ThreadSafety.cpp revision 2a237e03c407ff55bd8639b18658a8751955f1db
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/ImmutableMap.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38#include <utility>
39#include <vector>
40
41using namespace clang;
42using namespace thread_safety;
43
44// Key method definition
45ThreadSafetyHandler::~ThreadSafetyHandler() {}
46
47namespace {
48
49/// SExpr implements a simple expression language that is used to store,
50/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
51/// does not capture surface syntax, and it does not distinguish between
52/// C++ concepts, like pointers and references, that have no real semantic
53/// differences.  This simplicity allows SExprs to be meaningfully compared,
54/// e.g.
55///        (x)          =  x
56///        (*this).foo  =  this->foo
57///        *&a          =  a
58///
59/// Thread-safety analysis works by comparing lock expressions.  Within the
60/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
61/// a particular mutex object at run-time.  Subsequent occurrences of the same
62/// expression (where "same" means syntactic equality) will refer to the same
63/// run-time object if three conditions hold:
64/// (1) Local variables in the expression, such as "x" have not changed.
65/// (2) Values on the heap that affect the expression have not changed.
66/// (3) The expression involves only pure function calls.
67///
68/// The current implementation assumes, but does not verify, that multiple uses
69/// of the same lock expression satisfies these criteria.
70class SExpr {
71private:
72  enum ExprOp {
73    EOP_Nop,       ///< No-op
74    EOP_Wildcard,  ///< Matches anything.
75    EOP_Universal, ///< Universal lock.
76    EOP_This,      ///< This keyword.
77    EOP_NVar,      ///< Named variable.
78    EOP_LVar,      ///< Local variable.
79    EOP_Dot,       ///< Field access
80    EOP_Call,      ///< Function call
81    EOP_MCall,     ///< Method call
82    EOP_Index,     ///< Array index
83    EOP_Unary,     ///< Unary operation
84    EOP_Binary,    ///< Binary operation
85    EOP_Unknown    ///< Catchall for everything else
86  };
87
88
89  class SExprNode {
90   private:
91    unsigned char  Op;     ///< Opcode of the root node
92    unsigned char  Flags;  ///< Additional opcode-specific data
93    unsigned short Sz;     ///< Number of child nodes
94    const void*    Data;   ///< Additional opcode-specific data
95
96   public:
97    SExprNode(ExprOp O, unsigned F, const void* D)
98      : Op(static_cast<unsigned char>(O)),
99        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
100    { }
101
102    unsigned size() const        { return Sz; }
103    void     setSize(unsigned S) { Sz = S;    }
104
105    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
106
107    const NamedDecl* getNamedDecl() const {
108      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
109      return reinterpret_cast<const NamedDecl*>(Data);
110    }
111
112    const NamedDecl* getFunctionDecl() const {
113      assert(Op == EOP_Call || Op == EOP_MCall);
114      return reinterpret_cast<const NamedDecl*>(Data);
115    }
116
117    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
118    void setArrow(bool A) { Flags = A ? 1 : 0; }
119
120    unsigned arity() const {
121      switch (Op) {
122        case EOP_Nop:       return 0;
123        case EOP_Wildcard:  return 0;
124        case EOP_Universal: return 0;
125        case EOP_NVar:      return 0;
126        case EOP_LVar:      return 0;
127        case EOP_This:      return 0;
128        case EOP_Dot:       return 1;
129        case EOP_Call:      return Flags+1;  // First arg is function.
130        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
131        case EOP_Index:     return 2;
132        case EOP_Unary:     return 1;
133        case EOP_Binary:    return 2;
134        case EOP_Unknown:   return Flags;
135      }
136      return 0;
137    }
138
139    bool operator==(const SExprNode& Other) const {
140      // Ignore flags and size -- they don't matter.
141      return (Op == Other.Op &&
142              Data == Other.Data);
143    }
144
145    bool operator!=(const SExprNode& Other) const {
146      return !(*this == Other);
147    }
148
149    bool matches(const SExprNode& Other) const {
150      return (*this == Other) ||
151             (Op == EOP_Wildcard) ||
152             (Other.Op == EOP_Wildcard);
153    }
154  };
155
156
157  /// \brief Encapsulates the lexical context of a function call.  The lexical
158  /// context includes the arguments to the call, including the implicit object
159  /// argument.  When an attribute containing a mutex expression is attached to
160  /// a method, the expression may refer to formal parameters of the method.
161  /// Actual arguments must be substituted for formal parameters to derive
162  /// the appropriate mutex expression in the lexical context where the function
163  /// is called.  PrevCtx holds the context in which the arguments themselves
164  /// should be evaluated; multiple calling contexts can be chained together
165  /// by the lock_returned attribute.
166  struct CallingContext {
167    const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
168    Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
169    bool             SelfArrow;  // is Self referred to with -> or .?
170    unsigned         NumArgs;    // Number of funArgs
171    Expr**           FunArgs;    // Function arguments
172    CallingContext*  PrevCtx;    // The previous context; or 0 if none.
173
174    CallingContext(const NamedDecl *D = 0, Expr *S = 0,
175                   unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
176      : AttrDecl(D), SelfArg(S), SelfArrow(false),
177        NumArgs(N), FunArgs(A), PrevCtx(P)
178    { }
179  };
180
181  typedef SmallVector<SExprNode, 4> NodeVector;
182
183private:
184  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
185  // the list to be traversed as a tree.
186  NodeVector NodeVec;
187
188private:
189  unsigned makeNop() {
190    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
191    return NodeVec.size()-1;
192  }
193
194  unsigned makeWildcard() {
195    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
196    return NodeVec.size()-1;
197  }
198
199  unsigned makeUniversal() {
200    NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
201    return NodeVec.size()-1;
202  }
203
204  unsigned makeNamedVar(const NamedDecl *D) {
205    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
206    return NodeVec.size()-1;
207  }
208
209  unsigned makeLocalVar(const NamedDecl *D) {
210    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
211    return NodeVec.size()-1;
212  }
213
214  unsigned makeThis() {
215    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
216    return NodeVec.size()-1;
217  }
218
219  unsigned makeDot(const NamedDecl *D, bool Arrow) {
220    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
221    return NodeVec.size()-1;
222  }
223
224  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
225    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
226    return NodeVec.size()-1;
227  }
228
229  unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
230    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
231    return NodeVec.size()-1;
232  }
233
234  unsigned makeIndex() {
235    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
236    return NodeVec.size()-1;
237  }
238
239  unsigned makeUnary() {
240    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
241    return NodeVec.size()-1;
242  }
243
244  unsigned makeBinary() {
245    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
246    return NodeVec.size()-1;
247  }
248
249  unsigned makeUnknown(unsigned Arity) {
250    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
251    return NodeVec.size()-1;
252  }
253
254  /// Build an SExpr from the given C++ expression.
255  /// Recursive function that terminates on DeclRefExpr.
256  /// Note: this function merely creates a SExpr; it does not check to
257  /// ensure that the original expression is a valid mutex expression.
258  ///
259  /// NDeref returns the number of Derefence and AddressOf operations
260  /// preceeding the Expr; this is used to decide whether to pretty-print
261  /// SExprs with . or ->.
262  unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
263    if (!Exp)
264      return 0;
265
266    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
267      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
268      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
269      if (PV) {
270        FunctionDecl *FD =
271          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
272        unsigned i = PV->getFunctionScopeIndex();
273
274        if (CallCtx && CallCtx->FunArgs &&
275            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
276          // Substitute call arguments for references to function parameters
277          assert(i < CallCtx->NumArgs);
278          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
279        }
280        // Map the param back to the param of the original function declaration.
281        makeNamedVar(FD->getParamDecl(i));
282        return 1;
283      }
284      // Not a function parameter -- just store the reference.
285      makeNamedVar(ND);
286      return 1;
287    } else if (isa<CXXThisExpr>(Exp)) {
288      // Substitute parent for 'this'
289      if (CallCtx && CallCtx->SelfArg) {
290        if (!CallCtx->SelfArrow && NDeref)
291          // 'this' is a pointer, but self is not, so need to take address.
292          --(*NDeref);
293        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
294      }
295      else {
296        makeThis();
297        return 1;
298      }
299    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
300      NamedDecl *ND = ME->getMemberDecl();
301      int ImplicitDeref = ME->isArrow() ? 1 : 0;
302      unsigned Root = makeDot(ND, false);
303      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
304      NodeVec[Root].setArrow(ImplicitDeref > 0);
305      NodeVec[Root].setSize(Sz + 1);
306      return Sz + 1;
307    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
308      // When calling a function with a lock_returned attribute, replace
309      // the function call with the expression in lock_returned.
310      CXXMethodDecl* MD =
311        cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
312      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
313        CallingContext LRCallCtx(CMCE->getMethodDecl());
314        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
315        LRCallCtx.SelfArrow =
316          dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
317        LRCallCtx.NumArgs = CMCE->getNumArgs();
318        LRCallCtx.FunArgs = CMCE->getArgs();
319        LRCallCtx.PrevCtx = CallCtx;
320        return buildSExpr(At->getArg(), &LRCallCtx);
321      }
322      // Hack to treat smart pointers and iterators as pointers;
323      // ignore any method named get().
324      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
325          CMCE->getNumArgs() == 0) {
326        if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
327          ++(*NDeref);
328        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
329      }
330      unsigned NumCallArgs = CMCE->getNumArgs();
331      unsigned Root =
332        makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
333      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
334      Expr** CallArgs = CMCE->getArgs();
335      for (unsigned i = 0; i < NumCallArgs; ++i) {
336        Sz += buildSExpr(CallArgs[i], CallCtx);
337      }
338      NodeVec[Root].setSize(Sz + 1);
339      return Sz + 1;
340    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
341      FunctionDecl* FD =
342        cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
343      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
344        CallingContext LRCallCtx(CE->getDirectCallee());
345        LRCallCtx.NumArgs = CE->getNumArgs();
346        LRCallCtx.FunArgs = CE->getArgs();
347        LRCallCtx.PrevCtx = CallCtx;
348        return buildSExpr(At->getArg(), &LRCallCtx);
349      }
350      // Treat smart pointers and iterators as pointers;
351      // ignore the * and -> operators.
352      if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
353        OverloadedOperatorKind k = OE->getOperator();
354        if (k == OO_Star) {
355          if (NDeref) ++(*NDeref);
356          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
357        }
358        else if (k == OO_Arrow) {
359          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
360        }
361      }
362      unsigned NumCallArgs = CE->getNumArgs();
363      unsigned Root = makeCall(NumCallArgs, 0);
364      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
365      Expr** CallArgs = CE->getArgs();
366      for (unsigned i = 0; i < NumCallArgs; ++i) {
367        Sz += buildSExpr(CallArgs[i], CallCtx);
368      }
369      NodeVec[Root].setSize(Sz+1);
370      return Sz+1;
371    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
372      unsigned Root = makeBinary();
373      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
374      Sz += buildSExpr(BOE->getRHS(), CallCtx);
375      NodeVec[Root].setSize(Sz);
376      return Sz;
377    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
378      // Ignore & and * operators -- they're no-ops.
379      // However, we try to figure out whether the expression is a pointer,
380      // so we can use . and -> appropriately in error messages.
381      if (UOE->getOpcode() == UO_Deref) {
382        if (NDeref) ++(*NDeref);
383        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
384      }
385      if (UOE->getOpcode() == UO_AddrOf) {
386        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
387          if (DRE->getDecl()->isCXXInstanceMember()) {
388            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
389            // We interpret this syntax specially, as a wildcard.
390            unsigned Root = makeDot(DRE->getDecl(), false);
391            makeWildcard();
392            NodeVec[Root].setSize(2);
393            return 2;
394          }
395        }
396        if (NDeref) --(*NDeref);
397        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
398      }
399      unsigned Root = makeUnary();
400      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
401      NodeVec[Root].setSize(Sz);
402      return Sz;
403    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
404      unsigned Root = makeIndex();
405      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
406      Sz += buildSExpr(ASE->getIdx(), CallCtx);
407      NodeVec[Root].setSize(Sz);
408      return Sz;
409    } else if (AbstractConditionalOperator *CE =
410               dyn_cast<AbstractConditionalOperator>(Exp)) {
411      unsigned Root = makeUnknown(3);
412      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
413      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
414      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
415      NodeVec[Root].setSize(Sz);
416      return Sz;
417    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
418      unsigned Root = makeUnknown(3);
419      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
420      Sz += buildSExpr(CE->getLHS(), CallCtx);
421      Sz += buildSExpr(CE->getRHS(), CallCtx);
422      NodeVec[Root].setSize(Sz);
423      return Sz;
424    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
425      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
426    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
427      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
428    } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
429      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
430    } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
431      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
432    } else if (isa<CharacterLiteral>(Exp) ||
433               isa<CXXNullPtrLiteralExpr>(Exp) ||
434               isa<GNUNullExpr>(Exp) ||
435               isa<CXXBoolLiteralExpr>(Exp) ||
436               isa<FloatingLiteral>(Exp) ||
437               isa<ImaginaryLiteral>(Exp) ||
438               isa<IntegerLiteral>(Exp) ||
439               isa<StringLiteral>(Exp) ||
440               isa<ObjCStringLiteral>(Exp)) {
441      makeNop();
442      return 1;  // FIXME: Ignore literals for now
443    } else {
444      makeNop();
445      return 1;  // Ignore.  FIXME: mark as invalid expression?
446    }
447  }
448
449  /// \brief Construct a SExpr from an expression.
450  /// \param MutexExp The original mutex expression within an attribute
451  /// \param DeclExp An expression involving the Decl on which the attribute
452  ///        occurs.
453  /// \param D  The declaration to which the lock/unlock attribute is attached.
454  void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
455    CallingContext CallCtx(D);
456
457    if (MutexExp) {
458      if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
459        if (SLit->getString() == StringRef("*"))
460          // The "*" expr is a universal lock, which essentially turns off
461          // checks until it is removed from the lockset.
462          makeUniversal();
463        else
464          // Ignore other string literals for now.
465          makeNop();
466        return;
467      }
468    }
469
470    // If we are processing a raw attribute expression, with no substitutions.
471    if (DeclExp == 0) {
472      buildSExpr(MutexExp, 0);
473      return;
474    }
475
476    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
477    // for formal parameters when we call buildMutexID later.
478    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
479      CallCtx.SelfArg   = ME->getBase();
480      CallCtx.SelfArrow = ME->isArrow();
481    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
482      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
483      CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
484      CallCtx.NumArgs   = CE->getNumArgs();
485      CallCtx.FunArgs   = CE->getArgs();
486    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
487      CallCtx.NumArgs = CE->getNumArgs();
488      CallCtx.FunArgs = CE->getArgs();
489    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
490      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
491      CallCtx.NumArgs = CE->getNumArgs();
492      CallCtx.FunArgs = CE->getArgs();
493    } else if (D && isa<CXXDestructorDecl>(D)) {
494      // There's no such thing as a "destructor call" in the AST.
495      CallCtx.SelfArg = DeclExp;
496    }
497
498    // If the attribute has no arguments, then assume the argument is "this".
499    if (MutexExp == 0) {
500      buildSExpr(CallCtx.SelfArg, 0);
501      return;
502    }
503
504    // For most attributes.
505    buildSExpr(MutexExp, &CallCtx);
506  }
507
508  /// \brief Get index of next sibling of node i.
509  unsigned getNextSibling(unsigned i) const {
510    return i + NodeVec[i].size();
511  }
512
513public:
514  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
515
516  /// \param MutexExp The original mutex expression within an attribute
517  /// \param DeclExp An expression involving the Decl on which the attribute
518  ///        occurs.
519  /// \param D  The declaration to which the lock/unlock attribute is attached.
520  /// Caller must check isValid() after construction.
521  SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
522    buildSExprFromExpr(MutexExp, DeclExp, D);
523  }
524
525  /// Return true if this is a valid decl sequence.
526  /// Caller must call this by hand after construction to handle errors.
527  bool isValid() const {
528    return !NodeVec.empty();
529  }
530
531  bool shouldIgnore() const {
532    // Nop is a mutex that we have decided to deliberately ignore.
533    assert(NodeVec.size() > 0 && "Invalid Mutex");
534    return NodeVec[0].kind() == EOP_Nop;
535  }
536
537  bool isUniversal() const {
538    assert(NodeVec.size() > 0 && "Invalid Mutex");
539    return NodeVec[0].kind() == EOP_Universal;
540  }
541
542  /// Issue a warning about an invalid lock expression
543  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
544                              Expr *DeclExp, const NamedDecl* D) {
545    SourceLocation Loc;
546    if (DeclExp)
547      Loc = DeclExp->getExprLoc();
548
549    // FIXME: add a note about the attribute location in MutexExp or D
550    if (Loc.isValid())
551      Handler.handleInvalidLockExp(Loc);
552  }
553
554  bool operator==(const SExpr &other) const {
555    return NodeVec == other.NodeVec;
556  }
557
558  bool operator!=(const SExpr &other) const {
559    return !(*this == other);
560  }
561
562  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
563    if (NodeVec[i].matches(Other.NodeVec[j])) {
564      unsigned ni = NodeVec[i].arity();
565      unsigned nj = Other.NodeVec[j].arity();
566      unsigned n = (ni < nj) ? ni : nj;
567      bool Result = true;
568      unsigned ci = i+1;  // first child of i
569      unsigned cj = j+1;  // first child of j
570      for (unsigned k = 0; k < n;
571           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
572        Result = Result && matches(Other, ci, cj);
573      }
574      return Result;
575    }
576    return false;
577  }
578
579  // A partial match between a.mu and b.mu returns true a and b have the same
580  // type (and thus mu refers to the same mutex declaration), regardless of
581  // whether a and b are different objects or not.
582  bool partiallyMatches(const SExpr &Other) const {
583    if (NodeVec[0].kind() == EOP_Dot)
584      return NodeVec[0].matches(Other.NodeVec[0]);
585    return false;
586  }
587
588  /// \brief Pretty print a lock expression for use in error messages.
589  std::string toString(unsigned i = 0) const {
590    assert(isValid());
591    if (i >= NodeVec.size())
592      return "";
593
594    const SExprNode* N = &NodeVec[i];
595    switch (N->kind()) {
596      case EOP_Nop:
597        return "_";
598      case EOP_Wildcard:
599        return "(?)";
600      case EOP_Universal:
601        return "*";
602      case EOP_This:
603        return "this";
604      case EOP_NVar:
605      case EOP_LVar: {
606        return N->getNamedDecl()->getNameAsString();
607      }
608      case EOP_Dot: {
609        if (NodeVec[i+1].kind() == EOP_Wildcard) {
610          std::string S = "&";
611          S += N->getNamedDecl()->getQualifiedNameAsString();
612          return S;
613        }
614        std::string FieldName = N->getNamedDecl()->getNameAsString();
615        if (NodeVec[i+1].kind() == EOP_This)
616          return FieldName;
617
618        std::string S = toString(i+1);
619        if (N->isArrow())
620          return S + "->" + FieldName;
621        else
622          return S + "." + FieldName;
623      }
624      case EOP_Call: {
625        std::string S = toString(i+1) + "(";
626        unsigned NumArgs = N->arity()-1;
627        unsigned ci = getNextSibling(i+1);
628        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
629          S += toString(ci);
630          if (k+1 < NumArgs) S += ",";
631        }
632        S += ")";
633        return S;
634      }
635      case EOP_MCall: {
636        std::string S = "";
637        if (NodeVec[i+1].kind() != EOP_This)
638          S = toString(i+1) + ".";
639        if (const NamedDecl *D = N->getFunctionDecl())
640          S += D->getNameAsString() + "(";
641        else
642          S += "#(";
643        unsigned NumArgs = N->arity()-1;
644        unsigned ci = getNextSibling(i+1);
645        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
646          S += toString(ci);
647          if (k+1 < NumArgs) S += ",";
648        }
649        S += ")";
650        return S;
651      }
652      case EOP_Index: {
653        std::string S1 = toString(i+1);
654        std::string S2 = toString(i+1 + NodeVec[i+1].size());
655        return S1 + "[" + S2 + "]";
656      }
657      case EOP_Unary: {
658        std::string S = toString(i+1);
659        return "#" + S;
660      }
661      case EOP_Binary: {
662        std::string S1 = toString(i+1);
663        std::string S2 = toString(i+1 + NodeVec[i+1].size());
664        return "(" + S1 + "#" + S2 + ")";
665      }
666      case EOP_Unknown: {
667        unsigned NumChildren = N->arity();
668        if (NumChildren == 0)
669          return "(...)";
670        std::string S = "(";
671        unsigned ci = i+1;
672        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
673          S += toString(ci);
674          if (j+1 < NumChildren) S += "#";
675        }
676        S += ")";
677        return S;
678      }
679    }
680    return "";
681  }
682};
683
684
685
686/// \brief A short list of SExprs
687class MutexIDList : public SmallVector<SExpr, 3> {
688public:
689  /// \brief Return true if the list contains the specified SExpr
690  /// Performs a linear search, because these lists are almost always very small.
691  bool contains(const SExpr& M) {
692    for (iterator I=begin(),E=end(); I != E; ++I)
693      if ((*I) == M) return true;
694    return false;
695  }
696
697  /// \brief Push M onto list, bud discard duplicates
698  void push_back_nodup(const SExpr& M) {
699    if (!contains(M)) push_back(M);
700  }
701};
702
703
704
705/// \brief This is a helper class that stores info about the most recent
706/// accquire of a Lock.
707///
708/// The main body of the analysis maps MutexIDs to LockDatas.
709struct LockData {
710  SourceLocation AcquireLoc;
711
712  /// \brief LKind stores whether a lock is held shared or exclusively.
713  /// Note that this analysis does not currently support either re-entrant
714  /// locking or lock "upgrading" and "downgrading" between exclusive and
715  /// shared.
716  ///
717  /// FIXME: add support for re-entrant locking and lock up/downgrading
718  LockKind LKind;
719  bool     Managed;            // for ScopedLockable objects
720  SExpr    UnderlyingMutex;    // for ScopedLockable objects
721
722  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
723    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
724      UnderlyingMutex(Decl::EmptyShell())
725  {}
726
727  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
728    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
729      UnderlyingMutex(Mu)
730  {}
731
732  bool operator==(const LockData &other) const {
733    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
734  }
735
736  bool operator!=(const LockData &other) const {
737    return !(*this == other);
738  }
739
740  void Profile(llvm::FoldingSetNodeID &ID) const {
741    ID.AddInteger(AcquireLoc.getRawEncoding());
742    ID.AddInteger(LKind);
743  }
744
745  bool isAtLeast(LockKind LK) {
746    return (LK == LK_Shared) || (LKind == LK_Exclusive);
747  }
748};
749
750
751/// \brief A FactEntry stores a single fact that is known at a particular point
752/// in the program execution.  Currently, this is information regarding a lock
753/// that is held at that point.
754struct FactEntry {
755  SExpr    MutID;
756  LockData LDat;
757
758  FactEntry(const SExpr& M, const LockData& L)
759    : MutID(M), LDat(L)
760  { }
761};
762
763
764typedef unsigned short FactID;
765
766/// \brief FactManager manages the memory for all facts that are created during
767/// the analysis of a single routine.
768class FactManager {
769private:
770  std::vector<FactEntry> Facts;
771
772public:
773  FactID newLock(const SExpr& M, const LockData& L) {
774    Facts.push_back(FactEntry(M,L));
775    return static_cast<unsigned short>(Facts.size() - 1);
776  }
777
778  const FactEntry& operator[](FactID F) const { return Facts[F]; }
779  FactEntry&       operator[](FactID F)       { return Facts[F]; }
780};
781
782
783/// \brief A FactSet is the set of facts that are known to be true at a
784/// particular program point.  FactSets must be small, because they are
785/// frequently copied, and are thus implemented as a set of indices into a
786/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
787/// locks, so we can get away with doing a linear search for lookup.  Note
788/// that a hashtable or map is inappropriate in this case, because lookups
789/// may involve partial pattern matches, rather than exact matches.
790class FactSet {
791private:
792  typedef SmallVector<FactID, 4> FactVec;
793
794  FactVec FactIDs;
795
796public:
797  typedef FactVec::iterator       iterator;
798  typedef FactVec::const_iterator const_iterator;
799
800  iterator       begin()       { return FactIDs.begin(); }
801  const_iterator begin() const { return FactIDs.begin(); }
802
803  iterator       end()       { return FactIDs.end(); }
804  const_iterator end() const { return FactIDs.end(); }
805
806  bool isEmpty() const { return FactIDs.size() == 0; }
807
808  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
809    FactID F = FM.newLock(M, L);
810    FactIDs.push_back(F);
811    return F;
812  }
813
814  bool removeLock(FactManager& FM, const SExpr& M) {
815    unsigned n = FactIDs.size();
816    if (n == 0)
817      return false;
818
819    for (unsigned i = 0; i < n-1; ++i) {
820      if (FM[FactIDs[i]].MutID.matches(M)) {
821        FactIDs[i] = FactIDs[n-1];
822        FactIDs.pop_back();
823        return true;
824      }
825    }
826    if (FM[FactIDs[n-1]].MutID.matches(M)) {
827      FactIDs.pop_back();
828      return true;
829    }
830    return false;
831  }
832
833  LockData* findLock(FactManager &FM, const SExpr &M) const {
834    for (const_iterator I = begin(), E = end(); I != E; ++I) {
835      const SExpr &Exp = FM[*I].MutID;
836      if (Exp.matches(M))
837        return &FM[*I].LDat;
838    }
839    return 0;
840  }
841
842  LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
843    for (const_iterator I = begin(), E = end(); I != E; ++I) {
844      const SExpr &Exp = FM[*I].MutID;
845      if (Exp.matches(M) || Exp.isUniversal())
846        return &FM[*I].LDat;
847    }
848    return 0;
849  }
850
851  FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
852    for (const_iterator I=begin(), E=end(); I != E; ++I) {
853      const SExpr& Exp = FM[*I].MutID;
854      if (Exp.partiallyMatches(M)) return &FM[*I];
855    }
856    return 0;
857  }
858};
859
860
861
862/// A Lockset maps each SExpr (defined above) to information about how it has
863/// been locked.
864typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
865typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
866
867class LocalVariableMap;
868
869/// A side (entry or exit) of a CFG node.
870enum CFGBlockSide { CBS_Entry, CBS_Exit };
871
872/// CFGBlockInfo is a struct which contains all the information that is
873/// maintained for each block in the CFG.  See LocalVariableMap for more
874/// information about the contexts.
875struct CFGBlockInfo {
876  FactSet EntrySet;             // Lockset held at entry to block
877  FactSet ExitSet;              // Lockset held at exit from block
878  LocalVarContext EntryContext; // Context held at entry to block
879  LocalVarContext ExitContext;  // Context held at exit from block
880  SourceLocation EntryLoc;      // Location of first statement in block
881  SourceLocation ExitLoc;       // Location of last statement in block.
882  unsigned EntryIndex;          // Used to replay contexts later
883
884  const FactSet &getSet(CFGBlockSide Side) const {
885    return Side == CBS_Entry ? EntrySet : ExitSet;
886  }
887  SourceLocation getLocation(CFGBlockSide Side) const {
888    return Side == CBS_Entry ? EntryLoc : ExitLoc;
889  }
890
891private:
892  CFGBlockInfo(LocalVarContext EmptyCtx)
893    : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
894  { }
895
896public:
897  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
898};
899
900
901
902// A LocalVariableMap maintains a map from local variables to their currently
903// valid definitions.  It provides SSA-like functionality when traversing the
904// CFG.  Like SSA, each definition or assignment to a variable is assigned a
905// unique name (an integer), which acts as the SSA name for that definition.
906// The total set of names is shared among all CFG basic blocks.
907// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
908// with their SSA-names.  Instead, we compute a Context for each point in the
909// code, which maps local variables to the appropriate SSA-name.  This map
910// changes with each assignment.
911//
912// The map is computed in a single pass over the CFG.  Subsequent analyses can
913// then query the map to find the appropriate Context for a statement, and use
914// that Context to look up the definitions of variables.
915class LocalVariableMap {
916public:
917  typedef LocalVarContext Context;
918
919  /// A VarDefinition consists of an expression, representing the value of the
920  /// variable, along with the context in which that expression should be
921  /// interpreted.  A reference VarDefinition does not itself contain this
922  /// information, but instead contains a pointer to a previous VarDefinition.
923  struct VarDefinition {
924  public:
925    friend class LocalVariableMap;
926
927    const NamedDecl *Dec;  // The original declaration for this variable.
928    const Expr *Exp;       // The expression for this variable, OR
929    unsigned Ref;          // Reference to another VarDefinition
930    Context Ctx;           // The map with which Exp should be interpreted.
931
932    bool isReference() { return !Exp; }
933
934  private:
935    // Create ordinary variable definition
936    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
937      : Dec(D), Exp(E), Ref(0), Ctx(C)
938    { }
939
940    // Create reference to previous definition
941    VarDefinition(const NamedDecl *D, unsigned R, Context C)
942      : Dec(D), Exp(0), Ref(R), Ctx(C)
943    { }
944  };
945
946private:
947  Context::Factory ContextFactory;
948  std::vector<VarDefinition> VarDefinitions;
949  std::vector<unsigned> CtxIndices;
950  std::vector<std::pair<Stmt*, Context> > SavedContexts;
951
952public:
953  LocalVariableMap() {
954    // index 0 is a placeholder for undefined variables (aka phi-nodes).
955    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
956  }
957
958  /// Look up a definition, within the given context.
959  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
960    const unsigned *i = Ctx.lookup(D);
961    if (!i)
962      return 0;
963    assert(*i < VarDefinitions.size());
964    return &VarDefinitions[*i];
965  }
966
967  /// Look up the definition for D within the given context.  Returns
968  /// NULL if the expression is not statically known.  If successful, also
969  /// modifies Ctx to hold the context of the return Expr.
970  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
971    const unsigned *P = Ctx.lookup(D);
972    if (!P)
973      return 0;
974
975    unsigned i = *P;
976    while (i > 0) {
977      if (VarDefinitions[i].Exp) {
978        Ctx = VarDefinitions[i].Ctx;
979        return VarDefinitions[i].Exp;
980      }
981      i = VarDefinitions[i].Ref;
982    }
983    return 0;
984  }
985
986  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
987
988  /// Return the next context after processing S.  This function is used by
989  /// clients of the class to get the appropriate context when traversing the
990  /// CFG.  It must be called for every assignment or DeclStmt.
991  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
992    if (SavedContexts[CtxIndex+1].first == S) {
993      CtxIndex++;
994      Context Result = SavedContexts[CtxIndex].second;
995      return Result;
996    }
997    return C;
998  }
999
1000  void dumpVarDefinitionName(unsigned i) {
1001    if (i == 0) {
1002      llvm::errs() << "Undefined";
1003      return;
1004    }
1005    const NamedDecl *Dec = VarDefinitions[i].Dec;
1006    if (!Dec) {
1007      llvm::errs() << "<<NULL>>";
1008      return;
1009    }
1010    Dec->printName(llvm::errs());
1011    llvm::errs() << "." << i << " " << ((const void*) Dec);
1012  }
1013
1014  /// Dumps an ASCII representation of the variable map to llvm::errs()
1015  void dump() {
1016    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1017      const Expr *Exp = VarDefinitions[i].Exp;
1018      unsigned Ref = VarDefinitions[i].Ref;
1019
1020      dumpVarDefinitionName(i);
1021      llvm::errs() << " = ";
1022      if (Exp) Exp->dump();
1023      else {
1024        dumpVarDefinitionName(Ref);
1025        llvm::errs() << "\n";
1026      }
1027    }
1028  }
1029
1030  /// Dumps an ASCII representation of a Context to llvm::errs()
1031  void dumpContext(Context C) {
1032    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1033      const NamedDecl *D = I.getKey();
1034      D->printName(llvm::errs());
1035      const unsigned *i = C.lookup(D);
1036      llvm::errs() << " -> ";
1037      dumpVarDefinitionName(*i);
1038      llvm::errs() << "\n";
1039    }
1040  }
1041
1042  /// Builds the variable map.
1043  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1044                     std::vector<CFGBlockInfo> &BlockInfo);
1045
1046protected:
1047  // Get the current context index
1048  unsigned getContextIndex() { return SavedContexts.size()-1; }
1049
1050  // Save the current context for later replay
1051  void saveContext(Stmt *S, Context C) {
1052    SavedContexts.push_back(std::make_pair(S,C));
1053  }
1054
1055  // Adds a new definition to the given context, and returns a new context.
1056  // This method should be called when declaring a new variable.
1057  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1058    assert(!Ctx.contains(D));
1059    unsigned newID = VarDefinitions.size();
1060    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1061    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1062    return NewCtx;
1063  }
1064
1065  // Add a new reference to an existing definition.
1066  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1067    unsigned newID = VarDefinitions.size();
1068    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1069    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1070    return NewCtx;
1071  }
1072
1073  // Updates a definition only if that definition is already in the map.
1074  // This method should be called when assigning to an existing variable.
1075  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1076    if (Ctx.contains(D)) {
1077      unsigned newID = VarDefinitions.size();
1078      Context NewCtx = ContextFactory.remove(Ctx, D);
1079      NewCtx = ContextFactory.add(NewCtx, D, newID);
1080      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1081      return NewCtx;
1082    }
1083    return Ctx;
1084  }
1085
1086  // Removes a definition from the context, but keeps the variable name
1087  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1088  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1089    Context NewCtx = Ctx;
1090    if (NewCtx.contains(D)) {
1091      NewCtx = ContextFactory.remove(NewCtx, D);
1092      NewCtx = ContextFactory.add(NewCtx, D, 0);
1093    }
1094    return NewCtx;
1095  }
1096
1097  // Remove a definition entirely frmo the context.
1098  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1099    Context NewCtx = Ctx;
1100    if (NewCtx.contains(D)) {
1101      NewCtx = ContextFactory.remove(NewCtx, D);
1102    }
1103    return NewCtx;
1104  }
1105
1106  Context intersectContexts(Context C1, Context C2);
1107  Context createReferenceContext(Context C);
1108  void intersectBackEdge(Context C1, Context C2);
1109
1110  friend class VarMapBuilder;
1111};
1112
1113
1114// This has to be defined after LocalVariableMap.
1115CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1116  return CFGBlockInfo(M.getEmptyContext());
1117}
1118
1119
1120/// Visitor which builds a LocalVariableMap
1121class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1122public:
1123  LocalVariableMap* VMap;
1124  LocalVariableMap::Context Ctx;
1125
1126  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1127    : VMap(VM), Ctx(C) {}
1128
1129  void VisitDeclStmt(DeclStmt *S);
1130  void VisitBinaryOperator(BinaryOperator *BO);
1131};
1132
1133
1134// Add new local variables to the variable map
1135void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1136  bool modifiedCtx = false;
1137  DeclGroupRef DGrp = S->getDeclGroup();
1138  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1139    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1140      Expr *E = VD->getInit();
1141
1142      // Add local variables with trivial type to the variable map
1143      QualType T = VD->getType();
1144      if (T.isTrivialType(VD->getASTContext())) {
1145        Ctx = VMap->addDefinition(VD, E, Ctx);
1146        modifiedCtx = true;
1147      }
1148    }
1149  }
1150  if (modifiedCtx)
1151    VMap->saveContext(S, Ctx);
1152}
1153
1154// Update local variable definitions in variable map
1155void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1156  if (!BO->isAssignmentOp())
1157    return;
1158
1159  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1160
1161  // Update the variable map and current context.
1162  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1163    ValueDecl *VDec = DRE->getDecl();
1164    if (Ctx.lookup(VDec)) {
1165      if (BO->getOpcode() == BO_Assign)
1166        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1167      else
1168        // FIXME -- handle compound assignment operators
1169        Ctx = VMap->clearDefinition(VDec, Ctx);
1170      VMap->saveContext(BO, Ctx);
1171    }
1172  }
1173}
1174
1175
1176// Computes the intersection of two contexts.  The intersection is the
1177// set of variables which have the same definition in both contexts;
1178// variables with different definitions are discarded.
1179LocalVariableMap::Context
1180LocalVariableMap::intersectContexts(Context C1, Context C2) {
1181  Context Result = C1;
1182  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1183    const NamedDecl *Dec = I.getKey();
1184    unsigned i1 = I.getData();
1185    const unsigned *i2 = C2.lookup(Dec);
1186    if (!i2)             // variable doesn't exist on second path
1187      Result = removeDefinition(Dec, Result);
1188    else if (*i2 != i1)  // variable exists, but has different definition
1189      Result = clearDefinition(Dec, Result);
1190  }
1191  return Result;
1192}
1193
1194// For every variable in C, create a new variable that refers to the
1195// definition in C.  Return a new context that contains these new variables.
1196// (We use this for a naive implementation of SSA on loop back-edges.)
1197LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1198  Context Result = getEmptyContext();
1199  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1200    const NamedDecl *Dec = I.getKey();
1201    unsigned i = I.getData();
1202    Result = addReference(Dec, i, Result);
1203  }
1204  return Result;
1205}
1206
1207// This routine also takes the intersection of C1 and C2, but it does so by
1208// altering the VarDefinitions.  C1 must be the result of an earlier call to
1209// createReferenceContext.
1210void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1211  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1212    const NamedDecl *Dec = I.getKey();
1213    unsigned i1 = I.getData();
1214    VarDefinition *VDef = &VarDefinitions[i1];
1215    assert(VDef->isReference());
1216
1217    const unsigned *i2 = C2.lookup(Dec);
1218    if (!i2 || (*i2 != i1))
1219      VDef->Ref = 0;    // Mark this variable as undefined
1220  }
1221}
1222
1223
1224// Traverse the CFG in topological order, so all predecessors of a block
1225// (excluding back-edges) are visited before the block itself.  At
1226// each point in the code, we calculate a Context, which holds the set of
1227// variable definitions which are visible at that point in execution.
1228// Visible variables are mapped to their definitions using an array that
1229// contains all definitions.
1230//
1231// At join points in the CFG, the set is computed as the intersection of
1232// the incoming sets along each edge, E.g.
1233//
1234//                       { Context                 | VarDefinitions }
1235//   int x = 0;          { x -> x1                 | x1 = 0 }
1236//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1237//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1238//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1239//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1240//
1241// This is essentially a simpler and more naive version of the standard SSA
1242// algorithm.  Those definitions that remain in the intersection are from blocks
1243// that strictly dominate the current block.  We do not bother to insert proper
1244// phi nodes, because they are not used in our analysis; instead, wherever
1245// a phi node would be required, we simply remove that definition from the
1246// context (E.g. x above).
1247//
1248// The initial traversal does not capture back-edges, so those need to be
1249// handled on a separate pass.  Whenever the first pass encounters an
1250// incoming back edge, it duplicates the context, creating new definitions
1251// that refer back to the originals.  (These correspond to places where SSA
1252// might have to insert a phi node.)  On the second pass, these definitions are
1253// set to NULL if the variable has changed on the back-edge (i.e. a phi
1254// node was actually required.)  E.g.
1255//
1256//                       { Context           | VarDefinitions }
1257//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1258//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1259//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1260//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1261//
1262void LocalVariableMap::traverseCFG(CFG *CFGraph,
1263                                   PostOrderCFGView *SortedGraph,
1264                                   std::vector<CFGBlockInfo> &BlockInfo) {
1265  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1266
1267  CtxIndices.resize(CFGraph->getNumBlockIDs());
1268
1269  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1270       E = SortedGraph->end(); I!= E; ++I) {
1271    const CFGBlock *CurrBlock = *I;
1272    int CurrBlockID = CurrBlock->getBlockID();
1273    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1274
1275    VisitedBlocks.insert(CurrBlock);
1276
1277    // Calculate the entry context for the current block
1278    bool HasBackEdges = false;
1279    bool CtxInit = true;
1280    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1281         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1282      // if *PI -> CurrBlock is a back edge, so skip it
1283      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1284        HasBackEdges = true;
1285        continue;
1286      }
1287
1288      int PrevBlockID = (*PI)->getBlockID();
1289      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1290
1291      if (CtxInit) {
1292        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1293        CtxInit = false;
1294      }
1295      else {
1296        CurrBlockInfo->EntryContext =
1297          intersectContexts(CurrBlockInfo->EntryContext,
1298                            PrevBlockInfo->ExitContext);
1299      }
1300    }
1301
1302    // Duplicate the context if we have back-edges, so we can call
1303    // intersectBackEdges later.
1304    if (HasBackEdges)
1305      CurrBlockInfo->EntryContext =
1306        createReferenceContext(CurrBlockInfo->EntryContext);
1307
1308    // Create a starting context index for the current block
1309    saveContext(0, CurrBlockInfo->EntryContext);
1310    CurrBlockInfo->EntryIndex = getContextIndex();
1311
1312    // Visit all the statements in the basic block.
1313    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1314    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1315         BE = CurrBlock->end(); BI != BE; ++BI) {
1316      switch (BI->getKind()) {
1317        case CFGElement::Statement: {
1318          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1319          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1320          break;
1321        }
1322        default:
1323          break;
1324      }
1325    }
1326    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1327
1328    // Mark variables on back edges as "unknown" if they've been changed.
1329    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1330         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1331      // if CurrBlock -> *SI is *not* a back edge
1332      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1333        continue;
1334
1335      CFGBlock *FirstLoopBlock = *SI;
1336      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1337      Context LoopEnd   = CurrBlockInfo->ExitContext;
1338      intersectBackEdge(LoopBegin, LoopEnd);
1339    }
1340  }
1341
1342  // Put an extra entry at the end of the indexed context array
1343  unsigned exitID = CFGraph->getExit().getBlockID();
1344  saveContext(0, BlockInfo[exitID].ExitContext);
1345}
1346
1347/// Find the appropriate source locations to use when producing diagnostics for
1348/// each block in the CFG.
1349static void findBlockLocations(CFG *CFGraph,
1350                               PostOrderCFGView *SortedGraph,
1351                               std::vector<CFGBlockInfo> &BlockInfo) {
1352  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1353       E = SortedGraph->end(); I!= E; ++I) {
1354    const CFGBlock *CurrBlock = *I;
1355    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1356
1357    // Find the source location of the last statement in the block, if the
1358    // block is not empty.
1359    if (const Stmt *S = CurrBlock->getTerminator()) {
1360      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1361    } else {
1362      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1363           BE = CurrBlock->rend(); BI != BE; ++BI) {
1364        // FIXME: Handle other CFGElement kinds.
1365        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1366          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1367          break;
1368        }
1369      }
1370    }
1371
1372    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1373      // This block contains at least one statement. Find the source location
1374      // of the first statement in the block.
1375      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1376           BE = CurrBlock->end(); BI != BE; ++BI) {
1377        // FIXME: Handle other CFGElement kinds.
1378        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1379          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1380          break;
1381        }
1382      }
1383    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1384               CurrBlock != &CFGraph->getExit()) {
1385      // The block is empty, and has a single predecessor. Use its exit
1386      // location.
1387      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1388          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1389    }
1390  }
1391}
1392
1393/// \brief Class which implements the core thread safety analysis routines.
1394class ThreadSafetyAnalyzer {
1395  friend class BuildLockset;
1396
1397  ThreadSafetyHandler       &Handler;
1398  LocalVariableMap          LocalVarMap;
1399  FactManager               FactMan;
1400  std::vector<CFGBlockInfo> BlockInfo;
1401
1402public:
1403  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1404
1405  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1406  void removeLock(FactSet &FSet, const SExpr &Mutex,
1407                  SourceLocation UnlockLoc, bool FullyRemove=false);
1408
1409  template <typename AttrType>
1410  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1411                   const NamedDecl *D);
1412
1413  template <class AttrType>
1414  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1415                   const NamedDecl *D,
1416                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1417                   Expr *BrE, bool Neg);
1418
1419  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1420                                     bool &Negate);
1421
1422  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1423                      const CFGBlock* PredBlock,
1424                      const CFGBlock *CurrBlock);
1425
1426  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1427                        SourceLocation JoinLoc,
1428                        LockErrorKind LEK1, LockErrorKind LEK2,
1429                        bool Modify=true);
1430
1431  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1432                        SourceLocation JoinLoc, LockErrorKind LEK1,
1433                        bool Modify=true) {
1434    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1435  }
1436
1437  void runAnalysis(AnalysisDeclContext &AC);
1438};
1439
1440
1441/// \brief Add a new lock to the lockset, warning if the lock is already there.
1442/// \param Mutex -- the Mutex expression for the lock
1443/// \param LDat  -- the LockData for the lock
1444void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1445                                   const LockData &LDat) {
1446  // FIXME: deal with acquired before/after annotations.
1447  // FIXME: Don't always warn when we have support for reentrant locks.
1448  if (Mutex.shouldIgnore())
1449    return;
1450
1451  if (FSet.findLock(FactMan, Mutex)) {
1452    Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1453  } else {
1454    FSet.addLock(FactMan, Mutex, LDat);
1455  }
1456}
1457
1458
1459/// \brief Remove a lock from the lockset, warning if the lock is not there.
1460/// \param Mutex The lock expression corresponding to the lock to be removed
1461/// \param UnlockLoc The source location of the unlock (only used in error msg)
1462void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1463                                      const SExpr &Mutex,
1464                                      SourceLocation UnlockLoc,
1465                                      bool FullyRemove) {
1466  if (Mutex.shouldIgnore())
1467    return;
1468
1469  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1470  if (!LDat) {
1471    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1472    return;
1473  }
1474
1475  if (LDat->UnderlyingMutex.isValid()) {
1476    // This is scoped lockable object, which manages the real mutex.
1477    if (FullyRemove) {
1478      // We're destroying the managing object.
1479      // Remove the underlying mutex if it exists; but don't warn.
1480      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1481        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1482    } else {
1483      // We're releasing the underlying mutex, but not destroying the
1484      // managing object.  Warn on dual release.
1485      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1486        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1487                                      UnlockLoc);
1488      }
1489      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1490      return;
1491    }
1492  }
1493  FSet.removeLock(FactMan, Mutex);
1494}
1495
1496
1497/// \brief Extract the list of mutexIDs from the attribute on an expression,
1498/// and push them onto Mtxs, discarding any duplicates.
1499template <typename AttrType>
1500void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1501                                       Expr *Exp, const NamedDecl *D) {
1502  typedef typename AttrType::args_iterator iterator_type;
1503
1504  if (Attr->args_size() == 0) {
1505    // The mutex held is the "this" object.
1506    SExpr Mu(0, Exp, D);
1507    if (!Mu.isValid())
1508      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1509    else
1510      Mtxs.push_back_nodup(Mu);
1511    return;
1512  }
1513
1514  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1515    SExpr Mu(*I, Exp, D);
1516    if (!Mu.isValid())
1517      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1518    else
1519      Mtxs.push_back_nodup(Mu);
1520  }
1521}
1522
1523
1524/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1525/// trylock applies to the given edge, then push them onto Mtxs, discarding
1526/// any duplicates.
1527template <class AttrType>
1528void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1529                                       Expr *Exp, const NamedDecl *D,
1530                                       const CFGBlock *PredBlock,
1531                                       const CFGBlock *CurrBlock,
1532                                       Expr *BrE, bool Neg) {
1533  // Find out which branch has the lock
1534  bool branch = 0;
1535  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1536    branch = BLE->getValue();
1537  }
1538  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1539    branch = ILE->getValue().getBoolValue();
1540  }
1541  int branchnum = branch ? 0 : 1;
1542  if (Neg) branchnum = !branchnum;
1543
1544  // If we've taken the trylock branch, then add the lock
1545  int i = 0;
1546  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1547       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1548    if (*SI == CurrBlock && i == branchnum) {
1549      getMutexIDs(Mtxs, Attr, Exp, D);
1550    }
1551  }
1552}
1553
1554
1555bool getStaticBooleanValue(Expr* E, bool& TCond) {
1556  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1557    TCond = false;
1558    return true;
1559  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1560    TCond = BLE->getValue();
1561    return true;
1562  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1563    TCond = ILE->getValue().getBoolValue();
1564    return true;
1565  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1566    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1567  }
1568  return false;
1569}
1570
1571
1572// If Cond can be traced back to a function call, return the call expression.
1573// The negate variable should be called with false, and will be set to true
1574// if the function call is negated, e.g. if (!mu.tryLock(...))
1575const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1576                                                         LocalVarContext C,
1577                                                         bool &Negate) {
1578  if (!Cond)
1579    return 0;
1580
1581  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1582    return CallExp;
1583  }
1584  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1585    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1586  }
1587  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1588    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1589  }
1590  else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1591    return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1592  }
1593  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1594    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1595    return getTrylockCallExpr(E, C, Negate);
1596  }
1597  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1598    if (UOP->getOpcode() == UO_LNot) {
1599      Negate = !Negate;
1600      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1601    }
1602    return 0;
1603  }
1604  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1605    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1606      if (BOP->getOpcode() == BO_NE)
1607        Negate = !Negate;
1608
1609      bool TCond = false;
1610      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1611        if (!TCond) Negate = !Negate;
1612        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1613      }
1614      else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1615        if (!TCond) Negate = !Negate;
1616        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1617      }
1618      return 0;
1619    }
1620    return 0;
1621  }
1622  // FIXME -- handle && and || as well.
1623  return 0;
1624}
1625
1626
1627/// \brief Find the lockset that holds on the edge between PredBlock
1628/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1629/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1630void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1631                                          const FactSet &ExitSet,
1632                                          const CFGBlock *PredBlock,
1633                                          const CFGBlock *CurrBlock) {
1634  Result = ExitSet;
1635
1636  if (!PredBlock->getTerminatorCondition())
1637    return;
1638
1639  bool Negate = false;
1640  const Stmt *Cond = PredBlock->getTerminatorCondition();
1641  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1642  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1643
1644  CallExpr *Exp =
1645    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1646  if (!Exp)
1647    return;
1648
1649  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1650  if(!FunDecl || !FunDecl->hasAttrs())
1651    return;
1652
1653
1654  MutexIDList ExclusiveLocksToAdd;
1655  MutexIDList SharedLocksToAdd;
1656
1657  // If the condition is a call to a Trylock function, then grab the attributes
1658  AttrVec &ArgAttrs = FunDecl->getAttrs();
1659  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1660    Attr *Attr = ArgAttrs[i];
1661    switch (Attr->getKind()) {
1662      case attr::ExclusiveTrylockFunction: {
1663        ExclusiveTrylockFunctionAttr *A =
1664          cast<ExclusiveTrylockFunctionAttr>(Attr);
1665        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1666                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1667        break;
1668      }
1669      case attr::SharedTrylockFunction: {
1670        SharedTrylockFunctionAttr *A =
1671          cast<SharedTrylockFunctionAttr>(Attr);
1672        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1673                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1674        break;
1675      }
1676      default:
1677        break;
1678    }
1679  }
1680
1681  // Add and remove locks.
1682  SourceLocation Loc = Exp->getExprLoc();
1683  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1684    addLock(Result, ExclusiveLocksToAdd[i],
1685            LockData(Loc, LK_Exclusive));
1686  }
1687  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1688    addLock(Result, SharedLocksToAdd[i],
1689            LockData(Loc, LK_Shared));
1690  }
1691}
1692
1693
1694/// \brief We use this class to visit different types of expressions in
1695/// CFGBlocks, and build up the lockset.
1696/// An expression may cause us to add or remove locks from the lockset, or else
1697/// output error messages related to missing locks.
1698/// FIXME: In future, we may be able to not inherit from a visitor.
1699class BuildLockset : public StmtVisitor<BuildLockset> {
1700  friend class ThreadSafetyAnalyzer;
1701
1702  ThreadSafetyAnalyzer *Analyzer;
1703  FactSet FSet;
1704  LocalVariableMap::Context LVarCtx;
1705  unsigned CtxIndex;
1706
1707  // Helper functions
1708  const ValueDecl *getValueDecl(Expr *Exp);
1709
1710  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1711                          Expr *MutexExp, ProtectedOperationKind POK);
1712  void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
1713
1714  void checkAccess(Expr *Exp, AccessKind AK);
1715  void checkDereference(Expr *Exp, AccessKind AK);
1716  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1717
1718public:
1719  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1720    : StmtVisitor<BuildLockset>(),
1721      Analyzer(Anlzr),
1722      FSet(Info.EntrySet),
1723      LVarCtx(Info.EntryContext),
1724      CtxIndex(Info.EntryIndex)
1725  {}
1726
1727  void VisitUnaryOperator(UnaryOperator *UO);
1728  void VisitBinaryOperator(BinaryOperator *BO);
1729  void VisitCastExpr(CastExpr *CE);
1730  void VisitCallExpr(CallExpr *Exp);
1731  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1732  void VisitDeclStmt(DeclStmt *S);
1733};
1734
1735
1736/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1737const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1738  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1739    return DR->getDecl();
1740
1741  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1742    return ME->getMemberDecl();
1743
1744  return 0;
1745}
1746
1747/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1748/// of at least the passed in AccessKind.
1749void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1750                                      AccessKind AK, Expr *MutexExp,
1751                                      ProtectedOperationKind POK) {
1752  LockKind LK = getLockKindFromAccessKind(AK);
1753
1754  SExpr Mutex(MutexExp, Exp, D);
1755  if (!Mutex.isValid()) {
1756    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1757    return;
1758  } else if (Mutex.shouldIgnore()) {
1759    return;
1760  }
1761
1762  LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1763  bool NoError = true;
1764  if (!LDat) {
1765    // No exact match found.  Look for a partial match.
1766    FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1767    if (FEntry) {
1768      // Warn that there's no precise match.
1769      LDat = &FEntry->LDat;
1770      std::string PartMatchStr = FEntry->MutID.toString();
1771      StringRef   PartMatchName(PartMatchStr);
1772      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1773                                           Exp->getExprLoc(), &PartMatchName);
1774    } else {
1775      // Warn that there's no match at all.
1776      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1777                                           Exp->getExprLoc());
1778    }
1779    NoError = false;
1780  }
1781  // Make sure the mutex we found is the right kind.
1782  if (NoError && LDat && !LDat->isAtLeast(LK))
1783    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1784                                         Exp->getExprLoc());
1785}
1786
1787/// \brief Warn if the LSet contains the given lock.
1788void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
1789                                   Expr *MutexExp) {
1790  SExpr Mutex(MutexExp, Exp, D);
1791  if (!Mutex.isValid()) {
1792    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1793    return;
1794  }
1795
1796  LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1797  if (LDat) {
1798    std::string DeclName = D->getNameAsString();
1799    StringRef   DeclNameSR (DeclName);
1800    Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
1801                                            Exp->getExprLoc());
1802  }
1803}
1804
1805
1806/// \brief This method identifies variable dereferences and checks pt_guarded_by
1807/// and pt_guarded_var annotations. Note that we only check these annotations
1808/// at the time a pointer is dereferenced.
1809/// FIXME: We need to check for other types of pointer dereferences
1810/// (e.g. [], ->) and deal with them here.
1811/// \param Exp An expression that has been read or written.
1812void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1813  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1814  if (!UO || UO->getOpcode() != clang::UO_Deref)
1815    return;
1816  Exp = UO->getSubExpr()->IgnoreParenCasts();
1817
1818  const ValueDecl *D = getValueDecl(Exp);
1819  if(!D || !D->hasAttrs())
1820    return;
1821
1822  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1823    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1824                                        Exp->getExprLoc());
1825
1826  const AttrVec &ArgAttrs = D->getAttrs();
1827  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1828    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1829      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1830}
1831
1832/// \brief Checks guarded_by and guarded_var attributes.
1833/// Whenever we identify an access (read or write) of a DeclRefExpr or
1834/// MemberExpr, we need to check whether there are any guarded_by or
1835/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1836void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1837  const ValueDecl *D = getValueDecl(Exp);
1838  if(!D || !D->hasAttrs())
1839    return;
1840
1841  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1842    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1843                                        Exp->getExprLoc());
1844
1845  const AttrVec &ArgAttrs = D->getAttrs();
1846  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1847    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1848      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1849}
1850
1851/// \brief Process a function call, method call, constructor call,
1852/// or destructor call.  This involves looking at the attributes on the
1853/// corresponding function/method/constructor/destructor, issuing warnings,
1854/// and updating the locksets accordingly.
1855///
1856/// FIXME: For classes annotated with one of the guarded annotations, we need
1857/// to treat const method calls as reads and non-const method calls as writes,
1858/// and check that the appropriate locks are held. Non-const method calls with
1859/// the same signature as const method calls can be also treated as reads.
1860///
1861void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1862  const AttrVec &ArgAttrs = D->getAttrs();
1863  MutexIDList ExclusiveLocksToAdd;
1864  MutexIDList SharedLocksToAdd;
1865  MutexIDList LocksToRemove;
1866
1867  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1868    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1869    switch (At->getKind()) {
1870      // When we encounter an exclusive lock function, we need to add the lock
1871      // to our lockset with kind exclusive.
1872      case attr::ExclusiveLockFunction: {
1873        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1874        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
1875        break;
1876      }
1877
1878      // When we encounter a shared lock function, we need to add the lock
1879      // to our lockset with kind shared.
1880      case attr::SharedLockFunction: {
1881        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1882        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
1883        break;
1884      }
1885
1886      // When we encounter an unlock function, we need to remove unlocked
1887      // mutexes from the lockset, and flag a warning if they are not there.
1888      case attr::UnlockFunction: {
1889        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1890        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
1891        break;
1892      }
1893
1894      case attr::ExclusiveLocksRequired: {
1895        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1896
1897        for (ExclusiveLocksRequiredAttr::args_iterator
1898             I = A->args_begin(), E = A->args_end(); I != E; ++I)
1899          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1900        break;
1901      }
1902
1903      case attr::SharedLocksRequired: {
1904        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1905
1906        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1907             E = A->args_end(); I != E; ++I)
1908          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1909        break;
1910      }
1911
1912      case attr::LocksExcluded: {
1913        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1914
1915        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1916            E = A->args_end(); I != E; ++I) {
1917          warnIfMutexHeld(D, Exp, *I);
1918        }
1919        break;
1920      }
1921
1922      // Ignore other (non thread-safety) attributes
1923      default:
1924        break;
1925    }
1926  }
1927
1928  // Figure out if we're calling the constructor of scoped lockable class
1929  bool isScopedVar = false;
1930  if (VD) {
1931    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1932      const CXXRecordDecl* PD = CD->getParent();
1933      if (PD && PD->getAttr<ScopedLockableAttr>())
1934        isScopedVar = true;
1935    }
1936  }
1937
1938  // Add locks.
1939  SourceLocation Loc = Exp->getExprLoc();
1940  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1941    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1942                            LockData(Loc, LK_Exclusive, isScopedVar));
1943  }
1944  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1945    Analyzer->addLock(FSet, SharedLocksToAdd[i],
1946                            LockData(Loc, LK_Shared, isScopedVar));
1947  }
1948
1949  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1950  // FIXME -- this doesn't work if we acquire multiple locks.
1951  if (isScopedVar) {
1952    SourceLocation MLoc = VD->getLocation();
1953    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1954    SExpr SMutex(&DRE, 0, 0);
1955
1956    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1957      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1958                                               ExclusiveLocksToAdd[i]));
1959    }
1960    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1961      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1962                                               SharedLocksToAdd[i]));
1963    }
1964  }
1965
1966  // Remove locks.
1967  // FIXME -- should only fully remove if the attribute refers to 'this'.
1968  bool Dtor = isa<CXXDestructorDecl>(D);
1969  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
1970    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
1971  }
1972}
1973
1974
1975/// \brief For unary operations which read and write a variable, we need to
1976/// check whether we hold any required mutexes. Reads are checked in
1977/// VisitCastExpr.
1978void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1979  switch (UO->getOpcode()) {
1980    case clang::UO_PostDec:
1981    case clang::UO_PostInc:
1982    case clang::UO_PreDec:
1983    case clang::UO_PreInc: {
1984      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1985      checkAccess(SubExp, AK_Written);
1986      checkDereference(SubExp, AK_Written);
1987      break;
1988    }
1989    default:
1990      break;
1991  }
1992}
1993
1994/// For binary operations which assign to a variable (writes), we need to check
1995/// whether we hold any required mutexes.
1996/// FIXME: Deal with non-primitive types.
1997void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1998  if (!BO->isAssignmentOp())
1999    return;
2000
2001  // adjust the context
2002  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2003
2004  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
2005  checkAccess(LHSExp, AK_Written);
2006  checkDereference(LHSExp, AK_Written);
2007}
2008
2009/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2010/// need to ensure we hold any required mutexes.
2011/// FIXME: Deal with non-primitive types.
2012void BuildLockset::VisitCastExpr(CastExpr *CE) {
2013  if (CE->getCastKind() != CK_LValueToRValue)
2014    return;
2015  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
2016  checkAccess(SubExp, AK_Read);
2017  checkDereference(SubExp, AK_Read);
2018}
2019
2020
2021void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2022  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2023  if(!D || !D->hasAttrs())
2024    return;
2025  handleCall(Exp, D);
2026}
2027
2028void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2029  // FIXME -- only handles constructors in DeclStmt below.
2030}
2031
2032void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2033  // adjust the context
2034  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2035
2036  DeclGroupRef DGrp = S->getDeclGroup();
2037  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2038    Decl *D = *I;
2039    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2040      Expr *E = VD->getInit();
2041      // handle constructors that involve temporaries
2042      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2043        E = EWC->getSubExpr();
2044
2045      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2046        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2047        if (!CtorD || !CtorD->hasAttrs())
2048          return;
2049        handleCall(CE, CtorD, VD);
2050      }
2051    }
2052  }
2053}
2054
2055
2056
2057/// \brief Compute the intersection of two locksets and issue warnings for any
2058/// locks in the symmetric difference.
2059///
2060/// This function is used at a merge point in the CFG when comparing the lockset
2061/// of each branch being merged. For example, given the following sequence:
2062/// A; if () then B; else C; D; we need to check that the lockset after B and C
2063/// are the same. In the event of a difference, we use the intersection of these
2064/// two locksets at the start of D.
2065///
2066/// \param FSet1 The first lockset.
2067/// \param FSet2 The second lockset.
2068/// \param JoinLoc The location of the join point for error reporting
2069/// \param LEK1 The error message to report if a mutex is missing from LSet1
2070/// \param LEK2 The error message to report if a mutex is missing from Lset2
2071void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2072                                            const FactSet &FSet2,
2073                                            SourceLocation JoinLoc,
2074                                            LockErrorKind LEK1,
2075                                            LockErrorKind LEK2,
2076                                            bool Modify) {
2077  FactSet FSet1Orig = FSet1;
2078
2079  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2080       I != E; ++I) {
2081    const SExpr &FSet2Mutex = FactMan[*I].MutID;
2082    const LockData &LDat2 = FactMan[*I].LDat;
2083
2084    if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2085      if (LDat1->LKind != LDat2.LKind) {
2086        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2087                                         LDat2.AcquireLoc,
2088                                         LDat1->AcquireLoc);
2089        if (Modify && LDat1->LKind != LK_Exclusive) {
2090          FSet1.removeLock(FactMan, FSet2Mutex);
2091          FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2092        }
2093      }
2094    } else {
2095      if (LDat2.UnderlyingMutex.isValid()) {
2096        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2097          // If this is a scoped lock that manages another mutex, and if the
2098          // underlying mutex is still held, then warn about the underlying
2099          // mutex.
2100          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2101                                            LDat2.AcquireLoc,
2102                                            JoinLoc, LEK1);
2103        }
2104      }
2105      else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2106        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2107                                          LDat2.AcquireLoc,
2108                                          JoinLoc, LEK1);
2109    }
2110  }
2111
2112  for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2113       I != E; ++I) {
2114    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2115    const LockData &LDat1 = FactMan[*I].LDat;
2116
2117    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2118      if (LDat1.UnderlyingMutex.isValid()) {
2119        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2120          // If this is a scoped lock that manages another mutex, and if the
2121          // underlying mutex is still held, then warn about the underlying
2122          // mutex.
2123          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2124                                            LDat1.AcquireLoc,
2125                                            JoinLoc, LEK1);
2126        }
2127      }
2128      else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2129        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2130                                          LDat1.AcquireLoc,
2131                                          JoinLoc, LEK2);
2132      if (Modify)
2133        FSet1.removeLock(FactMan, FSet1Mutex);
2134    }
2135  }
2136}
2137
2138
2139
2140/// \brief Check a function's CFG for thread-safety violations.
2141///
2142/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2143/// at the end of each block, and issue warnings for thread safety violations.
2144/// Each block in the CFG is traversed exactly once.
2145void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2146  CFG *CFGraph = AC.getCFG();
2147  if (!CFGraph) return;
2148  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2149
2150  // AC.dumpCFG(true);
2151
2152  if (!D)
2153    return;  // Ignore anonymous functions for now.
2154  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2155    return;
2156  // FIXME: Do something a bit more intelligent inside constructor and
2157  // destructor code.  Constructors and destructors must assume unique access
2158  // to 'this', so checks on member variable access is disabled, but we should
2159  // still enable checks on other objects.
2160  if (isa<CXXConstructorDecl>(D))
2161    return;  // Don't check inside constructors.
2162  if (isa<CXXDestructorDecl>(D))
2163    return;  // Don't check inside destructors.
2164
2165  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2166    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2167
2168  // We need to explore the CFG via a "topological" ordering.
2169  // That way, we will be guaranteed to have information about required
2170  // predecessor locksets when exploring a new block.
2171  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2172  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2173
2174  // Compute SSA names for local variables
2175  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2176
2177  // Fill in source locations for all CFGBlocks.
2178  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2179
2180  // Add locks from exclusive_locks_required and shared_locks_required
2181  // to initial lockset. Also turn off checking for lock and unlock functions.
2182  // FIXME: is there a more intelligent way to check lock/unlock functions?
2183  if (!SortedGraph->empty() && D->hasAttrs()) {
2184    const CFGBlock *FirstBlock = *SortedGraph->begin();
2185    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2186    const AttrVec &ArgAttrs = D->getAttrs();
2187
2188    MutexIDList ExclusiveLocksToAdd;
2189    MutexIDList SharedLocksToAdd;
2190
2191    SourceLocation Loc = D->getLocation();
2192    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2193      Attr *Attr = ArgAttrs[i];
2194      Loc = Attr->getLocation();
2195      if (ExclusiveLocksRequiredAttr *A
2196            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2197        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2198      } else if (SharedLocksRequiredAttr *A
2199                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2200        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2201      } else if (isa<UnlockFunctionAttr>(Attr)) {
2202        // Don't try to check unlock functions for now
2203        return;
2204      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2205        // Don't try to check lock functions for now
2206        return;
2207      } else if (isa<SharedLockFunctionAttr>(Attr)) {
2208        // Don't try to check lock functions for now
2209        return;
2210      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2211        // Don't try to check trylock functions for now
2212        return;
2213      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2214        // Don't try to check trylock functions for now
2215        return;
2216      }
2217    }
2218
2219    // FIXME -- Loc can be wrong here.
2220    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2221      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2222              LockData(Loc, LK_Exclusive));
2223    }
2224    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2225      addLock(InitialLockset, SharedLocksToAdd[i],
2226              LockData(Loc, LK_Shared));
2227    }
2228  }
2229
2230  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2231       E = SortedGraph->end(); I!= E; ++I) {
2232    const CFGBlock *CurrBlock = *I;
2233    int CurrBlockID = CurrBlock->getBlockID();
2234    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2235
2236    // Use the default initial lockset in case there are no predecessors.
2237    VisitedBlocks.insert(CurrBlock);
2238
2239    // Iterate through the predecessor blocks and warn if the lockset for all
2240    // predecessors is not the same. We take the entry lockset of the current
2241    // block to be the intersection of all previous locksets.
2242    // FIXME: By keeping the intersection, we may output more errors in future
2243    // for a lock which is not in the intersection, but was in the union. We
2244    // may want to also keep the union in future. As an example, let's say
2245    // the intersection contains Mutex L, and the union contains L and M.
2246    // Later we unlock M. At this point, we would output an error because we
2247    // never locked M; although the real error is probably that we forgot to
2248    // lock M on all code paths. Conversely, let's say that later we lock M.
2249    // In this case, we should compare against the intersection instead of the
2250    // union because the real error is probably that we forgot to unlock M on
2251    // all code paths.
2252    bool LocksetInitialized = false;
2253    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
2254    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2255         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2256
2257      // if *PI -> CurrBlock is a back edge
2258      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2259        continue;
2260
2261      // Ignore edges from blocks that can't return.
2262      if ((*PI)->hasNoReturnElement())
2263        continue;
2264
2265      // If the previous block ended in a 'continue' or 'break' statement, then
2266      // a difference in locksets is probably due to a bug in that block, rather
2267      // than in some other predecessor. In that case, keep the other
2268      // predecessor's lockset.
2269      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2270        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2271          SpecialBlocks.push_back(*PI);
2272          continue;
2273        }
2274      }
2275
2276      int PrevBlockID = (*PI)->getBlockID();
2277      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2278      FactSet PrevLockset;
2279      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2280
2281      if (!LocksetInitialized) {
2282        CurrBlockInfo->EntrySet = PrevLockset;
2283        LocksetInitialized = true;
2284      } else {
2285        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2286                         CurrBlockInfo->EntryLoc,
2287                         LEK_LockedSomePredecessors);
2288      }
2289    }
2290
2291    // Process continue and break blocks. Assume that the lockset for the
2292    // resulting block is unaffected by any discrepancies in them.
2293    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2294         SpecialI < SpecialN; ++SpecialI) {
2295      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2296      int PrevBlockID = PrevBlock->getBlockID();
2297      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2298
2299      if (!LocksetInitialized) {
2300        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2301        LocksetInitialized = true;
2302      } else {
2303        // Determine whether this edge is a loop terminator for diagnostic
2304        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2305        // it might also be part of a switch. Also, a subsequent destructor
2306        // might add to the lockset, in which case the real issue might be a
2307        // double lock on the other path.
2308        const Stmt *Terminator = PrevBlock->getTerminator();
2309        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2310
2311        FactSet PrevLockset;
2312        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2313                       PrevBlock, CurrBlock);
2314
2315        // Do not update EntrySet.
2316        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2317                         PrevBlockInfo->ExitLoc,
2318                         IsLoop ? LEK_LockedSomeLoopIterations
2319                                : LEK_LockedSomePredecessors,
2320                         false);
2321      }
2322    }
2323
2324    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2325
2326    // Visit all the statements in the basic block.
2327    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2328         BE = CurrBlock->end(); BI != BE; ++BI) {
2329      switch (BI->getKind()) {
2330        case CFGElement::Statement: {
2331          const CFGStmt *CS = cast<CFGStmt>(&*BI);
2332          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2333          break;
2334        }
2335        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2336        case CFGElement::AutomaticObjectDtor: {
2337          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2338          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2339            AD->getDestructorDecl(AC.getASTContext()));
2340          if (!DD->hasAttrs())
2341            break;
2342
2343          // Create a dummy expression,
2344          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
2345          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2346                          AD->getTriggerStmt()->getLocEnd());
2347          LocksetBuilder.handleCall(&DRE, DD);
2348          break;
2349        }
2350        default:
2351          break;
2352      }
2353    }
2354    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2355
2356    // For every back edge from CurrBlock (the end of the loop) to another block
2357    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2358    // the one held at the beginning of FirstLoopBlock. We can look up the
2359    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2360    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2361         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2362
2363      // if CurrBlock -> *SI is *not* a back edge
2364      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2365        continue;
2366
2367      CFGBlock *FirstLoopBlock = *SI;
2368      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2369      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2370      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2371                       PreLoop->EntryLoc,
2372                       LEK_LockedSomeLoopIterations,
2373                       false);
2374    }
2375  }
2376
2377
2378  // Check to make sure that the exit block is reachable
2379  bool ExitUnreachable = true;
2380  for (CFGBlock::const_pred_iterator PI = CFGraph->getExit().pred_begin(),
2381       PE  = CFGraph->getExit().pred_end(); PI != PE; ++PI) {
2382    if (!(*PI)->hasNoReturnElement()) {
2383      ExitUnreachable = false;
2384      break;
2385    }
2386  }
2387  // Skip the final check if the exit block is unreachable.
2388  if (ExitUnreachable)
2389    return;
2390
2391  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2392  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2393
2394  // FIXME: Should we call this function for all blocks which exit the function?
2395  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2396                   Final->ExitLoc,
2397                   LEK_LockedAtEndOfFunction,
2398                   LEK_NotLockedAtEndOfFunction,
2399                   false);
2400}
2401
2402} // end anonymous namespace
2403
2404
2405namespace clang {
2406namespace thread_safety {
2407
2408/// \brief Check a function's CFG for thread-safety violations.
2409///
2410/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2411/// at the end of each block, and issue warnings for thread safety violations.
2412/// Each block in the CFG is traversed exactly once.
2413void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2414                             ThreadSafetyHandler &Handler) {
2415  ThreadSafetyAnalyzer Analyzer(Handler);
2416  Analyzer.runAnalysis(AC);
2417}
2418
2419/// \brief Helper function that returns a LockKind required for the given level
2420/// of access.
2421LockKind getLockKindFromAccessKind(AccessKind AK) {
2422  switch (AK) {
2423    case AK_Read :
2424      return LK_Shared;
2425    case AK_Written :
2426      return LK_Exclusive;
2427  }
2428  llvm_unreachable("Unknown AccessKind");
2429}
2430
2431}} // end namespace clang::thread_safety
2432