CFG.cpp revision fcb72ac985c26372315fabc08d43d6f66ff906b4
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "llvm/Support/GraphWriter.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/Format.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/OwningPtr.h"
26
27using namespace clang;
28
29namespace {
30
31static SourceLocation GetEndLoc(Decl* D) {
32  if (VarDecl* VD = dyn_cast<VarDecl>(D))
33    if (Expr* Ex = VD->getInit())
34      return Ex->getSourceRange().getEnd();
35
36  return D->getLocation();
37}
38
39class AddStmtChoice {
40public:
41  enum Kind { NotAlwaysAdd = 0,
42              AlwaysAdd = 1,
43              AsLValueNotAlwaysAdd = 2,
44              AlwaysAddAsLValue = 3 };
45
46  AddStmtChoice(Kind kind) : k(kind) {}
47
48  bool alwaysAdd() const { return (unsigned)k & 0x1; }
49  bool asLValue() const { return k >= AsLValueNotAlwaysAdd; }
50
51private:
52  Kind k;
53};
54
55/// LocalScope - Node in tree of local scopes created for C++ implicit
56/// destructor calls generation. It contains list of automatic variables
57/// declared in the scope and link to position in previous scope this scope
58/// began in.
59///
60/// The process of creating local scopes is as follows:
61/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
62/// - Before processing statements in scope (e.g. CompoundStmt) create
63///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
64///   and set CFGBuilder::ScopePos to the end of new scope,
65/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
66///   at this VarDecl,
67/// - For every normal (without jump) end of scope add to CFGBlock destructors
68///   for objects in the current scope,
69/// - For every jump add to CFGBlock destructors for objects
70///   between CFGBuilder::ScopePos and local scope position saved for jump
71///   target. Thanks to C++ restrictions on goto jumps we can be sure that
72///   jump target position will be on the path to root from CFGBuilder::ScopePos
73///   (adding any variable that doesn't need constructor to be called to
74///   LocalScope can break this assumption),
75///
76class LocalScope {
77public:
78  typedef llvm::SmallVector<VarDecl*, 4> AutomaticVarsTy;
79
80  /// const_iterator - Iterates local scope backwards and jumps to previous
81  /// scope on reaching the beginning of currently iterated scope.
82  class const_iterator {
83    const LocalScope* Scope;
84
85    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
86    /// Invalid iterator (with null Scope) has VarIter equal to 0.
87    unsigned VarIter;
88
89  public:
90    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
91    /// Incrementing invalid iterator is allowed and will result in invalid
92    /// iterator.
93    const_iterator()
94        : Scope(NULL), VarIter(0) {}
95
96    /// Create valid iterator. In case when S.Prev is an invalid iterator and
97    /// I is equal to 0, this will create invalid iterator.
98    const_iterator(const LocalScope& S, unsigned I)
99        : Scope(&S), VarIter(I) {
100      // Iterator to "end" of scope is not allowed. Handle it by going up
101      // in scopes tree possibly up to invalid iterator in the root.
102      if (VarIter == 0 && Scope)
103        *this = Scope->Prev;
104    }
105
106    VarDecl* const* operator->() const {
107      assert (Scope && "Dereferencing invalid iterator is not allowed");
108      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
109      return &Scope->Vars[VarIter - 1];
110    }
111    VarDecl* operator*() const {
112      return *this->operator->();
113    }
114
115    const_iterator& operator++() {
116      if (!Scope)
117        return *this;
118
119      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
120      --VarIter;
121      if (VarIter == 0)
122        *this = Scope->Prev;
123      return *this;
124    }
125    const_iterator operator++(int) {
126      const_iterator P = *this;
127      ++*this;
128      return P;
129    }
130
131    bool operator==(const const_iterator& rhs) const {
132      return Scope == rhs.Scope && VarIter == rhs.VarIter;
133    }
134    bool operator!=(const const_iterator& rhs) const {
135      return !(*this == rhs);
136    }
137
138    operator bool() const {
139      return *this != const_iterator();
140    }
141
142    int distance(const_iterator L);
143  };
144
145  friend class const_iterator;
146
147private:
148  /// Automatic variables in order of declaration.
149  AutomaticVarsTy Vars;
150  /// Iterator to variable in previous scope that was declared just before
151  /// begin of this scope.
152  const_iterator Prev;
153
154public:
155  /// Constructs empty scope linked to previous scope in specified place.
156  LocalScope(const_iterator P)
157      : Vars()
158      , Prev(P) {}
159
160  /// Begin of scope in direction of CFG building (backwards).
161  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
162
163  void addVar(VarDecl* VD) {
164    Vars.push_back(VD);
165  }
166};
167
168/// distance - Calculates distance from this to L. L must be reachable from this
169/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
170/// number of scopes between this and L.
171int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
172  int D = 0;
173  const_iterator F = *this;
174  while (F.Scope != L.Scope) {
175    assert (F != const_iterator()
176        && "L iterator is not reachable from F iterator.");
177    D += F.VarIter;
178    F = F.Scope->Prev;
179  }
180  D += F.VarIter - L.VarIter;
181  return D;
182}
183
184/// BlockScopePosPair - Structure for specifying position in CFG during its
185/// build process. It consists of CFGBlock that specifies position in CFG graph
186/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
187struct BlockScopePosPair {
188  BlockScopePosPair() {}
189  BlockScopePosPair(CFGBlock* B, LocalScope::const_iterator S)
190      : Block(B), ScopePos(S) {}
191
192  CFGBlock*                   Block;
193  LocalScope::const_iterator  ScopePos;
194};
195
196/// CFGBuilder - This class implements CFG construction from an AST.
197///   The builder is stateful: an instance of the builder should be used to only
198///   construct a single CFG.
199///
200///   Example usage:
201///
202///     CFGBuilder builder;
203///     CFG* cfg = builder.BuildAST(stmt1);
204///
205///  CFG construction is done via a recursive walk of an AST.  We actually parse
206///  the AST in reverse order so that the successor of a basic block is
207///  constructed prior to its predecessor.  This allows us to nicely capture
208///  implicit fall-throughs without extra basic blocks.
209///
210class CFGBuilder {
211  typedef BlockScopePosPair JumpTarget;
212  typedef BlockScopePosPair JumpSource;
213
214  ASTContext *Context;
215  llvm::OwningPtr<CFG> cfg;
216
217  CFGBlock* Block;
218  CFGBlock* Succ;
219  JumpTarget ContinueJumpTarget;
220  JumpTarget BreakJumpTarget;
221  CFGBlock* SwitchTerminatedBlock;
222  CFGBlock* DefaultCaseBlock;
223  CFGBlock* TryTerminatedBlock;
224
225  // Current position in local scope.
226  LocalScope::const_iterator ScopePos;
227
228  // LabelMap records the mapping from Label expressions to their jump targets.
229  typedef llvm::DenseMap<LabelStmt*, JumpTarget> LabelMapTy;
230  LabelMapTy LabelMap;
231
232  // A list of blocks that end with a "goto" that must be backpatched to their
233  // resolved targets upon completion of CFG construction.
234  typedef std::vector<JumpSource> BackpatchBlocksTy;
235  BackpatchBlocksTy BackpatchBlocks;
236
237  // A list of labels whose address has been taken (for indirect gotos).
238  typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
239  LabelSetTy AddressTakenLabels;
240
241  bool badCFG;
242  CFG::BuildOptions BuildOpts;
243
244public:
245  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
246                          Block(NULL), Succ(NULL),
247                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
248                          TryTerminatedBlock(NULL), badCFG(false) {}
249
250  // buildCFG - Used by external clients to construct the CFG.
251  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
252      CFG::BuildOptions BO);
253
254private:
255  // Visitors to walk an AST and construct the CFG.
256  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
257  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
258  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
259  CFGBlock *VisitBreakStmt(BreakStmt *B);
260  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
261  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
262  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
263  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
264  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
265  CFGBlock *VisitCaseStmt(CaseStmt *C);
266  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
267  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
268  CFGBlock *VisitConditionalOperator(ConditionalOperator *C, AddStmtChoice asc);
269  CFGBlock *VisitContinueStmt(ContinueStmt *C);
270  CFGBlock *VisitDeclStmt(DeclStmt *DS);
271  CFGBlock *VisitDeclSubExpr(Decl* D);
272  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
273  CFGBlock *VisitDoStmt(DoStmt *D);
274  CFGBlock *VisitForStmt(ForStmt *F);
275  CFGBlock *VisitGotoStmt(GotoStmt* G);
276  CFGBlock *VisitIfStmt(IfStmt *I);
277  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
278  CFGBlock *VisitLabelStmt(LabelStmt *L);
279  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
280  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
281  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
282  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
283  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
284  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
285  CFGBlock *VisitReturnStmt(ReturnStmt* R);
286  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
287  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
288  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
289  CFGBlock *VisitWhileStmt(WhileStmt *W);
290
291  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
292  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
293  CFGBlock *VisitChildren(Stmt* S);
294
295  // NYS == Not Yet Supported
296  CFGBlock* NYS() {
297    badCFG = true;
298    return Block;
299  }
300
301  void autoCreateBlock() { if (!Block) Block = createBlock(); }
302  CFGBlock *createBlock(bool add_successor = true);
303
304  CFGBlock *addStmt(Stmt *S) {
305    return Visit(S, AddStmtChoice::AlwaysAdd);
306  }
307  CFGBlock *addAutomaticObjDtors(LocalScope::const_iterator B,
308      LocalScope::const_iterator E, Stmt* S);
309
310  // Local scopes creation.
311  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
312
313  LocalScope* addLocalScopeForStmt(Stmt* S, LocalScope* Scope = NULL);
314  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
315  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);
316
317  void addLocalScopeAndDtors(Stmt* S);
318
319  // Interface to CFGBlock - adding CFGElements.
320  void AppendStmt(CFGBlock *B, Stmt *S,
321                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
322    B->appendStmt(S, cfg->getBumpVectorContext(), asc.asLValue());
323  }
324
325  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
326    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
327  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
328      LocalScope::const_iterator E, Stmt* S);
329  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
330      LocalScope::const_iterator B, LocalScope::const_iterator E);
331
332  void AddSuccessor(CFGBlock *B, CFGBlock *S) {
333    B->addSuccessor(S, cfg->getBumpVectorContext());
334  }
335
336  /// TryResult - a class representing a variant over the values
337  ///  'true', 'false', or 'unknown'.  This is returned by TryEvaluateBool,
338  ///  and is used by the CFGBuilder to decide if a branch condition
339  ///  can be decided up front during CFG construction.
340  class TryResult {
341    int X;
342  public:
343    TryResult(bool b) : X(b ? 1 : 0) {}
344    TryResult() : X(-1) {}
345
346    bool isTrue() const { return X == 1; }
347    bool isFalse() const { return X == 0; }
348    bool isKnown() const { return X >= 0; }
349    void negate() {
350      assert(isKnown());
351      X ^= 0x1;
352    }
353  };
354
355  /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
356  /// if we can evaluate to a known value, otherwise return -1.
357  TryResult TryEvaluateBool(Expr *S) {
358    if (!BuildOpts.PruneTriviallyFalseEdges)
359      return TryResult();
360
361    Expr::EvalResult Result;
362    if (!S->isTypeDependent() && !S->isValueDependent() &&
363        S->Evaluate(Result, *Context) && Result.Val.isInt())
364      return Result.Val.getInt().getBoolValue();
365
366    return TryResult();
367  }
368};
369
370// FIXME: Add support for dependent-sized array types in C++?
371// Does it even make sense to build a CFG for an uninstantiated template?
372static VariableArrayType* FindVA(Type* t) {
373  while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
374    if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
375      if (vat->getSizeExpr())
376        return vat;
377
378    t = vt->getElementType().getTypePtr();
379  }
380
381  return 0;
382}
383
384/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
385///  arbitrary statement.  Examples include a single expression or a function
386///  body (compound statement).  The ownership of the returned CFG is
387///  transferred to the caller.  If CFG construction fails, this method returns
388///  NULL.
389CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
390    CFG::BuildOptions BO) {
391
392  Context = C;
393  assert(cfg.get());
394  if (!Statement)
395    return NULL;
396
397  BuildOpts = BO;
398  if (!C->getLangOptions().CPlusPlus)
399    BuildOpts.AddImplicitDtors = false;
400
401  // Create an empty block that will serve as the exit block for the CFG.  Since
402  // this is the first block added to the CFG, it will be implicitly registered
403  // as the exit block.
404  Succ = createBlock();
405  assert(Succ == &cfg->getExit());
406  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
407
408  // Visit the statements and create the CFG.
409  CFGBlock *B = addStmt(Statement);
410
411  if (badCFG)
412    return NULL;
413
414  if (B)
415    Succ = B;
416
417  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
418    // FIXME: Add code for base initializers and member initializers.
419    (void)CD;
420  }
421
422  // Backpatch the gotos whose label -> block mappings we didn't know when we
423  // encountered them.
424  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
425                                   E = BackpatchBlocks.end(); I != E; ++I ) {
426
427    CFGBlock* B = I->Block;
428    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
429    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
430
431    // If there is no target for the goto, then we are looking at an
432    // incomplete AST.  Handle this by not registering a successor.
433    if (LI == LabelMap.end()) continue;
434
435    JumpTarget JT = LI->second;
436    prependAutomaticObjDtorsWithTerminator(B, I->ScopePos, JT.ScopePos);
437    AddSuccessor(B, JT.Block);
438  }
439
440  // Add successors to the Indirect Goto Dispatch block (if we have one).
441  if (CFGBlock* B = cfg->getIndirectGotoBlock())
442    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
443                              E = AddressTakenLabels.end(); I != E; ++I ) {
444
445      // Lookup the target block.
446      LabelMapTy::iterator LI = LabelMap.find(*I);
447
448      // If there is no target block that contains label, then we are looking
449      // at an incomplete AST.  Handle this by not registering a successor.
450      if (LI == LabelMap.end()) continue;
451
452      AddSuccessor(B, LI->second.Block);
453    }
454
455  // Create an empty entry block that has no predecessors.
456  cfg->setEntry(createBlock());
457
458  return cfg.take();
459}
460
461/// createBlock - Used to lazily create blocks that are connected
462///  to the current (global) succcessor.
463CFGBlock* CFGBuilder::createBlock(bool add_successor) {
464  CFGBlock* B = cfg->createBlock();
465  if (add_successor && Succ)
466    AddSuccessor(B, Succ);
467  return B;
468}
469
470/// addAutomaticObjDtors - Add to current block automatic objects destructors
471/// for objects in range of local scope positions. Use S as trigger statement
472/// for destructors.
473CFGBlock* CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
474    LocalScope::const_iterator E, Stmt* S) {
475  if (!BuildOpts.AddImplicitDtors)
476    return Block;
477  if (B == E)
478    return Block;
479
480  autoCreateBlock();
481  appendAutomaticObjDtors(Block, B, E, S);
482  return Block;
483}
484
485/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
486/// way return valid LocalScope object.
487LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
488  if (!Scope) {
489    Scope = cfg->getAllocator().Allocate<LocalScope>();
490    new (Scope) LocalScope(ScopePos);
491  }
492  return Scope;
493}
494
495/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
496/// that should create implicit scope (e.g. if/else substatements). Will reuse
497/// Scope if not NULL.
498LocalScope* CFGBuilder::addLocalScopeForStmt(Stmt* S, LocalScope* Scope) {
499  if (!BuildOpts.AddImplicitDtors)
500    return Scope;
501
502  // For compound statement we will be creating explicit scope.
503  if (CompoundStmt* CS = dyn_cast<CompoundStmt>(S)) {
504    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
505        ; BI != BE; ++BI) {
506      Stmt* SI = *BI;
507      if (LabelStmt* LS = dyn_cast<LabelStmt>(SI))
508        SI = LS->getSubStmt();
509      if (DeclStmt* DS = dyn_cast<DeclStmt>(SI))
510        Scope = addLocalScopeForDeclStmt(DS, Scope);
511    }
512    return Scope;
513  }
514
515  // For any other statement scope will be implicit and as such will be
516  // interesting only for DeclStmt.
517  if (LabelStmt* LS = dyn_cast<LabelStmt>(S))
518    S = LS->getSubStmt();
519  if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
520    Scope = addLocalScopeForDeclStmt(DS, Scope);
521  return Scope;
522}
523
524/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
525/// reuse Scope if not NULL.
526LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
527    LocalScope* Scope) {
528  if (!BuildOpts.AddImplicitDtors)
529    return Scope;
530
531  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
532      ; DI != DE; ++DI) {
533    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
534      Scope = addLocalScopeForVarDecl(VD, Scope);
535  }
536  return Scope;
537}
538
539/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
540/// create add scope for automatic objects and temporary objects bound to
541/// const reference. Will reuse Scope if not NULL.
542LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
543    LocalScope* Scope) {
544  if (!BuildOpts.AddImplicitDtors)
545    return Scope;
546
547  // Check if variable is local.
548  switch (VD->getStorageClass()) {
549  case SC_None:
550  case SC_Auto:
551  case SC_Register:
552    break;
553  default: return Scope;
554  }
555
556  // Check for const references bound to temporary. Set type to pointee.
557  QualType QT = VD->getType();
558  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
559    QT = RT->getPointeeType();
560    if (!QT.isConstQualified())
561      return Scope;
562    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
563      return Scope;
564  }
565
566  // Check if type is a C++ class with non-trivial destructor.
567  const RecordType* RT = QT.getTypePtr()->getAs<RecordType>();
568  if (!RT || cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor())
569    return Scope;
570
571  // Add the variable to scope
572  Scope = createOrReuseLocalScope(Scope);
573  Scope->addVar(VD);
574  ScopePos = Scope->begin();
575  return Scope;
576}
577
578/// addLocalScopeAndDtors - For given statement add local scope for it and
579/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
580void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
581  if (!BuildOpts.AddImplicitDtors)
582    return;
583
584  LocalScope::const_iterator scopeBeginPos = ScopePos;
585  addLocalScopeForStmt(S, NULL);
586  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
587}
588
589/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
590/// automatic storage duration to CFGBlock's elements vector. Insertion will be
591/// performed in place specified with iterator.
592void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
593    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
594  BumpVectorContext& C = cfg->getBumpVectorContext();
595  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
596  while (B != E)
597    I = Blk->insertAutomaticObjDtor(I, *B++, S);
598}
599
600/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
601/// automatic storage duration to CFGBlock's elements vector. Elements will be
602/// appended to physical end of the vector which happens to be logical
603/// beginning.
604void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
605    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
606  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
607}
608
609/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
610/// variables with automatic storage duration to CFGBlock's elements vector.
611/// Elements will be prepended to physical beginning of the vector which
612/// happens to be logical end. Use blocks terminator as statement that specifies
613/// destructors call site.
614void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
615    LocalScope::const_iterator B, LocalScope::const_iterator E) {
616  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
617}
618
619/// Visit - Walk the subtree of a statement and add extra
620///   blocks for ternary operators, &&, and ||.  We also process "," and
621///   DeclStmts (which may contain nested control-flow).
622CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
623tryAgain:
624  if (!S) {
625    badCFG = true;
626    return 0;
627  }
628  switch (S->getStmtClass()) {
629    default:
630      return VisitStmt(S, asc);
631
632    case Stmt::AddrLabelExprClass:
633      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
634
635    case Stmt::BinaryOperatorClass:
636      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
637
638    case Stmt::BlockExprClass:
639      return VisitBlockExpr(cast<BlockExpr>(S), asc);
640
641    case Stmt::BreakStmtClass:
642      return VisitBreakStmt(cast<BreakStmt>(S));
643
644    case Stmt::CallExprClass:
645    case Stmt::CXXOperatorCallExprClass:
646      return VisitCallExpr(cast<CallExpr>(S), asc);
647
648    case Stmt::CaseStmtClass:
649      return VisitCaseStmt(cast<CaseStmt>(S));
650
651    case Stmt::ChooseExprClass:
652      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
653
654    case Stmt::CompoundStmtClass:
655      return VisitCompoundStmt(cast<CompoundStmt>(S));
656
657    case Stmt::ConditionalOperatorClass:
658      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
659
660    case Stmt::ContinueStmtClass:
661      return VisitContinueStmt(cast<ContinueStmt>(S));
662
663    case Stmt::CXXCatchStmtClass:
664      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
665
666    case Stmt::CXXExprWithTemporariesClass: {
667      // FIXME: Handle temporaries.  For now, just visit the subexpression
668      // so we don't artificially create extra blocks.
669      return Visit(cast<CXXExprWithTemporaries>(S)->getSubExpr(), asc);
670    }
671
672    case Stmt::CXXMemberCallExprClass:
673      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);
674
675    case Stmt::CXXThrowExprClass:
676      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
677
678    case Stmt::CXXTryStmtClass:
679      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
680
681    case Stmt::DeclStmtClass:
682      return VisitDeclStmt(cast<DeclStmt>(S));
683
684    case Stmt::DefaultStmtClass:
685      return VisitDefaultStmt(cast<DefaultStmt>(S));
686
687    case Stmt::DoStmtClass:
688      return VisitDoStmt(cast<DoStmt>(S));
689
690    case Stmt::ForStmtClass:
691      return VisitForStmt(cast<ForStmt>(S));
692
693    case Stmt::GotoStmtClass:
694      return VisitGotoStmt(cast<GotoStmt>(S));
695
696    case Stmt::IfStmtClass:
697      return VisitIfStmt(cast<IfStmt>(S));
698
699    case Stmt::IndirectGotoStmtClass:
700      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
701
702    case Stmt::LabelStmtClass:
703      return VisitLabelStmt(cast<LabelStmt>(S));
704
705    case Stmt::MemberExprClass:
706      return VisitMemberExpr(cast<MemberExpr>(S), asc);
707
708    case Stmt::ObjCAtCatchStmtClass:
709      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
710
711    case Stmt::ObjCAtSynchronizedStmtClass:
712      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
713
714    case Stmt::ObjCAtThrowStmtClass:
715      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
716
717    case Stmt::ObjCAtTryStmtClass:
718      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
719
720    case Stmt::ObjCForCollectionStmtClass:
721      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
722
723    case Stmt::ParenExprClass:
724      S = cast<ParenExpr>(S)->getSubExpr();
725      goto tryAgain;
726
727    case Stmt::NullStmtClass:
728      return Block;
729
730    case Stmt::ReturnStmtClass:
731      return VisitReturnStmt(cast<ReturnStmt>(S));
732
733    case Stmt::SizeOfAlignOfExprClass:
734      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);
735
736    case Stmt::StmtExprClass:
737      return VisitStmtExpr(cast<StmtExpr>(S), asc);
738
739    case Stmt::SwitchStmtClass:
740      return VisitSwitchStmt(cast<SwitchStmt>(S));
741
742    case Stmt::WhileStmtClass:
743      return VisitWhileStmt(cast<WhileStmt>(S));
744  }
745}
746
747CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
748  if (asc.alwaysAdd()) {
749    autoCreateBlock();
750    AppendStmt(Block, S, asc);
751  }
752
753  return VisitChildren(S);
754}
755
756/// VisitChildren - Visit the children of a Stmt.
757CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
758  CFGBlock *B = Block;
759  for (Stmt::child_iterator I = Terminator->child_begin(),
760         E = Terminator->child_end(); I != E; ++I) {
761    if (*I) B = Visit(*I);
762  }
763  return B;
764}
765
766CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
767                                         AddStmtChoice asc) {
768  AddressTakenLabels.insert(A->getLabel());
769
770  if (asc.alwaysAdd()) {
771    autoCreateBlock();
772    AppendStmt(Block, A, asc);
773  }
774
775  return Block;
776}
777
778CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
779                                          AddStmtChoice asc) {
780  if (B->isLogicalOp()) { // && or ||
781    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
782    AppendStmt(ConfluenceBlock, B, asc);
783
784    if (badCFG)
785      return 0;
786
787    // create the block evaluating the LHS
788    CFGBlock* LHSBlock = createBlock(false);
789    LHSBlock->setTerminator(B);
790
791    // create the block evaluating the RHS
792    Succ = ConfluenceBlock;
793    Block = NULL;
794    CFGBlock* RHSBlock = addStmt(B->getRHS());
795
796    if (RHSBlock) {
797      if (badCFG)
798        return 0;
799    }
800    else {
801      // Create an empty block for cases where the RHS doesn't require
802      // any explicit statements in the CFG.
803      RHSBlock = createBlock();
804    }
805
806    // See if this is a known constant.
807    TryResult KnownVal = TryEvaluateBool(B->getLHS());
808    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
809      KnownVal.negate();
810
811    // Now link the LHSBlock with RHSBlock.
812    if (B->getOpcode() == BO_LOr) {
813      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
814      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
815    } else {
816      assert(B->getOpcode() == BO_LAnd);
817      AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
818      AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
819    }
820
821    // Generate the blocks for evaluating the LHS.
822    Block = LHSBlock;
823    return addStmt(B->getLHS());
824  }
825  else if (B->getOpcode() == BO_Comma) { // ,
826    autoCreateBlock();
827    AppendStmt(Block, B, asc);
828    addStmt(B->getRHS());
829    return addStmt(B->getLHS());
830  }
831  else if (B->isAssignmentOp()) {
832    if (asc.alwaysAdd()) {
833      autoCreateBlock();
834      AppendStmt(Block, B, asc);
835    }
836
837    // If visiting RHS causes us to finish 'Block' and the LHS doesn't
838    // create a new block, then we should return RBlock.  Otherwise
839    // we'll incorrectly return NULL.
840    CFGBlock *RBlock = Visit(B->getRHS());
841    CFGBlock *LBlock = Visit(B->getLHS(), AddStmtChoice::AsLValueNotAlwaysAdd);
842    return LBlock ? LBlock : RBlock;
843  }
844
845  return VisitStmt(B, asc);
846}
847
848CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
849  if (asc.alwaysAdd()) {
850    autoCreateBlock();
851    AppendStmt(Block, E, asc);
852  }
853  return Block;
854}
855
856CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
857  // "break" is a control-flow statement.  Thus we stop processing the current
858  // block.
859  if (badCFG)
860    return 0;
861
862  // Now create a new block that ends with the break statement.
863  Block = createBlock(false);
864  Block->setTerminator(B);
865
866  // If there is no target for the break, then we are looking at an incomplete
867  // AST.  This means that the CFG cannot be constructed.
868  if (BreakJumpTarget.Block) {
869    addAutomaticObjDtors(ScopePos, BreakJumpTarget.ScopePos, B);
870    AddSuccessor(Block, BreakJumpTarget.Block);
871  } else
872    badCFG = true;
873
874
875  return Block;
876}
877
878static bool CanThrow(Expr *E) {
879  QualType Ty = E->getType();
880  if (Ty->isFunctionPointerType())
881    Ty = Ty->getAs<PointerType>()->getPointeeType();
882  else if (Ty->isBlockPointerType())
883    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
884
885  const FunctionType *FT = Ty->getAs<FunctionType>();
886  if (FT) {
887    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
888      if (Proto->hasEmptyExceptionSpec())
889        return false;
890  }
891  return true;
892}
893
894CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
895  // If this is a call to a no-return function, this stops the block here.
896  bool NoReturn = false;
897  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
898    NoReturn = true;
899  }
900
901  bool AddEHEdge = false;
902
903  // Languages without exceptions are assumed to not throw.
904  if (Context->getLangOptions().Exceptions) {
905    if (BuildOpts.AddEHEdges)
906      AddEHEdge = true;
907  }
908
909  if (FunctionDecl *FD = C->getDirectCallee()) {
910    if (FD->hasAttr<NoReturnAttr>())
911      NoReturn = true;
912    if (FD->hasAttr<NoThrowAttr>())
913      AddEHEdge = false;
914  }
915
916  if (!CanThrow(C->getCallee()))
917    AddEHEdge = false;
918
919  if (!NoReturn && !AddEHEdge) {
920    if (asc.asLValue())
921      return VisitStmt(C, AddStmtChoice::AlwaysAddAsLValue);
922    else
923      return VisitStmt(C, AddStmtChoice::AlwaysAdd);
924  }
925
926  if (Block) {
927    Succ = Block;
928    if (badCFG)
929      return 0;
930  }
931
932  Block = createBlock(!NoReturn);
933  AppendStmt(Block, C, asc);
934
935  if (NoReturn) {
936    // Wire this to the exit block directly.
937    AddSuccessor(Block, &cfg->getExit());
938  }
939  if (AddEHEdge) {
940    // Add exceptional edges.
941    if (TryTerminatedBlock)
942      AddSuccessor(Block, TryTerminatedBlock);
943    else
944      AddSuccessor(Block, &cfg->getExit());
945  }
946
947  return VisitChildren(C);
948}
949
950CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
951                                      AddStmtChoice asc) {
952  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
953  AppendStmt(ConfluenceBlock, C, asc);
954  if (badCFG)
955    return 0;
956
957  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
958                       : AddStmtChoice::AlwaysAdd;
959
960  Succ = ConfluenceBlock;
961  Block = NULL;
962  CFGBlock* LHSBlock = Visit(C->getLHS(), asc);
963  if (badCFG)
964    return 0;
965
966  Succ = ConfluenceBlock;
967  Block = NULL;
968  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
969  if (badCFG)
970    return 0;
971
972  Block = createBlock(false);
973  // See if this is a known constant.
974  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
975  AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
976  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
977  Block->setTerminator(C);
978  return addStmt(C->getCond());
979}
980
981
982CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
983  addLocalScopeAndDtors(C);
984  CFGBlock* LastBlock = Block;
985
986  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
987       I != E; ++I ) {
988    // If we hit a segment of code just containing ';' (NullStmts), we can
989    // get a null block back.  In such cases, just use the LastBlock
990    if (CFGBlock *newBlock = addStmt(*I))
991      LastBlock = newBlock;
992
993    if (badCFG)
994      return NULL;
995  }
996
997  return LastBlock;
998}
999
1000CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C,
1001                                               AddStmtChoice asc) {
1002  // Create the confluence block that will "merge" the results of the ternary
1003  // expression.
1004  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
1005  AppendStmt(ConfluenceBlock, C, asc);
1006  if (badCFG)
1007    return 0;
1008
1009  asc = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
1010                       : AddStmtChoice::AlwaysAdd;
1011
1012  // Create a block for the LHS expression if there is an LHS expression.  A
1013  // GCC extension allows LHS to be NULL, causing the condition to be the
1014  // value that is returned instead.
1015  //  e.g: x ?: y is shorthand for: x ? x : y;
1016  Succ = ConfluenceBlock;
1017  Block = NULL;
1018  CFGBlock* LHSBlock = NULL;
1019  if (C->getLHS()) {
1020    LHSBlock = Visit(C->getLHS(), asc);
1021    if (badCFG)
1022      return 0;
1023    Block = NULL;
1024  }
1025
1026  // Create the block for the RHS expression.
1027  Succ = ConfluenceBlock;
1028  CFGBlock* RHSBlock = Visit(C->getRHS(), asc);
1029  if (badCFG)
1030    return 0;
1031
1032  // Create the block that will contain the condition.
1033  Block = createBlock(false);
1034
1035  // See if this is a known constant.
1036  const TryResult& KnownVal = TryEvaluateBool(C->getCond());
1037  if (LHSBlock) {
1038    AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1039  } else {
1040    if (KnownVal.isFalse()) {
1041      // If we know the condition is false, add NULL as the successor for
1042      // the block containing the condition.  In this case, the confluence
1043      // block will have just one predecessor.
1044      AddSuccessor(Block, 0);
1045      assert(ConfluenceBlock->pred_size() == 1);
1046    } else {
1047      // If we have no LHS expression, add the ConfluenceBlock as a direct
1048      // successor for the block containing the condition.  Moreover, we need to
1049      // reverse the order of the predecessors in the ConfluenceBlock because
1050      // the RHSBlock will have been added to the succcessors already, and we
1051      // want the first predecessor to the the block containing the expression
1052      // for the case when the ternary expression evaluates to true.
1053      AddSuccessor(Block, ConfluenceBlock);
1054      assert(ConfluenceBlock->pred_size() == 2);
1055      std::reverse(ConfluenceBlock->pred_begin(),
1056                   ConfluenceBlock->pred_end());
1057    }
1058  }
1059
1060  AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1061  Block->setTerminator(C);
1062  return addStmt(C->getCond());
1063}
1064
1065CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1066  autoCreateBlock();
1067
1068  if (DS->isSingleDecl()) {
1069    AppendStmt(Block, DS);
1070    return VisitDeclSubExpr(DS->getSingleDecl());
1071  }
1072
1073  CFGBlock *B = 0;
1074
1075  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1076  typedef llvm::SmallVector<Decl*,10> BufTy;
1077  BufTy Buf(DS->decl_begin(), DS->decl_end());
1078
1079  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1080    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1081    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1082               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1083
1084    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1085    // automatically freed with the CFG.
1086    DeclGroupRef DG(*I);
1087    Decl *D = *I;
1088    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1089    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1090
1091    // Append the fake DeclStmt to block.
1092    AppendStmt(Block, DSNew);
1093    B = VisitDeclSubExpr(D);
1094  }
1095
1096  return B;
1097}
1098
1099/// VisitDeclSubExpr - Utility method to add block-level expressions for
1100///  initializers in Decls.
1101CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
1102  assert(Block);
1103
1104  VarDecl *VD = dyn_cast<VarDecl>(D);
1105
1106  if (!VD)
1107    return Block;
1108
1109  Expr *Init = VD->getInit();
1110
1111  if (Init) {
1112    AddStmtChoice::Kind k =
1113      VD->getType()->isReferenceType() ? AddStmtChoice::AsLValueNotAlwaysAdd
1114                                       : AddStmtChoice::NotAlwaysAdd;
1115    Visit(Init, AddStmtChoice(k));
1116  }
1117
1118  // If the type of VD is a VLA, then we must process its size expressions.
1119  for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
1120       VA = FindVA(VA->getElementType().getTypePtr()))
1121    Block = addStmt(VA->getSizeExpr());
1122
1123  // Remove variable from local scope.
1124  if (ScopePos && VD == *ScopePos)
1125    ++ScopePos;
1126
1127  return Block;
1128}
1129
1130CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
1131  // We may see an if statement in the middle of a basic block, or it may be the
1132  // first statement we are processing.  In either case, we create a new basic
1133  // block.  First, we create the blocks for the then...else statements, and
1134  // then we create the block containing the if statement.  If we were in the
1135  // middle of a block, we stop processing that block.  That block is then the
1136  // implicit successor for the "then" and "else" clauses.
1137
1138  // The block we were proccessing is now finished.  Make it the successor
1139  // block.
1140  if (Block) {
1141    Succ = Block;
1142    if (badCFG)
1143      return 0;
1144  }
1145
1146  // Process the false branch.
1147  CFGBlock* ElseBlock = Succ;
1148
1149  if (Stmt* Else = I->getElse()) {
1150    SaveAndRestore<CFGBlock*> sv(Succ);
1151
1152    // NULL out Block so that the recursive call to Visit will
1153    // create a new basic block.
1154    Block = NULL;
1155    ElseBlock = addStmt(Else);
1156
1157    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1158      ElseBlock = sv.get();
1159    else if (Block) {
1160      if (badCFG)
1161        return 0;
1162    }
1163  }
1164
1165  // Process the true branch.
1166  CFGBlock* ThenBlock;
1167  {
1168    Stmt* Then = I->getThen();
1169    assert(Then);
1170    SaveAndRestore<CFGBlock*> sv(Succ);
1171    Block = NULL;
1172    ThenBlock = addStmt(Then);
1173
1174    if (!ThenBlock) {
1175      // We can reach here if the "then" body has all NullStmts.
1176      // Create an empty block so we can distinguish between true and false
1177      // branches in path-sensitive analyses.
1178      ThenBlock = createBlock(false);
1179      AddSuccessor(ThenBlock, sv.get());
1180    } else if (Block) {
1181      if (badCFG)
1182        return 0;
1183    }
1184  }
1185
1186  // Now create a new block containing the if statement.
1187  Block = createBlock(false);
1188
1189  // Set the terminator of the new block to the If statement.
1190  Block->setTerminator(I);
1191
1192  // See if this is a known constant.
1193  const TryResult &KnownVal = TryEvaluateBool(I->getCond());
1194
1195  // Now add the successors.
1196  AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1197  AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1198
1199  // Add the condition as the last statement in the new block.  This may create
1200  // new blocks as the condition may contain control-flow.  Any newly created
1201  // blocks will be pointed to be "Block".
1202  Block = addStmt(I->getCond());
1203
1204  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1205  // and the condition variable initialization to the CFG.
1206  if (VarDecl *VD = I->getConditionVariable()) {
1207    if (Expr *Init = VD->getInit()) {
1208      autoCreateBlock();
1209      AppendStmt(Block, I, AddStmtChoice::AlwaysAdd);
1210      addStmt(Init);
1211    }
1212  }
1213
1214  return Block;
1215}
1216
1217
1218CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
1219  // If we were in the middle of a block we stop processing that block.
1220  //
1221  // NOTE: If a "return" appears in the middle of a block, this means that the
1222  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1223  //       for that code; a simple "mark-and-sweep" from the entry block will be
1224  //       able to report such dead blocks.
1225
1226  // Create the new block.
1227  Block = createBlock(false);
1228
1229  // The Exit block is the only successor.
1230  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1231  AddSuccessor(Block, &cfg->getExit());
1232
1233  // Add the return statement to the block.  This may create new blocks if R
1234  // contains control-flow (short-circuit operations).
1235  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1236}
1237
1238CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
1239  // Get the block of the labeled statement.  Add it to our map.
1240  addStmt(L->getSubStmt());
1241  CFGBlock* LabelBlock = Block;
1242
1243  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1244    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1245
1246  assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
1247  LabelMap[ L ] = JumpTarget(LabelBlock, ScopePos);
1248
1249  // Labels partition blocks, so this is the end of the basic block we were
1250  // processing (L is the block's label).  Because this is label (and we have
1251  // already processed the substatement) there is no extra control-flow to worry
1252  // about.
1253  LabelBlock->setLabel(L);
1254  if (badCFG)
1255    return 0;
1256
1257  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1258  Block = NULL;
1259
1260  // This block is now the implicit successor of other blocks.
1261  Succ = LabelBlock;
1262
1263  return LabelBlock;
1264}
1265
1266CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
1267  // Goto is a control-flow statement.  Thus we stop processing the current
1268  // block and create a new one.
1269
1270  Block = createBlock(false);
1271  Block->setTerminator(G);
1272
1273  // If we already know the mapping to the label block add the successor now.
1274  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1275
1276  if (I == LabelMap.end())
1277    // We will need to backpatch this block later.
1278    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1279  else {
1280    JumpTarget JT = I->second;
1281    addAutomaticObjDtors(ScopePos, JT.ScopePos, G);
1282    AddSuccessor(Block, JT.Block);
1283  }
1284
1285  return Block;
1286}
1287
1288CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
1289  CFGBlock* LoopSuccessor = NULL;
1290
1291  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1292
1293  // "for" is a control-flow statement.  Thus we stop processing the current
1294  // block.
1295  if (Block) {
1296    if (badCFG)
1297      return 0;
1298    LoopSuccessor = Block;
1299  } else
1300    LoopSuccessor = Succ;
1301
1302  // Save the current value for the break targets.
1303  // All breaks should go to the code following the loop.
1304  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1305  BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1306
1307  // Because of short-circuit evaluation, the condition of the loop can span
1308  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1309  // evaluate the condition.
1310  CFGBlock* ExitConditionBlock = createBlock(false);
1311  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1312
1313  // Set the terminator for the "exit" condition block.
1314  ExitConditionBlock->setTerminator(F);
1315
1316  // Now add the actual condition to the condition block.  Because the condition
1317  // itself may contain control-flow, new blocks may be created.
1318  if (Stmt* C = F->getCond()) {
1319    Block = ExitConditionBlock;
1320    EntryConditionBlock = addStmt(C);
1321    assert(Block == EntryConditionBlock ||
1322           (Block == 0 && EntryConditionBlock == Succ));
1323
1324    // If this block contains a condition variable, add both the condition
1325    // variable and initializer to the CFG.
1326    if (VarDecl *VD = F->getConditionVariable()) {
1327      if (Expr *Init = VD->getInit()) {
1328        autoCreateBlock();
1329        AppendStmt(Block, F, AddStmtChoice::AlwaysAdd);
1330        EntryConditionBlock = addStmt(Init);
1331        assert(Block == EntryConditionBlock);
1332      }
1333    }
1334
1335    if (Block) {
1336      if (badCFG)
1337        return 0;
1338    }
1339  }
1340
1341  // The condition block is the implicit successor for the loop body as well as
1342  // any code above the loop.
1343  Succ = EntryConditionBlock;
1344
1345  // See if this is a known constant.
1346  TryResult KnownVal(true);
1347
1348  if (F->getCond())
1349    KnownVal = TryEvaluateBool(F->getCond());
1350
1351  // Now create the loop body.
1352  {
1353    assert(F->getBody());
1354
1355   // Save the current values for Block, Succ, and continue targets.
1356   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1357   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1358
1359    // Create a new block to contain the (bottom) of the loop body.
1360    Block = NULL;
1361
1362    if (Stmt* I = F->getInc()) {
1363      // Generate increment code in its own basic block.  This is the target of
1364      // continue statements.
1365      Succ = addStmt(I);
1366    } else {
1367      // No increment code.  Create a special, empty, block that is used as the
1368      // target block for "looping back" to the start of the loop.
1369      assert(Succ == EntryConditionBlock);
1370      Succ = createBlock();
1371    }
1372
1373    // Finish up the increment (or empty) block if it hasn't been already.
1374    if (Block) {
1375      assert(Block == Succ);
1376      if (badCFG)
1377        return 0;
1378      Block = 0;
1379    }
1380
1381    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1382
1383    // The starting block for the loop increment is the block that should
1384    // represent the 'loop target' for looping back to the start of the loop.
1385    ContinueJumpTarget.Block->setLoopTarget(F);
1386
1387    // Now populate the body block, and in the process create new blocks as we
1388    // walk the body of the loop.
1389    CFGBlock* BodyBlock = addStmt(F->getBody());
1390
1391    if (!BodyBlock)
1392      BodyBlock = ContinueJumpTarget.Block;//can happen for "for (...;...;...);"
1393    else if (badCFG)
1394      return 0;
1395
1396    // This new body block is a successor to our "exit" condition block.
1397    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1398  }
1399
1400  // Link up the condition block with the code that follows the loop.  (the
1401  // false branch).
1402  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1403
1404  // If the loop contains initialization, create a new block for those
1405  // statements.  This block can also contain statements that precede the loop.
1406  if (Stmt* I = F->getInit()) {
1407    Block = createBlock();
1408    return addStmt(I);
1409  } else {
1410    // There is no loop initialization.  We are thus basically a while loop.
1411    // NULL out Block to force lazy block construction.
1412    Block = NULL;
1413    Succ = EntryConditionBlock;
1414    return EntryConditionBlock;
1415  }
1416}
1417
1418CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1419  if (asc.alwaysAdd()) {
1420    autoCreateBlock();
1421    AppendStmt(Block, M, asc);
1422  }
1423  return Visit(M->getBase(),
1424               M->isArrow() ? AddStmtChoice::NotAlwaysAdd
1425                            : AddStmtChoice::AsLValueNotAlwaysAdd);
1426}
1427
1428CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
1429  // Objective-C fast enumeration 'for' statements:
1430  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1431  //
1432  //  for ( Type newVariable in collection_expression ) { statements }
1433  //
1434  //  becomes:
1435  //
1436  //   prologue:
1437  //     1. collection_expression
1438  //     T. jump to loop_entry
1439  //   loop_entry:
1440  //     1. side-effects of element expression
1441  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1442  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1443  //   TB:
1444  //     statements
1445  //     T. jump to loop_entry
1446  //   FB:
1447  //     what comes after
1448  //
1449  //  and
1450  //
1451  //  Type existingItem;
1452  //  for ( existingItem in expression ) { statements }
1453  //
1454  //  becomes:
1455  //
1456  //   the same with newVariable replaced with existingItem; the binding works
1457  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1458  //   a DeclStmt and the other returns a DeclRefExpr.
1459  //
1460
1461  CFGBlock* LoopSuccessor = 0;
1462
1463  if (Block) {
1464    if (badCFG)
1465      return 0;
1466    LoopSuccessor = Block;
1467    Block = 0;
1468  } else
1469    LoopSuccessor = Succ;
1470
1471  // Build the condition blocks.
1472  CFGBlock* ExitConditionBlock = createBlock(false);
1473  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1474
1475  // Set the terminator for the "exit" condition block.
1476  ExitConditionBlock->setTerminator(S);
1477
1478  // The last statement in the block should be the ObjCForCollectionStmt, which
1479  // performs the actual binding to 'element' and determines if there are any
1480  // more items in the collection.
1481  AppendStmt(ExitConditionBlock, S);
1482  Block = ExitConditionBlock;
1483
1484  // Walk the 'element' expression to see if there are any side-effects.  We
1485  // generate new blocks as necesary.  We DON'T add the statement by default to
1486  // the CFG unless it contains control-flow.
1487  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
1488  if (Block) {
1489    if (badCFG)
1490      return 0;
1491    Block = 0;
1492  }
1493
1494  // The condition block is the implicit successor for the loop body as well as
1495  // any code above the loop.
1496  Succ = EntryConditionBlock;
1497
1498  // Now create the true branch.
1499  {
1500    // Save the current values for Succ, continue and break targets.
1501    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1502    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1503        save_break(BreakJumpTarget);
1504
1505    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1506    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1507
1508    CFGBlock* BodyBlock = addStmt(S->getBody());
1509
1510    if (!BodyBlock)
1511      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1512    else if (Block) {
1513      if (badCFG)
1514        return 0;
1515    }
1516
1517    // This new body block is a successor to our "exit" condition block.
1518    AddSuccessor(ExitConditionBlock, BodyBlock);
1519  }
1520
1521  // Link up the condition block with the code that follows the loop.
1522  // (the false branch).
1523  AddSuccessor(ExitConditionBlock, LoopSuccessor);
1524
1525  // Now create a prologue block to contain the collection expression.
1526  Block = createBlock();
1527  return addStmt(S->getCollection());
1528}
1529
1530CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
1531  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1532
1533  // Inline the body.
1534  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1535
1536  // The sync body starts its own basic block.  This makes it a little easier
1537  // for diagnostic clients.
1538  if (SyncBlock) {
1539    if (badCFG)
1540      return 0;
1541
1542    Block = 0;
1543    Succ = SyncBlock;
1544  }
1545
1546  // Add the @synchronized to the CFG.
1547  autoCreateBlock();
1548  AppendStmt(Block, S, AddStmtChoice::AlwaysAdd);
1549
1550  // Inline the sync expression.
1551  return addStmt(S->getSynchExpr());
1552}
1553
1554CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
1555  // FIXME
1556  return NYS();
1557}
1558
1559CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
1560  CFGBlock* LoopSuccessor = NULL;
1561
1562  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1563
1564  // "while" is a control-flow statement.  Thus we stop processing the current
1565  // block.
1566  if (Block) {
1567    if (badCFG)
1568      return 0;
1569    LoopSuccessor = Block;
1570  } else
1571    LoopSuccessor = Succ;
1572
1573  // Because of short-circuit evaluation, the condition of the loop can span
1574  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1575  // evaluate the condition.
1576  CFGBlock* ExitConditionBlock = createBlock(false);
1577  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1578
1579  // Set the terminator for the "exit" condition block.
1580  ExitConditionBlock->setTerminator(W);
1581
1582  // Now add the actual condition to the condition block.  Because the condition
1583  // itself may contain control-flow, new blocks may be created.  Thus we update
1584  // "Succ" after adding the condition.
1585  if (Stmt* C = W->getCond()) {
1586    Block = ExitConditionBlock;
1587    EntryConditionBlock = addStmt(C);
1588    assert(Block == EntryConditionBlock);
1589
1590    // If this block contains a condition variable, add both the condition
1591    // variable and initializer to the CFG.
1592    if (VarDecl *VD = W->getConditionVariable()) {
1593      if (Expr *Init = VD->getInit()) {
1594        autoCreateBlock();
1595        AppendStmt(Block, W, AddStmtChoice::AlwaysAdd);
1596        EntryConditionBlock = addStmt(Init);
1597        assert(Block == EntryConditionBlock);
1598      }
1599    }
1600
1601    if (Block) {
1602      if (badCFG)
1603        return 0;
1604    }
1605  }
1606
1607  // The condition block is the implicit successor for the loop body as well as
1608  // any code above the loop.
1609  Succ = EntryConditionBlock;
1610
1611  // See if this is a known constant.
1612  const TryResult& KnownVal = TryEvaluateBool(W->getCond());
1613
1614  // Process the loop body.
1615  {
1616    assert(W->getBody());
1617
1618    // Save the current values for Block, Succ, and continue and break targets
1619    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1620    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1621        save_break(BreakJumpTarget);
1622
1623    // Create an empty block to represent the transition block for looping back
1624    // to the head of the loop.
1625    Block = 0;
1626    assert(Succ == EntryConditionBlock);
1627    Succ = createBlock();
1628    Succ->setLoopTarget(W);
1629    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1630
1631    // All breaks should go to the code following the loop.
1632    BreakJumpTarget = JumpTarget(LoopSuccessor, LoopBeginScopePos);
1633
1634    // NULL out Block to force lazy instantiation of blocks for the body.
1635    Block = NULL;
1636
1637    // Create the body.  The returned block is the entry to the loop body.
1638    CFGBlock* BodyBlock = addStmt(W->getBody());
1639
1640    if (!BodyBlock)
1641      BodyBlock = ContinueJumpTarget.Block; // can happen for "while(...) ;"
1642    else if (Block) {
1643      if (badCFG)
1644        return 0;
1645    }
1646
1647    // Add the loop body entry as a successor to the condition.
1648    AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1649  }
1650
1651  // Link up the condition block with the code that follows the loop.  (the
1652  // false branch).
1653  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1654
1655  // There can be no more statements in the condition block since we loop back
1656  // to this block.  NULL out Block to force lazy creation of another block.
1657  Block = NULL;
1658
1659  // Return the condition block, which is the dominating block for the loop.
1660  Succ = EntryConditionBlock;
1661  return EntryConditionBlock;
1662}
1663
1664
1665CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
1666  // FIXME: For now we pretend that @catch and the code it contains does not
1667  //  exit.
1668  return Block;
1669}
1670
1671CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
1672  // FIXME: This isn't complete.  We basically treat @throw like a return
1673  //  statement.
1674
1675  // If we were in the middle of a block we stop processing that block.
1676  if (badCFG)
1677    return 0;
1678
1679  // Create the new block.
1680  Block = createBlock(false);
1681
1682  // The Exit block is the only successor.
1683  AddSuccessor(Block, &cfg->getExit());
1684
1685  // Add the statement to the block.  This may create new blocks if S contains
1686  // control-flow (short-circuit operations).
1687  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
1688}
1689
1690CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
1691  // If we were in the middle of a block we stop processing that block.
1692  if (badCFG)
1693    return 0;
1694
1695  // Create the new block.
1696  Block = createBlock(false);
1697
1698  if (TryTerminatedBlock)
1699    // The current try statement is the only successor.
1700    AddSuccessor(Block, TryTerminatedBlock);
1701  else
1702    // otherwise the Exit block is the only successor.
1703    AddSuccessor(Block, &cfg->getExit());
1704
1705  // Add the statement to the block.  This may create new blocks if S contains
1706  // control-flow (short-circuit operations).
1707  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
1708}
1709
1710CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
1711  CFGBlock* LoopSuccessor = NULL;
1712
1713  // "do...while" is a control-flow statement.  Thus we stop processing the
1714  // current block.
1715  if (Block) {
1716    if (badCFG)
1717      return 0;
1718    LoopSuccessor = Block;
1719  } else
1720    LoopSuccessor = Succ;
1721
1722  // Because of short-circuit evaluation, the condition of the loop can span
1723  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1724  // evaluate the condition.
1725  CFGBlock* ExitConditionBlock = createBlock(false);
1726  CFGBlock* EntryConditionBlock = ExitConditionBlock;
1727
1728  // Set the terminator for the "exit" condition block.
1729  ExitConditionBlock->setTerminator(D);
1730
1731  // Now add the actual condition to the condition block.  Because the condition
1732  // itself may contain control-flow, new blocks may be created.
1733  if (Stmt* C = D->getCond()) {
1734    Block = ExitConditionBlock;
1735    EntryConditionBlock = addStmt(C);
1736    if (Block) {
1737      if (badCFG)
1738        return 0;
1739    }
1740  }
1741
1742  // The condition block is the implicit successor for the loop body.
1743  Succ = EntryConditionBlock;
1744
1745  // See if this is a known constant.
1746  const TryResult &KnownVal = TryEvaluateBool(D->getCond());
1747
1748  // Process the loop body.
1749  CFGBlock* BodyBlock = NULL;
1750  {
1751    assert(D->getBody());
1752
1753    // Save the current values for Block, Succ, and continue and break targets
1754    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1755    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1756        save_break(BreakJumpTarget);
1757
1758    // All continues within this loop should go to the condition block
1759    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1760
1761    // All breaks should go to the code following the loop.
1762    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1763
1764    // NULL out Block to force lazy instantiation of blocks for the body.
1765    Block = NULL;
1766
1767    // Create the body.  The returned block is the entry to the loop body.
1768    BodyBlock = addStmt(D->getBody());
1769
1770    if (!BodyBlock)
1771      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
1772    else if (Block) {
1773      if (badCFG)
1774        return 0;
1775    }
1776
1777    if (!KnownVal.isFalse()) {
1778      // Add an intermediate block between the BodyBlock and the
1779      // ExitConditionBlock to represent the "loop back" transition.  Create an
1780      // empty block to represent the transition block for looping back to the
1781      // head of the loop.
1782      // FIXME: Can we do this more efficiently without adding another block?
1783      Block = NULL;
1784      Succ = BodyBlock;
1785      CFGBlock *LoopBackBlock = createBlock();
1786      LoopBackBlock->setLoopTarget(D);
1787
1788      // Add the loop body entry as a successor to the condition.
1789      AddSuccessor(ExitConditionBlock, LoopBackBlock);
1790    }
1791    else
1792      AddSuccessor(ExitConditionBlock, NULL);
1793  }
1794
1795  // Link up the condition block with the code that follows the loop.
1796  // (the false branch).
1797  AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1798
1799  // There can be no more statements in the body block(s) since we loop back to
1800  // the body.  NULL out Block to force lazy creation of another block.
1801  Block = NULL;
1802
1803  // Return the loop body, which is the dominating block for the loop.
1804  Succ = BodyBlock;
1805  return BodyBlock;
1806}
1807
1808CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
1809  // "continue" is a control-flow statement.  Thus we stop processing the
1810  // current block.
1811  if (badCFG)
1812    return 0;
1813
1814  // Now create a new block that ends with the continue statement.
1815  Block = createBlock(false);
1816  Block->setTerminator(C);
1817
1818  // If there is no target for the continue, then we are looking at an
1819  // incomplete AST.  This means the CFG cannot be constructed.
1820  if (ContinueJumpTarget.Block) {
1821    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.ScopePos, C);
1822    AddSuccessor(Block, ContinueJumpTarget.Block);
1823  } else
1824    badCFG = true;
1825
1826  return Block;
1827}
1828
1829CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
1830                                             AddStmtChoice asc) {
1831
1832  if (asc.alwaysAdd()) {
1833    autoCreateBlock();
1834    AppendStmt(Block, E);
1835  }
1836
1837  // VLA types have expressions that must be evaluated.
1838  if (E->isArgumentType()) {
1839    for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
1840         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1841      addStmt(VA->getSizeExpr());
1842  }
1843
1844  return Block;
1845}
1846
1847/// VisitStmtExpr - Utility method to handle (nested) statement
1848///  expressions (a GCC extension).
1849CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
1850  if (asc.alwaysAdd()) {
1851    autoCreateBlock();
1852    AppendStmt(Block, SE);
1853  }
1854  return VisitCompoundStmt(SE->getSubStmt());
1855}
1856
1857CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
1858  // "switch" is a control-flow statement.  Thus we stop processing the current
1859  // block.
1860  CFGBlock* SwitchSuccessor = NULL;
1861
1862  if (Block) {
1863    if (badCFG)
1864      return 0;
1865    SwitchSuccessor = Block;
1866  } else SwitchSuccessor = Succ;
1867
1868  // Save the current "switch" context.
1869  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
1870                            save_default(DefaultCaseBlock);
1871  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1872
1873  // Set the "default" case to be the block after the switch statement.  If the
1874  // switch statement contains a "default:", this value will be overwritten with
1875  // the block for that code.
1876  DefaultCaseBlock = SwitchSuccessor;
1877
1878  // Create a new block that will contain the switch statement.
1879  SwitchTerminatedBlock = createBlock(false);
1880
1881  // Now process the switch body.  The code after the switch is the implicit
1882  // successor.
1883  Succ = SwitchSuccessor;
1884  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
1885
1886  // When visiting the body, the case statements should automatically get linked
1887  // up to the switch.  We also don't keep a pointer to the body, since all
1888  // control-flow from the switch goes to case/default statements.
1889  assert(Terminator->getBody() && "switch must contain a non-NULL body");
1890  Block = NULL;
1891  addStmt(Terminator->getBody());
1892  if (Block) {
1893    if (badCFG)
1894      return 0;
1895  }
1896
1897  // If we have no "default:" case, the default transition is to the code
1898  // following the switch body.
1899  AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
1900
1901  // Add the terminator and condition in the switch block.
1902  SwitchTerminatedBlock->setTerminator(Terminator);
1903  assert(Terminator->getCond() && "switch condition must be non-NULL");
1904  Block = SwitchTerminatedBlock;
1905  Block = addStmt(Terminator->getCond());
1906
1907  // Finally, if the SwitchStmt contains a condition variable, add both the
1908  // SwitchStmt and the condition variable initialization to the CFG.
1909  if (VarDecl *VD = Terminator->getConditionVariable()) {
1910    if (Expr *Init = VD->getInit()) {
1911      autoCreateBlock();
1912      AppendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
1913      addStmt(Init);
1914    }
1915  }
1916
1917  return Block;
1918}
1919
1920CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
1921  // CaseStmts are essentially labels, so they are the first statement in a
1922  // block.
1923  CFGBlock *TopBlock = 0, *LastBlock = 0;
1924
1925  if (Stmt *Sub = CS->getSubStmt()) {
1926    // For deeply nested chains of CaseStmts, instead of doing a recursion
1927    // (which can blow out the stack), manually unroll and create blocks
1928    // along the way.
1929    while (isa<CaseStmt>(Sub)) {
1930      CFGBlock *CurrentBlock = createBlock(false);
1931      CurrentBlock->setLabel(CS);
1932
1933      if (TopBlock)
1934        AddSuccessor(LastBlock, CurrentBlock);
1935      else
1936        TopBlock = CurrentBlock;
1937
1938      AddSuccessor(SwitchTerminatedBlock, CurrentBlock);
1939      LastBlock = CurrentBlock;
1940
1941      CS = cast<CaseStmt>(Sub);
1942      Sub = CS->getSubStmt();
1943    }
1944
1945    addStmt(Sub);
1946  }
1947
1948  CFGBlock* CaseBlock = Block;
1949  if (!CaseBlock)
1950    CaseBlock = createBlock();
1951
1952  // Cases statements partition blocks, so this is the top of the basic block we
1953  // were processing (the "case XXX:" is the label).
1954  CaseBlock->setLabel(CS);
1955
1956  if (badCFG)
1957    return 0;
1958
1959  // Add this block to the list of successors for the block with the switch
1960  // statement.
1961  assert(SwitchTerminatedBlock);
1962  AddSuccessor(SwitchTerminatedBlock, CaseBlock);
1963
1964  // We set Block to NULL to allow lazy creation of a new block (if necessary)
1965  Block = NULL;
1966
1967  if (TopBlock) {
1968    AddSuccessor(LastBlock, CaseBlock);
1969    Succ = TopBlock;
1970  }
1971  else {
1972    // This block is now the implicit successor of other blocks.
1973    Succ = CaseBlock;
1974  }
1975
1976  return Succ;
1977}
1978
1979CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
1980  if (Terminator->getSubStmt())
1981    addStmt(Terminator->getSubStmt());
1982
1983  DefaultCaseBlock = Block;
1984
1985  if (!DefaultCaseBlock)
1986    DefaultCaseBlock = createBlock();
1987
1988  // Default statements partition blocks, so this is the top of the basic block
1989  // we were processing (the "default:" is the label).
1990  DefaultCaseBlock->setLabel(Terminator);
1991
1992  if (badCFG)
1993    return 0;
1994
1995  // Unlike case statements, we don't add the default block to the successors
1996  // for the switch statement immediately.  This is done when we finish
1997  // processing the switch statement.  This allows for the default case
1998  // (including a fall-through to the code after the switch statement) to always
1999  // be the last successor of a switch-terminated block.
2000
2001  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2002  Block = NULL;
2003
2004  // This block is now the implicit successor of other blocks.
2005  Succ = DefaultCaseBlock;
2006
2007  return DefaultCaseBlock;
2008}
2009
2010CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2011  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2012  // current block.
2013  CFGBlock* TrySuccessor = NULL;
2014
2015  if (Block) {
2016    if (badCFG)
2017      return 0;
2018    TrySuccessor = Block;
2019  } else TrySuccessor = Succ;
2020
2021  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2022
2023  // Create a new block that will contain the try statement.
2024  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2025  // Add the terminator in the try block.
2026  NewTryTerminatedBlock->setTerminator(Terminator);
2027
2028  bool HasCatchAll = false;
2029  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2030    // The code after the try is the implicit successor.
2031    Succ = TrySuccessor;
2032    CXXCatchStmt *CS = Terminator->getHandler(h);
2033    if (CS->getExceptionDecl() == 0) {
2034      HasCatchAll = true;
2035    }
2036    Block = NULL;
2037    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2038    if (CatchBlock == 0)
2039      return 0;
2040    // Add this block to the list of successors for the block with the try
2041    // statement.
2042    AddSuccessor(NewTryTerminatedBlock, CatchBlock);
2043  }
2044  if (!HasCatchAll) {
2045    if (PrevTryTerminatedBlock)
2046      AddSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2047    else
2048      AddSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2049  }
2050
2051  // The code after the try is the implicit successor.
2052  Succ = TrySuccessor;
2053
2054  // Save the current "try" context.
2055  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
2056  TryTerminatedBlock = NewTryTerminatedBlock;
2057
2058  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2059  Block = NULL;
2060  Block = addStmt(Terminator->getTryBlock());
2061  return Block;
2062}
2063
2064CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
2065  // CXXCatchStmt are treated like labels, so they are the first statement in a
2066  // block.
2067
2068  if (CS->getHandlerBlock())
2069    addStmt(CS->getHandlerBlock());
2070
2071  CFGBlock* CatchBlock = Block;
2072  if (!CatchBlock)
2073    CatchBlock = createBlock();
2074
2075  CatchBlock->setLabel(CS);
2076
2077  if (badCFG)
2078    return 0;
2079
2080  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2081  Block = NULL;
2082
2083  return CatchBlock;
2084}
2085
2086CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
2087                                             AddStmtChoice asc) {
2088  AddStmtChoice::Kind K = asc.asLValue() ? AddStmtChoice::AlwaysAddAsLValue
2089                                         : AddStmtChoice::AlwaysAdd;
2090  autoCreateBlock();
2091  AppendStmt(Block, C, AddStmtChoice(K));
2092  return VisitChildren(C);
2093}
2094
2095CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2096  // Lazily create the indirect-goto dispatch block if there isn't one already.
2097  CFGBlock* IBlock = cfg->getIndirectGotoBlock();
2098
2099  if (!IBlock) {
2100    IBlock = createBlock(false);
2101    cfg->setIndirectGotoBlock(IBlock);
2102  }
2103
2104  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2105  // current block and create a new one.
2106  if (badCFG)
2107    return 0;
2108
2109  Block = createBlock(false);
2110  Block->setTerminator(I);
2111  AddSuccessor(Block, IBlock);
2112  return addStmt(I->getTarget());
2113}
2114
2115} // end anonymous namespace
2116
2117/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2118///  no successors or predecessors.  If this is the first block created in the
2119///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2120CFGBlock* CFG::createBlock() {
2121  bool first_block = begin() == end();
2122
2123  // Create the block.
2124  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2125  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2126  Blocks.push_back(Mem, BlkBVC);
2127
2128  // If this is the first block, set it as the Entry and Exit.
2129  if (first_block)
2130    Entry = Exit = &back();
2131
2132  // Return the block.
2133  return &back();
2134}
2135
2136/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2137///  CFG is returned to the caller.
2138CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
2139    BuildOptions BO) {
2140  CFGBuilder Builder;
2141  return Builder.buildCFG(D, Statement, C, BO);
2142}
2143
2144//===----------------------------------------------------------------------===//
2145// CFG: Queries for BlkExprs.
2146//===----------------------------------------------------------------------===//
2147
2148namespace {
2149  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
2150}
2151
2152static void FindSubExprAssignments(Stmt *S,
2153                                   llvm::SmallPtrSet<Expr*,50>& Set) {
2154  if (!S)
2155    return;
2156
2157  for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) {
2158    Stmt *child = *I;
2159    if (!child)
2160      continue;
2161
2162    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
2163      if (B->isAssignmentOp()) Set.insert(B);
2164
2165    FindSubExprAssignments(child, Set);
2166  }
2167}
2168
2169static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
2170  BlkExprMapTy* M = new BlkExprMapTy();
2171
2172  // Look for assignments that are used as subexpressions.  These are the only
2173  // assignments that we want to *possibly* register as a block-level
2174  // expression.  Basically, if an assignment occurs both in a subexpression and
2175  // at the block-level, it is a block-level expression.
2176  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
2177
2178  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
2179    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
2180      if (CFGStmt S = BI->getAs<CFGStmt>())
2181        FindSubExprAssignments(S, SubExprAssignments);
2182
2183  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
2184
2185    // Iterate over the statements again on identify the Expr* and Stmt* at the
2186    // block-level that are block-level expressions.
2187
2188    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
2189      CFGStmt CS = BI->getAs<CFGStmt>();
2190      if (!CS.isValid())
2191        continue;
2192      if (Expr* Exp = dyn_cast<Expr>(CS.getStmt())) {
2193
2194        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
2195          // Assignment expressions that are not nested within another
2196          // expression are really "statements" whose value is never used by
2197          // another expression.
2198          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
2199            continue;
2200        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
2201          // Special handling for statement expressions.  The last statement in
2202          // the statement expression is also a block-level expr.
2203          const CompoundStmt* C = Terminator->getSubStmt();
2204          if (!C->body_empty()) {
2205            unsigned x = M->size();
2206            (*M)[C->body_back()] = x;
2207          }
2208        }
2209
2210        unsigned x = M->size();
2211        (*M)[Exp] = x;
2212      }
2213    }
2214
2215    // Look at terminators.  The condition is a block-level expression.
2216
2217    Stmt* S = (*I)->getTerminatorCondition();
2218
2219    if (S && M->find(S) == M->end()) {
2220        unsigned x = M->size();
2221        (*M)[S] = x;
2222    }
2223  }
2224
2225  return M;
2226}
2227
2228CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
2229  assert(S != NULL);
2230  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
2231
2232  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
2233  BlkExprMapTy::iterator I = M->find(S);
2234  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
2235}
2236
2237unsigned CFG::getNumBlkExprs() {
2238  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
2239    return M->size();
2240  else {
2241    // We assume callers interested in the number of BlkExprs will want
2242    // the map constructed if it doesn't already exist.
2243    BlkExprMap = (void*) PopulateBlkExprMap(*this);
2244    return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
2245  }
2246}
2247
2248//===----------------------------------------------------------------------===//
2249// Filtered walking of the CFG.
2250//===----------------------------------------------------------------------===//
2251
2252bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
2253        const CFGBlock *From, const CFGBlock *To) {
2254
2255  if (F.IgnoreDefaultsWithCoveredEnums) {
2256    // If the 'To' has no label or is labeled but the label isn't a
2257    // CaseStmt then filter this edge.
2258    if (const SwitchStmt *S =
2259  dyn_cast_or_null<SwitchStmt>(From->getTerminator())) {
2260      if (S->isAllEnumCasesCovered()) {
2261  const Stmt *L = To->getLabel();
2262  if (!L || !isa<CaseStmt>(L))
2263    return true;
2264      }
2265    }
2266  }
2267
2268  return false;
2269}
2270
2271//===----------------------------------------------------------------------===//
2272// Cleanup: CFG dstor.
2273//===----------------------------------------------------------------------===//
2274
2275CFG::~CFG() {
2276  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// CFG pretty printing
2281//===----------------------------------------------------------------------===//
2282
2283namespace {
2284
2285class StmtPrinterHelper : public PrinterHelper  {
2286  typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
2287  typedef llvm::DenseMap<Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
2288  StmtMapTy StmtMap;
2289  DeclMapTy DeclMap;
2290  signed CurrentBlock;
2291  unsigned CurrentStmt;
2292  const LangOptions &LangOpts;
2293public:
2294
2295  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
2296    : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
2297    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
2298      unsigned j = 1;
2299      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
2300           BI != BEnd; ++BI, ++j ) {
2301        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
2302          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
2303          StmtMap[SE] = P;
2304
2305          if (DeclStmt* DS = dyn_cast<DeclStmt>(SE.getStmt())) {
2306              DeclMap[DS->getSingleDecl()] = P;
2307
2308          } else if (IfStmt* IS = dyn_cast<IfStmt>(SE.getStmt())) {
2309            if (VarDecl* VD = IS->getConditionVariable())
2310              DeclMap[VD] = P;
2311
2312          } else if (ForStmt* FS = dyn_cast<ForStmt>(SE.getStmt())) {
2313            if (VarDecl* VD = FS->getConditionVariable())
2314              DeclMap[VD] = P;
2315
2316          } else if (WhileStmt* WS = dyn_cast<WhileStmt>(SE.getStmt())) {
2317            if (VarDecl* VD = WS->getConditionVariable())
2318              DeclMap[VD] = P;
2319
2320          } else if (SwitchStmt* SS = dyn_cast<SwitchStmt>(SE.getStmt())) {
2321            if (VarDecl* VD = SS->getConditionVariable())
2322              DeclMap[VD] = P;
2323
2324          } else if (CXXCatchStmt* CS = dyn_cast<CXXCatchStmt>(SE.getStmt())) {
2325            if (VarDecl* VD = CS->getExceptionDecl())
2326              DeclMap[VD] = P;
2327          }
2328        }
2329      }
2330    }
2331  }
2332
2333  virtual ~StmtPrinterHelper() {}
2334
2335  const LangOptions &getLangOpts() const { return LangOpts; }
2336  void setBlockID(signed i) { CurrentBlock = i; }
2337  void setStmtID(unsigned i) { CurrentStmt = i; }
2338
2339  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
2340    StmtMapTy::iterator I = StmtMap.find(S);
2341
2342    if (I == StmtMap.end())
2343      return false;
2344
2345    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2346                          && I->second.second == CurrentStmt) {
2347      return false;
2348    }
2349
2350    OS << "[B" << I->second.first << "." << I->second.second << "]";
2351    return true;
2352  }
2353
2354  bool handleDecl(Decl* D, llvm::raw_ostream& OS) {
2355    DeclMapTy::iterator I = DeclMap.find(D);
2356
2357    if (I == DeclMap.end())
2358      return false;
2359
2360    if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
2361                          && I->second.second == CurrentStmt) {
2362      return false;
2363    }
2364
2365    OS << "[B" << I->second.first << "." << I->second.second << "]";
2366    return true;
2367  }
2368};
2369} // end anonymous namespace
2370
2371
2372namespace {
2373class CFGBlockTerminatorPrint
2374  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
2375
2376  llvm::raw_ostream& OS;
2377  StmtPrinterHelper* Helper;
2378  PrintingPolicy Policy;
2379public:
2380  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
2381                          const PrintingPolicy &Policy)
2382    : OS(os), Helper(helper), Policy(Policy) {}
2383
2384  void VisitIfStmt(IfStmt* I) {
2385    OS << "if ";
2386    I->getCond()->printPretty(OS,Helper,Policy);
2387  }
2388
2389  // Default case.
2390  void VisitStmt(Stmt* Terminator) {
2391    Terminator->printPretty(OS, Helper, Policy);
2392  }
2393
2394  void VisitForStmt(ForStmt* F) {
2395    OS << "for (" ;
2396    if (F->getInit())
2397      OS << "...";
2398    OS << "; ";
2399    if (Stmt* C = F->getCond())
2400      C->printPretty(OS, Helper, Policy);
2401    OS << "; ";
2402    if (F->getInc())
2403      OS << "...";
2404    OS << ")";
2405  }
2406
2407  void VisitWhileStmt(WhileStmt* W) {
2408    OS << "while " ;
2409    if (Stmt* C = W->getCond())
2410      C->printPretty(OS, Helper, Policy);
2411  }
2412
2413  void VisitDoStmt(DoStmt* D) {
2414    OS << "do ... while ";
2415    if (Stmt* C = D->getCond())
2416      C->printPretty(OS, Helper, Policy);
2417  }
2418
2419  void VisitSwitchStmt(SwitchStmt* Terminator) {
2420    OS << "switch ";
2421    Terminator->getCond()->printPretty(OS, Helper, Policy);
2422  }
2423
2424  void VisitCXXTryStmt(CXXTryStmt* CS) {
2425    OS << "try ...";
2426  }
2427
2428  void VisitConditionalOperator(ConditionalOperator* C) {
2429    C->getCond()->printPretty(OS, Helper, Policy);
2430    OS << " ? ... : ...";
2431  }
2432
2433  void VisitChooseExpr(ChooseExpr* C) {
2434    OS << "__builtin_choose_expr( ";
2435    C->getCond()->printPretty(OS, Helper, Policy);
2436    OS << " )";
2437  }
2438
2439  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
2440    OS << "goto *";
2441    I->getTarget()->printPretty(OS, Helper, Policy);
2442  }
2443
2444  void VisitBinaryOperator(BinaryOperator* B) {
2445    if (!B->isLogicalOp()) {
2446      VisitExpr(B);
2447      return;
2448    }
2449
2450    B->getLHS()->printPretty(OS, Helper, Policy);
2451
2452    switch (B->getOpcode()) {
2453      case BO_LOr:
2454        OS << " || ...";
2455        return;
2456      case BO_LAnd:
2457        OS << " && ...";
2458        return;
2459      default:
2460        assert(false && "Invalid logical operator.");
2461    }
2462  }
2463
2464  void VisitExpr(Expr* E) {
2465    E->printPretty(OS, Helper, Policy);
2466  }
2467};
2468} // end anonymous namespace
2469
2470static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
2471                       const CFGElement &E) {
2472  if (CFGStmt CS = E.getAs<CFGStmt>()) {
2473    Stmt *S = CS;
2474
2475    if (Helper) {
2476
2477      // special printing for statement-expressions.
2478      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
2479        CompoundStmt* Sub = SE->getSubStmt();
2480
2481        if (Sub->child_begin() != Sub->child_end()) {
2482          OS << "({ ... ; ";
2483          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
2484          OS << " })\n";
2485          return;
2486        }
2487      }
2488      // special printing for comma expressions.
2489      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
2490        if (B->getOpcode() == BO_Comma) {
2491          OS << "... , ";
2492          Helper->handledStmt(B->getRHS(),OS);
2493          OS << '\n';
2494          return;
2495        }
2496      }
2497    }
2498    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2499
2500    if (isa<CXXOperatorCallExpr>(S)) {
2501      OS << " (OperatorCall)";
2502    }
2503    else if (isa<CXXBindTemporaryExpr>(S)) {
2504      OS << " (BindTemporary)";
2505    }
2506
2507    // Expressions need a newline.
2508    if (isa<Expr>(S))
2509      OS << '\n';
2510
2511  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
2512    CXXBaseOrMemberInitializer* I = IE;
2513    if (I->isBaseInitializer())
2514      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
2515    else OS << I->getMember()->getName();
2516
2517    OS << "(";
2518    if (Expr* IE = I->getInit())
2519      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
2520    OS << ")";
2521
2522    if (I->isBaseInitializer())
2523      OS << " (Base initializer)\n";
2524    else OS << " (Member initializer)\n";
2525
2526  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
2527    VarDecl* VD = DE.getVarDecl();
2528    Helper->handleDecl(VD, OS);
2529
2530    Type* T = VD->getType().getTypePtr();
2531    if (const ReferenceType* RT = T->getAs<ReferenceType>())
2532      T = RT->getPointeeType().getTypePtr();
2533
2534    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
2535    OS << " (Implicit destructor)\n";
2536  }
2537 }
2538
2539static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
2540                        const CFGBlock& B,
2541                        StmtPrinterHelper* Helper, bool print_edges) {
2542
2543  if (Helper) Helper->setBlockID(B.getBlockID());
2544
2545  // Print the header.
2546  OS << "\n [ B" << B.getBlockID();
2547
2548  if (&B == &cfg->getEntry())
2549    OS << " (ENTRY) ]\n";
2550  else if (&B == &cfg->getExit())
2551    OS << " (EXIT) ]\n";
2552  else if (&B == cfg->getIndirectGotoBlock())
2553    OS << " (INDIRECT GOTO DISPATCH) ]\n";
2554  else
2555    OS << " ]\n";
2556
2557  // Print the label of this block.
2558  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {
2559
2560    if (print_edges)
2561      OS << "    ";
2562
2563    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
2564      OS << L->getName();
2565    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
2566      OS << "case ";
2567      C->getLHS()->printPretty(OS, Helper,
2568                               PrintingPolicy(Helper->getLangOpts()));
2569      if (C->getRHS()) {
2570        OS << " ... ";
2571        C->getRHS()->printPretty(OS, Helper,
2572                                 PrintingPolicy(Helper->getLangOpts()));
2573      }
2574    } else if (isa<DefaultStmt>(Label))
2575      OS << "default";
2576    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
2577      OS << "catch (";
2578      if (CS->getExceptionDecl())
2579        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
2580                                      0);
2581      else
2582        OS << "...";
2583      OS << ")";
2584
2585    } else
2586      assert(false && "Invalid label statement in CFGBlock.");
2587
2588    OS << ":\n";
2589  }
2590
2591  // Iterate through the statements in the block and print them.
2592  unsigned j = 1;
2593
2594  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
2595       I != E ; ++I, ++j ) {
2596
2597    // Print the statement # in the basic block and the statement itself.
2598    if (print_edges)
2599      OS << "    ";
2600
2601    OS << llvm::format("%3d", j) << ": ";
2602
2603    if (Helper)
2604      Helper->setStmtID(j);
2605
2606    print_elem(OS,Helper,*I);
2607  }
2608
2609  // Print the terminator of this block.
2610  if (B.getTerminator()) {
2611    if (print_edges)
2612      OS << "    ";
2613
2614    OS << "  T: ";
2615
2616    if (Helper) Helper->setBlockID(-1);
2617
2618    CFGBlockTerminatorPrint TPrinter(OS, Helper,
2619                                     PrintingPolicy(Helper->getLangOpts()));
2620    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
2621    OS << '\n';
2622  }
2623
2624  if (print_edges) {
2625    // Print the predecessors of this block.
2626    OS << "    Predecessors (" << B.pred_size() << "):";
2627    unsigned i = 0;
2628
2629    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
2630         I != E; ++I, ++i) {
2631
2632      if (i == 8 || (i-8) == 0)
2633        OS << "\n     ";
2634
2635      OS << " B" << (*I)->getBlockID();
2636    }
2637
2638    OS << '\n';
2639
2640    // Print the successors of this block.
2641    OS << "    Successors (" << B.succ_size() << "):";
2642    i = 0;
2643
2644    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
2645         I != E; ++I, ++i) {
2646
2647      if (i == 8 || (i-8) % 10 == 0)
2648        OS << "\n    ";
2649
2650      if (*I)
2651        OS << " B" << (*I)->getBlockID();
2652      else
2653        OS  << " NULL";
2654    }
2655
2656    OS << '\n';
2657  }
2658}
2659
2660
2661/// dump - A simple pretty printer of a CFG that outputs to stderr.
2662void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
2663
2664/// print - A simple pretty printer of a CFG that outputs to an ostream.
2665void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
2666  StmtPrinterHelper Helper(this, LO);
2667
2668  // Print the entry block.
2669  print_block(OS, this, getEntry(), &Helper, true);
2670
2671  // Iterate through the CFGBlocks and print them one by one.
2672  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
2673    // Skip the entry block, because we already printed it.
2674    if (&(**I) == &getEntry() || &(**I) == &getExit())
2675      continue;
2676
2677    print_block(OS, this, **I, &Helper, true);
2678  }
2679
2680  // Print the exit block.
2681  print_block(OS, this, getExit(), &Helper, true);
2682  OS.flush();
2683}
2684
2685/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
2686void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
2687  print(llvm::errs(), cfg, LO);
2688}
2689
2690/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
2691///   Generally this will only be called from CFG::print.
2692void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
2693                     const LangOptions &LO) const {
2694  StmtPrinterHelper Helper(cfg, LO);
2695  print_block(OS, cfg, *this, &Helper, true);
2696}
2697
2698/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
2699void CFGBlock::printTerminator(llvm::raw_ostream &OS,
2700                               const LangOptions &LO) const {
2701  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
2702  TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
2703}
2704
2705Stmt* CFGBlock::getTerminatorCondition() {
2706
2707  if (!Terminator)
2708    return NULL;
2709
2710  Expr* E = NULL;
2711
2712  switch (Terminator->getStmtClass()) {
2713    default:
2714      break;
2715
2716    case Stmt::ForStmtClass:
2717      E = cast<ForStmt>(Terminator)->getCond();
2718      break;
2719
2720    case Stmt::WhileStmtClass:
2721      E = cast<WhileStmt>(Terminator)->getCond();
2722      break;
2723
2724    case Stmt::DoStmtClass:
2725      E = cast<DoStmt>(Terminator)->getCond();
2726      break;
2727
2728    case Stmt::IfStmtClass:
2729      E = cast<IfStmt>(Terminator)->getCond();
2730      break;
2731
2732    case Stmt::ChooseExprClass:
2733      E = cast<ChooseExpr>(Terminator)->getCond();
2734      break;
2735
2736    case Stmt::IndirectGotoStmtClass:
2737      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
2738      break;
2739
2740    case Stmt::SwitchStmtClass:
2741      E = cast<SwitchStmt>(Terminator)->getCond();
2742      break;
2743
2744    case Stmt::ConditionalOperatorClass:
2745      E = cast<ConditionalOperator>(Terminator)->getCond();
2746      break;
2747
2748    case Stmt::BinaryOperatorClass: // '&&' and '||'
2749      E = cast<BinaryOperator>(Terminator)->getLHS();
2750      break;
2751
2752    case Stmt::ObjCForCollectionStmtClass:
2753      return Terminator;
2754  }
2755
2756  return E ? E->IgnoreParens() : NULL;
2757}
2758
2759bool CFGBlock::hasBinaryBranchTerminator() const {
2760
2761  if (!Terminator)
2762    return false;
2763
2764  Expr* E = NULL;
2765
2766  switch (Terminator->getStmtClass()) {
2767    default:
2768      return false;
2769
2770    case Stmt::ForStmtClass:
2771    case Stmt::WhileStmtClass:
2772    case Stmt::DoStmtClass:
2773    case Stmt::IfStmtClass:
2774    case Stmt::ChooseExprClass:
2775    case Stmt::ConditionalOperatorClass:
2776    case Stmt::BinaryOperatorClass:
2777      return true;
2778  }
2779
2780  return E ? E->IgnoreParens() : NULL;
2781}
2782
2783
2784//===----------------------------------------------------------------------===//
2785// CFG Graphviz Visualization
2786//===----------------------------------------------------------------------===//
2787
2788
2789#ifndef NDEBUG
2790static StmtPrinterHelper* GraphHelper;
2791#endif
2792
2793void CFG::viewCFG(const LangOptions &LO) const {
2794#ifndef NDEBUG
2795  StmtPrinterHelper H(this, LO);
2796  GraphHelper = &H;
2797  llvm::ViewGraph(this,"CFG");
2798  GraphHelper = NULL;
2799#endif
2800}
2801
2802namespace llvm {
2803template<>
2804struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
2805
2806  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2807
2808  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {
2809
2810#ifndef NDEBUG
2811    std::string OutSStr;
2812    llvm::raw_string_ostream Out(OutSStr);
2813    print_block(Out,Graph, *Node, GraphHelper, false);
2814    std::string& OutStr = Out.str();
2815
2816    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
2817
2818    // Process string output to make it nicer...
2819    for (unsigned i = 0; i != OutStr.length(); ++i)
2820      if (OutStr[i] == '\n') {                            // Left justify
2821        OutStr[i] = '\\';
2822        OutStr.insert(OutStr.begin()+i+1, 'l');
2823      }
2824
2825    return OutStr;
2826#else
2827    return "";
2828#endif
2829  }
2830};
2831} // end namespace llvm
2832