CFG.cpp revision d778105d47d92af4bf74f3e3019ca74ab0d78986
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt *G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt *R);
347  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
348                                          AddStmtChoice asc);
349  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
350  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
351  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
352  CFGBlock *VisitWhileStmt(WhileStmt *W);
353
354  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
355  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
356  CFGBlock *VisitChildren(Stmt *S);
357
358  // Visitors to walk an AST and generate destructors of temporaries in
359  // full expression.
360  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
361  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
362  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
363  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
364      bool BindToTemporary);
365  CFGBlock *
366  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
367                                            bool BindToTemporary);
368
369  // NYS == Not Yet Supported
370  CFGBlock *NYS() {
371    badCFG = true;
372    return Block;
373  }
374
375  void autoCreateBlock() { if (!Block) Block = createBlock(); }
376  CFGBlock *createBlock(bool add_successor = true);
377  CFGBlock *createNoReturnBlock();
378
379  CFGBlock *addStmt(Stmt *S) {
380    return Visit(S, AddStmtChoice::AlwaysAdd);
381  }
382  CFGBlock *addInitializer(CXXCtorInitializer *I);
383  void addAutomaticObjDtors(LocalScope::const_iterator B,
384                            LocalScope::const_iterator E, Stmt *S);
385  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
386
387  // Local scopes creation.
388  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
389
390  void addLocalScopeForStmt(Stmt *S);
391  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
392  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
393
394  void addLocalScopeAndDtors(Stmt *S);
395
396  // Interface to CFGBlock - adding CFGElements.
397  void appendStmt(CFGBlock *B, const Stmt *S) {
398    if (alwaysAdd(S) && cachedEntry)
399      cachedEntry->second = B;
400
401    // All block-level expressions should have already been IgnoreParens()ed.
402    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
403    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
404  }
405  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
406    B->appendInitializer(I, cfg->getBumpVectorContext());
407  }
408  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
409    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
410  }
411  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
412    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
413  }
414  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
415    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
416  }
417  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
418    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
419  }
420
421  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
422      LocalScope::const_iterator B, LocalScope::const_iterator E);
423
424  void addSuccessor(CFGBlock *B, CFGBlock *S) {
425    B->addSuccessor(S, cfg->getBumpVectorContext());
426  }
427
428  /// Try and evaluate an expression to an integer constant.
429  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
430    if (!BuildOpts.PruneTriviallyFalseEdges)
431      return false;
432    return !S->isTypeDependent() &&
433           !S->isValueDependent() &&
434           S->EvaluateAsRValue(outResult, *Context);
435  }
436
437  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
438  /// if we can evaluate to a known value, otherwise return -1.
439  TryResult tryEvaluateBool(Expr *S) {
440    bool Result;
441    if (!BuildOpts.PruneTriviallyFalseEdges ||
442        S->isTypeDependent() || S->isValueDependent() ||
443        !S->EvaluateAsBooleanCondition(Result, *Context))
444      return TryResult();
445    return Result;
446  }
447
448};
449
450inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
451                                     const Stmt *stmt) const {
452  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
453}
454
455bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
456  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
457
458  if (!BuildOpts.forcedBlkExprs)
459    return shouldAdd;
460
461  if (lastLookup == stmt) {
462    if (cachedEntry) {
463      assert(cachedEntry->first == stmt);
464      return true;
465    }
466    return shouldAdd;
467  }
468
469  lastLookup = stmt;
470
471  // Perform the lookup!
472  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
473
474  if (!fb) {
475    // No need to update 'cachedEntry', since it will always be null.
476    assert(cachedEntry == 0);
477    return shouldAdd;
478  }
479
480  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
481  if (itr == fb->end()) {
482    cachedEntry = 0;
483    return shouldAdd;
484  }
485
486  cachedEntry = &*itr;
487  return true;
488}
489
490// FIXME: Add support for dependent-sized array types in C++?
491// Does it even make sense to build a CFG for an uninstantiated template?
492static const VariableArrayType *FindVA(const Type *t) {
493  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
494    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
495      if (vat->getSizeExpr())
496        return vat;
497
498    t = vt->getElementType().getTypePtr();
499  }
500
501  return 0;
502}
503
504/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
505///  arbitrary statement.  Examples include a single expression or a function
506///  body (compound statement).  The ownership of the returned CFG is
507///  transferred to the caller.  If CFG construction fails, this method returns
508///  NULL.
509CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
510  assert(cfg.get());
511  if (!Statement)
512    return NULL;
513
514  // Create an empty block that will serve as the exit block for the CFG.  Since
515  // this is the first block added to the CFG, it will be implicitly registered
516  // as the exit block.
517  Succ = createBlock();
518  assert(Succ == &cfg->getExit());
519  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
520
521  if (BuildOpts.AddImplicitDtors)
522    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
523      addImplicitDtorsForDestructor(DD);
524
525  // Visit the statements and create the CFG.
526  CFGBlock *B = addStmt(Statement);
527
528  if (badCFG)
529    return NULL;
530
531  // For C++ constructor add initializers to CFG.
532  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
533    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
534        E = CD->init_rend(); I != E; ++I) {
535      B = addInitializer(*I);
536      if (badCFG)
537        return NULL;
538    }
539  }
540
541  if (B)
542    Succ = B;
543
544  // Backpatch the gotos whose label -> block mappings we didn't know when we
545  // encountered them.
546  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
547                                   E = BackpatchBlocks.end(); I != E; ++I ) {
548
549    CFGBlock *B = I->block;
550    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
551    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
552
553    // If there is no target for the goto, then we are looking at an
554    // incomplete AST.  Handle this by not registering a successor.
555    if (LI == LabelMap.end()) continue;
556
557    JumpTarget JT = LI->second;
558    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
559                                           JT.scopePosition);
560    addSuccessor(B, JT.block);
561  }
562
563  // Add successors to the Indirect Goto Dispatch block (if we have one).
564  if (CFGBlock *B = cfg->getIndirectGotoBlock())
565    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
566                              E = AddressTakenLabels.end(); I != E; ++I ) {
567
568      // Lookup the target block.
569      LabelMapTy::iterator LI = LabelMap.find(*I);
570
571      // If there is no target block that contains label, then we are looking
572      // at an incomplete AST.  Handle this by not registering a successor.
573      if (LI == LabelMap.end()) continue;
574
575      addSuccessor(B, LI->second.block);
576    }
577
578  // Create an empty entry block that has no predecessors.
579  cfg->setEntry(createBlock());
580
581  return cfg.take();
582}
583
584/// createBlock - Used to lazily create blocks that are connected
585///  to the current (global) succcessor.
586CFGBlock *CFGBuilder::createBlock(bool add_successor) {
587  CFGBlock *B = cfg->createBlock();
588  if (add_successor && Succ)
589    addSuccessor(B, Succ);
590  return B;
591}
592
593/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
594/// CFG. It is *not* connected to the current (global) successor, and instead
595/// directly tied to the exit block in order to be reachable.
596CFGBlock *CFGBuilder::createNoReturnBlock() {
597  CFGBlock *B = createBlock(false);
598  B->setHasNoReturnElement();
599  addSuccessor(B, &cfg->getExit());
600  return B;
601}
602
603/// addInitializer - Add C++ base or member initializer element to CFG.
604CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
605  if (!BuildOpts.AddInitializers)
606    return Block;
607
608  bool IsReference = false;
609  bool HasTemporaries = false;
610
611  // Destructors of temporaries in initialization expression should be called
612  // after initialization finishes.
613  Expr *Init = I->getInit();
614  if (Init) {
615    if (FieldDecl *FD = I->getAnyMember())
616      IsReference = FD->getType()->isReferenceType();
617    HasTemporaries = isa<ExprWithCleanups>(Init);
618
619    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
620      // Generate destructors for temporaries in initialization expression.
621      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
622          IsReference);
623    }
624  }
625
626  autoCreateBlock();
627  appendInitializer(Block, I);
628
629  if (Init) {
630    if (HasTemporaries) {
631      // For expression with temporaries go directly to subexpression to omit
632      // generating destructors for the second time.
633      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
634    }
635    return Visit(Init);
636  }
637
638  return Block;
639}
640
641/// addAutomaticObjDtors - Add to current block automatic objects destructors
642/// for objects in range of local scope positions. Use S as trigger statement
643/// for destructors.
644void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
645                                      LocalScope::const_iterator E, Stmt *S) {
646  if (!BuildOpts.AddImplicitDtors)
647    return;
648
649  if (B == E)
650    return;
651
652  CFGBlock::iterator InsertPos;
653
654  // We need to append the destructors in reverse order, but any one of them
655  // may be a no-return destructor which changes the CFG. As a result, buffer
656  // this sequence up and replay them in reverse order when appending onto the
657  // CFGBlock(s).
658  SmallVector<VarDecl*, 10> Decls;
659  Decls.reserve(B.distance(E));
660  for (LocalScope::const_iterator I = B; I != E; ++I)
661    Decls.push_back(*I);
662
663  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
664                                                   E = Decls.rend();
665       I != E; ++I) {
666    // If this destructor is marked as a no-return destructor, we need to
667    // create a new block for the destructor which does not have as a successor
668    // anything built thus far: control won't flow out of this block.
669    QualType Ty = (*I)->getType().getNonReferenceType();
670    if (const ArrayType *AT = Context->getAsArrayType(Ty))
671      Ty = AT->getElementType();
672    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
673    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
674      Block = createNoReturnBlock();
675    else
676      autoCreateBlock();
677
678    appendAutomaticObjDtor(Block, *I, S);
679  }
680}
681
682/// addImplicitDtorsForDestructor - Add implicit destructors generated for
683/// base and member objects in destructor.
684void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
685  assert (BuildOpts.AddImplicitDtors
686      && "Can be called only when dtors should be added");
687  const CXXRecordDecl *RD = DD->getParent();
688
689  // At the end destroy virtual base objects.
690  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
691      VE = RD->vbases_end(); VI != VE; ++VI) {
692    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
693    if (!CD->hasTrivialDestructor()) {
694      autoCreateBlock();
695      appendBaseDtor(Block, VI);
696    }
697  }
698
699  // Before virtual bases destroy direct base objects.
700  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
701      BE = RD->bases_end(); BI != BE; ++BI) {
702    if (!BI->isVirtual()) {
703      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
704      if (!CD->hasTrivialDestructor()) {
705        autoCreateBlock();
706        appendBaseDtor(Block, BI);
707      }
708    }
709  }
710
711  // First destroy member objects.
712  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
713      FE = RD->field_end(); FI != FE; ++FI) {
714    // Check for constant size array. Set type to array element type.
715    QualType QT = FI->getType();
716    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
717      if (AT->getSize() == 0)
718        continue;
719      QT = AT->getElementType();
720    }
721
722    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
723      if (!CD->hasTrivialDestructor()) {
724        autoCreateBlock();
725        appendMemberDtor(Block, *FI);
726      }
727  }
728}
729
730/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
731/// way return valid LocalScope object.
732LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
733  if (!Scope) {
734    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
735    Scope = alloc.Allocate<LocalScope>();
736    BumpVectorContext ctx(alloc);
737    new (Scope) LocalScope(ctx, ScopePos);
738  }
739  return Scope;
740}
741
742/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
743/// that should create implicit scope (e.g. if/else substatements).
744void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
745  if (!BuildOpts.AddImplicitDtors)
746    return;
747
748  LocalScope *Scope = 0;
749
750  // For compound statement we will be creating explicit scope.
751  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
752    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
753        ; BI != BE; ++BI) {
754      Stmt *SI = (*BI)->stripLabelLikeStatements();
755      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
756        Scope = addLocalScopeForDeclStmt(DS, Scope);
757    }
758    return;
759  }
760
761  // For any other statement scope will be implicit and as such will be
762  // interesting only for DeclStmt.
763  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
764    addLocalScopeForDeclStmt(DS);
765}
766
767/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
768/// reuse Scope if not NULL.
769LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
770                                                 LocalScope* Scope) {
771  if (!BuildOpts.AddImplicitDtors)
772    return Scope;
773
774  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
775      ; DI != DE; ++DI) {
776    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
777      Scope = addLocalScopeForVarDecl(VD, Scope);
778  }
779  return Scope;
780}
781
782/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
783/// create add scope for automatic objects and temporary objects bound to
784/// const reference. Will reuse Scope if not NULL.
785LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
786                                                LocalScope* Scope) {
787  if (!BuildOpts.AddImplicitDtors)
788    return Scope;
789
790  // Check if variable is local.
791  switch (VD->getStorageClass()) {
792  case SC_None:
793  case SC_Auto:
794  case SC_Register:
795    break;
796  default: return Scope;
797  }
798
799  // Check for const references bound to temporary. Set type to pointee.
800  QualType QT = VD->getType();
801  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
802    QT = RT->getPointeeType();
803    if (!QT.isConstQualified())
804      return Scope;
805    if (!VD->extendsLifetimeOfTemporary())
806      return Scope;
807  }
808
809  // Check for constant size array. Set type to array element type.
810  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
811    if (AT->getSize() == 0)
812      return Scope;
813    QT = AT->getElementType();
814  }
815
816  // Check if type is a C++ class with non-trivial destructor.
817  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
818    if (!CD->hasTrivialDestructor()) {
819      // Add the variable to scope
820      Scope = createOrReuseLocalScope(Scope);
821      Scope->addVar(VD);
822      ScopePos = Scope->begin();
823    }
824  return Scope;
825}
826
827/// addLocalScopeAndDtors - For given statement add local scope for it and
828/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
829void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
830  if (!BuildOpts.AddImplicitDtors)
831    return;
832
833  LocalScope::const_iterator scopeBeginPos = ScopePos;
834  addLocalScopeForStmt(S);
835  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
836}
837
838/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
839/// variables with automatic storage duration to CFGBlock's elements vector.
840/// Elements will be prepended to physical beginning of the vector which
841/// happens to be logical end. Use blocks terminator as statement that specifies
842/// destructors call site.
843/// FIXME: This mechanism for adding automatic destructors doesn't handle
844/// no-return destructors properly.
845void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
846    LocalScope::const_iterator B, LocalScope::const_iterator E) {
847  BumpVectorContext &C = cfg->getBumpVectorContext();
848  CFGBlock::iterator InsertPos
849    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
850  for (LocalScope::const_iterator I = B; I != E; ++I)
851    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
852                                            Blk->getTerminator());
853}
854
855/// Visit - Walk the subtree of a statement and add extra
856///   blocks for ternary operators, &&, and ||.  We also process "," and
857///   DeclStmts (which may contain nested control-flow).
858CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
859  if (!S) {
860    badCFG = true;
861    return 0;
862  }
863
864  if (Expr *E = dyn_cast<Expr>(S))
865    S = E->IgnoreParens();
866
867  switch (S->getStmtClass()) {
868    default:
869      return VisitStmt(S, asc);
870
871    case Stmt::AddrLabelExprClass:
872      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
873
874    case Stmt::BinaryConditionalOperatorClass:
875      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
876
877    case Stmt::BinaryOperatorClass:
878      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
879
880    case Stmt::BlockExprClass:
881      return VisitBlockExpr(cast<BlockExpr>(S), asc);
882
883    case Stmt::BreakStmtClass:
884      return VisitBreakStmt(cast<BreakStmt>(S));
885
886    case Stmt::CallExprClass:
887    case Stmt::CXXOperatorCallExprClass:
888    case Stmt::CXXMemberCallExprClass:
889      return VisitCallExpr(cast<CallExpr>(S), asc);
890
891    case Stmt::CaseStmtClass:
892      return VisitCaseStmt(cast<CaseStmt>(S));
893
894    case Stmt::ChooseExprClass:
895      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
896
897    case Stmt::CompoundStmtClass:
898      return VisitCompoundStmt(cast<CompoundStmt>(S));
899
900    case Stmt::ConditionalOperatorClass:
901      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
902
903    case Stmt::ContinueStmtClass:
904      return VisitContinueStmt(cast<ContinueStmt>(S));
905
906    case Stmt::CXXCatchStmtClass:
907      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
908
909    case Stmt::ExprWithCleanupsClass:
910      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
911
912    case Stmt::CXXBindTemporaryExprClass:
913      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
914
915    case Stmt::CXXConstructExprClass:
916      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
917
918    case Stmt::CXXFunctionalCastExprClass:
919      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
920
921    case Stmt::CXXTemporaryObjectExprClass:
922      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
923
924    case Stmt::CXXThrowExprClass:
925      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
926
927    case Stmt::CXXTryStmtClass:
928      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
929
930    case Stmt::CXXForRangeStmtClass:
931      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
932
933    case Stmt::DeclStmtClass:
934      return VisitDeclStmt(cast<DeclStmt>(S));
935
936    case Stmt::DefaultStmtClass:
937      return VisitDefaultStmt(cast<DefaultStmt>(S));
938
939    case Stmt::DoStmtClass:
940      return VisitDoStmt(cast<DoStmt>(S));
941
942    case Stmt::ForStmtClass:
943      return VisitForStmt(cast<ForStmt>(S));
944
945    case Stmt::GotoStmtClass:
946      return VisitGotoStmt(cast<GotoStmt>(S));
947
948    case Stmt::IfStmtClass:
949      return VisitIfStmt(cast<IfStmt>(S));
950
951    case Stmt::ImplicitCastExprClass:
952      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
953
954    case Stmt::IndirectGotoStmtClass:
955      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
956
957    case Stmt::LabelStmtClass:
958      return VisitLabelStmt(cast<LabelStmt>(S));
959
960    case Stmt::MemberExprClass:
961      return VisitMemberExpr(cast<MemberExpr>(S), asc);
962
963    case Stmt::ObjCAtCatchStmtClass:
964      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
965
966    case Stmt::ObjCAtSynchronizedStmtClass:
967      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
968
969    case Stmt::ObjCAtThrowStmtClass:
970      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
971
972    case Stmt::ObjCAtTryStmtClass:
973      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
974
975    case Stmt::ObjCForCollectionStmtClass:
976      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
977
978    case Stmt::NullStmtClass:
979      return Block;
980
981    case Stmt::ReturnStmtClass:
982      return VisitReturnStmt(cast<ReturnStmt>(S));
983
984    case Stmt::UnaryExprOrTypeTraitExprClass:
985      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
986                                           asc);
987
988    case Stmt::StmtExprClass:
989      return VisitStmtExpr(cast<StmtExpr>(S), asc);
990
991    case Stmt::SwitchStmtClass:
992      return VisitSwitchStmt(cast<SwitchStmt>(S));
993
994    case Stmt::UnaryOperatorClass:
995      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
996
997    case Stmt::WhileStmtClass:
998      return VisitWhileStmt(cast<WhileStmt>(S));
999  }
1000}
1001
1002CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1003  if (asc.alwaysAdd(*this, S)) {
1004    autoCreateBlock();
1005    appendStmt(Block, S);
1006  }
1007
1008  return VisitChildren(S);
1009}
1010
1011/// VisitChildren - Visit the children of a Stmt.
1012CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1013  CFGBlock *lastBlock = Block;
1014  for (Stmt::child_range I = Terminator->children(); I; ++I)
1015    if (Stmt *child = *I)
1016      if (CFGBlock *b = Visit(child))
1017        lastBlock = b;
1018
1019  return lastBlock;
1020}
1021
1022CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1023                                         AddStmtChoice asc) {
1024  AddressTakenLabels.insert(A->getLabel());
1025
1026  if (asc.alwaysAdd(*this, A)) {
1027    autoCreateBlock();
1028    appendStmt(Block, A);
1029  }
1030
1031  return Block;
1032}
1033
1034CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1035           AddStmtChoice asc) {
1036  if (asc.alwaysAdd(*this, U)) {
1037    autoCreateBlock();
1038    appendStmt(Block, U);
1039  }
1040
1041  return Visit(U->getSubExpr(), AddStmtChoice());
1042}
1043
1044CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1045                                          AddStmtChoice asc) {
1046  if (B->isLogicalOp()) { // && or ||
1047    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1048    appendStmt(ConfluenceBlock, B);
1049
1050    if (badCFG)
1051      return 0;
1052
1053    // create the block evaluating the LHS
1054    CFGBlock *LHSBlock = createBlock(false);
1055    LHSBlock->setTerminator(B);
1056
1057    // create the block evaluating the RHS
1058    Succ = ConfluenceBlock;
1059    Block = NULL;
1060    CFGBlock *RHSBlock = addStmt(B->getRHS());
1061
1062    if (RHSBlock) {
1063      if (badCFG)
1064        return 0;
1065    } else {
1066      // Create an empty block for cases where the RHS doesn't require
1067      // any explicit statements in the CFG.
1068      RHSBlock = createBlock();
1069    }
1070
1071    // See if this is a known constant.
1072    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1073    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1074      KnownVal.negate();
1075
1076    // Now link the LHSBlock with RHSBlock.
1077    if (B->getOpcode() == BO_LOr) {
1078      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1079      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1080    } else {
1081      assert(B->getOpcode() == BO_LAnd);
1082      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1083      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1084    }
1085
1086    // Generate the blocks for evaluating the LHS.
1087    Block = LHSBlock;
1088    return addStmt(B->getLHS());
1089  }
1090
1091  if (B->getOpcode() == BO_Comma) { // ,
1092    autoCreateBlock();
1093    appendStmt(Block, B);
1094    addStmt(B->getRHS());
1095    return addStmt(B->getLHS());
1096  }
1097
1098  if (B->isAssignmentOp()) {
1099    if (asc.alwaysAdd(*this, B)) {
1100      autoCreateBlock();
1101      appendStmt(Block, B);
1102    }
1103    Visit(B->getLHS());
1104    return Visit(B->getRHS());
1105  }
1106
1107  if (asc.alwaysAdd(*this, B)) {
1108    autoCreateBlock();
1109    appendStmt(Block, B);
1110  }
1111
1112  CFGBlock *RBlock = Visit(B->getRHS());
1113  CFGBlock *LBlock = Visit(B->getLHS());
1114  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1115  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1116  // return RBlock.  Otherwise we'll incorrectly return NULL.
1117  return (LBlock ? LBlock : RBlock);
1118}
1119
1120CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1121  if (asc.alwaysAdd(*this, E)) {
1122    autoCreateBlock();
1123    appendStmt(Block, E);
1124  }
1125  return Block;
1126}
1127
1128CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1129  // "break" is a control-flow statement.  Thus we stop processing the current
1130  // block.
1131  if (badCFG)
1132    return 0;
1133
1134  // Now create a new block that ends with the break statement.
1135  Block = createBlock(false);
1136  Block->setTerminator(B);
1137
1138  // If there is no target for the break, then we are looking at an incomplete
1139  // AST.  This means that the CFG cannot be constructed.
1140  if (BreakJumpTarget.block) {
1141    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1142    addSuccessor(Block, BreakJumpTarget.block);
1143  } else
1144    badCFG = true;
1145
1146
1147  return Block;
1148}
1149
1150static bool CanThrow(Expr *E, ASTContext &Ctx) {
1151  QualType Ty = E->getType();
1152  if (Ty->isFunctionPointerType())
1153    Ty = Ty->getAs<PointerType>()->getPointeeType();
1154  else if (Ty->isBlockPointerType())
1155    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1156
1157  const FunctionType *FT = Ty->getAs<FunctionType>();
1158  if (FT) {
1159    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1160      if (Proto->isNothrow(Ctx))
1161        return false;
1162  }
1163  return true;
1164}
1165
1166CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1167  // Compute the callee type.
1168  QualType calleeType = C->getCallee()->getType();
1169  if (calleeType == Context->BoundMemberTy) {
1170    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1171
1172    // We should only get a null bound type if processing a dependent
1173    // CFG.  Recover by assuming nothing.
1174    if (!boundType.isNull()) calleeType = boundType;
1175  }
1176
1177  // If this is a call to a no-return function, this stops the block here.
1178  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1179
1180  bool AddEHEdge = false;
1181
1182  // Languages without exceptions are assumed to not throw.
1183  if (Context->getLangOptions().Exceptions) {
1184    if (BuildOpts.AddEHEdges)
1185      AddEHEdge = true;
1186  }
1187
1188  if (FunctionDecl *FD = C->getDirectCallee()) {
1189    if (FD->hasAttr<NoReturnAttr>())
1190      NoReturn = true;
1191    if (FD->hasAttr<NoThrowAttr>())
1192      AddEHEdge = false;
1193  }
1194
1195  if (!CanThrow(C->getCallee(), *Context))
1196    AddEHEdge = false;
1197
1198  if (!NoReturn && !AddEHEdge)
1199    return VisitStmt(C, asc.withAlwaysAdd(true));
1200
1201  if (Block) {
1202    Succ = Block;
1203    if (badCFG)
1204      return 0;
1205  }
1206
1207  if (NoReturn)
1208    Block = createNoReturnBlock();
1209  else
1210    Block = createBlock();
1211
1212  appendStmt(Block, C);
1213
1214  if (AddEHEdge) {
1215    // Add exceptional edges.
1216    if (TryTerminatedBlock)
1217      addSuccessor(Block, TryTerminatedBlock);
1218    else
1219      addSuccessor(Block, &cfg->getExit());
1220  }
1221
1222  return VisitChildren(C);
1223}
1224
1225CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1226                                      AddStmtChoice asc) {
1227  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1228  appendStmt(ConfluenceBlock, C);
1229  if (badCFG)
1230    return 0;
1231
1232  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1233  Succ = ConfluenceBlock;
1234  Block = NULL;
1235  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1236  if (badCFG)
1237    return 0;
1238
1239  Succ = ConfluenceBlock;
1240  Block = NULL;
1241  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1242  if (badCFG)
1243    return 0;
1244
1245  Block = createBlock(false);
1246  // See if this is a known constant.
1247  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1248  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1249  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1250  Block->setTerminator(C);
1251  return addStmt(C->getCond());
1252}
1253
1254
1255CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1256  addLocalScopeAndDtors(C);
1257  CFGBlock *LastBlock = Block;
1258
1259  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1260       I != E; ++I ) {
1261    // If we hit a segment of code just containing ';' (NullStmts), we can
1262    // get a null block back.  In such cases, just use the LastBlock
1263    if (CFGBlock *newBlock = addStmt(*I))
1264      LastBlock = newBlock;
1265
1266    if (badCFG)
1267      return NULL;
1268  }
1269
1270  return LastBlock;
1271}
1272
1273CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1274                                               AddStmtChoice asc) {
1275  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1276  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1277
1278  // Create the confluence block that will "merge" the results of the ternary
1279  // expression.
1280  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1281  appendStmt(ConfluenceBlock, C);
1282  if (badCFG)
1283    return 0;
1284
1285  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1286
1287  // Create a block for the LHS expression if there is an LHS expression.  A
1288  // GCC extension allows LHS to be NULL, causing the condition to be the
1289  // value that is returned instead.
1290  //  e.g: x ?: y is shorthand for: x ? x : y;
1291  Succ = ConfluenceBlock;
1292  Block = NULL;
1293  CFGBlock *LHSBlock = 0;
1294  const Expr *trueExpr = C->getTrueExpr();
1295  if (trueExpr != opaqueValue) {
1296    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1297    if (badCFG)
1298      return 0;
1299    Block = NULL;
1300  }
1301  else
1302    LHSBlock = ConfluenceBlock;
1303
1304  // Create the block for the RHS expression.
1305  Succ = ConfluenceBlock;
1306  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1307  if (badCFG)
1308    return 0;
1309
1310  // Create the block that will contain the condition.
1311  Block = createBlock(false);
1312
1313  // See if this is a known constant.
1314  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1315  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1316  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1317  Block->setTerminator(C);
1318  Expr *condExpr = C->getCond();
1319
1320  if (opaqueValue) {
1321    // Run the condition expression if it's not trivially expressed in
1322    // terms of the opaque value (or if there is no opaque value).
1323    if (condExpr != opaqueValue)
1324      addStmt(condExpr);
1325
1326    // Before that, run the common subexpression if there was one.
1327    // At least one of this or the above will be run.
1328    return addStmt(BCO->getCommon());
1329  }
1330
1331  return addStmt(condExpr);
1332}
1333
1334CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1335  // Check if the Decl is for an __label__.  If so, elide it from the
1336  // CFG entirely.
1337  if (isa<LabelDecl>(*DS->decl_begin()))
1338    return Block;
1339
1340  // This case also handles static_asserts.
1341  if (DS->isSingleDecl())
1342    return VisitDeclSubExpr(DS);
1343
1344  CFGBlock *B = 0;
1345
1346  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1347  typedef SmallVector<Decl*,10> BufTy;
1348  BufTy Buf(DS->decl_begin(), DS->decl_end());
1349
1350  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1351    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1352    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1353               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1354
1355    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1356    // automatically freed with the CFG.
1357    DeclGroupRef DG(*I);
1358    Decl *D = *I;
1359    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1360    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1361
1362    // Append the fake DeclStmt to block.
1363    B = VisitDeclSubExpr(DSNew);
1364  }
1365
1366  return B;
1367}
1368
1369/// VisitDeclSubExpr - Utility method to add block-level expressions for
1370/// DeclStmts and initializers in them.
1371CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1372  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1373  Decl *D = DS->getSingleDecl();
1374
1375  if (isa<StaticAssertDecl>(D)) {
1376    // static_asserts aren't added to the CFG because they do not impact
1377    // runtime semantics.
1378    return Block;
1379  }
1380
1381  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1382
1383  if (!VD) {
1384    autoCreateBlock();
1385    appendStmt(Block, DS);
1386    return Block;
1387  }
1388
1389  bool IsReference = false;
1390  bool HasTemporaries = false;
1391
1392  // Destructors of temporaries in initialization expression should be called
1393  // after initialization finishes.
1394  Expr *Init = VD->getInit();
1395  if (Init) {
1396    IsReference = VD->getType()->isReferenceType();
1397    HasTemporaries = isa<ExprWithCleanups>(Init);
1398
1399    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1400      // Generate destructors for temporaries in initialization expression.
1401      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1402          IsReference);
1403    }
1404  }
1405
1406  autoCreateBlock();
1407  appendStmt(Block, DS);
1408
1409  if (Init) {
1410    if (HasTemporaries)
1411      // For expression with temporaries go directly to subexpression to omit
1412      // generating destructors for the second time.
1413      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1414    else
1415      Visit(Init);
1416  }
1417
1418  // If the type of VD is a VLA, then we must process its size expressions.
1419  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1420       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1421    Block = addStmt(VA->getSizeExpr());
1422
1423  // Remove variable from local scope.
1424  if (ScopePos && VD == *ScopePos)
1425    ++ScopePos;
1426
1427  return Block;
1428}
1429
1430CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1431  // We may see an if statement in the middle of a basic block, or it may be the
1432  // first statement we are processing.  In either case, we create a new basic
1433  // block.  First, we create the blocks for the then...else statements, and
1434  // then we create the block containing the if statement.  If we were in the
1435  // middle of a block, we stop processing that block.  That block is then the
1436  // implicit successor for the "then" and "else" clauses.
1437
1438  // Save local scope position because in case of condition variable ScopePos
1439  // won't be restored when traversing AST.
1440  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1441
1442  // Create local scope for possible condition variable.
1443  // Store scope position. Add implicit destructor.
1444  if (VarDecl *VD = I->getConditionVariable()) {
1445    LocalScope::const_iterator BeginScopePos = ScopePos;
1446    addLocalScopeForVarDecl(VD);
1447    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1448  }
1449
1450  // The block we were processing is now finished.  Make it the successor
1451  // block.
1452  if (Block) {
1453    Succ = Block;
1454    if (badCFG)
1455      return 0;
1456  }
1457
1458  // Process the false branch.
1459  CFGBlock *ElseBlock = Succ;
1460
1461  if (Stmt *Else = I->getElse()) {
1462    SaveAndRestore<CFGBlock*> sv(Succ);
1463
1464    // NULL out Block so that the recursive call to Visit will
1465    // create a new basic block.
1466    Block = NULL;
1467
1468    // If branch is not a compound statement create implicit scope
1469    // and add destructors.
1470    if (!isa<CompoundStmt>(Else))
1471      addLocalScopeAndDtors(Else);
1472
1473    ElseBlock = addStmt(Else);
1474
1475    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1476      ElseBlock = sv.get();
1477    else if (Block) {
1478      if (badCFG)
1479        return 0;
1480    }
1481  }
1482
1483  // Process the true branch.
1484  CFGBlock *ThenBlock;
1485  {
1486    Stmt *Then = I->getThen();
1487    assert(Then);
1488    SaveAndRestore<CFGBlock*> sv(Succ);
1489    Block = NULL;
1490
1491    // If branch is not a compound statement create implicit scope
1492    // and add destructors.
1493    if (!isa<CompoundStmt>(Then))
1494      addLocalScopeAndDtors(Then);
1495
1496    ThenBlock = addStmt(Then);
1497
1498    if (!ThenBlock) {
1499      // We can reach here if the "then" body has all NullStmts.
1500      // Create an empty block so we can distinguish between true and false
1501      // branches in path-sensitive analyses.
1502      ThenBlock = createBlock(false);
1503      addSuccessor(ThenBlock, sv.get());
1504    } else if (Block) {
1505      if (badCFG)
1506        return 0;
1507    }
1508  }
1509
1510  // Now create a new block containing the if statement.
1511  Block = createBlock(false);
1512
1513  // Set the terminator of the new block to the If statement.
1514  Block->setTerminator(I);
1515
1516  // See if this is a known constant.
1517  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1518
1519  // Now add the successors.
1520  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1521  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1522
1523  // Add the condition as the last statement in the new block.  This may create
1524  // new blocks as the condition may contain control-flow.  Any newly created
1525  // blocks will be pointed to be "Block".
1526  Block = addStmt(I->getCond());
1527
1528  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1529  // and the condition variable initialization to the CFG.
1530  if (VarDecl *VD = I->getConditionVariable()) {
1531    if (Expr *Init = VD->getInit()) {
1532      autoCreateBlock();
1533      appendStmt(Block, I->getConditionVariableDeclStmt());
1534      addStmt(Init);
1535    }
1536  }
1537
1538  return Block;
1539}
1540
1541
1542CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1543  // If we were in the middle of a block we stop processing that block.
1544  //
1545  // NOTE: If a "return" appears in the middle of a block, this means that the
1546  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1547  //       for that code; a simple "mark-and-sweep" from the entry block will be
1548  //       able to report such dead blocks.
1549
1550  // Create the new block.
1551  Block = createBlock(false);
1552
1553  // The Exit block is the only successor.
1554  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1555  addSuccessor(Block, &cfg->getExit());
1556
1557  // Add the return statement to the block.  This may create new blocks if R
1558  // contains control-flow (short-circuit operations).
1559  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1560}
1561
1562CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1563  // Get the block of the labeled statement.  Add it to our map.
1564  addStmt(L->getSubStmt());
1565  CFGBlock *LabelBlock = Block;
1566
1567  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1568    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1569
1570  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1571         "label already in map");
1572  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1573
1574  // Labels partition blocks, so this is the end of the basic block we were
1575  // processing (L is the block's label).  Because this is label (and we have
1576  // already processed the substatement) there is no extra control-flow to worry
1577  // about.
1578  LabelBlock->setLabel(L);
1579  if (badCFG)
1580    return 0;
1581
1582  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1583  Block = NULL;
1584
1585  // This block is now the implicit successor of other blocks.
1586  Succ = LabelBlock;
1587
1588  return LabelBlock;
1589}
1590
1591CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1592  // Goto is a control-flow statement.  Thus we stop processing the current
1593  // block and create a new one.
1594
1595  Block = createBlock(false);
1596  Block->setTerminator(G);
1597
1598  // If we already know the mapping to the label block add the successor now.
1599  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1600
1601  if (I == LabelMap.end())
1602    // We will need to backpatch this block later.
1603    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1604  else {
1605    JumpTarget JT = I->second;
1606    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1607    addSuccessor(Block, JT.block);
1608  }
1609
1610  return Block;
1611}
1612
1613CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1614  CFGBlock *LoopSuccessor = NULL;
1615
1616  // Save local scope position because in case of condition variable ScopePos
1617  // won't be restored when traversing AST.
1618  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1619
1620  // Create local scope for init statement and possible condition variable.
1621  // Add destructor for init statement and condition variable.
1622  // Store scope position for continue statement.
1623  if (Stmt *Init = F->getInit())
1624    addLocalScopeForStmt(Init);
1625  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1626
1627  if (VarDecl *VD = F->getConditionVariable())
1628    addLocalScopeForVarDecl(VD);
1629  LocalScope::const_iterator ContinueScopePos = ScopePos;
1630
1631  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1632
1633  // "for" is a control-flow statement.  Thus we stop processing the current
1634  // block.
1635  if (Block) {
1636    if (badCFG)
1637      return 0;
1638    LoopSuccessor = Block;
1639  } else
1640    LoopSuccessor = Succ;
1641
1642  // Save the current value for the break targets.
1643  // All breaks should go to the code following the loop.
1644  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1645  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1646
1647  // Because of short-circuit evaluation, the condition of the loop can span
1648  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1649  // evaluate the condition.
1650  CFGBlock *ExitConditionBlock = createBlock(false);
1651  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1652
1653  // Set the terminator for the "exit" condition block.
1654  ExitConditionBlock->setTerminator(F);
1655
1656  // Now add the actual condition to the condition block.  Because the condition
1657  // itself may contain control-flow, new blocks may be created.
1658  if (Stmt *C = F->getCond()) {
1659    Block = ExitConditionBlock;
1660    EntryConditionBlock = addStmt(C);
1661    if (badCFG)
1662      return 0;
1663    assert(Block == EntryConditionBlock ||
1664           (Block == 0 && EntryConditionBlock == Succ));
1665
1666    // If this block contains a condition variable, add both the condition
1667    // variable and initializer to the CFG.
1668    if (VarDecl *VD = F->getConditionVariable()) {
1669      if (Expr *Init = VD->getInit()) {
1670        autoCreateBlock();
1671        appendStmt(Block, F->getConditionVariableDeclStmt());
1672        EntryConditionBlock = addStmt(Init);
1673        assert(Block == EntryConditionBlock);
1674      }
1675    }
1676
1677    if (Block) {
1678      if (badCFG)
1679        return 0;
1680    }
1681  }
1682
1683  // The condition block is the implicit successor for the loop body as well as
1684  // any code above the loop.
1685  Succ = EntryConditionBlock;
1686
1687  // See if this is a known constant.
1688  TryResult KnownVal(true);
1689
1690  if (F->getCond())
1691    KnownVal = tryEvaluateBool(F->getCond());
1692
1693  // Now create the loop body.
1694  {
1695    assert(F->getBody());
1696
1697   // Save the current values for Block, Succ, and continue targets.
1698   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1699   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1700
1701    // Create a new block to contain the (bottom) of the loop body.
1702    Block = NULL;
1703
1704    // Loop body should end with destructor of Condition variable (if any).
1705    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1706
1707    if (Stmt *I = F->getInc()) {
1708      // Generate increment code in its own basic block.  This is the target of
1709      // continue statements.
1710      Succ = addStmt(I);
1711    } else {
1712      // No increment code.  Create a special, empty, block that is used as the
1713      // target block for "looping back" to the start of the loop.
1714      assert(Succ == EntryConditionBlock);
1715      Succ = Block ? Block : createBlock();
1716    }
1717
1718    // Finish up the increment (or empty) block if it hasn't been already.
1719    if (Block) {
1720      assert(Block == Succ);
1721      if (badCFG)
1722        return 0;
1723      Block = 0;
1724    }
1725
1726    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1727
1728    // The starting block for the loop increment is the block that should
1729    // represent the 'loop target' for looping back to the start of the loop.
1730    ContinueJumpTarget.block->setLoopTarget(F);
1731
1732    // If body is not a compound statement create implicit scope
1733    // and add destructors.
1734    if (!isa<CompoundStmt>(F->getBody()))
1735      addLocalScopeAndDtors(F->getBody());
1736
1737    // Now populate the body block, and in the process create new blocks as we
1738    // walk the body of the loop.
1739    CFGBlock *BodyBlock = addStmt(F->getBody());
1740
1741    if (!BodyBlock)
1742      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1743    else if (badCFG)
1744      return 0;
1745
1746    // This new body block is a successor to our "exit" condition block.
1747    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1748  }
1749
1750  // Link up the condition block with the code that follows the loop.  (the
1751  // false branch).
1752  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1753
1754  // If the loop contains initialization, create a new block for those
1755  // statements.  This block can also contain statements that precede the loop.
1756  if (Stmt *I = F->getInit()) {
1757    Block = createBlock();
1758    return addStmt(I);
1759  }
1760
1761  // There is no loop initialization.  We are thus basically a while loop.
1762  // NULL out Block to force lazy block construction.
1763  Block = NULL;
1764  Succ = EntryConditionBlock;
1765  return EntryConditionBlock;
1766}
1767
1768CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1769  if (asc.alwaysAdd(*this, M)) {
1770    autoCreateBlock();
1771    appendStmt(Block, M);
1772  }
1773  return Visit(M->getBase());
1774}
1775
1776CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1777  // Objective-C fast enumeration 'for' statements:
1778  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1779  //
1780  //  for ( Type newVariable in collection_expression ) { statements }
1781  //
1782  //  becomes:
1783  //
1784  //   prologue:
1785  //     1. collection_expression
1786  //     T. jump to loop_entry
1787  //   loop_entry:
1788  //     1. side-effects of element expression
1789  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1790  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1791  //   TB:
1792  //     statements
1793  //     T. jump to loop_entry
1794  //   FB:
1795  //     what comes after
1796  //
1797  //  and
1798  //
1799  //  Type existingItem;
1800  //  for ( existingItem in expression ) { statements }
1801  //
1802  //  becomes:
1803  //
1804  //   the same with newVariable replaced with existingItem; the binding works
1805  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1806  //   a DeclStmt and the other returns a DeclRefExpr.
1807  //
1808
1809  CFGBlock *LoopSuccessor = 0;
1810
1811  if (Block) {
1812    if (badCFG)
1813      return 0;
1814    LoopSuccessor = Block;
1815    Block = 0;
1816  } else
1817    LoopSuccessor = Succ;
1818
1819  // Build the condition blocks.
1820  CFGBlock *ExitConditionBlock = createBlock(false);
1821
1822  // Set the terminator for the "exit" condition block.
1823  ExitConditionBlock->setTerminator(S);
1824
1825  // The last statement in the block should be the ObjCForCollectionStmt, which
1826  // performs the actual binding to 'element' and determines if there are any
1827  // more items in the collection.
1828  appendStmt(ExitConditionBlock, S);
1829  Block = ExitConditionBlock;
1830
1831  // Walk the 'element' expression to see if there are any side-effects.  We
1832  // generate new blocks as necessary.  We DON'T add the statement by default to
1833  // the CFG unless it contains control-flow.
1834  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1835                                        AddStmtChoice::NotAlwaysAdd);
1836  if (Block) {
1837    if (badCFG)
1838      return 0;
1839    Block = 0;
1840  }
1841
1842  // The condition block is the implicit successor for the loop body as well as
1843  // any code above the loop.
1844  Succ = EntryConditionBlock;
1845
1846  // Now create the true branch.
1847  {
1848    // Save the current values for Succ, continue and break targets.
1849    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1850    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1851        save_break(BreakJumpTarget);
1852
1853    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1854    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1855
1856    CFGBlock *BodyBlock = addStmt(S->getBody());
1857
1858    if (!BodyBlock)
1859      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1860    else if (Block) {
1861      if (badCFG)
1862        return 0;
1863    }
1864
1865    // This new body block is a successor to our "exit" condition block.
1866    addSuccessor(ExitConditionBlock, BodyBlock);
1867  }
1868
1869  // Link up the condition block with the code that follows the loop.
1870  // (the false branch).
1871  addSuccessor(ExitConditionBlock, LoopSuccessor);
1872
1873  // Now create a prologue block to contain the collection expression.
1874  Block = createBlock();
1875  return addStmt(S->getCollection());
1876}
1877
1878CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
1879  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1880
1881  // Inline the body.
1882  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1883
1884  // The sync body starts its own basic block.  This makes it a little easier
1885  // for diagnostic clients.
1886  if (SyncBlock) {
1887    if (badCFG)
1888      return 0;
1889
1890    Block = 0;
1891    Succ = SyncBlock;
1892  }
1893
1894  // Add the @synchronized to the CFG.
1895  autoCreateBlock();
1896  appendStmt(Block, S);
1897
1898  // Inline the sync expression.
1899  return addStmt(S->getSynchExpr());
1900}
1901
1902CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
1903  // FIXME
1904  return NYS();
1905}
1906
1907CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
1908  CFGBlock *LoopSuccessor = NULL;
1909
1910  // Save local scope position because in case of condition variable ScopePos
1911  // won't be restored when traversing AST.
1912  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1913
1914  // Create local scope for possible condition variable.
1915  // Store scope position for continue statement.
1916  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1917  if (VarDecl *VD = W->getConditionVariable()) {
1918    addLocalScopeForVarDecl(VD);
1919    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1920  }
1921
1922  // "while" is a control-flow statement.  Thus we stop processing the current
1923  // block.
1924  if (Block) {
1925    if (badCFG)
1926      return 0;
1927    LoopSuccessor = Block;
1928    Block = 0;
1929  } else
1930    LoopSuccessor = Succ;
1931
1932  // Because of short-circuit evaluation, the condition of the loop can span
1933  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1934  // evaluate the condition.
1935  CFGBlock *ExitConditionBlock = createBlock(false);
1936  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1937
1938  // Set the terminator for the "exit" condition block.
1939  ExitConditionBlock->setTerminator(W);
1940
1941  // Now add the actual condition to the condition block.  Because the condition
1942  // itself may contain control-flow, new blocks may be created.  Thus we update
1943  // "Succ" after adding the condition.
1944  if (Stmt *C = W->getCond()) {
1945    Block = ExitConditionBlock;
1946    EntryConditionBlock = addStmt(C);
1947    // The condition might finish the current 'Block'.
1948    Block = EntryConditionBlock;
1949
1950    // If this block contains a condition variable, add both the condition
1951    // variable and initializer to the CFG.
1952    if (VarDecl *VD = W->getConditionVariable()) {
1953      if (Expr *Init = VD->getInit()) {
1954        autoCreateBlock();
1955        appendStmt(Block, W->getConditionVariableDeclStmt());
1956        EntryConditionBlock = addStmt(Init);
1957        assert(Block == EntryConditionBlock);
1958      }
1959    }
1960
1961    if (Block) {
1962      if (badCFG)
1963        return 0;
1964    }
1965  }
1966
1967  // The condition block is the implicit successor for the loop body as well as
1968  // any code above the loop.
1969  Succ = EntryConditionBlock;
1970
1971  // See if this is a known constant.
1972  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1973
1974  // Process the loop body.
1975  {
1976    assert(W->getBody());
1977
1978    // Save the current values for Block, Succ, and continue and break targets
1979    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1980    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1981        save_break(BreakJumpTarget);
1982
1983    // Create an empty block to represent the transition block for looping back
1984    // to the head of the loop.
1985    Block = 0;
1986    assert(Succ == EntryConditionBlock);
1987    Succ = createBlock();
1988    Succ->setLoopTarget(W);
1989    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1990
1991    // All breaks should go to the code following the loop.
1992    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1993
1994    // NULL out Block to force lazy instantiation of blocks for the body.
1995    Block = NULL;
1996
1997    // Loop body should end with destructor of Condition variable (if any).
1998    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1999
2000    // If body is not a compound statement create implicit scope
2001    // and add destructors.
2002    if (!isa<CompoundStmt>(W->getBody()))
2003      addLocalScopeAndDtors(W->getBody());
2004
2005    // Create the body.  The returned block is the entry to the loop body.
2006    CFGBlock *BodyBlock = addStmt(W->getBody());
2007
2008    if (!BodyBlock)
2009      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2010    else if (Block) {
2011      if (badCFG)
2012        return 0;
2013    }
2014
2015    // Add the loop body entry as a successor to the condition.
2016    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2017  }
2018
2019  // Link up the condition block with the code that follows the loop.  (the
2020  // false branch).
2021  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2022
2023  // There can be no more statements in the condition block since we loop back
2024  // to this block.  NULL out Block to force lazy creation of another block.
2025  Block = NULL;
2026
2027  // Return the condition block, which is the dominating block for the loop.
2028  Succ = EntryConditionBlock;
2029  return EntryConditionBlock;
2030}
2031
2032
2033CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2034  // FIXME: For now we pretend that @catch and the code it contains does not
2035  //  exit.
2036  return Block;
2037}
2038
2039CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2040  // FIXME: This isn't complete.  We basically treat @throw like a return
2041  //  statement.
2042
2043  // If we were in the middle of a block we stop processing that block.
2044  if (badCFG)
2045    return 0;
2046
2047  // Create the new block.
2048  Block = createBlock(false);
2049
2050  // The Exit block is the only successor.
2051  addSuccessor(Block, &cfg->getExit());
2052
2053  // Add the statement to the block.  This may create new blocks if S contains
2054  // control-flow (short-circuit operations).
2055  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2056}
2057
2058CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2059  // If we were in the middle of a block we stop processing that block.
2060  if (badCFG)
2061    return 0;
2062
2063  // Create the new block.
2064  Block = createBlock(false);
2065
2066  if (TryTerminatedBlock)
2067    // The current try statement is the only successor.
2068    addSuccessor(Block, TryTerminatedBlock);
2069  else
2070    // otherwise the Exit block is the only successor.
2071    addSuccessor(Block, &cfg->getExit());
2072
2073  // Add the statement to the block.  This may create new blocks if S contains
2074  // control-flow (short-circuit operations).
2075  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2076}
2077
2078CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2079  CFGBlock *LoopSuccessor = NULL;
2080
2081  // "do...while" is a control-flow statement.  Thus we stop processing the
2082  // current block.
2083  if (Block) {
2084    if (badCFG)
2085      return 0;
2086    LoopSuccessor = Block;
2087  } else
2088    LoopSuccessor = Succ;
2089
2090  // Because of short-circuit evaluation, the condition of the loop can span
2091  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2092  // evaluate the condition.
2093  CFGBlock *ExitConditionBlock = createBlock(false);
2094  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2095
2096  // Set the terminator for the "exit" condition block.
2097  ExitConditionBlock->setTerminator(D);
2098
2099  // Now add the actual condition to the condition block.  Because the condition
2100  // itself may contain control-flow, new blocks may be created.
2101  if (Stmt *C = D->getCond()) {
2102    Block = ExitConditionBlock;
2103    EntryConditionBlock = addStmt(C);
2104    if (Block) {
2105      if (badCFG)
2106        return 0;
2107    }
2108  }
2109
2110  // The condition block is the implicit successor for the loop body.
2111  Succ = EntryConditionBlock;
2112
2113  // See if this is a known constant.
2114  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2115
2116  // Process the loop body.
2117  CFGBlock *BodyBlock = NULL;
2118  {
2119    assert(D->getBody());
2120
2121    // Save the current values for Block, Succ, and continue and break targets
2122    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2123    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2124        save_break(BreakJumpTarget);
2125
2126    // All continues within this loop should go to the condition block
2127    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2128
2129    // All breaks should go to the code following the loop.
2130    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2131
2132    // NULL out Block to force lazy instantiation of blocks for the body.
2133    Block = NULL;
2134
2135    // If body is not a compound statement create implicit scope
2136    // and add destructors.
2137    if (!isa<CompoundStmt>(D->getBody()))
2138      addLocalScopeAndDtors(D->getBody());
2139
2140    // Create the body.  The returned block is the entry to the loop body.
2141    BodyBlock = addStmt(D->getBody());
2142
2143    if (!BodyBlock)
2144      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2145    else if (Block) {
2146      if (badCFG)
2147        return 0;
2148    }
2149
2150    if (!KnownVal.isFalse()) {
2151      // Add an intermediate block between the BodyBlock and the
2152      // ExitConditionBlock to represent the "loop back" transition.  Create an
2153      // empty block to represent the transition block for looping back to the
2154      // head of the loop.
2155      // FIXME: Can we do this more efficiently without adding another block?
2156      Block = NULL;
2157      Succ = BodyBlock;
2158      CFGBlock *LoopBackBlock = createBlock();
2159      LoopBackBlock->setLoopTarget(D);
2160
2161      // Add the loop body entry as a successor to the condition.
2162      addSuccessor(ExitConditionBlock, LoopBackBlock);
2163    }
2164    else
2165      addSuccessor(ExitConditionBlock, NULL);
2166  }
2167
2168  // Link up the condition block with the code that follows the loop.
2169  // (the false branch).
2170  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2171
2172  // There can be no more statements in the body block(s) since we loop back to
2173  // the body.  NULL out Block to force lazy creation of another block.
2174  Block = NULL;
2175
2176  // Return the loop body, which is the dominating block for the loop.
2177  Succ = BodyBlock;
2178  return BodyBlock;
2179}
2180
2181CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2182  // "continue" is a control-flow statement.  Thus we stop processing the
2183  // current block.
2184  if (badCFG)
2185    return 0;
2186
2187  // Now create a new block that ends with the continue statement.
2188  Block = createBlock(false);
2189  Block->setTerminator(C);
2190
2191  // If there is no target for the continue, then we are looking at an
2192  // incomplete AST.  This means the CFG cannot be constructed.
2193  if (ContinueJumpTarget.block) {
2194    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2195    addSuccessor(Block, ContinueJumpTarget.block);
2196  } else
2197    badCFG = true;
2198
2199  return Block;
2200}
2201
2202CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2203                                                    AddStmtChoice asc) {
2204
2205  if (asc.alwaysAdd(*this, E)) {
2206    autoCreateBlock();
2207    appendStmt(Block, E);
2208  }
2209
2210  // VLA types have expressions that must be evaluated.
2211  CFGBlock *lastBlock = Block;
2212
2213  if (E->isArgumentType()) {
2214    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2215         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2216      lastBlock = addStmt(VA->getSizeExpr());
2217  }
2218  return lastBlock;
2219}
2220
2221/// VisitStmtExpr - Utility method to handle (nested) statement
2222///  expressions (a GCC extension).
2223CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2224  if (asc.alwaysAdd(*this, SE)) {
2225    autoCreateBlock();
2226    appendStmt(Block, SE);
2227  }
2228  return VisitCompoundStmt(SE->getSubStmt());
2229}
2230
2231CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2232  // "switch" is a control-flow statement.  Thus we stop processing the current
2233  // block.
2234  CFGBlock *SwitchSuccessor = NULL;
2235
2236  // Save local scope position because in case of condition variable ScopePos
2237  // won't be restored when traversing AST.
2238  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2239
2240  // Create local scope for possible condition variable.
2241  // Store scope position. Add implicit destructor.
2242  if (VarDecl *VD = Terminator->getConditionVariable()) {
2243    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2244    addLocalScopeForVarDecl(VD);
2245    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2246  }
2247
2248  if (Block) {
2249    if (badCFG)
2250      return 0;
2251    SwitchSuccessor = Block;
2252  } else SwitchSuccessor = Succ;
2253
2254  // Save the current "switch" context.
2255  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2256                            save_default(DefaultCaseBlock);
2257  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2258
2259  // Set the "default" case to be the block after the switch statement.  If the
2260  // switch statement contains a "default:", this value will be overwritten with
2261  // the block for that code.
2262  DefaultCaseBlock = SwitchSuccessor;
2263
2264  // Create a new block that will contain the switch statement.
2265  SwitchTerminatedBlock = createBlock(false);
2266
2267  // Now process the switch body.  The code after the switch is the implicit
2268  // successor.
2269  Succ = SwitchSuccessor;
2270  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2271
2272  // When visiting the body, the case statements should automatically get linked
2273  // up to the switch.  We also don't keep a pointer to the body, since all
2274  // control-flow from the switch goes to case/default statements.
2275  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2276  Block = NULL;
2277
2278  // For pruning unreachable case statements, save the current state
2279  // for tracking the condition value.
2280  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2281                                                     false);
2282
2283  // Determine if the switch condition can be explicitly evaluated.
2284  assert(Terminator->getCond() && "switch condition must be non-NULL");
2285  Expr::EvalResult result;
2286  bool b = tryEvaluate(Terminator->getCond(), result);
2287  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2288                                                    b ? &result : 0);
2289
2290  // If body is not a compound statement create implicit scope
2291  // and add destructors.
2292  if (!isa<CompoundStmt>(Terminator->getBody()))
2293    addLocalScopeAndDtors(Terminator->getBody());
2294
2295  addStmt(Terminator->getBody());
2296  if (Block) {
2297    if (badCFG)
2298      return 0;
2299  }
2300
2301  // If we have no "default:" case, the default transition is to the code
2302  // following the switch body.  Moreover, take into account if all the
2303  // cases of a switch are covered (e.g., switching on an enum value).
2304  addSuccessor(SwitchTerminatedBlock,
2305               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2306               ? 0 : DefaultCaseBlock);
2307
2308  // Add the terminator and condition in the switch block.
2309  SwitchTerminatedBlock->setTerminator(Terminator);
2310  Block = SwitchTerminatedBlock;
2311  Block = addStmt(Terminator->getCond());
2312
2313  // Finally, if the SwitchStmt contains a condition variable, add both the
2314  // SwitchStmt and the condition variable initialization to the CFG.
2315  if (VarDecl *VD = Terminator->getConditionVariable()) {
2316    if (Expr *Init = VD->getInit()) {
2317      autoCreateBlock();
2318      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2319      addStmt(Init);
2320    }
2321  }
2322
2323  return Block;
2324}
2325
2326static bool shouldAddCase(bool &switchExclusivelyCovered,
2327                          const Expr::EvalResult *switchCond,
2328                          const CaseStmt *CS,
2329                          ASTContext &Ctx) {
2330  if (!switchCond)
2331    return true;
2332
2333  bool addCase = false;
2334
2335  if (!switchExclusivelyCovered) {
2336    if (switchCond->Val.isInt()) {
2337      // Evaluate the LHS of the case value.
2338      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2339      const llvm::APSInt &condInt = switchCond->Val.getInt();
2340
2341      if (condInt == lhsInt) {
2342        addCase = true;
2343        switchExclusivelyCovered = true;
2344      }
2345      else if (condInt < lhsInt) {
2346        if (const Expr *RHS = CS->getRHS()) {
2347          // Evaluate the RHS of the case value.
2348          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2349          if (V2 <= condInt) {
2350            addCase = true;
2351            switchExclusivelyCovered = true;
2352          }
2353        }
2354      }
2355    }
2356    else
2357      addCase = true;
2358  }
2359  return addCase;
2360}
2361
2362CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2363  // CaseStmts are essentially labels, so they are the first statement in a
2364  // block.
2365  CFGBlock *TopBlock = 0, *LastBlock = 0;
2366
2367  if (Stmt *Sub = CS->getSubStmt()) {
2368    // For deeply nested chains of CaseStmts, instead of doing a recursion
2369    // (which can blow out the stack), manually unroll and create blocks
2370    // along the way.
2371    while (isa<CaseStmt>(Sub)) {
2372      CFGBlock *currentBlock = createBlock(false);
2373      currentBlock->setLabel(CS);
2374
2375      if (TopBlock)
2376        addSuccessor(LastBlock, currentBlock);
2377      else
2378        TopBlock = currentBlock;
2379
2380      addSuccessor(SwitchTerminatedBlock,
2381                   shouldAddCase(switchExclusivelyCovered, switchCond,
2382                                 CS, *Context)
2383                   ? currentBlock : 0);
2384
2385      LastBlock = currentBlock;
2386      CS = cast<CaseStmt>(Sub);
2387      Sub = CS->getSubStmt();
2388    }
2389
2390    addStmt(Sub);
2391  }
2392
2393  CFGBlock *CaseBlock = Block;
2394  if (!CaseBlock)
2395    CaseBlock = createBlock();
2396
2397  // Cases statements partition blocks, so this is the top of the basic block we
2398  // were processing (the "case XXX:" is the label).
2399  CaseBlock->setLabel(CS);
2400
2401  if (badCFG)
2402    return 0;
2403
2404  // Add this block to the list of successors for the block with the switch
2405  // statement.
2406  assert(SwitchTerminatedBlock);
2407  addSuccessor(SwitchTerminatedBlock,
2408               shouldAddCase(switchExclusivelyCovered, switchCond,
2409                             CS, *Context)
2410               ? CaseBlock : 0);
2411
2412  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2413  Block = NULL;
2414
2415  if (TopBlock) {
2416    addSuccessor(LastBlock, CaseBlock);
2417    Succ = TopBlock;
2418  } else {
2419    // This block is now the implicit successor of other blocks.
2420    Succ = CaseBlock;
2421  }
2422
2423  return Succ;
2424}
2425
2426CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2427  if (Terminator->getSubStmt())
2428    addStmt(Terminator->getSubStmt());
2429
2430  DefaultCaseBlock = Block;
2431
2432  if (!DefaultCaseBlock)
2433    DefaultCaseBlock = createBlock();
2434
2435  // Default statements partition blocks, so this is the top of the basic block
2436  // we were processing (the "default:" is the label).
2437  DefaultCaseBlock->setLabel(Terminator);
2438
2439  if (badCFG)
2440    return 0;
2441
2442  // Unlike case statements, we don't add the default block to the successors
2443  // for the switch statement immediately.  This is done when we finish
2444  // processing the switch statement.  This allows for the default case
2445  // (including a fall-through to the code after the switch statement) to always
2446  // be the last successor of a switch-terminated block.
2447
2448  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2449  Block = NULL;
2450
2451  // This block is now the implicit successor of other blocks.
2452  Succ = DefaultCaseBlock;
2453
2454  return DefaultCaseBlock;
2455}
2456
2457CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2458  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2459  // current block.
2460  CFGBlock *TrySuccessor = NULL;
2461
2462  if (Block) {
2463    if (badCFG)
2464      return 0;
2465    TrySuccessor = Block;
2466  } else TrySuccessor = Succ;
2467
2468  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2469
2470  // Create a new block that will contain the try statement.
2471  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2472  // Add the terminator in the try block.
2473  NewTryTerminatedBlock->setTerminator(Terminator);
2474
2475  bool HasCatchAll = false;
2476  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2477    // The code after the try is the implicit successor.
2478    Succ = TrySuccessor;
2479    CXXCatchStmt *CS = Terminator->getHandler(h);
2480    if (CS->getExceptionDecl() == 0) {
2481      HasCatchAll = true;
2482    }
2483    Block = NULL;
2484    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2485    if (CatchBlock == 0)
2486      return 0;
2487    // Add this block to the list of successors for the block with the try
2488    // statement.
2489    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2490  }
2491  if (!HasCatchAll) {
2492    if (PrevTryTerminatedBlock)
2493      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2494    else
2495      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2496  }
2497
2498  // The code after the try is the implicit successor.
2499  Succ = TrySuccessor;
2500
2501  // Save the current "try" context.
2502  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2503  cfg->addTryDispatchBlock(TryTerminatedBlock);
2504
2505  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2506  Block = NULL;
2507  Block = addStmt(Terminator->getTryBlock());
2508  return Block;
2509}
2510
2511CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2512  // CXXCatchStmt are treated like labels, so they are the first statement in a
2513  // block.
2514
2515  // Save local scope position because in case of exception variable ScopePos
2516  // won't be restored when traversing AST.
2517  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2518
2519  // Create local scope for possible exception variable.
2520  // Store scope position. Add implicit destructor.
2521  if (VarDecl *VD = CS->getExceptionDecl()) {
2522    LocalScope::const_iterator BeginScopePos = ScopePos;
2523    addLocalScopeForVarDecl(VD);
2524    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2525  }
2526
2527  if (CS->getHandlerBlock())
2528    addStmt(CS->getHandlerBlock());
2529
2530  CFGBlock *CatchBlock = Block;
2531  if (!CatchBlock)
2532    CatchBlock = createBlock();
2533
2534  CatchBlock->setLabel(CS);
2535
2536  if (badCFG)
2537    return 0;
2538
2539  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2540  Block = NULL;
2541
2542  return CatchBlock;
2543}
2544
2545CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2546  // C++0x for-range statements are specified as [stmt.ranged]:
2547  //
2548  // {
2549  //   auto && __range = range-init;
2550  //   for ( auto __begin = begin-expr,
2551  //         __end = end-expr;
2552  //         __begin != __end;
2553  //         ++__begin ) {
2554  //     for-range-declaration = *__begin;
2555  //     statement
2556  //   }
2557  // }
2558
2559  // Save local scope position before the addition of the implicit variables.
2560  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2561
2562  // Create local scopes and destructors for range, begin and end variables.
2563  if (Stmt *Range = S->getRangeStmt())
2564    addLocalScopeForStmt(Range);
2565  if (Stmt *BeginEnd = S->getBeginEndStmt())
2566    addLocalScopeForStmt(BeginEnd);
2567  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2568
2569  LocalScope::const_iterator ContinueScopePos = ScopePos;
2570
2571  // "for" is a control-flow statement.  Thus we stop processing the current
2572  // block.
2573  CFGBlock *LoopSuccessor = NULL;
2574  if (Block) {
2575    if (badCFG)
2576      return 0;
2577    LoopSuccessor = Block;
2578  } else
2579    LoopSuccessor = Succ;
2580
2581  // Save the current value for the break targets.
2582  // All breaks should go to the code following the loop.
2583  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2584  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2585
2586  // The block for the __begin != __end expression.
2587  CFGBlock *ConditionBlock = createBlock(false);
2588  ConditionBlock->setTerminator(S);
2589
2590  // Now add the actual condition to the condition block.
2591  if (Expr *C = S->getCond()) {
2592    Block = ConditionBlock;
2593    CFGBlock *BeginConditionBlock = addStmt(C);
2594    if (badCFG)
2595      return 0;
2596    assert(BeginConditionBlock == ConditionBlock &&
2597           "condition block in for-range was unexpectedly complex");
2598    (void)BeginConditionBlock;
2599  }
2600
2601  // The condition block is the implicit successor for the loop body as well as
2602  // any code above the loop.
2603  Succ = ConditionBlock;
2604
2605  // See if this is a known constant.
2606  TryResult KnownVal(true);
2607
2608  if (S->getCond())
2609    KnownVal = tryEvaluateBool(S->getCond());
2610
2611  // Now create the loop body.
2612  {
2613    assert(S->getBody());
2614
2615    // Save the current values for Block, Succ, and continue targets.
2616    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2617    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2618
2619    // Generate increment code in its own basic block.  This is the target of
2620    // continue statements.
2621    Block = 0;
2622    Succ = addStmt(S->getInc());
2623    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2624
2625    // The starting block for the loop increment is the block that should
2626    // represent the 'loop target' for looping back to the start of the loop.
2627    ContinueJumpTarget.block->setLoopTarget(S);
2628
2629    // Finish up the increment block and prepare to start the loop body.
2630    assert(Block);
2631    if (badCFG)
2632      return 0;
2633    Block = 0;
2634
2635
2636    // Add implicit scope and dtors for loop variable.
2637    addLocalScopeAndDtors(S->getLoopVarStmt());
2638
2639    // Populate a new block to contain the loop body and loop variable.
2640    Block = addStmt(S->getBody());
2641    if (badCFG)
2642      return 0;
2643    Block = addStmt(S->getLoopVarStmt());
2644    if (badCFG)
2645      return 0;
2646
2647    // This new body block is a successor to our condition block.
2648    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2649  }
2650
2651  // Link up the condition block with the code that follows the loop (the
2652  // false branch).
2653  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2654
2655  // Add the initialization statements.
2656  Block = createBlock();
2657  addStmt(S->getBeginEndStmt());
2658  return addStmt(S->getRangeStmt());
2659}
2660
2661CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2662    AddStmtChoice asc) {
2663  if (BuildOpts.AddImplicitDtors) {
2664    // If adding implicit destructors visit the full expression for adding
2665    // destructors of temporaries.
2666    VisitForTemporaryDtors(E->getSubExpr());
2667
2668    // Full expression has to be added as CFGStmt so it will be sequenced
2669    // before destructors of it's temporaries.
2670    asc = asc.withAlwaysAdd(true);
2671  }
2672  return Visit(E->getSubExpr(), asc);
2673}
2674
2675CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2676                                                AddStmtChoice asc) {
2677  if (asc.alwaysAdd(*this, E)) {
2678    autoCreateBlock();
2679    appendStmt(Block, E);
2680
2681    // We do not want to propagate the AlwaysAdd property.
2682    asc = asc.withAlwaysAdd(false);
2683  }
2684  return Visit(E->getSubExpr(), asc);
2685}
2686
2687CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2688                                            AddStmtChoice asc) {
2689  autoCreateBlock();
2690  if (!C->isElidable())
2691    appendStmt(Block, C);
2692
2693  return VisitChildren(C);
2694}
2695
2696CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2697                                                 AddStmtChoice asc) {
2698  if (asc.alwaysAdd(*this, E)) {
2699    autoCreateBlock();
2700    appendStmt(Block, E);
2701    // We do not want to propagate the AlwaysAdd property.
2702    asc = asc.withAlwaysAdd(false);
2703  }
2704  return Visit(E->getSubExpr(), asc);
2705}
2706
2707CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2708                                                  AddStmtChoice asc) {
2709  autoCreateBlock();
2710  appendStmt(Block, C);
2711  return VisitChildren(C);
2712}
2713
2714CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2715                                            AddStmtChoice asc) {
2716  if (asc.alwaysAdd(*this, E)) {
2717    autoCreateBlock();
2718    appendStmt(Block, E);
2719  }
2720  return Visit(E->getSubExpr(), AddStmtChoice());
2721}
2722
2723CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2724  // Lazily create the indirect-goto dispatch block if there isn't one already.
2725  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2726
2727  if (!IBlock) {
2728    IBlock = createBlock(false);
2729    cfg->setIndirectGotoBlock(IBlock);
2730  }
2731
2732  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2733  // current block and create a new one.
2734  if (badCFG)
2735    return 0;
2736
2737  Block = createBlock(false);
2738  Block->setTerminator(I);
2739  addSuccessor(Block, IBlock);
2740  return addStmt(I->getTarget());
2741}
2742
2743CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2744tryAgain:
2745  if (!E) {
2746    badCFG = true;
2747    return NULL;
2748  }
2749  switch (E->getStmtClass()) {
2750    default:
2751      return VisitChildrenForTemporaryDtors(E);
2752
2753    case Stmt::BinaryOperatorClass:
2754      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2755
2756    case Stmt::CXXBindTemporaryExprClass:
2757      return VisitCXXBindTemporaryExprForTemporaryDtors(
2758          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2759
2760    case Stmt::BinaryConditionalOperatorClass:
2761    case Stmt::ConditionalOperatorClass:
2762      return VisitConditionalOperatorForTemporaryDtors(
2763          cast<AbstractConditionalOperator>(E), BindToTemporary);
2764
2765    case Stmt::ImplicitCastExprClass:
2766      // For implicit cast we want BindToTemporary to be passed further.
2767      E = cast<CastExpr>(E)->getSubExpr();
2768      goto tryAgain;
2769
2770    case Stmt::ParenExprClass:
2771      E = cast<ParenExpr>(E)->getSubExpr();
2772      goto tryAgain;
2773
2774    case Stmt::MaterializeTemporaryExprClass:
2775      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2776      goto tryAgain;
2777  }
2778}
2779
2780CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2781  // When visiting children for destructors we want to visit them in reverse
2782  // order. Because there's no reverse iterator for children must to reverse
2783  // them in helper vector.
2784  typedef SmallVector<Stmt *, 4> ChildrenVect;
2785  ChildrenVect ChildrenRev;
2786  for (Stmt::child_range I = E->children(); I; ++I) {
2787    if (*I) ChildrenRev.push_back(*I);
2788  }
2789
2790  CFGBlock *B = Block;
2791  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2792      L = ChildrenRev.rend(); I != L; ++I) {
2793    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2794      B = R;
2795  }
2796  return B;
2797}
2798
2799CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2800  if (E->isLogicalOp()) {
2801    // Destructors for temporaries in LHS expression should be called after
2802    // those for RHS expression. Even if this will unnecessarily create a block,
2803    // this block will be used at least by the full expression.
2804    autoCreateBlock();
2805    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2806    if (badCFG)
2807      return NULL;
2808
2809    Succ = ConfluenceBlock;
2810    Block = NULL;
2811    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2812
2813    if (RHSBlock) {
2814      if (badCFG)
2815        return NULL;
2816
2817      // If RHS expression did produce destructors we need to connect created
2818      // blocks to CFG in same manner as for binary operator itself.
2819      CFGBlock *LHSBlock = createBlock(false);
2820      LHSBlock->setTerminator(CFGTerminator(E, true));
2821
2822      // For binary operator LHS block is before RHS in list of predecessors
2823      // of ConfluenceBlock.
2824      std::reverse(ConfluenceBlock->pred_begin(),
2825          ConfluenceBlock->pred_end());
2826
2827      // See if this is a known constant.
2828      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2829      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2830        KnownVal.negate();
2831
2832      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2833      // itself.
2834      if (E->getOpcode() == BO_LOr) {
2835        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2836        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2837      } else {
2838        assert (E->getOpcode() == BO_LAnd);
2839        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2840        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2841      }
2842
2843      Block = LHSBlock;
2844      return LHSBlock;
2845    }
2846
2847    Block = ConfluenceBlock;
2848    return ConfluenceBlock;
2849  }
2850
2851  if (E->isAssignmentOp()) {
2852    // For assignment operator (=) LHS expression is visited
2853    // before RHS expression. For destructors visit them in reverse order.
2854    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2855    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2856    return LHSBlock ? LHSBlock : RHSBlock;
2857  }
2858
2859  // For any other binary operator RHS expression is visited before
2860  // LHS expression (order of children). For destructors visit them in reverse
2861  // order.
2862  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2863  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2864  return RHSBlock ? RHSBlock : LHSBlock;
2865}
2866
2867CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2868    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2869  // First add destructors for temporaries in subexpression.
2870  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2871  if (!BindToTemporary) {
2872    // If lifetime of temporary is not prolonged (by assigning to constant
2873    // reference) add destructor for it.
2874
2875    // If the destructor is marked as a no-return destructor, we need to create
2876    // a new block for the destructor which does not have as a successor
2877    // anything built thus far. Control won't flow out of this block.
2878    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
2879    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
2880      Block = createNoReturnBlock();
2881    else
2882      autoCreateBlock();
2883
2884    appendTemporaryDtor(Block, E);
2885    B = Block;
2886  }
2887  return B;
2888}
2889
2890CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2891    AbstractConditionalOperator *E, bool BindToTemporary) {
2892  // First add destructors for condition expression.  Even if this will
2893  // unnecessarily create a block, this block will be used at least by the full
2894  // expression.
2895  autoCreateBlock();
2896  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2897  if (badCFG)
2898    return NULL;
2899  if (BinaryConditionalOperator *BCO
2900        = dyn_cast<BinaryConditionalOperator>(E)) {
2901    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2902    if (badCFG)
2903      return NULL;
2904  }
2905
2906  // Try to add block with destructors for LHS expression.
2907  CFGBlock *LHSBlock = NULL;
2908  Succ = ConfluenceBlock;
2909  Block = NULL;
2910  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2911  if (badCFG)
2912    return NULL;
2913
2914  // Try to add block with destructors for RHS expression;
2915  Succ = ConfluenceBlock;
2916  Block = NULL;
2917  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2918                                              BindToTemporary);
2919  if (badCFG)
2920    return NULL;
2921
2922  if (!RHSBlock && !LHSBlock) {
2923    // If neither LHS nor RHS expression had temporaries to destroy don't create
2924    // more blocks.
2925    Block = ConfluenceBlock;
2926    return Block;
2927  }
2928
2929  Block = createBlock(false);
2930  Block->setTerminator(CFGTerminator(E, true));
2931
2932  // See if this is a known constant.
2933  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2934
2935  if (LHSBlock) {
2936    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2937  } else if (KnownVal.isFalse()) {
2938    addSuccessor(Block, NULL);
2939  } else {
2940    addSuccessor(Block, ConfluenceBlock);
2941    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2942  }
2943
2944  if (!RHSBlock)
2945    RHSBlock = ConfluenceBlock;
2946  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2947
2948  return Block;
2949}
2950
2951} // end anonymous namespace
2952
2953/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2954///  no successors or predecessors.  If this is the first block created in the
2955///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2956CFGBlock *CFG::createBlock() {
2957  bool first_block = begin() == end();
2958
2959  // Create the block.
2960  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2961  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2962  Blocks.push_back(Mem, BlkBVC);
2963
2964  // If this is the first block, set it as the Entry and Exit.
2965  if (first_block)
2966    Entry = Exit = &back();
2967
2968  // Return the block.
2969  return &back();
2970}
2971
2972/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2973///  CFG is returned to the caller.
2974CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
2975    const BuildOptions &BO) {
2976  CFGBuilder Builder(C, BO);
2977  return Builder.buildCFG(D, Statement);
2978}
2979
2980const CXXDestructorDecl *
2981CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2982  switch (getKind()) {
2983    case CFGElement::Invalid:
2984    case CFGElement::Statement:
2985    case CFGElement::Initializer:
2986      llvm_unreachable("getDestructorDecl should only be used with "
2987                       "ImplicitDtors");
2988    case CFGElement::AutomaticObjectDtor: {
2989      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
2990      QualType ty = var->getType();
2991      ty = ty.getNonReferenceType();
2992      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
2993        ty = arrayType->getElementType();
2994      }
2995      const RecordType *recordType = ty->getAs<RecordType>();
2996      const CXXRecordDecl *classDecl =
2997      cast<CXXRecordDecl>(recordType->getDecl());
2998      return classDecl->getDestructor();
2999    }
3000    case CFGElement::TemporaryDtor: {
3001      const CXXBindTemporaryExpr *bindExpr =
3002        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3003      const CXXTemporary *temp = bindExpr->getTemporary();
3004      return temp->getDestructor();
3005    }
3006    case CFGElement::BaseDtor:
3007    case CFGElement::MemberDtor:
3008
3009      // Not yet supported.
3010      return 0;
3011  }
3012  llvm_unreachable("getKind() returned bogus value");
3013  return 0;
3014}
3015
3016bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3017  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3018    QualType ty = cdecl->getType();
3019    return cast<FunctionType>(ty)->getNoReturnAttr();
3020  }
3021  return false;
3022}
3023
3024//===----------------------------------------------------------------------===//
3025// CFG: Queries for BlkExprs.
3026//===----------------------------------------------------------------------===//
3027
3028namespace {
3029  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3030}
3031
3032static void FindSubExprAssignments(const Stmt *S,
3033                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3034  if (!S)
3035    return;
3036
3037  for (Stmt::const_child_range I = S->children(); I; ++I) {
3038    const Stmt *child = *I;
3039    if (!child)
3040      continue;
3041
3042    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3043      if (B->isAssignmentOp()) Set.insert(B);
3044
3045    FindSubExprAssignments(child, Set);
3046  }
3047}
3048
3049static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3050  BlkExprMapTy* M = new BlkExprMapTy();
3051
3052  // Look for assignments that are used as subexpressions.  These are the only
3053  // assignments that we want to *possibly* register as a block-level
3054  // expression.  Basically, if an assignment occurs both in a subexpression and
3055  // at the block-level, it is a block-level expression.
3056  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3057
3058  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3059    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3060      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3061        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3062
3063  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3064
3065    // Iterate over the statements again on identify the Expr* and Stmt* at the
3066    // block-level that are block-level expressions.
3067
3068    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3069      const CFGStmt *CS = BI->getAs<CFGStmt>();
3070      if (!CS)
3071        continue;
3072      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3073        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3074
3075        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3076          // Assignment expressions that are not nested within another
3077          // expression are really "statements" whose value is never used by
3078          // another expression.
3079          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3080            continue;
3081        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3082          // Special handling for statement expressions.  The last statement in
3083          // the statement expression is also a block-level expr.
3084          const CompoundStmt *C = SE->getSubStmt();
3085          if (!C->body_empty()) {
3086            const Stmt *Last = C->body_back();
3087            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3088              Last = LastEx->IgnoreParens();
3089            unsigned x = M->size();
3090            (*M)[Last] = x;
3091          }
3092        }
3093
3094        unsigned x = M->size();
3095        (*M)[Exp] = x;
3096      }
3097    }
3098
3099    // Look at terminators.  The condition is a block-level expression.
3100
3101    Stmt *S = (*I)->getTerminatorCondition();
3102
3103    if (S && M->find(S) == M->end()) {
3104      unsigned x = M->size();
3105      (*M)[S] = x;
3106    }
3107  }
3108
3109  return M;
3110}
3111
3112CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3113  assert(S != NULL);
3114  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3115
3116  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3117  BlkExprMapTy::iterator I = M->find(S);
3118  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3119}
3120
3121unsigned CFG::getNumBlkExprs() {
3122  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3123    return M->size();
3124
3125  // We assume callers interested in the number of BlkExprs will want
3126  // the map constructed if it doesn't already exist.
3127  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3128  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3129}
3130
3131//===----------------------------------------------------------------------===//
3132// Filtered walking of the CFG.
3133//===----------------------------------------------------------------------===//
3134
3135bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3136        const CFGBlock *From, const CFGBlock *To) {
3137
3138  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3139    // If the 'To' has no label or is labeled but the label isn't a
3140    // CaseStmt then filter this edge.
3141    if (const SwitchStmt *S =
3142        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3143      if (S->isAllEnumCasesCovered()) {
3144        const Stmt *L = To->getLabel();
3145        if (!L || !isa<CaseStmt>(L))
3146          return true;
3147      }
3148    }
3149  }
3150
3151  return false;
3152}
3153
3154//===----------------------------------------------------------------------===//
3155// Cleanup: CFG dstor.
3156//===----------------------------------------------------------------------===//
3157
3158CFG::~CFG() {
3159  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3160}
3161
3162//===----------------------------------------------------------------------===//
3163// CFG pretty printing
3164//===----------------------------------------------------------------------===//
3165
3166namespace {
3167
3168class StmtPrinterHelper : public PrinterHelper  {
3169  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3170  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3171  StmtMapTy StmtMap;
3172  DeclMapTy DeclMap;
3173  signed currentBlock;
3174  unsigned currentStmt;
3175  const LangOptions &LangOpts;
3176public:
3177
3178  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3179    : currentBlock(0), currentStmt(0), LangOpts(LO)
3180  {
3181    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3182      unsigned j = 1;
3183      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3184           BI != BEnd; ++BI, ++j ) {
3185        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3186          const Stmt *stmt= SE->getStmt();
3187          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3188          StmtMap[stmt] = P;
3189
3190          switch (stmt->getStmtClass()) {
3191            case Stmt::DeclStmtClass:
3192                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3193                break;
3194            case Stmt::IfStmtClass: {
3195              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3196              if (var)
3197                DeclMap[var] = P;
3198              break;
3199            }
3200            case Stmt::ForStmtClass: {
3201              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3202              if (var)
3203                DeclMap[var] = P;
3204              break;
3205            }
3206            case Stmt::WhileStmtClass: {
3207              const VarDecl *var =
3208                cast<WhileStmt>(stmt)->getConditionVariable();
3209              if (var)
3210                DeclMap[var] = P;
3211              break;
3212            }
3213            case Stmt::SwitchStmtClass: {
3214              const VarDecl *var =
3215                cast<SwitchStmt>(stmt)->getConditionVariable();
3216              if (var)
3217                DeclMap[var] = P;
3218              break;
3219            }
3220            case Stmt::CXXCatchStmtClass: {
3221              const VarDecl *var =
3222                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3223              if (var)
3224                DeclMap[var] = P;
3225              break;
3226            }
3227            default:
3228              break;
3229          }
3230        }
3231      }
3232    }
3233  }
3234
3235
3236  virtual ~StmtPrinterHelper() {}
3237
3238  const LangOptions &getLangOpts() const { return LangOpts; }
3239  void setBlockID(signed i) { currentBlock = i; }
3240  void setStmtID(unsigned i) { currentStmt = i; }
3241
3242  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3243    StmtMapTy::iterator I = StmtMap.find(S);
3244
3245    if (I == StmtMap.end())
3246      return false;
3247
3248    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3249                          && I->second.second == currentStmt) {
3250      return false;
3251    }
3252
3253    OS << "[B" << I->second.first << "." << I->second.second << "]";
3254    return true;
3255  }
3256
3257  bool handleDecl(const Decl *D, raw_ostream &OS) {
3258    DeclMapTy::iterator I = DeclMap.find(D);
3259
3260    if (I == DeclMap.end())
3261      return false;
3262
3263    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3264                          && I->second.second == currentStmt) {
3265      return false;
3266    }
3267
3268    OS << "[B" << I->second.first << "." << I->second.second << "]";
3269    return true;
3270  }
3271};
3272} // end anonymous namespace
3273
3274
3275namespace {
3276class CFGBlockTerminatorPrint
3277  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3278
3279  raw_ostream &OS;
3280  StmtPrinterHelper* Helper;
3281  PrintingPolicy Policy;
3282public:
3283  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3284                          const PrintingPolicy &Policy)
3285    : OS(os), Helper(helper), Policy(Policy) {}
3286
3287  void VisitIfStmt(IfStmt *I) {
3288    OS << "if ";
3289    I->getCond()->printPretty(OS,Helper,Policy);
3290  }
3291
3292  // Default case.
3293  void VisitStmt(Stmt *Terminator) {
3294    Terminator->printPretty(OS, Helper, Policy);
3295  }
3296
3297  void VisitForStmt(ForStmt *F) {
3298    OS << "for (" ;
3299    if (F->getInit())
3300      OS << "...";
3301    OS << "; ";
3302    if (Stmt *C = F->getCond())
3303      C->printPretty(OS, Helper, Policy);
3304    OS << "; ";
3305    if (F->getInc())
3306      OS << "...";
3307    OS << ")";
3308  }
3309
3310  void VisitWhileStmt(WhileStmt *W) {
3311    OS << "while " ;
3312    if (Stmt *C = W->getCond())
3313      C->printPretty(OS, Helper, Policy);
3314  }
3315
3316  void VisitDoStmt(DoStmt *D) {
3317    OS << "do ... while ";
3318    if (Stmt *C = D->getCond())
3319      C->printPretty(OS, Helper, Policy);
3320  }
3321
3322  void VisitSwitchStmt(SwitchStmt *Terminator) {
3323    OS << "switch ";
3324    Terminator->getCond()->printPretty(OS, Helper, Policy);
3325  }
3326
3327  void VisitCXXTryStmt(CXXTryStmt *CS) {
3328    OS << "try ...";
3329  }
3330
3331  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3332    C->getCond()->printPretty(OS, Helper, Policy);
3333    OS << " ? ... : ...";
3334  }
3335
3336  void VisitChooseExpr(ChooseExpr *C) {
3337    OS << "__builtin_choose_expr( ";
3338    C->getCond()->printPretty(OS, Helper, Policy);
3339    OS << " )";
3340  }
3341
3342  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3343    OS << "goto *";
3344    I->getTarget()->printPretty(OS, Helper, Policy);
3345  }
3346
3347  void VisitBinaryOperator(BinaryOperator* B) {
3348    if (!B->isLogicalOp()) {
3349      VisitExpr(B);
3350      return;
3351    }
3352
3353    B->getLHS()->printPretty(OS, Helper, Policy);
3354
3355    switch (B->getOpcode()) {
3356      case BO_LOr:
3357        OS << " || ...";
3358        return;
3359      case BO_LAnd:
3360        OS << " && ...";
3361        return;
3362      default:
3363        llvm_unreachable("Invalid logical operator.");
3364    }
3365  }
3366
3367  void VisitExpr(Expr *E) {
3368    E->printPretty(OS, Helper, Policy);
3369  }
3370};
3371} // end anonymous namespace
3372
3373static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3374                       const CFGElement &E) {
3375  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3376    const Stmt *S = CS->getStmt();
3377
3378    if (Helper) {
3379
3380      // special printing for statement-expressions.
3381      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3382        const CompoundStmt *Sub = SE->getSubStmt();
3383
3384        if (Sub->children()) {
3385          OS << "({ ... ; ";
3386          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3387          OS << " })\n";
3388          return;
3389        }
3390      }
3391      // special printing for comma expressions.
3392      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3393        if (B->getOpcode() == BO_Comma) {
3394          OS << "... , ";
3395          Helper->handledStmt(B->getRHS(),OS);
3396          OS << '\n';
3397          return;
3398        }
3399      }
3400    }
3401    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3402
3403    if (isa<CXXOperatorCallExpr>(S)) {
3404      OS << " (OperatorCall)";
3405    } else if (isa<CXXBindTemporaryExpr>(S)) {
3406      OS << " (BindTemporary)";
3407    }
3408
3409    // Expressions need a newline.
3410    if (isa<Expr>(S))
3411      OS << '\n';
3412
3413  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3414    const CXXCtorInitializer *I = IE->getInitializer();
3415    if (I->isBaseInitializer())
3416      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3417    else OS << I->getAnyMember()->getName();
3418
3419    OS << "(";
3420    if (Expr *IE = I->getInit())
3421      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3422    OS << ")";
3423
3424    if (I->isBaseInitializer())
3425      OS << " (Base initializer)\n";
3426    else OS << " (Member initializer)\n";
3427
3428  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3429    const VarDecl *VD = DE->getVarDecl();
3430    Helper->handleDecl(VD, OS);
3431
3432    const Type* T = VD->getType().getTypePtr();
3433    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3434      T = RT->getPointeeType().getTypePtr();
3435    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3436      T = ET;
3437
3438    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3439    OS << " (Implicit destructor)\n";
3440
3441  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3442    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3443    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3444    OS << " (Base object destructor)\n";
3445
3446  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3447    const FieldDecl *FD = ME->getFieldDecl();
3448
3449    const Type *T = FD->getType().getTypePtr();
3450    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3451      T = ET;
3452
3453    OS << "this->" << FD->getName();
3454    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3455    OS << " (Member object destructor)\n";
3456
3457  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3458    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3459    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3460    OS << " (Temporary object destructor)\n";
3461  }
3462}
3463
3464static void print_block(raw_ostream &OS, const CFG* cfg,
3465                        const CFGBlock &B,
3466                        StmtPrinterHelper* Helper, bool print_edges) {
3467
3468  if (Helper) Helper->setBlockID(B.getBlockID());
3469
3470  // Print the header.
3471  OS << "\n [ B" << B.getBlockID();
3472
3473  if (&B == &cfg->getEntry())
3474    OS << " (ENTRY) ]\n";
3475  else if (&B == &cfg->getExit())
3476    OS << " (EXIT) ]\n";
3477  else if (&B == cfg->getIndirectGotoBlock())
3478    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3479  else
3480    OS << " ]\n";
3481
3482  // Print the label of this block.
3483  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3484
3485    if (print_edges)
3486      OS << "    ";
3487
3488    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3489      OS << L->getName();
3490    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3491      OS << "case ";
3492      C->getLHS()->printPretty(OS, Helper,
3493                               PrintingPolicy(Helper->getLangOpts()));
3494      if (C->getRHS()) {
3495        OS << " ... ";
3496        C->getRHS()->printPretty(OS, Helper,
3497                                 PrintingPolicy(Helper->getLangOpts()));
3498      }
3499    } else if (isa<DefaultStmt>(Label))
3500      OS << "default";
3501    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3502      OS << "catch (";
3503      if (CS->getExceptionDecl())
3504        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3505                                      0);
3506      else
3507        OS << "...";
3508      OS << ")";
3509
3510    } else
3511      llvm_unreachable("Invalid label statement in CFGBlock.");
3512
3513    OS << ":\n";
3514  }
3515
3516  // Iterate through the statements in the block and print them.
3517  unsigned j = 1;
3518
3519  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3520       I != E ; ++I, ++j ) {
3521
3522    // Print the statement # in the basic block and the statement itself.
3523    if (print_edges)
3524      OS << "    ";
3525
3526    OS << llvm::format("%3d", j) << ": ";
3527
3528    if (Helper)
3529      Helper->setStmtID(j);
3530
3531    print_elem(OS,Helper,*I);
3532  }
3533
3534  // Print the terminator of this block.
3535  if (B.getTerminator()) {
3536    if (print_edges)
3537      OS << "    ";
3538
3539    OS << "  T: ";
3540
3541    if (Helper) Helper->setBlockID(-1);
3542
3543    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3544                                     PrintingPolicy(Helper->getLangOpts()));
3545    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3546    OS << '\n';
3547  }
3548
3549  if (print_edges) {
3550    // Print the predecessors of this block.
3551    OS << "    Predecessors (" << B.pred_size() << "):";
3552    unsigned i = 0;
3553
3554    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3555         I != E; ++I, ++i) {
3556
3557      if (i == 8 || (i-8) == 0)
3558        OS << "\n     ";
3559
3560      OS << " B" << (*I)->getBlockID();
3561    }
3562
3563    OS << '\n';
3564
3565    // Print the successors of this block.
3566    OS << "    Successors (" << B.succ_size() << "):";
3567    i = 0;
3568
3569    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3570         I != E; ++I, ++i) {
3571
3572      if (i == 8 || (i-8) % 10 == 0)
3573        OS << "\n    ";
3574
3575      if (*I)
3576        OS << " B" << (*I)->getBlockID();
3577      else
3578        OS  << " NULL";
3579    }
3580
3581    OS << '\n';
3582  }
3583}
3584
3585
3586/// dump - A simple pretty printer of a CFG that outputs to stderr.
3587void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3588
3589/// print - A simple pretty printer of a CFG that outputs to an ostream.
3590void CFG::print(raw_ostream &OS, const LangOptions &LO) const {
3591  StmtPrinterHelper Helper(this, LO);
3592
3593  // Print the entry block.
3594  print_block(OS, this, getEntry(), &Helper, true);
3595
3596  // Iterate through the CFGBlocks and print them one by one.
3597  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3598    // Skip the entry block, because we already printed it.
3599    if (&(**I) == &getEntry() || &(**I) == &getExit())
3600      continue;
3601
3602    print_block(OS, this, **I, &Helper, true);
3603  }
3604
3605  // Print the exit block.
3606  print_block(OS, this, getExit(), &Helper, true);
3607  OS.flush();
3608}
3609
3610/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3611void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3612  print(llvm::errs(), cfg, LO);
3613}
3614
3615/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3616///   Generally this will only be called from CFG::print.
3617void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3618                     const LangOptions &LO) const {
3619  StmtPrinterHelper Helper(cfg, LO);
3620  print_block(OS, cfg, *this, &Helper, true);
3621}
3622
3623/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3624void CFGBlock::printTerminator(raw_ostream &OS,
3625                               const LangOptions &LO) const {
3626  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3627  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3628}
3629
3630Stmt *CFGBlock::getTerminatorCondition() {
3631  Stmt *Terminator = this->Terminator;
3632  if (!Terminator)
3633    return NULL;
3634
3635  Expr *E = NULL;
3636
3637  switch (Terminator->getStmtClass()) {
3638    default:
3639      break;
3640
3641    case Stmt::ForStmtClass:
3642      E = cast<ForStmt>(Terminator)->getCond();
3643      break;
3644
3645    case Stmt::WhileStmtClass:
3646      E = cast<WhileStmt>(Terminator)->getCond();
3647      break;
3648
3649    case Stmt::DoStmtClass:
3650      E = cast<DoStmt>(Terminator)->getCond();
3651      break;
3652
3653    case Stmt::IfStmtClass:
3654      E = cast<IfStmt>(Terminator)->getCond();
3655      break;
3656
3657    case Stmt::ChooseExprClass:
3658      E = cast<ChooseExpr>(Terminator)->getCond();
3659      break;
3660
3661    case Stmt::IndirectGotoStmtClass:
3662      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3663      break;
3664
3665    case Stmt::SwitchStmtClass:
3666      E = cast<SwitchStmt>(Terminator)->getCond();
3667      break;
3668
3669    case Stmt::BinaryConditionalOperatorClass:
3670      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3671      break;
3672
3673    case Stmt::ConditionalOperatorClass:
3674      E = cast<ConditionalOperator>(Terminator)->getCond();
3675      break;
3676
3677    case Stmt::BinaryOperatorClass: // '&&' and '||'
3678      E = cast<BinaryOperator>(Terminator)->getLHS();
3679      break;
3680
3681    case Stmt::ObjCForCollectionStmtClass:
3682      return Terminator;
3683  }
3684
3685  return E ? E->IgnoreParens() : NULL;
3686}
3687
3688//===----------------------------------------------------------------------===//
3689// CFG Graphviz Visualization
3690//===----------------------------------------------------------------------===//
3691
3692
3693#ifndef NDEBUG
3694static StmtPrinterHelper* GraphHelper;
3695#endif
3696
3697void CFG::viewCFG(const LangOptions &LO) const {
3698#ifndef NDEBUG
3699  StmtPrinterHelper H(this, LO);
3700  GraphHelper = &H;
3701  llvm::ViewGraph(this,"CFG");
3702  GraphHelper = NULL;
3703#endif
3704}
3705
3706namespace llvm {
3707template<>
3708struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3709
3710  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3711
3712  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3713
3714#ifndef NDEBUG
3715    std::string OutSStr;
3716    llvm::raw_string_ostream Out(OutSStr);
3717    print_block(Out,Graph, *Node, GraphHelper, false);
3718    std::string& OutStr = Out.str();
3719
3720    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3721
3722    // Process string output to make it nicer...
3723    for (unsigned i = 0; i != OutStr.length(); ++i)
3724      if (OutStr[i] == '\n') {                            // Left justify
3725        OutStr[i] = '\\';
3726        OutStr.insert(OutStr.begin()+i+1, 'l');
3727      }
3728
3729    return OutStr;
3730#else
3731    return "";
3732#endif
3733  }
3734};
3735} // end namespace llvm
3736