CFG.cpp revision b9d0b76e42fd2d4cdfd135220302458d03ad09fe
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/Basic/AttrKinds.h"
23#include "llvm/Support/GraphWriter.h"
24#include "llvm/Support/Allocator.h"
25#include "llvm/Support/Format.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/OwningPtr.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236/// CFGBuilder - This class implements CFG construction from an AST.
237///   The builder is stateful: an instance of the builder should be used to only
238///   construct a single CFG.
239///
240///   Example usage:
241///
242///     CFGBuilder builder;
243///     CFG* cfg = builder.BuildAST(stmt1);
244///
245///  CFG construction is done via a recursive walk of an AST.  We actually parse
246///  the AST in reverse order so that the successor of a basic block is
247///  constructed prior to its predecessor.  This allows us to nicely capture
248///  implicit fall-throughs without extra basic blocks.
249///
250class CFGBuilder {
251  typedef BlockScopePosPair JumpTarget;
252  typedef BlockScopePosPair JumpSource;
253
254  ASTContext *Context;
255  OwningPtr<CFG> cfg;
256
257  CFGBlock *Block;
258  CFGBlock *Succ;
259  JumpTarget ContinueJumpTarget;
260  JumpTarget BreakJumpTarget;
261  CFGBlock *SwitchTerminatedBlock;
262  CFGBlock *DefaultCaseBlock;
263  CFGBlock *TryTerminatedBlock;
264
265  // Current position in local scope.
266  LocalScope::const_iterator ScopePos;
267
268  // LabelMap records the mapping from Label expressions to their jump targets.
269  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
270  LabelMapTy LabelMap;
271
272  // A list of blocks that end with a "goto" that must be backpatched to their
273  // resolved targets upon completion of CFG construction.
274  typedef std::vector<JumpSource> BackpatchBlocksTy;
275  BackpatchBlocksTy BackpatchBlocks;
276
277  // A list of labels whose address has been taken (for indirect gotos).
278  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
279  LabelSetTy AddressTakenLabels;
280
281  bool badCFG;
282  const CFG::BuildOptions &BuildOpts;
283
284  // State to track for building switch statements.
285  bool switchExclusivelyCovered;
286  Expr::EvalResult *switchCond;
287
288  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
289  const Stmt *lastLookup;
290
291  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
292  // during construction of branches for chained logical operators.
293  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
294  CachedBoolEvalsTy CachedBoolEvals;
295
296public:
297  explicit CFGBuilder(ASTContext *astContext,
298                      const CFG::BuildOptions &buildOpts)
299    : Context(astContext), cfg(new CFG()), // crew a new CFG
300      Block(NULL), Succ(NULL),
301      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
302      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
303      switchExclusivelyCovered(false), switchCond(0),
304      cachedEntry(0), lastLookup(0) {}
305
306  // buildCFG - Used by external clients to construct the CFG.
307  CFG* buildCFG(const Decl *D, Stmt *Statement);
308
309  bool alwaysAdd(const Stmt *stmt);
310
311private:
312  // Visitors to walk an AST and construct the CFG.
313  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
314  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
315  CFGBlock *VisitBreakStmt(BreakStmt *B);
316  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
317  CFGBlock *VisitCaseStmt(CaseStmt *C);
318  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
320  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
321                                     AddStmtChoice asc);
322  CFGBlock *VisitContinueStmt(ContinueStmt *C);
323  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
324                                      AddStmtChoice asc);
325  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
326  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
327  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
328  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
329                                       AddStmtChoice asc);
330  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
331                                        AddStmtChoice asc);
332  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
333  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
334  CFGBlock *VisitDeclStmt(DeclStmt *DS);
335  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
336  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
337  CFGBlock *VisitDoStmt(DoStmt *D);
338  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
339  CFGBlock *VisitForStmt(ForStmt *F);
340  CFGBlock *VisitGotoStmt(GotoStmt *G);
341  CFGBlock *VisitIfStmt(IfStmt *I);
342  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
343  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
344  CFGBlock *VisitLabelStmt(LabelStmt *L);
345  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
346  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
347  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
348                                                         Stmt *Term,
349                                                         CFGBlock *TrueBlock,
350                                                         CFGBlock *FalseBlock);
351  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
352  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
353  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
354  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
355  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
356  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
357  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
358  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
359  CFGBlock *VisitReturnStmt(ReturnStmt *R);
360  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
361  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
362  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
363                                          AddStmtChoice asc);
364  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
365  CFGBlock *VisitWhileStmt(WhileStmt *W);
366
367  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
368  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
369  CFGBlock *VisitChildren(Stmt *S);
370  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
371
372  // Visitors to walk an AST and generate destructors of temporaries in
373  // full expression.
374  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
375  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
376  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
377  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
378      bool BindToTemporary);
379  CFGBlock *
380  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
381                                            bool BindToTemporary);
382
383  // NYS == Not Yet Supported
384  CFGBlock *NYS() {
385    badCFG = true;
386    return Block;
387  }
388
389  void autoCreateBlock() { if (!Block) Block = createBlock(); }
390  CFGBlock *createBlock(bool add_successor = true);
391  CFGBlock *createNoReturnBlock();
392
393  CFGBlock *addStmt(Stmt *S) {
394    return Visit(S, AddStmtChoice::AlwaysAdd);
395  }
396  CFGBlock *addInitializer(CXXCtorInitializer *I);
397  void addAutomaticObjDtors(LocalScope::const_iterator B,
398                            LocalScope::const_iterator E, Stmt *S);
399  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
400
401  // Local scopes creation.
402  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
403
404  void addLocalScopeForStmt(Stmt *S);
405  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
406  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
407
408  void addLocalScopeAndDtors(Stmt *S);
409
410  // Interface to CFGBlock - adding CFGElements.
411  void appendStmt(CFGBlock *B, const Stmt *S) {
412    if (alwaysAdd(S) && cachedEntry)
413      cachedEntry->second = B;
414
415    // All block-level expressions should have already been IgnoreParens()ed.
416    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
417    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
418  }
419  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
420    B->appendInitializer(I, cfg->getBumpVectorContext());
421  }
422  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
423    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
424  }
425  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
426    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
427  }
428  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
429    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
430  }
431  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
432    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
433  }
434
435  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
436      LocalScope::const_iterator B, LocalScope::const_iterator E);
437
438  void addSuccessor(CFGBlock *B, CFGBlock *S) {
439    B->addSuccessor(S, cfg->getBumpVectorContext());
440  }
441
442  /// Try and evaluate an expression to an integer constant.
443  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
444    if (!BuildOpts.PruneTriviallyFalseEdges)
445      return false;
446    return !S->isTypeDependent() &&
447           !S->isValueDependent() &&
448           S->EvaluateAsRValue(outResult, *Context);
449  }
450
451  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
452  /// if we can evaluate to a known value, otherwise return -1.
453  TryResult tryEvaluateBool(Expr *S) {
454    if (!BuildOpts.PruneTriviallyFalseEdges ||
455        S->isTypeDependent() || S->isValueDependent())
456      return TryResult();
457
458    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
459      if (Bop->isLogicalOp()) {
460        // Check the cache first.
461        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
462        if (I != CachedBoolEvals.end())
463          return I->second; // already in map;
464
465        // Retrieve result at first, or the map might be updated.
466        TryResult Result = evaluateAsBooleanConditionNoCache(S);
467        CachedBoolEvals[S] = Result; // update or insert
468        return Result;
469      }
470    }
471
472    return evaluateAsBooleanConditionNoCache(S);
473  }
474
475  /// \brief Evaluate as boolean \param E without using the cache.
476  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
477    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
478      if (Bop->isLogicalOp()) {
479        TryResult LHS = tryEvaluateBool(Bop->getLHS());
480        if (LHS.isKnown()) {
481          // We were able to evaluate the LHS, see if we can get away with not
482          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
483          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
484            return LHS.isTrue();
485
486          TryResult RHS = tryEvaluateBool(Bop->getRHS());
487          if (RHS.isKnown()) {
488            if (Bop->getOpcode() == BO_LOr)
489              return LHS.isTrue() || RHS.isTrue();
490            else
491              return LHS.isTrue() && RHS.isTrue();
492          }
493        } else {
494          TryResult RHS = tryEvaluateBool(Bop->getRHS());
495          if (RHS.isKnown()) {
496            // We can't evaluate the LHS; however, sometimes the result
497            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
498            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
499              return RHS.isTrue();
500          }
501        }
502
503        return TryResult();
504      }
505    }
506
507    bool Result;
508    if (E->EvaluateAsBooleanCondition(Result, *Context))
509      return Result;
510
511    return TryResult();
512  }
513
514};
515
516inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
517                                     const Stmt *stmt) const {
518  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
519}
520
521bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
522  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
523
524  if (!BuildOpts.forcedBlkExprs)
525    return shouldAdd;
526
527  if (lastLookup == stmt) {
528    if (cachedEntry) {
529      assert(cachedEntry->first == stmt);
530      return true;
531    }
532    return shouldAdd;
533  }
534
535  lastLookup = stmt;
536
537  // Perform the lookup!
538  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
539
540  if (!fb) {
541    // No need to update 'cachedEntry', since it will always be null.
542    assert(cachedEntry == 0);
543    return shouldAdd;
544  }
545
546  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
547  if (itr == fb->end()) {
548    cachedEntry = 0;
549    return shouldAdd;
550  }
551
552  cachedEntry = &*itr;
553  return true;
554}
555
556// FIXME: Add support for dependent-sized array types in C++?
557// Does it even make sense to build a CFG for an uninstantiated template?
558static const VariableArrayType *FindVA(const Type *t) {
559  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
560    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
561      if (vat->getSizeExpr())
562        return vat;
563
564    t = vt->getElementType().getTypePtr();
565  }
566
567  return 0;
568}
569
570/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
571///  arbitrary statement.  Examples include a single expression or a function
572///  body (compound statement).  The ownership of the returned CFG is
573///  transferred to the caller.  If CFG construction fails, this method returns
574///  NULL.
575CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
576  assert(cfg.get());
577  if (!Statement)
578    return NULL;
579
580  // Create an empty block that will serve as the exit block for the CFG.  Since
581  // this is the first block added to the CFG, it will be implicitly registered
582  // as the exit block.
583  Succ = createBlock();
584  assert(Succ == &cfg->getExit());
585  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
586
587  if (BuildOpts.AddImplicitDtors)
588    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
589      addImplicitDtorsForDestructor(DD);
590
591  // Visit the statements and create the CFG.
592  CFGBlock *B = addStmt(Statement);
593
594  if (badCFG)
595    return NULL;
596
597  // For C++ constructor add initializers to CFG.
598  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
599    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
600        E = CD->init_rend(); I != E; ++I) {
601      B = addInitializer(*I);
602      if (badCFG)
603        return NULL;
604    }
605  }
606
607  if (B)
608    Succ = B;
609
610  // Backpatch the gotos whose label -> block mappings we didn't know when we
611  // encountered them.
612  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
613                                   E = BackpatchBlocks.end(); I != E; ++I ) {
614
615    CFGBlock *B = I->block;
616    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
617    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
618
619    // If there is no target for the goto, then we are looking at an
620    // incomplete AST.  Handle this by not registering a successor.
621    if (LI == LabelMap.end()) continue;
622
623    JumpTarget JT = LI->second;
624    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
625                                           JT.scopePosition);
626    addSuccessor(B, JT.block);
627  }
628
629  // Add successors to the Indirect Goto Dispatch block (if we have one).
630  if (CFGBlock *B = cfg->getIndirectGotoBlock())
631    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
632                              E = AddressTakenLabels.end(); I != E; ++I ) {
633
634      // Lookup the target block.
635      LabelMapTy::iterator LI = LabelMap.find(*I);
636
637      // If there is no target block that contains label, then we are looking
638      // at an incomplete AST.  Handle this by not registering a successor.
639      if (LI == LabelMap.end()) continue;
640
641      addSuccessor(B, LI->second.block);
642    }
643
644  // Create an empty entry block that has no predecessors.
645  cfg->setEntry(createBlock());
646
647  return cfg.take();
648}
649
650/// createBlock - Used to lazily create blocks that are connected
651///  to the current (global) succcessor.
652CFGBlock *CFGBuilder::createBlock(bool add_successor) {
653  CFGBlock *B = cfg->createBlock();
654  if (add_successor && Succ)
655    addSuccessor(B, Succ);
656  return B;
657}
658
659/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
660/// CFG. It is *not* connected to the current (global) successor, and instead
661/// directly tied to the exit block in order to be reachable.
662CFGBlock *CFGBuilder::createNoReturnBlock() {
663  CFGBlock *B = createBlock(false);
664  B->setHasNoReturnElement();
665  addSuccessor(B, &cfg->getExit());
666  return B;
667}
668
669/// addInitializer - Add C++ base or member initializer element to CFG.
670CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
671  if (!BuildOpts.AddInitializers)
672    return Block;
673
674  bool IsReference = false;
675  bool HasTemporaries = false;
676
677  // Destructors of temporaries in initialization expression should be called
678  // after initialization finishes.
679  Expr *Init = I->getInit();
680  if (Init) {
681    if (FieldDecl *FD = I->getAnyMember())
682      IsReference = FD->getType()->isReferenceType();
683    HasTemporaries = isa<ExprWithCleanups>(Init);
684
685    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
686      // Generate destructors for temporaries in initialization expression.
687      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
688          IsReference);
689    }
690  }
691
692  autoCreateBlock();
693  appendInitializer(Block, I);
694
695  if (Init) {
696    if (HasTemporaries) {
697      // For expression with temporaries go directly to subexpression to omit
698      // generating destructors for the second time.
699      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
700    }
701    return Visit(Init);
702  }
703
704  return Block;
705}
706
707/// \brief Retrieve the type of the temporary object whose lifetime was
708/// extended by a local reference with the given initializer.
709static QualType getReferenceInitTemporaryType(ASTContext &Context,
710                                              const Expr *Init) {
711  while (true) {
712    // Skip parentheses.
713    Init = Init->IgnoreParens();
714
715    // Skip through cleanups.
716    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
717      Init = EWC->getSubExpr();
718      continue;
719    }
720
721    // Skip through the temporary-materialization expression.
722    if (const MaterializeTemporaryExpr *MTE
723          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
724      Init = MTE->GetTemporaryExpr();
725      continue;
726    }
727
728    // Skip derived-to-base and no-op casts.
729    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
730      if ((CE->getCastKind() == CK_DerivedToBase ||
731           CE->getCastKind() == CK_UncheckedDerivedToBase ||
732           CE->getCastKind() == CK_NoOp) &&
733          Init->getType()->isRecordType()) {
734        Init = CE->getSubExpr();
735        continue;
736      }
737    }
738
739    // Skip member accesses into rvalues.
740    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
741      if (!ME->isArrow() && ME->getBase()->isRValue()) {
742        Init = ME->getBase();
743        continue;
744      }
745    }
746
747    break;
748  }
749
750  return Init->getType();
751}
752
753/// addAutomaticObjDtors - Add to current block automatic objects destructors
754/// for objects in range of local scope positions. Use S as trigger statement
755/// for destructors.
756void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
757                                      LocalScope::const_iterator E, Stmt *S) {
758  if (!BuildOpts.AddImplicitDtors)
759    return;
760
761  if (B == E)
762    return;
763
764  // We need to append the destructors in reverse order, but any one of them
765  // may be a no-return destructor which changes the CFG. As a result, buffer
766  // this sequence up and replay them in reverse order when appending onto the
767  // CFGBlock(s).
768  SmallVector<VarDecl*, 10> Decls;
769  Decls.reserve(B.distance(E));
770  for (LocalScope::const_iterator I = B; I != E; ++I)
771    Decls.push_back(*I);
772
773  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
774                                                   E = Decls.rend();
775       I != E; ++I) {
776    // If this destructor is marked as a no-return destructor, we need to
777    // create a new block for the destructor which does not have as a successor
778    // anything built thus far: control won't flow out of this block.
779    QualType Ty = (*I)->getType();
780    if (Ty->isReferenceType()) {
781      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
782    }
783    Ty = Context->getBaseElementType(Ty);
784
785    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
786    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
787      Block = createNoReturnBlock();
788    else
789      autoCreateBlock();
790
791    appendAutomaticObjDtor(Block, *I, S);
792  }
793}
794
795/// addImplicitDtorsForDestructor - Add implicit destructors generated for
796/// base and member objects in destructor.
797void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
798  assert (BuildOpts.AddImplicitDtors
799      && "Can be called only when dtors should be added");
800  const CXXRecordDecl *RD = DD->getParent();
801
802  // At the end destroy virtual base objects.
803  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
804      VE = RD->vbases_end(); VI != VE; ++VI) {
805    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
806    if (!CD->hasTrivialDestructor()) {
807      autoCreateBlock();
808      appendBaseDtor(Block, VI);
809    }
810  }
811
812  // Before virtual bases destroy direct base objects.
813  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
814      BE = RD->bases_end(); BI != BE; ++BI) {
815    if (!BI->isVirtual()) {
816      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
817      if (!CD->hasTrivialDestructor()) {
818        autoCreateBlock();
819        appendBaseDtor(Block, BI);
820      }
821    }
822  }
823
824  // First destroy member objects.
825  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
826      FE = RD->field_end(); FI != FE; ++FI) {
827    // Check for constant size array. Set type to array element type.
828    QualType QT = FI->getType();
829    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
830      if (AT->getSize() == 0)
831        continue;
832      QT = AT->getElementType();
833    }
834
835    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
836      if (!CD->hasTrivialDestructor()) {
837        autoCreateBlock();
838        appendMemberDtor(Block, *FI);
839      }
840  }
841}
842
843/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
844/// way return valid LocalScope object.
845LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
846  if (!Scope) {
847    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
848    Scope = alloc.Allocate<LocalScope>();
849    BumpVectorContext ctx(alloc);
850    new (Scope) LocalScope(ctx, ScopePos);
851  }
852  return Scope;
853}
854
855/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
856/// that should create implicit scope (e.g. if/else substatements).
857void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
858  if (!BuildOpts.AddImplicitDtors)
859    return;
860
861  LocalScope *Scope = 0;
862
863  // For compound statement we will be creating explicit scope.
864  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
865    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
866        ; BI != BE; ++BI) {
867      Stmt *SI = (*BI)->stripLabelLikeStatements();
868      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
869        Scope = addLocalScopeForDeclStmt(DS, Scope);
870    }
871    return;
872  }
873
874  // For any other statement scope will be implicit and as such will be
875  // interesting only for DeclStmt.
876  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
877    addLocalScopeForDeclStmt(DS);
878}
879
880/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
881/// reuse Scope if not NULL.
882LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
883                                                 LocalScope* Scope) {
884  if (!BuildOpts.AddImplicitDtors)
885    return Scope;
886
887  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
888      ; DI != DE; ++DI) {
889    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
890      Scope = addLocalScopeForVarDecl(VD, Scope);
891  }
892  return Scope;
893}
894
895/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
896/// create add scope for automatic objects and temporary objects bound to
897/// const reference. Will reuse Scope if not NULL.
898LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
899                                                LocalScope* Scope) {
900  if (!BuildOpts.AddImplicitDtors)
901    return Scope;
902
903  // Check if variable is local.
904  switch (VD->getStorageClass()) {
905  case SC_None:
906  case SC_Auto:
907  case SC_Register:
908    break;
909  default: return Scope;
910  }
911
912  // Check for const references bound to temporary. Set type to pointee.
913  QualType QT = VD->getType();
914  if (QT.getTypePtr()->isReferenceType()) {
915    if (!VD->extendsLifetimeOfTemporary())
916      return Scope;
917
918    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
919  }
920
921  // Check for constant size array. Set type to array element type.
922  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
923    if (AT->getSize() == 0)
924      return Scope;
925    QT = AT->getElementType();
926  }
927
928  // Check if type is a C++ class with non-trivial destructor.
929  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
930    if (!CD->hasTrivialDestructor()) {
931      // Add the variable to scope
932      Scope = createOrReuseLocalScope(Scope);
933      Scope->addVar(VD);
934      ScopePos = Scope->begin();
935    }
936  return Scope;
937}
938
939/// addLocalScopeAndDtors - For given statement add local scope for it and
940/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
941void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
942  if (!BuildOpts.AddImplicitDtors)
943    return;
944
945  LocalScope::const_iterator scopeBeginPos = ScopePos;
946  addLocalScopeForStmt(S);
947  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
948}
949
950/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
951/// variables with automatic storage duration to CFGBlock's elements vector.
952/// Elements will be prepended to physical beginning of the vector which
953/// happens to be logical end. Use blocks terminator as statement that specifies
954/// destructors call site.
955/// FIXME: This mechanism for adding automatic destructors doesn't handle
956/// no-return destructors properly.
957void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
958    LocalScope::const_iterator B, LocalScope::const_iterator E) {
959  BumpVectorContext &C = cfg->getBumpVectorContext();
960  CFGBlock::iterator InsertPos
961    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
962  for (LocalScope::const_iterator I = B; I != E; ++I)
963    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
964                                            Blk->getTerminator());
965}
966
967/// Visit - Walk the subtree of a statement and add extra
968///   blocks for ternary operators, &&, and ||.  We also process "," and
969///   DeclStmts (which may contain nested control-flow).
970CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
971  if (!S) {
972    badCFG = true;
973    return 0;
974  }
975
976  if (Expr *E = dyn_cast<Expr>(S))
977    S = E->IgnoreParens();
978
979  switch (S->getStmtClass()) {
980    default:
981      return VisitStmt(S, asc);
982
983    case Stmt::AddrLabelExprClass:
984      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
985
986    case Stmt::BinaryConditionalOperatorClass:
987      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
988
989    case Stmt::BinaryOperatorClass:
990      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
991
992    case Stmt::BlockExprClass:
993      return VisitNoRecurse(cast<Expr>(S), asc);
994
995    case Stmt::BreakStmtClass:
996      return VisitBreakStmt(cast<BreakStmt>(S));
997
998    case Stmt::CallExprClass:
999    case Stmt::CXXOperatorCallExprClass:
1000    case Stmt::CXXMemberCallExprClass:
1001    case Stmt::UserDefinedLiteralClass:
1002      return VisitCallExpr(cast<CallExpr>(S), asc);
1003
1004    case Stmt::CaseStmtClass:
1005      return VisitCaseStmt(cast<CaseStmt>(S));
1006
1007    case Stmt::ChooseExprClass:
1008      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1009
1010    case Stmt::CompoundStmtClass:
1011      return VisitCompoundStmt(cast<CompoundStmt>(S));
1012
1013    case Stmt::ConditionalOperatorClass:
1014      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1015
1016    case Stmt::ContinueStmtClass:
1017      return VisitContinueStmt(cast<ContinueStmt>(S));
1018
1019    case Stmt::CXXCatchStmtClass:
1020      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1021
1022    case Stmt::ExprWithCleanupsClass:
1023      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1024
1025    case Stmt::CXXBindTemporaryExprClass:
1026      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1027
1028    case Stmt::CXXConstructExprClass:
1029      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1030
1031    case Stmt::CXXFunctionalCastExprClass:
1032      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1033
1034    case Stmt::CXXTemporaryObjectExprClass:
1035      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1036
1037    case Stmt::CXXThrowExprClass:
1038      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1039
1040    case Stmt::CXXTryStmtClass:
1041      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1042
1043    case Stmt::CXXForRangeStmtClass:
1044      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1045
1046    case Stmt::DeclStmtClass:
1047      return VisitDeclStmt(cast<DeclStmt>(S));
1048
1049    case Stmt::DefaultStmtClass:
1050      return VisitDefaultStmt(cast<DefaultStmt>(S));
1051
1052    case Stmt::DoStmtClass:
1053      return VisitDoStmt(cast<DoStmt>(S));
1054
1055    case Stmt::ForStmtClass:
1056      return VisitForStmt(cast<ForStmt>(S));
1057
1058    case Stmt::GotoStmtClass:
1059      return VisitGotoStmt(cast<GotoStmt>(S));
1060
1061    case Stmt::IfStmtClass:
1062      return VisitIfStmt(cast<IfStmt>(S));
1063
1064    case Stmt::ImplicitCastExprClass:
1065      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1066
1067    case Stmt::IndirectGotoStmtClass:
1068      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1069
1070    case Stmt::LabelStmtClass:
1071      return VisitLabelStmt(cast<LabelStmt>(S));
1072
1073    case Stmt::LambdaExprClass:
1074      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1075
1076    case Stmt::MemberExprClass:
1077      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1078
1079    case Stmt::NullStmtClass:
1080      return Block;
1081
1082    case Stmt::ObjCAtCatchStmtClass:
1083      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1084
1085    case Stmt::ObjCAutoreleasePoolStmtClass:
1086    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1087
1088    case Stmt::ObjCAtSynchronizedStmtClass:
1089      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1090
1091    case Stmt::ObjCAtThrowStmtClass:
1092      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1093
1094    case Stmt::ObjCAtTryStmtClass:
1095      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1096
1097    case Stmt::ObjCForCollectionStmtClass:
1098      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1099
1100    case Stmt::OpaqueValueExprClass:
1101      return Block;
1102
1103    case Stmt::PseudoObjectExprClass:
1104      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1105
1106    case Stmt::ReturnStmtClass:
1107      return VisitReturnStmt(cast<ReturnStmt>(S));
1108
1109    case Stmt::UnaryExprOrTypeTraitExprClass:
1110      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1111                                           asc);
1112
1113    case Stmt::StmtExprClass:
1114      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1115
1116    case Stmt::SwitchStmtClass:
1117      return VisitSwitchStmt(cast<SwitchStmt>(S));
1118
1119    case Stmt::UnaryOperatorClass:
1120      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1121
1122    case Stmt::WhileStmtClass:
1123      return VisitWhileStmt(cast<WhileStmt>(S));
1124  }
1125}
1126
1127CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1128  if (asc.alwaysAdd(*this, S)) {
1129    autoCreateBlock();
1130    appendStmt(Block, S);
1131  }
1132
1133  return VisitChildren(S);
1134}
1135
1136/// VisitChildren - Visit the children of a Stmt.
1137CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1138  CFGBlock *lastBlock = Block;
1139  for (Stmt::child_range I = Terminator->children(); I; ++I)
1140    if (Stmt *child = *I)
1141      if (CFGBlock *b = Visit(child))
1142        lastBlock = b;
1143
1144  return lastBlock;
1145}
1146
1147CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1148                                         AddStmtChoice asc) {
1149  AddressTakenLabels.insert(A->getLabel());
1150
1151  if (asc.alwaysAdd(*this, A)) {
1152    autoCreateBlock();
1153    appendStmt(Block, A);
1154  }
1155
1156  return Block;
1157}
1158
1159CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1160           AddStmtChoice asc) {
1161  if (asc.alwaysAdd(*this, U)) {
1162    autoCreateBlock();
1163    appendStmt(Block, U);
1164  }
1165
1166  return Visit(U->getSubExpr(), AddStmtChoice());
1167}
1168
1169CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1170  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1171  appendStmt(ConfluenceBlock, B);
1172
1173  if (badCFG)
1174    return 0;
1175
1176  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1177}
1178
1179std::pair<CFGBlock*, CFGBlock*>
1180CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1181                                 Stmt *Term,
1182                                 CFGBlock *TrueBlock,
1183                                 CFGBlock *FalseBlock) {
1184
1185  // Introspect the RHS.  If it is a nested logical operation, we recursively
1186  // build the CFG using this function.  Otherwise, resort to default
1187  // CFG construction behavior.
1188  Expr *RHS = B->getRHS()->IgnoreParens();
1189  CFGBlock *RHSBlock, *ExitBlock;
1190
1191  do {
1192    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1193      if (B_RHS->isLogicalOp()) {
1194        llvm::tie(RHSBlock, ExitBlock) =
1195          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1196        break;
1197      }
1198
1199    // The RHS is not a nested logical operation.  Don't push the terminator
1200    // down further, but instead visit RHS and construct the respective
1201    // pieces of the CFG, and link up the RHSBlock with the terminator
1202    // we have been provided.
1203    ExitBlock = RHSBlock = createBlock(false);
1204
1205    if (!Term) {
1206      assert(TrueBlock == FalseBlock);
1207      addSuccessor(RHSBlock, TrueBlock);
1208    }
1209    else {
1210      RHSBlock->setTerminator(Term);
1211      TryResult KnownVal = tryEvaluateBool(RHS);
1212      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1213      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1214    }
1215
1216    Block = RHSBlock;
1217    RHSBlock = addStmt(RHS);
1218  }
1219  while (false);
1220
1221  if (badCFG)
1222    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1223
1224  // Generate the blocks for evaluating the LHS.
1225  Expr *LHS = B->getLHS()->IgnoreParens();
1226
1227  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1228    if (B_LHS->isLogicalOp()) {
1229      if (B->getOpcode() == BO_LOr)
1230        FalseBlock = RHSBlock;
1231      else
1232        TrueBlock = RHSBlock;
1233
1234      // For the LHS, treat 'B' as the terminator that we want to sink
1235      // into the nested branch.  The RHS always gets the top-most
1236      // terminator.
1237      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1238    }
1239
1240  // Create the block evaluating the LHS.
1241  // This contains the '&&' or '||' as the terminator.
1242  CFGBlock *LHSBlock = createBlock(false);
1243  LHSBlock->setTerminator(B);
1244
1245  Block = LHSBlock;
1246  CFGBlock *EntryLHSBlock = addStmt(LHS);
1247
1248  if (badCFG)
1249    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1250
1251  // See if this is a known constant.
1252  TryResult KnownVal = tryEvaluateBool(LHS);
1253
1254  // Now link the LHSBlock with RHSBlock.
1255  if (B->getOpcode() == BO_LOr) {
1256    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1257    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1258  } else {
1259    assert(B->getOpcode() == BO_LAnd);
1260    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1261    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1262  }
1263
1264  return std::make_pair(EntryLHSBlock, ExitBlock);
1265}
1266
1267
1268CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1269                                          AddStmtChoice asc) {
1270   // && or ||
1271  if (B->isLogicalOp())
1272    return VisitLogicalOperator(B);
1273
1274  if (B->getOpcode() == BO_Comma) { // ,
1275    autoCreateBlock();
1276    appendStmt(Block, B);
1277    addStmt(B->getRHS());
1278    return addStmt(B->getLHS());
1279  }
1280
1281  if (B->isAssignmentOp()) {
1282    if (asc.alwaysAdd(*this, B)) {
1283      autoCreateBlock();
1284      appendStmt(Block, B);
1285    }
1286    Visit(B->getLHS());
1287    return Visit(B->getRHS());
1288  }
1289
1290  if (asc.alwaysAdd(*this, B)) {
1291    autoCreateBlock();
1292    appendStmt(Block, B);
1293  }
1294
1295  CFGBlock *RBlock = Visit(B->getRHS());
1296  CFGBlock *LBlock = Visit(B->getLHS());
1297  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1298  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1299  // return RBlock.  Otherwise we'll incorrectly return NULL.
1300  return (LBlock ? LBlock : RBlock);
1301}
1302
1303CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1304  if (asc.alwaysAdd(*this, E)) {
1305    autoCreateBlock();
1306    appendStmt(Block, E);
1307  }
1308  return Block;
1309}
1310
1311CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1312  // "break" is a control-flow statement.  Thus we stop processing the current
1313  // block.
1314  if (badCFG)
1315    return 0;
1316
1317  // Now create a new block that ends with the break statement.
1318  Block = createBlock(false);
1319  Block->setTerminator(B);
1320
1321  // If there is no target for the break, then we are looking at an incomplete
1322  // AST.  This means that the CFG cannot be constructed.
1323  if (BreakJumpTarget.block) {
1324    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1325    addSuccessor(Block, BreakJumpTarget.block);
1326  } else
1327    badCFG = true;
1328
1329
1330  return Block;
1331}
1332
1333static bool CanThrow(Expr *E, ASTContext &Ctx) {
1334  QualType Ty = E->getType();
1335  if (Ty->isFunctionPointerType())
1336    Ty = Ty->getAs<PointerType>()->getPointeeType();
1337  else if (Ty->isBlockPointerType())
1338    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1339
1340  const FunctionType *FT = Ty->getAs<FunctionType>();
1341  if (FT) {
1342    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1343      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1344          Proto->isNothrow(Ctx))
1345        return false;
1346  }
1347  return true;
1348}
1349
1350CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1351  // Compute the callee type.
1352  QualType calleeType = C->getCallee()->getType();
1353  if (calleeType == Context->BoundMemberTy) {
1354    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1355
1356    // We should only get a null bound type if processing a dependent
1357    // CFG.  Recover by assuming nothing.
1358    if (!boundType.isNull()) calleeType = boundType;
1359  }
1360
1361  // If this is a call to a no-return function, this stops the block here.
1362  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1363
1364  bool AddEHEdge = false;
1365
1366  // Languages without exceptions are assumed to not throw.
1367  if (Context->getLangOpts().Exceptions) {
1368    if (BuildOpts.AddEHEdges)
1369      AddEHEdge = true;
1370  }
1371
1372  if (FunctionDecl *FD = C->getDirectCallee()) {
1373    if (FD->hasAttr<NoReturnAttr>())
1374      NoReturn = true;
1375    if (FD->hasAttr<NoThrowAttr>())
1376      AddEHEdge = false;
1377  }
1378
1379  if (!CanThrow(C->getCallee(), *Context))
1380    AddEHEdge = false;
1381
1382  if (!NoReturn && !AddEHEdge)
1383    return VisitStmt(C, asc.withAlwaysAdd(true));
1384
1385  if (Block) {
1386    Succ = Block;
1387    if (badCFG)
1388      return 0;
1389  }
1390
1391  if (NoReturn)
1392    Block = createNoReturnBlock();
1393  else
1394    Block = createBlock();
1395
1396  appendStmt(Block, C);
1397
1398  if (AddEHEdge) {
1399    // Add exceptional edges.
1400    if (TryTerminatedBlock)
1401      addSuccessor(Block, TryTerminatedBlock);
1402    else
1403      addSuccessor(Block, &cfg->getExit());
1404  }
1405
1406  return VisitChildren(C);
1407}
1408
1409CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1410                                      AddStmtChoice asc) {
1411  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1412  appendStmt(ConfluenceBlock, C);
1413  if (badCFG)
1414    return 0;
1415
1416  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1417  Succ = ConfluenceBlock;
1418  Block = NULL;
1419  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1420  if (badCFG)
1421    return 0;
1422
1423  Succ = ConfluenceBlock;
1424  Block = NULL;
1425  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1426  if (badCFG)
1427    return 0;
1428
1429  Block = createBlock(false);
1430  // See if this is a known constant.
1431  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1432  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1433  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1434  Block->setTerminator(C);
1435  return addStmt(C->getCond());
1436}
1437
1438
1439CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1440  addLocalScopeAndDtors(C);
1441  CFGBlock *LastBlock = Block;
1442
1443  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1444       I != E; ++I ) {
1445    // If we hit a segment of code just containing ';' (NullStmts), we can
1446    // get a null block back.  In such cases, just use the LastBlock
1447    if (CFGBlock *newBlock = addStmt(*I))
1448      LastBlock = newBlock;
1449
1450    if (badCFG)
1451      return NULL;
1452  }
1453
1454  return LastBlock;
1455}
1456
1457CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1458                                               AddStmtChoice asc) {
1459  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1460  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1461
1462  // Create the confluence block that will "merge" the results of the ternary
1463  // expression.
1464  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1465  appendStmt(ConfluenceBlock, C);
1466  if (badCFG)
1467    return 0;
1468
1469  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1470
1471  // Create a block for the LHS expression if there is an LHS expression.  A
1472  // GCC extension allows LHS to be NULL, causing the condition to be the
1473  // value that is returned instead.
1474  //  e.g: x ?: y is shorthand for: x ? x : y;
1475  Succ = ConfluenceBlock;
1476  Block = NULL;
1477  CFGBlock *LHSBlock = 0;
1478  const Expr *trueExpr = C->getTrueExpr();
1479  if (trueExpr != opaqueValue) {
1480    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1481    if (badCFG)
1482      return 0;
1483    Block = NULL;
1484  }
1485  else
1486    LHSBlock = ConfluenceBlock;
1487
1488  // Create the block for the RHS expression.
1489  Succ = ConfluenceBlock;
1490  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1491  if (badCFG)
1492    return 0;
1493
1494  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1495  if (BinaryOperator *Cond =
1496        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1497    if (Cond->isLogicalOp())
1498      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1499
1500  // Create the block that will contain the condition.
1501  Block = createBlock(false);
1502
1503  // See if this is a known constant.
1504  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1505  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1506  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1507  Block->setTerminator(C);
1508  Expr *condExpr = C->getCond();
1509
1510  if (opaqueValue) {
1511    // Run the condition expression if it's not trivially expressed in
1512    // terms of the opaque value (or if there is no opaque value).
1513    if (condExpr != opaqueValue)
1514      addStmt(condExpr);
1515
1516    // Before that, run the common subexpression if there was one.
1517    // At least one of this or the above will be run.
1518    return addStmt(BCO->getCommon());
1519  }
1520
1521  return addStmt(condExpr);
1522}
1523
1524CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1525  // Check if the Decl is for an __label__.  If so, elide it from the
1526  // CFG entirely.
1527  if (isa<LabelDecl>(*DS->decl_begin()))
1528    return Block;
1529
1530  // This case also handles static_asserts.
1531  if (DS->isSingleDecl())
1532    return VisitDeclSubExpr(DS);
1533
1534  CFGBlock *B = 0;
1535
1536  // Build an individual DeclStmt for each decl.
1537  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1538                                       E = DS->decl_rend();
1539       I != E; ++I) {
1540    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1541    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1542               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1543
1544    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1545    // automatically freed with the CFG.
1546    DeclGroupRef DG(*I);
1547    Decl *D = *I;
1548    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1549    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1550
1551    // Append the fake DeclStmt to block.
1552    B = VisitDeclSubExpr(DSNew);
1553  }
1554
1555  return B;
1556}
1557
1558/// VisitDeclSubExpr - Utility method to add block-level expressions for
1559/// DeclStmts and initializers in them.
1560CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1561  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1562  Decl *D = DS->getSingleDecl();
1563
1564  if (isa<StaticAssertDecl>(D)) {
1565    // static_asserts aren't added to the CFG because they do not impact
1566    // runtime semantics.
1567    return Block;
1568  }
1569
1570  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1571
1572  if (!VD) {
1573    autoCreateBlock();
1574    appendStmt(Block, DS);
1575    return Block;
1576  }
1577
1578  bool IsReference = false;
1579  bool HasTemporaries = false;
1580
1581  // Destructors of temporaries in initialization expression should be called
1582  // after initialization finishes.
1583  Expr *Init = VD->getInit();
1584  if (Init) {
1585    IsReference = VD->getType()->isReferenceType();
1586    HasTemporaries = isa<ExprWithCleanups>(Init);
1587
1588    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1589      // Generate destructors for temporaries in initialization expression.
1590      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1591          IsReference);
1592    }
1593  }
1594
1595  autoCreateBlock();
1596  appendStmt(Block, DS);
1597
1598  // Keep track of the last non-null block, as 'Block' can be nulled out
1599  // if the initializer expression is something like a 'while' in a
1600  // statement-expression.
1601  CFGBlock *LastBlock = Block;
1602
1603  if (Init) {
1604    if (HasTemporaries) {
1605      // For expression with temporaries go directly to subexpression to omit
1606      // generating destructors for the second time.
1607      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1608      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1609        LastBlock = newBlock;
1610    }
1611    else {
1612      if (CFGBlock *newBlock = Visit(Init))
1613        LastBlock = newBlock;
1614    }
1615  }
1616
1617  // If the type of VD is a VLA, then we must process its size expressions.
1618  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1619       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1620    Block = addStmt(VA->getSizeExpr());
1621
1622  // Remove variable from local scope.
1623  if (ScopePos && VD == *ScopePos)
1624    ++ScopePos;
1625
1626  return Block ? Block : LastBlock;
1627}
1628
1629CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1630  // We may see an if statement in the middle of a basic block, or it may be the
1631  // first statement we are processing.  In either case, we create a new basic
1632  // block.  First, we create the blocks for the then...else statements, and
1633  // then we create the block containing the if statement.  If we were in the
1634  // middle of a block, we stop processing that block.  That block is then the
1635  // implicit successor for the "then" and "else" clauses.
1636
1637  // Save local scope position because in case of condition variable ScopePos
1638  // won't be restored when traversing AST.
1639  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1640
1641  // Create local scope for possible condition variable.
1642  // Store scope position. Add implicit destructor.
1643  if (VarDecl *VD = I->getConditionVariable()) {
1644    LocalScope::const_iterator BeginScopePos = ScopePos;
1645    addLocalScopeForVarDecl(VD);
1646    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1647  }
1648
1649  // The block we were processing is now finished.  Make it the successor
1650  // block.
1651  if (Block) {
1652    Succ = Block;
1653    if (badCFG)
1654      return 0;
1655  }
1656
1657  // Process the false branch.
1658  CFGBlock *ElseBlock = Succ;
1659
1660  if (Stmt *Else = I->getElse()) {
1661    SaveAndRestore<CFGBlock*> sv(Succ);
1662
1663    // NULL out Block so that the recursive call to Visit will
1664    // create a new basic block.
1665    Block = NULL;
1666
1667    // If branch is not a compound statement create implicit scope
1668    // and add destructors.
1669    if (!isa<CompoundStmt>(Else))
1670      addLocalScopeAndDtors(Else);
1671
1672    ElseBlock = addStmt(Else);
1673
1674    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1675      ElseBlock = sv.get();
1676    else if (Block) {
1677      if (badCFG)
1678        return 0;
1679    }
1680  }
1681
1682  // Process the true branch.
1683  CFGBlock *ThenBlock;
1684  {
1685    Stmt *Then = I->getThen();
1686    assert(Then);
1687    SaveAndRestore<CFGBlock*> sv(Succ);
1688    Block = NULL;
1689
1690    // If branch is not a compound statement create implicit scope
1691    // and add destructors.
1692    if (!isa<CompoundStmt>(Then))
1693      addLocalScopeAndDtors(Then);
1694
1695    ThenBlock = addStmt(Then);
1696
1697    if (!ThenBlock) {
1698      // We can reach here if the "then" body has all NullStmts.
1699      // Create an empty block so we can distinguish between true and false
1700      // branches in path-sensitive analyses.
1701      ThenBlock = createBlock(false);
1702      addSuccessor(ThenBlock, sv.get());
1703    } else if (Block) {
1704      if (badCFG)
1705        return 0;
1706    }
1707  }
1708
1709  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1710  // having these handle the actual control-flow jump.  Note that
1711  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1712  // we resort to the old control-flow behavior.  This special handling
1713  // removes infeasible paths from the control-flow graph by having the
1714  // control-flow transfer of '&&' or '||' go directly into the then/else
1715  // blocks directly.
1716  if (!I->getConditionVariable())
1717    if (BinaryOperator *Cond =
1718            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1719      if (Cond->isLogicalOp())
1720        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1721
1722  // Now create a new block containing the if statement.
1723  Block = createBlock(false);
1724
1725  // Set the terminator of the new block to the If statement.
1726  Block->setTerminator(I);
1727
1728  // See if this is a known constant.
1729  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1730
1731  // Now add the successors.
1732  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1733  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1734
1735  // Add the condition as the last statement in the new block.  This may create
1736  // new blocks as the condition may contain control-flow.  Any newly created
1737  // blocks will be pointed to be "Block".
1738  Block = addStmt(I->getCond());
1739
1740  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1741  // and the condition variable initialization to the CFG.
1742  if (VarDecl *VD = I->getConditionVariable()) {
1743    if (Expr *Init = VD->getInit()) {
1744      autoCreateBlock();
1745      appendStmt(Block, I->getConditionVariableDeclStmt());
1746      addStmt(Init);
1747    }
1748  }
1749
1750  return Block;
1751}
1752
1753
1754CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1755  // If we were in the middle of a block we stop processing that block.
1756  //
1757  // NOTE: If a "return" appears in the middle of a block, this means that the
1758  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1759  //       for that code; a simple "mark-and-sweep" from the entry block will be
1760  //       able to report such dead blocks.
1761
1762  // Create the new block.
1763  Block = createBlock(false);
1764
1765  // The Exit block is the only successor.
1766  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1767  addSuccessor(Block, &cfg->getExit());
1768
1769  // Add the return statement to the block.  This may create new blocks if R
1770  // contains control-flow (short-circuit operations).
1771  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1772}
1773
1774CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1775  // Get the block of the labeled statement.  Add it to our map.
1776  addStmt(L->getSubStmt());
1777  CFGBlock *LabelBlock = Block;
1778
1779  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1780    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1781
1782  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1783         "label already in map");
1784  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1785
1786  // Labels partition blocks, so this is the end of the basic block we were
1787  // processing (L is the block's label).  Because this is label (and we have
1788  // already processed the substatement) there is no extra control-flow to worry
1789  // about.
1790  LabelBlock->setLabel(L);
1791  if (badCFG)
1792    return 0;
1793
1794  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1795  Block = NULL;
1796
1797  // This block is now the implicit successor of other blocks.
1798  Succ = LabelBlock;
1799
1800  return LabelBlock;
1801}
1802
1803CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1804  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1805  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1806       et = E->capture_init_end(); it != et; ++it) {
1807    if (Expr *Init = *it) {
1808      CFGBlock *Tmp = Visit(Init);
1809      if (Tmp != 0)
1810        LastBlock = Tmp;
1811    }
1812  }
1813  return LastBlock;
1814}
1815
1816CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1817  // Goto is a control-flow statement.  Thus we stop processing the current
1818  // block and create a new one.
1819
1820  Block = createBlock(false);
1821  Block->setTerminator(G);
1822
1823  // If we already know the mapping to the label block add the successor now.
1824  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1825
1826  if (I == LabelMap.end())
1827    // We will need to backpatch this block later.
1828    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1829  else {
1830    JumpTarget JT = I->second;
1831    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1832    addSuccessor(Block, JT.block);
1833  }
1834
1835  return Block;
1836}
1837
1838CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1839  CFGBlock *LoopSuccessor = NULL;
1840
1841  // Save local scope position because in case of condition variable ScopePos
1842  // won't be restored when traversing AST.
1843  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1844
1845  // Create local scope for init statement and possible condition variable.
1846  // Add destructor for init statement and condition variable.
1847  // Store scope position for continue statement.
1848  if (Stmt *Init = F->getInit())
1849    addLocalScopeForStmt(Init);
1850  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1851
1852  if (VarDecl *VD = F->getConditionVariable())
1853    addLocalScopeForVarDecl(VD);
1854  LocalScope::const_iterator ContinueScopePos = ScopePos;
1855
1856  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1857
1858  // "for" is a control-flow statement.  Thus we stop processing the current
1859  // block.
1860  if (Block) {
1861    if (badCFG)
1862      return 0;
1863    LoopSuccessor = Block;
1864  } else
1865    LoopSuccessor = Succ;
1866
1867  // Save the current value for the break targets.
1868  // All breaks should go to the code following the loop.
1869  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1870  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1871
1872  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1873
1874  // Now create the loop body.
1875  {
1876    assert(F->getBody());
1877
1878    // Save the current values for Block, Succ, continue and break targets.
1879    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1880    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1881
1882    // Create an empty block to represent the transition block for looping back
1883    // to the head of the loop.  If we have increment code, it will
1884    // go in this block as well.
1885    Block = Succ = TransitionBlock = createBlock(false);
1886    TransitionBlock->setLoopTarget(F);
1887
1888    if (Stmt *I = F->getInc()) {
1889      // Generate increment code in its own basic block.  This is the target of
1890      // continue statements.
1891      Succ = addStmt(I);
1892    }
1893
1894    // Finish up the increment (or empty) block if it hasn't been already.
1895    if (Block) {
1896      assert(Block == Succ);
1897      if (badCFG)
1898        return 0;
1899      Block = 0;
1900    }
1901
1902   // The starting block for the loop increment is the block that should
1903   // represent the 'loop target' for looping back to the start of the loop.
1904   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1905   ContinueJumpTarget.block->setLoopTarget(F);
1906
1907    // Loop body should end with destructor of Condition variable (if any).
1908    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1909
1910    // If body is not a compound statement create implicit scope
1911    // and add destructors.
1912    if (!isa<CompoundStmt>(F->getBody()))
1913      addLocalScopeAndDtors(F->getBody());
1914
1915    // Now populate the body block, and in the process create new blocks as we
1916    // walk the body of the loop.
1917    BodyBlock = addStmt(F->getBody());
1918
1919    if (!BodyBlock) {
1920      // In the case of "for (...;...;...);" we can have a null BodyBlock.
1921      // Use the continue jump target as the proxy for the body.
1922      BodyBlock = ContinueJumpTarget.block;
1923    }
1924    else if (badCFG)
1925      return 0;
1926  }
1927
1928  // Because of short-circuit evaluation, the condition of the loop can span
1929  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1930  // evaluate the condition.
1931  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
1932
1933  do {
1934    Expr *C = F->getCond();
1935
1936    // Specially handle logical operators, which have a slightly
1937    // more optimal CFG representation.
1938    if (BinaryOperator *Cond =
1939            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
1940      if (Cond->isLogicalOp()) {
1941        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
1942          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
1943        break;
1944      }
1945
1946    // The default case when not handling logical operators.
1947    EntryConditionBlock = ExitConditionBlock = createBlock(false);
1948    ExitConditionBlock->setTerminator(F);
1949
1950    // See if this is a known constant.
1951    TryResult KnownVal(true);
1952
1953    if (C) {
1954      // Now add the actual condition to the condition block.
1955      // Because the condition itself may contain control-flow, new blocks may
1956      // be created.  Thus we update "Succ" after adding the condition.
1957      Block = ExitConditionBlock;
1958      EntryConditionBlock = addStmt(C);
1959
1960      // If this block contains a condition variable, add both the condition
1961      // variable and initializer to the CFG.
1962      if (VarDecl *VD = F->getConditionVariable()) {
1963        if (Expr *Init = VD->getInit()) {
1964          autoCreateBlock();
1965          appendStmt(Block, F->getConditionVariableDeclStmt());
1966          EntryConditionBlock = addStmt(Init);
1967          assert(Block == EntryConditionBlock);
1968        }
1969      }
1970
1971      if (Block && badCFG)
1972        return 0;
1973
1974      KnownVal = tryEvaluateBool(C);
1975    }
1976
1977    // Add the loop body entry as a successor to the condition.
1978    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1979    // Link up the condition block with the code that follows the loop.  (the
1980    // false branch).
1981    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1982
1983  } while (false);
1984
1985  // Link up the loop-back block to the entry condition block.
1986  addSuccessor(TransitionBlock, EntryConditionBlock);
1987
1988  // The condition block is the implicit successor for any code above the loop.
1989  Succ = EntryConditionBlock;
1990
1991  // If the loop contains initialization, create a new block for those
1992  // statements.  This block can also contain statements that precede the loop.
1993  if (Stmt *I = F->getInit()) {
1994    Block = createBlock();
1995    return addStmt(I);
1996  }
1997
1998  // There is no loop initialization.  We are thus basically a while loop.
1999  // NULL out Block to force lazy block construction.
2000  Block = NULL;
2001  Succ = EntryConditionBlock;
2002  return EntryConditionBlock;
2003}
2004
2005CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2006  if (asc.alwaysAdd(*this, M)) {
2007    autoCreateBlock();
2008    appendStmt(Block, M);
2009  }
2010  return Visit(M->getBase());
2011}
2012
2013CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2014  // Objective-C fast enumeration 'for' statements:
2015  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2016  //
2017  //  for ( Type newVariable in collection_expression ) { statements }
2018  //
2019  //  becomes:
2020  //
2021  //   prologue:
2022  //     1. collection_expression
2023  //     T. jump to loop_entry
2024  //   loop_entry:
2025  //     1. side-effects of element expression
2026  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2027  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2028  //   TB:
2029  //     statements
2030  //     T. jump to loop_entry
2031  //   FB:
2032  //     what comes after
2033  //
2034  //  and
2035  //
2036  //  Type existingItem;
2037  //  for ( existingItem in expression ) { statements }
2038  //
2039  //  becomes:
2040  //
2041  //   the same with newVariable replaced with existingItem; the binding works
2042  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2043  //   a DeclStmt and the other returns a DeclRefExpr.
2044  //
2045
2046  CFGBlock *LoopSuccessor = 0;
2047
2048  if (Block) {
2049    if (badCFG)
2050      return 0;
2051    LoopSuccessor = Block;
2052    Block = 0;
2053  } else
2054    LoopSuccessor = Succ;
2055
2056  // Build the condition blocks.
2057  CFGBlock *ExitConditionBlock = createBlock(false);
2058
2059  // Set the terminator for the "exit" condition block.
2060  ExitConditionBlock->setTerminator(S);
2061
2062  // The last statement in the block should be the ObjCForCollectionStmt, which
2063  // performs the actual binding to 'element' and determines if there are any
2064  // more items in the collection.
2065  appendStmt(ExitConditionBlock, S);
2066  Block = ExitConditionBlock;
2067
2068  // Walk the 'element' expression to see if there are any side-effects.  We
2069  // generate new blocks as necessary.  We DON'T add the statement by default to
2070  // the CFG unless it contains control-flow.
2071  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2072                                        AddStmtChoice::NotAlwaysAdd);
2073  if (Block) {
2074    if (badCFG)
2075      return 0;
2076    Block = 0;
2077  }
2078
2079  // The condition block is the implicit successor for the loop body as well as
2080  // any code above the loop.
2081  Succ = EntryConditionBlock;
2082
2083  // Now create the true branch.
2084  {
2085    // Save the current values for Succ, continue and break targets.
2086    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2087    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2088        save_break(BreakJumpTarget);
2089
2090    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2091    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2092
2093    CFGBlock *BodyBlock = addStmt(S->getBody());
2094
2095    if (!BodyBlock)
2096      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2097    else if (Block) {
2098      if (badCFG)
2099        return 0;
2100    }
2101
2102    // This new body block is a successor to our "exit" condition block.
2103    addSuccessor(ExitConditionBlock, BodyBlock);
2104  }
2105
2106  // Link up the condition block with the code that follows the loop.
2107  // (the false branch).
2108  addSuccessor(ExitConditionBlock, LoopSuccessor);
2109
2110  // Now create a prologue block to contain the collection expression.
2111  Block = createBlock();
2112  return addStmt(S->getCollection());
2113}
2114
2115CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2116  // Inline the body.
2117  return addStmt(S->getSubStmt());
2118  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2119}
2120
2121CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2122  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2123
2124  // Inline the body.
2125  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2126
2127  // The sync body starts its own basic block.  This makes it a little easier
2128  // for diagnostic clients.
2129  if (SyncBlock) {
2130    if (badCFG)
2131      return 0;
2132
2133    Block = 0;
2134    Succ = SyncBlock;
2135  }
2136
2137  // Add the @synchronized to the CFG.
2138  autoCreateBlock();
2139  appendStmt(Block, S);
2140
2141  // Inline the sync expression.
2142  return addStmt(S->getSynchExpr());
2143}
2144
2145CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2146  // FIXME
2147  return NYS();
2148}
2149
2150CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2151  autoCreateBlock();
2152
2153  // Add the PseudoObject as the last thing.
2154  appendStmt(Block, E);
2155
2156  CFGBlock *lastBlock = Block;
2157
2158  // Before that, evaluate all of the semantics in order.  In
2159  // CFG-land, that means appending them in reverse order.
2160  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2161    Expr *Semantic = E->getSemanticExpr(--i);
2162
2163    // If the semantic is an opaque value, we're being asked to bind
2164    // it to its source expression.
2165    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2166      Semantic = OVE->getSourceExpr();
2167
2168    if (CFGBlock *B = Visit(Semantic))
2169      lastBlock = B;
2170  }
2171
2172  return lastBlock;
2173}
2174
2175CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2176  CFGBlock *LoopSuccessor = NULL;
2177
2178  // Save local scope position because in case of condition variable ScopePos
2179  // won't be restored when traversing AST.
2180  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2181
2182  // Create local scope for possible condition variable.
2183  // Store scope position for continue statement.
2184  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2185  if (VarDecl *VD = W->getConditionVariable()) {
2186    addLocalScopeForVarDecl(VD);
2187    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2188  }
2189
2190  // "while" is a control-flow statement.  Thus we stop processing the current
2191  // block.
2192  if (Block) {
2193    if (badCFG)
2194      return 0;
2195    LoopSuccessor = Block;
2196    Block = 0;
2197  } else {
2198    LoopSuccessor = Succ;
2199  }
2200
2201  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2202
2203  // Process the loop body.
2204  {
2205    assert(W->getBody());
2206
2207    // Save the current values for Block, Succ, continue and break targets.
2208    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2209    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2210                               save_break(BreakJumpTarget);
2211
2212    // Create an empty block to represent the transition block for looping back
2213    // to the head of the loop.
2214    Succ = TransitionBlock = createBlock(false);
2215    TransitionBlock->setLoopTarget(W);
2216    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2217
2218    // All breaks should go to the code following the loop.
2219    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2220
2221    // Loop body should end with destructor of Condition variable (if any).
2222    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2223
2224    // If body is not a compound statement create implicit scope
2225    // and add destructors.
2226    if (!isa<CompoundStmt>(W->getBody()))
2227      addLocalScopeAndDtors(W->getBody());
2228
2229    // Create the body.  The returned block is the entry to the loop body.
2230    BodyBlock = addStmt(W->getBody());
2231
2232    if (!BodyBlock)
2233      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2234    else if (Block && badCFG)
2235      return 0;
2236  }
2237
2238  // Because of short-circuit evaluation, the condition of the loop can span
2239  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2240  // evaluate the condition.
2241  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2242
2243  do {
2244    Expr *C = W->getCond();
2245
2246    // Specially handle logical operators, which have a slightly
2247    // more optimal CFG representation.
2248    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2249      if (Cond->isLogicalOp()) {
2250        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2251          VisitLogicalOperator(Cond, W, BodyBlock,
2252                               LoopSuccessor);
2253        break;
2254      }
2255
2256    // The default case when not handling logical operators.
2257    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2258    ExitConditionBlock->setTerminator(W);
2259
2260    // Now add the actual condition to the condition block.
2261    // Because the condition itself may contain control-flow, new blocks may
2262    // be created.  Thus we update "Succ" after adding the condition.
2263    Block = ExitConditionBlock;
2264    Block = EntryConditionBlock = addStmt(C);
2265
2266    // If this block contains a condition variable, add both the condition
2267    // variable and initializer to the CFG.
2268    if (VarDecl *VD = W->getConditionVariable()) {
2269      if (Expr *Init = VD->getInit()) {
2270        autoCreateBlock();
2271        appendStmt(Block, W->getConditionVariableDeclStmt());
2272        EntryConditionBlock = addStmt(Init);
2273        assert(Block == EntryConditionBlock);
2274      }
2275    }
2276
2277    if (Block && badCFG)
2278      return 0;
2279
2280    // See if this is a known constant.
2281    const TryResult& KnownVal = tryEvaluateBool(C);
2282
2283    // Add the loop body entry as a successor to the condition.
2284    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2285    // Link up the condition block with the code that follows the loop.  (the
2286    // false branch).
2287    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2288
2289  } while(false);
2290
2291  // Link up the loop-back block to the entry condition block.
2292  addSuccessor(TransitionBlock, EntryConditionBlock);
2293
2294  // There can be no more statements in the condition block since we loop back
2295  // to this block.  NULL out Block to force lazy creation of another block.
2296  Block = NULL;
2297
2298  // Return the condition block, which is the dominating block for the loop.
2299  Succ = EntryConditionBlock;
2300  return EntryConditionBlock;
2301}
2302
2303
2304CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2305  // FIXME: For now we pretend that @catch and the code it contains does not
2306  //  exit.
2307  return Block;
2308}
2309
2310CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2311  // FIXME: This isn't complete.  We basically treat @throw like a return
2312  //  statement.
2313
2314  // If we were in the middle of a block we stop processing that block.
2315  if (badCFG)
2316    return 0;
2317
2318  // Create the new block.
2319  Block = createBlock(false);
2320
2321  // The Exit block is the only successor.
2322  addSuccessor(Block, &cfg->getExit());
2323
2324  // Add the statement to the block.  This may create new blocks if S contains
2325  // control-flow (short-circuit operations).
2326  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2327}
2328
2329CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2330  // If we were in the middle of a block we stop processing that block.
2331  if (badCFG)
2332    return 0;
2333
2334  // Create the new block.
2335  Block = createBlock(false);
2336
2337  if (TryTerminatedBlock)
2338    // The current try statement is the only successor.
2339    addSuccessor(Block, TryTerminatedBlock);
2340  else
2341    // otherwise the Exit block is the only successor.
2342    addSuccessor(Block, &cfg->getExit());
2343
2344  // Add the statement to the block.  This may create new blocks if S contains
2345  // control-flow (short-circuit operations).
2346  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2347}
2348
2349CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2350  CFGBlock *LoopSuccessor = NULL;
2351
2352  // "do...while" is a control-flow statement.  Thus we stop processing the
2353  // current block.
2354  if (Block) {
2355    if (badCFG)
2356      return 0;
2357    LoopSuccessor = Block;
2358  } else
2359    LoopSuccessor = Succ;
2360
2361  // Because of short-circuit evaluation, the condition of the loop can span
2362  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2363  // evaluate the condition.
2364  CFGBlock *ExitConditionBlock = createBlock(false);
2365  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2366
2367  // Set the terminator for the "exit" condition block.
2368  ExitConditionBlock->setTerminator(D);
2369
2370  // Now add the actual condition to the condition block.  Because the condition
2371  // itself may contain control-flow, new blocks may be created.
2372  if (Stmt *C = D->getCond()) {
2373    Block = ExitConditionBlock;
2374    EntryConditionBlock = addStmt(C);
2375    if (Block) {
2376      if (badCFG)
2377        return 0;
2378    }
2379  }
2380
2381  // The condition block is the implicit successor for the loop body.
2382  Succ = EntryConditionBlock;
2383
2384  // See if this is a known constant.
2385  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2386
2387  // Process the loop body.
2388  CFGBlock *BodyBlock = NULL;
2389  {
2390    assert(D->getBody());
2391
2392    // Save the current values for Block, Succ, and continue and break targets
2393    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2394    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2395        save_break(BreakJumpTarget);
2396
2397    // All continues within this loop should go to the condition block
2398    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2399
2400    // All breaks should go to the code following the loop.
2401    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2402
2403    // NULL out Block to force lazy instantiation of blocks for the body.
2404    Block = NULL;
2405
2406    // If body is not a compound statement create implicit scope
2407    // and add destructors.
2408    if (!isa<CompoundStmt>(D->getBody()))
2409      addLocalScopeAndDtors(D->getBody());
2410
2411    // Create the body.  The returned block is the entry to the loop body.
2412    BodyBlock = addStmt(D->getBody());
2413
2414    if (!BodyBlock)
2415      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2416    else if (Block) {
2417      if (badCFG)
2418        return 0;
2419    }
2420
2421    if (!KnownVal.isFalse()) {
2422      // Add an intermediate block between the BodyBlock and the
2423      // ExitConditionBlock to represent the "loop back" transition.  Create an
2424      // empty block to represent the transition block for looping back to the
2425      // head of the loop.
2426      // FIXME: Can we do this more efficiently without adding another block?
2427      Block = NULL;
2428      Succ = BodyBlock;
2429      CFGBlock *LoopBackBlock = createBlock();
2430      LoopBackBlock->setLoopTarget(D);
2431
2432      // Add the loop body entry as a successor to the condition.
2433      addSuccessor(ExitConditionBlock, LoopBackBlock);
2434    }
2435    else
2436      addSuccessor(ExitConditionBlock, NULL);
2437  }
2438
2439  // Link up the condition block with the code that follows the loop.
2440  // (the false branch).
2441  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2442
2443  // There can be no more statements in the body block(s) since we loop back to
2444  // the body.  NULL out Block to force lazy creation of another block.
2445  Block = NULL;
2446
2447  // Return the loop body, which is the dominating block for the loop.
2448  Succ = BodyBlock;
2449  return BodyBlock;
2450}
2451
2452CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2453  // "continue" is a control-flow statement.  Thus we stop processing the
2454  // current block.
2455  if (badCFG)
2456    return 0;
2457
2458  // Now create a new block that ends with the continue statement.
2459  Block = createBlock(false);
2460  Block->setTerminator(C);
2461
2462  // If there is no target for the continue, then we are looking at an
2463  // incomplete AST.  This means the CFG cannot be constructed.
2464  if (ContinueJumpTarget.block) {
2465    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2466    addSuccessor(Block, ContinueJumpTarget.block);
2467  } else
2468    badCFG = true;
2469
2470  return Block;
2471}
2472
2473CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2474                                                    AddStmtChoice asc) {
2475
2476  if (asc.alwaysAdd(*this, E)) {
2477    autoCreateBlock();
2478    appendStmt(Block, E);
2479  }
2480
2481  // VLA types have expressions that must be evaluated.
2482  CFGBlock *lastBlock = Block;
2483
2484  if (E->isArgumentType()) {
2485    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2486         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2487      lastBlock = addStmt(VA->getSizeExpr());
2488  }
2489  return lastBlock;
2490}
2491
2492/// VisitStmtExpr - Utility method to handle (nested) statement
2493///  expressions (a GCC extension).
2494CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2495  if (asc.alwaysAdd(*this, SE)) {
2496    autoCreateBlock();
2497    appendStmt(Block, SE);
2498  }
2499  return VisitCompoundStmt(SE->getSubStmt());
2500}
2501
2502CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2503  // "switch" is a control-flow statement.  Thus we stop processing the current
2504  // block.
2505  CFGBlock *SwitchSuccessor = NULL;
2506
2507  // Save local scope position because in case of condition variable ScopePos
2508  // won't be restored when traversing AST.
2509  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2510
2511  // Create local scope for possible condition variable.
2512  // Store scope position. Add implicit destructor.
2513  if (VarDecl *VD = Terminator->getConditionVariable()) {
2514    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2515    addLocalScopeForVarDecl(VD);
2516    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2517  }
2518
2519  if (Block) {
2520    if (badCFG)
2521      return 0;
2522    SwitchSuccessor = Block;
2523  } else SwitchSuccessor = Succ;
2524
2525  // Save the current "switch" context.
2526  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2527                            save_default(DefaultCaseBlock);
2528  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2529
2530  // Set the "default" case to be the block after the switch statement.  If the
2531  // switch statement contains a "default:", this value will be overwritten with
2532  // the block for that code.
2533  DefaultCaseBlock = SwitchSuccessor;
2534
2535  // Create a new block that will contain the switch statement.
2536  SwitchTerminatedBlock = createBlock(false);
2537
2538  // Now process the switch body.  The code after the switch is the implicit
2539  // successor.
2540  Succ = SwitchSuccessor;
2541  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2542
2543  // When visiting the body, the case statements should automatically get linked
2544  // up to the switch.  We also don't keep a pointer to the body, since all
2545  // control-flow from the switch goes to case/default statements.
2546  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2547  Block = NULL;
2548
2549  // For pruning unreachable case statements, save the current state
2550  // for tracking the condition value.
2551  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2552                                                     false);
2553
2554  // Determine if the switch condition can be explicitly evaluated.
2555  assert(Terminator->getCond() && "switch condition must be non-NULL");
2556  Expr::EvalResult result;
2557  bool b = tryEvaluate(Terminator->getCond(), result);
2558  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2559                                                    b ? &result : 0);
2560
2561  // If body is not a compound statement create implicit scope
2562  // and add destructors.
2563  if (!isa<CompoundStmt>(Terminator->getBody()))
2564    addLocalScopeAndDtors(Terminator->getBody());
2565
2566  addStmt(Terminator->getBody());
2567  if (Block) {
2568    if (badCFG)
2569      return 0;
2570  }
2571
2572  // If we have no "default:" case, the default transition is to the code
2573  // following the switch body.  Moreover, take into account if all the
2574  // cases of a switch are covered (e.g., switching on an enum value).
2575  addSuccessor(SwitchTerminatedBlock,
2576               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2577               ? 0 : DefaultCaseBlock);
2578
2579  // Add the terminator and condition in the switch block.
2580  SwitchTerminatedBlock->setTerminator(Terminator);
2581  Block = SwitchTerminatedBlock;
2582  Block = addStmt(Terminator->getCond());
2583
2584  // Finally, if the SwitchStmt contains a condition variable, add both the
2585  // SwitchStmt and the condition variable initialization to the CFG.
2586  if (VarDecl *VD = Terminator->getConditionVariable()) {
2587    if (Expr *Init = VD->getInit()) {
2588      autoCreateBlock();
2589      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2590      addStmt(Init);
2591    }
2592  }
2593
2594  return Block;
2595}
2596
2597static bool shouldAddCase(bool &switchExclusivelyCovered,
2598                          const Expr::EvalResult *switchCond,
2599                          const CaseStmt *CS,
2600                          ASTContext &Ctx) {
2601  if (!switchCond)
2602    return true;
2603
2604  bool addCase = false;
2605
2606  if (!switchExclusivelyCovered) {
2607    if (switchCond->Val.isInt()) {
2608      // Evaluate the LHS of the case value.
2609      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2610      const llvm::APSInt &condInt = switchCond->Val.getInt();
2611
2612      if (condInt == lhsInt) {
2613        addCase = true;
2614        switchExclusivelyCovered = true;
2615      }
2616      else if (condInt < lhsInt) {
2617        if (const Expr *RHS = CS->getRHS()) {
2618          // Evaluate the RHS of the case value.
2619          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2620          if (V2 <= condInt) {
2621            addCase = true;
2622            switchExclusivelyCovered = true;
2623          }
2624        }
2625      }
2626    }
2627    else
2628      addCase = true;
2629  }
2630  return addCase;
2631}
2632
2633CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2634  // CaseStmts are essentially labels, so they are the first statement in a
2635  // block.
2636  CFGBlock *TopBlock = 0, *LastBlock = 0;
2637
2638  if (Stmt *Sub = CS->getSubStmt()) {
2639    // For deeply nested chains of CaseStmts, instead of doing a recursion
2640    // (which can blow out the stack), manually unroll and create blocks
2641    // along the way.
2642    while (isa<CaseStmt>(Sub)) {
2643      CFGBlock *currentBlock = createBlock(false);
2644      currentBlock->setLabel(CS);
2645
2646      if (TopBlock)
2647        addSuccessor(LastBlock, currentBlock);
2648      else
2649        TopBlock = currentBlock;
2650
2651      addSuccessor(SwitchTerminatedBlock,
2652                   shouldAddCase(switchExclusivelyCovered, switchCond,
2653                                 CS, *Context)
2654                   ? currentBlock : 0);
2655
2656      LastBlock = currentBlock;
2657      CS = cast<CaseStmt>(Sub);
2658      Sub = CS->getSubStmt();
2659    }
2660
2661    addStmt(Sub);
2662  }
2663
2664  CFGBlock *CaseBlock = Block;
2665  if (!CaseBlock)
2666    CaseBlock = createBlock();
2667
2668  // Cases statements partition blocks, so this is the top of the basic block we
2669  // were processing (the "case XXX:" is the label).
2670  CaseBlock->setLabel(CS);
2671
2672  if (badCFG)
2673    return 0;
2674
2675  // Add this block to the list of successors for the block with the switch
2676  // statement.
2677  assert(SwitchTerminatedBlock);
2678  addSuccessor(SwitchTerminatedBlock,
2679               shouldAddCase(switchExclusivelyCovered, switchCond,
2680                             CS, *Context)
2681               ? CaseBlock : 0);
2682
2683  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2684  Block = NULL;
2685
2686  if (TopBlock) {
2687    addSuccessor(LastBlock, CaseBlock);
2688    Succ = TopBlock;
2689  } else {
2690    // This block is now the implicit successor of other blocks.
2691    Succ = CaseBlock;
2692  }
2693
2694  return Succ;
2695}
2696
2697CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2698  if (Terminator->getSubStmt())
2699    addStmt(Terminator->getSubStmt());
2700
2701  DefaultCaseBlock = Block;
2702
2703  if (!DefaultCaseBlock)
2704    DefaultCaseBlock = createBlock();
2705
2706  // Default statements partition blocks, so this is the top of the basic block
2707  // we were processing (the "default:" is the label).
2708  DefaultCaseBlock->setLabel(Terminator);
2709
2710  if (badCFG)
2711    return 0;
2712
2713  // Unlike case statements, we don't add the default block to the successors
2714  // for the switch statement immediately.  This is done when we finish
2715  // processing the switch statement.  This allows for the default case
2716  // (including a fall-through to the code after the switch statement) to always
2717  // be the last successor of a switch-terminated block.
2718
2719  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2720  Block = NULL;
2721
2722  // This block is now the implicit successor of other blocks.
2723  Succ = DefaultCaseBlock;
2724
2725  return DefaultCaseBlock;
2726}
2727
2728CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2729  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2730  // current block.
2731  CFGBlock *TrySuccessor = NULL;
2732
2733  if (Block) {
2734    if (badCFG)
2735      return 0;
2736    TrySuccessor = Block;
2737  } else TrySuccessor = Succ;
2738
2739  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2740
2741  // Create a new block that will contain the try statement.
2742  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2743  // Add the terminator in the try block.
2744  NewTryTerminatedBlock->setTerminator(Terminator);
2745
2746  bool HasCatchAll = false;
2747  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2748    // The code after the try is the implicit successor.
2749    Succ = TrySuccessor;
2750    CXXCatchStmt *CS = Terminator->getHandler(h);
2751    if (CS->getExceptionDecl() == 0) {
2752      HasCatchAll = true;
2753    }
2754    Block = NULL;
2755    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2756    if (CatchBlock == 0)
2757      return 0;
2758    // Add this block to the list of successors for the block with the try
2759    // statement.
2760    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2761  }
2762  if (!HasCatchAll) {
2763    if (PrevTryTerminatedBlock)
2764      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2765    else
2766      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2767  }
2768
2769  // The code after the try is the implicit successor.
2770  Succ = TrySuccessor;
2771
2772  // Save the current "try" context.
2773  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2774  cfg->addTryDispatchBlock(TryTerminatedBlock);
2775
2776  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2777  Block = NULL;
2778  Block = addStmt(Terminator->getTryBlock());
2779  return Block;
2780}
2781
2782CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2783  // CXXCatchStmt are treated like labels, so they are the first statement in a
2784  // block.
2785
2786  // Save local scope position because in case of exception variable ScopePos
2787  // won't be restored when traversing AST.
2788  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2789
2790  // Create local scope for possible exception variable.
2791  // Store scope position. Add implicit destructor.
2792  if (VarDecl *VD = CS->getExceptionDecl()) {
2793    LocalScope::const_iterator BeginScopePos = ScopePos;
2794    addLocalScopeForVarDecl(VD);
2795    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2796  }
2797
2798  if (CS->getHandlerBlock())
2799    addStmt(CS->getHandlerBlock());
2800
2801  CFGBlock *CatchBlock = Block;
2802  if (!CatchBlock)
2803    CatchBlock = createBlock();
2804
2805  // CXXCatchStmt is more than just a label.  They have semantic meaning
2806  // as well, as they implicitly "initialize" the catch variable.  Add
2807  // it to the CFG as a CFGElement so that the control-flow of these
2808  // semantics gets captured.
2809  appendStmt(CatchBlock, CS);
2810
2811  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2812  // labels.
2813  CatchBlock->setLabel(CS);
2814
2815  // Bail out if the CFG is bad.
2816  if (badCFG)
2817    return 0;
2818
2819  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2820  Block = NULL;
2821
2822  return CatchBlock;
2823}
2824
2825CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2826  // C++0x for-range statements are specified as [stmt.ranged]:
2827  //
2828  // {
2829  //   auto && __range = range-init;
2830  //   for ( auto __begin = begin-expr,
2831  //         __end = end-expr;
2832  //         __begin != __end;
2833  //         ++__begin ) {
2834  //     for-range-declaration = *__begin;
2835  //     statement
2836  //   }
2837  // }
2838
2839  // Save local scope position before the addition of the implicit variables.
2840  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2841
2842  // Create local scopes and destructors for range, begin and end variables.
2843  if (Stmt *Range = S->getRangeStmt())
2844    addLocalScopeForStmt(Range);
2845  if (Stmt *BeginEnd = S->getBeginEndStmt())
2846    addLocalScopeForStmt(BeginEnd);
2847  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2848
2849  LocalScope::const_iterator ContinueScopePos = ScopePos;
2850
2851  // "for" is a control-flow statement.  Thus we stop processing the current
2852  // block.
2853  CFGBlock *LoopSuccessor = NULL;
2854  if (Block) {
2855    if (badCFG)
2856      return 0;
2857    LoopSuccessor = Block;
2858  } else
2859    LoopSuccessor = Succ;
2860
2861  // Save the current value for the break targets.
2862  // All breaks should go to the code following the loop.
2863  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2864  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2865
2866  // The block for the __begin != __end expression.
2867  CFGBlock *ConditionBlock = createBlock(false);
2868  ConditionBlock->setTerminator(S);
2869
2870  // Now add the actual condition to the condition block.
2871  if (Expr *C = S->getCond()) {
2872    Block = ConditionBlock;
2873    CFGBlock *BeginConditionBlock = addStmt(C);
2874    if (badCFG)
2875      return 0;
2876    assert(BeginConditionBlock == ConditionBlock &&
2877           "condition block in for-range was unexpectedly complex");
2878    (void)BeginConditionBlock;
2879  }
2880
2881  // The condition block is the implicit successor for the loop body as well as
2882  // any code above the loop.
2883  Succ = ConditionBlock;
2884
2885  // See if this is a known constant.
2886  TryResult KnownVal(true);
2887
2888  if (S->getCond())
2889    KnownVal = tryEvaluateBool(S->getCond());
2890
2891  // Now create the loop body.
2892  {
2893    assert(S->getBody());
2894
2895    // Save the current values for Block, Succ, and continue targets.
2896    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2897    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2898
2899    // Generate increment code in its own basic block.  This is the target of
2900    // continue statements.
2901    Block = 0;
2902    Succ = addStmt(S->getInc());
2903    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2904
2905    // The starting block for the loop increment is the block that should
2906    // represent the 'loop target' for looping back to the start of the loop.
2907    ContinueJumpTarget.block->setLoopTarget(S);
2908
2909    // Finish up the increment block and prepare to start the loop body.
2910    assert(Block);
2911    if (badCFG)
2912      return 0;
2913    Block = 0;
2914
2915
2916    // Add implicit scope and dtors for loop variable.
2917    addLocalScopeAndDtors(S->getLoopVarStmt());
2918
2919    // Populate a new block to contain the loop body and loop variable.
2920    Block = addStmt(S->getBody());
2921    if (badCFG)
2922      return 0;
2923    Block = addStmt(S->getLoopVarStmt());
2924    if (badCFG)
2925      return 0;
2926
2927    // This new body block is a successor to our condition block.
2928    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2929  }
2930
2931  // Link up the condition block with the code that follows the loop (the
2932  // false branch).
2933  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2934
2935  // Add the initialization statements.
2936  Block = createBlock();
2937  addStmt(S->getBeginEndStmt());
2938  return addStmt(S->getRangeStmt());
2939}
2940
2941CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2942    AddStmtChoice asc) {
2943  if (BuildOpts.AddImplicitDtors) {
2944    // If adding implicit destructors visit the full expression for adding
2945    // destructors of temporaries.
2946    VisitForTemporaryDtors(E->getSubExpr());
2947
2948    // Full expression has to be added as CFGStmt so it will be sequenced
2949    // before destructors of it's temporaries.
2950    asc = asc.withAlwaysAdd(true);
2951  }
2952  return Visit(E->getSubExpr(), asc);
2953}
2954
2955CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2956                                                AddStmtChoice asc) {
2957  if (asc.alwaysAdd(*this, E)) {
2958    autoCreateBlock();
2959    appendStmt(Block, E);
2960
2961    // We do not want to propagate the AlwaysAdd property.
2962    asc = asc.withAlwaysAdd(false);
2963  }
2964  return Visit(E->getSubExpr(), asc);
2965}
2966
2967CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2968                                            AddStmtChoice asc) {
2969  autoCreateBlock();
2970  appendStmt(Block, C);
2971
2972  return VisitChildren(C);
2973}
2974
2975CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2976                                                 AddStmtChoice asc) {
2977  if (asc.alwaysAdd(*this, E)) {
2978    autoCreateBlock();
2979    appendStmt(Block, E);
2980    // We do not want to propagate the AlwaysAdd property.
2981    asc = asc.withAlwaysAdd(false);
2982  }
2983  return Visit(E->getSubExpr(), asc);
2984}
2985
2986CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2987                                                  AddStmtChoice asc) {
2988  autoCreateBlock();
2989  appendStmt(Block, C);
2990  return VisitChildren(C);
2991}
2992
2993CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2994                                            AddStmtChoice asc) {
2995  if (asc.alwaysAdd(*this, E)) {
2996    autoCreateBlock();
2997    appendStmt(Block, E);
2998  }
2999  return Visit(E->getSubExpr(), AddStmtChoice());
3000}
3001
3002CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3003  // Lazily create the indirect-goto dispatch block if there isn't one already.
3004  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3005
3006  if (!IBlock) {
3007    IBlock = createBlock(false);
3008    cfg->setIndirectGotoBlock(IBlock);
3009  }
3010
3011  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3012  // current block and create a new one.
3013  if (badCFG)
3014    return 0;
3015
3016  Block = createBlock(false);
3017  Block->setTerminator(I);
3018  addSuccessor(Block, IBlock);
3019  return addStmt(I->getTarget());
3020}
3021
3022CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3023tryAgain:
3024  if (!E) {
3025    badCFG = true;
3026    return NULL;
3027  }
3028  switch (E->getStmtClass()) {
3029    default:
3030      return VisitChildrenForTemporaryDtors(E);
3031
3032    case Stmt::BinaryOperatorClass:
3033      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3034
3035    case Stmt::CXXBindTemporaryExprClass:
3036      return VisitCXXBindTemporaryExprForTemporaryDtors(
3037          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3038
3039    case Stmt::BinaryConditionalOperatorClass:
3040    case Stmt::ConditionalOperatorClass:
3041      return VisitConditionalOperatorForTemporaryDtors(
3042          cast<AbstractConditionalOperator>(E), BindToTemporary);
3043
3044    case Stmt::ImplicitCastExprClass:
3045      // For implicit cast we want BindToTemporary to be passed further.
3046      E = cast<CastExpr>(E)->getSubExpr();
3047      goto tryAgain;
3048
3049    case Stmt::ParenExprClass:
3050      E = cast<ParenExpr>(E)->getSubExpr();
3051      goto tryAgain;
3052
3053    case Stmt::MaterializeTemporaryExprClass:
3054      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3055      goto tryAgain;
3056  }
3057}
3058
3059CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3060  // When visiting children for destructors we want to visit them in reverse
3061  // order. Because there's no reverse iterator for children must to reverse
3062  // them in helper vector.
3063  typedef SmallVector<Stmt *, 4> ChildrenVect;
3064  ChildrenVect ChildrenRev;
3065  for (Stmt::child_range I = E->children(); I; ++I) {
3066    if (*I) ChildrenRev.push_back(*I);
3067  }
3068
3069  CFGBlock *B = Block;
3070  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
3071      L = ChildrenRev.rend(); I != L; ++I) {
3072    if (CFGBlock *R = VisitForTemporaryDtors(*I))
3073      B = R;
3074  }
3075  return B;
3076}
3077
3078CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3079  if (E->isLogicalOp()) {
3080    // Destructors for temporaries in LHS expression should be called after
3081    // those for RHS expression. Even if this will unnecessarily create a block,
3082    // this block will be used at least by the full expression.
3083    autoCreateBlock();
3084    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3085    if (badCFG)
3086      return NULL;
3087
3088    Succ = ConfluenceBlock;
3089    Block = NULL;
3090    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3091
3092    if (RHSBlock) {
3093      if (badCFG)
3094        return NULL;
3095
3096      // If RHS expression did produce destructors we need to connect created
3097      // blocks to CFG in same manner as for binary operator itself.
3098      CFGBlock *LHSBlock = createBlock(false);
3099      LHSBlock->setTerminator(CFGTerminator(E, true));
3100
3101      // For binary operator LHS block is before RHS in list of predecessors
3102      // of ConfluenceBlock.
3103      std::reverse(ConfluenceBlock->pred_begin(),
3104          ConfluenceBlock->pred_end());
3105
3106      // See if this is a known constant.
3107      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3108      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3109        KnownVal.negate();
3110
3111      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3112      // itself.
3113      if (E->getOpcode() == BO_LOr) {
3114        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3115        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3116      } else {
3117        assert (E->getOpcode() == BO_LAnd);
3118        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3119        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3120      }
3121
3122      Block = LHSBlock;
3123      return LHSBlock;
3124    }
3125
3126    Block = ConfluenceBlock;
3127    return ConfluenceBlock;
3128  }
3129
3130  if (E->isAssignmentOp()) {
3131    // For assignment operator (=) LHS expression is visited
3132    // before RHS expression. For destructors visit them in reverse order.
3133    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3134    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3135    return LHSBlock ? LHSBlock : RHSBlock;
3136  }
3137
3138  // For any other binary operator RHS expression is visited before
3139  // LHS expression (order of children). For destructors visit them in reverse
3140  // order.
3141  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3142  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3143  return RHSBlock ? RHSBlock : LHSBlock;
3144}
3145
3146CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3147    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3148  // First add destructors for temporaries in subexpression.
3149  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3150  if (!BindToTemporary) {
3151    // If lifetime of temporary is not prolonged (by assigning to constant
3152    // reference) add destructor for it.
3153
3154    // If the destructor is marked as a no-return destructor, we need to create
3155    // a new block for the destructor which does not have as a successor
3156    // anything built thus far. Control won't flow out of this block.
3157    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3158    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3159      Block = createNoReturnBlock();
3160    else
3161      autoCreateBlock();
3162
3163    appendTemporaryDtor(Block, E);
3164    B = Block;
3165  }
3166  return B;
3167}
3168
3169CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3170    AbstractConditionalOperator *E, bool BindToTemporary) {
3171  // First add destructors for condition expression.  Even if this will
3172  // unnecessarily create a block, this block will be used at least by the full
3173  // expression.
3174  autoCreateBlock();
3175  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3176  if (badCFG)
3177    return NULL;
3178  if (BinaryConditionalOperator *BCO
3179        = dyn_cast<BinaryConditionalOperator>(E)) {
3180    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3181    if (badCFG)
3182      return NULL;
3183  }
3184
3185  // Try to add block with destructors for LHS expression.
3186  CFGBlock *LHSBlock = NULL;
3187  Succ = ConfluenceBlock;
3188  Block = NULL;
3189  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3190  if (badCFG)
3191    return NULL;
3192
3193  // Try to add block with destructors for RHS expression;
3194  Succ = ConfluenceBlock;
3195  Block = NULL;
3196  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3197                                              BindToTemporary);
3198  if (badCFG)
3199    return NULL;
3200
3201  if (!RHSBlock && !LHSBlock) {
3202    // If neither LHS nor RHS expression had temporaries to destroy don't create
3203    // more blocks.
3204    Block = ConfluenceBlock;
3205    return Block;
3206  }
3207
3208  Block = createBlock(false);
3209  Block->setTerminator(CFGTerminator(E, true));
3210
3211  // See if this is a known constant.
3212  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3213
3214  if (LHSBlock) {
3215    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3216  } else if (KnownVal.isFalse()) {
3217    addSuccessor(Block, NULL);
3218  } else {
3219    addSuccessor(Block, ConfluenceBlock);
3220    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3221  }
3222
3223  if (!RHSBlock)
3224    RHSBlock = ConfluenceBlock;
3225  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3226
3227  return Block;
3228}
3229
3230} // end anonymous namespace
3231
3232/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3233///  no successors or predecessors.  If this is the first block created in the
3234///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3235CFGBlock *CFG::createBlock() {
3236  bool first_block = begin() == end();
3237
3238  // Create the block.
3239  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3240  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3241  Blocks.push_back(Mem, BlkBVC);
3242
3243  // If this is the first block, set it as the Entry and Exit.
3244  if (first_block)
3245    Entry = Exit = &back();
3246
3247  // Return the block.
3248  return &back();
3249}
3250
3251/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3252///  CFG is returned to the caller.
3253CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3254    const BuildOptions &BO) {
3255  CFGBuilder Builder(C, BO);
3256  return Builder.buildCFG(D, Statement);
3257}
3258
3259const CXXDestructorDecl *
3260CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3261  switch (getKind()) {
3262    case CFGElement::Invalid:
3263    case CFGElement::Statement:
3264    case CFGElement::Initializer:
3265      llvm_unreachable("getDestructorDecl should only be used with "
3266                       "ImplicitDtors");
3267    case CFGElement::AutomaticObjectDtor: {
3268      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3269      QualType ty = var->getType();
3270      ty = ty.getNonReferenceType();
3271      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3272        ty = arrayType->getElementType();
3273      }
3274      const RecordType *recordType = ty->getAs<RecordType>();
3275      const CXXRecordDecl *classDecl =
3276      cast<CXXRecordDecl>(recordType->getDecl());
3277      return classDecl->getDestructor();
3278    }
3279    case CFGElement::TemporaryDtor: {
3280      const CXXBindTemporaryExpr *bindExpr =
3281        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3282      const CXXTemporary *temp = bindExpr->getTemporary();
3283      return temp->getDestructor();
3284    }
3285    case CFGElement::BaseDtor:
3286    case CFGElement::MemberDtor:
3287
3288      // Not yet supported.
3289      return 0;
3290  }
3291  llvm_unreachable("getKind() returned bogus value");
3292}
3293
3294bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3295  if (const CXXDestructorDecl *decl = getDestructorDecl(astContext)) {
3296    QualType ty = decl->getType();
3297    return cast<FunctionType>(ty)->getNoReturnAttr();
3298  }
3299  return false;
3300}
3301
3302//===----------------------------------------------------------------------===//
3303// CFG: Queries for BlkExprs.
3304//===----------------------------------------------------------------------===//
3305
3306namespace {
3307  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3308}
3309
3310static void FindSubExprAssignments(const Stmt *S,
3311                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3312  if (!S)
3313    return;
3314
3315  for (Stmt::const_child_range I = S->children(); I; ++I) {
3316    const Stmt *child = *I;
3317    if (!child)
3318      continue;
3319
3320    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3321      if (B->isAssignmentOp()) Set.insert(B);
3322
3323    FindSubExprAssignments(child, Set);
3324  }
3325}
3326
3327static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3328  BlkExprMapTy* M = new BlkExprMapTy();
3329
3330  // Look for assignments that are used as subexpressions.  These are the only
3331  // assignments that we want to *possibly* register as a block-level
3332  // expression.  Basically, if an assignment occurs both in a subexpression and
3333  // at the block-level, it is a block-level expression.
3334  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3335
3336  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3337    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3338      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3339        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3340
3341  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3342
3343    // Iterate over the statements again on identify the Expr* and Stmt* at the
3344    // block-level that are block-level expressions.
3345
3346    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3347      const CFGStmt *CS = BI->getAs<CFGStmt>();
3348      if (!CS)
3349        continue;
3350      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3351        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3352
3353        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3354          // Assignment expressions that are not nested within another
3355          // expression are really "statements" whose value is never used by
3356          // another expression.
3357          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3358            continue;
3359        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3360          // Special handling for statement expressions.  The last statement in
3361          // the statement expression is also a block-level expr.
3362          const CompoundStmt *C = SE->getSubStmt();
3363          if (!C->body_empty()) {
3364            const Stmt *Last = C->body_back();
3365            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3366              Last = LastEx->IgnoreParens();
3367            unsigned x = M->size();
3368            (*M)[Last] = x;
3369          }
3370        }
3371
3372        unsigned x = M->size();
3373        (*M)[Exp] = x;
3374      }
3375    }
3376
3377    // Look at terminators.  The condition is a block-level expression.
3378
3379    Stmt *S = (*I)->getTerminatorCondition();
3380
3381    if (S && M->find(S) == M->end()) {
3382      unsigned x = M->size();
3383      (*M)[S] = x;
3384    }
3385  }
3386
3387  return M;
3388}
3389
3390CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3391  assert(S != NULL);
3392  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3393
3394  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3395  BlkExprMapTy::iterator I = M->find(S);
3396  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3397}
3398
3399unsigned CFG::getNumBlkExprs() {
3400  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3401    return M->size();
3402
3403  // We assume callers interested in the number of BlkExprs will want
3404  // the map constructed if it doesn't already exist.
3405  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3406  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3407}
3408
3409//===----------------------------------------------------------------------===//
3410// Filtered walking of the CFG.
3411//===----------------------------------------------------------------------===//
3412
3413bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3414        const CFGBlock *From, const CFGBlock *To) {
3415
3416  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3417    // If the 'To' has no label or is labeled but the label isn't a
3418    // CaseStmt then filter this edge.
3419    if (const SwitchStmt *S =
3420        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3421      if (S->isAllEnumCasesCovered()) {
3422        const Stmt *L = To->getLabel();
3423        if (!L || !isa<CaseStmt>(L))
3424          return true;
3425      }
3426    }
3427  }
3428
3429  return false;
3430}
3431
3432//===----------------------------------------------------------------------===//
3433// Cleanup: CFG dstor.
3434//===----------------------------------------------------------------------===//
3435
3436CFG::~CFG() {
3437  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3438}
3439
3440//===----------------------------------------------------------------------===//
3441// CFG pretty printing
3442//===----------------------------------------------------------------------===//
3443
3444namespace {
3445
3446class StmtPrinterHelper : public PrinterHelper  {
3447  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3448  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3449  StmtMapTy StmtMap;
3450  DeclMapTy DeclMap;
3451  signed currentBlock;
3452  unsigned currentStmt;
3453  const LangOptions &LangOpts;
3454public:
3455
3456  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3457    : currentBlock(0), currentStmt(0), LangOpts(LO)
3458  {
3459    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3460      unsigned j = 1;
3461      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3462           BI != BEnd; ++BI, ++j ) {
3463        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3464          const Stmt *stmt= SE->getStmt();
3465          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3466          StmtMap[stmt] = P;
3467
3468          switch (stmt->getStmtClass()) {
3469            case Stmt::DeclStmtClass:
3470                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3471                break;
3472            case Stmt::IfStmtClass: {
3473              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3474              if (var)
3475                DeclMap[var] = P;
3476              break;
3477            }
3478            case Stmt::ForStmtClass: {
3479              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3480              if (var)
3481                DeclMap[var] = P;
3482              break;
3483            }
3484            case Stmt::WhileStmtClass: {
3485              const VarDecl *var =
3486                cast<WhileStmt>(stmt)->getConditionVariable();
3487              if (var)
3488                DeclMap[var] = P;
3489              break;
3490            }
3491            case Stmt::SwitchStmtClass: {
3492              const VarDecl *var =
3493                cast<SwitchStmt>(stmt)->getConditionVariable();
3494              if (var)
3495                DeclMap[var] = P;
3496              break;
3497            }
3498            case Stmt::CXXCatchStmtClass: {
3499              const VarDecl *var =
3500                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3501              if (var)
3502                DeclMap[var] = P;
3503              break;
3504            }
3505            default:
3506              break;
3507          }
3508        }
3509      }
3510    }
3511  }
3512
3513
3514  virtual ~StmtPrinterHelper() {}
3515
3516  const LangOptions &getLangOpts() const { return LangOpts; }
3517  void setBlockID(signed i) { currentBlock = i; }
3518  void setStmtID(unsigned i) { currentStmt = i; }
3519
3520  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3521    StmtMapTy::iterator I = StmtMap.find(S);
3522
3523    if (I == StmtMap.end())
3524      return false;
3525
3526    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3527                          && I->second.second == currentStmt) {
3528      return false;
3529    }
3530
3531    OS << "[B" << I->second.first << "." << I->second.second << "]";
3532    return true;
3533  }
3534
3535  bool handleDecl(const Decl *D, raw_ostream &OS) {
3536    DeclMapTy::iterator I = DeclMap.find(D);
3537
3538    if (I == DeclMap.end())
3539      return false;
3540
3541    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3542                          && I->second.second == currentStmt) {
3543      return false;
3544    }
3545
3546    OS << "[B" << I->second.first << "." << I->second.second << "]";
3547    return true;
3548  }
3549};
3550} // end anonymous namespace
3551
3552
3553namespace {
3554class CFGBlockTerminatorPrint
3555  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3556
3557  raw_ostream &OS;
3558  StmtPrinterHelper* Helper;
3559  PrintingPolicy Policy;
3560public:
3561  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3562                          const PrintingPolicy &Policy)
3563    : OS(os), Helper(helper), Policy(Policy) {}
3564
3565  void VisitIfStmt(IfStmt *I) {
3566    OS << "if ";
3567    I->getCond()->printPretty(OS,Helper,Policy);
3568  }
3569
3570  // Default case.
3571  void VisitStmt(Stmt *Terminator) {
3572    Terminator->printPretty(OS, Helper, Policy);
3573  }
3574
3575  void VisitForStmt(ForStmt *F) {
3576    OS << "for (" ;
3577    if (F->getInit())
3578      OS << "...";
3579    OS << "; ";
3580    if (Stmt *C = F->getCond())
3581      C->printPretty(OS, Helper, Policy);
3582    OS << "; ";
3583    if (F->getInc())
3584      OS << "...";
3585    OS << ")";
3586  }
3587
3588  void VisitWhileStmt(WhileStmt *W) {
3589    OS << "while " ;
3590    if (Stmt *C = W->getCond())
3591      C->printPretty(OS, Helper, Policy);
3592  }
3593
3594  void VisitDoStmt(DoStmt *D) {
3595    OS << "do ... while ";
3596    if (Stmt *C = D->getCond())
3597      C->printPretty(OS, Helper, Policy);
3598  }
3599
3600  void VisitSwitchStmt(SwitchStmt *Terminator) {
3601    OS << "switch ";
3602    Terminator->getCond()->printPretty(OS, Helper, Policy);
3603  }
3604
3605  void VisitCXXTryStmt(CXXTryStmt *CS) {
3606    OS << "try ...";
3607  }
3608
3609  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3610    C->getCond()->printPretty(OS, Helper, Policy);
3611    OS << " ? ... : ...";
3612  }
3613
3614  void VisitChooseExpr(ChooseExpr *C) {
3615    OS << "__builtin_choose_expr( ";
3616    C->getCond()->printPretty(OS, Helper, Policy);
3617    OS << " )";
3618  }
3619
3620  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3621    OS << "goto *";
3622    I->getTarget()->printPretty(OS, Helper, Policy);
3623  }
3624
3625  void VisitBinaryOperator(BinaryOperator* B) {
3626    if (!B->isLogicalOp()) {
3627      VisitExpr(B);
3628      return;
3629    }
3630
3631    B->getLHS()->printPretty(OS, Helper, Policy);
3632
3633    switch (B->getOpcode()) {
3634      case BO_LOr:
3635        OS << " || ...";
3636        return;
3637      case BO_LAnd:
3638        OS << " && ...";
3639        return;
3640      default:
3641        llvm_unreachable("Invalid logical operator.");
3642    }
3643  }
3644
3645  void VisitExpr(Expr *E) {
3646    E->printPretty(OS, Helper, Policy);
3647  }
3648};
3649} // end anonymous namespace
3650
3651static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3652                       const CFGElement &E) {
3653  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3654    const Stmt *S = CS->getStmt();
3655
3656    if (Helper) {
3657
3658      // special printing for statement-expressions.
3659      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3660        const CompoundStmt *Sub = SE->getSubStmt();
3661
3662        if (Sub->children()) {
3663          OS << "({ ... ; ";
3664          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3665          OS << " })\n";
3666          return;
3667        }
3668      }
3669      // special printing for comma expressions.
3670      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3671        if (B->getOpcode() == BO_Comma) {
3672          OS << "... , ";
3673          Helper->handledStmt(B->getRHS(),OS);
3674          OS << '\n';
3675          return;
3676        }
3677      }
3678    }
3679    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3680
3681    if (isa<CXXOperatorCallExpr>(S)) {
3682      OS << " (OperatorCall)";
3683    }
3684    else if (isa<CXXBindTemporaryExpr>(S)) {
3685      OS << " (BindTemporary)";
3686    }
3687    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3688      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3689    }
3690    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3691      OS << " (" << CE->getStmtClassName() << ", "
3692         << CE->getCastKindName()
3693         << ", " << CE->getType().getAsString()
3694         << ")";
3695    }
3696
3697    // Expressions need a newline.
3698    if (isa<Expr>(S))
3699      OS << '\n';
3700
3701  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3702    const CXXCtorInitializer *I = IE->getInitializer();
3703    if (I->isBaseInitializer())
3704      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3705    else OS << I->getAnyMember()->getName();
3706
3707    OS << "(";
3708    if (Expr *IE = I->getInit())
3709      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3710    OS << ")";
3711
3712    if (I->isBaseInitializer())
3713      OS << " (Base initializer)\n";
3714    else OS << " (Member initializer)\n";
3715
3716  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3717    const VarDecl *VD = DE->getVarDecl();
3718    Helper->handleDecl(VD, OS);
3719
3720    const Type* T = VD->getType().getTypePtr();
3721    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3722      T = RT->getPointeeType().getTypePtr();
3723    T = T->getBaseElementTypeUnsafe();
3724
3725    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3726    OS << " (Implicit destructor)\n";
3727
3728  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3729    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3730    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3731    OS << " (Base object destructor)\n";
3732
3733  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3734    const FieldDecl *FD = ME->getFieldDecl();
3735    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3736    OS << "this->" << FD->getName();
3737    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3738    OS << " (Member object destructor)\n";
3739
3740  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3741    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3742    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3743    OS << " (Temporary object destructor)\n";
3744  }
3745}
3746
3747static void print_block(raw_ostream &OS, const CFG* cfg,
3748                        const CFGBlock &B,
3749                        StmtPrinterHelper* Helper, bool print_edges,
3750                        bool ShowColors) {
3751
3752  if (Helper)
3753    Helper->setBlockID(B.getBlockID());
3754
3755  // Print the header.
3756  if (ShowColors)
3757    OS.changeColor(raw_ostream::YELLOW, true);
3758
3759  OS << "\n [B" << B.getBlockID();
3760
3761  if (&B == &cfg->getEntry())
3762    OS << " (ENTRY)]\n";
3763  else if (&B == &cfg->getExit())
3764    OS << " (EXIT)]\n";
3765  else if (&B == cfg->getIndirectGotoBlock())
3766    OS << " (INDIRECT GOTO DISPATCH)]\n";
3767  else
3768    OS << "]\n";
3769
3770  if (ShowColors)
3771    OS.resetColor();
3772
3773  // Print the label of this block.
3774  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3775
3776    if (print_edges)
3777      OS << "  ";
3778
3779    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3780      OS << L->getName();
3781    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3782      OS << "case ";
3783      C->getLHS()->printPretty(OS, Helper,
3784                               PrintingPolicy(Helper->getLangOpts()));
3785      if (C->getRHS()) {
3786        OS << " ... ";
3787        C->getRHS()->printPretty(OS, Helper,
3788                                 PrintingPolicy(Helper->getLangOpts()));
3789      }
3790    } else if (isa<DefaultStmt>(Label))
3791      OS << "default";
3792    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3793      OS << "catch (";
3794      if (CS->getExceptionDecl())
3795        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3796                                      0);
3797      else
3798        OS << "...";
3799      OS << ")";
3800
3801    } else
3802      llvm_unreachable("Invalid label statement in CFGBlock.");
3803
3804    OS << ":\n";
3805  }
3806
3807  // Iterate through the statements in the block and print them.
3808  unsigned j = 1;
3809
3810  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3811       I != E ; ++I, ++j ) {
3812
3813    // Print the statement # in the basic block and the statement itself.
3814    if (print_edges)
3815      OS << " ";
3816
3817    OS << llvm::format("%3d", j) << ": ";
3818
3819    if (Helper)
3820      Helper->setStmtID(j);
3821
3822    print_elem(OS, Helper, *I);
3823  }
3824
3825  // Print the terminator of this block.
3826  if (B.getTerminator()) {
3827    if (ShowColors)
3828      OS.changeColor(raw_ostream::GREEN);
3829
3830    OS << "   T: ";
3831
3832    if (Helper) Helper->setBlockID(-1);
3833
3834    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3835                                     PrintingPolicy(Helper->getLangOpts()));
3836    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3837    OS << '\n';
3838
3839    if (ShowColors)
3840      OS.resetColor();
3841  }
3842
3843  if (print_edges) {
3844    // Print the predecessors of this block.
3845    if (!B.pred_empty()) {
3846      const raw_ostream::Colors Color = raw_ostream::BLUE;
3847      if (ShowColors)
3848        OS.changeColor(Color);
3849      OS << "   Preds " ;
3850      if (ShowColors)
3851        OS.resetColor();
3852      OS << '(' << B.pred_size() << "):";
3853      unsigned i = 0;
3854
3855      if (ShowColors)
3856        OS.changeColor(Color);
3857
3858      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3859           I != E; ++I, ++i) {
3860
3861        if (i == 8 || (i-8) == 0)
3862          OS << "\n     ";
3863
3864        OS << " B" << (*I)->getBlockID();
3865      }
3866
3867      if (ShowColors)
3868        OS.resetColor();
3869
3870      OS << '\n';
3871    }
3872
3873    // Print the successors of this block.
3874    if (!B.succ_empty()) {
3875      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3876      if (ShowColors)
3877        OS.changeColor(Color);
3878      OS << "   Succs ";
3879      if (ShowColors)
3880        OS.resetColor();
3881      OS << '(' << B.succ_size() << "):";
3882      unsigned i = 0;
3883
3884      if (ShowColors)
3885        OS.changeColor(Color);
3886
3887      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3888           I != E; ++I, ++i) {
3889
3890        if (i == 8 || (i-8) % 10 == 0)
3891          OS << "\n    ";
3892
3893        if (*I)
3894          OS << " B" << (*I)->getBlockID();
3895        else
3896          OS  << " NULL";
3897      }
3898
3899      if (ShowColors)
3900        OS.resetColor();
3901      OS << '\n';
3902    }
3903  }
3904}
3905
3906
3907/// dump - A simple pretty printer of a CFG that outputs to stderr.
3908void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3909  print(llvm::errs(), LO, ShowColors);
3910}
3911
3912/// print - A simple pretty printer of a CFG that outputs to an ostream.
3913void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3914  StmtPrinterHelper Helper(this, LO);
3915
3916  // Print the entry block.
3917  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3918
3919  // Iterate through the CFGBlocks and print them one by one.
3920  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3921    // Skip the entry block, because we already printed it.
3922    if (&(**I) == &getEntry() || &(**I) == &getExit())
3923      continue;
3924
3925    print_block(OS, this, **I, &Helper, true, ShowColors);
3926  }
3927
3928  // Print the exit block.
3929  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3930  OS << '\n';
3931  OS.flush();
3932}
3933
3934/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3935void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3936                    bool ShowColors) const {
3937  print(llvm::errs(), cfg, LO, ShowColors);
3938}
3939
3940/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3941///   Generally this will only be called from CFG::print.
3942void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3943                     const LangOptions &LO, bool ShowColors) const {
3944  StmtPrinterHelper Helper(cfg, LO);
3945  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3946  OS << '\n';
3947}
3948
3949/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3950void CFGBlock::printTerminator(raw_ostream &OS,
3951                               const LangOptions &LO) const {
3952  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3953  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3954}
3955
3956Stmt *CFGBlock::getTerminatorCondition() {
3957  Stmt *Terminator = this->Terminator;
3958  if (!Terminator)
3959    return NULL;
3960
3961  Expr *E = NULL;
3962
3963  switch (Terminator->getStmtClass()) {
3964    default:
3965      break;
3966
3967    case Stmt::ForStmtClass:
3968      E = cast<ForStmt>(Terminator)->getCond();
3969      break;
3970
3971    case Stmt::WhileStmtClass:
3972      E = cast<WhileStmt>(Terminator)->getCond();
3973      break;
3974
3975    case Stmt::DoStmtClass:
3976      E = cast<DoStmt>(Terminator)->getCond();
3977      break;
3978
3979    case Stmt::IfStmtClass:
3980      E = cast<IfStmt>(Terminator)->getCond();
3981      break;
3982
3983    case Stmt::ChooseExprClass:
3984      E = cast<ChooseExpr>(Terminator)->getCond();
3985      break;
3986
3987    case Stmt::IndirectGotoStmtClass:
3988      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3989      break;
3990
3991    case Stmt::SwitchStmtClass:
3992      E = cast<SwitchStmt>(Terminator)->getCond();
3993      break;
3994
3995    case Stmt::BinaryConditionalOperatorClass:
3996      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3997      break;
3998
3999    case Stmt::ConditionalOperatorClass:
4000      E = cast<ConditionalOperator>(Terminator)->getCond();
4001      break;
4002
4003    case Stmt::BinaryOperatorClass: // '&&' and '||'
4004      E = cast<BinaryOperator>(Terminator)->getLHS();
4005      break;
4006
4007    case Stmt::ObjCForCollectionStmtClass:
4008      return Terminator;
4009  }
4010
4011  return E ? E->IgnoreParens() : NULL;
4012}
4013
4014//===----------------------------------------------------------------------===//
4015// CFG Graphviz Visualization
4016//===----------------------------------------------------------------------===//
4017
4018
4019#ifndef NDEBUG
4020static StmtPrinterHelper* GraphHelper;
4021#endif
4022
4023void CFG::viewCFG(const LangOptions &LO) const {
4024#ifndef NDEBUG
4025  StmtPrinterHelper H(this, LO);
4026  GraphHelper = &H;
4027  llvm::ViewGraph(this,"CFG");
4028  GraphHelper = NULL;
4029#endif
4030}
4031
4032namespace llvm {
4033template<>
4034struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4035
4036  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4037
4038  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4039
4040#ifndef NDEBUG
4041    std::string OutSStr;
4042    llvm::raw_string_ostream Out(OutSStr);
4043    print_block(Out,Graph, *Node, GraphHelper, false, false);
4044    std::string& OutStr = Out.str();
4045
4046    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4047
4048    // Process string output to make it nicer...
4049    for (unsigned i = 0; i != OutStr.length(); ++i)
4050      if (OutStr[i] == '\n') {                            // Left justify
4051        OutStr[i] = '\\';
4052        OutStr.insert(OutStr.begin()+i+1, 'l');
4053      }
4054
4055    return OutStr;
4056#else
4057    return "";
4058#endif
4059  }
4060};
4061} // end namespace llvm
4062