934  if (first_block)
2935    Entry = Exit = &back();
2936
2937  // Return the block.
2938  return &back();
2939}
2940
2941/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2942///  CFG is returned to the caller.
2943CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2944    const BuildOptions &BO) {
2945  CFGBuilder Builder(C, BO);
2946  return Builder.buildCFG(D, Statement);
2947}
2948
2949const CXXDestructorDecl *
2950CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2951  switch (getKind()) {
2952    case CFGElement::Invalid:
2953    case CFGElement::Statement:
2954    case CFGElement::Initializer:
2955      llvm_unreachable("getDestructorDecl should only be used with "
2956                       "ImplicitDtors");
2957    case CFGElement::AutomaticObjectDtor: {
2958      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2959      QualType ty = var->getType();
2960      ty = ty.getNonReferenceType();
2961      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2962        ty = arrayType->getElementType();
2963      }
2964      const RecordType *recordType = ty->getAs<RecordType>();
2965      const CXXRecordDecl *classDecl =
2966      cast<CXXRecordDecl>(recordType->getDecl());
2967      return classDecl->getDestructor();
2968    }
2969    case CFGElement::TemporaryDtor: {
2970      const CXXBindTemporaryExpr *bindExpr =
2971        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
2972      const CXXTemporary *temp = bindExpr->getTemporary();
2973      return temp->getDestructor();
2974    }
2975    case CFGElement::BaseDtor:
2976    case CFGElement::MemberDtor:
2977
2978      // Not yet supported.
2979      return 0;
2980  }
2981  llvm_unreachable("getKind() returned bogus value");
2982  return 0;
2983}
2984
2985bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
2986  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
2987    QualType ty = cdecl->getType();
2988    return cast<FunctionType>(ty)->getNoReturnAttr();
2989  }
2990  return false;
2991}
2992
2993//===----------------------------------------------------------------------===//
2994// CFG: Queries for BlkExprs.
2995//===----------------------------------------------------------------------===//
2996
2997namespace {
2998  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2999}
3000
3001static void FindSubExprAssignments(Stmt *S,
3002                                   llvm::SmallPtrSet<Expr*,50>& Set) {
3003  if (!S)
3004    return;
3005
3006  for (Stmt::child_range I = S->children(); I; ++I) {
3007    Stmt *child = *I;
3008    if (!child)
3009      continue;
3010
3011    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3012      if (B->isAssignmentOp()) Set.insert(B);
3013
3014    FindSubExprAssignments(child, Set);
3015  }
3016}
3017
3018static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3019  BlkExprMapTy* M = new BlkExprMapTy();
3020
3021  // Look for assignments that are used as subexpressions.  These are the only
3022  // assignments that we want to *possibly* register as a block-level
3023  // expression.  Basically, if an assignment occurs both in a subexpression and
3024  // at the block-level, it is a block-level expression.
3025  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
3026
3027  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3028    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3029      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3030        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3031
3032  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3033
3034    // Iterate over the statements again on identify the Expr* and Stmt* at the
3035    // block-level that are block-level expressions.
3036
3037    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3038      const CFGStmt *CS = BI->getAs<CFGStmt>();
3039      if (!CS)
3040        continue;
3041      if (Expr* Exp = dyn_cast<Expr>(CS->getStmt())) {
3042
3043        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3044          // Assignment expressions that are not nested within another
3045          // expression are really "statements" whose value is never used by
3046          // another expression.
3047          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3048            continue;
3049        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
3050          // Special handling for statement expressions.  The last statement in
3051          // the statement expression is also a block-level expr.
3052          const CompoundStmt* C = Terminator->getSubStmt();
3053          if (!C->body_empty()) {
3054            unsigned x = M->size();
3055            (*M)[C->body_back()] = x;
3056          }
3057        }
3058
3059        unsigned x = M->size();
3060        (*M)[Exp] = x;
3061      }
3062    }
3063
3064    // Look at terminators.  The condition is a block-level expression.
3065
3066    Stmt* S = (*I)->getTerminatorCondition();
3067
3068    if (S && M->find(S) == M->end()) {
3069        unsigned x = M->size();
3070        (*M)[S] = x;
3071    }
3072  }
3073
3074  return M;
3075}
3076
3077CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
3078  assert(S != NULL);
3079  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3080
3081  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3082  BlkExprMapTy::iterator I = M->find(S);
3083  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3084}
3085
3086unsigned CFG::getNumBlkExprs() {
3087  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3088    return M->size();
3089
3090  // We assume callers interested in the number of BlkExprs will want
3091  // the map constructed if it doesn't already exist.
3092  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3093  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3094}
3095
3096//===----------------------------------------------------------------------===//
3097// Filtered walking of the CFG.
3098//===----------------------------------------------------------------------===//
3099
3100bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3101        const CFGBlock *From, const CFGBlock *To) {
3102
3103  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3104    // If the 'To' has no label or is labeled but the label isn't a
3105    // CaseStmt then filter this edge.
3106    if (const SwitchStmt *S =
3107        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3108      if (S->isAllEnumCasesCovered()) {
3109        const Stmt *L = To->getLabel();
3110        if (!L || !isa<CaseStmt>(L))
3111          return true;
3112      }
3113    }
3114  }
3115
3116  return false;
3117}
3118
3119//===----------------------------------------------------------------------===//
3120// Cleanup: CFG dstor.
3121//===----------------------------------------------------------------------===//
3122
3123CFG::~CFG() {
3124  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3125}
3126
3127//===----------------------------------------------------------------------===//
3128// CFG pretty printing
3129//===----------------------------------------------------------------------===//
3130
3131namespace {
3132
3133class StmtPrinterHelper : public PrinterHelper  {
3134  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3135  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3136  StmtMapTy StmtMap;
3137  DeclMapTy DeclMap;
3138  signed currentBlock;
3139  unsigned currentStmt;
3140  const LangOptions &LangOpts;
3141public:
3142
3143  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3144    : currentBlock(0), currentStmt(0), LangOpts(LO)
3145  {
3146    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3147      unsigned j = 1;
3148      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3149           BI != BEnd; ++BI, ++j ) {
3150        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3151          const Stmt *stmt= SE->getStmt();
3152          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3153          StmtMap[stmt] = P;
3154
3155          switch (stmt->getStmtClass()) {
3156            case Stmt::DeclStmtClass:
3157                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3158                break;
3159            case Stmt::IfStmtClass: {
3160              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3161              if (var)
3162                DeclMap[var] = P;
3163              break;
3164            }
3165            case Stmt::ForStmtClass: {
3166              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3167              if (var)
3168                DeclMap[var] = P;
3169              break;
3170            }
3171            case Stmt::WhileStmtClass: {
3172              const VarDecl *var =
3173                cast<WhileStmt>(stmt)->getConditionVariable();
3174              if (var)
3175                DeclMap[var] = P;
3176              break;
3177            }
3178            case Stmt::SwitchStmtClass: {
3179              const VarDecl *var =
3180                cast<SwitchStmt>(stmt)->getConditionVariable();
3181              if (var)
3182                DeclMap[var] = P;
3183              break;
3184            }
3185            case Stmt::CXXCatchStmtClass: {
3186              const VarDecl *var =
3187                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3188              if (var)
3189                DeclMap[var] = P;
3190              break;
3191            }
3192            default:
3193              break;
3194          }
3195        }
3196      }
3197    }
3198  }
3199
3200
3201  virtual ~StmtPrinterHelper() {}
3202
3203  const LangOptions &getLangOpts() const { return LangOpts; }
3204  void setBlockID(signed i) { currentBlock = i; }
3205  void setStmtID(unsigned i) { currentStmt = i; }
3206
3207  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
3208    StmtMapTy::iterator I = StmtMap.find(S);
3209
3210    if (I == StmtMap.end())
3211      return false;
3212
3213    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3214                          && I->second.second == currentStmt) {
3215      return false;
3216    }
3217
3218    OS << "[B" << I->second.first << "." << I->second.second << "]";
3219    return true;
3220  }
3221
3222  bool handleDecl(const Decl* D, llvm::raw_ostream& OS) {
3223    DeclMapTy::iterator I = DeclMap.find(D);
3224
3225    if (I == DeclMap.end())
3226      return false;
3227
3228    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3229                          && I->second.second == currentStmt) {
3230      return false;
3231    }
3232
3233    OS << "[B" << I->second.first << "." << I->second.second << "]";
3234    return true;
3235  }
3236};
3237} // end anonymous namespace
3238
3239
3240namespace {
3241class CFGBlockTerminatorPrint
3242  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3243
3244  llvm::raw_ostream& OS;
3245  StmtPrinterHelper* Helper;
3246  PrintingPolicy Policy;
3247public:
3248  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
3249                          const PrintingPolicy &Policy)
3250    : OS(os), Helper(helper), Policy(Policy) {}
3251
3252  void VisitIfStmt(IfStmt* I) {
3253    OS << "if ";
3254    I->getCond()->printPretty(OS,Helper,Policy);
3255  }
3256
3257  // Default case.
3258  void VisitStmt(Stmt* Terminator) {
3259    Terminator->printPretty(OS, Helper, Policy);
3260  }
3261
3262  void VisitForStmt(ForStmt* F) {
3263    OS << "for (" ;
3264    if (F->getInit())
3265      OS << "...";
3266    OS << "; ";
3267    if (Stmt* C = F->getCond())
3268      C->printPretty(OS, Helper, Policy);
3269    OS << "; ";
3270    if (F->getInc())
3271      OS << "...";
3272    OS << ")";
3273  }
3274
3275  void VisitWhileStmt(WhileStmt* W) {
3276    OS << "while " ;
3277    if (Stmt* C = W->getCond())
3278      C->printPretty(OS, Helper, Policy);
3279  }
3280
3281  void VisitDoStmt(DoStmt* D) {
3282    OS << "do ... while ";
3283    if (Stmt* C = D->getCond())
3284      C->printPretty(OS, Helper, Policy);
3285  }
3286
3287  void VisitSwitchStmt(SwitchStmt* Terminator) {
3288    OS << "switch ";
3289    Terminator->getCond()->printPretty(OS, Helper, Policy);
3290  }
3291
3292  void VisitCXXTryStmt(CXXTryStmt* CS) {
3293    OS << "try ...";
3294  }
3295
3296  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3297    C->getCond()->printPretty(OS, Helper, Policy);
3298    OS << " ? ... : ...";
3299  }
3300
3301  void VisitChooseExpr(ChooseExpr* C) {
3302    OS << "__builtin_choose_expr( ";
3303    C->getCond()->printPretty(OS, Helper, Policy);
3304    OS << " )";
3305  }
3306
3307  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
3308    OS << "goto *";
3309    I->getTarget()->printPretty(OS, Helper, Policy);
3310  }
3311
3312  void VisitBinaryOperator(BinaryOperator* B) {
3313    if (!B->isLogicalOp()) {
3314      VisitExpr(B);
3315      return;
3316    }
3317
3318    B->getLHS()->printPretty(OS, Helper, Policy);
3319
3320    switch (B->getOpcode()) {
3321      case BO_LOr:
3322        OS << " || ...";
3323        return;
3324      case BO_LAnd:
3325        OS << " && ...";
3326        return;
3327      default:
3328        assert(false && "Invalid logical operator.");
3329    }
3330  }
3331
3332  void VisitExpr(Expr* E) {
3333    E->printPretty(OS, Helper, Policy);
3334  }
3335};
3336} // end anonymous namespace
3337
3338static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3339                       const CFGElement &E) {
3340  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3341    Stmt *S = CS->getStmt();
3342
3343    if (Helper) {
3344
3345      // special printing for statement-expressions.
3346      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3347        CompoundStmt* Sub = SE->getSubStmt();
3348
3349        if (Sub->children()) {
3350          OS << "({ ... ; ";
3351          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3352          OS << " })\n";
3353          return;
3354        }
3355      }
3356      // special printing for comma expressions.
3357      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3358        if (B->getOpcode() == BO_Comma) {
3359          OS << "... , ";
3360          Helper->handledStmt(B->getRHS(),OS);
3361          OS << '\n';
3362          return;
3363        }
3364      }
3365    }
3366    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3367
3368    if (isa<CXXOperatorCallExpr>(S)) {
3369      OS << " (OperatorCall)";
3370    } else if (isa<CXXBindTemporaryExpr>(S)) {
3371      OS << " (BindTemporary)";
3372    }
3373
3374    // Expressions need a newline.
3375    if (isa<Expr>(S))
3376      OS << '\n';
3377
3378  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3379    const CXXCtorInitializer *I = IE->getInitializer();
3380    if (I->isBaseInitializer())
3381      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3382    else OS << I->getAnyMember()->getName();
3383
3384    OS << "(";
3385    if (Expr* IE = I->getInit())
3386      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3387    OS << ")";
3388
3389    if (I->isBaseInitializer())
3390      OS << " (Base initializer)\n";
3391    else OS << " (Member initializer)\n";
3392
3393  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3394    const VarDecl* VD = DE->getVarDecl();
3395    Helper->handleDecl(VD, OS);
3396
3397    const Type* T = VD->getType().getTypePtr();
3398    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3399      T = RT->getPointeeType().getTypePtr();
3400    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3401      T = ET;
3402
3403    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3404    OS << " (Implicit destructor)\n";
3405
3406  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3407    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3408    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3409    OS << " (Base object destructor)\n";
3410
3411  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3412    const FieldDecl *FD = ME->getFieldDecl();
3413
3414    const Type *T = FD->getType().getTypePtr();
3415    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3416      T = ET;
3417
3418    OS << "this->" << FD->getName();
3419    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3420    OS << " (Member object destructor)\n";
3421
3422  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3423    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3424    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3425    OS << " (Temporary object destructor)\n";
3426  }
3427}
3428
3429static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3430                        const CFGBlock& B,
3431                        StmtPrinterHelper* Helper, bool print_edges) {
3432
3433  if (Helper) Helper->setBlockID(B.getBlockID());
3434
3435  // Print the header.
3436  OS << "\n [ B" << B.getBlockID();
3437
3438  if (&B == &cfg->getEntry())
3439    OS << " (ENTRY) ]\n";
3440  else if (&B == &cfg->getExit())
3441    OS << " (EXIT) ]\n";
3442  else if (&B == cfg->getIndirectGotoBlock())
3443    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3444  else
3445    OS << " ]\n";
3446
3447  // Print the label of this block.
3448  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3449
3450    if (print_edges)
3451      OS << "    ";
3452
3453    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3454      OS << L->getName();
3455    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3456      OS << "case ";
3457      C->getLHS()->printPretty(OS, Helper,
3458                               PrintingPolicy(Helper->getLangOpts()));
3459      if (C->getRHS()) {
3460        OS << " ... ";
3461        C->getRHS()->printPretty(OS, Helper,
3462                                 PrintingPolicy(Helper->getLangOpts()));
3463      }
3464    } else if (isa<DefaultStmt>(Label))
3465      OS << "default";
3466    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3467      OS << "catch (";
3468      if (CS->getExceptionDecl())
3469        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3470                                      0);
3471      else
3472        OS << "...";
3473      OS << ")";
3474
3475    } else
3476      assert(false && "Invalid label statement in CFGBlock.");
3477
3478    OS << ":\n";
3479  }
3480
3481  // Iterate through the statements in the block and print them.
3482  unsigned j = 1;
3483
3484  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3485       I != E ; ++I, ++j ) {
3486
3487    // Print the statement # in the basic block and the statement itself.
3488    if (print_edges)
3489      OS << "    ";
3490
3491    OS << llvm::format("%3d", j) << ": ";
3492
3493    if (Helper)
3494      Helper->setStmtID(j);
3495
3496    print_elem(OS,Helper,*I);
3497  }
3498
3499  // Print the terminator of this block.
3500  if (B.getTerminator()) {
3501    if (print_edges)
3502      OS << "    ";
3503
3504    OS << "  T: ";
3505
3506    if (Helper) Helper->setBlockID(-1);
3507
3508    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3509                                     PrintingPolicy(Helper->getLangOpts()));
3510    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3511    OS << '\n';
3512  }
3513
3514  if (print_edges) {
3515    // Print the predecessors of this block.
3516    OS << "    Predecessors (" << B.pred_size() << "):";
3517    unsigned i = 0;
3518
3519    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3520         I != E; ++I, ++i) {
3521
3522      if (i == 8 || (i-8) == 0)
3523        OS << "\n     ";
3524
3525      OS << " B" << (*I)->getBlockID();
3526    }
3527
3528    OS << '\n';
3529
3530    // Print the successors of this block.
3531    OS << "    Successors (" << B.succ_size() << "):";
3532    i = 0;
3533
3534    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3535         I != E; ++I, ++i) {
3536
3537      if (i == 8 || (i-8) % 10 == 0)
3538        OS << "\n    ";
3539
3540      if (*I)
3541        OS << " B" << (*I)->getBlockID();
3542      else
3543        OS  << " NULL";
3544    }
3545
3546    OS << '\n';
3547  }
3548}
3549
3550
3551/// dump - A simple pretty printer of a CFG that outputs to stderr.
3552void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3553
3554/// print - A simple pretty printer of a CFG that outputs to an ostream.
3555void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3556  StmtPrinterHelper Helper(this, LO);
3557
3558  // Print the entry block.
3559  print_block(OS, this, getEntry(), &Helper, true);
3560
3561  // Iterate through the CFGBlocks and print them one by one.
3562  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3563    // Skip the entry block, because we already printed it.
3564    if (&(**I) == &getEntry() || &(**I) == &getExit())
3565      continue;
3566
3567    print_block(OS, this, **I, &Helper, true);
3568  }
3569
3570  // Print the exit block.
3571  print_block(OS, this, getExit(), &Helper, true);
3572  OS.flush();
3573}
3574
3575/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3576void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3577  print(llvm::errs(), cfg, LO);
3578}
3579
3580/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3581///   Generally this will only be called from CFG::print.
3582void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3583                     const LangOptions &LO) const {
3584  StmtPrinterHelper Helper(cfg, LO);
3585  print_block(OS, cfg, *this, &Helper, true);
3586}
3587
3588/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3589void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3590                               const LangOptions &LO) const {
3591  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3592  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3593}
3594
3595Stmt* CFGBlock::getTerminatorCondition() {
3596  Stmt *Terminator = this->Terminator;
3597  if (!Terminator)
3598    return NULL;
3599
3600  Expr* E = NULL;
3601
3602  switch (Terminator->getStmtClass()) {
3603    default:
3604      break;
3605
3606    case Stmt::ForStmtClass:
3607      E = cast<ForStmt>(Terminator)->getCond();
3608      break;
3609
3610    case Stmt::WhileStmtClass:
3611      E = cast<WhileStmt>(Terminator)->getCond();
3612      break;
3613
3614    case Stmt::DoStmtClass:
3615      E = cast<DoStmt>(Terminator)->getCond();
3616      break;
3617
3618    case Stmt::IfStmtClass:
3619      E = cast<IfStmt>(Terminator)->getCond();
3620      break;
3621
3622    case Stmt::ChooseExprClass:
3623      E = cast<ChooseExpr>(Terminator)->getCond();
3624      break;
3625
3626    case Stmt::IndirectGotoStmtClass:
3627      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3628      break;
3629
3630    case Stmt::SwitchStmtClass:
3631      E = cast<SwitchStmt>(Terminator)->getCond();
3632      break;
3633
3634    case Stmt::BinaryConditionalOperatorClass:
3635      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3636      break;
3637
3638    case Stmt::ConditionalOperatorClass:
3639      E = cast<ConditionalOperator>(Terminator)->getCond();
3640      break;
3641
3642    case Stmt::BinaryOperatorClass: // '&&' and '||'
3643      E = cast<BinaryOperator>(Terminator)->getLHS();
3644      break;
3645
3646    case Stmt::ObjCForCollectionStmtClass:
3647      return Terminator;
3648  }
3649
3650  return E ? E->IgnoreParens() : NULL;
3651}
3652
3653bool CFGBlock::hasBinaryBranchTerminator() const {
3654  const Stmt *Terminator = this->Terminator;
3655  if (!Terminator)
3656    return false;
3657
3658  Expr* E = NULL;
3659
3660  switch (Terminator->getStmtClass()) {
3661    default:
3662      return false;
3663
3664    case Stmt::ForStmtClass:
3665    case Stmt::WhileStmtClass:
3666    case Stmt::DoStmtClass:
3667    case Stmt::IfStmtClass:
3668    case Stmt::ChooseExprClass:
3669    case Stmt::BinaryConditionalOperatorClass:
3670    case Stmt::ConditionalOperatorClass:
3671    case Stmt::BinaryOperatorClass:
3672      return true;
3673  }
3674
3675  return E ? E->IgnoreParens() : NULL;
3676}
3677
3678
3679//===----------------------------------------------------------------------===//
3680// CFG Graphviz Visualization
3681//===----------------------------------------------------------------------===//
3682
3683
3684#ifndef NDEBUG
3685static StmtPrinterHelper* GraphHelper;
3686#endif
3687
3688void CFG::viewCFG(const LangOptions &LO) const {
3689#ifndef NDEBUG
3690  StmtPrinterHelper H(this, LO);
3691  GraphHelper = &H;
3692  llvm::ViewGraph(this,"CFG");
3693  GraphHelper = NULL;
3694#endif
3695}
3696
3697namespace llvm {
3698template<>
3699struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3700
3701  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3702
3703  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3704
3705#ifndef NDEBUG
3706    std::string OutSStr;
3707    llvm::raw_string_ostream Out(OutSStr);
3708    print_block(Out,Graph, *Node, GraphHelper, false);
3709    std::string& OutStr = Out.str();
3710
3711    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3712
3713    // Process string output to make it nicer...
3714    for (unsigned i = 0; i != OutStr.length(); ++i)
3715      if (OutStr[i] == '\n') {                            // Left justify
3716        OutStr[i] = '\\';
3717        OutStr.insert(OutStr.begin()+i+1, 'l');
3718      }
3719
3720    return OutStr;
3721#else
3722    return "";
3723#endif
3724  }
3725};
3726} // end namespace llvm
3727