ThreadSafety.cpp revision 2f13bec63b0236b169b026b7bc852da51ee029a7
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <utility>
38#include <vector>
39
40using namespace clang;
41using namespace thread_safety;
42
43// Key method definition
44ThreadSafetyHandler::~ThreadSafetyHandler() {}
45
46namespace {
47
48/// \brief A MutexID object uniquely identifies a particular mutex, and
49/// is built from an Expr* (i.e. calling a lock function).
50///
51/// Thread-safety analysis works by comparing lock expressions.  Within the
52/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
53/// a particular mutex object at run-time.  Subsequent occurrences of the same
54/// expression (where "same" means syntactic equality) will refer to the same
55/// run-time object if three conditions hold:
56/// (1) Local variables in the expression, such as "x" have not changed.
57/// (2) Values on the heap that affect the expression have not changed.
58/// (3) The expression involves only pure function calls.
59///
60/// The current implementation assumes, but does not verify, that multiple uses
61/// of the same lock expression satisfies these criteria.
62///
63/// Clang introduces an additional wrinkle, which is that it is difficult to
64/// derive canonical expressions, or compare expressions directly for equality.
65/// Thus, we identify a mutex not by an Expr, but by the list of named
66/// declarations that are referenced by the Expr.  In other words,
67/// x->foo->bar.mu will be a four element vector with the Decls for
68/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
69/// for all practical purposes.  Null is used to denote 'this'.
70///
71/// Note we will need to perform substitution on "this" and function parameter
72/// names when constructing a lock expression.
73///
74/// For example:
75/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
76/// void myFunc(C *X) { ... X->lock() ... }
77/// The original expression for the mutex acquired by myFunc is "this->Mu", but
78/// "X" is substituted for "this" so we get X->Mu();
79///
80/// For another example:
81/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
82/// MyList *MyL;
83/// foo(MyL);  // requires lock MyL->Mu to be held
84class MutexID {
85  SmallVector<NamedDecl*, 2> DeclSeq;
86
87  /// Build a Decl sequence representing the lock from the given expression.
88  /// Recursive function that terminates on DeclRefExpr.
89  /// Note: this function merely creates a MutexID; it does not check to
90  /// ensure that the original expression is a valid mutex expression.
91  void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent,
92                    unsigned NumArgs, Expr **FunArgs) {
93    if (!Exp) {
94      DeclSeq.clear();
95      return;
96    }
97
98    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
99      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
100      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
101      if (PV) {
102        FunctionDecl *FD =
103          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
104        unsigned i = PV->getFunctionScopeIndex();
105
106        if (FunArgs && FD == D->getCanonicalDecl()) {
107          // Substitute call arguments for references to function parameters
108          assert(i < NumArgs);
109          buildMutexID(FunArgs[i], D, 0, 0, 0);
110          return;
111        }
112        // Map the param back to the param of the original function declaration.
113        DeclSeq.push_back(FD->getParamDecl(i));
114        return;
115      }
116      // Not a function parameter -- just store the reference.
117      DeclSeq.push_back(ND);
118    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
119      NamedDecl *ND = ME->getMemberDecl();
120      DeclSeq.push_back(ND);
121      buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs);
122    } else if (isa<CXXThisExpr>(Exp)) {
123      if (Parent)
124        buildMutexID(Parent, D, 0, 0, 0);
125      else {
126        DeclSeq.push_back(0);  // Use 0 to represent 'this'.
127        return;  // mutexID is still valid in this case
128      }
129    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
130      buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs);
131    else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
132      buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs);
133    else
134      DeclSeq.clear(); // Mark as invalid lock expression.
135  }
136
137  /// \brief Construct a MutexID from an expression.
138  /// \param MutexExp The original mutex expression within an attribute
139  /// \param DeclExp An expression involving the Decl on which the attribute
140  ///        occurs.
141  /// \param D  The declaration to which the lock/unlock attribute is attached.
142  void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
143    Expr *Parent = 0;
144    unsigned NumArgs = 0;
145    Expr **FunArgs = 0;
146
147    // If we are processing a raw attribute expression, with no substitutions.
148    if (DeclExp == 0) {
149      buildMutexID(MutexExp, D, 0, 0, 0);
150      return;
151    }
152
153    // Examine DeclExp to find Parent and FunArgs, which are used to substitute
154    // for formal parameters when we call buildMutexID later.
155    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
156      Parent = ME->getBase();
157    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
158      Parent = CE->getImplicitObjectArgument();
159      NumArgs = CE->getNumArgs();
160      FunArgs = CE->getArgs();
161    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
162      NumArgs = CE->getNumArgs();
163      FunArgs = CE->getArgs();
164    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
165      Parent = 0;  // FIXME -- get the parent from DeclStmt
166      NumArgs = CE->getNumArgs();
167      FunArgs = CE->getArgs();
168    } else if (D && isa<CXXDestructorDecl>(D)) {
169      // There's no such thing as a "destructor call" in the AST.
170      Parent = DeclExp;
171    }
172
173    // If the attribute has no arguments, then assume the argument is "this".
174    if (MutexExp == 0) {
175      buildMutexID(Parent, D, 0, 0, 0);
176      return;
177    }
178
179    buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs);
180  }
181
182public:
183  explicit MutexID(clang::Decl::EmptyShell e) {
184    DeclSeq.clear();
185  }
186
187  /// \param MutexExp The original mutex expression within an attribute
188  /// \param DeclExp An expression involving the Decl on which the attribute
189  ///        occurs.
190  /// \param D  The declaration to which the lock/unlock attribute is attached.
191  /// Caller must check isValid() after construction.
192  MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
193    buildMutexIDFromExp(MutexExp, DeclExp, D);
194  }
195
196  /// Return true if this is a valid decl sequence.
197  /// Caller must call this by hand after construction to handle errors.
198  bool isValid() const {
199    return !DeclSeq.empty();
200  }
201
202  /// Issue a warning about an invalid lock expression
203  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
204                              Expr *DeclExp, const NamedDecl* D) {
205    SourceLocation Loc;
206    if (DeclExp)
207      Loc = DeclExp->getExprLoc();
208
209    // FIXME: add a note about the attribute location in MutexExp or D
210    if (Loc.isValid())
211      Handler.handleInvalidLockExp(Loc);
212  }
213
214  bool operator==(const MutexID &other) const {
215    return DeclSeq == other.DeclSeq;
216  }
217
218  bool operator!=(const MutexID &other) const {
219    return !(*this == other);
220  }
221
222  // SmallVector overloads Operator< to do lexicographic ordering. Note that
223  // we use pointer equality (and <) to compare NamedDecls. This means the order
224  // of MutexIDs in a lockset is nondeterministic. In order to output
225  // diagnostics in a deterministic ordering, we must order all diagnostics to
226  // output by SourceLocation when iterating through this lockset.
227  bool operator<(const MutexID &other) const {
228    return DeclSeq < other.DeclSeq;
229  }
230
231  /// \brief Returns the name of the first Decl in the list for a given MutexID;
232  /// e.g. the lock expression foo.bar() has name "bar".
233  /// The caret will point unambiguously to the lock expression, so using this
234  /// name in diagnostics is a way to get simple, and consistent, mutex names.
235  /// We do not want to output the entire expression text for security reasons.
236  StringRef getName() const {
237    assert(isValid());
238    if (!DeclSeq.front())
239      return "this";  // Use 0 to represent 'this'.
240    return DeclSeq.front()->getName();
241  }
242
243  void Profile(llvm::FoldingSetNodeID &ID) const {
244    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
245         E = DeclSeq.end(); I != E; ++I) {
246      ID.AddPointer(*I);
247    }
248  }
249};
250
251
252/// \brief This is a helper class that stores info about the most recent
253/// accquire of a Lock.
254///
255/// The main body of the analysis maps MutexIDs to LockDatas.
256struct LockData {
257  SourceLocation AcquireLoc;
258
259  /// \brief LKind stores whether a lock is held shared or exclusively.
260  /// Note that this analysis does not currently support either re-entrant
261  /// locking or lock "upgrading" and "downgrading" between exclusive and
262  /// shared.
263  ///
264  /// FIXME: add support for re-entrant locking and lock up/downgrading
265  LockKind LKind;
266  MutexID UnderlyingMutex;  // for ScopedLockable objects
267
268  LockData(SourceLocation AcquireLoc, LockKind LKind)
269    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
270  {}
271
272  LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
273    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
274
275  bool operator==(const LockData &other) const {
276    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
277  }
278
279  bool operator!=(const LockData &other) const {
280    return !(*this == other);
281  }
282
283  void Profile(llvm::FoldingSetNodeID &ID) const {
284    ID.AddInteger(AcquireLoc.getRawEncoding());
285    ID.AddInteger(LKind);
286  }
287};
288
289
290/// A Lockset maps each MutexID (defined above) to information about how it has
291/// been locked.
292typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
293typedef llvm::ImmutableMap<NamedDecl*, unsigned> LocalVarContext;
294
295class LocalVariableMap;
296
297/// A side (entry or exit) of a CFG node.
298enum CFGBlockSide { CBS_Entry, CBS_Exit };
299
300/// CFGBlockInfo is a struct which contains all the information that is
301/// maintained for each block in the CFG.  See LocalVariableMap for more
302/// information about the contexts.
303struct CFGBlockInfo {
304  Lockset EntrySet;             // Lockset held at entry to block
305  Lockset ExitSet;              // Lockset held at exit from block
306  LocalVarContext EntryContext; // Context held at entry to block
307  LocalVarContext ExitContext;  // Context held at exit from block
308  SourceLocation EntryLoc;      // Location of first statement in block
309  SourceLocation ExitLoc;       // Location of last statement in block.
310  unsigned EntryIndex;          // Used to replay contexts later
311
312  const Lockset &getSet(CFGBlockSide Side) const {
313    return Side == CBS_Entry ? EntrySet : ExitSet;
314  }
315  SourceLocation getLocation(CFGBlockSide Side) const {
316    return Side == CBS_Entry ? EntryLoc : ExitLoc;
317  }
318
319private:
320  CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
321    : EntrySet(EmptySet), ExitSet(EmptySet),
322      EntryContext(EmptyCtx), ExitContext(EmptyCtx)
323  { }
324
325public:
326  static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
327                                        LocalVariableMap &M);
328};
329
330
331
332// A LocalVariableMap maintains a map from local variables to their currently
333// valid definitions.  It provides SSA-like functionality when traversing the
334// CFG.  Like SSA, each definition or assignment to a variable is assigned a
335// unique name (an integer), which acts as the SSA name for that definition.
336// The total set of names is shared among all CFG basic blocks.
337// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
338// with their SSA-names.  Instead, we compute a Context for each point in the
339// code, which maps local variables to the appropriate SSA-name.  This map
340// changes with each assignment.
341//
342// The map is computed in a single pass over the CFG.  Subsequent analyses can
343// then query the map to find the appropriate Context for a statement, and use
344// that Context to look up the definitions of variables.
345class LocalVariableMap {
346public:
347  typedef LocalVarContext Context;
348
349  /// A VarDefinition consists of an expression, representing the value of the
350  /// variable, along with the context in which that expression should be
351  /// interpreted.  A reference VarDefinition does not itself contain this
352  /// information, but instead contains a pointer to a previous VarDefinition.
353  struct VarDefinition {
354  public:
355    friend class LocalVariableMap;
356
357    NamedDecl *Dec;       // The original declaration for this variable.
358    Expr *Exp;            // The expression for this variable, OR
359    unsigned Ref;         // Reference to another VarDefinition
360    Context Ctx;          // The map with which Exp should be interpreted.
361
362    bool isReference() { return !Exp; }
363
364  private:
365    // Create ordinary variable definition
366    VarDefinition(NamedDecl *D, Expr *E, Context C)
367      : Dec(D), Exp(E), Ref(0), Ctx(C)
368    { }
369
370    // Create reference to previous definition
371    VarDefinition(NamedDecl *D, unsigned R, Context C)
372      : Dec(D), Exp(0), Ref(R), Ctx(C)
373    { }
374  };
375
376private:
377  Context::Factory ContextFactory;
378  std::vector<VarDefinition> VarDefinitions;
379  std::vector<unsigned> CtxIndices;
380  std::vector<std::pair<Stmt*, Context> > SavedContexts;
381
382public:
383  LocalVariableMap() {
384    // index 0 is a placeholder for undefined variables (aka phi-nodes).
385    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
386  }
387
388  /// Look up a definition, within the given context.
389  const VarDefinition* lookup(NamedDecl *D, Context Ctx) {
390    const unsigned *i = Ctx.lookup(D);
391    if (!i)
392      return 0;
393    assert(*i < VarDefinitions.size());
394    return &VarDefinitions[*i];
395  }
396
397  /// Look up the definition for D within the given context.  Returns
398  /// NULL if the expression is not statically known.  If successful, also
399  /// modifies Ctx to hold the context of the return Expr.
400  Expr* lookupExpr(NamedDecl *D, Context &Ctx) {
401    const unsigned *P = Ctx.lookup(D);
402    if (!P)
403      return 0;
404
405    unsigned i = *P;
406    while (i > 0) {
407      if (VarDefinitions[i].Exp) {
408        Ctx = VarDefinitions[i].Ctx;
409        return VarDefinitions[i].Exp;
410      }
411      i = VarDefinitions[i].Ref;
412    }
413    return 0;
414  }
415
416  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
417
418  /// Return the next context after processing S.  This function is used by
419  /// clients of the class to get the appropriate context when traversing the
420  /// CFG.  It must be called for every assignment or DeclStmt.
421  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
422    if (SavedContexts[CtxIndex+1].first == S) {
423      CtxIndex++;
424      Context Result = SavedContexts[CtxIndex].second;
425      return Result;
426    }
427    return C;
428  }
429
430  void dumpVarDefinitionName(unsigned i) {
431    if (i == 0) {
432      llvm::errs() << "Undefined";
433      return;
434    }
435    NamedDecl *Dec = VarDefinitions[i].Dec;
436    if (!Dec) {
437      llvm::errs() << "<<NULL>>";
438      return;
439    }
440    Dec->printName(llvm::errs());
441    llvm::errs() << "." << i << " " << ((void*) Dec);
442  }
443
444  /// Dumps an ASCII representation of the variable map to llvm::errs()
445  void dump() {
446    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
447      Expr *Exp = VarDefinitions[i].Exp;
448      unsigned Ref = VarDefinitions[i].Ref;
449
450      dumpVarDefinitionName(i);
451      llvm::errs() << " = ";
452      if (Exp) Exp->dump();
453      else {
454        dumpVarDefinitionName(Ref);
455        llvm::errs() << "\n";
456      }
457    }
458  }
459
460  /// Dumps an ASCII representation of a Context to llvm::errs()
461  void dumpContext(Context C) {
462    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
463      NamedDecl *D = I.getKey();
464      D->printName(llvm::errs());
465      const unsigned *i = C.lookup(D);
466      llvm::errs() << " -> ";
467      dumpVarDefinitionName(*i);
468      llvm::errs() << "\n";
469    }
470  }
471
472  /// Builds the variable map.
473  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
474                     std::vector<CFGBlockInfo> &BlockInfo);
475
476protected:
477  // Get the current context index
478  unsigned getContextIndex() { return SavedContexts.size()-1; }
479
480  // Save the current context for later replay
481  void saveContext(Stmt *S, Context C) {
482    SavedContexts.push_back(std::make_pair(S,C));
483  }
484
485  // Adds a new definition to the given context, and returns a new context.
486  // This method should be called when declaring a new variable.
487  Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
488    assert(!Ctx.contains(D));
489    unsigned newID = VarDefinitions.size();
490    Context NewCtx = ContextFactory.add(Ctx, D, newID);
491    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
492    return NewCtx;
493  }
494
495  // Add a new reference to an existing definition.
496  Context addReference(NamedDecl *D, unsigned i, Context Ctx) {
497    unsigned newID = VarDefinitions.size();
498    Context NewCtx = ContextFactory.add(Ctx, D, newID);
499    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
500    return NewCtx;
501  }
502
503  // Updates a definition only if that definition is already in the map.
504  // This method should be called when assigning to an existing variable.
505  Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
506    if (Ctx.contains(D)) {
507      unsigned newID = VarDefinitions.size();
508      Context NewCtx = ContextFactory.remove(Ctx, D);
509      NewCtx = ContextFactory.add(NewCtx, D, newID);
510      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
511      return NewCtx;
512    }
513    return Ctx;
514  }
515
516  // Removes a definition from the context, but keeps the variable name
517  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
518  Context clearDefinition(NamedDecl *D, Context Ctx) {
519    Context NewCtx = Ctx;
520    if (NewCtx.contains(D)) {
521      NewCtx = ContextFactory.remove(NewCtx, D);
522      NewCtx = ContextFactory.add(NewCtx, D, 0);
523    }
524    return NewCtx;
525  }
526
527  // Remove a definition entirely frmo the context.
528  Context removeDefinition(NamedDecl *D, Context Ctx) {
529    Context NewCtx = Ctx;
530    if (NewCtx.contains(D)) {
531      NewCtx = ContextFactory.remove(NewCtx, D);
532    }
533    return NewCtx;
534  }
535
536  Context intersectContexts(Context C1, Context C2);
537  Context createReferenceContext(Context C);
538  void intersectBackEdge(Context C1, Context C2);
539
540  friend class VarMapBuilder;
541};
542
543
544// This has to be defined after LocalVariableMap.
545CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
546                                             LocalVariableMap &M) {
547  return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
548}
549
550
551/// Visitor which builds a LocalVariableMap
552class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
553public:
554  LocalVariableMap* VMap;
555  LocalVariableMap::Context Ctx;
556
557  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
558    : VMap(VM), Ctx(C) {}
559
560  void VisitDeclStmt(DeclStmt *S);
561  void VisitBinaryOperator(BinaryOperator *BO);
562};
563
564
565// Add new local variables to the variable map
566void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
567  bool modifiedCtx = false;
568  DeclGroupRef DGrp = S->getDeclGroup();
569  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
570    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
571      Expr *E = VD->getInit();
572
573      // Add local variables with trivial type to the variable map
574      QualType T = VD->getType();
575      if (T.isTrivialType(VD->getASTContext())) {
576        Ctx = VMap->addDefinition(VD, E, Ctx);
577        modifiedCtx = true;
578      }
579    }
580  }
581  if (modifiedCtx)
582    VMap->saveContext(S, Ctx);
583}
584
585// Update local variable definitions in variable map
586void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
587  if (!BO->isAssignmentOp())
588    return;
589
590  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
591
592  // Update the variable map and current context.
593  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
594    ValueDecl *VDec = DRE->getDecl();
595    if (Ctx.lookup(VDec)) {
596      if (BO->getOpcode() == BO_Assign)
597        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
598      else
599        // FIXME -- handle compound assignment operators
600        Ctx = VMap->clearDefinition(VDec, Ctx);
601      VMap->saveContext(BO, Ctx);
602    }
603  }
604}
605
606
607// Computes the intersection of two contexts.  The intersection is the
608// set of variables which have the same definition in both contexts;
609// variables with different definitions are discarded.
610LocalVariableMap::Context
611LocalVariableMap::intersectContexts(Context C1, Context C2) {
612  Context Result = C1;
613  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
614    NamedDecl *Dec = I.getKey();
615    unsigned i1 = I.getData();
616    const unsigned *i2 = C2.lookup(Dec);
617    if (!i2)             // variable doesn't exist on second path
618      Result = removeDefinition(Dec, Result);
619    else if (*i2 != i1)  // variable exists, but has different definition
620      Result = clearDefinition(Dec, Result);
621  }
622  return Result;
623}
624
625// For every variable in C, create a new variable that refers to the
626// definition in C.  Return a new context that contains these new variables.
627// (We use this for a naive implementation of SSA on loop back-edges.)
628LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
629  Context Result = getEmptyContext();
630  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
631    NamedDecl *Dec = I.getKey();
632    unsigned i = I.getData();
633    Result = addReference(Dec, i, Result);
634  }
635  return Result;
636}
637
638// This routine also takes the intersection of C1 and C2, but it does so by
639// altering the VarDefinitions.  C1 must be the result of an earlier call to
640// createReferenceContext.
641void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
642  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
643    NamedDecl *Dec = I.getKey();
644    unsigned i1 = I.getData();
645    VarDefinition *VDef = &VarDefinitions[i1];
646    assert(VDef->isReference());
647
648    const unsigned *i2 = C2.lookup(Dec);
649    if (!i2 || (*i2 != i1))
650      VDef->Ref = 0;    // Mark this variable as undefined
651  }
652}
653
654
655// Traverse the CFG in topological order, so all predecessors of a block
656// (excluding back-edges) are visited before the block itself.  At
657// each point in the code, we calculate a Context, which holds the set of
658// variable definitions which are visible at that point in execution.
659// Visible variables are mapped to their definitions using an array that
660// contains all definitions.
661//
662// At join points in the CFG, the set is computed as the intersection of
663// the incoming sets along each edge, E.g.
664//
665//                       { Context                 | VarDefinitions }
666//   int x = 0;          { x -> x1                 | x1 = 0 }
667//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
668//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
669//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
670//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
671//
672// This is essentially a simpler and more naive version of the standard SSA
673// algorithm.  Those definitions that remain in the intersection are from blocks
674// that strictly dominate the current block.  We do not bother to insert proper
675// phi nodes, because they are not used in our analysis; instead, wherever
676// a phi node would be required, we simply remove that definition from the
677// context (E.g. x above).
678//
679// The initial traversal does not capture back-edges, so those need to be
680// handled on a separate pass.  Whenever the first pass encounters an
681// incoming back edge, it duplicates the context, creating new definitions
682// that refer back to the originals.  (These correspond to places where SSA
683// might have to insert a phi node.)  On the second pass, these definitions are
684// set to NULL if the the variable has changed on the back-edge (i.e. a phi
685// node was actually required.)  E.g.
686//
687//                       { Context           | VarDefinitions }
688//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
689//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
690//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
691//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
692//
693void LocalVariableMap::traverseCFG(CFG *CFGraph,
694                                   PostOrderCFGView *SortedGraph,
695                                   std::vector<CFGBlockInfo> &BlockInfo) {
696  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
697
698  CtxIndices.resize(CFGraph->getNumBlockIDs());
699
700  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
701       E = SortedGraph->end(); I!= E; ++I) {
702    const CFGBlock *CurrBlock = *I;
703    int CurrBlockID = CurrBlock->getBlockID();
704    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
705
706    VisitedBlocks.insert(CurrBlock);
707
708    // Calculate the entry context for the current block
709    bool HasBackEdges = false;
710    bool CtxInit = true;
711    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
712         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
713      // if *PI -> CurrBlock is a back edge, so skip it
714      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
715        HasBackEdges = true;
716        continue;
717      }
718
719      int PrevBlockID = (*PI)->getBlockID();
720      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
721
722      if (CtxInit) {
723        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
724        CtxInit = false;
725      }
726      else {
727        CurrBlockInfo->EntryContext =
728          intersectContexts(CurrBlockInfo->EntryContext,
729                            PrevBlockInfo->ExitContext);
730      }
731    }
732
733    // Duplicate the context if we have back-edges, so we can call
734    // intersectBackEdges later.
735    if (HasBackEdges)
736      CurrBlockInfo->EntryContext =
737        createReferenceContext(CurrBlockInfo->EntryContext);
738
739    // Create a starting context index for the current block
740    saveContext(0, CurrBlockInfo->EntryContext);
741    CurrBlockInfo->EntryIndex = getContextIndex();
742
743    // Visit all the statements in the basic block.
744    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
745    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
746         BE = CurrBlock->end(); BI != BE; ++BI) {
747      switch (BI->getKind()) {
748        case CFGElement::Statement: {
749          const CFGStmt *CS = cast<CFGStmt>(&*BI);
750          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
751          break;
752        }
753        default:
754          break;
755      }
756    }
757    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
758
759    // Mark variables on back edges as "unknown" if they've been changed.
760    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
761         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
762      // if CurrBlock -> *SI is *not* a back edge
763      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
764        continue;
765
766      CFGBlock *FirstLoopBlock = *SI;
767      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
768      Context LoopEnd   = CurrBlockInfo->ExitContext;
769      intersectBackEdge(LoopBegin, LoopEnd);
770    }
771  }
772
773  // Put an extra entry at the end of the indexed context array
774  unsigned exitID = CFGraph->getExit().getBlockID();
775  saveContext(0, BlockInfo[exitID].ExitContext);
776}
777
778/// Find the appropriate source locations to use when producing diagnostics for
779/// each block in the CFG.
780static void findBlockLocations(CFG *CFGraph,
781                               PostOrderCFGView *SortedGraph,
782                               std::vector<CFGBlockInfo> &BlockInfo) {
783  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
784       E = SortedGraph->end(); I!= E; ++I) {
785    const CFGBlock *CurrBlock = *I;
786    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
787
788    // Find the source location of the last statement in the block, if the
789    // block is not empty.
790    if (const Stmt *S = CurrBlock->getTerminator()) {
791      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
792    } else {
793      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
794           BE = CurrBlock->rend(); BI != BE; ++BI) {
795        // FIXME: Handle other CFGElement kinds.
796        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
797          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
798          break;
799        }
800      }
801    }
802
803    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
804      // This block contains at least one statement. Find the source location
805      // of the first statement in the block.
806      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
807           BE = CurrBlock->end(); BI != BE; ++BI) {
808        // FIXME: Handle other CFGElement kinds.
809        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
810          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
811          break;
812        }
813      }
814    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
815               CurrBlock != &CFGraph->getExit()) {
816      // The block is empty, and has a single predecessor. Use its exit
817      // location.
818      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
819          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
820    }
821  }
822}
823
824/// \brief Class which implements the core thread safety analysis routines.
825class ThreadSafetyAnalyzer {
826  friend class BuildLockset;
827
828  ThreadSafetyHandler &Handler;
829  Lockset::Factory    LocksetFactory;
830  LocalVariableMap    LocalVarMap;
831
832public:
833  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
834
835  Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1,
836                           const CFGBlockInfo &Block2, CFGBlockSide Side2,
837                           LockErrorKind LEK);
838
839  Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
840                  LockKind LK, SourceLocation Loc);
841
842  void runAnalysis(AnalysisDeclContext &AC);
843};
844
845
846/// \brief We use this class to visit different types of expressions in
847/// CFGBlocks, and build up the lockset.
848/// An expression may cause us to add or remove locks from the lockset, or else
849/// output error messages related to missing locks.
850/// FIXME: In future, we may be able to not inherit from a visitor.
851class BuildLockset : public StmtVisitor<BuildLockset> {
852  friend class ThreadSafetyAnalyzer;
853
854  ThreadSafetyHandler &Handler;
855  Lockset::Factory &LocksetFactory;
856  LocalVariableMap &LocalVarMap;
857
858  Lockset LSet;
859  LocalVariableMap::Context LVarCtx;
860  unsigned CtxIndex;
861
862  // Helper functions
863  void addLock(const MutexID &Mutex, const LockData &LDat);
864  void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
865
866  template <class AttrType>
867  void addLocksToSet(LockKind LK, AttrType *Attr,
868                     Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
869  void removeLocksFromSet(UnlockFunctionAttr *Attr,
870                          Expr *Exp, NamedDecl* FunDecl);
871
872  const ValueDecl *getValueDecl(Expr *Exp);
873  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
874                           Expr *MutexExp, ProtectedOperationKind POK);
875  void checkAccess(Expr *Exp, AccessKind AK);
876  void checkDereference(Expr *Exp, AccessKind AK);
877  void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
878
879  template <class AttrType>
880  void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
881                  const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
882                  Expr *BrE, bool Neg);
883  CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C,
884                               bool &Negate);
885  void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock,
886                     const CFGBlock *CurrBlock);
887
888  /// \brief Returns true if the lockset contains a lock, regardless of whether
889  /// the lock is held exclusively or shared.
890  bool locksetContains(const MutexID &Lock) const {
891    return LSet.lookup(Lock);
892  }
893
894  /// \brief Returns true if the lockset contains a lock with the passed in
895  /// locktype.
896  bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
897    const LockData *LockHeld = LSet.lookup(Lock);
898    return (LockHeld && KindRequested == LockHeld->LKind);
899  }
900
901  /// \brief Returns true if the lockset contains a lock with at least the
902  /// passed in locktype. So for example, if we pass in LK_Shared, this function
903  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
904  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
905  bool locksetContainsAtLeast(const MutexID &Lock,
906                              LockKind KindRequested) const {
907    switch (KindRequested) {
908      case LK_Shared:
909        return locksetContains(Lock);
910      case LK_Exclusive:
911        return locksetContains(Lock, KindRequested);
912    }
913    llvm_unreachable("Unknown LockKind");
914  }
915
916public:
917  BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info)
918    : StmtVisitor<BuildLockset>(),
919      Handler(analyzer->Handler),
920      LocksetFactory(analyzer->LocksetFactory),
921      LocalVarMap(analyzer->LocalVarMap),
922      LSet(Info.EntrySet),
923      LVarCtx(Info.EntryContext),
924      CtxIndex(Info.EntryIndex)
925  {}
926
927  void VisitUnaryOperator(UnaryOperator *UO);
928  void VisitBinaryOperator(BinaryOperator *BO);
929  void VisitCastExpr(CastExpr *CE);
930  void VisitCallExpr(CallExpr *Exp);
931  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
932  void VisitDeclStmt(DeclStmt *S);
933};
934
935/// \brief Add a new lock to the lockset, warning if the lock is already there.
936/// \param Mutex -- the Mutex expression for the lock
937/// \param LDat  -- the LockData for the lock
938void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
939  // FIXME: deal with acquired before/after annotations.
940  // FIXME: Don't always warn when we have support for reentrant locks.
941  if (locksetContains(Mutex))
942    Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
943  else
944    LSet = LocksetFactory.add(LSet, Mutex, LDat);
945}
946
947/// \brief Remove a lock from the lockset, warning if the lock is not there.
948/// \param LockExp The lock expression corresponding to the lock to be removed
949/// \param UnlockLoc The source location of the unlock (only used in error msg)
950void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
951  const LockData *LDat = LSet.lookup(Mutex);
952  if (!LDat)
953    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
954  else {
955    // For scoped-lockable vars, remove the mutex associated with this var.
956    if (LDat->UnderlyingMutex.isValid())
957      removeLock(LDat->UnderlyingMutex, UnlockLoc);
958    LSet = LocksetFactory.remove(LSet, Mutex);
959  }
960}
961
962/// \brief This function, parameterized by an attribute type, is used to add a
963/// set of locks specified as attribute arguments to the lockset.
964template <typename AttrType>
965void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
966                                 Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
967  typedef typename AttrType::args_iterator iterator_type;
968
969  SourceLocation ExpLocation = Exp->getExprLoc();
970
971  // Figure out if we're calling the constructor of scoped lockable class
972  bool isScopedVar = false;
973  if (VD) {
974    if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
975      CXXRecordDecl* PD = CD->getParent();
976      if (PD && PD->getAttr<ScopedLockableAttr>())
977        isScopedVar = true;
978    }
979  }
980
981  if (Attr->args_size() == 0) {
982    // The mutex held is the "this" object.
983    MutexID Mutex(0, Exp, FunDecl);
984    if (!Mutex.isValid())
985      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
986    else
987      addLock(Mutex, LockData(ExpLocation, LK));
988    return;
989  }
990
991  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
992    MutexID Mutex(*I, Exp, FunDecl);
993    if (!Mutex.isValid())
994      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
995    else {
996      addLock(Mutex, LockData(ExpLocation, LK));
997      if (isScopedVar) {
998        // For scoped lockable vars, map this var to its underlying mutex.
999        DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
1000        MutexID SMutex(&DRE, 0, 0);
1001        addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
1002      }
1003    }
1004  }
1005}
1006
1007/// \brief This function removes a set of locks specified as attribute
1008/// arguments from the lockset.
1009void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
1010                                      Expr *Exp, NamedDecl* FunDecl) {
1011  SourceLocation ExpLocation;
1012  if (Exp) ExpLocation = Exp->getExprLoc();
1013
1014  if (Attr->args_size() == 0) {
1015    // The mutex held is the "this" object.
1016    MutexID Mu(0, Exp, FunDecl);
1017    if (!Mu.isValid())
1018      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1019    else
1020      removeLock(Mu, ExpLocation);
1021    return;
1022  }
1023
1024  for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
1025       E = Attr->args_end(); I != E; ++I) {
1026    MutexID Mutex(*I, Exp, FunDecl);
1027    if (!Mutex.isValid())
1028      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1029    else
1030      removeLock(Mutex, ExpLocation);
1031  }
1032}
1033
1034/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1035const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1036  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1037    return DR->getDecl();
1038
1039  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1040    return ME->getMemberDecl();
1041
1042  return 0;
1043}
1044
1045/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1046/// of at least the passed in AccessKind.
1047void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1048                                      AccessKind AK, Expr *MutexExp,
1049                                      ProtectedOperationKind POK) {
1050  LockKind LK = getLockKindFromAccessKind(AK);
1051
1052  MutexID Mutex(MutexExp, Exp, D);
1053  if (!Mutex.isValid())
1054    MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
1055  else if (!locksetContainsAtLeast(Mutex, LK))
1056    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
1057}
1058
1059/// \brief This method identifies variable dereferences and checks pt_guarded_by
1060/// and pt_guarded_var annotations. Note that we only check these annotations
1061/// at the time a pointer is dereferenced.
1062/// FIXME: We need to check for other types of pointer dereferences
1063/// (e.g. [], ->) and deal with them here.
1064/// \param Exp An expression that has been read or written.
1065void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1066  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1067  if (!UO || UO->getOpcode() != clang::UO_Deref)
1068    return;
1069  Exp = UO->getSubExpr()->IgnoreParenCasts();
1070
1071  const ValueDecl *D = getValueDecl(Exp);
1072  if(!D || !D->hasAttrs())
1073    return;
1074
1075  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
1076    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
1077
1078  const AttrVec &ArgAttrs = D->getAttrs();
1079  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1080    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1081      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1082}
1083
1084/// \brief Checks guarded_by and guarded_var attributes.
1085/// Whenever we identify an access (read or write) of a DeclRefExpr or
1086/// MemberExpr, we need to check whether there are any guarded_by or
1087/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1088void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1089  const ValueDecl *D = getValueDecl(Exp);
1090  if(!D || !D->hasAttrs())
1091    return;
1092
1093  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
1094    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
1095
1096  const AttrVec &ArgAttrs = D->getAttrs();
1097  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1098    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1099      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1100}
1101
1102/// \brief Process a function call, method call, constructor call,
1103/// or destructor call.  This involves looking at the attributes on the
1104/// corresponding function/method/constructor/destructor, issuing warnings,
1105/// and updating the locksets accordingly.
1106///
1107/// FIXME: For classes annotated with one of the guarded annotations, we need
1108/// to treat const method calls as reads and non-const method calls as writes,
1109/// and check that the appropriate locks are held. Non-const method calls with
1110/// the same signature as const method calls can be also treated as reads.
1111///
1112/// FIXME: We need to also visit CallExprs to catch/check global functions.
1113///
1114/// FIXME: Do not flag an error for member variables accessed in constructors/
1115/// destructors
1116void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
1117  AttrVec &ArgAttrs = D->getAttrs();
1118  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1119    Attr *Attr = ArgAttrs[i];
1120    switch (Attr->getKind()) {
1121      // When we encounter an exclusive lock function, we need to add the lock
1122      // to our lockset with kind exclusive.
1123      case attr::ExclusiveLockFunction: {
1124        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
1125        addLocksToSet(LK_Exclusive, A, Exp, D, VD);
1126        break;
1127      }
1128
1129      // When we encounter a shared lock function, we need to add the lock
1130      // to our lockset with kind shared.
1131      case attr::SharedLockFunction: {
1132        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
1133        addLocksToSet(LK_Shared, A, Exp, D, VD);
1134        break;
1135      }
1136
1137      // When we encounter an unlock function, we need to remove unlocked
1138      // mutexes from the lockset, and flag a warning if they are not there.
1139      case attr::UnlockFunction: {
1140        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
1141        removeLocksFromSet(UFAttr, Exp, D);
1142        break;
1143      }
1144
1145      case attr::ExclusiveLocksRequired: {
1146        ExclusiveLocksRequiredAttr *ELRAttr =
1147            cast<ExclusiveLocksRequiredAttr>(Attr);
1148
1149        for (ExclusiveLocksRequiredAttr::args_iterator
1150             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
1151          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1152        break;
1153      }
1154
1155      case attr::SharedLocksRequired: {
1156        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
1157
1158        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
1159             E = SLRAttr->args_end(); I != E; ++I)
1160          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1161        break;
1162      }
1163
1164      case attr::LocksExcluded: {
1165        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
1166        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
1167            E = LEAttr->args_end(); I != E; ++I) {
1168          MutexID Mutex(*I, Exp, D);
1169          if (!Mutex.isValid())
1170            MutexID::warnInvalidLock(Handler, *I, Exp, D);
1171          else if (locksetContains(Mutex))
1172            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
1173                                          Exp->getExprLoc());
1174        }
1175        break;
1176      }
1177
1178      // Ignore other (non thread-safety) attributes
1179      default:
1180        break;
1181    }
1182  }
1183}
1184
1185
1186/// \brief Add lock to set, if the current block is in the taken branch of a
1187/// trylock.
1188template <class AttrType>
1189void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp,
1190                              NamedDecl *FunDecl, const CFGBlock *PredBlock,
1191                              const CFGBlock *CurrBlock, Expr *BrE, bool Neg) {
1192  // Find out which branch has the lock
1193  bool branch = 0;
1194  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1195    branch = BLE->getValue();
1196  }
1197  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1198    branch = ILE->getValue().getBoolValue();
1199  }
1200  int branchnum = branch ? 0 : 1;
1201  if (Neg) branchnum = !branchnum;
1202
1203  // If we've taken the trylock branch, then add the lock
1204  int i = 0;
1205  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1206       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1207    if (*SI == CurrBlock && i == branchnum) {
1208      addLocksToSet(LK, Attr, Exp, FunDecl, 0);
1209    }
1210  }
1211}
1212
1213
1214// If Cond can be traced back to a function call, return the call expression.
1215// The negate variable should be called with false, and will be set to true
1216// if the function call is negated, e.g. if (!mu.tryLock(...))
1217CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond,
1218                               LocalVariableMap::Context C,
1219                               bool &Negate) {
1220  if (!Cond)
1221    return 0;
1222
1223  if (CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1224    return CallExp;
1225  }
1226  else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1227    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1228  }
1229  else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1230    Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1231    return getTrylockCallExpr(E, C, Negate);
1232  }
1233  else if (UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1234    if (UOP->getOpcode() == UO_LNot) {
1235      Negate = !Negate;
1236      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1237    }
1238  }
1239  // FIXME -- handle && and || as well.
1240  return NULL;
1241}
1242
1243
1244/// \brief Process a conditional branch from a previous block to the current
1245/// block, looking for trylock calls.
1246void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock,
1247                                 const CFGBlock *CurrBlock) {
1248  bool Negate = false;
1249  CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1250  if (!Exp)
1251    return;
1252
1253  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1254  if(!FunDecl || !FunDecl->hasAttrs())
1255    return;
1256
1257  // If the condition is a call to a Trylock function, then grab the attributes
1258  AttrVec &ArgAttrs = FunDecl->getAttrs();
1259  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1260    Attr *Attr = ArgAttrs[i];
1261    switch (Attr->getKind()) {
1262      case attr::ExclusiveTrylockFunction: {
1263        ExclusiveTrylockFunctionAttr *A =
1264          cast<ExclusiveTrylockFunctionAttr>(Attr);
1265        addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock,
1266                   A->getSuccessValue(), Negate);
1267        break;
1268      }
1269      case attr::SharedTrylockFunction: {
1270        SharedTrylockFunctionAttr *A =
1271          cast<SharedTrylockFunctionAttr>(Attr);
1272        addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock,
1273                   A->getSuccessValue(), Negate);
1274        break;
1275      }
1276      default:
1277        break;
1278    }
1279  }
1280}
1281
1282
1283/// \brief For unary operations which read and write a variable, we need to
1284/// check whether we hold any required mutexes. Reads are checked in
1285/// VisitCastExpr.
1286void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1287  switch (UO->getOpcode()) {
1288    case clang::UO_PostDec:
1289    case clang::UO_PostInc:
1290    case clang::UO_PreDec:
1291    case clang::UO_PreInc: {
1292      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1293      checkAccess(SubExp, AK_Written);
1294      checkDereference(SubExp, AK_Written);
1295      break;
1296    }
1297    default:
1298      break;
1299  }
1300}
1301
1302/// For binary operations which assign to a variable (writes), we need to check
1303/// whether we hold any required mutexes.
1304/// FIXME: Deal with non-primitive types.
1305void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1306  if (!BO->isAssignmentOp())
1307    return;
1308
1309  // adjust the context
1310  LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1311
1312  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1313  checkAccess(LHSExp, AK_Written);
1314  checkDereference(LHSExp, AK_Written);
1315}
1316
1317/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1318/// need to ensure we hold any required mutexes.
1319/// FIXME: Deal with non-primitive types.
1320void BuildLockset::VisitCastExpr(CastExpr *CE) {
1321  if (CE->getCastKind() != CK_LValueToRValue)
1322    return;
1323  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1324  checkAccess(SubExp, AK_Read);
1325  checkDereference(SubExp, AK_Read);
1326}
1327
1328
1329void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1330  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1331  if(!D || !D->hasAttrs())
1332    return;
1333  handleCall(Exp, D);
1334}
1335
1336void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1337  // FIXME -- only handles constructors in DeclStmt below.
1338}
1339
1340void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1341  // adjust the context
1342  LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1343
1344  DeclGroupRef DGrp = S->getDeclGroup();
1345  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1346    Decl *D = *I;
1347    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1348      Expr *E = VD->getInit();
1349      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1350        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1351        if (!CtorD || !CtorD->hasAttrs())
1352          return;
1353        handleCall(CE, CtorD, VD);
1354      }
1355    }
1356  }
1357}
1358
1359
1360/// \brief Compute the intersection of two locksets and issue warnings for any
1361/// locks in the symmetric difference.
1362///
1363/// This function is used at a merge point in the CFG when comparing the lockset
1364/// of each branch being merged. For example, given the following sequence:
1365/// A; if () then B; else C; D; we need to check that the lockset after B and C
1366/// are the same. In the event of a difference, we use the intersection of these
1367/// two locksets at the start of D.
1368Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1,
1369                                               CFGBlockSide Side1,
1370                                               const CFGBlockInfo &Block2,
1371                                               CFGBlockSide Side2,
1372                                               LockErrorKind LEK) {
1373  Lockset LSet1 = Block1.getSet(Side1);
1374  Lockset LSet2 = Block2.getSet(Side2);
1375
1376  Lockset Intersection = LSet1;
1377  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1378    const MutexID &LSet2Mutex = I.getKey();
1379    const LockData &LSet2LockData = I.getData();
1380    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
1381      if (LD->LKind != LSet2LockData.LKind) {
1382        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
1383                                         LSet2LockData.AcquireLoc,
1384                                         LD->AcquireLoc);
1385        if (LD->LKind != LK_Exclusive)
1386          Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
1387                                            LSet2LockData);
1388      }
1389    } else {
1390      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
1391                                        LSet2LockData.AcquireLoc,
1392                                        Block1.getLocation(Side1), LEK);
1393    }
1394  }
1395
1396  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1397    if (!LSet2.contains(I.getKey())) {
1398      const MutexID &Mutex = I.getKey();
1399      const LockData &MissingLock = I.getData();
1400      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
1401                                        MissingLock.AcquireLoc,
1402                                        Block2.getLocation(Side2), LEK);
1403      Intersection = LocksetFactory.remove(Intersection, Mutex);
1404    }
1405  }
1406  return Intersection;
1407}
1408
1409Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
1410                                      const NamedDecl *D,
1411                                      LockKind LK, SourceLocation Loc) {
1412  MutexID Mutex(MutexExp, 0, D);
1413  if (!Mutex.isValid()) {
1414    MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
1415    return LSet;
1416  }
1417  LockData NewLock(Loc, LK);
1418  return LocksetFactory.add(LSet, Mutex, NewLock);
1419}
1420
1421/// \brief Check a function's CFG for thread-safety violations.
1422///
1423/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1424/// at the end of each block, and issue warnings for thread safety violations.
1425/// Each block in the CFG is traversed exactly once.
1426void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
1427  CFG *CFGraph = AC.getCFG();
1428  if (!CFGraph) return;
1429  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
1430
1431  if (!D)
1432    return;  // Ignore anonymous functions for now.
1433  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
1434    return;
1435  // FIXME: Do something a bit more intelligent inside constructor and
1436  // destructor code.  Constructors and destructors must assume unique access
1437  // to 'this', so checks on member variable access is disabled, but we should
1438  // still enable checks on other objects.
1439  if (isa<CXXConstructorDecl>(D))
1440    return;  // Don't check inside constructors.
1441  if (isa<CXXDestructorDecl>(D))
1442    return;  // Don't check inside destructors.
1443
1444  std::vector<CFGBlockInfo> BlockInfo(CFGraph->getNumBlockIDs(),
1445    CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
1446
1447  // We need to explore the CFG via a "topological" ordering.
1448  // That way, we will be guaranteed to have information about required
1449  // predecessor locksets when exploring a new block.
1450  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
1451  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1452
1453  // Compute SSA names for local variables
1454  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1455
1456  // Fill in source locations for all CFGBlocks.
1457  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1458
1459  // Add locks from exclusive_locks_required and shared_locks_required
1460  // to initial lockset. Also turn off checking for lock and unlock functions.
1461  // FIXME: is there a more intelligent way to check lock/unlock functions?
1462  if (!SortedGraph->empty() && D->hasAttrs()) {
1463    const CFGBlock *FirstBlock = *SortedGraph->begin();
1464    Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
1465    const AttrVec &ArgAttrs = D->getAttrs();
1466    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1467      Attr *Attr = ArgAttrs[i];
1468      SourceLocation AttrLoc = Attr->getLocation();
1469      if (SharedLocksRequiredAttr *SLRAttr
1470            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
1471        for (SharedLocksRequiredAttr::args_iterator
1472             SLRIter = SLRAttr->args_begin(),
1473             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
1474          InitialLockset = addLock(InitialLockset,
1475                                   *SLRIter, D, LK_Shared,
1476                                   AttrLoc);
1477      } else if (ExclusiveLocksRequiredAttr *ELRAttr
1478                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
1479        for (ExclusiveLocksRequiredAttr::args_iterator
1480             ELRIter = ELRAttr->args_begin(),
1481             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
1482          InitialLockset = addLock(InitialLockset,
1483                                   *ELRIter, D, LK_Exclusive,
1484                                   AttrLoc);
1485      } else if (isa<UnlockFunctionAttr>(Attr)) {
1486        // Don't try to check unlock functions for now
1487        return;
1488      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
1489        // Don't try to check lock functions for now
1490        return;
1491      } else if (isa<SharedLockFunctionAttr>(Attr)) {
1492        // Don't try to check lock functions for now
1493        return;
1494      }
1495    }
1496  }
1497
1498  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1499       E = SortedGraph->end(); I!= E; ++I) {
1500    const CFGBlock *CurrBlock = *I;
1501    int CurrBlockID = CurrBlock->getBlockID();
1502    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1503
1504    // Use the default initial lockset in case there are no predecessors.
1505    VisitedBlocks.insert(CurrBlock);
1506
1507    // Iterate through the predecessor blocks and warn if the lockset for all
1508    // predecessors is not the same. We take the entry lockset of the current
1509    // block to be the intersection of all previous locksets.
1510    // FIXME: By keeping the intersection, we may output more errors in future
1511    // for a lock which is not in the intersection, but was in the union. We
1512    // may want to also keep the union in future. As an example, let's say
1513    // the intersection contains Mutex L, and the union contains L and M.
1514    // Later we unlock M. At this point, we would output an error because we
1515    // never locked M; although the real error is probably that we forgot to
1516    // lock M on all code paths. Conversely, let's say that later we lock M.
1517    // In this case, we should compare against the intersection instead of the
1518    // union because the real error is probably that we forgot to unlock M on
1519    // all code paths.
1520    bool LocksetInitialized = false;
1521    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
1522    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1523         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1524
1525      // if *PI -> CurrBlock is a back edge
1526      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1527        continue;
1528
1529      // If the previous block ended in a 'continue' or 'break' statement, then
1530      // a difference in locksets is probably due to a bug in that block, rather
1531      // than in some other predecessor. In that case, keep the other
1532      // predecessor's lockset.
1533      if (const Stmt *Terminator = (*PI)->getTerminator()) {
1534        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1535          SpecialBlocks.push_back(*PI);
1536          continue;
1537        }
1538      }
1539
1540      int PrevBlockID = (*PI)->getBlockID();
1541      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1542
1543      if (!LocksetInitialized) {
1544        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1545        LocksetInitialized = true;
1546      } else {
1547        CurrBlockInfo->EntrySet =
1548          intersectAndWarn(*CurrBlockInfo, CBS_Entry,
1549                           *PrevBlockInfo, CBS_Exit,
1550                           LEK_LockedSomePredecessors);
1551      }
1552    }
1553
1554    // Process continue and break blocks. Assume that the lockset for the
1555    // resulting block is unaffected by any discrepancies in them.
1556    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
1557         SpecialI < SpecialN; ++SpecialI) {
1558      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
1559      int PrevBlockID = PrevBlock->getBlockID();
1560      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1561
1562      if (!LocksetInitialized) {
1563        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1564        LocksetInitialized = true;
1565      } else {
1566        // Determine whether this edge is a loop terminator for diagnostic
1567        // purposes. FIXME: A 'break' statement might be a loop terminator, but
1568        // it might also be part of a switch. Also, a subsequent destructor
1569        // might add to the lockset, in which case the real issue might be a
1570        // double lock on the other path.
1571        const Stmt *Terminator = PrevBlock->getTerminator();
1572        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1573
1574        // Do not update EntrySet.
1575        intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit,
1576                         IsLoop ? LEK_LockedSomeLoopIterations
1577                                : LEK_LockedSomePredecessors);
1578      }
1579    }
1580
1581    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
1582    CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1583                                  PE = CurrBlock->pred_end();
1584    if (PI != PE) {
1585      // If the predecessor ended in a branch, then process any trylocks.
1586      // FIXME -- check to make sure there's only one predecessor.
1587      if (Stmt *TCE = (*PI)->getTerminatorCondition()) {
1588        LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock);
1589      }
1590    }
1591
1592    // Visit all the statements in the basic block.
1593    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1594         BE = CurrBlock->end(); BI != BE; ++BI) {
1595      switch (BI->getKind()) {
1596        case CFGElement::Statement: {
1597          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1598          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1599          break;
1600        }
1601        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
1602        case CFGElement::AutomaticObjectDtor: {
1603          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
1604          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
1605            AD->getDestructorDecl(AC.getASTContext()));
1606          if (!DD->hasAttrs())
1607            break;
1608
1609          // Create a dummy expression,
1610          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
1611          DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
1612                          AD->getTriggerStmt()->getLocEnd());
1613          LocksetBuilder.handleCall(&DRE, DD);
1614          break;
1615        }
1616        default:
1617          break;
1618      }
1619    }
1620    CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
1621
1622    // For every back edge from CurrBlock (the end of the loop) to another block
1623    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1624    // the one held at the beginning of FirstLoopBlock. We can look up the
1625    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1626    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1627         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1628
1629      // if CurrBlock -> *SI is *not* a back edge
1630      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1631        continue;
1632
1633      CFGBlock *FirstLoopBlock = *SI;
1634      CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()];
1635      CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID];
1636      intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry,
1637                       LEK_LockedSomeLoopIterations);
1638    }
1639  }
1640
1641  CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
1642  CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
1643
1644  // FIXME: Should we call this function for all blocks which exit the function?
1645  intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit,
1646                   LEK_LockedAtEndOfFunction);
1647}
1648
1649} // end anonymous namespace
1650
1651
1652namespace clang {
1653namespace thread_safety {
1654
1655/// \brief Check a function's CFG for thread-safety violations.
1656///
1657/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1658/// at the end of each block, and issue warnings for thread safety violations.
1659/// Each block in the CFG is traversed exactly once.
1660void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
1661                             ThreadSafetyHandler &Handler) {
1662  ThreadSafetyAnalyzer Analyzer(Handler);
1663  Analyzer.runAnalysis(AC);
1664}
1665
1666/// \brief Helper function that returns a LockKind required for the given level
1667/// of access.
1668LockKind getLockKindFromAccessKind(AccessKind AK) {
1669  switch (AK) {
1670    case AK_Read :
1671      return LK_Shared;
1672    case AK_Written :
1673      return LK_Exclusive;
1674  }
1675  llvm_unreachable("Unknown AccessKind");
1676}
1677
1678}} // end namespace clang::thread_safety
1679