CFG.cpp revision fdf6a279c9a75c778eba382d9a156697092982a1
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/GraphWriter.h"
28#include "llvm/Support/SaveAndRestore.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236class reverse_children {
237  llvm::SmallVector<Stmt *, 12> childrenBuf;
238  ArrayRef<Stmt*> children;
239public:
240  reverse_children(Stmt *S);
241
242  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
243  iterator begin() const { return children.rbegin(); }
244  iterator end() const { return children.rend(); }
245};
246
247
248reverse_children::reverse_children(Stmt *S) {
249  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
250    children = CE->getRawSubExprs();
251    return;
252  }
253  switch (S->getStmtClass()) {
254    // Note: Fill in this switch with more cases we want to optimize.
255    case Stmt::InitListExprClass: {
256      InitListExpr *IE = cast<InitListExpr>(S);
257      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
258                                    IE->getNumInits());
259      return;
260    }
261    default:
262      break;
263  }
264
265  // Default case for all other statements.
266  for (Stmt::child_range I = S->children(); I; ++I) {
267    childrenBuf.push_back(*I);
268  }
269
270  // This needs to be done *after* childrenBuf has been populated.
271  children = childrenBuf;
272}
273
274/// CFGBuilder - This class implements CFG construction from an AST.
275///   The builder is stateful: an instance of the builder should be used to only
276///   construct a single CFG.
277///
278///   Example usage:
279///
280///     CFGBuilder builder;
281///     CFG* cfg = builder.BuildAST(stmt1);
282///
283///  CFG construction is done via a recursive walk of an AST.  We actually parse
284///  the AST in reverse order so that the successor of a basic block is
285///  constructed prior to its predecessor.  This allows us to nicely capture
286///  implicit fall-throughs without extra basic blocks.
287///
288class CFGBuilder {
289  typedef BlockScopePosPair JumpTarget;
290  typedef BlockScopePosPair JumpSource;
291
292  ASTContext *Context;
293  OwningPtr<CFG> cfg;
294
295  CFGBlock *Block;
296  CFGBlock *Succ;
297  JumpTarget ContinueJumpTarget;
298  JumpTarget BreakJumpTarget;
299  CFGBlock *SwitchTerminatedBlock;
300  CFGBlock *DefaultCaseBlock;
301  CFGBlock *TryTerminatedBlock;
302
303  // Current position in local scope.
304  LocalScope::const_iterator ScopePos;
305
306  // LabelMap records the mapping from Label expressions to their jump targets.
307  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
308  LabelMapTy LabelMap;
309
310  // A list of blocks that end with a "goto" that must be backpatched to their
311  // resolved targets upon completion of CFG construction.
312  typedef std::vector<JumpSource> BackpatchBlocksTy;
313  BackpatchBlocksTy BackpatchBlocks;
314
315  // A list of labels whose address has been taken (for indirect gotos).
316  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
317  LabelSetTy AddressTakenLabels;
318
319  bool badCFG;
320  const CFG::BuildOptions &BuildOpts;
321
322  // State to track for building switch statements.
323  bool switchExclusivelyCovered;
324  Expr::EvalResult *switchCond;
325
326  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
327  const Stmt *lastLookup;
328
329  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
330  // during construction of branches for chained logical operators.
331  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
332  CachedBoolEvalsTy CachedBoolEvals;
333
334public:
335  explicit CFGBuilder(ASTContext *astContext,
336                      const CFG::BuildOptions &buildOpts)
337    : Context(astContext), cfg(new CFG()), // crew a new CFG
338      Block(NULL), Succ(NULL),
339      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
340      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
341      switchExclusivelyCovered(false), switchCond(0),
342      cachedEntry(0), lastLookup(0) {}
343
344  // buildCFG - Used by external clients to construct the CFG.
345  CFG* buildCFG(const Decl *D, Stmt *Statement);
346
347  bool alwaysAdd(const Stmt *stmt);
348
349private:
350  // Visitors to walk an AST and construct the CFG.
351  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
352  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
353  CFGBlock *VisitBreakStmt(BreakStmt *B);
354  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
355  CFGBlock *VisitCaseStmt(CaseStmt *C);
356  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
357  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
358  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
359                                     AddStmtChoice asc);
360  CFGBlock *VisitContinueStmt(ContinueStmt *C);
361  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
362                                      AddStmtChoice asc);
363  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
364  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
365  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
366  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
367                                       AddStmtChoice asc);
368  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
369                                        AddStmtChoice asc);
370  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
371  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
372  CFGBlock *VisitDeclStmt(DeclStmt *DS);
373  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
374  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
375  CFGBlock *VisitDoStmt(DoStmt *D);
376  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
377  CFGBlock *VisitForStmt(ForStmt *F);
378  CFGBlock *VisitGotoStmt(GotoStmt *G);
379  CFGBlock *VisitIfStmt(IfStmt *I);
380  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
381  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
382  CFGBlock *VisitLabelStmt(LabelStmt *L);
383  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
385  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
386                                                         Stmt *Term,
387                                                         CFGBlock *TrueBlock,
388                                                         CFGBlock *FalseBlock);
389  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
390  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
391  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
392  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
393  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
394  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
395  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
396  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
397  CFGBlock *VisitReturnStmt(ReturnStmt *R);
398  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
399  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
400  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
401                                          AddStmtChoice asc);
402  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
403  CFGBlock *VisitWhileStmt(WhileStmt *W);
404
405  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
406  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
407  CFGBlock *VisitChildren(Stmt *S);
408  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
409
410  // Visitors to walk an AST and generate destructors of temporaries in
411  // full expression.
412  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
413  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
414  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
415  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
416      bool BindToTemporary);
417  CFGBlock *
418  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
419                                            bool BindToTemporary);
420
421  // NYS == Not Yet Supported
422  CFGBlock *NYS() {
423    badCFG = true;
424    return Block;
425  }
426
427  void autoCreateBlock() { if (!Block) Block = createBlock(); }
428  CFGBlock *createBlock(bool add_successor = true);
429  CFGBlock *createNoReturnBlock();
430
431  CFGBlock *addStmt(Stmt *S) {
432    return Visit(S, AddStmtChoice::AlwaysAdd);
433  }
434  CFGBlock *addInitializer(CXXCtorInitializer *I);
435  void addAutomaticObjDtors(LocalScope::const_iterator B,
436                            LocalScope::const_iterator E, Stmt *S);
437  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
438
439  // Local scopes creation.
440  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
441
442  void addLocalScopeForStmt(Stmt *S);
443  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
444  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
445
446  void addLocalScopeAndDtors(Stmt *S);
447
448  // Interface to CFGBlock - adding CFGElements.
449  void appendStmt(CFGBlock *B, const Stmt *S) {
450    if (alwaysAdd(S) && cachedEntry)
451      cachedEntry->second = B;
452
453    // All block-level expressions should have already been IgnoreParens()ed.
454    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
455    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
456  }
457  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
458    B->appendInitializer(I, cfg->getBumpVectorContext());
459  }
460  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
461    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
462  }
463  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
464    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
465  }
466  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
467    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
468  }
469  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
470    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
471  }
472
473  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
474      LocalScope::const_iterator B, LocalScope::const_iterator E);
475
476  void addSuccessor(CFGBlock *B, CFGBlock *S) {
477    B->addSuccessor(S, cfg->getBumpVectorContext());
478  }
479
480  /// Try and evaluate an expression to an integer constant.
481  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
482    if (!BuildOpts.PruneTriviallyFalseEdges)
483      return false;
484    return !S->isTypeDependent() &&
485           !S->isValueDependent() &&
486           S->EvaluateAsRValue(outResult, *Context);
487  }
488
489  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
490  /// if we can evaluate to a known value, otherwise return -1.
491  TryResult tryEvaluateBool(Expr *S) {
492    if (!BuildOpts.PruneTriviallyFalseEdges ||
493        S->isTypeDependent() || S->isValueDependent())
494      return TryResult();
495
496    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
497      if (Bop->isLogicalOp()) {
498        // Check the cache first.
499        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
500        if (I != CachedBoolEvals.end())
501          return I->second; // already in map;
502
503        // Retrieve result at first, or the map might be updated.
504        TryResult Result = evaluateAsBooleanConditionNoCache(S);
505        CachedBoolEvals[S] = Result; // update or insert
506        return Result;
507      }
508      else {
509        switch (Bop->getOpcode()) {
510          default: break;
511          // For 'x & 0' and 'x * 0', we can determine that
512          // the value is always false.
513          case BO_Mul:
514          case BO_And: {
515            // If either operand is zero, we know the value
516            // must be false.
517            llvm::APSInt IntVal;
518            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
519              if (IntVal.getBoolValue() == false) {
520                return TryResult(false);
521              }
522            }
523            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
524              if (IntVal.getBoolValue() == false) {
525                return TryResult(false);
526              }
527            }
528          }
529          break;
530        }
531      }
532    }
533
534    return evaluateAsBooleanConditionNoCache(S);
535  }
536
537  /// \brief Evaluate as boolean \param E without using the cache.
538  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
539    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
540      if (Bop->isLogicalOp()) {
541        TryResult LHS = tryEvaluateBool(Bop->getLHS());
542        if (LHS.isKnown()) {
543          // We were able to evaluate the LHS, see if we can get away with not
544          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
545          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
546            return LHS.isTrue();
547
548          TryResult RHS = tryEvaluateBool(Bop->getRHS());
549          if (RHS.isKnown()) {
550            if (Bop->getOpcode() == BO_LOr)
551              return LHS.isTrue() || RHS.isTrue();
552            else
553              return LHS.isTrue() && RHS.isTrue();
554          }
555        } else {
556          TryResult RHS = tryEvaluateBool(Bop->getRHS());
557          if (RHS.isKnown()) {
558            // We can't evaluate the LHS; however, sometimes the result
559            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
560            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
561              return RHS.isTrue();
562          }
563        }
564
565        return TryResult();
566      }
567    }
568
569    bool Result;
570    if (E->EvaluateAsBooleanCondition(Result, *Context))
571      return Result;
572
573    return TryResult();
574  }
575
576};
577
578inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
579                                     const Stmt *stmt) const {
580  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
581}
582
583bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
584  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
585
586  if (!BuildOpts.forcedBlkExprs)
587    return shouldAdd;
588
589  if (lastLookup == stmt) {
590    if (cachedEntry) {
591      assert(cachedEntry->first == stmt);
592      return true;
593    }
594    return shouldAdd;
595  }
596
597  lastLookup = stmt;
598
599  // Perform the lookup!
600  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
601
602  if (!fb) {
603    // No need to update 'cachedEntry', since it will always be null.
604    assert(cachedEntry == 0);
605    return shouldAdd;
606  }
607
608  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
609  if (itr == fb->end()) {
610    cachedEntry = 0;
611    return shouldAdd;
612  }
613
614  cachedEntry = &*itr;
615  return true;
616}
617
618// FIXME: Add support for dependent-sized array types in C++?
619// Does it even make sense to build a CFG for an uninstantiated template?
620static const VariableArrayType *FindVA(const Type *t) {
621  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
622    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
623      if (vat->getSizeExpr())
624        return vat;
625
626    t = vt->getElementType().getTypePtr();
627  }
628
629  return 0;
630}
631
632/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
633///  arbitrary statement.  Examples include a single expression or a function
634///  body (compound statement).  The ownership of the returned CFG is
635///  transferred to the caller.  If CFG construction fails, this method returns
636///  NULL.
637CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
638  assert(cfg.get());
639  if (!Statement)
640    return NULL;
641
642  // Create an empty block that will serve as the exit block for the CFG.  Since
643  // this is the first block added to the CFG, it will be implicitly registered
644  // as the exit block.
645  Succ = createBlock();
646  assert(Succ == &cfg->getExit());
647  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
648
649  if (BuildOpts.AddImplicitDtors)
650    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
651      addImplicitDtorsForDestructor(DD);
652
653  // Visit the statements and create the CFG.
654  CFGBlock *B = addStmt(Statement);
655
656  if (badCFG)
657    return NULL;
658
659  // For C++ constructor add initializers to CFG.
660  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
661    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
662        E = CD->init_rend(); I != E; ++I) {
663      B = addInitializer(*I);
664      if (badCFG)
665        return NULL;
666    }
667  }
668
669  if (B)
670    Succ = B;
671
672  // Backpatch the gotos whose label -> block mappings we didn't know when we
673  // encountered them.
674  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
675                                   E = BackpatchBlocks.end(); I != E; ++I ) {
676
677    CFGBlock *B = I->block;
678    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
679    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
680
681    // If there is no target for the goto, then we are looking at an
682    // incomplete AST.  Handle this by not registering a successor.
683    if (LI == LabelMap.end()) continue;
684
685    JumpTarget JT = LI->second;
686    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
687                                           JT.scopePosition);
688    addSuccessor(B, JT.block);
689  }
690
691  // Add successors to the Indirect Goto Dispatch block (if we have one).
692  if (CFGBlock *B = cfg->getIndirectGotoBlock())
693    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
694                              E = AddressTakenLabels.end(); I != E; ++I ) {
695
696      // Lookup the target block.
697      LabelMapTy::iterator LI = LabelMap.find(*I);
698
699      // If there is no target block that contains label, then we are looking
700      // at an incomplete AST.  Handle this by not registering a successor.
701      if (LI == LabelMap.end()) continue;
702
703      addSuccessor(B, LI->second.block);
704    }
705
706  // Create an empty entry block that has no predecessors.
707  cfg->setEntry(createBlock());
708
709  return cfg.take();
710}
711
712/// createBlock - Used to lazily create blocks that are connected
713///  to the current (global) succcessor.
714CFGBlock *CFGBuilder::createBlock(bool add_successor) {
715  CFGBlock *B = cfg->createBlock();
716  if (add_successor && Succ)
717    addSuccessor(B, Succ);
718  return B;
719}
720
721/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
722/// CFG. It is *not* connected to the current (global) successor, and instead
723/// directly tied to the exit block in order to be reachable.
724CFGBlock *CFGBuilder::createNoReturnBlock() {
725  CFGBlock *B = createBlock(false);
726  B->setHasNoReturnElement();
727  addSuccessor(B, &cfg->getExit());
728  return B;
729}
730
731/// addInitializer - Add C++ base or member initializer element to CFG.
732CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
733  if (!BuildOpts.AddInitializers)
734    return Block;
735
736  bool IsReference = false;
737  bool HasTemporaries = false;
738
739  // Destructors of temporaries in initialization expression should be called
740  // after initialization finishes.
741  Expr *Init = I->getInit();
742  if (Init) {
743    if (FieldDecl *FD = I->getAnyMember())
744      IsReference = FD->getType()->isReferenceType();
745    HasTemporaries = isa<ExprWithCleanups>(Init);
746
747    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
748      // Generate destructors for temporaries in initialization expression.
749      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
750          IsReference);
751    }
752  }
753
754  autoCreateBlock();
755  appendInitializer(Block, I);
756
757  if (Init) {
758    if (HasTemporaries) {
759      // For expression with temporaries go directly to subexpression to omit
760      // generating destructors for the second time.
761      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
762    }
763    return Visit(Init);
764  }
765
766  return Block;
767}
768
769/// \brief Retrieve the type of the temporary object whose lifetime was
770/// extended by a local reference with the given initializer.
771static QualType getReferenceInitTemporaryType(ASTContext &Context,
772                                              const Expr *Init) {
773  while (true) {
774    // Skip parentheses.
775    Init = Init->IgnoreParens();
776
777    // Skip through cleanups.
778    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
779      Init = EWC->getSubExpr();
780      continue;
781    }
782
783    // Skip through the temporary-materialization expression.
784    if (const MaterializeTemporaryExpr *MTE
785          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
786      Init = MTE->GetTemporaryExpr();
787      continue;
788    }
789
790    // Skip derived-to-base and no-op casts.
791    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
792      if ((CE->getCastKind() == CK_DerivedToBase ||
793           CE->getCastKind() == CK_UncheckedDerivedToBase ||
794           CE->getCastKind() == CK_NoOp) &&
795          Init->getType()->isRecordType()) {
796        Init = CE->getSubExpr();
797        continue;
798      }
799    }
800
801    // Skip member accesses into rvalues.
802    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
803      if (!ME->isArrow() && ME->getBase()->isRValue()) {
804        Init = ME->getBase();
805        continue;
806      }
807    }
808
809    break;
810  }
811
812  return Init->getType();
813}
814
815/// addAutomaticObjDtors - Add to current block automatic objects destructors
816/// for objects in range of local scope positions. Use S as trigger statement
817/// for destructors.
818void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
819                                      LocalScope::const_iterator E, Stmt *S) {
820  if (!BuildOpts.AddImplicitDtors)
821    return;
822
823  if (B == E)
824    return;
825
826  // We need to append the destructors in reverse order, but any one of them
827  // may be a no-return destructor which changes the CFG. As a result, buffer
828  // this sequence up and replay them in reverse order when appending onto the
829  // CFGBlock(s).
830  SmallVector<VarDecl*, 10> Decls;
831  Decls.reserve(B.distance(E));
832  for (LocalScope::const_iterator I = B; I != E; ++I)
833    Decls.push_back(*I);
834
835  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
836                                                   E = Decls.rend();
837       I != E; ++I) {
838    // If this destructor is marked as a no-return destructor, we need to
839    // create a new block for the destructor which does not have as a successor
840    // anything built thus far: control won't flow out of this block.
841    QualType Ty = (*I)->getType();
842    if (Ty->isReferenceType()) {
843      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
844    }
845    Ty = Context->getBaseElementType(Ty);
846
847    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
848    if (Dtor->isNoReturn())
849      Block = createNoReturnBlock();
850    else
851      autoCreateBlock();
852
853    appendAutomaticObjDtor(Block, *I, S);
854  }
855}
856
857/// addImplicitDtorsForDestructor - Add implicit destructors generated for
858/// base and member objects in destructor.
859void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
860  assert (BuildOpts.AddImplicitDtors
861      && "Can be called only when dtors should be added");
862  const CXXRecordDecl *RD = DD->getParent();
863
864  // At the end destroy virtual base objects.
865  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
866      VE = RD->vbases_end(); VI != VE; ++VI) {
867    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
868    if (!CD->hasTrivialDestructor()) {
869      autoCreateBlock();
870      appendBaseDtor(Block, VI);
871    }
872  }
873
874  // Before virtual bases destroy direct base objects.
875  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
876      BE = RD->bases_end(); BI != BE; ++BI) {
877    if (!BI->isVirtual()) {
878      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
879      if (!CD->hasTrivialDestructor()) {
880        autoCreateBlock();
881        appendBaseDtor(Block, BI);
882      }
883    }
884  }
885
886  // First destroy member objects.
887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
888      FE = RD->field_end(); FI != FE; ++FI) {
889    // Check for constant size array. Set type to array element type.
890    QualType QT = FI->getType();
891    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
892      if (AT->getSize() == 0)
893        continue;
894      QT = AT->getElementType();
895    }
896
897    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
898      if (!CD->hasTrivialDestructor()) {
899        autoCreateBlock();
900        appendMemberDtor(Block, *FI);
901      }
902  }
903}
904
905/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
906/// way return valid LocalScope object.
907LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
908  if (!Scope) {
909    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
910    Scope = alloc.Allocate<LocalScope>();
911    BumpVectorContext ctx(alloc);
912    new (Scope) LocalScope(ctx, ScopePos);
913  }
914  return Scope;
915}
916
917/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
918/// that should create implicit scope (e.g. if/else substatements).
919void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
920  if (!BuildOpts.AddImplicitDtors)
921    return;
922
923  LocalScope *Scope = 0;
924
925  // For compound statement we will be creating explicit scope.
926  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
927    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
928        ; BI != BE; ++BI) {
929      Stmt *SI = (*BI)->stripLabelLikeStatements();
930      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
931        Scope = addLocalScopeForDeclStmt(DS, Scope);
932    }
933    return;
934  }
935
936  // For any other statement scope will be implicit and as such will be
937  // interesting only for DeclStmt.
938  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
939    addLocalScopeForDeclStmt(DS);
940}
941
942/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
943/// reuse Scope if not NULL.
944LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
945                                                 LocalScope* Scope) {
946  if (!BuildOpts.AddImplicitDtors)
947    return Scope;
948
949  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
950      ; DI != DE; ++DI) {
951    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
952      Scope = addLocalScopeForVarDecl(VD, Scope);
953  }
954  return Scope;
955}
956
957/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
958/// create add scope for automatic objects and temporary objects bound to
959/// const reference. Will reuse Scope if not NULL.
960LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
961                                                LocalScope* Scope) {
962  if (!BuildOpts.AddImplicitDtors)
963    return Scope;
964
965  // Check if variable is local.
966  switch (VD->getStorageClass()) {
967  case SC_None:
968  case SC_Auto:
969  case SC_Register:
970    break;
971  default: return Scope;
972  }
973
974  // Check for const references bound to temporary. Set type to pointee.
975  QualType QT = VD->getType();
976  if (QT.getTypePtr()->isReferenceType()) {
977    if (!VD->extendsLifetimeOfTemporary())
978      return Scope;
979
980    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
981  }
982
983  // Check for constant size array. Set type to array element type.
984  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
985    if (AT->getSize() == 0)
986      return Scope;
987    QT = AT->getElementType();
988  }
989
990  // Check if type is a C++ class with non-trivial destructor.
991  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
992    if (!CD->hasTrivialDestructor()) {
993      // Add the variable to scope
994      Scope = createOrReuseLocalScope(Scope);
995      Scope->addVar(VD);
996      ScopePos = Scope->begin();
997    }
998  return Scope;
999}
1000
1001/// addLocalScopeAndDtors - For given statement add local scope for it and
1002/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1003void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1004  if (!BuildOpts.AddImplicitDtors)
1005    return;
1006
1007  LocalScope::const_iterator scopeBeginPos = ScopePos;
1008  addLocalScopeForStmt(S);
1009  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1010}
1011
1012/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1013/// variables with automatic storage duration to CFGBlock's elements vector.
1014/// Elements will be prepended to physical beginning of the vector which
1015/// happens to be logical end. Use blocks terminator as statement that specifies
1016/// destructors call site.
1017/// FIXME: This mechanism for adding automatic destructors doesn't handle
1018/// no-return destructors properly.
1019void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1020    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1021  BumpVectorContext &C = cfg->getBumpVectorContext();
1022  CFGBlock::iterator InsertPos
1023    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1024  for (LocalScope::const_iterator I = B; I != E; ++I)
1025    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1026                                            Blk->getTerminator());
1027}
1028
1029/// Visit - Walk the subtree of a statement and add extra
1030///   blocks for ternary operators, &&, and ||.  We also process "," and
1031///   DeclStmts (which may contain nested control-flow).
1032CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1033  if (!S) {
1034    badCFG = true;
1035    return 0;
1036  }
1037
1038  if (Expr *E = dyn_cast<Expr>(S))
1039    S = E->IgnoreParens();
1040
1041  switch (S->getStmtClass()) {
1042    default:
1043      return VisitStmt(S, asc);
1044
1045    case Stmt::AddrLabelExprClass:
1046      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1047
1048    case Stmt::BinaryConditionalOperatorClass:
1049      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1050
1051    case Stmt::BinaryOperatorClass:
1052      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1053
1054    case Stmt::BlockExprClass:
1055      return VisitNoRecurse(cast<Expr>(S), asc);
1056
1057    case Stmt::BreakStmtClass:
1058      return VisitBreakStmt(cast<BreakStmt>(S));
1059
1060    case Stmt::CallExprClass:
1061    case Stmt::CXXOperatorCallExprClass:
1062    case Stmt::CXXMemberCallExprClass:
1063    case Stmt::UserDefinedLiteralClass:
1064      return VisitCallExpr(cast<CallExpr>(S), asc);
1065
1066    case Stmt::CaseStmtClass:
1067      return VisitCaseStmt(cast<CaseStmt>(S));
1068
1069    case Stmt::ChooseExprClass:
1070      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1071
1072    case Stmt::CompoundStmtClass:
1073      return VisitCompoundStmt(cast<CompoundStmt>(S));
1074
1075    case Stmt::ConditionalOperatorClass:
1076      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1077
1078    case Stmt::ContinueStmtClass:
1079      return VisitContinueStmt(cast<ContinueStmt>(S));
1080
1081    case Stmt::CXXCatchStmtClass:
1082      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1083
1084    case Stmt::ExprWithCleanupsClass:
1085      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1086
1087    case Stmt::CXXDefaultArgExprClass:
1088      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1089      // called function's declaration, not by the caller. If we simply add
1090      // this expression to the CFG, we could end up with the same Expr
1091      // appearing multiple times.
1092      // PR13385 / <rdar://problem/12156507>
1093      return VisitStmt(S, asc);
1094
1095    case Stmt::CXXBindTemporaryExprClass:
1096      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1097
1098    case Stmt::CXXConstructExprClass:
1099      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1100
1101    case Stmt::CXXFunctionalCastExprClass:
1102      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1103
1104    case Stmt::CXXTemporaryObjectExprClass:
1105      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1106
1107    case Stmt::CXXThrowExprClass:
1108      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1109
1110    case Stmt::CXXTryStmtClass:
1111      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1112
1113    case Stmt::CXXForRangeStmtClass:
1114      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1115
1116    case Stmt::DeclStmtClass:
1117      return VisitDeclStmt(cast<DeclStmt>(S));
1118
1119    case Stmt::DefaultStmtClass:
1120      return VisitDefaultStmt(cast<DefaultStmt>(S));
1121
1122    case Stmt::DoStmtClass:
1123      return VisitDoStmt(cast<DoStmt>(S));
1124
1125    case Stmt::ForStmtClass:
1126      return VisitForStmt(cast<ForStmt>(S));
1127
1128    case Stmt::GotoStmtClass:
1129      return VisitGotoStmt(cast<GotoStmt>(S));
1130
1131    case Stmt::IfStmtClass:
1132      return VisitIfStmt(cast<IfStmt>(S));
1133
1134    case Stmt::ImplicitCastExprClass:
1135      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1136
1137    case Stmt::IndirectGotoStmtClass:
1138      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1139
1140    case Stmt::LabelStmtClass:
1141      return VisitLabelStmt(cast<LabelStmt>(S));
1142
1143    case Stmt::LambdaExprClass:
1144      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1145
1146    case Stmt::MemberExprClass:
1147      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1148
1149    case Stmt::NullStmtClass:
1150      return Block;
1151
1152    case Stmt::ObjCAtCatchStmtClass:
1153      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1154
1155    case Stmt::ObjCAutoreleasePoolStmtClass:
1156    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1157
1158    case Stmt::ObjCAtSynchronizedStmtClass:
1159      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1160
1161    case Stmt::ObjCAtThrowStmtClass:
1162      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1163
1164    case Stmt::ObjCAtTryStmtClass:
1165      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1166
1167    case Stmt::ObjCForCollectionStmtClass:
1168      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1169
1170    case Stmt::OpaqueValueExprClass:
1171      return Block;
1172
1173    case Stmt::PseudoObjectExprClass:
1174      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1175
1176    case Stmt::ReturnStmtClass:
1177      return VisitReturnStmt(cast<ReturnStmt>(S));
1178
1179    case Stmt::UnaryExprOrTypeTraitExprClass:
1180      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1181                                           asc);
1182
1183    case Stmt::StmtExprClass:
1184      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1185
1186    case Stmt::SwitchStmtClass:
1187      return VisitSwitchStmt(cast<SwitchStmt>(S));
1188
1189    case Stmt::UnaryOperatorClass:
1190      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1191
1192    case Stmt::WhileStmtClass:
1193      return VisitWhileStmt(cast<WhileStmt>(S));
1194  }
1195}
1196
1197CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1198  if (asc.alwaysAdd(*this, S)) {
1199    autoCreateBlock();
1200    appendStmt(Block, S);
1201  }
1202
1203  return VisitChildren(S);
1204}
1205
1206/// VisitChildren - Visit the children of a Stmt.
1207CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1208  CFGBlock *B = Block;
1209
1210  // Visit the children in their reverse order so that they appear in
1211  // left-to-right (natural) order in the CFG.
1212  reverse_children RChildren(S);
1213  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1214       I != E; ++I) {
1215    if (Stmt *Child = *I)
1216      if (CFGBlock *R = Visit(Child))
1217        B = R;
1218  }
1219  return B;
1220}
1221
1222CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1223                                         AddStmtChoice asc) {
1224  AddressTakenLabels.insert(A->getLabel());
1225
1226  if (asc.alwaysAdd(*this, A)) {
1227    autoCreateBlock();
1228    appendStmt(Block, A);
1229  }
1230
1231  return Block;
1232}
1233
1234CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1235           AddStmtChoice asc) {
1236  if (asc.alwaysAdd(*this, U)) {
1237    autoCreateBlock();
1238    appendStmt(Block, U);
1239  }
1240
1241  return Visit(U->getSubExpr(), AddStmtChoice());
1242}
1243
1244CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1245  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1246  appendStmt(ConfluenceBlock, B);
1247
1248  if (badCFG)
1249    return 0;
1250
1251  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1252}
1253
1254std::pair<CFGBlock*, CFGBlock*>
1255CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1256                                 Stmt *Term,
1257                                 CFGBlock *TrueBlock,
1258                                 CFGBlock *FalseBlock) {
1259
1260  // Introspect the RHS.  If it is a nested logical operation, we recursively
1261  // build the CFG using this function.  Otherwise, resort to default
1262  // CFG construction behavior.
1263  Expr *RHS = B->getRHS()->IgnoreParens();
1264  CFGBlock *RHSBlock, *ExitBlock;
1265
1266  do {
1267    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1268      if (B_RHS->isLogicalOp()) {
1269        llvm::tie(RHSBlock, ExitBlock) =
1270          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1271        break;
1272      }
1273
1274    // The RHS is not a nested logical operation.  Don't push the terminator
1275    // down further, but instead visit RHS and construct the respective
1276    // pieces of the CFG, and link up the RHSBlock with the terminator
1277    // we have been provided.
1278    ExitBlock = RHSBlock = createBlock(false);
1279
1280    if (!Term) {
1281      assert(TrueBlock == FalseBlock);
1282      addSuccessor(RHSBlock, TrueBlock);
1283    }
1284    else {
1285      RHSBlock->setTerminator(Term);
1286      TryResult KnownVal = tryEvaluateBool(RHS);
1287      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1288      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1289    }
1290
1291    Block = RHSBlock;
1292    RHSBlock = addStmt(RHS);
1293  }
1294  while (false);
1295
1296  if (badCFG)
1297    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1298
1299  // Generate the blocks for evaluating the LHS.
1300  Expr *LHS = B->getLHS()->IgnoreParens();
1301
1302  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1303    if (B_LHS->isLogicalOp()) {
1304      if (B->getOpcode() == BO_LOr)
1305        FalseBlock = RHSBlock;
1306      else
1307        TrueBlock = RHSBlock;
1308
1309      // For the LHS, treat 'B' as the terminator that we want to sink
1310      // into the nested branch.  The RHS always gets the top-most
1311      // terminator.
1312      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1313    }
1314
1315  // Create the block evaluating the LHS.
1316  // This contains the '&&' or '||' as the terminator.
1317  CFGBlock *LHSBlock = createBlock(false);
1318  LHSBlock->setTerminator(B);
1319
1320  Block = LHSBlock;
1321  CFGBlock *EntryLHSBlock = addStmt(LHS);
1322
1323  if (badCFG)
1324    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1325
1326  // See if this is a known constant.
1327  TryResult KnownVal = tryEvaluateBool(LHS);
1328
1329  // Now link the LHSBlock with RHSBlock.
1330  if (B->getOpcode() == BO_LOr) {
1331    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1332    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1333  } else {
1334    assert(B->getOpcode() == BO_LAnd);
1335    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1336    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1337  }
1338
1339  return std::make_pair(EntryLHSBlock, ExitBlock);
1340}
1341
1342
1343CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1344                                          AddStmtChoice asc) {
1345   // && or ||
1346  if (B->isLogicalOp())
1347    return VisitLogicalOperator(B);
1348
1349  if (B->getOpcode() == BO_Comma) { // ,
1350    autoCreateBlock();
1351    appendStmt(Block, B);
1352    addStmt(B->getRHS());
1353    return addStmt(B->getLHS());
1354  }
1355
1356  if (B->isAssignmentOp()) {
1357    if (asc.alwaysAdd(*this, B)) {
1358      autoCreateBlock();
1359      appendStmt(Block, B);
1360    }
1361    Visit(B->getLHS());
1362    return Visit(B->getRHS());
1363  }
1364
1365  if (asc.alwaysAdd(*this, B)) {
1366    autoCreateBlock();
1367    appendStmt(Block, B);
1368  }
1369
1370  CFGBlock *RBlock = Visit(B->getRHS());
1371  CFGBlock *LBlock = Visit(B->getLHS());
1372  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1373  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1374  // return RBlock.  Otherwise we'll incorrectly return NULL.
1375  return (LBlock ? LBlock : RBlock);
1376}
1377
1378CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1379  if (asc.alwaysAdd(*this, E)) {
1380    autoCreateBlock();
1381    appendStmt(Block, E);
1382  }
1383  return Block;
1384}
1385
1386CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1387  // "break" is a control-flow statement.  Thus we stop processing the current
1388  // block.
1389  if (badCFG)
1390    return 0;
1391
1392  // Now create a new block that ends with the break statement.
1393  Block = createBlock(false);
1394  Block->setTerminator(B);
1395
1396  // If there is no target for the break, then we are looking at an incomplete
1397  // AST.  This means that the CFG cannot be constructed.
1398  if (BreakJumpTarget.block) {
1399    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1400    addSuccessor(Block, BreakJumpTarget.block);
1401  } else
1402    badCFG = true;
1403
1404
1405  return Block;
1406}
1407
1408static bool CanThrow(Expr *E, ASTContext &Ctx) {
1409  QualType Ty = E->getType();
1410  if (Ty->isFunctionPointerType())
1411    Ty = Ty->getAs<PointerType>()->getPointeeType();
1412  else if (Ty->isBlockPointerType())
1413    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1414
1415  const FunctionType *FT = Ty->getAs<FunctionType>();
1416  if (FT) {
1417    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1418      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1419          Proto->isNothrow(Ctx))
1420        return false;
1421  }
1422  return true;
1423}
1424
1425CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1426  // Compute the callee type.
1427  QualType calleeType = C->getCallee()->getType();
1428  if (calleeType == Context->BoundMemberTy) {
1429    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1430
1431    // We should only get a null bound type if processing a dependent
1432    // CFG.  Recover by assuming nothing.
1433    if (!boundType.isNull()) calleeType = boundType;
1434  }
1435
1436  // If this is a call to a no-return function, this stops the block here.
1437  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1438
1439  bool AddEHEdge = false;
1440
1441  // Languages without exceptions are assumed to not throw.
1442  if (Context->getLangOpts().Exceptions) {
1443    if (BuildOpts.AddEHEdges)
1444      AddEHEdge = true;
1445  }
1446
1447  if (FunctionDecl *FD = C->getDirectCallee()) {
1448    if (FD->isNoReturn())
1449      NoReturn = true;
1450    if (FD->hasAttr<NoThrowAttr>())
1451      AddEHEdge = false;
1452  }
1453
1454  if (!CanThrow(C->getCallee(), *Context))
1455    AddEHEdge = false;
1456
1457  if (!NoReturn && !AddEHEdge)
1458    return VisitStmt(C, asc.withAlwaysAdd(true));
1459
1460  if (Block) {
1461    Succ = Block;
1462    if (badCFG)
1463      return 0;
1464  }
1465
1466  if (NoReturn)
1467    Block = createNoReturnBlock();
1468  else
1469    Block = createBlock();
1470
1471  appendStmt(Block, C);
1472
1473  if (AddEHEdge) {
1474    // Add exceptional edges.
1475    if (TryTerminatedBlock)
1476      addSuccessor(Block, TryTerminatedBlock);
1477    else
1478      addSuccessor(Block, &cfg->getExit());
1479  }
1480
1481  return VisitChildren(C);
1482}
1483
1484CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1485                                      AddStmtChoice asc) {
1486  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1487  appendStmt(ConfluenceBlock, C);
1488  if (badCFG)
1489    return 0;
1490
1491  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1492  Succ = ConfluenceBlock;
1493  Block = NULL;
1494  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1495  if (badCFG)
1496    return 0;
1497
1498  Succ = ConfluenceBlock;
1499  Block = NULL;
1500  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1501  if (badCFG)
1502    return 0;
1503
1504  Block = createBlock(false);
1505  // See if this is a known constant.
1506  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1507  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1508  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1509  Block->setTerminator(C);
1510  return addStmt(C->getCond());
1511}
1512
1513
1514CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1515  addLocalScopeAndDtors(C);
1516  CFGBlock *LastBlock = Block;
1517
1518  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1519       I != E; ++I ) {
1520    // If we hit a segment of code just containing ';' (NullStmts), we can
1521    // get a null block back.  In such cases, just use the LastBlock
1522    if (CFGBlock *newBlock = addStmt(*I))
1523      LastBlock = newBlock;
1524
1525    if (badCFG)
1526      return NULL;
1527  }
1528
1529  return LastBlock;
1530}
1531
1532CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1533                                               AddStmtChoice asc) {
1534  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1535  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1536
1537  // Create the confluence block that will "merge" the results of the ternary
1538  // expression.
1539  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1540  appendStmt(ConfluenceBlock, C);
1541  if (badCFG)
1542    return 0;
1543
1544  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1545
1546  // Create a block for the LHS expression if there is an LHS expression.  A
1547  // GCC extension allows LHS to be NULL, causing the condition to be the
1548  // value that is returned instead.
1549  //  e.g: x ?: y is shorthand for: x ? x : y;
1550  Succ = ConfluenceBlock;
1551  Block = NULL;
1552  CFGBlock *LHSBlock = 0;
1553  const Expr *trueExpr = C->getTrueExpr();
1554  if (trueExpr != opaqueValue) {
1555    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1556    if (badCFG)
1557      return 0;
1558    Block = NULL;
1559  }
1560  else
1561    LHSBlock = ConfluenceBlock;
1562
1563  // Create the block for the RHS expression.
1564  Succ = ConfluenceBlock;
1565  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1566  if (badCFG)
1567    return 0;
1568
1569  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1570  if (BinaryOperator *Cond =
1571        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1572    if (Cond->isLogicalOp())
1573      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1574
1575  // Create the block that will contain the condition.
1576  Block = createBlock(false);
1577
1578  // See if this is a known constant.
1579  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1580  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1581  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1582  Block->setTerminator(C);
1583  Expr *condExpr = C->getCond();
1584
1585  if (opaqueValue) {
1586    // Run the condition expression if it's not trivially expressed in
1587    // terms of the opaque value (or if there is no opaque value).
1588    if (condExpr != opaqueValue)
1589      addStmt(condExpr);
1590
1591    // Before that, run the common subexpression if there was one.
1592    // At least one of this or the above will be run.
1593    return addStmt(BCO->getCommon());
1594  }
1595
1596  return addStmt(condExpr);
1597}
1598
1599CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1600  // Check if the Decl is for an __label__.  If so, elide it from the
1601  // CFG entirely.
1602  if (isa<LabelDecl>(*DS->decl_begin()))
1603    return Block;
1604
1605  // This case also handles static_asserts.
1606  if (DS->isSingleDecl())
1607    return VisitDeclSubExpr(DS);
1608
1609  CFGBlock *B = 0;
1610
1611  // Build an individual DeclStmt for each decl.
1612  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1613                                       E = DS->decl_rend();
1614       I != E; ++I) {
1615    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1616    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1617               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1618
1619    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1620    // automatically freed with the CFG.
1621    DeclGroupRef DG(*I);
1622    Decl *D = *I;
1623    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1624    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1625
1626    // Append the fake DeclStmt to block.
1627    B = VisitDeclSubExpr(DSNew);
1628  }
1629
1630  return B;
1631}
1632
1633/// VisitDeclSubExpr - Utility method to add block-level expressions for
1634/// DeclStmts and initializers in them.
1635CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1636  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1637  Decl *D = DS->getSingleDecl();
1638
1639  if (isa<StaticAssertDecl>(D)) {
1640    // static_asserts aren't added to the CFG because they do not impact
1641    // runtime semantics.
1642    return Block;
1643  }
1644
1645  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1646
1647  if (!VD) {
1648    autoCreateBlock();
1649    appendStmt(Block, DS);
1650    return Block;
1651  }
1652
1653  bool IsReference = false;
1654  bool HasTemporaries = false;
1655
1656  // Destructors of temporaries in initialization expression should be called
1657  // after initialization finishes.
1658  Expr *Init = VD->getInit();
1659  if (Init) {
1660    IsReference = VD->getType()->isReferenceType();
1661    HasTemporaries = isa<ExprWithCleanups>(Init);
1662
1663    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1664      // Generate destructors for temporaries in initialization expression.
1665      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1666          IsReference);
1667    }
1668  }
1669
1670  autoCreateBlock();
1671  appendStmt(Block, DS);
1672
1673  // Keep track of the last non-null block, as 'Block' can be nulled out
1674  // if the initializer expression is something like a 'while' in a
1675  // statement-expression.
1676  CFGBlock *LastBlock = Block;
1677
1678  if (Init) {
1679    if (HasTemporaries) {
1680      // For expression with temporaries go directly to subexpression to omit
1681      // generating destructors for the second time.
1682      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1683      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1684        LastBlock = newBlock;
1685    }
1686    else {
1687      if (CFGBlock *newBlock = Visit(Init))
1688        LastBlock = newBlock;
1689    }
1690  }
1691
1692  // If the type of VD is a VLA, then we must process its size expressions.
1693  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1694       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1695    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1696      LastBlock = newBlock;
1697  }
1698
1699  // Remove variable from local scope.
1700  if (ScopePos && VD == *ScopePos)
1701    ++ScopePos;
1702
1703  return Block ? Block : LastBlock;
1704}
1705
1706CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1707  // We may see an if statement in the middle of a basic block, or it may be the
1708  // first statement we are processing.  In either case, we create a new basic
1709  // block.  First, we create the blocks for the then...else statements, and
1710  // then we create the block containing the if statement.  If we were in the
1711  // middle of a block, we stop processing that block.  That block is then the
1712  // implicit successor for the "then" and "else" clauses.
1713
1714  // Save local scope position because in case of condition variable ScopePos
1715  // won't be restored when traversing AST.
1716  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1717
1718  // Create local scope for possible condition variable.
1719  // Store scope position. Add implicit destructor.
1720  if (VarDecl *VD = I->getConditionVariable()) {
1721    LocalScope::const_iterator BeginScopePos = ScopePos;
1722    addLocalScopeForVarDecl(VD);
1723    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1724  }
1725
1726  // The block we were processing is now finished.  Make it the successor
1727  // block.
1728  if (Block) {
1729    Succ = Block;
1730    if (badCFG)
1731      return 0;
1732  }
1733
1734  // Process the false branch.
1735  CFGBlock *ElseBlock = Succ;
1736
1737  if (Stmt *Else = I->getElse()) {
1738    SaveAndRestore<CFGBlock*> sv(Succ);
1739
1740    // NULL out Block so that the recursive call to Visit will
1741    // create a new basic block.
1742    Block = NULL;
1743
1744    // If branch is not a compound statement create implicit scope
1745    // and add destructors.
1746    if (!isa<CompoundStmt>(Else))
1747      addLocalScopeAndDtors(Else);
1748
1749    ElseBlock = addStmt(Else);
1750
1751    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1752      ElseBlock = sv.get();
1753    else if (Block) {
1754      if (badCFG)
1755        return 0;
1756    }
1757  }
1758
1759  // Process the true branch.
1760  CFGBlock *ThenBlock;
1761  {
1762    Stmt *Then = I->getThen();
1763    assert(Then);
1764    SaveAndRestore<CFGBlock*> sv(Succ);
1765    Block = NULL;
1766
1767    // If branch is not a compound statement create implicit scope
1768    // and add destructors.
1769    if (!isa<CompoundStmt>(Then))
1770      addLocalScopeAndDtors(Then);
1771
1772    ThenBlock = addStmt(Then);
1773
1774    if (!ThenBlock) {
1775      // We can reach here if the "then" body has all NullStmts.
1776      // Create an empty block so we can distinguish between true and false
1777      // branches in path-sensitive analyses.
1778      ThenBlock = createBlock(false);
1779      addSuccessor(ThenBlock, sv.get());
1780    } else if (Block) {
1781      if (badCFG)
1782        return 0;
1783    }
1784  }
1785
1786  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1787  // having these handle the actual control-flow jump.  Note that
1788  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1789  // we resort to the old control-flow behavior.  This special handling
1790  // removes infeasible paths from the control-flow graph by having the
1791  // control-flow transfer of '&&' or '||' go directly into the then/else
1792  // blocks directly.
1793  if (!I->getConditionVariable())
1794    if (BinaryOperator *Cond =
1795            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1796      if (Cond->isLogicalOp())
1797        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1798
1799  // Now create a new block containing the if statement.
1800  Block = createBlock(false);
1801
1802  // Set the terminator of the new block to the If statement.
1803  Block->setTerminator(I);
1804
1805  // See if this is a known constant.
1806  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1807
1808  // Now add the successors.
1809  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1810  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1811
1812  // Add the condition as the last statement in the new block.  This may create
1813  // new blocks as the condition may contain control-flow.  Any newly created
1814  // blocks will be pointed to be "Block".
1815  CFGBlock *LastBlock = addStmt(I->getCond());
1816
1817  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1818  // and the condition variable initialization to the CFG.
1819  if (VarDecl *VD = I->getConditionVariable()) {
1820    if (Expr *Init = VD->getInit()) {
1821      autoCreateBlock();
1822      appendStmt(Block, I->getConditionVariableDeclStmt());
1823      LastBlock = addStmt(Init);
1824    }
1825  }
1826
1827  return LastBlock;
1828}
1829
1830
1831CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1832  // If we were in the middle of a block we stop processing that block.
1833  //
1834  // NOTE: If a "return" appears in the middle of a block, this means that the
1835  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1836  //       for that code; a simple "mark-and-sweep" from the entry block will be
1837  //       able to report such dead blocks.
1838
1839  // Create the new block.
1840  Block = createBlock(false);
1841
1842  // The Exit block is the only successor.
1843  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1844  addSuccessor(Block, &cfg->getExit());
1845
1846  // Add the return statement to the block.  This may create new blocks if R
1847  // contains control-flow (short-circuit operations).
1848  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1849}
1850
1851CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1852  // Get the block of the labeled statement.  Add it to our map.
1853  addStmt(L->getSubStmt());
1854  CFGBlock *LabelBlock = Block;
1855
1856  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1857    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1858
1859  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1860         "label already in map");
1861  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1862
1863  // Labels partition blocks, so this is the end of the basic block we were
1864  // processing (L is the block's label).  Because this is label (and we have
1865  // already processed the substatement) there is no extra control-flow to worry
1866  // about.
1867  LabelBlock->setLabel(L);
1868  if (badCFG)
1869    return 0;
1870
1871  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1872  Block = NULL;
1873
1874  // This block is now the implicit successor of other blocks.
1875  Succ = LabelBlock;
1876
1877  return LabelBlock;
1878}
1879
1880CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1881  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1882  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1883       et = E->capture_init_end(); it != et; ++it) {
1884    if (Expr *Init = *it) {
1885      CFGBlock *Tmp = Visit(Init);
1886      if (Tmp != 0)
1887        LastBlock = Tmp;
1888    }
1889  }
1890  return LastBlock;
1891}
1892
1893CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1894  // Goto is a control-flow statement.  Thus we stop processing the current
1895  // block and create a new one.
1896
1897  Block = createBlock(false);
1898  Block->setTerminator(G);
1899
1900  // If we already know the mapping to the label block add the successor now.
1901  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1902
1903  if (I == LabelMap.end())
1904    // We will need to backpatch this block later.
1905    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1906  else {
1907    JumpTarget JT = I->second;
1908    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1909    addSuccessor(Block, JT.block);
1910  }
1911
1912  return Block;
1913}
1914
1915CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1916  CFGBlock *LoopSuccessor = NULL;
1917
1918  // Save local scope position because in case of condition variable ScopePos
1919  // won't be restored when traversing AST.
1920  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1921
1922  // Create local scope for init statement and possible condition variable.
1923  // Add destructor for init statement and condition variable.
1924  // Store scope position for continue statement.
1925  if (Stmt *Init = F->getInit())
1926    addLocalScopeForStmt(Init);
1927  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1928
1929  if (VarDecl *VD = F->getConditionVariable())
1930    addLocalScopeForVarDecl(VD);
1931  LocalScope::const_iterator ContinueScopePos = ScopePos;
1932
1933  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1934
1935  // "for" is a control-flow statement.  Thus we stop processing the current
1936  // block.
1937  if (Block) {
1938    if (badCFG)
1939      return 0;
1940    LoopSuccessor = Block;
1941  } else
1942    LoopSuccessor = Succ;
1943
1944  // Save the current value for the break targets.
1945  // All breaks should go to the code following the loop.
1946  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1947  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1948
1949  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1950
1951  // Now create the loop body.
1952  {
1953    assert(F->getBody());
1954
1955    // Save the current values for Block, Succ, continue and break targets.
1956    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1957    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1958
1959    // Create an empty block to represent the transition block for looping back
1960    // to the head of the loop.  If we have increment code, it will
1961    // go in this block as well.
1962    Block = Succ = TransitionBlock = createBlock(false);
1963    TransitionBlock->setLoopTarget(F);
1964
1965    if (Stmt *I = F->getInc()) {
1966      // Generate increment code in its own basic block.  This is the target of
1967      // continue statements.
1968      Succ = addStmt(I);
1969    }
1970
1971    // Finish up the increment (or empty) block if it hasn't been already.
1972    if (Block) {
1973      assert(Block == Succ);
1974      if (badCFG)
1975        return 0;
1976      Block = 0;
1977    }
1978
1979   // The starting block for the loop increment is the block that should
1980   // represent the 'loop target' for looping back to the start of the loop.
1981   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1982   ContinueJumpTarget.block->setLoopTarget(F);
1983
1984    // Loop body should end with destructor of Condition variable (if any).
1985    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1986
1987    // If body is not a compound statement create implicit scope
1988    // and add destructors.
1989    if (!isa<CompoundStmt>(F->getBody()))
1990      addLocalScopeAndDtors(F->getBody());
1991
1992    // Now populate the body block, and in the process create new blocks as we
1993    // walk the body of the loop.
1994    BodyBlock = addStmt(F->getBody());
1995
1996    if (!BodyBlock) {
1997      // In the case of "for (...;...;...);" we can have a null BodyBlock.
1998      // Use the continue jump target as the proxy for the body.
1999      BodyBlock = ContinueJumpTarget.block;
2000    }
2001    else if (badCFG)
2002      return 0;
2003  }
2004
2005  // Because of short-circuit evaluation, the condition of the loop can span
2006  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2007  // evaluate the condition.
2008  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2009
2010  do {
2011    Expr *C = F->getCond();
2012
2013    // Specially handle logical operators, which have a slightly
2014    // more optimal CFG representation.
2015    if (BinaryOperator *Cond =
2016            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2017      if (Cond->isLogicalOp()) {
2018        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2019          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2020        break;
2021      }
2022
2023    // The default case when not handling logical operators.
2024    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2025    ExitConditionBlock->setTerminator(F);
2026
2027    // See if this is a known constant.
2028    TryResult KnownVal(true);
2029
2030    if (C) {
2031      // Now add the actual condition to the condition block.
2032      // Because the condition itself may contain control-flow, new blocks may
2033      // be created.  Thus we update "Succ" after adding the condition.
2034      Block = ExitConditionBlock;
2035      EntryConditionBlock = addStmt(C);
2036
2037      // If this block contains a condition variable, add both the condition
2038      // variable and initializer to the CFG.
2039      if (VarDecl *VD = F->getConditionVariable()) {
2040        if (Expr *Init = VD->getInit()) {
2041          autoCreateBlock();
2042          appendStmt(Block, F->getConditionVariableDeclStmt());
2043          EntryConditionBlock = addStmt(Init);
2044          assert(Block == EntryConditionBlock);
2045        }
2046      }
2047
2048      if (Block && badCFG)
2049        return 0;
2050
2051      KnownVal = tryEvaluateBool(C);
2052    }
2053
2054    // Add the loop body entry as a successor to the condition.
2055    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2056    // Link up the condition block with the code that follows the loop.  (the
2057    // false branch).
2058    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2059
2060  } while (false);
2061
2062  // Link up the loop-back block to the entry condition block.
2063  addSuccessor(TransitionBlock, EntryConditionBlock);
2064
2065  // The condition block is the implicit successor for any code above the loop.
2066  Succ = EntryConditionBlock;
2067
2068  // If the loop contains initialization, create a new block for those
2069  // statements.  This block can also contain statements that precede the loop.
2070  if (Stmt *I = F->getInit()) {
2071    Block = createBlock();
2072    return addStmt(I);
2073  }
2074
2075  // There is no loop initialization.  We are thus basically a while loop.
2076  // NULL out Block to force lazy block construction.
2077  Block = NULL;
2078  Succ = EntryConditionBlock;
2079  return EntryConditionBlock;
2080}
2081
2082CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2083  if (asc.alwaysAdd(*this, M)) {
2084    autoCreateBlock();
2085    appendStmt(Block, M);
2086  }
2087  return Visit(M->getBase());
2088}
2089
2090CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2091  // Objective-C fast enumeration 'for' statements:
2092  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2093  //
2094  //  for ( Type newVariable in collection_expression ) { statements }
2095  //
2096  //  becomes:
2097  //
2098  //   prologue:
2099  //     1. collection_expression
2100  //     T. jump to loop_entry
2101  //   loop_entry:
2102  //     1. side-effects of element expression
2103  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2104  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2105  //   TB:
2106  //     statements
2107  //     T. jump to loop_entry
2108  //   FB:
2109  //     what comes after
2110  //
2111  //  and
2112  //
2113  //  Type existingItem;
2114  //  for ( existingItem in expression ) { statements }
2115  //
2116  //  becomes:
2117  //
2118  //   the same with newVariable replaced with existingItem; the binding works
2119  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2120  //   a DeclStmt and the other returns a DeclRefExpr.
2121  //
2122
2123  CFGBlock *LoopSuccessor = 0;
2124
2125  if (Block) {
2126    if (badCFG)
2127      return 0;
2128    LoopSuccessor = Block;
2129    Block = 0;
2130  } else
2131    LoopSuccessor = Succ;
2132
2133  // Build the condition blocks.
2134  CFGBlock *ExitConditionBlock = createBlock(false);
2135
2136  // Set the terminator for the "exit" condition block.
2137  ExitConditionBlock->setTerminator(S);
2138
2139  // The last statement in the block should be the ObjCForCollectionStmt, which
2140  // performs the actual binding to 'element' and determines if there are any
2141  // more items in the collection.
2142  appendStmt(ExitConditionBlock, S);
2143  Block = ExitConditionBlock;
2144
2145  // Walk the 'element' expression to see if there are any side-effects.  We
2146  // generate new blocks as necessary.  We DON'T add the statement by default to
2147  // the CFG unless it contains control-flow.
2148  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2149                                        AddStmtChoice::NotAlwaysAdd);
2150  if (Block) {
2151    if (badCFG)
2152      return 0;
2153    Block = 0;
2154  }
2155
2156  // The condition block is the implicit successor for the loop body as well as
2157  // any code above the loop.
2158  Succ = EntryConditionBlock;
2159
2160  // Now create the true branch.
2161  {
2162    // Save the current values for Succ, continue and break targets.
2163    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2164    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2165        save_break(BreakJumpTarget);
2166
2167    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2168    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2169
2170    CFGBlock *BodyBlock = addStmt(S->getBody());
2171
2172    if (!BodyBlock)
2173      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2174    else if (Block) {
2175      if (badCFG)
2176        return 0;
2177    }
2178
2179    // This new body block is a successor to our "exit" condition block.
2180    addSuccessor(ExitConditionBlock, BodyBlock);
2181  }
2182
2183  // Link up the condition block with the code that follows the loop.
2184  // (the false branch).
2185  addSuccessor(ExitConditionBlock, LoopSuccessor);
2186
2187  // Now create a prologue block to contain the collection expression.
2188  Block = createBlock();
2189  return addStmt(S->getCollection());
2190}
2191
2192CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2193  // Inline the body.
2194  return addStmt(S->getSubStmt());
2195  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2196}
2197
2198CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2199  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2200
2201  // Inline the body.
2202  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2203
2204  // The sync body starts its own basic block.  This makes it a little easier
2205  // for diagnostic clients.
2206  if (SyncBlock) {
2207    if (badCFG)
2208      return 0;
2209
2210    Block = 0;
2211    Succ = SyncBlock;
2212  }
2213
2214  // Add the @synchronized to the CFG.
2215  autoCreateBlock();
2216  appendStmt(Block, S);
2217
2218  // Inline the sync expression.
2219  return addStmt(S->getSynchExpr());
2220}
2221
2222CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2223  // FIXME
2224  return NYS();
2225}
2226
2227CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2228  autoCreateBlock();
2229
2230  // Add the PseudoObject as the last thing.
2231  appendStmt(Block, E);
2232
2233  CFGBlock *lastBlock = Block;
2234
2235  // Before that, evaluate all of the semantics in order.  In
2236  // CFG-land, that means appending them in reverse order.
2237  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2238    Expr *Semantic = E->getSemanticExpr(--i);
2239
2240    // If the semantic is an opaque value, we're being asked to bind
2241    // it to its source expression.
2242    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2243      Semantic = OVE->getSourceExpr();
2244
2245    if (CFGBlock *B = Visit(Semantic))
2246      lastBlock = B;
2247  }
2248
2249  return lastBlock;
2250}
2251
2252CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2253  CFGBlock *LoopSuccessor = NULL;
2254
2255  // Save local scope position because in case of condition variable ScopePos
2256  // won't be restored when traversing AST.
2257  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2258
2259  // Create local scope for possible condition variable.
2260  // Store scope position for continue statement.
2261  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2262  if (VarDecl *VD = W->getConditionVariable()) {
2263    addLocalScopeForVarDecl(VD);
2264    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2265  }
2266
2267  // "while" is a control-flow statement.  Thus we stop processing the current
2268  // block.
2269  if (Block) {
2270    if (badCFG)
2271      return 0;
2272    LoopSuccessor = Block;
2273    Block = 0;
2274  } else {
2275    LoopSuccessor = Succ;
2276  }
2277
2278  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2279
2280  // Process the loop body.
2281  {
2282    assert(W->getBody());
2283
2284    // Save the current values for Block, Succ, continue and break targets.
2285    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2286    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2287                               save_break(BreakJumpTarget);
2288
2289    // Create an empty block to represent the transition block for looping back
2290    // to the head of the loop.
2291    Succ = TransitionBlock = createBlock(false);
2292    TransitionBlock->setLoopTarget(W);
2293    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2294
2295    // All breaks should go to the code following the loop.
2296    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2297
2298    // Loop body should end with destructor of Condition variable (if any).
2299    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2300
2301    // If body is not a compound statement create implicit scope
2302    // and add destructors.
2303    if (!isa<CompoundStmt>(W->getBody()))
2304      addLocalScopeAndDtors(W->getBody());
2305
2306    // Create the body.  The returned block is the entry to the loop body.
2307    BodyBlock = addStmt(W->getBody());
2308
2309    if (!BodyBlock)
2310      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2311    else if (Block && badCFG)
2312      return 0;
2313  }
2314
2315  // Because of short-circuit evaluation, the condition of the loop can span
2316  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2317  // evaluate the condition.
2318  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2319
2320  do {
2321    Expr *C = W->getCond();
2322
2323    // Specially handle logical operators, which have a slightly
2324    // more optimal CFG representation.
2325    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2326      if (Cond->isLogicalOp()) {
2327        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2328          VisitLogicalOperator(Cond, W, BodyBlock,
2329                               LoopSuccessor);
2330        break;
2331      }
2332
2333    // The default case when not handling logical operators.
2334    ExitConditionBlock = createBlock(false);
2335    ExitConditionBlock->setTerminator(W);
2336
2337    // Now add the actual condition to the condition block.
2338    // Because the condition itself may contain control-flow, new blocks may
2339    // be created.  Thus we update "Succ" after adding the condition.
2340    Block = ExitConditionBlock;
2341    Block = EntryConditionBlock = addStmt(C);
2342
2343    // If this block contains a condition variable, add both the condition
2344    // variable and initializer to the CFG.
2345    if (VarDecl *VD = W->getConditionVariable()) {
2346      if (Expr *Init = VD->getInit()) {
2347        autoCreateBlock();
2348        appendStmt(Block, W->getConditionVariableDeclStmt());
2349        EntryConditionBlock = addStmt(Init);
2350        assert(Block == EntryConditionBlock);
2351      }
2352    }
2353
2354    if (Block && badCFG)
2355      return 0;
2356
2357    // See if this is a known constant.
2358    const TryResult& KnownVal = tryEvaluateBool(C);
2359
2360    // Add the loop body entry as a successor to the condition.
2361    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2362    // Link up the condition block with the code that follows the loop.  (the
2363    // false branch).
2364    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2365
2366  } while(false);
2367
2368  // Link up the loop-back block to the entry condition block.
2369  addSuccessor(TransitionBlock, EntryConditionBlock);
2370
2371  // There can be no more statements in the condition block since we loop back
2372  // to this block.  NULL out Block to force lazy creation of another block.
2373  Block = NULL;
2374
2375  // Return the condition block, which is the dominating block for the loop.
2376  Succ = EntryConditionBlock;
2377  return EntryConditionBlock;
2378}
2379
2380
2381CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2382  // FIXME: For now we pretend that @catch and the code it contains does not
2383  //  exit.
2384  return Block;
2385}
2386
2387CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2388  // FIXME: This isn't complete.  We basically treat @throw like a return
2389  //  statement.
2390
2391  // If we were in the middle of a block we stop processing that block.
2392  if (badCFG)
2393    return 0;
2394
2395  // Create the new block.
2396  Block = createBlock(false);
2397
2398  // The Exit block is the only successor.
2399  addSuccessor(Block, &cfg->getExit());
2400
2401  // Add the statement to the block.  This may create new blocks if S contains
2402  // control-flow (short-circuit operations).
2403  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2404}
2405
2406CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2407  // If we were in the middle of a block we stop processing that block.
2408  if (badCFG)
2409    return 0;
2410
2411  // Create the new block.
2412  Block = createBlock(false);
2413
2414  if (TryTerminatedBlock)
2415    // The current try statement is the only successor.
2416    addSuccessor(Block, TryTerminatedBlock);
2417  else
2418    // otherwise the Exit block is the only successor.
2419    addSuccessor(Block, &cfg->getExit());
2420
2421  // Add the statement to the block.  This may create new blocks if S contains
2422  // control-flow (short-circuit operations).
2423  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2424}
2425
2426CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2427  CFGBlock *LoopSuccessor = NULL;
2428
2429  // "do...while" is a control-flow statement.  Thus we stop processing the
2430  // current block.
2431  if (Block) {
2432    if (badCFG)
2433      return 0;
2434    LoopSuccessor = Block;
2435  } else
2436    LoopSuccessor = Succ;
2437
2438  // Because of short-circuit evaluation, the condition of the loop can span
2439  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2440  // evaluate the condition.
2441  CFGBlock *ExitConditionBlock = createBlock(false);
2442  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2443
2444  // Set the terminator for the "exit" condition block.
2445  ExitConditionBlock->setTerminator(D);
2446
2447  // Now add the actual condition to the condition block.  Because the condition
2448  // itself may contain control-flow, new blocks may be created.
2449  if (Stmt *C = D->getCond()) {
2450    Block = ExitConditionBlock;
2451    EntryConditionBlock = addStmt(C);
2452    if (Block) {
2453      if (badCFG)
2454        return 0;
2455    }
2456  }
2457
2458  // The condition block is the implicit successor for the loop body.
2459  Succ = EntryConditionBlock;
2460
2461  // See if this is a known constant.
2462  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2463
2464  // Process the loop body.
2465  CFGBlock *BodyBlock = NULL;
2466  {
2467    assert(D->getBody());
2468
2469    // Save the current values for Block, Succ, and continue and break targets
2470    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2471    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2472        save_break(BreakJumpTarget);
2473
2474    // All continues within this loop should go to the condition block
2475    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2476
2477    // All breaks should go to the code following the loop.
2478    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2479
2480    // NULL out Block to force lazy instantiation of blocks for the body.
2481    Block = NULL;
2482
2483    // If body is not a compound statement create implicit scope
2484    // and add destructors.
2485    if (!isa<CompoundStmt>(D->getBody()))
2486      addLocalScopeAndDtors(D->getBody());
2487
2488    // Create the body.  The returned block is the entry to the loop body.
2489    BodyBlock = addStmt(D->getBody());
2490
2491    if (!BodyBlock)
2492      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2493    else if (Block) {
2494      if (badCFG)
2495        return 0;
2496    }
2497
2498    if (!KnownVal.isFalse()) {
2499      // Add an intermediate block between the BodyBlock and the
2500      // ExitConditionBlock to represent the "loop back" transition.  Create an
2501      // empty block to represent the transition block for looping back to the
2502      // head of the loop.
2503      // FIXME: Can we do this more efficiently without adding another block?
2504      Block = NULL;
2505      Succ = BodyBlock;
2506      CFGBlock *LoopBackBlock = createBlock();
2507      LoopBackBlock->setLoopTarget(D);
2508
2509      // Add the loop body entry as a successor to the condition.
2510      addSuccessor(ExitConditionBlock, LoopBackBlock);
2511    }
2512    else
2513      addSuccessor(ExitConditionBlock, NULL);
2514  }
2515
2516  // Link up the condition block with the code that follows the loop.
2517  // (the false branch).
2518  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2519
2520  // There can be no more statements in the body block(s) since we loop back to
2521  // the body.  NULL out Block to force lazy creation of another block.
2522  Block = NULL;
2523
2524  // Return the loop body, which is the dominating block for the loop.
2525  Succ = BodyBlock;
2526  return BodyBlock;
2527}
2528
2529CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2530  // "continue" is a control-flow statement.  Thus we stop processing the
2531  // current block.
2532  if (badCFG)
2533    return 0;
2534
2535  // Now create a new block that ends with the continue statement.
2536  Block = createBlock(false);
2537  Block->setTerminator(C);
2538
2539  // If there is no target for the continue, then we are looking at an
2540  // incomplete AST.  This means the CFG cannot be constructed.
2541  if (ContinueJumpTarget.block) {
2542    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2543    addSuccessor(Block, ContinueJumpTarget.block);
2544  } else
2545    badCFG = true;
2546
2547  return Block;
2548}
2549
2550CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2551                                                    AddStmtChoice asc) {
2552
2553  if (asc.alwaysAdd(*this, E)) {
2554    autoCreateBlock();
2555    appendStmt(Block, E);
2556  }
2557
2558  // VLA types have expressions that must be evaluated.
2559  CFGBlock *lastBlock = Block;
2560
2561  if (E->isArgumentType()) {
2562    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2563         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2564      lastBlock = addStmt(VA->getSizeExpr());
2565  }
2566  return lastBlock;
2567}
2568
2569/// VisitStmtExpr - Utility method to handle (nested) statement
2570///  expressions (a GCC extension).
2571CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2572  if (asc.alwaysAdd(*this, SE)) {
2573    autoCreateBlock();
2574    appendStmt(Block, SE);
2575  }
2576  return VisitCompoundStmt(SE->getSubStmt());
2577}
2578
2579CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2580  // "switch" is a control-flow statement.  Thus we stop processing the current
2581  // block.
2582  CFGBlock *SwitchSuccessor = NULL;
2583
2584  // Save local scope position because in case of condition variable ScopePos
2585  // won't be restored when traversing AST.
2586  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2587
2588  // Create local scope for possible condition variable.
2589  // Store scope position. Add implicit destructor.
2590  if (VarDecl *VD = Terminator->getConditionVariable()) {
2591    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2592    addLocalScopeForVarDecl(VD);
2593    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2594  }
2595
2596  if (Block) {
2597    if (badCFG)
2598      return 0;
2599    SwitchSuccessor = Block;
2600  } else SwitchSuccessor = Succ;
2601
2602  // Save the current "switch" context.
2603  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2604                            save_default(DefaultCaseBlock);
2605  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2606
2607  // Set the "default" case to be the block after the switch statement.  If the
2608  // switch statement contains a "default:", this value will be overwritten with
2609  // the block for that code.
2610  DefaultCaseBlock = SwitchSuccessor;
2611
2612  // Create a new block that will contain the switch statement.
2613  SwitchTerminatedBlock = createBlock(false);
2614
2615  // Now process the switch body.  The code after the switch is the implicit
2616  // successor.
2617  Succ = SwitchSuccessor;
2618  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2619
2620  // When visiting the body, the case statements should automatically get linked
2621  // up to the switch.  We also don't keep a pointer to the body, since all
2622  // control-flow from the switch goes to case/default statements.
2623  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2624  Block = NULL;
2625
2626  // For pruning unreachable case statements, save the current state
2627  // for tracking the condition value.
2628  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2629                                                     false);
2630
2631  // Determine if the switch condition can be explicitly evaluated.
2632  assert(Terminator->getCond() && "switch condition must be non-NULL");
2633  Expr::EvalResult result;
2634  bool b = tryEvaluate(Terminator->getCond(), result);
2635  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2636                                                    b ? &result : 0);
2637
2638  // If body is not a compound statement create implicit scope
2639  // and add destructors.
2640  if (!isa<CompoundStmt>(Terminator->getBody()))
2641    addLocalScopeAndDtors(Terminator->getBody());
2642
2643  addStmt(Terminator->getBody());
2644  if (Block) {
2645    if (badCFG)
2646      return 0;
2647  }
2648
2649  // If we have no "default:" case, the default transition is to the code
2650  // following the switch body.  Moreover, take into account if all the
2651  // cases of a switch are covered (e.g., switching on an enum value).
2652  addSuccessor(SwitchTerminatedBlock,
2653               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2654               ? 0 : DefaultCaseBlock);
2655
2656  // Add the terminator and condition in the switch block.
2657  SwitchTerminatedBlock->setTerminator(Terminator);
2658  Block = SwitchTerminatedBlock;
2659  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2660
2661  // Finally, if the SwitchStmt contains a condition variable, add both the
2662  // SwitchStmt and the condition variable initialization to the CFG.
2663  if (VarDecl *VD = Terminator->getConditionVariable()) {
2664    if (Expr *Init = VD->getInit()) {
2665      autoCreateBlock();
2666      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2667      LastBlock = addStmt(Init);
2668    }
2669  }
2670
2671  return LastBlock;
2672}
2673
2674static bool shouldAddCase(bool &switchExclusivelyCovered,
2675                          const Expr::EvalResult *switchCond,
2676                          const CaseStmt *CS,
2677                          ASTContext &Ctx) {
2678  if (!switchCond)
2679    return true;
2680
2681  bool addCase = false;
2682
2683  if (!switchExclusivelyCovered) {
2684    if (switchCond->Val.isInt()) {
2685      // Evaluate the LHS of the case value.
2686      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2687      const llvm::APSInt &condInt = switchCond->Val.getInt();
2688
2689      if (condInt == lhsInt) {
2690        addCase = true;
2691        switchExclusivelyCovered = true;
2692      }
2693      else if (condInt < lhsInt) {
2694        if (const Expr *RHS = CS->getRHS()) {
2695          // Evaluate the RHS of the case value.
2696          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2697          if (V2 <= condInt) {
2698            addCase = true;
2699            switchExclusivelyCovered = true;
2700          }
2701        }
2702      }
2703    }
2704    else
2705      addCase = true;
2706  }
2707  return addCase;
2708}
2709
2710CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2711  // CaseStmts are essentially labels, so they are the first statement in a
2712  // block.
2713  CFGBlock *TopBlock = 0, *LastBlock = 0;
2714
2715  if (Stmt *Sub = CS->getSubStmt()) {
2716    // For deeply nested chains of CaseStmts, instead of doing a recursion
2717    // (which can blow out the stack), manually unroll and create blocks
2718    // along the way.
2719    while (isa<CaseStmt>(Sub)) {
2720      CFGBlock *currentBlock = createBlock(false);
2721      currentBlock->setLabel(CS);
2722
2723      if (TopBlock)
2724        addSuccessor(LastBlock, currentBlock);
2725      else
2726        TopBlock = currentBlock;
2727
2728      addSuccessor(SwitchTerminatedBlock,
2729                   shouldAddCase(switchExclusivelyCovered, switchCond,
2730                                 CS, *Context)
2731                   ? currentBlock : 0);
2732
2733      LastBlock = currentBlock;
2734      CS = cast<CaseStmt>(Sub);
2735      Sub = CS->getSubStmt();
2736    }
2737
2738    addStmt(Sub);
2739  }
2740
2741  CFGBlock *CaseBlock = Block;
2742  if (!CaseBlock)
2743    CaseBlock = createBlock();
2744
2745  // Cases statements partition blocks, so this is the top of the basic block we
2746  // were processing (the "case XXX:" is the label).
2747  CaseBlock->setLabel(CS);
2748
2749  if (badCFG)
2750    return 0;
2751
2752  // Add this block to the list of successors for the block with the switch
2753  // statement.
2754  assert(SwitchTerminatedBlock);
2755  addSuccessor(SwitchTerminatedBlock,
2756               shouldAddCase(switchExclusivelyCovered, switchCond,
2757                             CS, *Context)
2758               ? CaseBlock : 0);
2759
2760  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2761  Block = NULL;
2762
2763  if (TopBlock) {
2764    addSuccessor(LastBlock, CaseBlock);
2765    Succ = TopBlock;
2766  } else {
2767    // This block is now the implicit successor of other blocks.
2768    Succ = CaseBlock;
2769  }
2770
2771  return Succ;
2772}
2773
2774CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2775  if (Terminator->getSubStmt())
2776    addStmt(Terminator->getSubStmt());
2777
2778  DefaultCaseBlock = Block;
2779
2780  if (!DefaultCaseBlock)
2781    DefaultCaseBlock = createBlock();
2782
2783  // Default statements partition blocks, so this is the top of the basic block
2784  // we were processing (the "default:" is the label).
2785  DefaultCaseBlock->setLabel(Terminator);
2786
2787  if (badCFG)
2788    return 0;
2789
2790  // Unlike case statements, we don't add the default block to the successors
2791  // for the switch statement immediately.  This is done when we finish
2792  // processing the switch statement.  This allows for the default case
2793  // (including a fall-through to the code after the switch statement) to always
2794  // be the last successor of a switch-terminated block.
2795
2796  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2797  Block = NULL;
2798
2799  // This block is now the implicit successor of other blocks.
2800  Succ = DefaultCaseBlock;
2801
2802  return DefaultCaseBlock;
2803}
2804
2805CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2806  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2807  // current block.
2808  CFGBlock *TrySuccessor = NULL;
2809
2810  if (Block) {
2811    if (badCFG)
2812      return 0;
2813    TrySuccessor = Block;
2814  } else TrySuccessor = Succ;
2815
2816  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2817
2818  // Create a new block that will contain the try statement.
2819  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2820  // Add the terminator in the try block.
2821  NewTryTerminatedBlock->setTerminator(Terminator);
2822
2823  bool HasCatchAll = false;
2824  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2825    // The code after the try is the implicit successor.
2826    Succ = TrySuccessor;
2827    CXXCatchStmt *CS = Terminator->getHandler(h);
2828    if (CS->getExceptionDecl() == 0) {
2829      HasCatchAll = true;
2830    }
2831    Block = NULL;
2832    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2833    if (CatchBlock == 0)
2834      return 0;
2835    // Add this block to the list of successors for the block with the try
2836    // statement.
2837    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2838  }
2839  if (!HasCatchAll) {
2840    if (PrevTryTerminatedBlock)
2841      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2842    else
2843      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2844  }
2845
2846  // The code after the try is the implicit successor.
2847  Succ = TrySuccessor;
2848
2849  // Save the current "try" context.
2850  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2851  cfg->addTryDispatchBlock(TryTerminatedBlock);
2852
2853  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2854  Block = NULL;
2855  return addStmt(Terminator->getTryBlock());
2856}
2857
2858CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2859  // CXXCatchStmt are treated like labels, so they are the first statement in a
2860  // block.
2861
2862  // Save local scope position because in case of exception variable ScopePos
2863  // won't be restored when traversing AST.
2864  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2865
2866  // Create local scope for possible exception variable.
2867  // Store scope position. Add implicit destructor.
2868  if (VarDecl *VD = CS->getExceptionDecl()) {
2869    LocalScope::const_iterator BeginScopePos = ScopePos;
2870    addLocalScopeForVarDecl(VD);
2871    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2872  }
2873
2874  if (CS->getHandlerBlock())
2875    addStmt(CS->getHandlerBlock());
2876
2877  CFGBlock *CatchBlock = Block;
2878  if (!CatchBlock)
2879    CatchBlock = createBlock();
2880
2881  // CXXCatchStmt is more than just a label.  They have semantic meaning
2882  // as well, as they implicitly "initialize" the catch variable.  Add
2883  // it to the CFG as a CFGElement so that the control-flow of these
2884  // semantics gets captured.
2885  appendStmt(CatchBlock, CS);
2886
2887  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2888  // labels.
2889  CatchBlock->setLabel(CS);
2890
2891  // Bail out if the CFG is bad.
2892  if (badCFG)
2893    return 0;
2894
2895  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2896  Block = NULL;
2897
2898  return CatchBlock;
2899}
2900
2901CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2902  // C++0x for-range statements are specified as [stmt.ranged]:
2903  //
2904  // {
2905  //   auto && __range = range-init;
2906  //   for ( auto __begin = begin-expr,
2907  //         __end = end-expr;
2908  //         __begin != __end;
2909  //         ++__begin ) {
2910  //     for-range-declaration = *__begin;
2911  //     statement
2912  //   }
2913  // }
2914
2915  // Save local scope position before the addition of the implicit variables.
2916  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2917
2918  // Create local scopes and destructors for range, begin and end variables.
2919  if (Stmt *Range = S->getRangeStmt())
2920    addLocalScopeForStmt(Range);
2921  if (Stmt *BeginEnd = S->getBeginEndStmt())
2922    addLocalScopeForStmt(BeginEnd);
2923  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2924
2925  LocalScope::const_iterator ContinueScopePos = ScopePos;
2926
2927  // "for" is a control-flow statement.  Thus we stop processing the current
2928  // block.
2929  CFGBlock *LoopSuccessor = NULL;
2930  if (Block) {
2931    if (badCFG)
2932      return 0;
2933    LoopSuccessor = Block;
2934  } else
2935    LoopSuccessor = Succ;
2936
2937  // Save the current value for the break targets.
2938  // All breaks should go to the code following the loop.
2939  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2940  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2941
2942  // The block for the __begin != __end expression.
2943  CFGBlock *ConditionBlock = createBlock(false);
2944  ConditionBlock->setTerminator(S);
2945
2946  // Now add the actual condition to the condition block.
2947  if (Expr *C = S->getCond()) {
2948    Block = ConditionBlock;
2949    CFGBlock *BeginConditionBlock = addStmt(C);
2950    if (badCFG)
2951      return 0;
2952    assert(BeginConditionBlock == ConditionBlock &&
2953           "condition block in for-range was unexpectedly complex");
2954    (void)BeginConditionBlock;
2955  }
2956
2957  // The condition block is the implicit successor for the loop body as well as
2958  // any code above the loop.
2959  Succ = ConditionBlock;
2960
2961  // See if this is a known constant.
2962  TryResult KnownVal(true);
2963
2964  if (S->getCond())
2965    KnownVal = tryEvaluateBool(S->getCond());
2966
2967  // Now create the loop body.
2968  {
2969    assert(S->getBody());
2970
2971    // Save the current values for Block, Succ, and continue targets.
2972    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2973    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2974
2975    // Generate increment code in its own basic block.  This is the target of
2976    // continue statements.
2977    Block = 0;
2978    Succ = addStmt(S->getInc());
2979    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2980
2981    // The starting block for the loop increment is the block that should
2982    // represent the 'loop target' for looping back to the start of the loop.
2983    ContinueJumpTarget.block->setLoopTarget(S);
2984
2985    // Finish up the increment block and prepare to start the loop body.
2986    assert(Block);
2987    if (badCFG)
2988      return 0;
2989    Block = 0;
2990
2991
2992    // Add implicit scope and dtors for loop variable.
2993    addLocalScopeAndDtors(S->getLoopVarStmt());
2994
2995    // Populate a new block to contain the loop body and loop variable.
2996    addStmt(S->getBody());
2997    if (badCFG)
2998      return 0;
2999    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3000    if (badCFG)
3001      return 0;
3002
3003    // This new body block is a successor to our condition block.
3004    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3005  }
3006
3007  // Link up the condition block with the code that follows the loop (the
3008  // false branch).
3009  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3010
3011  // Add the initialization statements.
3012  Block = createBlock();
3013  addStmt(S->getBeginEndStmt());
3014  return addStmt(S->getRangeStmt());
3015}
3016
3017CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3018    AddStmtChoice asc) {
3019  if (BuildOpts.AddTemporaryDtors) {
3020    // If adding implicit destructors visit the full expression for adding
3021    // destructors of temporaries.
3022    VisitForTemporaryDtors(E->getSubExpr());
3023
3024    // Full expression has to be added as CFGStmt so it will be sequenced
3025    // before destructors of it's temporaries.
3026    asc = asc.withAlwaysAdd(true);
3027  }
3028  return Visit(E->getSubExpr(), asc);
3029}
3030
3031CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3032                                                AddStmtChoice asc) {
3033  if (asc.alwaysAdd(*this, E)) {
3034    autoCreateBlock();
3035    appendStmt(Block, E);
3036
3037    // We do not want to propagate the AlwaysAdd property.
3038    asc = asc.withAlwaysAdd(false);
3039  }
3040  return Visit(E->getSubExpr(), asc);
3041}
3042
3043CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3044                                            AddStmtChoice asc) {
3045  autoCreateBlock();
3046  appendStmt(Block, C);
3047
3048  return VisitChildren(C);
3049}
3050
3051CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3052                                                 AddStmtChoice asc) {
3053  if (asc.alwaysAdd(*this, E)) {
3054    autoCreateBlock();
3055    appendStmt(Block, E);
3056    // We do not want to propagate the AlwaysAdd property.
3057    asc = asc.withAlwaysAdd(false);
3058  }
3059  return Visit(E->getSubExpr(), asc);
3060}
3061
3062CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3063                                                  AddStmtChoice asc) {
3064  autoCreateBlock();
3065  appendStmt(Block, C);
3066  return VisitChildren(C);
3067}
3068
3069CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3070                                            AddStmtChoice asc) {
3071  if (asc.alwaysAdd(*this, E)) {
3072    autoCreateBlock();
3073    appendStmt(Block, E);
3074  }
3075  return Visit(E->getSubExpr(), AddStmtChoice());
3076}
3077
3078CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3079  // Lazily create the indirect-goto dispatch block if there isn't one already.
3080  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3081
3082  if (!IBlock) {
3083    IBlock = createBlock(false);
3084    cfg->setIndirectGotoBlock(IBlock);
3085  }
3086
3087  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3088  // current block and create a new one.
3089  if (badCFG)
3090    return 0;
3091
3092  Block = createBlock(false);
3093  Block->setTerminator(I);
3094  addSuccessor(Block, IBlock);
3095  return addStmt(I->getTarget());
3096}
3097
3098CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3099  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3100
3101tryAgain:
3102  if (!E) {
3103    badCFG = true;
3104    return NULL;
3105  }
3106  switch (E->getStmtClass()) {
3107    default:
3108      return VisitChildrenForTemporaryDtors(E);
3109
3110    case Stmt::BinaryOperatorClass:
3111      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3112
3113    case Stmt::CXXBindTemporaryExprClass:
3114      return VisitCXXBindTemporaryExprForTemporaryDtors(
3115          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3116
3117    case Stmt::BinaryConditionalOperatorClass:
3118    case Stmt::ConditionalOperatorClass:
3119      return VisitConditionalOperatorForTemporaryDtors(
3120          cast<AbstractConditionalOperator>(E), BindToTemporary);
3121
3122    case Stmt::ImplicitCastExprClass:
3123      // For implicit cast we want BindToTemporary to be passed further.
3124      E = cast<CastExpr>(E)->getSubExpr();
3125      goto tryAgain;
3126
3127    case Stmt::ParenExprClass:
3128      E = cast<ParenExpr>(E)->getSubExpr();
3129      goto tryAgain;
3130
3131    case Stmt::MaterializeTemporaryExprClass:
3132      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3133      goto tryAgain;
3134  }
3135}
3136
3137CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3138  // When visiting children for destructors we want to visit them in reverse
3139  // order that they will appear in the CFG.  Because the CFG is built
3140  // bottom-up, this means we visit them in their natural order, which
3141  // reverses them in the CFG.
3142  CFGBlock *B = Block;
3143  for (Stmt::child_range I = E->children(); I; ++I) {
3144    if (Stmt *Child = *I)
3145      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3146        B = R;
3147  }
3148  return B;
3149}
3150
3151CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3152  if (E->isLogicalOp()) {
3153    // Destructors for temporaries in LHS expression should be called after
3154    // those for RHS expression. Even if this will unnecessarily create a block,
3155    // this block will be used at least by the full expression.
3156    autoCreateBlock();
3157    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3158    if (badCFG)
3159      return NULL;
3160
3161    Succ = ConfluenceBlock;
3162    Block = NULL;
3163    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3164
3165    if (RHSBlock) {
3166      if (badCFG)
3167        return NULL;
3168
3169      // If RHS expression did produce destructors we need to connect created
3170      // blocks to CFG in same manner as for binary operator itself.
3171      CFGBlock *LHSBlock = createBlock(false);
3172      LHSBlock->setTerminator(CFGTerminator(E, true));
3173
3174      // For binary operator LHS block is before RHS in list of predecessors
3175      // of ConfluenceBlock.
3176      std::reverse(ConfluenceBlock->pred_begin(),
3177          ConfluenceBlock->pred_end());
3178
3179      // See if this is a known constant.
3180      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3181      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3182        KnownVal.negate();
3183
3184      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3185      // itself.
3186      if (E->getOpcode() == BO_LOr) {
3187        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3188        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3189      } else {
3190        assert (E->getOpcode() == BO_LAnd);
3191        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3192        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3193      }
3194
3195      Block = LHSBlock;
3196      return LHSBlock;
3197    }
3198
3199    Block = ConfluenceBlock;
3200    return ConfluenceBlock;
3201  }
3202
3203  if (E->isAssignmentOp()) {
3204    // For assignment operator (=) LHS expression is visited
3205    // before RHS expression. For destructors visit them in reverse order.
3206    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3207    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3208    return LHSBlock ? LHSBlock : RHSBlock;
3209  }
3210
3211  // For any other binary operator RHS expression is visited before
3212  // LHS expression (order of children). For destructors visit them in reverse
3213  // order.
3214  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3215  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3216  return RHSBlock ? RHSBlock : LHSBlock;
3217}
3218
3219CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3220    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3221  // First add destructors for temporaries in subexpression.
3222  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3223  if (!BindToTemporary) {
3224    // If lifetime of temporary is not prolonged (by assigning to constant
3225    // reference) add destructor for it.
3226
3227    // If the destructor is marked as a no-return destructor, we need to create
3228    // a new block for the destructor which does not have as a successor
3229    // anything built thus far. Control won't flow out of this block.
3230    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3231    if (Dtor->isNoReturn())
3232      Block = createNoReturnBlock();
3233    else
3234      autoCreateBlock();
3235
3236    appendTemporaryDtor(Block, E);
3237    B = Block;
3238  }
3239  return B;
3240}
3241
3242CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3243    AbstractConditionalOperator *E, bool BindToTemporary) {
3244  // First add destructors for condition expression.  Even if this will
3245  // unnecessarily create a block, this block will be used at least by the full
3246  // expression.
3247  autoCreateBlock();
3248  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3249  if (badCFG)
3250    return NULL;
3251  if (BinaryConditionalOperator *BCO
3252        = dyn_cast<BinaryConditionalOperator>(E)) {
3253    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3254    if (badCFG)
3255      return NULL;
3256  }
3257
3258  // Try to add block with destructors for LHS expression.
3259  CFGBlock *LHSBlock = NULL;
3260  Succ = ConfluenceBlock;
3261  Block = NULL;
3262  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3263  if (badCFG)
3264    return NULL;
3265
3266  // Try to add block with destructors for RHS expression;
3267  Succ = ConfluenceBlock;
3268  Block = NULL;
3269  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3270                                              BindToTemporary);
3271  if (badCFG)
3272    return NULL;
3273
3274  if (!RHSBlock && !LHSBlock) {
3275    // If neither LHS nor RHS expression had temporaries to destroy don't create
3276    // more blocks.
3277    Block = ConfluenceBlock;
3278    return Block;
3279  }
3280
3281  Block = createBlock(false);
3282  Block->setTerminator(CFGTerminator(E, true));
3283
3284  // See if this is a known constant.
3285  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3286
3287  if (LHSBlock) {
3288    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3289  } else if (KnownVal.isFalse()) {
3290    addSuccessor(Block, NULL);
3291  } else {
3292    addSuccessor(Block, ConfluenceBlock);
3293    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3294  }
3295
3296  if (!RHSBlock)
3297    RHSBlock = ConfluenceBlock;
3298  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3299
3300  return Block;
3301}
3302
3303} // end anonymous namespace
3304
3305/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3306///  no successors or predecessors.  If this is the first block created in the
3307///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3308CFGBlock *CFG::createBlock() {
3309  bool first_block = begin() == end();
3310
3311  // Create the block.
3312  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3313  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3314  Blocks.push_back(Mem, BlkBVC);
3315
3316  // If this is the first block, set it as the Entry and Exit.
3317  if (first_block)
3318    Entry = Exit = &back();
3319
3320  // Return the block.
3321  return &back();
3322}
3323
3324/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3325///  CFG is returned to the caller.
3326CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3327    const BuildOptions &BO) {
3328  CFGBuilder Builder(C, BO);
3329  return Builder.buildCFG(D, Statement);
3330}
3331
3332const CXXDestructorDecl *
3333CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3334  switch (getKind()) {
3335    case CFGElement::Invalid:
3336    case CFGElement::Statement:
3337    case CFGElement::Initializer:
3338      llvm_unreachable("getDestructorDecl should only be used with "
3339                       "ImplicitDtors");
3340    case CFGElement::AutomaticObjectDtor: {
3341      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3342      QualType ty = var->getType();
3343      ty = ty.getNonReferenceType();
3344      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3345        ty = arrayType->getElementType();
3346      }
3347      const RecordType *recordType = ty->getAs<RecordType>();
3348      const CXXRecordDecl *classDecl =
3349      cast<CXXRecordDecl>(recordType->getDecl());
3350      return classDecl->getDestructor();
3351    }
3352    case CFGElement::TemporaryDtor: {
3353      const CXXBindTemporaryExpr *bindExpr =
3354        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3355      const CXXTemporary *temp = bindExpr->getTemporary();
3356      return temp->getDestructor();
3357    }
3358    case CFGElement::BaseDtor:
3359    case CFGElement::MemberDtor:
3360
3361      // Not yet supported.
3362      return 0;
3363  }
3364  llvm_unreachable("getKind() returned bogus value");
3365}
3366
3367bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3368  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3369    return DD->isNoReturn();
3370  return false;
3371}
3372
3373//===----------------------------------------------------------------------===//
3374// CFG: Queries for BlkExprs.
3375//===----------------------------------------------------------------------===//
3376
3377namespace {
3378  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3379}
3380
3381static void FindSubExprAssignments(const Stmt *S,
3382                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3383  if (!S)
3384    return;
3385
3386  for (Stmt::const_child_range I = S->children(); I; ++I) {
3387    const Stmt *child = *I;
3388    if (!child)
3389      continue;
3390
3391    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3392      if (B->isAssignmentOp()) Set.insert(B);
3393
3394    FindSubExprAssignments(child, Set);
3395  }
3396}
3397
3398static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3399  BlkExprMapTy* M = new BlkExprMapTy();
3400
3401  // Look for assignments that are used as subexpressions.  These are the only
3402  // assignments that we want to *possibly* register as a block-level
3403  // expression.  Basically, if an assignment occurs both in a subexpression and
3404  // at the block-level, it is a block-level expression.
3405  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3406
3407  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3408    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3409      if (CFGStmt S = BI->getAs<CFGStmt>())
3410        FindSubExprAssignments(S.getStmt(), SubExprAssignments);
3411
3412  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3413
3414    // Iterate over the statements again on identify the Expr* and Stmt* at the
3415    // block-level that are block-level expressions.
3416
3417    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3418      CFGStmt CS = BI->getAs<CFGStmt>();
3419      if (!CS)
3420        continue;
3421      if (const Expr *Exp = dyn_cast<Expr>(CS.getStmt())) {
3422        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3423
3424        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3425          // Assignment expressions that are not nested within another
3426          // expression are really "statements" whose value is never used by
3427          // another expression.
3428          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3429            continue;
3430        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3431          // Special handling for statement expressions.  The last statement in
3432          // the statement expression is also a block-level expr.
3433          const CompoundStmt *C = SE->getSubStmt();
3434          if (!C->body_empty()) {
3435            const Stmt *Last = C->body_back();
3436            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3437              Last = LastEx->IgnoreParens();
3438            unsigned x = M->size();
3439            (*M)[Last] = x;
3440          }
3441        }
3442
3443        unsigned x = M->size();
3444        (*M)[Exp] = x;
3445      }
3446    }
3447
3448    // Look at terminators.  The condition is a block-level expression.
3449
3450    Stmt *S = (*I)->getTerminatorCondition();
3451
3452    if (S && M->find(S) == M->end()) {
3453      unsigned x = M->size();
3454      (*M)[S] = x;
3455    }
3456  }
3457
3458  return M;
3459}
3460
3461CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3462  assert(S != NULL);
3463  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3464
3465  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3466  BlkExprMapTy::iterator I = M->find(S);
3467  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3468}
3469
3470unsigned CFG::getNumBlkExprs() {
3471  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3472    return M->size();
3473
3474  // We assume callers interested in the number of BlkExprs will want
3475  // the map constructed if it doesn't already exist.
3476  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3477  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3478}
3479
3480//===----------------------------------------------------------------------===//
3481// Filtered walking of the CFG.
3482//===----------------------------------------------------------------------===//
3483
3484bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3485        const CFGBlock *From, const CFGBlock *To) {
3486
3487  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3488    // If the 'To' has no label or is labeled but the label isn't a
3489    // CaseStmt then filter this edge.
3490    if (const SwitchStmt *S =
3491        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3492      if (S->isAllEnumCasesCovered()) {
3493        const Stmt *L = To->getLabel();
3494        if (!L || !isa<CaseStmt>(L))
3495          return true;
3496      }
3497    }
3498  }
3499
3500  return false;
3501}
3502
3503//===----------------------------------------------------------------------===//
3504// Cleanup: CFG dstor.
3505//===----------------------------------------------------------------------===//
3506
3507CFG::~CFG() {
3508  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3509}
3510
3511//===----------------------------------------------------------------------===//
3512// CFG pretty printing
3513//===----------------------------------------------------------------------===//
3514
3515namespace {
3516
3517class StmtPrinterHelper : public PrinterHelper  {
3518  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3519  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3520  StmtMapTy StmtMap;
3521  DeclMapTy DeclMap;
3522  signed currentBlock;
3523  unsigned currStmt;
3524  const LangOptions &LangOpts;
3525public:
3526
3527  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3528    : currentBlock(0), currStmt(0), LangOpts(LO)
3529  {
3530    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3531      unsigned j = 1;
3532      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3533           BI != BEnd; ++BI, ++j ) {
3534        if (CFGStmt SE = BI->getAs<CFGStmt>()) {
3535          const Stmt *stmt= SE.getStmt();
3536          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3537          StmtMap[stmt] = P;
3538
3539          switch (stmt->getStmtClass()) {
3540            case Stmt::DeclStmtClass:
3541                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3542                break;
3543            case Stmt::IfStmtClass: {
3544              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3545              if (var)
3546                DeclMap[var] = P;
3547              break;
3548            }
3549            case Stmt::ForStmtClass: {
3550              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3551              if (var)
3552                DeclMap[var] = P;
3553              break;
3554            }
3555            case Stmt::WhileStmtClass: {
3556              const VarDecl *var =
3557                cast<WhileStmt>(stmt)->getConditionVariable();
3558              if (var)
3559                DeclMap[var] = P;
3560              break;
3561            }
3562            case Stmt::SwitchStmtClass: {
3563              const VarDecl *var =
3564                cast<SwitchStmt>(stmt)->getConditionVariable();
3565              if (var)
3566                DeclMap[var] = P;
3567              break;
3568            }
3569            case Stmt::CXXCatchStmtClass: {
3570              const VarDecl *var =
3571                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3572              if (var)
3573                DeclMap[var] = P;
3574              break;
3575            }
3576            default:
3577              break;
3578          }
3579        }
3580      }
3581    }
3582  }
3583
3584
3585  virtual ~StmtPrinterHelper() {}
3586
3587  const LangOptions &getLangOpts() const { return LangOpts; }
3588  void setBlockID(signed i) { currentBlock = i; }
3589  void setStmtID(unsigned i) { currStmt = i; }
3590
3591  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3592    StmtMapTy::iterator I = StmtMap.find(S);
3593
3594    if (I == StmtMap.end())
3595      return false;
3596
3597    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3598                          && I->second.second == currStmt) {
3599      return false;
3600    }
3601
3602    OS << "[B" << I->second.first << "." << I->second.second << "]";
3603    return true;
3604  }
3605
3606  bool handleDecl(const Decl *D, raw_ostream &OS) {
3607    DeclMapTy::iterator I = DeclMap.find(D);
3608
3609    if (I == DeclMap.end())
3610      return false;
3611
3612    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3613                          && I->second.second == currStmt) {
3614      return false;
3615    }
3616
3617    OS << "[B" << I->second.first << "." << I->second.second << "]";
3618    return true;
3619  }
3620};
3621} // end anonymous namespace
3622
3623
3624namespace {
3625class CFGBlockTerminatorPrint
3626  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3627
3628  raw_ostream &OS;
3629  StmtPrinterHelper* Helper;
3630  PrintingPolicy Policy;
3631public:
3632  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3633                          const PrintingPolicy &Policy)
3634    : OS(os), Helper(helper), Policy(Policy) {}
3635
3636  void VisitIfStmt(IfStmt *I) {
3637    OS << "if ";
3638    I->getCond()->printPretty(OS,Helper,Policy);
3639  }
3640
3641  // Default case.
3642  void VisitStmt(Stmt *Terminator) {
3643    Terminator->printPretty(OS, Helper, Policy);
3644  }
3645
3646  void VisitForStmt(ForStmt *F) {
3647    OS << "for (" ;
3648    if (F->getInit())
3649      OS << "...";
3650    OS << "; ";
3651    if (Stmt *C = F->getCond())
3652      C->printPretty(OS, Helper, Policy);
3653    OS << "; ";
3654    if (F->getInc())
3655      OS << "...";
3656    OS << ")";
3657  }
3658
3659  void VisitWhileStmt(WhileStmt *W) {
3660    OS << "while " ;
3661    if (Stmt *C = W->getCond())
3662      C->printPretty(OS, Helper, Policy);
3663  }
3664
3665  void VisitDoStmt(DoStmt *D) {
3666    OS << "do ... while ";
3667    if (Stmt *C = D->getCond())
3668      C->printPretty(OS, Helper, Policy);
3669  }
3670
3671  void VisitSwitchStmt(SwitchStmt *Terminator) {
3672    OS << "switch ";
3673    Terminator->getCond()->printPretty(OS, Helper, Policy);
3674  }
3675
3676  void VisitCXXTryStmt(CXXTryStmt *CS) {
3677    OS << "try ...";
3678  }
3679
3680  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3681    C->getCond()->printPretty(OS, Helper, Policy);
3682    OS << " ? ... : ...";
3683  }
3684
3685  void VisitChooseExpr(ChooseExpr *C) {
3686    OS << "__builtin_choose_expr( ";
3687    C->getCond()->printPretty(OS, Helper, Policy);
3688    OS << " )";
3689  }
3690
3691  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3692    OS << "goto *";
3693    I->getTarget()->printPretty(OS, Helper, Policy);
3694  }
3695
3696  void VisitBinaryOperator(BinaryOperator* B) {
3697    if (!B->isLogicalOp()) {
3698      VisitExpr(B);
3699      return;
3700    }
3701
3702    B->getLHS()->printPretty(OS, Helper, Policy);
3703
3704    switch (B->getOpcode()) {
3705      case BO_LOr:
3706        OS << " || ...";
3707        return;
3708      case BO_LAnd:
3709        OS << " && ...";
3710        return;
3711      default:
3712        llvm_unreachable("Invalid logical operator.");
3713    }
3714  }
3715
3716  void VisitExpr(Expr *E) {
3717    E->printPretty(OS, Helper, Policy);
3718  }
3719};
3720} // end anonymous namespace
3721
3722static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3723                       const CFGElement &E) {
3724  if (CFGStmt CS = E.getAs<CFGStmt>()) {
3725    const Stmt *S = CS.getStmt();
3726
3727    if (Helper) {
3728
3729      // special printing for statement-expressions.
3730      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3731        const CompoundStmt *Sub = SE->getSubStmt();
3732
3733        if (Sub->children()) {
3734          OS << "({ ... ; ";
3735          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3736          OS << " })\n";
3737          return;
3738        }
3739      }
3740      // special printing for comma expressions.
3741      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3742        if (B->getOpcode() == BO_Comma) {
3743          OS << "... , ";
3744          Helper->handledStmt(B->getRHS(),OS);
3745          OS << '\n';
3746          return;
3747        }
3748      }
3749    }
3750    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3751
3752    if (isa<CXXOperatorCallExpr>(S)) {
3753      OS << " (OperatorCall)";
3754    }
3755    else if (isa<CXXBindTemporaryExpr>(S)) {
3756      OS << " (BindTemporary)";
3757    }
3758    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3759      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3760    }
3761    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3762      OS << " (" << CE->getStmtClassName() << ", "
3763         << CE->getCastKindName()
3764         << ", " << CE->getType().getAsString()
3765         << ")";
3766    }
3767
3768    // Expressions need a newline.
3769    if (isa<Expr>(S))
3770      OS << '\n';
3771
3772  } else if (CFGInitializer IE = E.getAs<CFGInitializer>()) {
3773    const CXXCtorInitializer *I = IE.getInitializer();
3774    if (I->isBaseInitializer())
3775      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3776    else OS << I->getAnyMember()->getName();
3777
3778    OS << "(";
3779    if (Expr *IE = I->getInit())
3780      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3781    OS << ")";
3782
3783    if (I->isBaseInitializer())
3784      OS << " (Base initializer)\n";
3785    else OS << " (Member initializer)\n";
3786
3787  } else if (CFGAutomaticObjDtor DE = E.getAs<CFGAutomaticObjDtor>()){
3788    const VarDecl *VD = DE.getVarDecl();
3789    Helper->handleDecl(VD, OS);
3790
3791    const Type* T = VD->getType().getTypePtr();
3792    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3793      T = RT->getPointeeType().getTypePtr();
3794    T = T->getBaseElementTypeUnsafe();
3795
3796    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3797    OS << " (Implicit destructor)\n";
3798
3799  } else if (CFGBaseDtor BE = E.getAs<CFGBaseDtor>()) {
3800    const CXXBaseSpecifier *BS = BE.getBaseSpecifier();
3801    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3802    OS << " (Base object destructor)\n";
3803
3804  } else if (CFGMemberDtor ME = E.getAs<CFGMemberDtor>()) {
3805    const FieldDecl *FD = ME.getFieldDecl();
3806    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3807    OS << "this->" << FD->getName();
3808    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3809    OS << " (Member object destructor)\n";
3810
3811  } else if (CFGTemporaryDtor TE = E.getAs<CFGTemporaryDtor>()) {
3812    const CXXBindTemporaryExpr *BT = TE.getBindTemporaryExpr();
3813    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3814    OS << " (Temporary object destructor)\n";
3815  }
3816}
3817
3818static void print_block(raw_ostream &OS, const CFG* cfg,
3819                        const CFGBlock &B,
3820                        StmtPrinterHelper* Helper, bool print_edges,
3821                        bool ShowColors) {
3822
3823  if (Helper)
3824    Helper->setBlockID(B.getBlockID());
3825
3826  // Print the header.
3827  if (ShowColors)
3828    OS.changeColor(raw_ostream::YELLOW, true);
3829
3830  OS << "\n [B" << B.getBlockID();
3831
3832  if (&B == &cfg->getEntry())
3833    OS << " (ENTRY)]\n";
3834  else if (&B == &cfg->getExit())
3835    OS << " (EXIT)]\n";
3836  else if (&B == cfg->getIndirectGotoBlock())
3837    OS << " (INDIRECT GOTO DISPATCH)]\n";
3838  else
3839    OS << "]\n";
3840
3841  if (ShowColors)
3842    OS.resetColor();
3843
3844  // Print the label of this block.
3845  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3846
3847    if (print_edges)
3848      OS << "  ";
3849
3850    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3851      OS << L->getName();
3852    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3853      OS << "case ";
3854      C->getLHS()->printPretty(OS, Helper,
3855                               PrintingPolicy(Helper->getLangOpts()));
3856      if (C->getRHS()) {
3857        OS << " ... ";
3858        C->getRHS()->printPretty(OS, Helper,
3859                                 PrintingPolicy(Helper->getLangOpts()));
3860      }
3861    } else if (isa<DefaultStmt>(Label))
3862      OS << "default";
3863    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3864      OS << "catch (";
3865      if (CS->getExceptionDecl())
3866        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3867                                      0);
3868      else
3869        OS << "...";
3870      OS << ")";
3871
3872    } else
3873      llvm_unreachable("Invalid label statement in CFGBlock.");
3874
3875    OS << ":\n";
3876  }
3877
3878  // Iterate through the statements in the block and print them.
3879  unsigned j = 1;
3880
3881  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3882       I != E ; ++I, ++j ) {
3883
3884    // Print the statement # in the basic block and the statement itself.
3885    if (print_edges)
3886      OS << " ";
3887
3888    OS << llvm::format("%3d", j) << ": ";
3889
3890    if (Helper)
3891      Helper->setStmtID(j);
3892
3893    print_elem(OS, Helper, *I);
3894  }
3895
3896  // Print the terminator of this block.
3897  if (B.getTerminator()) {
3898    if (ShowColors)
3899      OS.changeColor(raw_ostream::GREEN);
3900
3901    OS << "   T: ";
3902
3903    if (Helper) Helper->setBlockID(-1);
3904
3905    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3906    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3907    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3908    OS << '\n';
3909
3910    if (ShowColors)
3911      OS.resetColor();
3912  }
3913
3914  if (print_edges) {
3915    // Print the predecessors of this block.
3916    if (!B.pred_empty()) {
3917      const raw_ostream::Colors Color = raw_ostream::BLUE;
3918      if (ShowColors)
3919        OS.changeColor(Color);
3920      OS << "   Preds " ;
3921      if (ShowColors)
3922        OS.resetColor();
3923      OS << '(' << B.pred_size() << "):";
3924      unsigned i = 0;
3925
3926      if (ShowColors)
3927        OS.changeColor(Color);
3928
3929      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3930           I != E; ++I, ++i) {
3931
3932        if (i % 10 == 8)
3933          OS << "\n     ";
3934
3935        OS << " B" << (*I)->getBlockID();
3936      }
3937
3938      if (ShowColors)
3939        OS.resetColor();
3940
3941      OS << '\n';
3942    }
3943
3944    // Print the successors of this block.
3945    if (!B.succ_empty()) {
3946      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3947      if (ShowColors)
3948        OS.changeColor(Color);
3949      OS << "   Succs ";
3950      if (ShowColors)
3951        OS.resetColor();
3952      OS << '(' << B.succ_size() << "):";
3953      unsigned i = 0;
3954
3955      if (ShowColors)
3956        OS.changeColor(Color);
3957
3958      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3959           I != E; ++I, ++i) {
3960
3961        if (i % 10 == 8)
3962          OS << "\n    ";
3963
3964        if (*I)
3965          OS << " B" << (*I)->getBlockID();
3966        else
3967          OS  << " NULL";
3968      }
3969
3970      if (ShowColors)
3971        OS.resetColor();
3972      OS << '\n';
3973    }
3974  }
3975}
3976
3977
3978/// dump - A simple pretty printer of a CFG that outputs to stderr.
3979void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3980  print(llvm::errs(), LO, ShowColors);
3981}
3982
3983/// print - A simple pretty printer of a CFG that outputs to an ostream.
3984void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3985  StmtPrinterHelper Helper(this, LO);
3986
3987  // Print the entry block.
3988  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3989
3990  // Iterate through the CFGBlocks and print them one by one.
3991  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3992    // Skip the entry block, because we already printed it.
3993    if (&(**I) == &getEntry() || &(**I) == &getExit())
3994      continue;
3995
3996    print_block(OS, this, **I, &Helper, true, ShowColors);
3997  }
3998
3999  // Print the exit block.
4000  print_block(OS, this, getExit(), &Helper, true, ShowColors);
4001  OS << '\n';
4002  OS.flush();
4003}
4004
4005/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
4006void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4007                    bool ShowColors) const {
4008  print(llvm::errs(), cfg, LO, ShowColors);
4009}
4010
4011/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4012///   Generally this will only be called from CFG::print.
4013void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4014                     const LangOptions &LO, bool ShowColors) const {
4015  StmtPrinterHelper Helper(cfg, LO);
4016  print_block(OS, cfg, *this, &Helper, true, ShowColors);
4017  OS << '\n';
4018}
4019
4020/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
4021void CFGBlock::printTerminator(raw_ostream &OS,
4022                               const LangOptions &LO) const {
4023  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
4024  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
4025}
4026
4027Stmt *CFGBlock::getTerminatorCondition() {
4028  Stmt *Terminator = this->Terminator;
4029  if (!Terminator)
4030    return NULL;
4031
4032  Expr *E = NULL;
4033
4034  switch (Terminator->getStmtClass()) {
4035    default:
4036      break;
4037
4038    case Stmt::ForStmtClass:
4039      E = cast<ForStmt>(Terminator)->getCond();
4040      break;
4041
4042    case Stmt::WhileStmtClass:
4043      E = cast<WhileStmt>(Terminator)->getCond();
4044      break;
4045
4046    case Stmt::DoStmtClass:
4047      E = cast<DoStmt>(Terminator)->getCond();
4048      break;
4049
4050    case Stmt::IfStmtClass:
4051      E = cast<IfStmt>(Terminator)->getCond();
4052      break;
4053
4054    case Stmt::ChooseExprClass:
4055      E = cast<ChooseExpr>(Terminator)->getCond();
4056      break;
4057
4058    case Stmt::IndirectGotoStmtClass:
4059      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4060      break;
4061
4062    case Stmt::SwitchStmtClass:
4063      E = cast<SwitchStmt>(Terminator)->getCond();
4064      break;
4065
4066    case Stmt::BinaryConditionalOperatorClass:
4067      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4068      break;
4069
4070    case Stmt::ConditionalOperatorClass:
4071      E = cast<ConditionalOperator>(Terminator)->getCond();
4072      break;
4073
4074    case Stmt::BinaryOperatorClass: // '&&' and '||'
4075      E = cast<BinaryOperator>(Terminator)->getLHS();
4076      break;
4077
4078    case Stmt::ObjCForCollectionStmtClass:
4079      return Terminator;
4080  }
4081
4082  return E ? E->IgnoreParens() : NULL;
4083}
4084
4085//===----------------------------------------------------------------------===//
4086// CFG Graphviz Visualization
4087//===----------------------------------------------------------------------===//
4088
4089
4090#ifndef NDEBUG
4091static StmtPrinterHelper* GraphHelper;
4092#endif
4093
4094void CFG::viewCFG(const LangOptions &LO) const {
4095#ifndef NDEBUG
4096  StmtPrinterHelper H(this, LO);
4097  GraphHelper = &H;
4098  llvm::ViewGraph(this,"CFG");
4099  GraphHelper = NULL;
4100#endif
4101}
4102
4103namespace llvm {
4104template<>
4105struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4106
4107  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4108
4109  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4110
4111#ifndef NDEBUG
4112    std::string OutSStr;
4113    llvm::raw_string_ostream Out(OutSStr);
4114    print_block(Out,Graph, *Node, GraphHelper, false, false);
4115    std::string& OutStr = Out.str();
4116
4117    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4118
4119    // Process string output to make it nicer...
4120    for (unsigned i = 0; i != OutStr.length(); ++i)
4121      if (OutStr[i] == '\n') {                            // Left justify
4122        OutStr[i] = '\\';
4123        OutStr.insert(OutStr.begin()+i+1, 'l');
4124      }
4125
4126    return OutStr;
4127#else
4128    return "";
4129#endif
4130  }
4131};
4132} // end namespace llvm
4133