CFG.cpp revision fd8b43596478b779b6777cb3a595e69d7856c378
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/Basic/AttrKinds.h"
23#include "llvm/Support/GraphWriter.h"
24#include "llvm/Support/Allocator.h"
25#include "llvm/Support/Format.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/OwningPtr.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236/// CFGBuilder - This class implements CFG construction from an AST.
237///   The builder is stateful: an instance of the builder should be used to only
238///   construct a single CFG.
239///
240///   Example usage:
241///
242///     CFGBuilder builder;
243///     CFG* cfg = builder.BuildAST(stmt1);
244///
245///  CFG construction is done via a recursive walk of an AST.  We actually parse
246///  the AST in reverse order so that the successor of a basic block is
247///  constructed prior to its predecessor.  This allows us to nicely capture
248///  implicit fall-throughs without extra basic blocks.
249///
250class CFGBuilder {
251  typedef BlockScopePosPair JumpTarget;
252  typedef BlockScopePosPair JumpSource;
253
254  ASTContext *Context;
255  OwningPtr<CFG> cfg;
256
257  CFGBlock *Block;
258  CFGBlock *Succ;
259  JumpTarget ContinueJumpTarget;
260  JumpTarget BreakJumpTarget;
261  CFGBlock *SwitchTerminatedBlock;
262  CFGBlock *DefaultCaseBlock;
263  CFGBlock *TryTerminatedBlock;
264
265  // Current position in local scope.
266  LocalScope::const_iterator ScopePos;
267
268  // LabelMap records the mapping from Label expressions to their jump targets.
269  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
270  LabelMapTy LabelMap;
271
272  // A list of blocks that end with a "goto" that must be backpatched to their
273  // resolved targets upon completion of CFG construction.
274  typedef std::vector<JumpSource> BackpatchBlocksTy;
275  BackpatchBlocksTy BackpatchBlocks;
276
277  // A list of labels whose address has been taken (for indirect gotos).
278  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
279  LabelSetTy AddressTakenLabels;
280
281  bool badCFG;
282  const CFG::BuildOptions &BuildOpts;
283
284  // State to track for building switch statements.
285  bool switchExclusivelyCovered;
286  Expr::EvalResult *switchCond;
287
288  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
289  const Stmt *lastLookup;
290
291  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
292  // during construction of branches for chained logical operators.
293  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
294  CachedBoolEvalsTy CachedBoolEvals;
295
296public:
297  explicit CFGBuilder(ASTContext *astContext,
298                      const CFG::BuildOptions &buildOpts)
299    : Context(astContext), cfg(new CFG()), // crew a new CFG
300      Block(NULL), Succ(NULL),
301      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
302      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
303      switchExclusivelyCovered(false), switchCond(0),
304      cachedEntry(0), lastLookup(0) {}
305
306  // buildCFG - Used by external clients to construct the CFG.
307  CFG* buildCFG(const Decl *D, Stmt *Statement);
308
309  bool alwaysAdd(const Stmt *stmt);
310
311private:
312  // Visitors to walk an AST and construct the CFG.
313  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
314  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
315  CFGBlock *VisitBreakStmt(BreakStmt *B);
316  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
317  CFGBlock *VisitCaseStmt(CaseStmt *C);
318  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
320  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
321                                     AddStmtChoice asc);
322  CFGBlock *VisitContinueStmt(ContinueStmt *C);
323  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
324                                      AddStmtChoice asc);
325  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
326  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
327  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
328  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
329                                       AddStmtChoice asc);
330  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
331                                        AddStmtChoice asc);
332  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
333  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
334  CFGBlock *VisitDeclStmt(DeclStmt *DS);
335  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
336  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
337  CFGBlock *VisitDoStmt(DoStmt *D);
338  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
339  CFGBlock *VisitForStmt(ForStmt *F);
340  CFGBlock *VisitGotoStmt(GotoStmt *G);
341  CFGBlock *VisitIfStmt(IfStmt *I);
342  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
343  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
344  CFGBlock *VisitLabelStmt(LabelStmt *L);
345  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
346  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
347  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
348                                                         Stmt *Term,
349                                                         CFGBlock *TrueBlock,
350                                                         CFGBlock *FalseBlock);
351  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
352  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
353  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
354  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
355  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
356  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
357  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
358  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
359  CFGBlock *VisitReturnStmt(ReturnStmt *R);
360  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
361  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
362  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
363                                          AddStmtChoice asc);
364  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
365  CFGBlock *VisitWhileStmt(WhileStmt *W);
366
367  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
368  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
369  CFGBlock *VisitChildren(Stmt *S);
370  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
371
372  // Visitors to walk an AST and generate destructors of temporaries in
373  // full expression.
374  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
375  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
376  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
377  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
378      bool BindToTemporary);
379  CFGBlock *
380  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
381                                            bool BindToTemporary);
382
383  // NYS == Not Yet Supported
384  CFGBlock *NYS() {
385    badCFG = true;
386    return Block;
387  }
388
389  void autoCreateBlock() { if (!Block) Block = createBlock(); }
390  CFGBlock *createBlock(bool add_successor = true);
391  CFGBlock *createNoReturnBlock();
392
393  CFGBlock *addStmt(Stmt *S) {
394    return Visit(S, AddStmtChoice::AlwaysAdd);
395  }
396  CFGBlock *addInitializer(CXXCtorInitializer *I);
397  void addAutomaticObjDtors(LocalScope::const_iterator B,
398                            LocalScope::const_iterator E, Stmt *S);
399  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
400
401  // Local scopes creation.
402  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
403
404  void addLocalScopeForStmt(Stmt *S);
405  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
406  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
407
408  void addLocalScopeAndDtors(Stmt *S);
409
410  // Interface to CFGBlock - adding CFGElements.
411  void appendStmt(CFGBlock *B, const Stmt *S) {
412    if (alwaysAdd(S) && cachedEntry)
413      cachedEntry->second = B;
414
415    // All block-level expressions should have already been IgnoreParens()ed.
416    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
417    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
418  }
419  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
420    B->appendInitializer(I, cfg->getBumpVectorContext());
421  }
422  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
423    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
424  }
425  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
426    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
427  }
428  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
429    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
430  }
431  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
432    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
433  }
434
435  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
436      LocalScope::const_iterator B, LocalScope::const_iterator E);
437
438  void addSuccessor(CFGBlock *B, CFGBlock *S) {
439    B->addSuccessor(S, cfg->getBumpVectorContext());
440  }
441
442  /// Try and evaluate an expression to an integer constant.
443  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
444    if (!BuildOpts.PruneTriviallyFalseEdges)
445      return false;
446    return !S->isTypeDependent() &&
447           !S->isValueDependent() &&
448           S->EvaluateAsRValue(outResult, *Context);
449  }
450
451  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
452  /// if we can evaluate to a known value, otherwise return -1.
453  TryResult tryEvaluateBool(Expr *S) {
454    if (!BuildOpts.PruneTriviallyFalseEdges ||
455        S->isTypeDependent() || S->isValueDependent())
456      return TryResult();
457
458    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
459      if (Bop->isLogicalOp()) {
460        // Check the cache first.
461        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
462        if (I != CachedBoolEvals.end())
463          return I->second; // already in map;
464
465        // Retrieve result at first, or the map might be updated.
466        TryResult Result = evaluateAsBooleanConditionNoCache(S);
467        CachedBoolEvals[S] = Result; // update or insert
468        return Result;
469      }
470    }
471
472    return evaluateAsBooleanConditionNoCache(S);
473  }
474
475  /// \brief Evaluate as boolean \param E without using the cache.
476  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
477    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
478      if (Bop->isLogicalOp()) {
479        TryResult LHS = tryEvaluateBool(Bop->getLHS());
480        if (LHS.isKnown()) {
481          // We were able to evaluate the LHS, see if we can get away with not
482          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
483          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
484            return LHS.isTrue();
485
486          TryResult RHS = tryEvaluateBool(Bop->getRHS());
487          if (RHS.isKnown()) {
488            if (Bop->getOpcode() == BO_LOr)
489              return LHS.isTrue() || RHS.isTrue();
490            else
491              return LHS.isTrue() && RHS.isTrue();
492          }
493        } else {
494          TryResult RHS = tryEvaluateBool(Bop->getRHS());
495          if (RHS.isKnown()) {
496            // We can't evaluate the LHS; however, sometimes the result
497            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
498            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
499              return RHS.isTrue();
500          }
501        }
502
503        return TryResult();
504      }
505    }
506
507    bool Result;
508    if (E->EvaluateAsBooleanCondition(Result, *Context))
509      return Result;
510
511    return TryResult();
512  }
513
514};
515
516inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
517                                     const Stmt *stmt) const {
518  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
519}
520
521bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
522  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
523
524  if (!BuildOpts.forcedBlkExprs)
525    return shouldAdd;
526
527  if (lastLookup == stmt) {
528    if (cachedEntry) {
529      assert(cachedEntry->first == stmt);
530      return true;
531    }
532    return shouldAdd;
533  }
534
535  lastLookup = stmt;
536
537  // Perform the lookup!
538  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
539
540  if (!fb) {
541    // No need to update 'cachedEntry', since it will always be null.
542    assert(cachedEntry == 0);
543    return shouldAdd;
544  }
545
546  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
547  if (itr == fb->end()) {
548    cachedEntry = 0;
549    return shouldAdd;
550  }
551
552  cachedEntry = &*itr;
553  return true;
554}
555
556// FIXME: Add support for dependent-sized array types in C++?
557// Does it even make sense to build a CFG for an uninstantiated template?
558static const VariableArrayType *FindVA(const Type *t) {
559  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
560    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
561      if (vat->getSizeExpr())
562        return vat;
563
564    t = vt->getElementType().getTypePtr();
565  }
566
567  return 0;
568}
569
570/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
571///  arbitrary statement.  Examples include a single expression or a function
572///  body (compound statement).  The ownership of the returned CFG is
573///  transferred to the caller.  If CFG construction fails, this method returns
574///  NULL.
575CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
576  assert(cfg.get());
577  if (!Statement)
578    return NULL;
579
580  // Create an empty block that will serve as the exit block for the CFG.  Since
581  // this is the first block added to the CFG, it will be implicitly registered
582  // as the exit block.
583  Succ = createBlock();
584  assert(Succ == &cfg->getExit());
585  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
586
587  if (BuildOpts.AddImplicitDtors)
588    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
589      addImplicitDtorsForDestructor(DD);
590
591  // Visit the statements and create the CFG.
592  CFGBlock *B = addStmt(Statement);
593
594  if (badCFG)
595    return NULL;
596
597  // For C++ constructor add initializers to CFG.
598  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
599    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
600        E = CD->init_rend(); I != E; ++I) {
601      B = addInitializer(*I);
602      if (badCFG)
603        return NULL;
604    }
605  }
606
607  if (B)
608    Succ = B;
609
610  // Backpatch the gotos whose label -> block mappings we didn't know when we
611  // encountered them.
612  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
613                                   E = BackpatchBlocks.end(); I != E; ++I ) {
614
615    CFGBlock *B = I->block;
616    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
617    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
618
619    // If there is no target for the goto, then we are looking at an
620    // incomplete AST.  Handle this by not registering a successor.
621    if (LI == LabelMap.end()) continue;
622
623    JumpTarget JT = LI->second;
624    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
625                                           JT.scopePosition);
626    addSuccessor(B, JT.block);
627  }
628
629  // Add successors to the Indirect Goto Dispatch block (if we have one).
630  if (CFGBlock *B = cfg->getIndirectGotoBlock())
631    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
632                              E = AddressTakenLabels.end(); I != E; ++I ) {
633
634      // Lookup the target block.
635      LabelMapTy::iterator LI = LabelMap.find(*I);
636
637      // If there is no target block that contains label, then we are looking
638      // at an incomplete AST.  Handle this by not registering a successor.
639      if (LI == LabelMap.end()) continue;
640
641      addSuccessor(B, LI->second.block);
642    }
643
644  // Create an empty entry block that has no predecessors.
645  cfg->setEntry(createBlock());
646
647  return cfg.take();
648}
649
650/// createBlock - Used to lazily create blocks that are connected
651///  to the current (global) succcessor.
652CFGBlock *CFGBuilder::createBlock(bool add_successor) {
653  CFGBlock *B = cfg->createBlock();
654  if (add_successor && Succ)
655    addSuccessor(B, Succ);
656  return B;
657}
658
659/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
660/// CFG. It is *not* connected to the current (global) successor, and instead
661/// directly tied to the exit block in order to be reachable.
662CFGBlock *CFGBuilder::createNoReturnBlock() {
663  CFGBlock *B = createBlock(false);
664  B->setHasNoReturnElement();
665  addSuccessor(B, &cfg->getExit());
666  return B;
667}
668
669/// addInitializer - Add C++ base or member initializer element to CFG.
670CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
671  if (!BuildOpts.AddInitializers)
672    return Block;
673
674  bool IsReference = false;
675  bool HasTemporaries = false;
676
677  // Destructors of temporaries in initialization expression should be called
678  // after initialization finishes.
679  Expr *Init = I->getInit();
680  if (Init) {
681    if (FieldDecl *FD = I->getAnyMember())
682      IsReference = FD->getType()->isReferenceType();
683    HasTemporaries = isa<ExprWithCleanups>(Init);
684
685    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
686      // Generate destructors for temporaries in initialization expression.
687      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
688          IsReference);
689    }
690  }
691
692  autoCreateBlock();
693  appendInitializer(Block, I);
694
695  if (Init) {
696    if (HasTemporaries) {
697      // For expression with temporaries go directly to subexpression to omit
698      // generating destructors for the second time.
699      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
700    }
701    return Visit(Init);
702  }
703
704  return Block;
705}
706
707/// \brief Retrieve the type of the temporary object whose lifetime was
708/// extended by a local reference with the given initializer.
709static QualType getReferenceInitTemporaryType(ASTContext &Context,
710                                              const Expr *Init) {
711  while (true) {
712    // Skip parentheses.
713    Init = Init->IgnoreParens();
714
715    // Skip through cleanups.
716    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
717      Init = EWC->getSubExpr();
718      continue;
719    }
720
721    // Skip through the temporary-materialization expression.
722    if (const MaterializeTemporaryExpr *MTE
723          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
724      Init = MTE->GetTemporaryExpr();
725      continue;
726    }
727
728    // Skip derived-to-base and no-op casts.
729    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
730      if ((CE->getCastKind() == CK_DerivedToBase ||
731           CE->getCastKind() == CK_UncheckedDerivedToBase ||
732           CE->getCastKind() == CK_NoOp) &&
733          Init->getType()->isRecordType()) {
734        Init = CE->getSubExpr();
735        continue;
736      }
737    }
738
739    // Skip member accesses into rvalues.
740    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
741      if (!ME->isArrow() && ME->getBase()->isRValue()) {
742        Init = ME->getBase();
743        continue;
744      }
745    }
746
747    break;
748  }
749
750  return Init->getType();
751}
752
753/// addAutomaticObjDtors - Add to current block automatic objects destructors
754/// for objects in range of local scope positions. Use S as trigger statement
755/// for destructors.
756void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
757                                      LocalScope::const_iterator E, Stmt *S) {
758  if (!BuildOpts.AddImplicitDtors)
759    return;
760
761  if (B == E)
762    return;
763
764  // We need to append the destructors in reverse order, but any one of them
765  // may be a no-return destructor which changes the CFG. As a result, buffer
766  // this sequence up and replay them in reverse order when appending onto the
767  // CFGBlock(s).
768  SmallVector<VarDecl*, 10> Decls;
769  Decls.reserve(B.distance(E));
770  for (LocalScope::const_iterator I = B; I != E; ++I)
771    Decls.push_back(*I);
772
773  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
774                                                   E = Decls.rend();
775       I != E; ++I) {
776    // If this destructor is marked as a no-return destructor, we need to
777    // create a new block for the destructor which does not have as a successor
778    // anything built thus far: control won't flow out of this block.
779    QualType Ty = (*I)->getType();
780    if (Ty->isReferenceType()) {
781      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
782    }
783    Ty = Context->getBaseElementType(Ty);
784
785    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
786    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
787      Block = createNoReturnBlock();
788    else
789      autoCreateBlock();
790
791    appendAutomaticObjDtor(Block, *I, S);
792  }
793}
794
795/// addImplicitDtorsForDestructor - Add implicit destructors generated for
796/// base and member objects in destructor.
797void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
798  assert (BuildOpts.AddImplicitDtors
799      && "Can be called only when dtors should be added");
800  const CXXRecordDecl *RD = DD->getParent();
801
802  // At the end destroy virtual base objects.
803  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
804      VE = RD->vbases_end(); VI != VE; ++VI) {
805    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
806    if (!CD->hasTrivialDestructor()) {
807      autoCreateBlock();
808      appendBaseDtor(Block, VI);
809    }
810  }
811
812  // Before virtual bases destroy direct base objects.
813  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
814      BE = RD->bases_end(); BI != BE; ++BI) {
815    if (!BI->isVirtual()) {
816      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
817      if (!CD->hasTrivialDestructor()) {
818        autoCreateBlock();
819        appendBaseDtor(Block, BI);
820      }
821    }
822  }
823
824  // First destroy member objects.
825  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
826      FE = RD->field_end(); FI != FE; ++FI) {
827    // Check for constant size array. Set type to array element type.
828    QualType QT = FI->getType();
829    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
830      if (AT->getSize() == 0)
831        continue;
832      QT = AT->getElementType();
833    }
834
835    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
836      if (!CD->hasTrivialDestructor()) {
837        autoCreateBlock();
838        appendMemberDtor(Block, *FI);
839      }
840  }
841}
842
843/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
844/// way return valid LocalScope object.
845LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
846  if (!Scope) {
847    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
848    Scope = alloc.Allocate<LocalScope>();
849    BumpVectorContext ctx(alloc);
850    new (Scope) LocalScope(ctx, ScopePos);
851  }
852  return Scope;
853}
854
855/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
856/// that should create implicit scope (e.g. if/else substatements).
857void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
858  if (!BuildOpts.AddImplicitDtors)
859    return;
860
861  LocalScope *Scope = 0;
862
863  // For compound statement we will be creating explicit scope.
864  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
865    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
866        ; BI != BE; ++BI) {
867      Stmt *SI = (*BI)->stripLabelLikeStatements();
868      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
869        Scope = addLocalScopeForDeclStmt(DS, Scope);
870    }
871    return;
872  }
873
874  // For any other statement scope will be implicit and as such will be
875  // interesting only for DeclStmt.
876  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
877    addLocalScopeForDeclStmt(DS);
878}
879
880/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
881/// reuse Scope if not NULL.
882LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
883                                                 LocalScope* Scope) {
884  if (!BuildOpts.AddImplicitDtors)
885    return Scope;
886
887  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
888      ; DI != DE; ++DI) {
889    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
890      Scope = addLocalScopeForVarDecl(VD, Scope);
891  }
892  return Scope;
893}
894
895/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
896/// create add scope for automatic objects and temporary objects bound to
897/// const reference. Will reuse Scope if not NULL.
898LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
899                                                LocalScope* Scope) {
900  if (!BuildOpts.AddImplicitDtors)
901    return Scope;
902
903  // Check if variable is local.
904  switch (VD->getStorageClass()) {
905  case SC_None:
906  case SC_Auto:
907  case SC_Register:
908    break;
909  default: return Scope;
910  }
911
912  // Check for const references bound to temporary. Set type to pointee.
913  QualType QT = VD->getType();
914  if (QT.getTypePtr()->isReferenceType()) {
915    if (!VD->extendsLifetimeOfTemporary())
916      return Scope;
917
918    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
919  }
920
921  // Check for constant size array. Set type to array element type.
922  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
923    if (AT->getSize() == 0)
924      return Scope;
925    QT = AT->getElementType();
926  }
927
928  // Check if type is a C++ class with non-trivial destructor.
929  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
930    if (!CD->hasTrivialDestructor()) {
931      // Add the variable to scope
932      Scope = createOrReuseLocalScope(Scope);
933      Scope->addVar(VD);
934      ScopePos = Scope->begin();
935    }
936  return Scope;
937}
938
939/// addLocalScopeAndDtors - For given statement add local scope for it and
940/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
941void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
942  if (!BuildOpts.AddImplicitDtors)
943    return;
944
945  LocalScope::const_iterator scopeBeginPos = ScopePos;
946  addLocalScopeForStmt(S);
947  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
948}
949
950/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
951/// variables with automatic storage duration to CFGBlock's elements vector.
952/// Elements will be prepended to physical beginning of the vector which
953/// happens to be logical end. Use blocks terminator as statement that specifies
954/// destructors call site.
955/// FIXME: This mechanism for adding automatic destructors doesn't handle
956/// no-return destructors properly.
957void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
958    LocalScope::const_iterator B, LocalScope::const_iterator E) {
959  BumpVectorContext &C = cfg->getBumpVectorContext();
960  CFGBlock::iterator InsertPos
961    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
962  for (LocalScope::const_iterator I = B; I != E; ++I)
963    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
964                                            Blk->getTerminator());
965}
966
967/// Visit - Walk the subtree of a statement and add extra
968///   blocks for ternary operators, &&, and ||.  We also process "," and
969///   DeclStmts (which may contain nested control-flow).
970CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
971  if (!S) {
972    badCFG = true;
973    return 0;
974  }
975
976  if (Expr *E = dyn_cast<Expr>(S))
977    S = E->IgnoreParens();
978
979  switch (S->getStmtClass()) {
980    default:
981      return VisitStmt(S, asc);
982
983    case Stmt::AddrLabelExprClass:
984      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
985
986    case Stmt::BinaryConditionalOperatorClass:
987      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
988
989    case Stmt::BinaryOperatorClass:
990      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
991
992    case Stmt::BlockExprClass:
993      return VisitNoRecurse(cast<Expr>(S), asc);
994
995    case Stmt::BreakStmtClass:
996      return VisitBreakStmt(cast<BreakStmt>(S));
997
998    case Stmt::CallExprClass:
999    case Stmt::CXXOperatorCallExprClass:
1000    case Stmt::CXXMemberCallExprClass:
1001    case Stmt::UserDefinedLiteralClass:
1002      return VisitCallExpr(cast<CallExpr>(S), asc);
1003
1004    case Stmt::CaseStmtClass:
1005      return VisitCaseStmt(cast<CaseStmt>(S));
1006
1007    case Stmt::ChooseExprClass:
1008      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1009
1010    case Stmt::CompoundStmtClass:
1011      return VisitCompoundStmt(cast<CompoundStmt>(S));
1012
1013    case Stmt::ConditionalOperatorClass:
1014      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1015
1016    case Stmt::ContinueStmtClass:
1017      return VisitContinueStmt(cast<ContinueStmt>(S));
1018
1019    case Stmt::CXXCatchStmtClass:
1020      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1021
1022    case Stmt::ExprWithCleanupsClass:
1023      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1024
1025    case Stmt::CXXBindTemporaryExprClass:
1026      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1027
1028    case Stmt::CXXConstructExprClass:
1029      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1030
1031    case Stmt::CXXFunctionalCastExprClass:
1032      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1033
1034    case Stmt::CXXTemporaryObjectExprClass:
1035      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1036
1037    case Stmt::CXXThrowExprClass:
1038      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1039
1040    case Stmt::CXXTryStmtClass:
1041      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1042
1043    case Stmt::CXXForRangeStmtClass:
1044      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1045
1046    case Stmt::DeclStmtClass:
1047      return VisitDeclStmt(cast<DeclStmt>(S));
1048
1049    case Stmt::DefaultStmtClass:
1050      return VisitDefaultStmt(cast<DefaultStmt>(S));
1051
1052    case Stmt::DoStmtClass:
1053      return VisitDoStmt(cast<DoStmt>(S));
1054
1055    case Stmt::ForStmtClass:
1056      return VisitForStmt(cast<ForStmt>(S));
1057
1058    case Stmt::GotoStmtClass:
1059      return VisitGotoStmt(cast<GotoStmt>(S));
1060
1061    case Stmt::IfStmtClass:
1062      return VisitIfStmt(cast<IfStmt>(S));
1063
1064    case Stmt::ImplicitCastExprClass:
1065      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1066
1067    case Stmt::IndirectGotoStmtClass:
1068      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1069
1070    case Stmt::LabelStmtClass:
1071      return VisitLabelStmt(cast<LabelStmt>(S));
1072
1073    case Stmt::LambdaExprClass:
1074      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1075
1076    case Stmt::MemberExprClass:
1077      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1078
1079    case Stmt::NullStmtClass:
1080      return Block;
1081
1082    case Stmt::ObjCAtCatchStmtClass:
1083      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1084
1085    case Stmt::ObjCAutoreleasePoolStmtClass:
1086    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1087
1088    case Stmt::ObjCAtSynchronizedStmtClass:
1089      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1090
1091    case Stmt::ObjCAtThrowStmtClass:
1092      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1093
1094    case Stmt::ObjCAtTryStmtClass:
1095      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1096
1097    case Stmt::ObjCForCollectionStmtClass:
1098      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1099
1100    case Stmt::OpaqueValueExprClass:
1101      return Block;
1102
1103    case Stmt::PseudoObjectExprClass:
1104      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1105
1106    case Stmt::ReturnStmtClass:
1107      return VisitReturnStmt(cast<ReturnStmt>(S));
1108
1109    case Stmt::UnaryExprOrTypeTraitExprClass:
1110      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1111                                           asc);
1112
1113    case Stmt::StmtExprClass:
1114      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1115
1116    case Stmt::SwitchStmtClass:
1117      return VisitSwitchStmt(cast<SwitchStmt>(S));
1118
1119    case Stmt::UnaryOperatorClass:
1120      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1121
1122    case Stmt::WhileStmtClass:
1123      return VisitWhileStmt(cast<WhileStmt>(S));
1124  }
1125}
1126
1127CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1128  if (asc.alwaysAdd(*this, S)) {
1129    autoCreateBlock();
1130    appendStmt(Block, S);
1131  }
1132
1133  return VisitChildren(S);
1134}
1135
1136/// VisitChildren - Visit the children of a Stmt.
1137CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1138  CFGBlock *lastBlock = Block;
1139  for (Stmt::child_range I = Terminator->children(); I; ++I)
1140    if (Stmt *child = *I)
1141      if (CFGBlock *b = Visit(child))
1142        lastBlock = b;
1143
1144  return lastBlock;
1145}
1146
1147CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1148                                         AddStmtChoice asc) {
1149  AddressTakenLabels.insert(A->getLabel());
1150
1151  if (asc.alwaysAdd(*this, A)) {
1152    autoCreateBlock();
1153    appendStmt(Block, A);
1154  }
1155
1156  return Block;
1157}
1158
1159CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1160           AddStmtChoice asc) {
1161  if (asc.alwaysAdd(*this, U)) {
1162    autoCreateBlock();
1163    appendStmt(Block, U);
1164  }
1165
1166  return Visit(U->getSubExpr(), AddStmtChoice());
1167}
1168
1169CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1170  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1171  appendStmt(ConfluenceBlock, B);
1172
1173  if (badCFG)
1174    return 0;
1175
1176  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1177}
1178
1179std::pair<CFGBlock*, CFGBlock*>
1180CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1181                                 Stmt *Term,
1182                                 CFGBlock *TrueBlock,
1183                                 CFGBlock *FalseBlock) {
1184
1185  // Introspect the RHS.  If it is a nested logical operation, we recursively
1186  // build the CFG using this function.  Otherwise, resort to default
1187  // CFG construction behavior.
1188  Expr *RHS = B->getRHS()->IgnoreParens();
1189  CFGBlock *RHSBlock, *ExitBlock;
1190
1191  do {
1192    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1193      if (B_RHS->isLogicalOp()) {
1194        llvm::tie(RHSBlock, ExitBlock) =
1195          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1196        break;
1197      }
1198
1199    // The RHS is not a nested logical operation.  Don't push the terminator
1200    // down further, but instead visit RHS and construct the respective
1201    // pieces of the CFG, and link up the RHSBlock with the terminator
1202    // we have been provided.
1203    ExitBlock = RHSBlock = createBlock(false);
1204
1205    if (!Term) {
1206      assert(TrueBlock == FalseBlock);
1207      addSuccessor(RHSBlock, TrueBlock);
1208    }
1209    else {
1210      RHSBlock->setTerminator(Term);
1211      TryResult KnownVal = tryEvaluateBool(RHS);
1212      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1213      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1214    }
1215
1216    Block = RHSBlock;
1217    RHSBlock = addStmt(RHS);
1218  }
1219  while (false);
1220
1221  if (badCFG)
1222    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1223
1224  // Generate the blocks for evaluating the LHS.
1225  Expr *LHS = B->getLHS()->IgnoreParens();
1226
1227  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1228    if (B_LHS->isLogicalOp()) {
1229      if (B->getOpcode() == BO_LOr)
1230        FalseBlock = RHSBlock;
1231      else
1232        TrueBlock = RHSBlock;
1233
1234      // For the LHS, treat 'B' as the terminator that we want to sink
1235      // into the nested branch.  The RHS always gets the top-most
1236      // terminator.
1237      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1238    }
1239
1240  // Create the block evaluating the LHS.
1241  // This contains the '&&' or '||' as the terminator.
1242  CFGBlock *LHSBlock = createBlock(false);
1243  LHSBlock->setTerminator(B);
1244
1245  Block = LHSBlock;
1246  CFGBlock *EntryLHSBlock = addStmt(LHS);
1247
1248  if (badCFG)
1249    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1250
1251  // See if this is a known constant.
1252  TryResult KnownVal = tryEvaluateBool(LHS);
1253
1254  // Now link the LHSBlock with RHSBlock.
1255  if (B->getOpcode() == BO_LOr) {
1256    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1257    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1258  } else {
1259    assert(B->getOpcode() == BO_LAnd);
1260    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1261    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1262  }
1263
1264  return std::make_pair(EntryLHSBlock, ExitBlock);
1265}
1266
1267
1268CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1269                                          AddStmtChoice asc) {
1270   // && or ||
1271  if (B->isLogicalOp())
1272    return VisitLogicalOperator(B);
1273
1274  if (B->getOpcode() == BO_Comma) { // ,
1275    autoCreateBlock();
1276    appendStmt(Block, B);
1277    addStmt(B->getRHS());
1278    return addStmt(B->getLHS());
1279  }
1280
1281  if (B->isAssignmentOp()) {
1282    if (asc.alwaysAdd(*this, B)) {
1283      autoCreateBlock();
1284      appendStmt(Block, B);
1285    }
1286    Visit(B->getLHS());
1287    return Visit(B->getRHS());
1288  }
1289
1290  if (asc.alwaysAdd(*this, B)) {
1291    autoCreateBlock();
1292    appendStmt(Block, B);
1293  }
1294
1295  CFGBlock *RBlock = Visit(B->getRHS());
1296  CFGBlock *LBlock = Visit(B->getLHS());
1297  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1298  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1299  // return RBlock.  Otherwise we'll incorrectly return NULL.
1300  return (LBlock ? LBlock : RBlock);
1301}
1302
1303CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1304  if (asc.alwaysAdd(*this, E)) {
1305    autoCreateBlock();
1306    appendStmt(Block, E);
1307  }
1308  return Block;
1309}
1310
1311CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1312  // "break" is a control-flow statement.  Thus we stop processing the current
1313  // block.
1314  if (badCFG)
1315    return 0;
1316
1317  // Now create a new block that ends with the break statement.
1318  Block = createBlock(false);
1319  Block->setTerminator(B);
1320
1321  // If there is no target for the break, then we are looking at an incomplete
1322  // AST.  This means that the CFG cannot be constructed.
1323  if (BreakJumpTarget.block) {
1324    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1325    addSuccessor(Block, BreakJumpTarget.block);
1326  } else
1327    badCFG = true;
1328
1329
1330  return Block;
1331}
1332
1333static bool CanThrow(Expr *E, ASTContext &Ctx) {
1334  QualType Ty = E->getType();
1335  if (Ty->isFunctionPointerType())
1336    Ty = Ty->getAs<PointerType>()->getPointeeType();
1337  else if (Ty->isBlockPointerType())
1338    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1339
1340  const FunctionType *FT = Ty->getAs<FunctionType>();
1341  if (FT) {
1342    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1343      if (Proto->getExceptionSpecType() != EST_Uninstantiated &&
1344          Proto->isNothrow(Ctx))
1345        return false;
1346  }
1347  return true;
1348}
1349
1350CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1351  // Compute the callee type.
1352  QualType calleeType = C->getCallee()->getType();
1353  if (calleeType == Context->BoundMemberTy) {
1354    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1355
1356    // We should only get a null bound type if processing a dependent
1357    // CFG.  Recover by assuming nothing.
1358    if (!boundType.isNull()) calleeType = boundType;
1359  }
1360
1361  // If this is a call to a no-return function, this stops the block here.
1362  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1363
1364  bool AddEHEdge = false;
1365
1366  // Languages without exceptions are assumed to not throw.
1367  if (Context->getLangOpts().Exceptions) {
1368    if (BuildOpts.AddEHEdges)
1369      AddEHEdge = true;
1370  }
1371
1372  if (FunctionDecl *FD = C->getDirectCallee()) {
1373    if (FD->hasAttr<NoReturnAttr>())
1374      NoReturn = true;
1375    if (FD->hasAttr<NoThrowAttr>())
1376      AddEHEdge = false;
1377  }
1378
1379  if (!CanThrow(C->getCallee(), *Context))
1380    AddEHEdge = false;
1381
1382  if (!NoReturn && !AddEHEdge)
1383    return VisitStmt(C, asc.withAlwaysAdd(true));
1384
1385  if (Block) {
1386    Succ = Block;
1387    if (badCFG)
1388      return 0;
1389  }
1390
1391  if (NoReturn)
1392    Block = createNoReturnBlock();
1393  else
1394    Block = createBlock();
1395
1396  appendStmt(Block, C);
1397
1398  if (AddEHEdge) {
1399    // Add exceptional edges.
1400    if (TryTerminatedBlock)
1401      addSuccessor(Block, TryTerminatedBlock);
1402    else
1403      addSuccessor(Block, &cfg->getExit());
1404  }
1405
1406  return VisitChildren(C);
1407}
1408
1409CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1410                                      AddStmtChoice asc) {
1411  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1412  appendStmt(ConfluenceBlock, C);
1413  if (badCFG)
1414    return 0;
1415
1416  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1417  Succ = ConfluenceBlock;
1418  Block = NULL;
1419  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1420  if (badCFG)
1421    return 0;
1422
1423  Succ = ConfluenceBlock;
1424  Block = NULL;
1425  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1426  if (badCFG)
1427    return 0;
1428
1429  Block = createBlock(false);
1430  // See if this is a known constant.
1431  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1432  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1433  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1434  Block->setTerminator(C);
1435  return addStmt(C->getCond());
1436}
1437
1438
1439CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1440  addLocalScopeAndDtors(C);
1441  CFGBlock *LastBlock = Block;
1442
1443  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1444       I != E; ++I ) {
1445    // If we hit a segment of code just containing ';' (NullStmts), we can
1446    // get a null block back.  In such cases, just use the LastBlock
1447    if (CFGBlock *newBlock = addStmt(*I))
1448      LastBlock = newBlock;
1449
1450    if (badCFG)
1451      return NULL;
1452  }
1453
1454  return LastBlock;
1455}
1456
1457CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1458                                               AddStmtChoice asc) {
1459  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1460  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1461
1462  // Create the confluence block that will "merge" the results of the ternary
1463  // expression.
1464  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1465  appendStmt(ConfluenceBlock, C);
1466  if (badCFG)
1467    return 0;
1468
1469  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1470
1471  // Create a block for the LHS expression if there is an LHS expression.  A
1472  // GCC extension allows LHS to be NULL, causing the condition to be the
1473  // value that is returned instead.
1474  //  e.g: x ?: y is shorthand for: x ? x : y;
1475  Succ = ConfluenceBlock;
1476  Block = NULL;
1477  CFGBlock *LHSBlock = 0;
1478  const Expr *trueExpr = C->getTrueExpr();
1479  if (trueExpr != opaqueValue) {
1480    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1481    if (badCFG)
1482      return 0;
1483    Block = NULL;
1484  }
1485  else
1486    LHSBlock = ConfluenceBlock;
1487
1488  // Create the block for the RHS expression.
1489  Succ = ConfluenceBlock;
1490  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1491  if (badCFG)
1492    return 0;
1493
1494  // Create the block that will contain the condition.
1495  Block = createBlock(false);
1496
1497  // See if this is a known constant.
1498  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1499  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1500  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1501  Block->setTerminator(C);
1502  Expr *condExpr = C->getCond();
1503
1504  if (opaqueValue) {
1505    // Run the condition expression if it's not trivially expressed in
1506    // terms of the opaque value (or if there is no opaque value).
1507    if (condExpr != opaqueValue)
1508      addStmt(condExpr);
1509
1510    // Before that, run the common subexpression if there was one.
1511    // At least one of this or the above will be run.
1512    return addStmt(BCO->getCommon());
1513  }
1514
1515  return addStmt(condExpr);
1516}
1517
1518CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1519  // Check if the Decl is for an __label__.  If so, elide it from the
1520  // CFG entirely.
1521  if (isa<LabelDecl>(*DS->decl_begin()))
1522    return Block;
1523
1524  // This case also handles static_asserts.
1525  if (DS->isSingleDecl())
1526    return VisitDeclSubExpr(DS);
1527
1528  CFGBlock *B = 0;
1529
1530  // Build an individual DeclStmt for each decl.
1531  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1532                                       E = DS->decl_rend();
1533       I != E; ++I) {
1534    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1535    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1536               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1537
1538    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1539    // automatically freed with the CFG.
1540    DeclGroupRef DG(*I);
1541    Decl *D = *I;
1542    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1543    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1544
1545    // Append the fake DeclStmt to block.
1546    B = VisitDeclSubExpr(DSNew);
1547  }
1548
1549  return B;
1550}
1551
1552/// VisitDeclSubExpr - Utility method to add block-level expressions for
1553/// DeclStmts and initializers in them.
1554CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1555  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1556  Decl *D = DS->getSingleDecl();
1557
1558  if (isa<StaticAssertDecl>(D)) {
1559    // static_asserts aren't added to the CFG because they do not impact
1560    // runtime semantics.
1561    return Block;
1562  }
1563
1564  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1565
1566  if (!VD) {
1567    autoCreateBlock();
1568    appendStmt(Block, DS);
1569    return Block;
1570  }
1571
1572  bool IsReference = false;
1573  bool HasTemporaries = false;
1574
1575  // Destructors of temporaries in initialization expression should be called
1576  // after initialization finishes.
1577  Expr *Init = VD->getInit();
1578  if (Init) {
1579    IsReference = VD->getType()->isReferenceType();
1580    HasTemporaries = isa<ExprWithCleanups>(Init);
1581
1582    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1583      // Generate destructors for temporaries in initialization expression.
1584      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1585          IsReference);
1586    }
1587  }
1588
1589  autoCreateBlock();
1590  appendStmt(Block, DS);
1591
1592  // Keep track of the last non-null block, as 'Block' can be nulled out
1593  // if the initializer expression is something like a 'while' in a
1594  // statement-expression.
1595  CFGBlock *LastBlock = Block;
1596
1597  if (Init) {
1598    if (HasTemporaries) {
1599      // For expression with temporaries go directly to subexpression to omit
1600      // generating destructors for the second time.
1601      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1602      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1603        LastBlock = newBlock;
1604    }
1605    else {
1606      if (CFGBlock *newBlock = Visit(Init))
1607        LastBlock = newBlock;
1608    }
1609  }
1610
1611  // If the type of VD is a VLA, then we must process its size expressions.
1612  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1613       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1614    Block = addStmt(VA->getSizeExpr());
1615
1616  // Remove variable from local scope.
1617  if (ScopePos && VD == *ScopePos)
1618    ++ScopePos;
1619
1620  return Block ? Block : LastBlock;
1621}
1622
1623CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1624  // We may see an if statement in the middle of a basic block, or it may be the
1625  // first statement we are processing.  In either case, we create a new basic
1626  // block.  First, we create the blocks for the then...else statements, and
1627  // then we create the block containing the if statement.  If we were in the
1628  // middle of a block, we stop processing that block.  That block is then the
1629  // implicit successor for the "then" and "else" clauses.
1630
1631  // Save local scope position because in case of condition variable ScopePos
1632  // won't be restored when traversing AST.
1633  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1634
1635  // Create local scope for possible condition variable.
1636  // Store scope position. Add implicit destructor.
1637  if (VarDecl *VD = I->getConditionVariable()) {
1638    LocalScope::const_iterator BeginScopePos = ScopePos;
1639    addLocalScopeForVarDecl(VD);
1640    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1641  }
1642
1643  // The block we were processing is now finished.  Make it the successor
1644  // block.
1645  if (Block) {
1646    Succ = Block;
1647    if (badCFG)
1648      return 0;
1649  }
1650
1651  // Process the false branch.
1652  CFGBlock *ElseBlock = Succ;
1653
1654  if (Stmt *Else = I->getElse()) {
1655    SaveAndRestore<CFGBlock*> sv(Succ);
1656
1657    // NULL out Block so that the recursive call to Visit will
1658    // create a new basic block.
1659    Block = NULL;
1660
1661    // If branch is not a compound statement create implicit scope
1662    // and add destructors.
1663    if (!isa<CompoundStmt>(Else))
1664      addLocalScopeAndDtors(Else);
1665
1666    ElseBlock = addStmt(Else);
1667
1668    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1669      ElseBlock = sv.get();
1670    else if (Block) {
1671      if (badCFG)
1672        return 0;
1673    }
1674  }
1675
1676  // Process the true branch.
1677  CFGBlock *ThenBlock;
1678  {
1679    Stmt *Then = I->getThen();
1680    assert(Then);
1681    SaveAndRestore<CFGBlock*> sv(Succ);
1682    Block = NULL;
1683
1684    // If branch is not a compound statement create implicit scope
1685    // and add destructors.
1686    if (!isa<CompoundStmt>(Then))
1687      addLocalScopeAndDtors(Then);
1688
1689    ThenBlock = addStmt(Then);
1690
1691    if (!ThenBlock) {
1692      // We can reach here if the "then" body has all NullStmts.
1693      // Create an empty block so we can distinguish between true and false
1694      // branches in path-sensitive analyses.
1695      ThenBlock = createBlock(false);
1696      addSuccessor(ThenBlock, sv.get());
1697    } else if (Block) {
1698      if (badCFG)
1699        return 0;
1700    }
1701  }
1702
1703  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1704  // having these handle the actual control-flow jump.  Note that
1705  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1706  // we resort to the old control-flow behavior.  This special handling
1707  // removes infeasible paths from the control-flow graph by having the
1708  // control-flow transfer of '&&' or '||' go directly into the then/else
1709  // blocks directly.
1710  if (!I->getConditionVariable())
1711    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(I->getCond()))
1712      if (Cond->isLogicalOp())
1713        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1714
1715  // Now create a new block containing the if statement.
1716  Block = createBlock(false);
1717
1718  // Set the terminator of the new block to the If statement.
1719  Block->setTerminator(I);
1720
1721  // See if this is a known constant.
1722  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1723
1724  // Now add the successors.
1725  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1726  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1727
1728  // Add the condition as the last statement in the new block.  This may create
1729  // new blocks as the condition may contain control-flow.  Any newly created
1730  // blocks will be pointed to be "Block".
1731  Block = addStmt(I->getCond());
1732
1733  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1734  // and the condition variable initialization to the CFG.
1735  if (VarDecl *VD = I->getConditionVariable()) {
1736    if (Expr *Init = VD->getInit()) {
1737      autoCreateBlock();
1738      appendStmt(Block, I->getConditionVariableDeclStmt());
1739      addStmt(Init);
1740    }
1741  }
1742
1743  return Block;
1744}
1745
1746
1747CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1748  // If we were in the middle of a block we stop processing that block.
1749  //
1750  // NOTE: If a "return" appears in the middle of a block, this means that the
1751  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1752  //       for that code; a simple "mark-and-sweep" from the entry block will be
1753  //       able to report such dead blocks.
1754
1755  // Create the new block.
1756  Block = createBlock(false);
1757
1758  // The Exit block is the only successor.
1759  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1760  addSuccessor(Block, &cfg->getExit());
1761
1762  // Add the return statement to the block.  This may create new blocks if R
1763  // contains control-flow (short-circuit operations).
1764  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1765}
1766
1767CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1768  // Get the block of the labeled statement.  Add it to our map.
1769  addStmt(L->getSubStmt());
1770  CFGBlock *LabelBlock = Block;
1771
1772  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1773    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1774
1775  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1776         "label already in map");
1777  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1778
1779  // Labels partition blocks, so this is the end of the basic block we were
1780  // processing (L is the block's label).  Because this is label (and we have
1781  // already processed the substatement) there is no extra control-flow to worry
1782  // about.
1783  LabelBlock->setLabel(L);
1784  if (badCFG)
1785    return 0;
1786
1787  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1788  Block = NULL;
1789
1790  // This block is now the implicit successor of other blocks.
1791  Succ = LabelBlock;
1792
1793  return LabelBlock;
1794}
1795
1796CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1797  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1798  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1799       et = E->capture_init_end(); it != et; ++it) {
1800    if (Expr *Init = *it) {
1801      CFGBlock *Tmp = Visit(Init);
1802      if (Tmp != 0)
1803        LastBlock = Tmp;
1804    }
1805  }
1806  return LastBlock;
1807}
1808
1809CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1810  // Goto is a control-flow statement.  Thus we stop processing the current
1811  // block and create a new one.
1812
1813  Block = createBlock(false);
1814  Block->setTerminator(G);
1815
1816  // If we already know the mapping to the label block add the successor now.
1817  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1818
1819  if (I == LabelMap.end())
1820    // We will need to backpatch this block later.
1821    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1822  else {
1823    JumpTarget JT = I->second;
1824    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1825    addSuccessor(Block, JT.block);
1826  }
1827
1828  return Block;
1829}
1830
1831CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1832  CFGBlock *LoopSuccessor = NULL;
1833
1834  // Save local scope position because in case of condition variable ScopePos
1835  // won't be restored when traversing AST.
1836  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1837
1838  // Create local scope for init statement and possible condition variable.
1839  // Add destructor for init statement and condition variable.
1840  // Store scope position for continue statement.
1841  if (Stmt *Init = F->getInit())
1842    addLocalScopeForStmt(Init);
1843  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1844
1845  if (VarDecl *VD = F->getConditionVariable())
1846    addLocalScopeForVarDecl(VD);
1847  LocalScope::const_iterator ContinueScopePos = ScopePos;
1848
1849  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1850
1851  // "for" is a control-flow statement.  Thus we stop processing the current
1852  // block.
1853  if (Block) {
1854    if (badCFG)
1855      return 0;
1856    LoopSuccessor = Block;
1857  } else
1858    LoopSuccessor = Succ;
1859
1860  // Save the current value for the break targets.
1861  // All breaks should go to the code following the loop.
1862  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1863  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1864
1865  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1866
1867  // Now create the loop body.
1868  {
1869    assert(F->getBody());
1870
1871    // Save the current values for Block, Succ, continue and break targets.
1872    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1873    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1874
1875    // Create an empty block to represent the transition block for looping back
1876    // to the head of the loop.  If we have increment code, it will
1877    // go in this block as well.
1878    Block = Succ = TransitionBlock = createBlock(false);
1879    TransitionBlock->setLoopTarget(F);
1880
1881    if (Stmt *I = F->getInc()) {
1882      // Generate increment code in its own basic block.  This is the target of
1883      // continue statements.
1884      Succ = addStmt(I);
1885    }
1886
1887    // Finish up the increment (or empty) block if it hasn't been already.
1888    if (Block) {
1889      assert(Block == Succ);
1890      if (badCFG)
1891        return 0;
1892      Block = 0;
1893    }
1894
1895   // The starting block for the loop increment is the block that should
1896   // represent the 'loop target' for looping back to the start of the loop.
1897   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1898   ContinueJumpTarget.block->setLoopTarget(F);
1899
1900    // Loop body should end with destructor of Condition variable (if any).
1901    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1902
1903    // If body is not a compound statement create implicit scope
1904    // and add destructors.
1905    if (!isa<CompoundStmt>(F->getBody()))
1906      addLocalScopeAndDtors(F->getBody());
1907
1908    // Now populate the body block, and in the process create new blocks as we
1909    // walk the body of the loop.
1910    BodyBlock = addStmt(F->getBody());
1911
1912    if (!BodyBlock) {
1913      // In the case of "for (...;...;...);" we can have a null BodyBlock.
1914      // Use the continue jump target as the proxy for the body.
1915      BodyBlock = ContinueJumpTarget.block;
1916    }
1917    else if (badCFG)
1918      return 0;
1919  }
1920
1921  // Because of short-circuit evaluation, the condition of the loop can span
1922  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1923  // evaluate the condition.
1924  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
1925
1926  do {
1927    Expr *C = F->getCond();
1928
1929    // Specially handle logical operators, which have a slightly
1930    // more optimal CFG representation.
1931    if (BinaryOperator *Cond = dyn_cast_or_null<BinaryOperator>(C))
1932      if (Cond->isLogicalOp()) {
1933        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
1934          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
1935        break;
1936      }
1937
1938    // The default case when not handling logical operators.
1939    EntryConditionBlock = ExitConditionBlock = createBlock(false);
1940    ExitConditionBlock->setTerminator(F);
1941
1942    // See if this is a known constant.
1943    TryResult KnownVal(true);
1944
1945    if (C) {
1946      // Now add the actual condition to the condition block.
1947      // Because the condition itself may contain control-flow, new blocks may
1948      // be created.  Thus we update "Succ" after adding the condition.
1949      Block = ExitConditionBlock;
1950      EntryConditionBlock = addStmt(C);
1951
1952      // If this block contains a condition variable, add both the condition
1953      // variable and initializer to the CFG.
1954      if (VarDecl *VD = F->getConditionVariable()) {
1955        if (Expr *Init = VD->getInit()) {
1956          autoCreateBlock();
1957          appendStmt(Block, F->getConditionVariableDeclStmt());
1958          EntryConditionBlock = addStmt(Init);
1959          assert(Block == EntryConditionBlock);
1960        }
1961      }
1962
1963      if (Block && badCFG)
1964        return 0;
1965
1966      KnownVal = tryEvaluateBool(C);
1967    }
1968
1969    // Add the loop body entry as a successor to the condition.
1970    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1971    // Link up the condition block with the code that follows the loop.  (the
1972    // false branch).
1973    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1974
1975  } while (false);
1976
1977  // Link up the loop-back block to the entry condition block.
1978  addSuccessor(TransitionBlock, EntryConditionBlock);
1979
1980  // The condition block is the implicit successor for any code above the loop.
1981  Succ = EntryConditionBlock;
1982
1983  // If the loop contains initialization, create a new block for those
1984  // statements.  This block can also contain statements that precede the loop.
1985  if (Stmt *I = F->getInit()) {
1986    Block = createBlock();
1987    return addStmt(I);
1988  }
1989
1990  // There is no loop initialization.  We are thus basically a while loop.
1991  // NULL out Block to force lazy block construction.
1992  Block = NULL;
1993  Succ = EntryConditionBlock;
1994  return EntryConditionBlock;
1995}
1996
1997CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1998  if (asc.alwaysAdd(*this, M)) {
1999    autoCreateBlock();
2000    appendStmt(Block, M);
2001  }
2002  return Visit(M->getBase());
2003}
2004
2005CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2006  // Objective-C fast enumeration 'for' statements:
2007  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2008  //
2009  //  for ( Type newVariable in collection_expression ) { statements }
2010  //
2011  //  becomes:
2012  //
2013  //   prologue:
2014  //     1. collection_expression
2015  //     T. jump to loop_entry
2016  //   loop_entry:
2017  //     1. side-effects of element expression
2018  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2019  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2020  //   TB:
2021  //     statements
2022  //     T. jump to loop_entry
2023  //   FB:
2024  //     what comes after
2025  //
2026  //  and
2027  //
2028  //  Type existingItem;
2029  //  for ( existingItem in expression ) { statements }
2030  //
2031  //  becomes:
2032  //
2033  //   the same with newVariable replaced with existingItem; the binding works
2034  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2035  //   a DeclStmt and the other returns a DeclRefExpr.
2036  //
2037
2038  CFGBlock *LoopSuccessor = 0;
2039
2040  if (Block) {
2041    if (badCFG)
2042      return 0;
2043    LoopSuccessor = Block;
2044    Block = 0;
2045  } else
2046    LoopSuccessor = Succ;
2047
2048  // Build the condition blocks.
2049  CFGBlock *ExitConditionBlock = createBlock(false);
2050
2051  // Set the terminator for the "exit" condition block.
2052  ExitConditionBlock->setTerminator(S);
2053
2054  // The last statement in the block should be the ObjCForCollectionStmt, which
2055  // performs the actual binding to 'element' and determines if there are any
2056  // more items in the collection.
2057  appendStmt(ExitConditionBlock, S);
2058  Block = ExitConditionBlock;
2059
2060  // Walk the 'element' expression to see if there are any side-effects.  We
2061  // generate new blocks as necessary.  We DON'T add the statement by default to
2062  // the CFG unless it contains control-flow.
2063  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2064                                        AddStmtChoice::NotAlwaysAdd);
2065  if (Block) {
2066    if (badCFG)
2067      return 0;
2068    Block = 0;
2069  }
2070
2071  // The condition block is the implicit successor for the loop body as well as
2072  // any code above the loop.
2073  Succ = EntryConditionBlock;
2074
2075  // Now create the true branch.
2076  {
2077    // Save the current values for Succ, continue and break targets.
2078    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2079    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2080        save_break(BreakJumpTarget);
2081
2082    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2083    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2084
2085    CFGBlock *BodyBlock = addStmt(S->getBody());
2086
2087    if (!BodyBlock)
2088      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2089    else if (Block) {
2090      if (badCFG)
2091        return 0;
2092    }
2093
2094    // This new body block is a successor to our "exit" condition block.
2095    addSuccessor(ExitConditionBlock, BodyBlock);
2096  }
2097
2098  // Link up the condition block with the code that follows the loop.
2099  // (the false branch).
2100  addSuccessor(ExitConditionBlock, LoopSuccessor);
2101
2102  // Now create a prologue block to contain the collection expression.
2103  Block = createBlock();
2104  return addStmt(S->getCollection());
2105}
2106
2107CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2108  // Inline the body.
2109  return addStmt(S->getSubStmt());
2110  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2111}
2112
2113CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2114  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2115
2116  // Inline the body.
2117  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2118
2119  // The sync body starts its own basic block.  This makes it a little easier
2120  // for diagnostic clients.
2121  if (SyncBlock) {
2122    if (badCFG)
2123      return 0;
2124
2125    Block = 0;
2126    Succ = SyncBlock;
2127  }
2128
2129  // Add the @synchronized to the CFG.
2130  autoCreateBlock();
2131  appendStmt(Block, S);
2132
2133  // Inline the sync expression.
2134  return addStmt(S->getSynchExpr());
2135}
2136
2137CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2138  // FIXME
2139  return NYS();
2140}
2141
2142CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2143  autoCreateBlock();
2144
2145  // Add the PseudoObject as the last thing.
2146  appendStmt(Block, E);
2147
2148  CFGBlock *lastBlock = Block;
2149
2150  // Before that, evaluate all of the semantics in order.  In
2151  // CFG-land, that means appending them in reverse order.
2152  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2153    Expr *Semantic = E->getSemanticExpr(--i);
2154
2155    // If the semantic is an opaque value, we're being asked to bind
2156    // it to its source expression.
2157    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2158      Semantic = OVE->getSourceExpr();
2159
2160    if (CFGBlock *B = Visit(Semantic))
2161      lastBlock = B;
2162  }
2163
2164  return lastBlock;
2165}
2166
2167CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2168  CFGBlock *LoopSuccessor = NULL;
2169
2170  // Save local scope position because in case of condition variable ScopePos
2171  // won't be restored when traversing AST.
2172  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2173
2174  // Create local scope for possible condition variable.
2175  // Store scope position for continue statement.
2176  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2177  if (VarDecl *VD = W->getConditionVariable()) {
2178    addLocalScopeForVarDecl(VD);
2179    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2180  }
2181
2182  // "while" is a control-flow statement.  Thus we stop processing the current
2183  // block.
2184  if (Block) {
2185    if (badCFG)
2186      return 0;
2187    LoopSuccessor = Block;
2188    Block = 0;
2189  } else {
2190    LoopSuccessor = Succ;
2191  }
2192
2193  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2194
2195  // Process the loop body.
2196  {
2197    assert(W->getBody());
2198
2199    // Save the current values for Block, Succ, continue and break targets.
2200    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2201    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2202                               save_break(BreakJumpTarget);
2203
2204    // Create an empty block to represent the transition block for looping back
2205    // to the head of the loop.
2206    Succ = TransitionBlock = createBlock(false);
2207    TransitionBlock->setLoopTarget(W);
2208    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2209
2210    // All breaks should go to the code following the loop.
2211    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2212
2213    // Loop body should end with destructor of Condition variable (if any).
2214    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2215
2216    // If body is not a compound statement create implicit scope
2217    // and add destructors.
2218    if (!isa<CompoundStmt>(W->getBody()))
2219      addLocalScopeAndDtors(W->getBody());
2220
2221    // Create the body.  The returned block is the entry to the loop body.
2222    BodyBlock = addStmt(W->getBody());
2223
2224    if (!BodyBlock)
2225      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2226    else if (Block && badCFG)
2227      return 0;
2228  }
2229
2230  // Because of short-circuit evaluation, the condition of the loop can span
2231  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2232  // evaluate the condition.
2233  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2234
2235  do {
2236    Expr *C = W->getCond();
2237
2238    // Specially handle logical operators, which have a slightly
2239    // more optimal CFG representation.
2240    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C))
2241      if (Cond->isLogicalOp()) {
2242        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2243          VisitLogicalOperator(Cond, W, BodyBlock,
2244                               LoopSuccessor);
2245        break;
2246      }
2247
2248    // The default case when not handling logical operators.
2249    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2250    ExitConditionBlock->setTerminator(W);
2251
2252    // Now add the actual condition to the condition block.
2253    // Because the condition itself may contain control-flow, new blocks may
2254    // be created.  Thus we update "Succ" after adding the condition.
2255    Block = ExitConditionBlock;
2256    Block = EntryConditionBlock = addStmt(C);
2257
2258    // If this block contains a condition variable, add both the condition
2259    // variable and initializer to the CFG.
2260    if (VarDecl *VD = W->getConditionVariable()) {
2261      if (Expr *Init = VD->getInit()) {
2262        autoCreateBlock();
2263        appendStmt(Block, W->getConditionVariableDeclStmt());
2264        EntryConditionBlock = addStmt(Init);
2265        assert(Block == EntryConditionBlock);
2266      }
2267    }
2268
2269    if (Block && badCFG)
2270      return 0;
2271
2272    // See if this is a known constant.
2273    const TryResult& KnownVal = tryEvaluateBool(C);
2274
2275    // Add the loop body entry as a successor to the condition.
2276    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2277    // Link up the condition block with the code that follows the loop.  (the
2278    // false branch).
2279    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2280
2281  } while(false);
2282
2283  // Link up the loop-back block to the entry condition block.
2284  addSuccessor(TransitionBlock, EntryConditionBlock);
2285
2286  // There can be no more statements in the condition block since we loop back
2287  // to this block.  NULL out Block to force lazy creation of another block.
2288  Block = NULL;
2289
2290  // Return the condition block, which is the dominating block for the loop.
2291  Succ = EntryConditionBlock;
2292  return EntryConditionBlock;
2293}
2294
2295
2296CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2297  // FIXME: For now we pretend that @catch and the code it contains does not
2298  //  exit.
2299  return Block;
2300}
2301
2302CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2303  // FIXME: This isn't complete.  We basically treat @throw like a return
2304  //  statement.
2305
2306  // If we were in the middle of a block we stop processing that block.
2307  if (badCFG)
2308    return 0;
2309
2310  // Create the new block.
2311  Block = createBlock(false);
2312
2313  // The Exit block is the only successor.
2314  addSuccessor(Block, &cfg->getExit());
2315
2316  // Add the statement to the block.  This may create new blocks if S contains
2317  // control-flow (short-circuit operations).
2318  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2319}
2320
2321CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2322  // If we were in the middle of a block we stop processing that block.
2323  if (badCFG)
2324    return 0;
2325
2326  // Create the new block.
2327  Block = createBlock(false);
2328
2329  if (TryTerminatedBlock)
2330    // The current try statement is the only successor.
2331    addSuccessor(Block, TryTerminatedBlock);
2332  else
2333    // otherwise the Exit block is the only successor.
2334    addSuccessor(Block, &cfg->getExit());
2335
2336  // Add the statement to the block.  This may create new blocks if S contains
2337  // control-flow (short-circuit operations).
2338  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2339}
2340
2341CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2342  CFGBlock *LoopSuccessor = NULL;
2343
2344  // "do...while" is a control-flow statement.  Thus we stop processing the
2345  // current block.
2346  if (Block) {
2347    if (badCFG)
2348      return 0;
2349    LoopSuccessor = Block;
2350  } else
2351    LoopSuccessor = Succ;
2352
2353  // Because of short-circuit evaluation, the condition of the loop can span
2354  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2355  // evaluate the condition.
2356  CFGBlock *ExitConditionBlock = createBlock(false);
2357  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2358
2359  // Set the terminator for the "exit" condition block.
2360  ExitConditionBlock->setTerminator(D);
2361
2362  // Now add the actual condition to the condition block.  Because the condition
2363  // itself may contain control-flow, new blocks may be created.
2364  if (Stmt *C = D->getCond()) {
2365    Block = ExitConditionBlock;
2366    EntryConditionBlock = addStmt(C);
2367    if (Block) {
2368      if (badCFG)
2369        return 0;
2370    }
2371  }
2372
2373  // The condition block is the implicit successor for the loop body.
2374  Succ = EntryConditionBlock;
2375
2376  // See if this is a known constant.
2377  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2378
2379  // Process the loop body.
2380  CFGBlock *BodyBlock = NULL;
2381  {
2382    assert(D->getBody());
2383
2384    // Save the current values for Block, Succ, and continue and break targets
2385    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2386    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2387        save_break(BreakJumpTarget);
2388
2389    // All continues within this loop should go to the condition block
2390    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2391
2392    // All breaks should go to the code following the loop.
2393    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2394
2395    // NULL out Block to force lazy instantiation of blocks for the body.
2396    Block = NULL;
2397
2398    // If body is not a compound statement create implicit scope
2399    // and add destructors.
2400    if (!isa<CompoundStmt>(D->getBody()))
2401      addLocalScopeAndDtors(D->getBody());
2402
2403    // Create the body.  The returned block is the entry to the loop body.
2404    BodyBlock = addStmt(D->getBody());
2405
2406    if (!BodyBlock)
2407      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2408    else if (Block) {
2409      if (badCFG)
2410        return 0;
2411    }
2412
2413    if (!KnownVal.isFalse()) {
2414      // Add an intermediate block between the BodyBlock and the
2415      // ExitConditionBlock to represent the "loop back" transition.  Create an
2416      // empty block to represent the transition block for looping back to the
2417      // head of the loop.
2418      // FIXME: Can we do this more efficiently without adding another block?
2419      Block = NULL;
2420      Succ = BodyBlock;
2421      CFGBlock *LoopBackBlock = createBlock();
2422      LoopBackBlock->setLoopTarget(D);
2423
2424      // Add the loop body entry as a successor to the condition.
2425      addSuccessor(ExitConditionBlock, LoopBackBlock);
2426    }
2427    else
2428      addSuccessor(ExitConditionBlock, NULL);
2429  }
2430
2431  // Link up the condition block with the code that follows the loop.
2432  // (the false branch).
2433  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2434
2435  // There can be no more statements in the body block(s) since we loop back to
2436  // the body.  NULL out Block to force lazy creation of another block.
2437  Block = NULL;
2438
2439  // Return the loop body, which is the dominating block for the loop.
2440  Succ = BodyBlock;
2441  return BodyBlock;
2442}
2443
2444CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2445  // "continue" is a control-flow statement.  Thus we stop processing the
2446  // current block.
2447  if (badCFG)
2448    return 0;
2449
2450  // Now create a new block that ends with the continue statement.
2451  Block = createBlock(false);
2452  Block->setTerminator(C);
2453
2454  // If there is no target for the continue, then we are looking at an
2455  // incomplete AST.  This means the CFG cannot be constructed.
2456  if (ContinueJumpTarget.block) {
2457    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2458    addSuccessor(Block, ContinueJumpTarget.block);
2459  } else
2460    badCFG = true;
2461
2462  return Block;
2463}
2464
2465CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2466                                                    AddStmtChoice asc) {
2467
2468  if (asc.alwaysAdd(*this, E)) {
2469    autoCreateBlock();
2470    appendStmt(Block, E);
2471  }
2472
2473  // VLA types have expressions that must be evaluated.
2474  CFGBlock *lastBlock = Block;
2475
2476  if (E->isArgumentType()) {
2477    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2478         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2479      lastBlock = addStmt(VA->getSizeExpr());
2480  }
2481  return lastBlock;
2482}
2483
2484/// VisitStmtExpr - Utility method to handle (nested) statement
2485///  expressions (a GCC extension).
2486CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2487  if (asc.alwaysAdd(*this, SE)) {
2488    autoCreateBlock();
2489    appendStmt(Block, SE);
2490  }
2491  return VisitCompoundStmt(SE->getSubStmt());
2492}
2493
2494CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2495  // "switch" is a control-flow statement.  Thus we stop processing the current
2496  // block.
2497  CFGBlock *SwitchSuccessor = NULL;
2498
2499  // Save local scope position because in case of condition variable ScopePos
2500  // won't be restored when traversing AST.
2501  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2502
2503  // Create local scope for possible condition variable.
2504  // Store scope position. Add implicit destructor.
2505  if (VarDecl *VD = Terminator->getConditionVariable()) {
2506    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2507    addLocalScopeForVarDecl(VD);
2508    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2509  }
2510
2511  if (Block) {
2512    if (badCFG)
2513      return 0;
2514    SwitchSuccessor = Block;
2515  } else SwitchSuccessor = Succ;
2516
2517  // Save the current "switch" context.
2518  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2519                            save_default(DefaultCaseBlock);
2520  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2521
2522  // Set the "default" case to be the block after the switch statement.  If the
2523  // switch statement contains a "default:", this value will be overwritten with
2524  // the block for that code.
2525  DefaultCaseBlock = SwitchSuccessor;
2526
2527  // Create a new block that will contain the switch statement.
2528  SwitchTerminatedBlock = createBlock(false);
2529
2530  // Now process the switch body.  The code after the switch is the implicit
2531  // successor.
2532  Succ = SwitchSuccessor;
2533  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2534
2535  // When visiting the body, the case statements should automatically get linked
2536  // up to the switch.  We also don't keep a pointer to the body, since all
2537  // control-flow from the switch goes to case/default statements.
2538  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2539  Block = NULL;
2540
2541  // For pruning unreachable case statements, save the current state
2542  // for tracking the condition value.
2543  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2544                                                     false);
2545
2546  // Determine if the switch condition can be explicitly evaluated.
2547  assert(Terminator->getCond() && "switch condition must be non-NULL");
2548  Expr::EvalResult result;
2549  bool b = tryEvaluate(Terminator->getCond(), result);
2550  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2551                                                    b ? &result : 0);
2552
2553  // If body is not a compound statement create implicit scope
2554  // and add destructors.
2555  if (!isa<CompoundStmt>(Terminator->getBody()))
2556    addLocalScopeAndDtors(Terminator->getBody());
2557
2558  addStmt(Terminator->getBody());
2559  if (Block) {
2560    if (badCFG)
2561      return 0;
2562  }
2563
2564  // If we have no "default:" case, the default transition is to the code
2565  // following the switch body.  Moreover, take into account if all the
2566  // cases of a switch are covered (e.g., switching on an enum value).
2567  addSuccessor(SwitchTerminatedBlock,
2568               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2569               ? 0 : DefaultCaseBlock);
2570
2571  // Add the terminator and condition in the switch block.
2572  SwitchTerminatedBlock->setTerminator(Terminator);
2573  Block = SwitchTerminatedBlock;
2574  Block = addStmt(Terminator->getCond());
2575
2576  // Finally, if the SwitchStmt contains a condition variable, add both the
2577  // SwitchStmt and the condition variable initialization to the CFG.
2578  if (VarDecl *VD = Terminator->getConditionVariable()) {
2579    if (Expr *Init = VD->getInit()) {
2580      autoCreateBlock();
2581      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2582      addStmt(Init);
2583    }
2584  }
2585
2586  return Block;
2587}
2588
2589static bool shouldAddCase(bool &switchExclusivelyCovered,
2590                          const Expr::EvalResult *switchCond,
2591                          const CaseStmt *CS,
2592                          ASTContext &Ctx) {
2593  if (!switchCond)
2594    return true;
2595
2596  bool addCase = false;
2597
2598  if (!switchExclusivelyCovered) {
2599    if (switchCond->Val.isInt()) {
2600      // Evaluate the LHS of the case value.
2601      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2602      const llvm::APSInt &condInt = switchCond->Val.getInt();
2603
2604      if (condInt == lhsInt) {
2605        addCase = true;
2606        switchExclusivelyCovered = true;
2607      }
2608      else if (condInt < lhsInt) {
2609        if (const Expr *RHS = CS->getRHS()) {
2610          // Evaluate the RHS of the case value.
2611          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2612          if (V2 <= condInt) {
2613            addCase = true;
2614            switchExclusivelyCovered = true;
2615          }
2616        }
2617      }
2618    }
2619    else
2620      addCase = true;
2621  }
2622  return addCase;
2623}
2624
2625CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2626  // CaseStmts are essentially labels, so they are the first statement in a
2627  // block.
2628  CFGBlock *TopBlock = 0, *LastBlock = 0;
2629
2630  if (Stmt *Sub = CS->getSubStmt()) {
2631    // For deeply nested chains of CaseStmts, instead of doing a recursion
2632    // (which can blow out the stack), manually unroll and create blocks
2633    // along the way.
2634    while (isa<CaseStmt>(Sub)) {
2635      CFGBlock *currentBlock = createBlock(false);
2636      currentBlock->setLabel(CS);
2637
2638      if (TopBlock)
2639        addSuccessor(LastBlock, currentBlock);
2640      else
2641        TopBlock = currentBlock;
2642
2643      addSuccessor(SwitchTerminatedBlock,
2644                   shouldAddCase(switchExclusivelyCovered, switchCond,
2645                                 CS, *Context)
2646                   ? currentBlock : 0);
2647
2648      LastBlock = currentBlock;
2649      CS = cast<CaseStmt>(Sub);
2650      Sub = CS->getSubStmt();
2651    }
2652
2653    addStmt(Sub);
2654  }
2655
2656  CFGBlock *CaseBlock = Block;
2657  if (!CaseBlock)
2658    CaseBlock = createBlock();
2659
2660  // Cases statements partition blocks, so this is the top of the basic block we
2661  // were processing (the "case XXX:" is the label).
2662  CaseBlock->setLabel(CS);
2663
2664  if (badCFG)
2665    return 0;
2666
2667  // Add this block to the list of successors for the block with the switch
2668  // statement.
2669  assert(SwitchTerminatedBlock);
2670  addSuccessor(SwitchTerminatedBlock,
2671               shouldAddCase(switchExclusivelyCovered, switchCond,
2672                             CS, *Context)
2673               ? CaseBlock : 0);
2674
2675  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2676  Block = NULL;
2677
2678  if (TopBlock) {
2679    addSuccessor(LastBlock, CaseBlock);
2680    Succ = TopBlock;
2681  } else {
2682    // This block is now the implicit successor of other blocks.
2683    Succ = CaseBlock;
2684  }
2685
2686  return Succ;
2687}
2688
2689CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2690  if (Terminator->getSubStmt())
2691    addStmt(Terminator->getSubStmt());
2692
2693  DefaultCaseBlock = Block;
2694
2695  if (!DefaultCaseBlock)
2696    DefaultCaseBlock = createBlock();
2697
2698  // Default statements partition blocks, so this is the top of the basic block
2699  // we were processing (the "default:" is the label).
2700  DefaultCaseBlock->setLabel(Terminator);
2701
2702  if (badCFG)
2703    return 0;
2704
2705  // Unlike case statements, we don't add the default block to the successors
2706  // for the switch statement immediately.  This is done when we finish
2707  // processing the switch statement.  This allows for the default case
2708  // (including a fall-through to the code after the switch statement) to always
2709  // be the last successor of a switch-terminated block.
2710
2711  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2712  Block = NULL;
2713
2714  // This block is now the implicit successor of other blocks.
2715  Succ = DefaultCaseBlock;
2716
2717  return DefaultCaseBlock;
2718}
2719
2720CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2721  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2722  // current block.
2723  CFGBlock *TrySuccessor = NULL;
2724
2725  if (Block) {
2726    if (badCFG)
2727      return 0;
2728    TrySuccessor = Block;
2729  } else TrySuccessor = Succ;
2730
2731  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2732
2733  // Create a new block that will contain the try statement.
2734  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2735  // Add the terminator in the try block.
2736  NewTryTerminatedBlock->setTerminator(Terminator);
2737
2738  bool HasCatchAll = false;
2739  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2740    // The code after the try is the implicit successor.
2741    Succ = TrySuccessor;
2742    CXXCatchStmt *CS = Terminator->getHandler(h);
2743    if (CS->getExceptionDecl() == 0) {
2744      HasCatchAll = true;
2745    }
2746    Block = NULL;
2747    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2748    if (CatchBlock == 0)
2749      return 0;
2750    // Add this block to the list of successors for the block with the try
2751    // statement.
2752    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2753  }
2754  if (!HasCatchAll) {
2755    if (PrevTryTerminatedBlock)
2756      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2757    else
2758      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2759  }
2760
2761  // The code after the try is the implicit successor.
2762  Succ = TrySuccessor;
2763
2764  // Save the current "try" context.
2765  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2766  cfg->addTryDispatchBlock(TryTerminatedBlock);
2767
2768  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2769  Block = NULL;
2770  Block = addStmt(Terminator->getTryBlock());
2771  return Block;
2772}
2773
2774CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2775  // CXXCatchStmt are treated like labels, so they are the first statement in a
2776  // block.
2777
2778  // Save local scope position because in case of exception variable ScopePos
2779  // won't be restored when traversing AST.
2780  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2781
2782  // Create local scope for possible exception variable.
2783  // Store scope position. Add implicit destructor.
2784  if (VarDecl *VD = CS->getExceptionDecl()) {
2785    LocalScope::const_iterator BeginScopePos = ScopePos;
2786    addLocalScopeForVarDecl(VD);
2787    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2788  }
2789
2790  if (CS->getHandlerBlock())
2791    addStmt(CS->getHandlerBlock());
2792
2793  CFGBlock *CatchBlock = Block;
2794  if (!CatchBlock)
2795    CatchBlock = createBlock();
2796
2797  // CXXCatchStmt is more than just a label.  They have semantic meaning
2798  // as well, as they implicitly "initialize" the catch variable.  Add
2799  // it to the CFG as a CFGElement so that the control-flow of these
2800  // semantics gets captured.
2801  appendStmt(CatchBlock, CS);
2802
2803  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2804  // labels.
2805  CatchBlock->setLabel(CS);
2806
2807  // Bail out if the CFG is bad.
2808  if (badCFG)
2809    return 0;
2810
2811  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2812  Block = NULL;
2813
2814  return CatchBlock;
2815}
2816
2817CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2818  // C++0x for-range statements are specified as [stmt.ranged]:
2819  //
2820  // {
2821  //   auto && __range = range-init;
2822  //   for ( auto __begin = begin-expr,
2823  //         __end = end-expr;
2824  //         __begin != __end;
2825  //         ++__begin ) {
2826  //     for-range-declaration = *__begin;
2827  //     statement
2828  //   }
2829  // }
2830
2831  // Save local scope position before the addition of the implicit variables.
2832  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2833
2834  // Create local scopes and destructors for range, begin and end variables.
2835  if (Stmt *Range = S->getRangeStmt())
2836    addLocalScopeForStmt(Range);
2837  if (Stmt *BeginEnd = S->getBeginEndStmt())
2838    addLocalScopeForStmt(BeginEnd);
2839  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2840
2841  LocalScope::const_iterator ContinueScopePos = ScopePos;
2842
2843  // "for" is a control-flow statement.  Thus we stop processing the current
2844  // block.
2845  CFGBlock *LoopSuccessor = NULL;
2846  if (Block) {
2847    if (badCFG)
2848      return 0;
2849    LoopSuccessor = Block;
2850  } else
2851    LoopSuccessor = Succ;
2852
2853  // Save the current value for the break targets.
2854  // All breaks should go to the code following the loop.
2855  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2856  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2857
2858  // The block for the __begin != __end expression.
2859  CFGBlock *ConditionBlock = createBlock(false);
2860  ConditionBlock->setTerminator(S);
2861
2862  // Now add the actual condition to the condition block.
2863  if (Expr *C = S->getCond()) {
2864    Block = ConditionBlock;
2865    CFGBlock *BeginConditionBlock = addStmt(C);
2866    if (badCFG)
2867      return 0;
2868    assert(BeginConditionBlock == ConditionBlock &&
2869           "condition block in for-range was unexpectedly complex");
2870    (void)BeginConditionBlock;
2871  }
2872
2873  // The condition block is the implicit successor for the loop body as well as
2874  // any code above the loop.
2875  Succ = ConditionBlock;
2876
2877  // See if this is a known constant.
2878  TryResult KnownVal(true);
2879
2880  if (S->getCond())
2881    KnownVal = tryEvaluateBool(S->getCond());
2882
2883  // Now create the loop body.
2884  {
2885    assert(S->getBody());
2886
2887    // Save the current values for Block, Succ, and continue targets.
2888    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2889    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2890
2891    // Generate increment code in its own basic block.  This is the target of
2892    // continue statements.
2893    Block = 0;
2894    Succ = addStmt(S->getInc());
2895    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2896
2897    // The starting block for the loop increment is the block that should
2898    // represent the 'loop target' for looping back to the start of the loop.
2899    ContinueJumpTarget.block->setLoopTarget(S);
2900
2901    // Finish up the increment block and prepare to start the loop body.
2902    assert(Block);
2903    if (badCFG)
2904      return 0;
2905    Block = 0;
2906
2907
2908    // Add implicit scope and dtors for loop variable.
2909    addLocalScopeAndDtors(S->getLoopVarStmt());
2910
2911    // Populate a new block to contain the loop body and loop variable.
2912    Block = addStmt(S->getBody());
2913    if (badCFG)
2914      return 0;
2915    Block = addStmt(S->getLoopVarStmt());
2916    if (badCFG)
2917      return 0;
2918
2919    // This new body block is a successor to our condition block.
2920    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2921  }
2922
2923  // Link up the condition block with the code that follows the loop (the
2924  // false branch).
2925  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2926
2927  // Add the initialization statements.
2928  Block = createBlock();
2929  addStmt(S->getBeginEndStmt());
2930  return addStmt(S->getRangeStmt());
2931}
2932
2933CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2934    AddStmtChoice asc) {
2935  if (BuildOpts.AddImplicitDtors) {
2936    // If adding implicit destructors visit the full expression for adding
2937    // destructors of temporaries.
2938    VisitForTemporaryDtors(E->getSubExpr());
2939
2940    // Full expression has to be added as CFGStmt so it will be sequenced
2941    // before destructors of it's temporaries.
2942    asc = asc.withAlwaysAdd(true);
2943  }
2944  return Visit(E->getSubExpr(), asc);
2945}
2946
2947CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2948                                                AddStmtChoice asc) {
2949  if (asc.alwaysAdd(*this, E)) {
2950    autoCreateBlock();
2951    appendStmt(Block, E);
2952
2953    // We do not want to propagate the AlwaysAdd property.
2954    asc = asc.withAlwaysAdd(false);
2955  }
2956  return Visit(E->getSubExpr(), asc);
2957}
2958
2959CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2960                                            AddStmtChoice asc) {
2961  autoCreateBlock();
2962  appendStmt(Block, C);
2963
2964  return VisitChildren(C);
2965}
2966
2967CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2968                                                 AddStmtChoice asc) {
2969  if (asc.alwaysAdd(*this, E)) {
2970    autoCreateBlock();
2971    appendStmt(Block, E);
2972    // We do not want to propagate the AlwaysAdd property.
2973    asc = asc.withAlwaysAdd(false);
2974  }
2975  return Visit(E->getSubExpr(), asc);
2976}
2977
2978CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2979                                                  AddStmtChoice asc) {
2980  autoCreateBlock();
2981  appendStmt(Block, C);
2982  return VisitChildren(C);
2983}
2984
2985CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2986                                            AddStmtChoice asc) {
2987  if (asc.alwaysAdd(*this, E)) {
2988    autoCreateBlock();
2989    appendStmt(Block, E);
2990  }
2991  return Visit(E->getSubExpr(), AddStmtChoice());
2992}
2993
2994CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2995  // Lazily create the indirect-goto dispatch block if there isn't one already.
2996  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2997
2998  if (!IBlock) {
2999    IBlock = createBlock(false);
3000    cfg->setIndirectGotoBlock(IBlock);
3001  }
3002
3003  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3004  // current block and create a new one.
3005  if (badCFG)
3006    return 0;
3007
3008  Block = createBlock(false);
3009  Block->setTerminator(I);
3010  addSuccessor(Block, IBlock);
3011  return addStmt(I->getTarget());
3012}
3013
3014CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3015tryAgain:
3016  if (!E) {
3017    badCFG = true;
3018    return NULL;
3019  }
3020  switch (E->getStmtClass()) {
3021    default:
3022      return VisitChildrenForTemporaryDtors(E);
3023
3024    case Stmt::BinaryOperatorClass:
3025      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3026
3027    case Stmt::CXXBindTemporaryExprClass:
3028      return VisitCXXBindTemporaryExprForTemporaryDtors(
3029          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3030
3031    case Stmt::BinaryConditionalOperatorClass:
3032    case Stmt::ConditionalOperatorClass:
3033      return VisitConditionalOperatorForTemporaryDtors(
3034          cast<AbstractConditionalOperator>(E), BindToTemporary);
3035
3036    case Stmt::ImplicitCastExprClass:
3037      // For implicit cast we want BindToTemporary to be passed further.
3038      E = cast<CastExpr>(E)->getSubExpr();
3039      goto tryAgain;
3040
3041    case Stmt::ParenExprClass:
3042      E = cast<ParenExpr>(E)->getSubExpr();
3043      goto tryAgain;
3044
3045    case Stmt::MaterializeTemporaryExprClass:
3046      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3047      goto tryAgain;
3048  }
3049}
3050
3051CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3052  // When visiting children for destructors we want to visit them in reverse
3053  // order. Because there's no reverse iterator for children must to reverse
3054  // them in helper vector.
3055  typedef SmallVector<Stmt *, 4> ChildrenVect;
3056  ChildrenVect ChildrenRev;
3057  for (Stmt::child_range I = E->children(); I; ++I) {
3058    if (*I) ChildrenRev.push_back(*I);
3059  }
3060
3061  CFGBlock *B = Block;
3062  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
3063      L = ChildrenRev.rend(); I != L; ++I) {
3064    if (CFGBlock *R = VisitForTemporaryDtors(*I))
3065      B = R;
3066  }
3067  return B;
3068}
3069
3070CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3071  if (E->isLogicalOp()) {
3072    // Destructors for temporaries in LHS expression should be called after
3073    // those for RHS expression. Even if this will unnecessarily create a block,
3074    // this block will be used at least by the full expression.
3075    autoCreateBlock();
3076    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3077    if (badCFG)
3078      return NULL;
3079
3080    Succ = ConfluenceBlock;
3081    Block = NULL;
3082    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3083
3084    if (RHSBlock) {
3085      if (badCFG)
3086        return NULL;
3087
3088      // If RHS expression did produce destructors we need to connect created
3089      // blocks to CFG in same manner as for binary operator itself.
3090      CFGBlock *LHSBlock = createBlock(false);
3091      LHSBlock->setTerminator(CFGTerminator(E, true));
3092
3093      // For binary operator LHS block is before RHS in list of predecessors
3094      // of ConfluenceBlock.
3095      std::reverse(ConfluenceBlock->pred_begin(),
3096          ConfluenceBlock->pred_end());
3097
3098      // See if this is a known constant.
3099      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3100      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3101        KnownVal.negate();
3102
3103      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3104      // itself.
3105      if (E->getOpcode() == BO_LOr) {
3106        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3107        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3108      } else {
3109        assert (E->getOpcode() == BO_LAnd);
3110        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3111        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3112      }
3113
3114      Block = LHSBlock;
3115      return LHSBlock;
3116    }
3117
3118    Block = ConfluenceBlock;
3119    return ConfluenceBlock;
3120  }
3121
3122  if (E->isAssignmentOp()) {
3123    // For assignment operator (=) LHS expression is visited
3124    // before RHS expression. For destructors visit them in reverse order.
3125    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3126    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3127    return LHSBlock ? LHSBlock : RHSBlock;
3128  }
3129
3130  // For any other binary operator RHS expression is visited before
3131  // LHS expression (order of children). For destructors visit them in reverse
3132  // order.
3133  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3134  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3135  return RHSBlock ? RHSBlock : LHSBlock;
3136}
3137
3138CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3139    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3140  // First add destructors for temporaries in subexpression.
3141  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3142  if (!BindToTemporary) {
3143    // If lifetime of temporary is not prolonged (by assigning to constant
3144    // reference) add destructor for it.
3145
3146    // If the destructor is marked as a no-return destructor, we need to create
3147    // a new block for the destructor which does not have as a successor
3148    // anything built thus far. Control won't flow out of this block.
3149    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3150    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3151      Block = createNoReturnBlock();
3152    else
3153      autoCreateBlock();
3154
3155    appendTemporaryDtor(Block, E);
3156    B = Block;
3157  }
3158  return B;
3159}
3160
3161CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3162    AbstractConditionalOperator *E, bool BindToTemporary) {
3163  // First add destructors for condition expression.  Even if this will
3164  // unnecessarily create a block, this block will be used at least by the full
3165  // expression.
3166  autoCreateBlock();
3167  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3168  if (badCFG)
3169    return NULL;
3170  if (BinaryConditionalOperator *BCO
3171        = dyn_cast<BinaryConditionalOperator>(E)) {
3172    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3173    if (badCFG)
3174      return NULL;
3175  }
3176
3177  // Try to add block with destructors for LHS expression.
3178  CFGBlock *LHSBlock = NULL;
3179  Succ = ConfluenceBlock;
3180  Block = NULL;
3181  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3182  if (badCFG)
3183    return NULL;
3184
3185  // Try to add block with destructors for RHS expression;
3186  Succ = ConfluenceBlock;
3187  Block = NULL;
3188  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3189                                              BindToTemporary);
3190  if (badCFG)
3191    return NULL;
3192
3193  if (!RHSBlock && !LHSBlock) {
3194    // If neither LHS nor RHS expression had temporaries to destroy don't create
3195    // more blocks.
3196    Block = ConfluenceBlock;
3197    return Block;
3198  }
3199
3200  Block = createBlock(false);
3201  Block->setTerminator(CFGTerminator(E, true));
3202
3203  // See if this is a known constant.
3204  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3205
3206  if (LHSBlock) {
3207    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3208  } else if (KnownVal.isFalse()) {
3209    addSuccessor(Block, NULL);
3210  } else {
3211    addSuccessor(Block, ConfluenceBlock);
3212    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3213  }
3214
3215  if (!RHSBlock)
3216    RHSBlock = ConfluenceBlock;
3217  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3218
3219  return Block;
3220}
3221
3222} // end anonymous namespace
3223
3224/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3225///  no successors or predecessors.  If this is the first block created in the
3226///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3227CFGBlock *CFG::createBlock() {
3228  bool first_block = begin() == end();
3229
3230  // Create the block.
3231  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3232  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3233  Blocks.push_back(Mem, BlkBVC);
3234
3235  // If this is the first block, set it as the Entry and Exit.
3236  if (first_block)
3237    Entry = Exit = &back();
3238
3239  // Return the block.
3240  return &back();
3241}
3242
3243/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3244///  CFG is returned to the caller.
3245CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3246    const BuildOptions &BO) {
3247  CFGBuilder Builder(C, BO);
3248  return Builder.buildCFG(D, Statement);
3249}
3250
3251const CXXDestructorDecl *
3252CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3253  switch (getKind()) {
3254    case CFGElement::Invalid:
3255    case CFGElement::Statement:
3256    case CFGElement::Initializer:
3257      llvm_unreachable("getDestructorDecl should only be used with "
3258                       "ImplicitDtors");
3259    case CFGElement::AutomaticObjectDtor: {
3260      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3261      QualType ty = var->getType();
3262      ty = ty.getNonReferenceType();
3263      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3264        ty = arrayType->getElementType();
3265      }
3266      const RecordType *recordType = ty->getAs<RecordType>();
3267      const CXXRecordDecl *classDecl =
3268      cast<CXXRecordDecl>(recordType->getDecl());
3269      return classDecl->getDestructor();
3270    }
3271    case CFGElement::TemporaryDtor: {
3272      const CXXBindTemporaryExpr *bindExpr =
3273        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3274      const CXXTemporary *temp = bindExpr->getTemporary();
3275      return temp->getDestructor();
3276    }
3277    case CFGElement::BaseDtor:
3278    case CFGElement::MemberDtor:
3279
3280      // Not yet supported.
3281      return 0;
3282  }
3283  llvm_unreachable("getKind() returned bogus value");
3284}
3285
3286bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3287  if (const CXXDestructorDecl *decl = getDestructorDecl(astContext)) {
3288    QualType ty = decl->getType();
3289    return cast<FunctionType>(ty)->getNoReturnAttr();
3290  }
3291  return false;
3292}
3293
3294//===----------------------------------------------------------------------===//
3295// CFG: Queries for BlkExprs.
3296//===----------------------------------------------------------------------===//
3297
3298namespace {
3299  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3300}
3301
3302static void FindSubExprAssignments(const Stmt *S,
3303                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3304  if (!S)
3305    return;
3306
3307  for (Stmt::const_child_range I = S->children(); I; ++I) {
3308    const Stmt *child = *I;
3309    if (!child)
3310      continue;
3311
3312    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3313      if (B->isAssignmentOp()) Set.insert(B);
3314
3315    FindSubExprAssignments(child, Set);
3316  }
3317}
3318
3319static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3320  BlkExprMapTy* M = new BlkExprMapTy();
3321
3322  // Look for assignments that are used as subexpressions.  These are the only
3323  // assignments that we want to *possibly* register as a block-level
3324  // expression.  Basically, if an assignment occurs both in a subexpression and
3325  // at the block-level, it is a block-level expression.
3326  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3327
3328  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3329    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3330      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3331        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3332
3333  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3334
3335    // Iterate over the statements again on identify the Expr* and Stmt* at the
3336    // block-level that are block-level expressions.
3337
3338    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3339      const CFGStmt *CS = BI->getAs<CFGStmt>();
3340      if (!CS)
3341        continue;
3342      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3343        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3344
3345        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3346          // Assignment expressions that are not nested within another
3347          // expression are really "statements" whose value is never used by
3348          // another expression.
3349          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3350            continue;
3351        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3352          // Special handling for statement expressions.  The last statement in
3353          // the statement expression is also a block-level expr.
3354          const CompoundStmt *C = SE->getSubStmt();
3355          if (!C->body_empty()) {
3356            const Stmt *Last = C->body_back();
3357            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3358              Last = LastEx->IgnoreParens();
3359            unsigned x = M->size();
3360            (*M)[Last] = x;
3361          }
3362        }
3363
3364        unsigned x = M->size();
3365        (*M)[Exp] = x;
3366      }
3367    }
3368
3369    // Look at terminators.  The condition is a block-level expression.
3370
3371    Stmt *S = (*I)->getTerminatorCondition();
3372
3373    if (S && M->find(S) == M->end()) {
3374      unsigned x = M->size();
3375      (*M)[S] = x;
3376    }
3377  }
3378
3379  return M;
3380}
3381
3382CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3383  assert(S != NULL);
3384  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3385
3386  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3387  BlkExprMapTy::iterator I = M->find(S);
3388  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3389}
3390
3391unsigned CFG::getNumBlkExprs() {
3392  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3393    return M->size();
3394
3395  // We assume callers interested in the number of BlkExprs will want
3396  // the map constructed if it doesn't already exist.
3397  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3398  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3399}
3400
3401//===----------------------------------------------------------------------===//
3402// Filtered walking of the CFG.
3403//===----------------------------------------------------------------------===//
3404
3405bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3406        const CFGBlock *From, const CFGBlock *To) {
3407
3408  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3409    // If the 'To' has no label or is labeled but the label isn't a
3410    // CaseStmt then filter this edge.
3411    if (const SwitchStmt *S =
3412        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3413      if (S->isAllEnumCasesCovered()) {
3414        const Stmt *L = To->getLabel();
3415        if (!L || !isa<CaseStmt>(L))
3416          return true;
3417      }
3418    }
3419  }
3420
3421  return false;
3422}
3423
3424//===----------------------------------------------------------------------===//
3425// Cleanup: CFG dstor.
3426//===----------------------------------------------------------------------===//
3427
3428CFG::~CFG() {
3429  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3430}
3431
3432//===----------------------------------------------------------------------===//
3433// CFG pretty printing
3434//===----------------------------------------------------------------------===//
3435
3436namespace {
3437
3438class StmtPrinterHelper : public PrinterHelper  {
3439  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3440  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3441  StmtMapTy StmtMap;
3442  DeclMapTy DeclMap;
3443  signed currentBlock;
3444  unsigned currentStmt;
3445  const LangOptions &LangOpts;
3446public:
3447
3448  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3449    : currentBlock(0), currentStmt(0), LangOpts(LO)
3450  {
3451    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3452      unsigned j = 1;
3453      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3454           BI != BEnd; ++BI, ++j ) {
3455        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3456          const Stmt *stmt= SE->getStmt();
3457          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3458          StmtMap[stmt] = P;
3459
3460          switch (stmt->getStmtClass()) {
3461            case Stmt::DeclStmtClass:
3462                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3463                break;
3464            case Stmt::IfStmtClass: {
3465              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3466              if (var)
3467                DeclMap[var] = P;
3468              break;
3469            }
3470            case Stmt::ForStmtClass: {
3471              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3472              if (var)
3473                DeclMap[var] = P;
3474              break;
3475            }
3476            case Stmt::WhileStmtClass: {
3477              const VarDecl *var =
3478                cast<WhileStmt>(stmt)->getConditionVariable();
3479              if (var)
3480                DeclMap[var] = P;
3481              break;
3482            }
3483            case Stmt::SwitchStmtClass: {
3484              const VarDecl *var =
3485                cast<SwitchStmt>(stmt)->getConditionVariable();
3486              if (var)
3487                DeclMap[var] = P;
3488              break;
3489            }
3490            case Stmt::CXXCatchStmtClass: {
3491              const VarDecl *var =
3492                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3493              if (var)
3494                DeclMap[var] = P;
3495              break;
3496            }
3497            default:
3498              break;
3499          }
3500        }
3501      }
3502    }
3503  }
3504
3505
3506  virtual ~StmtPrinterHelper() {}
3507
3508  const LangOptions &getLangOpts() const { return LangOpts; }
3509  void setBlockID(signed i) { currentBlock = i; }
3510  void setStmtID(unsigned i) { currentStmt = i; }
3511
3512  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3513    StmtMapTy::iterator I = StmtMap.find(S);
3514
3515    if (I == StmtMap.end())
3516      return false;
3517
3518    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3519                          && I->second.second == currentStmt) {
3520      return false;
3521    }
3522
3523    OS << "[B" << I->second.first << "." << I->second.second << "]";
3524    return true;
3525  }
3526
3527  bool handleDecl(const Decl *D, raw_ostream &OS) {
3528    DeclMapTy::iterator I = DeclMap.find(D);
3529
3530    if (I == DeclMap.end())
3531      return false;
3532
3533    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3534                          && I->second.second == currentStmt) {
3535      return false;
3536    }
3537
3538    OS << "[B" << I->second.first << "." << I->second.second << "]";
3539    return true;
3540  }
3541};
3542} // end anonymous namespace
3543
3544
3545namespace {
3546class CFGBlockTerminatorPrint
3547  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3548
3549  raw_ostream &OS;
3550  StmtPrinterHelper* Helper;
3551  PrintingPolicy Policy;
3552public:
3553  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3554                          const PrintingPolicy &Policy)
3555    : OS(os), Helper(helper), Policy(Policy) {}
3556
3557  void VisitIfStmt(IfStmt *I) {
3558    OS << "if ";
3559    I->getCond()->printPretty(OS,Helper,Policy);
3560  }
3561
3562  // Default case.
3563  void VisitStmt(Stmt *Terminator) {
3564    Terminator->printPretty(OS, Helper, Policy);
3565  }
3566
3567  void VisitForStmt(ForStmt *F) {
3568    OS << "for (" ;
3569    if (F->getInit())
3570      OS << "...";
3571    OS << "; ";
3572    if (Stmt *C = F->getCond())
3573      C->printPretty(OS, Helper, Policy);
3574    OS << "; ";
3575    if (F->getInc())
3576      OS << "...";
3577    OS << ")";
3578  }
3579
3580  void VisitWhileStmt(WhileStmt *W) {
3581    OS << "while " ;
3582    if (Stmt *C = W->getCond())
3583      C->printPretty(OS, Helper, Policy);
3584  }
3585
3586  void VisitDoStmt(DoStmt *D) {
3587    OS << "do ... while ";
3588    if (Stmt *C = D->getCond())
3589      C->printPretty(OS, Helper, Policy);
3590  }
3591
3592  void VisitSwitchStmt(SwitchStmt *Terminator) {
3593    OS << "switch ";
3594    Terminator->getCond()->printPretty(OS, Helper, Policy);
3595  }
3596
3597  void VisitCXXTryStmt(CXXTryStmt *CS) {
3598    OS << "try ...";
3599  }
3600
3601  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3602    C->getCond()->printPretty(OS, Helper, Policy);
3603    OS << " ? ... : ...";
3604  }
3605
3606  void VisitChooseExpr(ChooseExpr *C) {
3607    OS << "__builtin_choose_expr( ";
3608    C->getCond()->printPretty(OS, Helper, Policy);
3609    OS << " )";
3610  }
3611
3612  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3613    OS << "goto *";
3614    I->getTarget()->printPretty(OS, Helper, Policy);
3615  }
3616
3617  void VisitBinaryOperator(BinaryOperator* B) {
3618    if (!B->isLogicalOp()) {
3619      VisitExpr(B);
3620      return;
3621    }
3622
3623    B->getLHS()->printPretty(OS, Helper, Policy);
3624
3625    switch (B->getOpcode()) {
3626      case BO_LOr:
3627        OS << " || ...";
3628        return;
3629      case BO_LAnd:
3630        OS << " && ...";
3631        return;
3632      default:
3633        llvm_unreachable("Invalid logical operator.");
3634    }
3635  }
3636
3637  void VisitExpr(Expr *E) {
3638    E->printPretty(OS, Helper, Policy);
3639  }
3640};
3641} // end anonymous namespace
3642
3643static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3644                       const CFGElement &E) {
3645  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3646    const Stmt *S = CS->getStmt();
3647
3648    if (Helper) {
3649
3650      // special printing for statement-expressions.
3651      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3652        const CompoundStmt *Sub = SE->getSubStmt();
3653
3654        if (Sub->children()) {
3655          OS << "({ ... ; ";
3656          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3657          OS << " })\n";
3658          return;
3659        }
3660      }
3661      // special printing for comma expressions.
3662      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3663        if (B->getOpcode() == BO_Comma) {
3664          OS << "... , ";
3665          Helper->handledStmt(B->getRHS(),OS);
3666          OS << '\n';
3667          return;
3668        }
3669      }
3670    }
3671    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3672
3673    if (isa<CXXOperatorCallExpr>(S)) {
3674      OS << " (OperatorCall)";
3675    }
3676    else if (isa<CXXBindTemporaryExpr>(S)) {
3677      OS << " (BindTemporary)";
3678    }
3679    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3680      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3681    }
3682    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3683      OS << " (" << CE->getStmtClassName() << ", "
3684         << CE->getCastKindName()
3685         << ", " << CE->getType().getAsString()
3686         << ")";
3687    }
3688
3689    // Expressions need a newline.
3690    if (isa<Expr>(S))
3691      OS << '\n';
3692
3693  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3694    const CXXCtorInitializer *I = IE->getInitializer();
3695    if (I->isBaseInitializer())
3696      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3697    else OS << I->getAnyMember()->getName();
3698
3699    OS << "(";
3700    if (Expr *IE = I->getInit())
3701      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3702    OS << ")";
3703
3704    if (I->isBaseInitializer())
3705      OS << " (Base initializer)\n";
3706    else OS << " (Member initializer)\n";
3707
3708  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3709    const VarDecl *VD = DE->getVarDecl();
3710    Helper->handleDecl(VD, OS);
3711
3712    const Type* T = VD->getType().getTypePtr();
3713    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3714      T = RT->getPointeeType().getTypePtr();
3715    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3716      T = ET;
3717
3718    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3719    OS << " (Implicit destructor)\n";
3720
3721  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3722    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3723    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3724    OS << " (Base object destructor)\n";
3725
3726  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3727    const FieldDecl *FD = ME->getFieldDecl();
3728
3729    const Type *T = FD->getType().getTypePtr();
3730    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3731      T = ET;
3732
3733    OS << "this->" << FD->getName();
3734    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3735    OS << " (Member object destructor)\n";
3736
3737  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3738    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3739    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3740    OS << " (Temporary object destructor)\n";
3741  }
3742}
3743
3744static void print_block(raw_ostream &OS, const CFG* cfg,
3745                        const CFGBlock &B,
3746                        StmtPrinterHelper* Helper, bool print_edges,
3747                        bool ShowColors) {
3748
3749  if (Helper)
3750    Helper->setBlockID(B.getBlockID());
3751
3752  // Print the header.
3753  if (ShowColors)
3754    OS.changeColor(raw_ostream::YELLOW, true);
3755
3756  OS << "\n [B" << B.getBlockID();
3757
3758  if (&B == &cfg->getEntry())
3759    OS << " (ENTRY)]\n";
3760  else if (&B == &cfg->getExit())
3761    OS << " (EXIT)]\n";
3762  else if (&B == cfg->getIndirectGotoBlock())
3763    OS << " (INDIRECT GOTO DISPATCH)]\n";
3764  else
3765    OS << "]\n";
3766
3767  if (ShowColors)
3768    OS.resetColor();
3769
3770  // Print the label of this block.
3771  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3772
3773    if (print_edges)
3774      OS << "  ";
3775
3776    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3777      OS << L->getName();
3778    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3779      OS << "case ";
3780      C->getLHS()->printPretty(OS, Helper,
3781                               PrintingPolicy(Helper->getLangOpts()));
3782      if (C->getRHS()) {
3783        OS << " ... ";
3784        C->getRHS()->printPretty(OS, Helper,
3785                                 PrintingPolicy(Helper->getLangOpts()));
3786      }
3787    } else if (isa<DefaultStmt>(Label))
3788      OS << "default";
3789    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3790      OS << "catch (";
3791      if (CS->getExceptionDecl())
3792        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3793                                      0);
3794      else
3795        OS << "...";
3796      OS << ")";
3797
3798    } else
3799      llvm_unreachable("Invalid label statement in CFGBlock.");
3800
3801    OS << ":\n";
3802  }
3803
3804  // Iterate through the statements in the block and print them.
3805  unsigned j = 1;
3806
3807  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3808       I != E ; ++I, ++j ) {
3809
3810    // Print the statement # in the basic block and the statement itself.
3811    if (print_edges)
3812      OS << " ";
3813
3814    OS << llvm::format("%3d", j) << ": ";
3815
3816    if (Helper)
3817      Helper->setStmtID(j);
3818
3819    print_elem(OS, Helper, *I);
3820  }
3821
3822  // Print the terminator of this block.
3823  if (B.getTerminator()) {
3824    if (ShowColors)
3825      OS.changeColor(raw_ostream::GREEN);
3826
3827    OS << "   T: ";
3828
3829    if (Helper) Helper->setBlockID(-1);
3830
3831    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3832                                     PrintingPolicy(Helper->getLangOpts()));
3833    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3834    OS << '\n';
3835
3836    if (ShowColors)
3837      OS.resetColor();
3838  }
3839
3840  if (print_edges) {
3841    // Print the predecessors of this block.
3842    if (!B.pred_empty()) {
3843      const raw_ostream::Colors Color = raw_ostream::BLUE;
3844      if (ShowColors)
3845        OS.changeColor(Color);
3846      OS << "   Preds " ;
3847      if (ShowColors)
3848        OS.resetColor();
3849      OS << '(' << B.pred_size() << "):";
3850      unsigned i = 0;
3851
3852      if (ShowColors)
3853        OS.changeColor(Color);
3854
3855      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3856           I != E; ++I, ++i) {
3857
3858        if (i == 8 || (i-8) == 0)
3859          OS << "\n     ";
3860
3861        OS << " B" << (*I)->getBlockID();
3862      }
3863
3864      if (ShowColors)
3865        OS.resetColor();
3866
3867      OS << '\n';
3868    }
3869
3870    // Print the successors of this block.
3871    if (!B.succ_empty()) {
3872      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3873      if (ShowColors)
3874        OS.changeColor(Color);
3875      OS << "   Succs ";
3876      if (ShowColors)
3877        OS.resetColor();
3878      OS << '(' << B.succ_size() << "):";
3879      unsigned i = 0;
3880
3881      if (ShowColors)
3882        OS.changeColor(Color);
3883
3884      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3885           I != E; ++I, ++i) {
3886
3887        if (i == 8 || (i-8) % 10 == 0)
3888          OS << "\n    ";
3889
3890        if (*I)
3891          OS << " B" << (*I)->getBlockID();
3892        else
3893          OS  << " NULL";
3894      }
3895
3896      if (ShowColors)
3897        OS.resetColor();
3898      OS << '\n';
3899    }
3900  }
3901}
3902
3903
3904/// dump - A simple pretty printer of a CFG that outputs to stderr.
3905void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3906  print(llvm::errs(), LO, ShowColors);
3907}
3908
3909/// print - A simple pretty printer of a CFG that outputs to an ostream.
3910void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3911  StmtPrinterHelper Helper(this, LO);
3912
3913  // Print the entry block.
3914  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3915
3916  // Iterate through the CFGBlocks and print them one by one.
3917  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3918    // Skip the entry block, because we already printed it.
3919    if (&(**I) == &getEntry() || &(**I) == &getExit())
3920      continue;
3921
3922    print_block(OS, this, **I, &Helper, true, ShowColors);
3923  }
3924
3925  // Print the exit block.
3926  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3927  OS << '\n';
3928  OS.flush();
3929}
3930
3931/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3932void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3933                    bool ShowColors) const {
3934  print(llvm::errs(), cfg, LO, ShowColors);
3935}
3936
3937/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3938///   Generally this will only be called from CFG::print.
3939void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3940                     const LangOptions &LO, bool ShowColors) const {
3941  StmtPrinterHelper Helper(cfg, LO);
3942  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3943  OS << '\n';
3944}
3945
3946/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3947void CFGBlock::printTerminator(raw_ostream &OS,
3948                               const LangOptions &LO) const {
3949  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3950  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3951}
3952
3953Stmt *CFGBlock::getTerminatorCondition() {
3954  Stmt *Terminator = this->Terminator;
3955  if (!Terminator)
3956    return NULL;
3957
3958  Expr *E = NULL;
3959
3960  switch (Terminator->getStmtClass()) {
3961    default:
3962      break;
3963
3964    case Stmt::ForStmtClass:
3965      E = cast<ForStmt>(Terminator)->getCond();
3966      break;
3967
3968    case Stmt::WhileStmtClass:
3969      E = cast<WhileStmt>(Terminator)->getCond();
3970      break;
3971
3972    case Stmt::DoStmtClass:
3973      E = cast<DoStmt>(Terminator)->getCond();
3974      break;
3975
3976    case Stmt::IfStmtClass:
3977      E = cast<IfStmt>(Terminator)->getCond();
3978      break;
3979
3980    case Stmt::ChooseExprClass:
3981      E = cast<ChooseExpr>(Terminator)->getCond();
3982      break;
3983
3984    case Stmt::IndirectGotoStmtClass:
3985      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3986      break;
3987
3988    case Stmt::SwitchStmtClass:
3989      E = cast<SwitchStmt>(Terminator)->getCond();
3990      break;
3991
3992    case Stmt::BinaryConditionalOperatorClass:
3993      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3994      break;
3995
3996    case Stmt::ConditionalOperatorClass:
3997      E = cast<ConditionalOperator>(Terminator)->getCond();
3998      break;
3999
4000    case Stmt::BinaryOperatorClass: // '&&' and '||'
4001      E = cast<BinaryOperator>(Terminator)->getLHS();
4002      break;
4003
4004    case Stmt::ObjCForCollectionStmtClass:
4005      return Terminator;
4006  }
4007
4008  return E ? E->IgnoreParens() : NULL;
4009}
4010
4011//===----------------------------------------------------------------------===//
4012// CFG Graphviz Visualization
4013//===----------------------------------------------------------------------===//
4014
4015
4016#ifndef NDEBUG
4017static StmtPrinterHelper* GraphHelper;
4018#endif
4019
4020void CFG::viewCFG(const LangOptions &LO) const {
4021#ifndef NDEBUG
4022  StmtPrinterHelper H(this, LO);
4023  GraphHelper = &H;
4024  llvm::ViewGraph(this,"CFG");
4025  GraphHelper = NULL;
4026#endif
4027}
4028
4029namespace llvm {
4030template<>
4031struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4032
4033  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4034
4035  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4036
4037#ifndef NDEBUG
4038    std::string OutSStr;
4039    llvm::raw_string_ostream Out(OutSStr);
4040    print_block(Out,Graph, *Node, GraphHelper, false, false);
4041    std::string& OutStr = Out.str();
4042
4043    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4044
4045    // Process string output to make it nicer...
4046    for (unsigned i = 0; i != OutStr.length(); ++i)
4047      if (OutStr[i] == '\n') {                            // Left justify
4048        OutStr[i] = '\\';
4049        OutStr.insert(OutStr.begin()+i+1, 'l');
4050      }
4051
4052    return OutStr;
4053#else
4054    return "";
4055#endif
4056  }
4057};
4058} // end namespace llvm
4059