CFG.cpp revision f4c7371fb1d3cebcfb40abad4537bb82515704ea
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35  return D->getLocation();
36}
37
38/// The CFG builder uses a recursive algorithm to build the CFG.  When
39///  we process an expression, sometimes we know that we must add the
40///  subexpressions as block-level expressions.  For example:
41///
42///    exp1 || exp2
43///
44///  When processing the '||' expression, we know that exp1 and exp2
45///  need to be added as block-level expressions, even though they
46///  might not normally need to be.  AddStmtChoice records this
47///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
48///  the builder has an option not to add a subexpression as a
49///  block-level expression.
50///
51class AddStmtChoice {
52public:
53  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
54
55  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
56
57  bool alwaysAdd() const { return kind & AlwaysAdd; }
58
59  /// Return a copy of this object, except with the 'always-add' bit
60  ///  set as specified.
61  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
62    return AddStmtChoice(alwaysAdd ? Kind(kind | AlwaysAdd) :
63                                     Kind(kind & ~AlwaysAdd));
64  }
65
66private:
67  Kind kind;
68};
69
70/// LocalScope - Node in tree of local scopes created for C++ implicit
71/// destructor calls generation. It contains list of automatic variables
72/// declared in the scope and link to position in previous scope this scope
73/// began in.
74///
75/// The process of creating local scopes is as follows:
76/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
77/// - Before processing statements in scope (e.g. CompoundStmt) create
78///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
79///   and set CFGBuilder::ScopePos to the end of new scope,
80/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
81///   at this VarDecl,
82/// - For every normal (without jump) end of scope add to CFGBlock destructors
83///   for objects in the current scope,
84/// - For every jump add to CFGBlock destructors for objects
85///   between CFGBuilder::ScopePos and local scope position saved for jump
86///   target. Thanks to C++ restrictions on goto jumps we can be sure that
87///   jump target position will be on the path to root from CFGBuilder::ScopePos
88///   (adding any variable that doesn't need constructor to be called to
89///   LocalScope can break this assumption),
90///
91class LocalScope {
92public:
93  typedef llvm::SmallVector<VarDecl*, 4> AutomaticVarsTy;
94
95  /// const_iterator - Iterates local scope backwards and jumps to previous
96  /// scope on reaching the beginning of currently iterated scope.
97  class const_iterator {
98    const LocalScope* Scope;
99
100    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
101    /// Invalid iterator (with null Scope) has VarIter equal to 0.
102    unsigned VarIter;
103
104  public:
105    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
106    /// Incrementing invalid iterator is allowed and will result in invalid
107    /// iterator.
108    const_iterator()
109        : Scope(NULL), VarIter(0) {}
110
111    /// Create valid iterator. In case when S.Prev is an invalid iterator and
112    /// I is equal to 0, this will create invalid iterator.
113    const_iterator(const LocalScope& S, unsigned I)
114        : Scope(&S), VarIter(I) {
115      // Iterator to "end" of scope is not allowed. Handle it by going up
116      // in scopes tree possibly up to invalid iterator in the root.
117      if (VarIter == 0 && Scope)
118        *this = Scope->Prev;
119    }
120
121    VarDecl* const* operator->() const {
122      assert (Scope && "Dereferencing invalid iterator is not allowed");
123      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
124      return &Scope->Vars[VarIter - 1];
125    }
126    VarDecl* operator*() const {
127      return *this->operator->();
128    }
129
130    const_iterator& operator++() {
131      if (!Scope)
132        return *this;
133
134      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
135      --VarIter;
136      if (VarIter == 0)
137        *this = Scope->Prev;
138      return *this;
139    }
140    const_iterator operator++(int) {
141      const_iterator P = *this;
142      ++*this;
143      return P;
144    }
145
146    bool operator==(const const_iterator& rhs) const {
147      return Scope == rhs.Scope && VarIter == rhs.VarIter;
148    }
149    bool operator!=(const const_iterator& rhs) const {
150      return !(*this == rhs);
151    }
152
153    operator bool() const {
154      return *this != const_iterator();
155    }
156
157    int distance(const_iterator L);
158  };
159
160  friend class const_iterator;
161
162private:
163  /// Automatic variables in order of declaration.
164  AutomaticVarsTy Vars;
165  /// Iterator to variable in previous scope that was declared just before
166  /// begin of this scope.
167  const_iterator Prev;
168
169public:
170  /// Constructs empty scope linked to previous scope in specified place.
171  LocalScope(const_iterator P)
172      : Vars()
173      , Prev(P) {}
174
175  /// Begin of scope in direction of CFG building (backwards).
176  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
177
178  void addVar(VarDecl* VD) {
179    Vars.push_back(VD);
180  }
181};
182
183/// distance - Calculates distance from this to L. L must be reachable from this
184/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
185/// number of scopes between this and L.
186int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
187  int D = 0;
188  const_iterator F = *this;
189  while (F.Scope != L.Scope) {
190    assert (F != const_iterator()
191        && "L iterator is not reachable from F iterator.");
192    D += F.VarIter;
193    F = F.Scope->Prev;
194  }
195  D += F.VarIter - L.VarIter;
196  return D;
197}
198
199/// BlockScopePosPair - Structure for specifying position in CFG during its
200/// build process. It consists of CFGBlock that specifies position in CFG graph
201/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
202struct BlockScopePosPair {
203  BlockScopePosPair() : block(0) {}
204  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
205      : block(b), scopePosition(scopePos) {}
206
207  CFGBlock *block;
208  LocalScope::const_iterator scopePosition;
209};
210
211/// CFGBuilder - This class implements CFG construction from an AST.
212///   The builder is stateful: an instance of the builder should be used to only
213///   construct a single CFG.
214///
215///   Example usage:
216///
217///     CFGBuilder builder;
218///     CFG* cfg = builder.BuildAST(stmt1);
219///
220///  CFG construction is done via a recursive walk of an AST.  We actually parse
221///  the AST in reverse order so that the successor of a basic block is
222///  constructed prior to its predecessor.  This allows us to nicely capture
223///  implicit fall-throughs without extra basic blocks.
224///
225class CFGBuilder {
226  typedef BlockScopePosPair JumpTarget;
227  typedef BlockScopePosPair JumpSource;
228
229  ASTContext *Context;
230  llvm::OwningPtr<CFG> cfg;
231
232  CFGBlock* Block;
233  CFGBlock* Succ;
234  JumpTarget ContinueJumpTarget;
235  JumpTarget BreakJumpTarget;
236  CFGBlock* SwitchTerminatedBlock;
237  CFGBlock* DefaultCaseBlock;
238  CFGBlock* TryTerminatedBlock;
239
240  // Current position in local scope.
241  LocalScope::const_iterator ScopePos;
242
243  // LabelMap records the mapping from Label expressions to their jump targets.
244  typedef llvm::DenseMap<LabelStmt*, JumpTarget> LabelMapTy;
245  LabelMapTy LabelMap;
246
247  // A list of blocks that end with a "goto" that must be backpatched to their
248  // resolved targets upon completion of CFG construction.
249  typedef std::vector<JumpSource> BackpatchBlocksTy;
250  BackpatchBlocksTy BackpatchBlocks;
251
252  // A list of labels whose address has been taken (for indirect gotos).
253  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
254  LabelSetTy AddressTakenLabels;
255
256  bool badCFG;
257  CFG::BuildOptions BuildOpts;
258
259public:
260  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
261                          Block(NULL), Succ(NULL),
262                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
263                          TryTerminatedBlock(NULL), badCFG(false) {}
264
265  // buildCFG - Used by external clients to construct the CFG.
266  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
267      CFG::BuildOptions BO);
268
269private:
270  // Visitors to walk an AST and construct the CFG.
271  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
272  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
273  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
274  CFGBlock *VisitBreakStmt(BreakStmt *B);
275  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
276  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
277      AddStmtChoice asc);
278  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
279  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
280  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
281                                      AddStmtChoice asc);
282  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
283  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
284                                       AddStmtChoice asc);
285  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
286                                        AddStmtChoice asc);
287  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
288  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
289  CFGBlock *VisitCaseStmt(CaseStmt *C);
290  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
291  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
292  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
293  CFGBlock *VisitContinueStmt(ContinueStmt *C);
294  CFGBlock *VisitDeclStmt(DeclStmt *DS);
295  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
296  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
297  CFGBlock *VisitDoStmt(DoStmt *D);
298  CFGBlock *VisitForStmt(ForStmt *F);
299  CFGBlock *VisitGotoStmt(GotoStmt* G);
300  CFGBlock *VisitIfStmt(IfStmt *I);
301  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
302  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
303  CFGBlock *VisitLabelStmt(LabelStmt *L);
304  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
305  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
306  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
307  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
308  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
309  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
310  CFGBlock *VisitReturnStmt(ReturnStmt* R);
311  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
312  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
313  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
314  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
315  CFGBlock *VisitWhileStmt(WhileStmt *W);
316
317  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
318  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
319  CFGBlock *VisitChildren(Stmt* S);
320
321  // Visitors to walk an AST and generate destructors of temporaries in
322  // full expression.
323  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
324  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
325  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
326  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
327      bool BindToTemporary);
328  CFGBlock *VisitConditionalOperatorForTemporaryDtors(ConditionalOperator *E,
329      bool BindToTemporary);
330
331  // NYS == Not Yet Supported
332  CFGBlock* NYS() {
333    badCFG = true;
334    return Block;
335  }
336
337  void autoCreateBlock() { if (!Block) Block = createBlock(); }
338  CFGBlock *createBlock(bool add_successor = true);
339
340  CFGBlock *addStmt(Stmt *S) {
341    return Visit(S, AddStmtChoice::AlwaysAdd);
342  }
343  CFGBlock *addInitializer(CXXCtorInitializer *I);
344  void addAutomaticObjDtors(LocalScope::const_iterator B,
345                            LocalScope::const_iterator E, Stmt* S);
346  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
347
348  // Local scopes creation.
349  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
350
351  void addLocalScopeForStmt(Stmt* S);
352  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
353  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
354
355  void addLocalScopeAndDtors(Stmt* S);
356
357  // Interface to CFGBlock - adding CFGElements.
358  void appendStmt(CFGBlock *B, Stmt *S,
359                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
360    B->appendStmt(S, cfg->getBumpVectorContext());
361  }
362  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
363    B->appendInitializer(I, cfg->getBumpVectorContext());
364  }
365  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
366    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
367  }
368  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
369    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
370  }
371  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
372    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
373  }
374
375  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
376    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
377  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
378      LocalScope::const_iterator E, Stmt* S);
379  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
380      LocalScope::const_iterator B, LocalScope::const_iterator E);
381
382  void addSuccessor(CFGBlock *B, CFGBlock *S) {
383    B->addSuccessor(S, cfg->getBumpVectorContext());
384  }
385
386  /// TryResult - a class representing a variant over the values
387  ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
388  ///  and is used by the CFGBuilder to decide if a branch condition
389  ///  can be decided up front during CFG construction.
390  class TryResult {
391    int X;
392  public:
393    TryResult(bool b) : X(b ? 1 : 0) {}
394    TryResult() : X(-1) {}
395
396    bool isTrue() const { return X == 1; }
397    bool isFalse() const { return X == 0; }
398    bool isKnown() const { return X >= 0; }
399    void negate() {
400      assert(isKnown());
401      X ^= 0x1;
402    }
403  };
404
405  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
406  /// if we can evaluate to a known value, otherwise return -1.
407  TryResult tryEvaluateBool(Expr *S) {
408    if (!BuildOpts.PruneTriviallyFalseEdges)
409      return TryResult();
410
411    Expr::EvalResult Result;
412    if (!S->isTypeDependent() && !S->isValueDependent() &&
413        S->Evaluate(Result, *Context) && Result.Val.isInt())
414      return Result.Val.getInt().getBoolValue();
415
416    return TryResult();
417  }
418};
419
420// FIXME: Add support for dependent-sized array types in C++?
421// Does it even make sense to build a CFG for an uninstantiated template?
422static const VariableArrayType *FindVA(const Type *t) {
423  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
424    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
425      if (vat->getSizeExpr())
426        return vat;
427
428    t = vt->getElementType().getTypePtr();
429  }
430
431  return 0;
432}
433
434/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
435///  arbitrary statement.  Examples include a single expression or a function
436///  body (compound statement).  The ownership of the returned CFG is
437///  transferred to the caller.  If CFG construction fails, this method returns
438///  NULL.
439CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
440    CFG::BuildOptions BO) {
441
442  Context = C;
443  assert(cfg.get());
444  if (!Statement)
445    return NULL;
446
447  BuildOpts = BO;
448
449  // Create an empty block that will serve as the exit block for the CFG.  Since
450  // this is the first block added to the CFG, it will be implicitly registered
451  // as the exit block.
452  Succ = createBlock();
453  assert(Succ == &cfg->getExit());
454  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
455
456  if (BuildOpts.AddImplicitDtors)
457    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
458      addImplicitDtorsForDestructor(DD);
459
460  // Visit the statements and create the CFG.
461  CFGBlock *B = addStmt(Statement);
462
463  if (badCFG)
464    return NULL;
465
466  // For C++ constructor add initializers to CFG.
467  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
468    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
469        E = CD->init_rend(); I != E; ++I) {
470      B = addInitializer(*I);
471      if (badCFG)
472        return NULL;
473    }
474  }
475
476  if (B)
477    Succ = B;
478
479  // Backpatch the gotos whose label -> block mappings we didn't know when we
480  // encountered them.
481  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
482                                   E = BackpatchBlocks.end(); I != E; ++I ) {
483
484    CFGBlock* B = I->block;
485    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
486    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
487
488    // If there is no target for the goto, then we are looking at an
489    // incomplete AST.  Handle this by not registering a successor.
490    if (LI == LabelMap.end()) continue;
491
492    JumpTarget JT = LI->second;
493    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
494                                           JT.scopePosition);
495    addSuccessor(B, JT.block);
496  }
497
498  // Add successors to the Indirect Goto Dispatch block (if we have one).
499  if (CFGBlock* B = cfg->getIndirectGotoBlock())
500    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
501                              E = AddressTakenLabels.end(); I != E; ++I ) {
502
503      // Lookup the target block.
504      LabelMapTy::iterator LI = LabelMap.find(*I);
505
506      // If there is no target block that contains label, then we are looking
507      // at an incomplete AST.  Handle this by not registering a successor.
508      if (LI == LabelMap.end()) continue;
509
510      addSuccessor(B, LI->second.block);
511    }
512
513  // Create an empty entry block that has no predecessors.
514  cfg->setEntry(createBlock());
515
516  return cfg.take();
517}
518
519/// createBlock - Used to lazily create blocks that are connected
520///  to the current (global) succcessor.
521CFGBlock* CFGBuilder::createBlock(bool add_successor) {
522  CFGBlock* B = cfg->createBlock();
523  if (add_successor && Succ)
524    addSuccessor(B, Succ);
525  return B;
526}
527
528/// addInitializer - Add C++ base or member initializer element to CFG.
529CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
530  if (!BuildOpts.AddInitializers)
531    return Block;
532
533  bool IsReference = false;
534  bool HasTemporaries = false;
535
536  // Destructors of temporaries in initialization expression should be called
537  // after initialization finishes.
538  Expr *Init = I->getInit();
539  if (Init) {
540    if (FieldDecl *FD = I->getAnyMember())
541      IsReference = FD->getType()->isReferenceType();
542    HasTemporaries = isa<ExprWithCleanups>(Init);
543
544    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
545      // Generate destructors for temporaries in initialization expression.
546      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
547          IsReference);
548    }
549  }
550
551  autoCreateBlock();
552  appendInitializer(Block, I);
553
554  if (Init) {
555    if (HasTemporaries) {
556      // For expression with temporaries go directly to subexpression to omit
557      // generating destructors for the second time.
558      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
559    }
560    return Visit(Init);
561  }
562
563  return Block;
564}
565
566/// addAutomaticObjDtors - Add to current block automatic objects destructors
567/// for objects in range of local scope positions. Use S as trigger statement
568/// for destructors.
569void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
570                                      LocalScope::const_iterator E, Stmt* S) {
571  if (!BuildOpts.AddImplicitDtors)
572    return;
573
574  if (B == E)
575    return;
576
577  autoCreateBlock();
578  appendAutomaticObjDtors(Block, B, E, S);
579}
580
581/// addImplicitDtorsForDestructor - Add implicit destructors generated for
582/// base and member objects in destructor.
583void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
584  assert (BuildOpts.AddImplicitDtors
585      && "Can be called only when dtors should be added");
586  const CXXRecordDecl *RD = DD->getParent();
587
588  // At the end destroy virtual base objects.
589  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
590      VE = RD->vbases_end(); VI != VE; ++VI) {
591    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
592    if (!CD->hasTrivialDestructor()) {
593      autoCreateBlock();
594      appendBaseDtor(Block, VI);
595    }
596  }
597
598  // Before virtual bases destroy direct base objects.
599  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
600      BE = RD->bases_end(); BI != BE; ++BI) {
601    if (!BI->isVirtual()) {
602      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
603      if (!CD->hasTrivialDestructor()) {
604        autoCreateBlock();
605        appendBaseDtor(Block, BI);
606      }
607    }
608  }
609
610  // First destroy member objects.
611  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
612      FE = RD->field_end(); FI != FE; ++FI) {
613    // Check for constant size array. Set type to array element type.
614    QualType QT = FI->getType();
615    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
616      if (AT->getSize() == 0)
617        continue;
618      QT = AT->getElementType();
619    }
620
621    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
622      if (!CD->hasTrivialDestructor()) {
623        autoCreateBlock();
624        appendMemberDtor(Block, *FI);
625      }
626  }
627}
628
629/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
630/// way return valid LocalScope object.
631LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
632  if (!Scope) {
633    Scope = cfg->getAllocator().Allocate<LocalScope>();
634    new (Scope) LocalScope(ScopePos);
635  }
636  return Scope;
637}
638
639/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
640/// that should create implicit scope (e.g. if/else substatements).
641void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
642  if (!BuildOpts.AddImplicitDtors)
643    return;
644
645  LocalScope *Scope = 0;
646
647  // For compound statement we will be creating explicit scope.
648  if (CompoundStmt* CS = dyn_cast<CompoundStmt>(S)) {
649    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
650        ; BI != BE; ++BI) {
651      Stmt* SI = *BI;
652      if (LabelStmt* LS = dyn_cast<LabelStmt>(SI))
653        SI = LS->getSubStmt();
654      if (DeclStmt* DS = dyn_cast<DeclStmt>(SI))
655        Scope = addLocalScopeForDeclStmt(DS, Scope);
656    }
657    return;
658  }
659
660  // For any other statement scope will be implicit and as such will be
661  // interesting only for DeclStmt.
662  if (LabelStmt* LS = dyn_cast<LabelStmt>(S))
663    S = LS->getSubStmt();
664  if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
665    addLocalScopeForDeclStmt(DS);
666}
667
668/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
669/// reuse Scope if not NULL.
670LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
671                                                 LocalScope* Scope) {
672  if (!BuildOpts.AddImplicitDtors)
673    return Scope;
674
675  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
676      ; DI != DE; ++DI) {
677    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
678      Scope = addLocalScopeForVarDecl(VD, Scope);
679  }
680  return Scope;
681}
682
683/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
684/// create add scope for automatic objects and temporary objects bound to
685/// const reference. Will reuse Scope if not NULL.
686LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
687                                                LocalScope* Scope) {
688  if (!BuildOpts.AddImplicitDtors)
689    return Scope;
690
691  // Check if variable is local.
692  switch (VD->getStorageClass()) {
693  case SC_None:
694  case SC_Auto:
695  case SC_Register:
696    break;
697  default: return Scope;
698  }
699
700  // Check for const references bound to temporary. Set type to pointee.
701  QualType QT = VD->getType();
702  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
703    QT = RT->getPointeeType();
704    if (!QT.isConstQualified())
705      return Scope;
706    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
707      return Scope;
708  }
709
710  // Check for constant size array. Set type to array element type.
711  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
712    if (AT->getSize() == 0)
713      return Scope;
714    QT = AT->getElementType();
715  }
716
717  // Check if type is a C++ class with non-trivial destructor.
718  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
719    if (!CD->hasTrivialDestructor()) {
720      // Add the variable to scope
721      Scope = createOrReuseLocalScope(Scope);
722      Scope->addVar(VD);
723      ScopePos = Scope->begin();
724    }
725  return Scope;
726}
727
728/// addLocalScopeAndDtors - For given statement add local scope for it and
729/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
730void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
731  if (!BuildOpts.AddImplicitDtors)
732    return;
733
734  LocalScope::const_iterator scopeBeginPos = ScopePos;
735  addLocalScopeForStmt(S);
736  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
737}
738
739/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
740/// automatic storage duration to CFGBlock's elements vector. Insertion will be
741/// performed in place specified with iterator.
742void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
743    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
744  BumpVectorContext& C = cfg->getBumpVectorContext();
745  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
746  while (B != E)
747    I = Blk->insertAutomaticObjDtor(I, *B++, S);
748}
749
750/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
751/// automatic storage duration to CFGBlock's elements vector. Elements will be
752/// appended to physical end of the vector which happens to be logical
753/// beginning.
754void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
755    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
756  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
757}
758
759/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
760/// variables with automatic storage duration to CFGBlock's elements vector.
761/// Elements will be prepended to physical beginning of the vector which
762/// happens to be logical end. Use blocks terminator as statement that specifies
763/// destructors call site.
764void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
765    LocalScope::const_iterator B, LocalScope::const_iterator E) {
766  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
767}
768
769/// Visit - Walk the subtree of a statement and add extra
770///   blocks for ternary operators, &&, and ||.  We also process "," and
771///   DeclStmts (which may contain nested control-flow).
772CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
773tryAgain:
774  if (!S) {
775    badCFG = true;
776    return 0;
777  }
778  switch (S->getStmtClass()) {
779    default:
780      return VisitStmt(S, asc);
781
782    case Stmt::AddrLabelExprClass:
783      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
784
785    case Stmt::BinaryOperatorClass:
786      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
787
788    case Stmt::BlockExprClass:
789      return VisitBlockExpr(cast<BlockExpr>(S), asc);
790
791    case Stmt::BreakStmtClass:
792      return VisitBreakStmt(cast<BreakStmt>(S));
793
794    case Stmt::CallExprClass:
795    case Stmt::CXXOperatorCallExprClass:
796      return VisitCallExpr(cast<CallExpr>(S), asc);
797
798    case Stmt::CaseStmtClass:
799      return VisitCaseStmt(cast<CaseStmt>(S));
800
801    case Stmt::ChooseExprClass:
802      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
803
804    case Stmt::CompoundStmtClass:
805      return VisitCompoundStmt(cast<CompoundStmt>(S));
806
807    case Stmt::ConditionalOperatorClass:
808      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
809
810    case Stmt::ContinueStmtClass:
811      return VisitContinueStmt(cast<ContinueStmt>(S));
812
813    case Stmt::CXXCatchStmtClass:
814      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
815
816    case Stmt::ExprWithCleanupsClass:
817      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
818
819    case Stmt::CXXBindTemporaryExprClass:
820      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
821
822    case Stmt::CXXConstructExprClass:
823      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
824
825    case Stmt::CXXFunctionalCastExprClass:
826      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
827
828    case Stmt::CXXTemporaryObjectExprClass:
829      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
830
831    case Stmt::CXXMemberCallExprClass:
832      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
833
834    case Stmt::CXXThrowExprClass:
835      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
836
837    case Stmt::CXXTryStmtClass:
838      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
839
840    case Stmt::DeclStmtClass:
841      return VisitDeclStmt(cast<DeclStmt>(S));
842
843    case Stmt::DefaultStmtClass:
844      return VisitDefaultStmt(cast<DefaultStmt>(S));
845
846    case Stmt::DoStmtClass:
847      return VisitDoStmt(cast<DoStmt>(S));
848
849    case Stmt::ForStmtClass:
850      return VisitForStmt(cast<ForStmt>(S));
851
852    case Stmt::GotoStmtClass:
853      return VisitGotoStmt(cast<GotoStmt>(S));
854
855    case Stmt::IfStmtClass:
856      return VisitIfStmt(cast<IfStmt>(S));
857
858    case Stmt::ImplicitCastExprClass:
859      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
860
861    case Stmt::IndirectGotoStmtClass:
862      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
863
864    case Stmt::LabelStmtClass:
865      return VisitLabelStmt(cast<LabelStmt>(S));
866
867    case Stmt::MemberExprClass:
868      return VisitMemberExpr(cast<MemberExpr>(S), asc);
869
870    case Stmt::ObjCAtCatchStmtClass:
871      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
872
873    case Stmt::ObjCAtSynchronizedStmtClass:
874      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
875
876    case Stmt::ObjCAtThrowStmtClass:
877      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
878
879    case Stmt::ObjCAtTryStmtClass:
880      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
881
882    case Stmt::ObjCForCollectionStmtClass:
883      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
884
885    case Stmt::ParenExprClass:
886      S = cast<ParenExpr>(S)->getSubExpr();
887      goto tryAgain;
888
889    case Stmt::NullStmtClass:
890      return Block;
891
892    case Stmt::ReturnStmtClass:
893      return VisitReturnStmt(cast<ReturnStmt>(S));
894
895    case Stmt::SizeOfAlignOfExprClass:
896      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
897
898    case Stmt::StmtExprClass:
899      return VisitStmtExpr(cast<StmtExpr>(S), asc);
900
901    case Stmt::SwitchStmtClass:
902      return VisitSwitchStmt(cast<SwitchStmt>(S));
903
904    case Stmt::UnaryOperatorClass:
905      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
906
907    case Stmt::WhileStmtClass:
908      return VisitWhileStmt(cast<WhileStmt>(S));
909  }
910}
911
912CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
913  if (asc.alwaysAdd()) {
914    autoCreateBlock();
915    appendStmt(Block, S, asc);
916  }
917
918  return VisitChildren(S);
919}
920
921/// VisitChildren - Visit the children of a Stmt.
922CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
923  CFGBlock *B = Block;
924  for (Stmt::child_iterator I = Terminator->child_begin(),
925         E = Terminator->child_end(); I != E; ++I) {
926    if (*I) B = Visit(*I);
927  }
928  return B;
929}
930
931CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
932                                         AddStmtChoice asc) {
933  AddressTakenLabels.insert(A->getLabel());
934
935  if (asc.alwaysAdd()) {
936    autoCreateBlock();
937    appendStmt(Block, A, asc);
938  }
939
940  return Block;
941}
942
943CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
944           AddStmtChoice asc) {
945  if (asc.alwaysAdd()) {
946    autoCreateBlock();
947    appendStmt(Block, U, asc);
948  }
949
950  return Visit(U->getSubExpr(), AddStmtChoice());
951}
952
953CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
954                                          AddStmtChoice asc) {
955  if (B->isLogicalOp()) { // && or ||
956    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
957    appendStmt(ConfluenceBlock, B, asc);
958
959    if (badCFG)
960      return 0;
961
962    // create the block evaluating the LHS
963    CFGBlock* LHSBlock = createBlock(false);
964    LHSBlock->setTerminator(B);
965
966    // create the block evaluating the RHS
967    Succ = ConfluenceBlock;
968    Block = NULL;
969    CFGBlock* RHSBlock = addStmt(B->getRHS());
970
971    if (RHSBlock) {
972      if (badCFG)
973        return 0;
974    } else {
975      // Create an empty block for cases where the RHS doesn't require
976      // any explicit statements in the CFG.
977      RHSBlock = createBlock();
978    }
979
980    // See if this is a known constant.
981    TryResult KnownVal = tryEvaluateBool(B->getLHS());
982    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
983      KnownVal.negate();
984
985    // Now link the LHSBlock with RHSBlock.
986    if (B->getOpcode() == BO_LOr) {
987      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
988      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
989    } else {
990      assert(B->getOpcode() == BO_LAnd);
991      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
992      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
993    }
994
995    // Generate the blocks for evaluating the LHS.
996    Block = LHSBlock;
997    return addStmt(B->getLHS());
998  }
999
1000  if (B->getOpcode() == BO_Comma) { // ,
1001    autoCreateBlock();
1002    appendStmt(Block, B, asc);
1003    addStmt(B->getRHS());
1004    return addStmt(B->getLHS());
1005  }
1006
1007  if (B->isAssignmentOp()) {
1008    if (asc.alwaysAdd()) {
1009      autoCreateBlock();
1010      appendStmt(Block, B, asc);
1011    }
1012    Visit(B->getLHS());
1013    return Visit(B->getRHS());
1014  }
1015
1016  if (asc.alwaysAdd()) {
1017    autoCreateBlock();
1018    appendStmt(Block, B, asc);
1019  }
1020
1021  CFGBlock *RBlock = Visit(B->getRHS());
1022  CFGBlock *LBlock = Visit(B->getLHS());
1023  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1024  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1025  // return RBlock.  Otherwise we'll incorrectly return NULL.
1026  return (LBlock ? LBlock : RBlock);
1027}
1028
1029CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1030  if (asc.alwaysAdd()) {
1031    autoCreateBlock();
1032    appendStmt(Block, E, asc);
1033  }
1034  return Block;
1035}
1036
1037CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1038  // "break" is a control-flow statement.  Thus we stop processing the current
1039  // block.
1040  if (badCFG)
1041    return 0;
1042
1043  // Now create a new block that ends with the break statement.
1044  Block = createBlock(false);
1045  Block->setTerminator(B);
1046
1047  // If there is no target for the break, then we are looking at an incomplete
1048  // AST.  This means that the CFG cannot be constructed.
1049  if (BreakJumpTarget.block) {
1050    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1051    addSuccessor(Block, BreakJumpTarget.block);
1052  } else
1053    badCFG = true;
1054
1055
1056  return Block;
1057}
1058
1059static bool CanThrow(Expr *E) {
1060  QualType Ty = E->getType();
1061  if (Ty->isFunctionPointerType())
1062    Ty = Ty->getAs<PointerType>()->getPointeeType();
1063  else if (Ty->isBlockPointerType())
1064    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1065
1066  const FunctionType *FT = Ty->getAs<FunctionType>();
1067  if (FT) {
1068    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1069      if (Proto->hasEmptyExceptionSpec())
1070        return false;
1071  }
1072  return true;
1073}
1074
1075CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1076  // If this is a call to a no-return function, this stops the block here.
1077  bool NoReturn = false;
1078  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
1079    NoReturn = true;
1080  }
1081
1082  bool AddEHEdge = false;
1083
1084  // Languages without exceptions are assumed to not throw.
1085  if (Context->getLangOptions().Exceptions) {
1086    if (BuildOpts.AddEHEdges)
1087      AddEHEdge = true;
1088  }
1089
1090  if (FunctionDecl *FD = C->getDirectCallee()) {
1091    if (FD->hasAttr<NoReturnAttr>())
1092      NoReturn = true;
1093    if (FD->hasAttr<NoThrowAttr>())
1094      AddEHEdge = false;
1095  }
1096
1097  if (!CanThrow(C->getCallee()))
1098    AddEHEdge = false;
1099
1100  if (!NoReturn && !AddEHEdge)
1101    return VisitStmt(C, asc.withAlwaysAdd(true));
1102
1103  if (Block) {
1104    Succ = Block;
1105    if (badCFG)
1106      return 0;
1107  }
1108
1109  Block = createBlock(!NoReturn);
1110  appendStmt(Block, C, asc);
1111
1112  if (NoReturn) {
1113    // Wire this to the exit block directly.
1114    addSuccessor(Block, &cfg->getExit());
1115  }
1116  if (AddEHEdge) {
1117    // Add exceptional edges.
1118    if (TryTerminatedBlock)
1119      addSuccessor(Block, TryTerminatedBlock);
1120    else
1121      addSuccessor(Block, &cfg->getExit());
1122  }
1123
1124  return VisitChildren(C);
1125}
1126
1127CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1128                                      AddStmtChoice asc) {
1129  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1130  appendStmt(ConfluenceBlock, C, asc);
1131  if (badCFG)
1132    return 0;
1133
1134  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1135  Succ = ConfluenceBlock;
1136  Block = NULL;
1137  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
1138  if (badCFG)
1139    return 0;
1140
1141  Succ = ConfluenceBlock;
1142  Block = NULL;
1143  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1144  if (badCFG)
1145    return 0;
1146
1147  Block = createBlock(false);
1148  // See if this is a known constant.
1149  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1150  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1151  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1152  Block->setTerminator(C);
1153  return addStmt(C->getCond());
1154}
1155
1156
1157CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
1158  addLocalScopeAndDtors(C);
1159  CFGBlock* LastBlock = Block;
1160
1161  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1162       I != E; ++I ) {
1163    // If we hit a segment of code just containing ';' (NullStmts), we can
1164    // get a null block back.  In such cases, just use the LastBlock
1165    if (CFGBlock *newBlock = addStmt(*I))
1166      LastBlock = newBlock;
1167
1168    if (badCFG)
1169      return NULL;
1170  }
1171
1172  return LastBlock;
1173}
1174
1175CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
1176                                               AddStmtChoice asc) {
1177  // Create the confluence block that will "merge" the results of the ternary
1178  // expression.
1179  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1180  appendStmt(ConfluenceBlock, C, asc);
1181  if (badCFG)
1182    return 0;
1183
1184  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1185
1186  // Create a block for the LHS expression if there is an LHS expression.  A
1187  // GCC extension allows LHS to be NULL, causing the condition to be the
1188  // value that is returned instead.
1189  //  e.g: x ?: y is shorthand for: x ? x : y;
1190  Succ = ConfluenceBlock;
1191  Block = NULL;
1192  CFGBlock* LHSBlock = NULL;
1193  if (C->getLHS()) {
1194    LHSBlock = Visit(C->getLHS(), alwaysAdd);
1195    if (badCFG)
1196      return 0;
1197    Block = NULL;
1198  }
1199
1200  // Create the block for the RHS expression.
1201  Succ = ConfluenceBlock;
1202  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
1203  if (badCFG)
1204    return 0;
1205
1206  // Create the block that will contain the condition.
1207  Block = createBlock(false);
1208
1209  // See if this is a known constant.
1210  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1211  if (LHSBlock) {
1212    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1213  } else {
1214    if (KnownVal.isFalse()) {
1215      // If we know the condition is false, add NULL as the successor for
1216      // the block containing the condition.  In this case, the confluence
1217      // block will have just one predecessor.
1218      addSuccessor(Block, 0);
1219      assert(ConfluenceBlock->pred_size() == 1);
1220    } else {
1221      // If we have no LHS expression, add the ConfluenceBlock as a direct
1222      // successor for the block containing the condition.  Moreover, we need to
1223      // reverse the order of the predecessors in the ConfluenceBlock because
1224      // the RHSBlock will have been added to the succcessors already, and we
1225      // want the first predecessor to the the block containing the expression
1226      // for the case when the ternary expression evaluates to true.
1227      addSuccessor(Block, ConfluenceBlock);
1228      // Note that there can possibly only be one predecessor if one of the
1229      // subexpressions resulted in calling a noreturn function.
1230      std::reverse(ConfluenceBlock->pred_begin(),
1231                   ConfluenceBlock->pred_end());
1232    }
1233  }
1234
1235  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1236  Block->setTerminator(C);
1237  return addStmt(C->getCond());
1238}
1239
1240CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1241  if (DS->isSingleDecl())
1242    return VisitDeclSubExpr(DS);
1243
1244  CFGBlock *B = 0;
1245
1246  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1247  typedef llvm::SmallVector<Decl*,10> BufTy;
1248  BufTy Buf(DS->decl_begin(), DS->decl_end());
1249
1250  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1251    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1252    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1253               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1254
1255    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1256    // automatically freed with the CFG.
1257    DeclGroupRef DG(*I);
1258    Decl *D = *I;
1259    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1260    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1261
1262    // Append the fake DeclStmt to block.
1263    B = VisitDeclSubExpr(DSNew);
1264  }
1265
1266  return B;
1267}
1268
1269/// VisitDeclSubExpr - Utility method to add block-level expressions for
1270/// DeclStmts and initializers in them.
1271CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
1272  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1273
1274  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1275
1276  if (!VD) {
1277    autoCreateBlock();
1278    appendStmt(Block, DS);
1279    return Block;
1280  }
1281
1282  bool IsReference = false;
1283  bool HasTemporaries = false;
1284
1285  // Destructors of temporaries in initialization expression should be called
1286  // after initialization finishes.
1287  Expr *Init = VD->getInit();
1288  if (Init) {
1289    IsReference = VD->getType()->isReferenceType();
1290    HasTemporaries = isa<ExprWithCleanups>(Init);
1291
1292    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1293      // Generate destructors for temporaries in initialization expression.
1294      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1295          IsReference);
1296    }
1297  }
1298
1299  autoCreateBlock();
1300  appendStmt(Block, DS);
1301
1302  if (Init) {
1303    if (HasTemporaries)
1304      // For expression with temporaries go directly to subexpression to omit
1305      // generating destructors for the second time.
1306      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1307    else
1308      Visit(Init);
1309  }
1310
1311  // If the type of VD is a VLA, then we must process its size expressions.
1312  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1313       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1314    Block = addStmt(VA->getSizeExpr());
1315
1316  // Remove variable from local scope.
1317  if (ScopePos && VD == *ScopePos)
1318    ++ScopePos;
1319
1320  return Block;
1321}
1322
1323CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1324  // We may see an if statement in the middle of a basic block, or it may be the
1325  // first statement we are processing.  In either case, we create a new basic
1326  // block.  First, we create the blocks for the then...else statements, and
1327  // then we create the block containing the if statement.  If we were in the
1328  // middle of a block, we stop processing that block.  That block is then the
1329  // implicit successor for the "then" and "else" clauses.
1330
1331  // Save local scope position because in case of condition variable ScopePos
1332  // won't be restored when traversing AST.
1333  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1334
1335  // Create local scope for possible condition variable.
1336  // Store scope position. Add implicit destructor.
1337  if (VarDecl* VD = I->getConditionVariable()) {
1338    LocalScope::const_iterator BeginScopePos = ScopePos;
1339    addLocalScopeForVarDecl(VD);
1340    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1341  }
1342
1343  // The block we were proccessing is now finished.  Make it the successor
1344  // block.
1345  if (Block) {
1346    Succ = Block;
1347    if (badCFG)
1348      return 0;
1349  }
1350
1351  // Process the false branch.
1352  CFGBlock* ElseBlock = Succ;
1353
1354  if (Stmt* Else = I->getElse()) {
1355    SaveAndRestore<CFGBlock*> sv(Succ);
1356
1357    // NULL out Block so that the recursive call to Visit will
1358    // create a new basic block.
1359    Block = NULL;
1360
1361    // If branch is not a compound statement create implicit scope
1362    // and add destructors.
1363    if (!isa<CompoundStmt>(Else))
1364      addLocalScopeAndDtors(Else);
1365
1366    ElseBlock = addStmt(Else);
1367
1368    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1369      ElseBlock = sv.get();
1370    else if (Block) {
1371      if (badCFG)
1372        return 0;
1373    }
1374  }
1375
1376  // Process the true branch.
1377  CFGBlock* ThenBlock;
1378  {
1379    Stmt* Then = I->getThen();
1380    assert(Then);
1381    SaveAndRestore<CFGBlock*> sv(Succ);
1382    Block = NULL;
1383
1384    // If branch is not a compound statement create implicit scope
1385    // and add destructors.
1386    if (!isa<CompoundStmt>(Then))
1387      addLocalScopeAndDtors(Then);
1388
1389    ThenBlock = addStmt(Then);
1390
1391    if (!ThenBlock) {
1392      // We can reach here if the "then" body has all NullStmts.
1393      // Create an empty block so we can distinguish between true and false
1394      // branches in path-sensitive analyses.
1395      ThenBlock = createBlock(false);
1396      addSuccessor(ThenBlock, sv.get());
1397    } else if (Block) {
1398      if (badCFG)
1399        return 0;
1400    }
1401  }
1402
1403  // Now create a new block containing the if statement.
1404  Block = createBlock(false);
1405
1406  // Set the terminator of the new block to the If statement.
1407  Block->setTerminator(I);
1408
1409  // See if this is a known constant.
1410  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1411
1412  // Now add the successors.
1413  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1414  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1415
1416  // Add the condition as the last statement in the new block.  This may create
1417  // new blocks as the condition may contain control-flow.  Any newly created
1418  // blocks will be pointed to be "Block".
1419  Block = addStmt(I->getCond());
1420
1421  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1422  // and the condition variable initialization to the CFG.
1423  if (VarDecl *VD = I->getConditionVariable()) {
1424    if (Expr *Init = VD->getInit()) {
1425      autoCreateBlock();
1426      appendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1427      addStmt(Init);
1428    }
1429  }
1430
1431  return Block;
1432}
1433
1434
1435CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1436  // If we were in the middle of a block we stop processing that block.
1437  //
1438  // NOTE: If a "return" appears in the middle of a block, this means that the
1439  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1440  //       for that code; a simple "mark-and-sweep" from the entry block will be
1441  //       able to report such dead blocks.
1442
1443  // Create the new block.
1444  Block = createBlock(false);
1445
1446  // The Exit block is the only successor.
1447  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1448  addSuccessor(Block, &cfg->getExit());
1449
1450  // Add the return statement to the block.  This may create new blocks if R
1451  // contains control-flow (short-circuit operations).
1452  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1453}
1454
1455CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
1456  // Get the block of the labeled statement.  Add it to our map.
1457  addStmt(L->getSubStmt());
1458  CFGBlock* LabelBlock = Block;
1459
1460  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1461    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1462
1463  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
1464  LabelMap[ L ] = JumpTarget(LabelBlock, ScopePos);
1465
1466  // Labels partition blocks, so this is the end of the basic block we were
1467  // processing (L is the block's label).  Because this is label (and we have
1468  // already processed the substatement) there is no extra control-flow to worry
1469  // about.
1470  LabelBlock->setLabel(L);
1471  if (badCFG)
1472    return 0;
1473
1474  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1475  Block = NULL;
1476
1477  // This block is now the implicit successor of other blocks.
1478  Succ = LabelBlock;
1479
1480  return LabelBlock;
1481}
1482
1483CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1484  // Goto is a control-flow statement.  Thus we stop processing the current
1485  // block and create a new one.
1486
1487  Block = createBlock(false);
1488  Block->setTerminator(G);
1489
1490  // If we already know the mapping to the label block add the successor now.
1491  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1492
1493  if (I == LabelMap.end())
1494    // We will need to backpatch this block later.
1495    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1496  else {
1497    JumpTarget JT = I->second;
1498    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1499    addSuccessor(Block, JT.block);
1500  }
1501
1502  return Block;
1503}
1504
1505CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1506  CFGBlock* LoopSuccessor = NULL;
1507
1508  // Save local scope position because in case of condition variable ScopePos
1509  // won't be restored when traversing AST.
1510  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1511
1512  // Create local scope for init statement and possible condition variable.
1513  // Add destructor for init statement and condition variable.
1514  // Store scope position for continue statement.
1515  if (Stmt* Init = F->getInit())
1516    addLocalScopeForStmt(Init);
1517  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1518
1519  if (VarDecl* VD = F->getConditionVariable())
1520    addLocalScopeForVarDecl(VD);
1521  LocalScope::const_iterator ContinueScopePos = ScopePos;
1522
1523  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1524
1525  // "for" is a control-flow statement.  Thus we stop processing the current
1526  // block.
1527  if (Block) {
1528    if (badCFG)
1529      return 0;
1530    LoopSuccessor = Block;
1531  } else
1532    LoopSuccessor = Succ;
1533
1534  // Save the current value for the break targets.
1535  // All breaks should go to the code following the loop.
1536  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1537  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1538
1539  // Because of short-circuit evaluation, the condition of the loop can span
1540  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1541  // evaluate the condition.
1542  CFGBlock* ExitConditionBlock = createBlock(false);
1543  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1544
1545  // Set the terminator for the "exit" condition block.
1546  ExitConditionBlock->setTerminator(F);
1547
1548  // Now add the actual condition to the condition block.  Because the condition
1549  // itself may contain control-flow, new blocks may be created.
1550  if (Stmt* C = F->getCond()) {
1551    Block = ExitConditionBlock;
1552    EntryConditionBlock = addStmt(C);
1553    if (badCFG)
1554      return 0;
1555    assert(Block == EntryConditionBlock ||
1556           (Block == 0 && EntryConditionBlock == Succ));
1557
1558    // If this block contains a condition variable, add both the condition
1559    // variable and initializer to the CFG.
1560    if (VarDecl *VD = F->getConditionVariable()) {
1561      if (Expr *Init = VD->getInit()) {
1562        autoCreateBlock();
1563        appendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1564        EntryConditionBlock = addStmt(Init);
1565        assert(Block == EntryConditionBlock);
1566      }
1567    }
1568
1569    if (Block) {
1570      if (badCFG)
1571        return 0;
1572    }
1573  }
1574
1575  // The condition block is the implicit successor for the loop body as well as
1576  // any code above the loop.
1577  Succ = EntryConditionBlock;
1578
1579  // See if this is a known constant.
1580  TryResult KnownVal(true);
1581
1582  if (F->getCond())
1583    KnownVal = tryEvaluateBool(F->getCond());
1584
1585  // Now create the loop body.
1586  {
1587    assert(F->getBody());
1588
1589   // Save the current values for Block, Succ, and continue targets.
1590   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1591   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1592
1593    // Create a new block to contain the (bottom) of the loop body.
1594    Block = NULL;
1595
1596    // Loop body should end with destructor of Condition variable (if any).
1597    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1598
1599    if (Stmt* I = F->getInc()) {
1600      // Generate increment code in its own basic block.  This is the target of
1601      // continue statements.
1602      Succ = addStmt(I);
1603    } else {
1604      // No increment code.  Create a special, empty, block that is used as the
1605      // target block for "looping back" to the start of the loop.
1606      assert(Succ == EntryConditionBlock);
1607      Succ = Block ? Block : createBlock();
1608    }
1609
1610    // Finish up the increment (or empty) block if it hasn't been already.
1611    if (Block) {
1612      assert(Block == Succ);
1613      if (badCFG)
1614        return 0;
1615      Block = 0;
1616    }
1617
1618    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1619
1620    // The starting block for the loop increment is the block that should
1621    // represent the 'loop target' for looping back to the start of the loop.
1622    ContinueJumpTarget.block->setLoopTarget(F);
1623
1624    // If body is not a compound statement create implicit scope
1625    // and add destructors.
1626    if (!isa<CompoundStmt>(F->getBody()))
1627      addLocalScopeAndDtors(F->getBody());
1628
1629    // Now populate the body block, and in the process create new blocks as we
1630    // walk the body of the loop.
1631    CFGBlock* BodyBlock = addStmt(F->getBody());
1632
1633    if (!BodyBlock)
1634      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1635    else if (badCFG)
1636      return 0;
1637
1638    // This new body block is a successor to our "exit" condition block.
1639    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1640  }
1641
1642  // Link up the condition block with the code that follows the loop.  (the
1643  // false branch).
1644  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1645
1646  // If the loop contains initialization, create a new block for those
1647  // statements.  This block can also contain statements that precede the loop.
1648  if (Stmt* I = F->getInit()) {
1649    Block = createBlock();
1650    return addStmt(I);
1651  }
1652
1653  // There is no loop initialization.  We are thus basically a while loop.
1654  // NULL out Block to force lazy block construction.
1655  Block = NULL;
1656  Succ = EntryConditionBlock;
1657  return EntryConditionBlock;
1658}
1659
1660CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1661  if (asc.alwaysAdd()) {
1662    autoCreateBlock();
1663    appendStmt(Block, M, asc);
1664  }
1665  return Visit(M->getBase());
1666}
1667
1668CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1669  // Objective-C fast enumeration 'for' statements:
1670  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1671  //
1672  //  for ( Type newVariable in collection_expression ) { statements }
1673  //
1674  //  becomes:
1675  //
1676  //   prologue:
1677  //     1. collection_expression
1678  //     T. jump to loop_entry
1679  //   loop_entry:
1680  //     1. side-effects of element expression
1681  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1682  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1683  //   TB:
1684  //     statements
1685  //     T. jump to loop_entry
1686  //   FB:
1687  //     what comes after
1688  //
1689  //  and
1690  //
1691  //  Type existingItem;
1692  //  for ( existingItem in expression ) { statements }
1693  //
1694  //  becomes:
1695  //
1696  //   the same with newVariable replaced with existingItem; the binding works
1697  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1698  //   a DeclStmt and the other returns a DeclRefExpr.
1699  //
1700
1701  CFGBlock* LoopSuccessor = 0;
1702
1703  if (Block) {
1704    if (badCFG)
1705      return 0;
1706    LoopSuccessor = Block;
1707    Block = 0;
1708  } else
1709    LoopSuccessor = Succ;
1710
1711  // Build the condition blocks.
1712  CFGBlock* ExitConditionBlock = createBlock(false);
1713  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1714
1715  // Set the terminator for the "exit" condition block.
1716  ExitConditionBlock->setTerminator(S);
1717
1718  // The last statement in the block should be the ObjCForCollectionStmt, which
1719  // performs the actual binding to 'element' and determines if there are any
1720  // more items in the collection.
1721  appendStmt(ExitConditionBlock, S);
1722  Block = ExitConditionBlock;
1723
1724  // Walk the 'element' expression to see if there are any side-effects.  We
1725  // generate new blocks as necesary.  We DON'T add the statement by default to
1726  // the CFG unless it contains control-flow.
1727  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1728  if (Block) {
1729    if (badCFG)
1730      return 0;
1731    Block = 0;
1732  }
1733
1734  // The condition block is the implicit successor for the loop body as well as
1735  // any code above the loop.
1736  Succ = EntryConditionBlock;
1737
1738  // Now create the true branch.
1739  {
1740    // Save the current values for Succ, continue and break targets.
1741    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1742    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1743        save_break(BreakJumpTarget);
1744
1745    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1746    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1747
1748    CFGBlock* BodyBlock = addStmt(S->getBody());
1749
1750    if (!BodyBlock)
1751      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1752    else if (Block) {
1753      if (badCFG)
1754        return 0;
1755    }
1756
1757    // This new body block is a successor to our "exit" condition block.
1758    addSuccessor(ExitConditionBlock, BodyBlock);
1759  }
1760
1761  // Link up the condition block with the code that follows the loop.
1762  // (the false branch).
1763  addSuccessor(ExitConditionBlock, LoopSuccessor);
1764
1765  // Now create a prologue block to contain the collection expression.
1766  Block = createBlock();
1767  return addStmt(S->getCollection());
1768}
1769
1770CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1771  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1772
1773  // Inline the body.
1774  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1775
1776  // The sync body starts its own basic block.  This makes it a little easier
1777  // for diagnostic clients.
1778  if (SyncBlock) {
1779    if (badCFG)
1780      return 0;
1781
1782    Block = 0;
1783    Succ = SyncBlock;
1784  }
1785
1786  // Add the @synchronized to the CFG.
1787  autoCreateBlock();
1788  appendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1789
1790  // Inline the sync expression.
1791  return addStmt(S->getSynchExpr());
1792}
1793
1794CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1795  // FIXME
1796  return NYS();
1797}
1798
1799CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1800  CFGBlock* LoopSuccessor = NULL;
1801
1802  // Save local scope position because in case of condition variable ScopePos
1803  // won't be restored when traversing AST.
1804  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1805
1806  // Create local scope for possible condition variable.
1807  // Store scope position for continue statement.
1808  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1809  if (VarDecl* VD = W->getConditionVariable()) {
1810    addLocalScopeForVarDecl(VD);
1811    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1812  }
1813
1814  // "while" is a control-flow statement.  Thus we stop processing the current
1815  // block.
1816  if (Block) {
1817    if (badCFG)
1818      return 0;
1819    LoopSuccessor = Block;
1820  } else
1821    LoopSuccessor = Succ;
1822
1823  // Because of short-circuit evaluation, the condition of the loop can span
1824  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1825  // evaluate the condition.
1826  CFGBlock* ExitConditionBlock = createBlock(false);
1827  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1828
1829  // Set the terminator for the "exit" condition block.
1830  ExitConditionBlock->setTerminator(W);
1831
1832  // Now add the actual condition to the condition block.  Because the condition
1833  // itself may contain control-flow, new blocks may be created.  Thus we update
1834  // "Succ" after adding the condition.
1835  if (Stmt* C = W->getCond()) {
1836    Block = ExitConditionBlock;
1837    EntryConditionBlock = addStmt(C);
1838    // The condition might finish the current 'Block'.
1839    Block = EntryConditionBlock;
1840
1841    // If this block contains a condition variable, add both the condition
1842    // variable and initializer to the CFG.
1843    if (VarDecl *VD = W->getConditionVariable()) {
1844      if (Expr *Init = VD->getInit()) {
1845        autoCreateBlock();
1846        appendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1847        EntryConditionBlock = addStmt(Init);
1848        assert(Block == EntryConditionBlock);
1849      }
1850    }
1851
1852    if (Block) {
1853      if (badCFG)
1854        return 0;
1855    }
1856  }
1857
1858  // The condition block is the implicit successor for the loop body as well as
1859  // any code above the loop.
1860  Succ = EntryConditionBlock;
1861
1862  // See if this is a known constant.
1863  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1864
1865  // Process the loop body.
1866  {
1867    assert(W->getBody());
1868
1869    // Save the current values for Block, Succ, and continue and break targets
1870    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1871    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1872        save_break(BreakJumpTarget);
1873
1874    // Create an empty block to represent the transition block for looping back
1875    // to the head of the loop.
1876    Block = 0;
1877    assert(Succ == EntryConditionBlock);
1878    Succ = createBlock();
1879    Succ->setLoopTarget(W);
1880    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1881
1882    // All breaks should go to the code following the loop.
1883    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1884
1885    // NULL out Block to force lazy instantiation of blocks for the body.
1886    Block = NULL;
1887
1888    // Loop body should end with destructor of Condition variable (if any).
1889    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1890
1891    // If body is not a compound statement create implicit scope
1892    // and add destructors.
1893    if (!isa<CompoundStmt>(W->getBody()))
1894      addLocalScopeAndDtors(W->getBody());
1895
1896    // Create the body.  The returned block is the entry to the loop body.
1897    CFGBlock* BodyBlock = addStmt(W->getBody());
1898
1899    if (!BodyBlock)
1900      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
1901    else if (Block) {
1902      if (badCFG)
1903        return 0;
1904    }
1905
1906    // Add the loop body entry as a successor to the condition.
1907    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1908  }
1909
1910  // Link up the condition block with the code that follows the loop.  (the
1911  // false branch).
1912  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1913
1914  // There can be no more statements in the condition block since we loop back
1915  // to this block.  NULL out Block to force lazy creation of another block.
1916  Block = NULL;
1917
1918  // Return the condition block, which is the dominating block for the loop.
1919  Succ = EntryConditionBlock;
1920  return EntryConditionBlock;
1921}
1922
1923
1924CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1925  // FIXME: For now we pretend that @catch and the code it contains does not
1926  //  exit.
1927  return Block;
1928}
1929
1930CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1931  // FIXME: This isn't complete.  We basically treat @throw like a return
1932  //  statement.
1933
1934  // If we were in the middle of a block we stop processing that block.
1935  if (badCFG)
1936    return 0;
1937
1938  // Create the new block.
1939  Block = createBlock(false);
1940
1941  // The Exit block is the only successor.
1942  addSuccessor(Block, &cfg->getExit());
1943
1944  // Add the statement to the block.  This may create new blocks if S contains
1945  // control-flow (short-circuit operations).
1946  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1947}
1948
1949CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1950  // If we were in the middle of a block we stop processing that block.
1951  if (badCFG)
1952    return 0;
1953
1954  // Create the new block.
1955  Block = createBlock(false);
1956
1957  if (TryTerminatedBlock)
1958    // The current try statement is the only successor.
1959    addSuccessor(Block, TryTerminatedBlock);
1960  else
1961    // otherwise the Exit block is the only successor.
1962    addSuccessor(Block, &cfg->getExit());
1963
1964  // Add the statement to the block.  This may create new blocks if S contains
1965  // control-flow (short-circuit operations).
1966  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1967}
1968
1969CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1970  CFGBlock* LoopSuccessor = NULL;
1971
1972  // "do...while" is a control-flow statement.  Thus we stop processing the
1973  // current block.
1974  if (Block) {
1975    if (badCFG)
1976      return 0;
1977    LoopSuccessor = Block;
1978  } else
1979    LoopSuccessor = Succ;
1980
1981  // Because of short-circuit evaluation, the condition of the loop can span
1982  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1983  // evaluate the condition.
1984  CFGBlock* ExitConditionBlock = createBlock(false);
1985  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1986
1987  // Set the terminator for the "exit" condition block.
1988  ExitConditionBlock->setTerminator(D);
1989
1990  // Now add the actual condition to the condition block.  Because the condition
1991  // itself may contain control-flow, new blocks may be created.
1992  if (Stmt* C = D->getCond()) {
1993    Block = ExitConditionBlock;
1994    EntryConditionBlock = addStmt(C);
1995    if (Block) {
1996      if (badCFG)
1997        return 0;
1998    }
1999  }
2000
2001  // The condition block is the implicit successor for the loop body.
2002  Succ = EntryConditionBlock;
2003
2004  // See if this is a known constant.
2005  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2006
2007  // Process the loop body.
2008  CFGBlock* BodyBlock = NULL;
2009  {
2010    assert(D->getBody());
2011
2012    // Save the current values for Block, Succ, and continue and break targets
2013    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2014    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2015        save_break(BreakJumpTarget);
2016
2017    // All continues within this loop should go to the condition block
2018    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2019
2020    // All breaks should go to the code following the loop.
2021    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2022
2023    // NULL out Block to force lazy instantiation of blocks for the body.
2024    Block = NULL;
2025
2026    // If body is not a compound statement create implicit scope
2027    // and add destructors.
2028    if (!isa<CompoundStmt>(D->getBody()))
2029      addLocalScopeAndDtors(D->getBody());
2030
2031    // Create the body.  The returned block is the entry to the loop body.
2032    BodyBlock = addStmt(D->getBody());
2033
2034    if (!BodyBlock)
2035      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2036    else if (Block) {
2037      if (badCFG)
2038        return 0;
2039    }
2040
2041    if (!KnownVal.isFalse()) {
2042      // Add an intermediate block between the BodyBlock and the
2043      // ExitConditionBlock to represent the "loop back" transition.  Create an
2044      // empty block to represent the transition block for looping back to the
2045      // head of the loop.
2046      // FIXME: Can we do this more efficiently without adding another block?
2047      Block = NULL;
2048      Succ = BodyBlock;
2049      CFGBlock *LoopBackBlock = createBlock();
2050      LoopBackBlock->setLoopTarget(D);
2051
2052      // Add the loop body entry as a successor to the condition.
2053      addSuccessor(ExitConditionBlock, LoopBackBlock);
2054    }
2055    else
2056      addSuccessor(ExitConditionBlock, NULL);
2057  }
2058
2059  // Link up the condition block with the code that follows the loop.
2060  // (the false branch).
2061  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2062
2063  // There can be no more statements in the body block(s) since we loop back to
2064  // the body.  NULL out Block to force lazy creation of another block.
2065  Block = NULL;
2066
2067  // Return the loop body, which is the dominating block for the loop.
2068  Succ = BodyBlock;
2069  return BodyBlock;
2070}
2071
2072CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
2073  // "continue" is a control-flow statement.  Thus we stop processing the
2074  // current block.
2075  if (badCFG)
2076    return 0;
2077
2078  // Now create a new block that ends with the continue statement.
2079  Block = createBlock(false);
2080  Block->setTerminator(C);
2081
2082  // If there is no target for the continue, then we are looking at an
2083  // incomplete AST.  This means the CFG cannot be constructed.
2084  if (ContinueJumpTarget.block) {
2085    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2086    addSuccessor(Block, ContinueJumpTarget.block);
2087  } else
2088    badCFG = true;
2089
2090  return Block;
2091}
2092
2093CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
2094                                             AddStmtChoice asc) {
2095
2096  if (asc.alwaysAdd()) {
2097    autoCreateBlock();
2098    appendStmt(Block, E);
2099  }
2100
2101  // VLA types have expressions that must be evaluated.
2102  if (E->isArgumentType()) {
2103    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2104         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2105      addStmt(VA->getSizeExpr());
2106  }
2107
2108  return Block;
2109}
2110
2111/// VisitStmtExpr - Utility method to handle (nested) statement
2112///  expressions (a GCC extension).
2113CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2114  if (asc.alwaysAdd()) {
2115    autoCreateBlock();
2116    appendStmt(Block, SE);
2117  }
2118  return VisitCompoundStmt(SE->getSubStmt());
2119}
2120
2121CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
2122  // "switch" is a control-flow statement.  Thus we stop processing the current
2123  // block.
2124  CFGBlock* SwitchSuccessor = NULL;
2125
2126  // Save local scope position because in case of condition variable ScopePos
2127  // won't be restored when traversing AST.
2128  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2129
2130  // Create local scope for possible condition variable.
2131  // Store scope position. Add implicit destructor.
2132  if (VarDecl* VD = Terminator->getConditionVariable()) {
2133    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2134    addLocalScopeForVarDecl(VD);
2135    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2136  }
2137
2138  if (Block) {
2139    if (badCFG)
2140      return 0;
2141    SwitchSuccessor = Block;
2142  } else SwitchSuccessor = Succ;
2143
2144  // Save the current "switch" context.
2145  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2146                            save_default(DefaultCaseBlock);
2147  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2148
2149  // Set the "default" case to be the block after the switch statement.  If the
2150  // switch statement contains a "default:", this value will be overwritten with
2151  // the block for that code.
2152  DefaultCaseBlock = SwitchSuccessor;
2153
2154  // Create a new block that will contain the switch statement.
2155  SwitchTerminatedBlock = createBlock(false);
2156
2157  // Now process the switch body.  The code after the switch is the implicit
2158  // successor.
2159  Succ = SwitchSuccessor;
2160  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2161
2162  // When visiting the body, the case statements should automatically get linked
2163  // up to the switch.  We also don't keep a pointer to the body, since all
2164  // control-flow from the switch goes to case/default statements.
2165  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2166  Block = NULL;
2167
2168  // If body is not a compound statement create implicit scope
2169  // and add destructors.
2170  if (!isa<CompoundStmt>(Terminator->getBody()))
2171    addLocalScopeAndDtors(Terminator->getBody());
2172
2173  addStmt(Terminator->getBody());
2174  if (Block) {
2175    if (badCFG)
2176      return 0;
2177  }
2178
2179  // If we have no "default:" case, the default transition is to the code
2180  // following the switch body.
2181  addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
2182
2183  // Add the terminator and condition in the switch block.
2184  SwitchTerminatedBlock->setTerminator(Terminator);
2185  assert(Terminator->getCond() && "switch condition must be non-NULL");
2186  Block = SwitchTerminatedBlock;
2187  Block = addStmt(Terminator->getCond());
2188
2189  // Finally, if the SwitchStmt contains a condition variable, add both the
2190  // SwitchStmt and the condition variable initialization to the CFG.
2191  if (VarDecl *VD = Terminator->getConditionVariable()) {
2192    if (Expr *Init = VD->getInit()) {
2193      autoCreateBlock();
2194      appendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
2195      addStmt(Init);
2196    }
2197  }
2198
2199  return Block;
2200}
2201
2202CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
2203  // CaseStmts are essentially labels, so they are the first statement in a
2204  // block.
2205  CFGBlock *TopBlock = 0, *LastBlock = 0;
2206
2207  if (Stmt *Sub = CS->getSubStmt()) {
2208    // For deeply nested chains of CaseStmts, instead of doing a recursion
2209    // (which can blow out the stack), manually unroll and create blocks
2210    // along the way.
2211    while (isa<CaseStmt>(Sub)) {
2212      CFGBlock *currentBlock = createBlock(false);
2213      currentBlock->setLabel(CS);
2214
2215      if (TopBlock)
2216        addSuccessor(LastBlock, currentBlock);
2217      else
2218        TopBlock = currentBlock;
2219
2220      addSuccessor(SwitchTerminatedBlock, currentBlock);
2221      LastBlock = currentBlock;
2222
2223      CS = cast<CaseStmt>(Sub);
2224      Sub = CS->getSubStmt();
2225    }
2226
2227    addStmt(Sub);
2228  }
2229
2230  CFGBlock* CaseBlock = Block;
2231  if (!CaseBlock)
2232    CaseBlock = createBlock();
2233
2234  // Cases statements partition blocks, so this is the top of the basic block we
2235  // were processing (the "case XXX:" is the label).
2236  CaseBlock->setLabel(CS);
2237
2238  if (badCFG)
2239    return 0;
2240
2241  // Add this block to the list of successors for the block with the switch
2242  // statement.
2243  assert(SwitchTerminatedBlock);
2244  addSuccessor(SwitchTerminatedBlock, CaseBlock);
2245
2246  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2247  Block = NULL;
2248
2249  if (TopBlock) {
2250    addSuccessor(LastBlock, CaseBlock);
2251    Succ = TopBlock;
2252  } else {
2253    // This block is now the implicit successor of other blocks.
2254    Succ = CaseBlock;
2255  }
2256
2257  return Succ;
2258}
2259
2260CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
2261  if (Terminator->getSubStmt())
2262    addStmt(Terminator->getSubStmt());
2263
2264  DefaultCaseBlock = Block;
2265
2266  if (!DefaultCaseBlock)
2267    DefaultCaseBlock = createBlock();
2268
2269  // Default statements partition blocks, so this is the top of the basic block
2270  // we were processing (the "default:" is the label).
2271  DefaultCaseBlock->setLabel(Terminator);
2272
2273  if (badCFG)
2274    return 0;
2275
2276  // Unlike case statements, we don't add the default block to the successors
2277  // for the switch statement immediately.  This is done when we finish
2278  // processing the switch statement.  This allows for the default case
2279  // (including a fall-through to the code after the switch statement) to always
2280  // be the last successor of a switch-terminated block.
2281
2282  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2283  Block = NULL;
2284
2285  // This block is now the implicit successor of other blocks.
2286  Succ = DefaultCaseBlock;
2287
2288  return DefaultCaseBlock;
2289}
2290
2291CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2292  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2293  // current block.
2294  CFGBlock* TrySuccessor = NULL;
2295
2296  if (Block) {
2297    if (badCFG)
2298      return 0;
2299    TrySuccessor = Block;
2300  } else TrySuccessor = Succ;
2301
2302  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2303
2304  // Create a new block that will contain the try statement.
2305  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2306  // Add the terminator in the try block.
2307  NewTryTerminatedBlock->setTerminator(Terminator);
2308
2309  bool HasCatchAll = false;
2310  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2311    // The code after the try is the implicit successor.
2312    Succ = TrySuccessor;
2313    CXXCatchStmt *CS = Terminator->getHandler(h);
2314    if (CS->getExceptionDecl() == 0) {
2315      HasCatchAll = true;
2316    }
2317    Block = NULL;
2318    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2319    if (CatchBlock == 0)
2320      return 0;
2321    // Add this block to the list of successors for the block with the try
2322    // statement.
2323    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2324  }
2325  if (!HasCatchAll) {
2326    if (PrevTryTerminatedBlock)
2327      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2328    else
2329      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2330  }
2331
2332  // The code after the try is the implicit successor.
2333  Succ = TrySuccessor;
2334
2335  // Save the current "try" context.
2336  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2337  TryTerminatedBlock = NewTryTerminatedBlock;
2338
2339  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2340  Block = NULL;
2341  Block = addStmt(Terminator->getTryBlock());
2342  return Block;
2343}
2344
2345CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2346  // CXXCatchStmt are treated like labels, so they are the first statement in a
2347  // block.
2348
2349  // Save local scope position because in case of exception variable ScopePos
2350  // won't be restored when traversing AST.
2351  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2352
2353  // Create local scope for possible exception variable.
2354  // Store scope position. Add implicit destructor.
2355  if (VarDecl* VD = CS->getExceptionDecl()) {
2356    LocalScope::const_iterator BeginScopePos = ScopePos;
2357    addLocalScopeForVarDecl(VD);
2358    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2359  }
2360
2361  if (CS->getHandlerBlock())
2362    addStmt(CS->getHandlerBlock());
2363
2364  CFGBlock* CatchBlock = Block;
2365  if (!CatchBlock)
2366    CatchBlock = createBlock();
2367
2368  CatchBlock->setLabel(CS);
2369
2370  if (badCFG)
2371    return 0;
2372
2373  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2374  Block = NULL;
2375
2376  return CatchBlock;
2377}
2378
2379CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2380    AddStmtChoice asc) {
2381  if (BuildOpts.AddImplicitDtors) {
2382    // If adding implicit destructors visit the full expression for adding
2383    // destructors of temporaries.
2384    VisitForTemporaryDtors(E->getSubExpr());
2385
2386    // Full expression has to be added as CFGStmt so it will be sequenced
2387    // before destructors of it's temporaries.
2388    asc = asc.withAlwaysAdd(true);
2389  }
2390  return Visit(E->getSubExpr(), asc);
2391}
2392
2393CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2394                                                AddStmtChoice asc) {
2395  if (asc.alwaysAdd()) {
2396    autoCreateBlock();
2397    appendStmt(Block, E, asc);
2398
2399    // We do not want to propagate the AlwaysAdd property.
2400    asc = asc.withAlwaysAdd(false);
2401  }
2402  return Visit(E->getSubExpr(), asc);
2403}
2404
2405CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2406                                            AddStmtChoice asc) {
2407  autoCreateBlock();
2408  if (!C->isElidable())
2409    appendStmt(Block, C, asc.withAlwaysAdd(true));
2410
2411  return VisitChildren(C);
2412}
2413
2414CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2415                                                 AddStmtChoice asc) {
2416  if (asc.alwaysAdd()) {
2417    autoCreateBlock();
2418    appendStmt(Block, E, asc);
2419    // We do not want to propagate the AlwaysAdd property.
2420    asc = asc.withAlwaysAdd(false);
2421  }
2422  return Visit(E->getSubExpr(), asc);
2423}
2424
2425CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2426                                                  AddStmtChoice asc) {
2427  autoCreateBlock();
2428  appendStmt(Block, C, asc.withAlwaysAdd(true));
2429  return VisitChildren(C);
2430}
2431
2432CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2433                                             AddStmtChoice asc) {
2434  autoCreateBlock();
2435  appendStmt(Block, C, asc.withAlwaysAdd(true));
2436  return VisitChildren(C);
2437}
2438
2439CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2440                                            AddStmtChoice asc) {
2441  if (asc.alwaysAdd()) {
2442    autoCreateBlock();
2443    appendStmt(Block, E, asc);
2444  }
2445  return Visit(E->getSubExpr(), AddStmtChoice());
2446}
2447
2448CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2449  // Lazily create the indirect-goto dispatch block if there isn't one already.
2450  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2451
2452  if (!IBlock) {
2453    IBlock = createBlock(false);
2454    cfg->setIndirectGotoBlock(IBlock);
2455  }
2456
2457  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2458  // current block and create a new one.
2459  if (badCFG)
2460    return 0;
2461
2462  Block = createBlock(false);
2463  Block->setTerminator(I);
2464  addSuccessor(Block, IBlock);
2465  return addStmt(I->getTarget());
2466}
2467
2468CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2469tryAgain:
2470  if (!E) {
2471    badCFG = true;
2472    return NULL;
2473  }
2474  switch (E->getStmtClass()) {
2475    default:
2476      return VisitChildrenForTemporaryDtors(E);
2477
2478    case Stmt::BinaryOperatorClass:
2479      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2480
2481    case Stmt::CXXBindTemporaryExprClass:
2482      return VisitCXXBindTemporaryExprForTemporaryDtors(
2483          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2484
2485    case Stmt::ConditionalOperatorClass:
2486      return VisitConditionalOperatorForTemporaryDtors(
2487          cast<ConditionalOperator>(E), BindToTemporary);
2488
2489    case Stmt::ImplicitCastExprClass:
2490      // For implicit cast we want BindToTemporary to be passed further.
2491      E = cast<CastExpr>(E)->getSubExpr();
2492      goto tryAgain;
2493
2494    case Stmt::ParenExprClass:
2495      E = cast<ParenExpr>(E)->getSubExpr();
2496      goto tryAgain;
2497  }
2498}
2499
2500CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2501  // When visiting children for destructors we want to visit them in reverse
2502  // order. Because there's no reverse iterator for children must to reverse
2503  // them in helper vector.
2504  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
2505  ChildrenVect ChildrenRev;
2506  for (Stmt::child_iterator I = E->child_begin(), L = E->child_end();
2507      I != L; ++I) {
2508    if (*I) ChildrenRev.push_back(*I);
2509  }
2510
2511  CFGBlock *B = Block;
2512  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2513      L = ChildrenRev.rend(); I != L; ++I) {
2514    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2515      B = R;
2516  }
2517  return B;
2518}
2519
2520CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2521  if (E->isLogicalOp()) {
2522    // Destructors for temporaries in LHS expression should be called after
2523    // those for RHS expression. Even if this will unnecessarily create a block,
2524    // this block will be used at least by the full expression.
2525    autoCreateBlock();
2526    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2527    if (badCFG)
2528      return NULL;
2529
2530    Succ = ConfluenceBlock;
2531    Block = NULL;
2532    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2533
2534    if (RHSBlock) {
2535      if (badCFG)
2536        return NULL;
2537
2538      // If RHS expression did produce destructors we need to connect created
2539      // blocks to CFG in same manner as for binary operator itself.
2540      CFGBlock *LHSBlock = createBlock(false);
2541      LHSBlock->setTerminator(CFGTerminator(E, true));
2542
2543      // For binary operator LHS block is before RHS in list of predecessors
2544      // of ConfluenceBlock.
2545      std::reverse(ConfluenceBlock->pred_begin(),
2546          ConfluenceBlock->pred_end());
2547
2548      // See if this is a known constant.
2549      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2550      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2551        KnownVal.negate();
2552
2553      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2554      // itself.
2555      if (E->getOpcode() == BO_LOr) {
2556        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2557        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2558      } else {
2559        assert (E->getOpcode() == BO_LAnd);
2560        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2561        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2562      }
2563
2564      Block = LHSBlock;
2565      return LHSBlock;
2566    }
2567
2568    Block = ConfluenceBlock;
2569    return ConfluenceBlock;
2570  }
2571
2572  if (E->isAssignmentOp()) {
2573    // For assignment operator (=) LHS expression is visited
2574    // before RHS expression. For destructors visit them in reverse order.
2575    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2576    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2577    return LHSBlock ? LHSBlock : RHSBlock;
2578  }
2579
2580  // For any other binary operator RHS expression is visited before
2581  // LHS expression (order of children). For destructors visit them in reverse
2582  // order.
2583  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2584  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2585  return RHSBlock ? RHSBlock : LHSBlock;
2586}
2587
2588CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2589    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2590  // First add destructors for temporaries in subexpression.
2591  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2592  if (!BindToTemporary) {
2593    // If lifetime of temporary is not prolonged (by assigning to constant
2594    // reference) add destructor for it.
2595    autoCreateBlock();
2596    appendTemporaryDtor(Block, E);
2597    B = Block;
2598  }
2599  return B;
2600}
2601
2602CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2603    ConditionalOperator *E, bool BindToTemporary) {
2604  // First add destructors for condition expression.  Even if this will
2605  // unnecessarily create a block, this block will be used at least by the full
2606  // expression.
2607  autoCreateBlock();
2608  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2609  if (badCFG)
2610    return NULL;
2611
2612  // Try to add block with destructors for LHS expression.
2613  CFGBlock *LHSBlock = NULL;
2614  if (E->getLHS()) {
2615    Succ = ConfluenceBlock;
2616    Block = NULL;
2617    LHSBlock = VisitForTemporaryDtors(E->getLHS(), BindToTemporary);
2618    if (badCFG)
2619      return NULL;
2620  }
2621
2622  // Try to add block with destructors for RHS expression;
2623  Succ = ConfluenceBlock;
2624  Block = NULL;
2625  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), BindToTemporary);
2626  if (badCFG)
2627    return NULL;
2628
2629  if (!RHSBlock && !LHSBlock) {
2630    // If neither LHS nor RHS expression had temporaries to destroy don't create
2631    // more blocks.
2632    Block = ConfluenceBlock;
2633    return Block;
2634  }
2635
2636  Block = createBlock(false);
2637  Block->setTerminator(CFGTerminator(E, true));
2638
2639  // See if this is a known constant.
2640  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2641
2642  if (LHSBlock) {
2643    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2644  } else if (KnownVal.isFalse()) {
2645    addSuccessor(Block, NULL);
2646  } else {
2647    addSuccessor(Block, ConfluenceBlock);
2648    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2649  }
2650
2651  if (!RHSBlock)
2652    RHSBlock = ConfluenceBlock;
2653  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2654
2655  return Block;
2656}
2657
2658} // end anonymous namespace
2659
2660/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2661///  no successors or predecessors.  If this is the first block created in the
2662///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2663CFGBlock* CFG::createBlock() {
2664  bool first_block = begin() == end();
2665
2666  // Create the block.
2667  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2668  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2669  Blocks.push_back(Mem, BlkBVC);
2670
2671  // If this is the first block, set it as the Entry and Exit.
2672  if (first_block)
2673    Entry = Exit = &back();
2674
2675  // Return the block.
2676  return &back();
2677}
2678
2679/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2680///  CFG is returned to the caller.
2681CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2682    BuildOptions BO) {
2683  CFGBuilder Builder;
2684  return Builder.buildCFG(D, Statement, C, BO);
2685}
2686
2687//===----------------------------------------------------------------------===//
2688// CFG: Queries for BlkExprs.
2689//===----------------------------------------------------------------------===//
2690
2691namespace {
2692  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2693}
2694
2695static void FindSubExprAssignments(Stmt *S,
2696                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2697  if (!S)
2698    return;
2699
2700  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
2701    Stmt *child = *I;
2702    if (!child)
2703      continue;
2704
2705    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2706      if (B->isAssignmentOp()) Set.insert(B);
2707
2708    FindSubExprAssignments(child, Set);
2709  }
2710}
2711
2712static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2713  BlkExprMapTy* M = new BlkExprMapTy();
2714
2715  // Look for assignments that are used as subexpressions.  These are the only
2716  // assignments that we want to *possibly* register as a block-level
2717  // expression.  Basically, if an assignment occurs both in a subexpression and
2718  // at the block-level, it is a block-level expression.
2719  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2720
2721  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2722    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2723      if (CFGStmt S = BI->getAs<CFGStmt>())
2724        FindSubExprAssignments(S, SubExprAssignments);
2725
2726  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2727
2728    // Iterate over the statements again on identify the Expr* and Stmt* at the
2729    // block-level that are block-level expressions.
2730
2731    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2732      CFGStmt CS = BI->getAs<CFGStmt>();
2733      if (!CS.isValid())
2734        continue;
2735      if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2736
2737        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2738          // Assignment expressions that are not nested within another
2739          // expression are really "statements" whose value is never used by
2740          // another expression.
2741          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2742            continue;
2743        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2744          // Special handling for statement expressions.  The last statement in
2745          // the statement expression is also a block-level expr.
2746          const CompoundStmt* C = Terminator->getSubStmt();
2747          if (!C->body_empty()) {
2748            unsigned x = M->size();
2749            (*M)[C->body_back()] = x;
2750          }
2751        }
2752
2753        unsigned x = M->size();
2754        (*M)[Exp] = x;
2755      }
2756    }
2757
2758    // Look at terminators.  The condition is a block-level expression.
2759
2760    Stmt* S = (*I)->getTerminatorCondition();
2761
2762    if (S && M->find(S) == M->end()) {
2763        unsigned x = M->size();
2764        (*M)[S] = x;
2765    }
2766  }
2767
2768  return M;
2769}
2770
2771CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2772  assert(S != NULL);
2773  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2774
2775  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2776  BlkExprMapTy::iterator I = M->find(S);
2777  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2778}
2779
2780unsigned CFG::getNumBlkExprs() {
2781  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2782    return M->size();
2783
2784  // We assume callers interested in the number of BlkExprs will want
2785  // the map constructed if it doesn't already exist.
2786  BlkExprMap = (void*) PopulateBlkExprMap(*this);
2787  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2788}
2789
2790//===----------------------------------------------------------------------===//
2791// Filtered walking of the CFG.
2792//===----------------------------------------------------------------------===//
2793
2794bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2795        const CFGBlock *From, const CFGBlock *To) {
2796
2797  if (F.IgnoreDefaultsWithCoveredEnums) {
2798    // If the 'To' has no label or is labeled but the label isn't a
2799    // CaseStmt then filter this edge.
2800    if (const SwitchStmt *S =
2801  dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
2802      if (S->isAllEnumCasesCovered()) {
2803  const Stmt *L = To->getLabel();
2804  if (!L || !isa<CaseStmt>(L))
2805    return true;
2806      }
2807    }
2808  }
2809
2810  return false;
2811}
2812
2813//===----------------------------------------------------------------------===//
2814// Cleanup: CFG dstor.
2815//===----------------------------------------------------------------------===//
2816
2817CFG::~CFG() {
2818  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2819}
2820
2821//===----------------------------------------------------------------------===//
2822// CFG pretty printing
2823//===----------------------------------------------------------------------===//
2824
2825namespace {
2826
2827class StmtPrinterHelper : public PrinterHelper  {
2828  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2829  typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2830  StmtMapTy StmtMap;
2831  DeclMapTy DeclMap;
2832  signed currentBlock;
2833  unsigned currentStmt;
2834  const LangOptions &LangOpts;
2835public:
2836
2837  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2838    : currentBlock(0), currentStmt(0), LangOpts(LO) {
2839    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2840      unsigned j = 1;
2841      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2842           BI != BEnd; ++BI, ++j ) {
2843        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2844          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2845          StmtMap[SE] = P;
2846
2847          if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2848              DeclMap[DS->getSingleDecl()] = P;
2849
2850          } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2851            if (VarDecl* VD = IS->getConditionVariable())
2852              DeclMap[VD] = P;
2853
2854          } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2855            if (VarDecl* VD = FS->getConditionVariable())
2856              DeclMap[VD] = P;
2857
2858          } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2859            if (VarDecl* VD = WS->getConditionVariable())
2860              DeclMap[VD] = P;
2861
2862          } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2863            if (VarDecl* VD = SS->getConditionVariable())
2864              DeclMap[VD] = P;
2865
2866          } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2867            if (VarDecl* VD = CS->getExceptionDecl())
2868              DeclMap[VD] = P;
2869          }
2870        }
2871      }
2872    }
2873  }
2874
2875  virtual ~StmtPrinterHelper() {}
2876
2877  const LangOptions &getLangOpts() const { return LangOpts; }
2878  void setBlockID(signed i) { currentBlock = i; }
2879  void setStmtID(unsigned i) { currentStmt = i; }
2880
2881  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2882    StmtMapTy::iterator I = StmtMap.find(S);
2883
2884    if (I == StmtMap.end())
2885      return false;
2886
2887    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
2888                          && I->second.second == currentStmt) {
2889      return false;
2890    }
2891
2892    OS << "[B" << I->second.first << "." << I->second.second << "]";
2893    return true;
2894  }
2895
2896  bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2897    DeclMapTy::iterator I = DeclMap.find(D);
2898
2899    if (I == DeclMap.end())
2900      return false;
2901
2902    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
2903                          && I->second.second == currentStmt) {
2904      return false;
2905    }
2906
2907    OS << "[B" << I->second.first << "." << I->second.second << "]";
2908    return true;
2909  }
2910};
2911} // end anonymous namespace
2912
2913
2914namespace {
2915class CFGBlockTerminatorPrint
2916  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2917
2918  llvm::raw_ostream& OS;
2919  StmtPrinterHelper* Helper;
2920  PrintingPolicy Policy;
2921public:
2922  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2923                          const PrintingPolicy &Policy)
2924    : OS(os), Helper(helper), Policy(Policy) {}
2925
2926  void VisitIfStmt(IfStmt* I) {
2927    OS << "if ";
2928    I->getCond()->printPretty(OS,Helper,Policy);
2929  }
2930
2931  // Default case.
2932  void VisitStmt(Stmt* Terminator) {
2933    Terminator->printPretty(OS, Helper, Policy);
2934  }
2935
2936  void VisitForStmt(ForStmt* F) {
2937    OS << "for (" ;
2938    if (F->getInit())
2939      OS << "...";
2940    OS << "; ";
2941    if (Stmt* C = F->getCond())
2942      C->printPretty(OS, Helper, Policy);
2943    OS << "; ";
2944    if (F->getInc())
2945      OS << "...";
2946    OS << ")";
2947  }
2948
2949  void VisitWhileStmt(WhileStmt* W) {
2950    OS << "while " ;
2951    if (Stmt* C = W->getCond())
2952      C->printPretty(OS, Helper, Policy);
2953  }
2954
2955  void VisitDoStmt(DoStmt* D) {
2956    OS << "do ... while ";
2957    if (Stmt* C = D->getCond())
2958      C->printPretty(OS, Helper, Policy);
2959  }
2960
2961  void VisitSwitchStmt(SwitchStmt* Terminator) {
2962    OS << "switch ";
2963    Terminator->getCond()->printPretty(OS, Helper, Policy);
2964  }
2965
2966  void VisitCXXTryStmt(CXXTryStmt* CS) {
2967    OS << "try ...";
2968  }
2969
2970  void VisitConditionalOperator(ConditionalOperator* C) {
2971    C->getCond()->printPretty(OS, Helper, Policy);
2972    OS << " ? ... : ...";
2973  }
2974
2975  void VisitChooseExpr(ChooseExpr* C) {
2976    OS << "__builtin_choose_expr( ";
2977    C->getCond()->printPretty(OS, Helper, Policy);
2978    OS << " )";
2979  }
2980
2981  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2982    OS << "goto *";
2983    I->getTarget()->printPretty(OS, Helper, Policy);
2984  }
2985
2986  void VisitBinaryOperator(BinaryOperator* B) {
2987    if (!B->isLogicalOp()) {
2988      VisitExpr(B);
2989      return;
2990    }
2991
2992    B->getLHS()->printPretty(OS, Helper, Policy);
2993
2994    switch (B->getOpcode()) {
2995      case BO_LOr:
2996        OS << " || ...";
2997        return;
2998      case BO_LAnd:
2999        OS << " && ...";
3000        return;
3001      default:
3002        assert(false && "Invalid logical operator.");
3003    }
3004  }
3005
3006  void VisitExpr(Expr* E) {
3007    E->printPretty(OS, Helper, Policy);
3008  }
3009};
3010} // end anonymous namespace
3011
3012static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
3013                       const CFGElement &E) {
3014  if (CFGStmt CS = E.getAs<CFGStmt>()) {
3015    Stmt *S = CS;
3016
3017    if (Helper) {
3018
3019      // special printing for statement-expressions.
3020      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
3021        CompoundStmt* Sub = SE->getSubStmt();
3022
3023        if (Sub->child_begin() != Sub->child_end()) {
3024          OS << "({ ... ; ";
3025          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3026          OS << " })\n";
3027          return;
3028        }
3029      }
3030      // special printing for comma expressions.
3031      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3032        if (B->getOpcode() == BO_Comma) {
3033          OS << "... , ";
3034          Helper->handledStmt(B->getRHS(),OS);
3035          OS << '\n';
3036          return;
3037        }
3038      }
3039    }
3040    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3041
3042    if (isa<CXXOperatorCallExpr>(S)) {
3043      OS << " (OperatorCall)";
3044    } else if (isa<CXXBindTemporaryExpr>(S)) {
3045      OS << " (BindTemporary)";
3046    }
3047
3048    // Expressions need a newline.
3049    if (isa<Expr>(S))
3050      OS << '\n';
3051
3052  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
3053    CXXCtorInitializer* I = IE;
3054    if (I->isBaseInitializer())
3055      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3056    else OS << I->getAnyMember()->getName();
3057
3058    OS << "(";
3059    if (Expr* IE = I->getInit())
3060      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3061    OS << ")";
3062
3063    if (I->isBaseInitializer())
3064      OS << " (Base initializer)\n";
3065    else OS << " (Member initializer)\n";
3066
3067  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
3068    VarDecl* VD = DE.getVarDecl();
3069    Helper->handleDecl(VD, OS);
3070
3071    const Type* T = VD->getType().getTypePtr();
3072    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3073      T = RT->getPointeeType().getTypePtr();
3074    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3075      T = ET;
3076
3077    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3078    OS << " (Implicit destructor)\n";
3079
3080  } else if (CFGBaseDtor BE = E.getAs<CFGBaseDtor>()) {
3081    const CXXBaseSpecifier *BS = BE.getBaseSpecifier();
3082    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3083    OS << " (Base object destructor)\n";
3084
3085  } else if (CFGMemberDtor ME = E.getAs<CFGMemberDtor>()) {
3086    FieldDecl *FD = ME.getFieldDecl();
3087
3088    const Type *T = FD->getType().getTypePtr();
3089    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3090      T = ET;
3091
3092    OS << "this->" << FD->getName();
3093    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3094    OS << " (Member object destructor)\n";
3095
3096  } else if (CFGTemporaryDtor TE = E.getAs<CFGTemporaryDtor>()) {
3097    CXXBindTemporaryExpr *BT = TE.getBindTemporaryExpr();
3098    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3099    OS << " (Temporary object destructor)\n";
3100  }
3101}
3102
3103static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
3104                        const CFGBlock& B,
3105                        StmtPrinterHelper* Helper, bool print_edges) {
3106
3107  if (Helper) Helper->setBlockID(B.getBlockID());
3108
3109  // Print the header.
3110  OS << "\n [ B" << B.getBlockID();
3111
3112  if (&B == &cfg->getEntry())
3113    OS << " (ENTRY) ]\n";
3114  else if (&B == &cfg->getExit())
3115    OS << " (EXIT) ]\n";
3116  else if (&B == cfg->getIndirectGotoBlock())
3117    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3118  else
3119    OS << " ]\n";
3120
3121  // Print the label of this block.
3122  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
3123
3124    if (print_edges)
3125      OS << "    ";
3126
3127    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
3128      OS << L->getName();
3129    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
3130      OS << "case ";
3131      C->getLHS()->printPretty(OS, Helper,
3132                               PrintingPolicy(Helper->getLangOpts()));
3133      if (C->getRHS()) {
3134        OS << " ... ";
3135        C->getRHS()->printPretty(OS, Helper,
3136                                 PrintingPolicy(Helper->getLangOpts()));
3137      }
3138    } else if (isa<DefaultStmt>(Label))
3139      OS << "default";
3140    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3141      OS << "catch (";
3142      if (CS->getExceptionDecl())
3143        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3144                                      0);
3145      else
3146        OS << "...";
3147      OS << ")";
3148
3149    } else
3150      assert(false && "Invalid label statement in CFGBlock.");
3151
3152    OS << ":\n";
3153  }
3154
3155  // Iterate through the statements in the block and print them.
3156  unsigned j = 1;
3157
3158  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3159       I != E ; ++I, ++j ) {
3160
3161    // Print the statement # in the basic block and the statement itself.
3162    if (print_edges)
3163      OS << "    ";
3164
3165    OS << llvm::format("%3d", j) << ": ";
3166
3167    if (Helper)
3168      Helper->setStmtID(j);
3169
3170    print_elem(OS,Helper,*I);
3171  }
3172
3173  // Print the terminator of this block.
3174  if (B.getTerminator()) {
3175    if (print_edges)
3176      OS << "    ";
3177
3178    OS << "  T: ";
3179
3180    if (Helper) Helper->setBlockID(-1);
3181
3182    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3183                                     PrintingPolicy(Helper->getLangOpts()));
3184    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3185    OS << '\n';
3186  }
3187
3188  if (print_edges) {
3189    // Print the predecessors of this block.
3190    OS << "    Predecessors (" << B.pred_size() << "):";
3191    unsigned i = 0;
3192
3193    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3194         I != E; ++I, ++i) {
3195
3196      if (i == 8 || (i-8) == 0)
3197        OS << "\n     ";
3198
3199      OS << " B" << (*I)->getBlockID();
3200    }
3201
3202    OS << '\n';
3203
3204    // Print the successors of this block.
3205    OS << "    Successors (" << B.succ_size() << "):";
3206    i = 0;
3207
3208    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3209         I != E; ++I, ++i) {
3210
3211      if (i == 8 || (i-8) % 10 == 0)
3212        OS << "\n    ";
3213
3214      if (*I)
3215        OS << " B" << (*I)->getBlockID();
3216      else
3217        OS  << " NULL";
3218    }
3219
3220    OS << '\n';
3221  }
3222}
3223
3224
3225/// dump - A simple pretty printer of a CFG that outputs to stderr.
3226void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3227
3228/// print - A simple pretty printer of a CFG that outputs to an ostream.
3229void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
3230  StmtPrinterHelper Helper(this, LO);
3231
3232  // Print the entry block.
3233  print_block(OS, this, getEntry(), &Helper, true);
3234
3235  // Iterate through the CFGBlocks and print them one by one.
3236  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3237    // Skip the entry block, because we already printed it.
3238    if (&(**I) == &getEntry() || &(**I) == &getExit())
3239      continue;
3240
3241    print_block(OS, this, **I, &Helper, true);
3242  }
3243
3244  // Print the exit block.
3245  print_block(OS, this, getExit(), &Helper, true);
3246  OS.flush();
3247}
3248
3249/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3250void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3251  print(llvm::errs(), cfg, LO);
3252}
3253
3254/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3255///   Generally this will only be called from CFG::print.
3256void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
3257                     const LangOptions &LO) const {
3258  StmtPrinterHelper Helper(cfg, LO);
3259  print_block(OS, cfg, *this, &Helper, true);
3260}
3261
3262/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3263void CFGBlock::printTerminator(llvm::raw_ostream &OS,
3264                               const LangOptions &LO) const {
3265  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3266  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3267}
3268
3269Stmt* CFGBlock::getTerminatorCondition() {
3270  Stmt *Terminator = this->Terminator;
3271  if (!Terminator)
3272    return NULL;
3273
3274  Expr* E = NULL;
3275
3276  switch (Terminator->getStmtClass()) {
3277    default:
3278      break;
3279
3280    case Stmt::ForStmtClass:
3281      E = cast<ForStmt>(Terminator)->getCond();
3282      break;
3283
3284    case Stmt::WhileStmtClass:
3285      E = cast<WhileStmt>(Terminator)->getCond();
3286      break;
3287
3288    case Stmt::DoStmtClass:
3289      E = cast<DoStmt>(Terminator)->getCond();
3290      break;
3291
3292    case Stmt::IfStmtClass:
3293      E = cast<IfStmt>(Terminator)->getCond();
3294      break;
3295
3296    case Stmt::ChooseExprClass:
3297      E = cast<ChooseExpr>(Terminator)->getCond();
3298      break;
3299
3300    case Stmt::IndirectGotoStmtClass:
3301      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3302      break;
3303
3304    case Stmt::SwitchStmtClass:
3305      E = cast<SwitchStmt>(Terminator)->getCond();
3306      break;
3307
3308    case Stmt::ConditionalOperatorClass:
3309      E = cast<ConditionalOperator>(Terminator)->getCond();
3310      break;
3311
3312    case Stmt::BinaryOperatorClass: // '&&' and '||'
3313      E = cast<BinaryOperator>(Terminator)->getLHS();
3314      break;
3315
3316    case Stmt::ObjCForCollectionStmtClass:
3317      return Terminator;
3318  }
3319
3320  return E ? E->IgnoreParens() : NULL;
3321}
3322
3323bool CFGBlock::hasBinaryBranchTerminator() const {
3324  const Stmt *Terminator = this->Terminator;
3325  if (!Terminator)
3326    return false;
3327
3328  Expr* E = NULL;
3329
3330  switch (Terminator->getStmtClass()) {
3331    default:
3332      return false;
3333
3334    case Stmt::ForStmtClass:
3335    case Stmt::WhileStmtClass:
3336    case Stmt::DoStmtClass:
3337    case Stmt::IfStmtClass:
3338    case Stmt::ChooseExprClass:
3339    case Stmt::ConditionalOperatorClass:
3340    case Stmt::BinaryOperatorClass:
3341      return true;
3342  }
3343
3344  return E ? E->IgnoreParens() : NULL;
3345}
3346
3347
3348//===----------------------------------------------------------------------===//
3349// CFG Graphviz Visualization
3350//===----------------------------------------------------------------------===//
3351
3352
3353#ifndef NDEBUG
3354static StmtPrinterHelper* GraphHelper;
3355#endif
3356
3357void CFG::viewCFG(const LangOptions &LO) const {
3358#ifndef NDEBUG
3359  StmtPrinterHelper H(this, LO);
3360  GraphHelper = &H;
3361  llvm::ViewGraph(this,"CFG");
3362  GraphHelper = NULL;
3363#endif
3364}
3365
3366namespace llvm {
3367template<>
3368struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3369
3370  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3371
3372  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
3373
3374#ifndef NDEBUG
3375    std::string OutSStr;
3376    llvm::raw_string_ostream Out(OutSStr);
3377    print_block(Out,Graph, *Node, GraphHelper, false);
3378    std::string& OutStr = Out.str();
3379
3380    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3381
3382    // Process string output to make it nicer...
3383    for (unsigned i = 0; i != OutStr.length(); ++i)
3384      if (OutStr[i] == '\n') {                            // Left justify
3385        OutStr[i] = '\\';
3386        OutStr.insert(OutStr.begin()+i+1, 'l');
3387      }
3388
3389    return OutStr;
3390#else
3391    return "";
3392#endif
3393  }
3394};
3395} // end namespace llvm
3396