ThreadSafety.cpp revision 1fa3c0682a52c45c4ad0be3a82d0c85f26657072
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include <algorithm>
36#include <vector>
37
38using namespace clang;
39using namespace thread_safety;
40
41// Key method definition
42ThreadSafetyHandler::~ThreadSafetyHandler() {}
43
44namespace {
45
46/// \brief A MutexID object uniquely identifies a particular mutex, and
47/// is built from an Expr* (i.e. calling a lock function).
48///
49/// Thread-safety analysis works by comparing lock expressions.  Within the
50/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
51/// a particular mutex object at run-time.  Subsequent occurrences of the same
52/// expression (where "same" means syntactic equality) will refer to the same
53/// run-time object if three conditions hold:
54/// (1) Local variables in the expression, such as "x" have not changed.
55/// (2) Values on the heap that affect the expression have not changed.
56/// (3) The expression involves only pure function calls.
57///
58/// The current implementation assumes, but does not verify, that multiple uses
59/// of the same lock expression satisfies these criteria.
60///
61/// Clang introduces an additional wrinkle, which is that it is difficult to
62/// derive canonical expressions, or compare expressions directly for equality.
63/// Thus, we identify a mutex not by an Expr, but by the set of named
64/// declarations that are referenced by the Expr.  In other words,
65/// x->foo->bar.mu will be a four element vector with the Decls for
66/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
67/// for all practical purposes.
68///
69/// Note we will need to perform substitution on "this" and function parameter
70/// names when constructing a lock expression.
71///
72/// For example:
73/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
74/// void myFunc(C *X) { ... X->lock() ... }
75/// The original expression for the mutex acquired by myFunc is "this->Mu", but
76/// "X" is substituted for "this" so we get X->Mu();
77///
78/// For another example:
79/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
80/// MyList *MyL;
81/// foo(MyL);  // requires lock MyL->Mu to be held
82class MutexID {
83  SmallVector<NamedDecl*, 2> DeclSeq;
84
85  /// Build a Decl sequence representing the lock from the given expression.
86  /// Recursive function that terminates on DeclRefExpr.
87  /// Note: this function merely creates a MutexID; it does not check to
88  /// ensure that the original expression is a valid mutex expression.
89  void buildMutexID(Expr *Exp, Expr *Parent, int NumArgs,
90                    const NamedDecl **FunArgDecls, Expr **FunArgs) {
91    if (!Exp) {
92      DeclSeq.clear();
93      return;
94    }
95
96    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
97      if (FunArgDecls) {
98        // Substitute call arguments for references to function parameters
99        for (int i = 0; i < NumArgs; ++i) {
100          if (DRE->getDecl() == FunArgDecls[i]) {
101            buildMutexID(FunArgs[i], 0, 0, 0, 0);
102            return;
103          }
104        }
105      }
106      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
107      DeclSeq.push_back(ND);
108    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
109      NamedDecl *ND = ME->getMemberDecl();
110      DeclSeq.push_back(ND);
111      buildMutexID(ME->getBase(), Parent, NumArgs, FunArgDecls, FunArgs);
112    } else if (isa<CXXThisExpr>(Exp)) {
113      if (Parent)
114        buildMutexID(Parent, 0, 0, 0, 0);
115      else
116        return;  // mutexID is still valid in this case
117    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
118      buildMutexID(UOE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
119    else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
120      buildMutexID(CE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
121    else
122      DeclSeq.clear(); // Mark as invalid lock expression.
123  }
124
125  /// \brief Construct a MutexID from an expression.
126  /// \param MutexExp The original mutex expression within an attribute
127  /// \param DeclExp An expression involving the Decl on which the attribute
128  ///        occurs.
129  /// \param D  The declaration to which the lock/unlock attribute is attached.
130  void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
131    Expr *Parent = 0;
132    unsigned NumArgs = 0;
133    Expr **FunArgs = 0;
134    SmallVector<const NamedDecl*, 8> FunArgDecls;
135
136    // If we are processing a raw attribute expression, with no substitutions.
137    if (DeclExp == 0) {
138      buildMutexID(MutexExp, 0, 0, 0, 0);
139      return;
140    }
141
142    // Examine DeclExp to find Parent and FunArgs, which are used to substitute
143    // for formal parameters when we call buildMutexID later.
144    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
145      Parent = ME->getBase();
146    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
147      Parent = CE->getImplicitObjectArgument();
148      NumArgs = CE->getNumArgs();
149      FunArgs = CE->getArgs();
150    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
151      Parent = 0;  // FIXME -- get the parent from DeclStmt
152      NumArgs = CE->getNumArgs();
153      FunArgs = CE->getArgs();
154    } else if (D && isa<CXXDestructorDecl>(D)) {
155      // There's no such thing as a "destructor call" in the AST.
156      Parent = DeclExp;
157    }
158
159    // If the attribute has no arguments, then assume the argument is "this".
160    if (MutexExp == 0) {
161      buildMutexID(Parent, 0, 0, 0, 0);
162      return;
163    }
164
165    // FIXME: handle default arguments
166    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
167      for (unsigned i = 0, ni = FD->getNumParams(); i < ni && i < NumArgs; ++i) {
168        FunArgDecls.push_back(FD->getParamDecl(i));
169      }
170    }
171    buildMutexID(MutexExp, Parent, NumArgs, &FunArgDecls.front(), FunArgs);
172  }
173
174public:
175  explicit MutexID(clang::Decl::EmptyShell e) {
176    DeclSeq.clear();
177  }
178
179  /// \param MutexExp The original mutex expression within an attribute
180  /// \param DeclExp An expression involving the Decl on which the attribute
181  ///        occurs.
182  /// \param D  The declaration to which the lock/unlock attribute is attached.
183  /// Caller must check isValid() after construction.
184  MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
185    buildMutexIDFromExp(MutexExp, DeclExp, D);
186  }
187
188  /// Return true if this is a valid decl sequence.
189  /// Caller must call this by hand after construction to handle errors.
190  bool isValid() const {
191    return !DeclSeq.empty();
192  }
193
194  /// Issue a warning about an invalid lock expression
195  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
196                              Expr *DeclExp, const NamedDecl* D) {
197    SourceLocation Loc;
198    if (DeclExp)
199      Loc = DeclExp->getExprLoc();
200
201    // FIXME: add a note about the attribute location in MutexExp or D
202    if (Loc.isValid())
203      Handler.handleInvalidLockExp(Loc);
204  }
205
206  bool operator==(const MutexID &other) const {
207    return DeclSeq == other.DeclSeq;
208  }
209
210  bool operator!=(const MutexID &other) const {
211    return !(*this == other);
212  }
213
214  // SmallVector overloads Operator< to do lexicographic ordering. Note that
215  // we use pointer equality (and <) to compare NamedDecls. This means the order
216  // of MutexIDs in a lockset is nondeterministic. In order to output
217  // diagnostics in a deterministic ordering, we must order all diagnostics to
218  // output by SourceLocation when iterating through this lockset.
219  bool operator<(const MutexID &other) const {
220    return DeclSeq < other.DeclSeq;
221  }
222
223  /// \brief Returns the name of the first Decl in the list for a given MutexID;
224  /// e.g. the lock expression foo.bar() has name "bar".
225  /// The caret will point unambiguously to the lock expression, so using this
226  /// name in diagnostics is a way to get simple, and consistent, mutex names.
227  /// We do not want to output the entire expression text for security reasons.
228  StringRef getName() const {
229    assert(isValid());
230    return DeclSeq.front()->getName();
231  }
232
233  void Profile(llvm::FoldingSetNodeID &ID) const {
234    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
235         E = DeclSeq.end(); I != E; ++I) {
236      ID.AddPointer(*I);
237    }
238  }
239};
240
241
242/// \brief This is a helper class that stores info about the most recent
243/// accquire of a Lock.
244///
245/// The main body of the analysis maps MutexIDs to LockDatas.
246struct LockData {
247  SourceLocation AcquireLoc;
248
249  /// \brief LKind stores whether a lock is held shared or exclusively.
250  /// Note that this analysis does not currently support either re-entrant
251  /// locking or lock "upgrading" and "downgrading" between exclusive and
252  /// shared.
253  ///
254  /// FIXME: add support for re-entrant locking and lock up/downgrading
255  LockKind LKind;
256  MutexID UnderlyingMutex;  // for ScopedLockable objects
257
258  LockData(SourceLocation AcquireLoc, LockKind LKind)
259    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
260  {}
261
262  LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
263    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
264
265  bool operator==(const LockData &other) const {
266    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
267  }
268
269  bool operator!=(const LockData &other) const {
270    return !(*this == other);
271  }
272
273  void Profile(llvm::FoldingSetNodeID &ID) const {
274    ID.AddInteger(AcquireLoc.getRawEncoding());
275    ID.AddInteger(LKind);
276  }
277};
278
279
280/// A Lockset maps each MutexID (defined above) to information about how it has
281/// been locked.
282typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
283
284/// \brief We use this class to visit different types of expressions in
285/// CFGBlocks, and build up the lockset.
286/// An expression may cause us to add or remove locks from the lockset, or else
287/// output error messages related to missing locks.
288/// FIXME: In future, we may be able to not inherit from a visitor.
289class BuildLockset : public StmtVisitor<BuildLockset> {
290  friend class ThreadSafetyAnalyzer;
291
292  ThreadSafetyHandler &Handler;
293  Lockset LSet;
294  Lockset::Factory &LocksetFactory;
295
296  // Helper functions
297  void addLock(const MutexID &Mutex, const LockData &LDat);
298  void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
299
300  template <class AttrType>
301  void addLocksToSet(LockKind LK, AttrType *Attr,
302                     Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
303  void removeLocksFromSet(UnlockFunctionAttr *Attr,
304                          Expr *Exp, NamedDecl* FunDecl);
305
306  const ValueDecl *getValueDecl(Expr *Exp);
307  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
308                           Expr *MutexExp, ProtectedOperationKind POK);
309  void checkAccess(Expr *Exp, AccessKind AK);
310  void checkDereference(Expr *Exp, AccessKind AK);
311  void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
312
313  /// \brief Returns true if the lockset contains a lock, regardless of whether
314  /// the lock is held exclusively or shared.
315  bool locksetContains(const MutexID &Lock) const {
316    return LSet.lookup(Lock);
317  }
318
319  /// \brief Returns true if the lockset contains a lock with the passed in
320  /// locktype.
321  bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
322    const LockData *LockHeld = LSet.lookup(Lock);
323    return (LockHeld && KindRequested == LockHeld->LKind);
324  }
325
326  /// \brief Returns true if the lockset contains a lock with at least the
327  /// passed in locktype. So for example, if we pass in LK_Shared, this function
328  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
329  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
330  bool locksetContainsAtLeast(const MutexID &Lock,
331                              LockKind KindRequested) const {
332    switch (KindRequested) {
333      case LK_Shared:
334        return locksetContains(Lock);
335      case LK_Exclusive:
336        return locksetContains(Lock, KindRequested);
337    }
338    llvm_unreachable("Unknown LockKind");
339  }
340
341public:
342  BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
343    : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
344      LocksetFactory(F) {}
345
346  Lockset getLockset() {
347    return LSet;
348  }
349
350  void VisitUnaryOperator(UnaryOperator *UO);
351  void VisitBinaryOperator(BinaryOperator *BO);
352  void VisitCastExpr(CastExpr *CE);
353  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
354  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
355  void VisitDeclStmt(DeclStmt *S);
356};
357
358/// \brief Add a new lock to the lockset, warning if the lock is already there.
359/// \param Mutex -- the Mutex expression for the lock
360/// \param LDat  -- the LockData for the lock
361void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
362  // FIXME: deal with acquired before/after annotations.
363  // FIXME: Don't always warn when we have support for reentrant locks.
364  if (locksetContains(Mutex))
365    Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
366  else
367    LSet = LocksetFactory.add(LSet, Mutex, LDat);
368}
369
370/// \brief Remove a lock from the lockset, warning if the lock is not there.
371/// \param LockExp The lock expression corresponding to the lock to be removed
372/// \param UnlockLoc The source location of the unlock (only used in error msg)
373void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
374  const LockData *LDat = LSet.lookup(Mutex);
375  if (!LDat)
376    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
377  else {
378    // For scoped-lockable vars, remove the mutex associated with this var.
379    if (LDat->UnderlyingMutex.isValid())
380      removeLock(LDat->UnderlyingMutex, UnlockLoc);
381    LSet = LocksetFactory.remove(LSet, Mutex);
382  }
383}
384
385/// \brief This function, parameterized by an attribute type, is used to add a
386/// set of locks specified as attribute arguments to the lockset.
387template <typename AttrType>
388void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
389                                 Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
390  typedef typename AttrType::args_iterator iterator_type;
391
392  SourceLocation ExpLocation = Exp->getExprLoc();
393
394  // Figure out if we're calling the constructor of scoped lockable class
395  bool isScopedVar = false;
396  if (VD) {
397    if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
398      CXXRecordDecl* PD = CD->getParent();
399      if (PD && PD->getAttr<ScopedLockableAttr>())
400        isScopedVar = true;
401    }
402  }
403
404  if (Attr->args_size() == 0) {
405    // The mutex held is the "this" object.
406    MutexID Mutex(0, Exp, FunDecl);
407    if (!Mutex.isValid())
408      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
409    else
410      addLock(Mutex, LockData(ExpLocation, LK));
411    return;
412  }
413
414  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
415    MutexID Mutex(*I, Exp, FunDecl);
416    if (!Mutex.isValid())
417      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
418    else {
419      addLock(Mutex, LockData(ExpLocation, LK));
420      if (isScopedVar) {
421        // For scoped lockable vars, map this var to its underlying mutex.
422        DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
423        MutexID SMutex(&DRE, 0, 0);
424        addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
425      }
426    }
427  }
428}
429
430/// \brief This function removes a set of locks specified as attribute
431/// arguments from the lockset.
432void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
433                                      Expr *Exp, NamedDecl* FunDecl) {
434  SourceLocation ExpLocation;
435  if (Exp) ExpLocation = Exp->getExprLoc();
436
437  if (Attr->args_size() == 0) {
438    // The mutex held is the "this" object.
439    MutexID Mu(0, Exp, FunDecl);
440    if (!Mu.isValid())
441      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
442    else
443      removeLock(Mu, ExpLocation);
444    return;
445  }
446
447  for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
448       E = Attr->args_end(); I != E; ++I) {
449    MutexID Mutex(*I, Exp, FunDecl);
450    if (!Mutex.isValid())
451      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
452    else
453      removeLock(Mutex, ExpLocation);
454  }
455}
456
457/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
458const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
459  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
460    return DR->getDecl();
461
462  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
463    return ME->getMemberDecl();
464
465  return 0;
466}
467
468/// \brief Warn if the LSet does not contain a lock sufficient to protect access
469/// of at least the passed in AccessKind.
470void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
471                                      AccessKind AK, Expr *MutexExp,
472                                      ProtectedOperationKind POK) {
473  LockKind LK = getLockKindFromAccessKind(AK);
474
475  MutexID Mutex(MutexExp, Exp, D);
476  if (!Mutex.isValid())
477    MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
478  else if (!locksetContainsAtLeast(Mutex, LK))
479    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
480}
481
482/// \brief This method identifies variable dereferences and checks pt_guarded_by
483/// and pt_guarded_var annotations. Note that we only check these annotations
484/// at the time a pointer is dereferenced.
485/// FIXME: We need to check for other types of pointer dereferences
486/// (e.g. [], ->) and deal with them here.
487/// \param Exp An expression that has been read or written.
488void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
489  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
490  if (!UO || UO->getOpcode() != clang::UO_Deref)
491    return;
492  Exp = UO->getSubExpr()->IgnoreParenCasts();
493
494  const ValueDecl *D = getValueDecl(Exp);
495  if(!D || !D->hasAttrs())
496    return;
497
498  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
499    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
500
501  const AttrVec &ArgAttrs = D->getAttrs();
502  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
503    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
504      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
505}
506
507/// \brief Checks guarded_by and guarded_var attributes.
508/// Whenever we identify an access (read or write) of a DeclRefExpr or
509/// MemberExpr, we need to check whether there are any guarded_by or
510/// guarded_var attributes, and make sure we hold the appropriate mutexes.
511void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
512  const ValueDecl *D = getValueDecl(Exp);
513  if(!D || !D->hasAttrs())
514    return;
515
516  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
517    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
518
519  const AttrVec &ArgAttrs = D->getAttrs();
520  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
521    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
522      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
523}
524
525/// \brief Process a function call, method call, constructor call,
526/// or destructor call.  This involves looking at the attributes on the
527/// corresponding function/method/constructor/destructor, issuing warnings,
528/// and updating the locksets accordingly.
529///
530/// FIXME: For classes annotated with one of the guarded annotations, we need
531/// to treat const method calls as reads and non-const method calls as writes,
532/// and check that the appropriate locks are held. Non-const method calls with
533/// the same signature as const method calls can be also treated as reads.
534///
535/// FIXME: We need to also visit CallExprs to catch/check global functions.
536///
537/// FIXME: Do not flag an error for member variables accessed in constructors/
538/// destructors
539void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
540  AttrVec &ArgAttrs = D->getAttrs();
541  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
542    Attr *Attr = ArgAttrs[i];
543    switch (Attr->getKind()) {
544      // When we encounter an exclusive lock function, we need to add the lock
545      // to our lockset with kind exclusive.
546      case attr::ExclusiveLockFunction: {
547        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
548        addLocksToSet(LK_Exclusive, A, Exp, D, VD);
549        break;
550      }
551
552      // When we encounter a shared lock function, we need to add the lock
553      // to our lockset with kind shared.
554      case attr::SharedLockFunction: {
555        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
556        addLocksToSet(LK_Shared, A, Exp, D, VD);
557        break;
558      }
559
560      // When we encounter an unlock function, we need to remove unlocked
561      // mutexes from the lockset, and flag a warning if they are not there.
562      case attr::UnlockFunction: {
563        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
564        removeLocksFromSet(UFAttr, Exp, D);
565        break;
566      }
567
568      case attr::ExclusiveLocksRequired: {
569        ExclusiveLocksRequiredAttr *ELRAttr =
570            cast<ExclusiveLocksRequiredAttr>(Attr);
571
572        for (ExclusiveLocksRequiredAttr::args_iterator
573             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
574          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
575        break;
576      }
577
578      case attr::SharedLocksRequired: {
579        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
580
581        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
582             E = SLRAttr->args_end(); I != E; ++I)
583          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
584        break;
585      }
586
587      case attr::LocksExcluded: {
588        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
589        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
590            E = LEAttr->args_end(); I != E; ++I) {
591          MutexID Mutex(*I, Exp, D);
592          if (!Mutex.isValid())
593            MutexID::warnInvalidLock(Handler, *I, Exp, D);
594          else if (locksetContains(Mutex))
595            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
596                                          Exp->getExprLoc());
597        }
598        break;
599      }
600
601      // Ignore other (non thread-safety) attributes
602      default:
603        break;
604    }
605  }
606}
607
608/// \brief For unary operations which read and write a variable, we need to
609/// check whether we hold any required mutexes. Reads are checked in
610/// VisitCastExpr.
611void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
612  switch (UO->getOpcode()) {
613    case clang::UO_PostDec:
614    case clang::UO_PostInc:
615    case clang::UO_PreDec:
616    case clang::UO_PreInc: {
617      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
618      checkAccess(SubExp, AK_Written);
619      checkDereference(SubExp, AK_Written);
620      break;
621    }
622    default:
623      break;
624  }
625}
626
627/// For binary operations which assign to a variable (writes), we need to check
628/// whether we hold any required mutexes.
629/// FIXME: Deal with non-primitive types.
630void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
631  if (!BO->isAssignmentOp())
632    return;
633  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
634  checkAccess(LHSExp, AK_Written);
635  checkDereference(LHSExp, AK_Written);
636}
637
638/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
639/// need to ensure we hold any required mutexes.
640/// FIXME: Deal with non-primitive types.
641void BuildLockset::VisitCastExpr(CastExpr *CE) {
642  if (CE->getCastKind() != CK_LValueToRValue)
643    return;
644  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
645  checkAccess(SubExp, AK_Read);
646  checkDereference(SubExp, AK_Read);
647}
648
649
650void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
651  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
652  if(!D || !D->hasAttrs())
653    return;
654  handleCall(Exp, D);
655}
656
657void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
658  // FIXME -- only handles constructors in DeclStmt below.
659}
660
661void BuildLockset::VisitDeclStmt(DeclStmt *S) {
662  DeclGroupRef DGrp = S->getDeclGroup();
663  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
664    Decl *D = *I;
665    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
666      Expr *E = VD->getInit();
667      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
668        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
669        if (!CtorD || !CtorD->hasAttrs())
670          return;
671        handleCall(CE, CtorD, VD);
672      }
673    }
674  }
675}
676
677
678/// \brief Class which implements the core thread safety analysis routines.
679class ThreadSafetyAnalyzer {
680  ThreadSafetyHandler &Handler;
681  Lockset::Factory    LocksetFactory;
682
683public:
684  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
685
686  Lockset intersectAndWarn(const Lockset LSet1, const Lockset LSet2,
687                           LockErrorKind LEK);
688
689  Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
690                  LockKind LK, SourceLocation Loc);
691
692  void runAnalysis(AnalysisDeclContext &AC);
693};
694
695/// \brief Compute the intersection of two locksets and issue warnings for any
696/// locks in the symmetric difference.
697///
698/// This function is used at a merge point in the CFG when comparing the lockset
699/// of each branch being merged. For example, given the following sequence:
700/// A; if () then B; else C; D; we need to check that the lockset after B and C
701/// are the same. In the event of a difference, we use the intersection of these
702/// two locksets at the start of D.
703Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset LSet1,
704                                               const Lockset LSet2,
705                                               LockErrorKind LEK) {
706  Lockset Intersection = LSet1;
707  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
708    const MutexID &LSet2Mutex = I.getKey();
709    const LockData &LSet2LockData = I.getData();
710    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
711      if (LD->LKind != LSet2LockData.LKind) {
712        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
713                                         LSet2LockData.AcquireLoc,
714                                         LD->AcquireLoc);
715        if (LD->LKind != LK_Exclusive)
716          Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
717                                            LSet2LockData);
718      }
719    } else {
720      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
721                                        LSet2LockData.AcquireLoc, LEK);
722    }
723  }
724
725  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
726    if (!LSet2.contains(I.getKey())) {
727      const MutexID &Mutex = I.getKey();
728      const LockData &MissingLock = I.getData();
729      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
730                                        MissingLock.AcquireLoc, LEK);
731      Intersection = LocksetFactory.remove(Intersection, Mutex);
732    }
733  }
734  return Intersection;
735}
736
737Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
738                                      const NamedDecl *D,
739                                      LockKind LK, SourceLocation Loc) {
740  MutexID Mutex(MutexExp, 0, D);
741  if (!Mutex.isValid()) {
742    MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
743    return LSet;
744  }
745  LockData NewLock(Loc, LK);
746  return LocksetFactory.add(LSet, Mutex, NewLock);
747}
748
749/// \brief Check a function's CFG for thread-safety violations.
750///
751/// We traverse the blocks in the CFG, compute the set of mutexes that are held
752/// at the end of each block, and issue warnings for thread safety violations.
753/// Each block in the CFG is traversed exactly once.
754void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
755  CFG *CFGraph = AC.getCFG();
756  if (!CFGraph) return;
757  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
758
759  if (!D)
760    return;  // Ignore anonymous functions for now.
761  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
762    return;
763
764  // FIXME: Switch to SmallVector? Otherwise improve performance impact?
765  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
766                                     LocksetFactory.getEmptyMap());
767  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
768                                    LocksetFactory.getEmptyMap());
769
770  // We need to explore the CFG via a "topological" ordering.
771  // That way, we will be guaranteed to have information about required
772  // predecessor locksets when exploring a new block.
773  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
774  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
775
776  // Add locks from exclusive_locks_required and shared_locks_required
777  // to initial lockset.
778  if (!SortedGraph->empty() && D->hasAttrs()) {
779    const CFGBlock *FirstBlock = *SortedGraph->begin();
780    Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
781    const AttrVec &ArgAttrs = D->getAttrs();
782    for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
783      Attr *Attr = ArgAttrs[i];
784      SourceLocation AttrLoc = Attr->getLocation();
785      if (SharedLocksRequiredAttr *SLRAttr
786            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
787        for (SharedLocksRequiredAttr::args_iterator
788            SLRIter = SLRAttr->args_begin(),
789            SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
790          InitialLockset = addLock(InitialLockset,
791                                   *SLRIter, D, LK_Shared,
792                                   AttrLoc);
793      } else if (ExclusiveLocksRequiredAttr *ELRAttr
794                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
795        for (ExclusiveLocksRequiredAttr::args_iterator
796            ELRIter = ELRAttr->args_begin(),
797            ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
798          InitialLockset = addLock(InitialLockset,
799                                   *ELRIter, D, LK_Exclusive,
800                                   AttrLoc);
801      }
802    }
803  }
804
805  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
806       E = SortedGraph->end(); I!= E; ++I) {
807    const CFGBlock *CurrBlock = *I;
808    int CurrBlockID = CurrBlock->getBlockID();
809
810    VisitedBlocks.insert(CurrBlock);
811
812    // Use the default initial lockset in case there are no predecessors.
813    Lockset &Entryset = EntryLocksets[CurrBlockID];
814    Lockset &Exitset = ExitLocksets[CurrBlockID];
815
816    // Iterate through the predecessor blocks and warn if the lockset for all
817    // predecessors is not the same. We take the entry lockset of the current
818    // block to be the intersection of all previous locksets.
819    // FIXME: By keeping the intersection, we may output more errors in future
820    // for a lock which is not in the intersection, but was in the union. We
821    // may want to also keep the union in future. As an example, let's say
822    // the intersection contains Mutex L, and the union contains L and M.
823    // Later we unlock M. At this point, we would output an error because we
824    // never locked M; although the real error is probably that we forgot to
825    // lock M on all code paths. Conversely, let's say that later we lock M.
826    // In this case, we should compare against the intersection instead of the
827    // union because the real error is probably that we forgot to unlock M on
828    // all code paths.
829    bool LocksetInitialized = false;
830    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
831         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
832
833      // if *PI -> CurrBlock is a back edge
834      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
835        continue;
836
837      int PrevBlockID = (*PI)->getBlockID();
838      if (!LocksetInitialized) {
839        Entryset = ExitLocksets[PrevBlockID];
840        LocksetInitialized = true;
841      } else {
842        Entryset = intersectAndWarn(Entryset, ExitLocksets[PrevBlockID],
843                                    LEK_LockedSomePredecessors);
844      }
845    }
846
847    BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
848    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
849         BE = CurrBlock->end(); BI != BE; ++BI) {
850      switch (BI->getKind()) {
851        case CFGElement::Statement: {
852          const CFGStmt *CS = cast<CFGStmt>(&*BI);
853          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
854          break;
855        }
856        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
857        case CFGElement::AutomaticObjectDtor: {
858          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
859          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
860            AD->getDestructorDecl(AC.getASTContext()));
861          if (!DD->hasAttrs())
862            break;
863
864          // Create a dummy expression,
865          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
866          DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
867                          AD->getTriggerStmt()->getLocEnd());
868          LocksetBuilder.handleCall(&DRE, DD);
869          break;
870        }
871        default:
872          break;
873      }
874    }
875    Exitset = LocksetBuilder.getLockset();
876
877    // For every back edge from CurrBlock (the end of the loop) to another block
878    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
879    // the one held at the beginning of FirstLoopBlock. We can look up the
880    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
881    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
882         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
883
884      // if CurrBlock -> *SI is *not* a back edge
885      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
886        continue;
887
888      CFGBlock *FirstLoopBlock = *SI;
889      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
890      Lockset LoopEnd = ExitLocksets[CurrBlockID];
891      intersectAndWarn(LoopEnd, PreLoop, LEK_LockedSomeLoopIterations);
892    }
893  }
894
895  Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
896  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
897
898  // FIXME: Should we call this function for all blocks which exit the function?
899  intersectAndWarn(InitialLockset, FinalLockset, LEK_LockedAtEndOfFunction);
900}
901
902} // end anonymous namespace
903
904
905namespace clang {
906namespace thread_safety {
907
908/// \brief Check a function's CFG for thread-safety violations.
909///
910/// We traverse the blocks in the CFG, compute the set of mutexes that are held
911/// at the end of each block, and issue warnings for thread safety violations.
912/// Each block in the CFG is traversed exactly once.
913void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
914                             ThreadSafetyHandler &Handler) {
915  ThreadSafetyAnalyzer Analyzer(Handler);
916  Analyzer.runAnalysis(AC);
917}
918
919/// \brief Helper function that returns a LockKind required for the given level
920/// of access.
921LockKind getLockKindFromAccessKind(AccessKind AK) {
922  switch (AK) {
923    case AK_Read :
924      return LK_Shared;
925    case AK_Written :
926      return LK_Exclusive;
927  }
928  llvm_unreachable("Unknown AccessKind");
929}
930
931}} // end namespace clang::thread_safety
932