ThreadSafety.cpp revision 4444446abb50f7b0314d82be0afa892f945cc9bc
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#thread-safety-annotation-checking
14// for more information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Analysis/Analyses/PostOrderCFGView.h"
25#include "clang/Analysis/AnalysisContext.h"
26#include "clang/Analysis/CFG.h"
27#include "clang/Analysis/CFGStmtMap.h"
28#include "clang/Basic/OperatorKinds.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/SourceManager.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/FoldingSet.h"
33#include "llvm/ADT/ImmutableMap.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <utility>
40#include <vector>
41
42using namespace clang;
43using namespace thread_safety;
44
45// Key method definition
46ThreadSafetyHandler::~ThreadSafetyHandler() {}
47
48namespace {
49
50/// SExpr implements a simple expression language that is used to store,
51/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
52/// does not capture surface syntax, and it does not distinguish between
53/// C++ concepts, like pointers and references, that have no real semantic
54/// differences.  This simplicity allows SExprs to be meaningfully compared,
55/// e.g.
56///        (x)          =  x
57///        (*this).foo  =  this->foo
58///        *&a          =  a
59///
60/// Thread-safety analysis works by comparing lock expressions.  Within the
61/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
62/// a particular mutex object at run-time.  Subsequent occurrences of the same
63/// expression (where "same" means syntactic equality) will refer to the same
64/// run-time object if three conditions hold:
65/// (1) Local variables in the expression, such as "x" have not changed.
66/// (2) Values on the heap that affect the expression have not changed.
67/// (3) The expression involves only pure function calls.
68///
69/// The current implementation assumes, but does not verify, that multiple uses
70/// of the same lock expression satisfies these criteria.
71class SExpr {
72private:
73  enum ExprOp {
74    EOP_Nop,       ///< No-op
75    EOP_Wildcard,  ///< Matches anything.
76    EOP_Universal, ///< Universal lock.
77    EOP_This,      ///< This keyword.
78    EOP_NVar,      ///< Named variable.
79    EOP_LVar,      ///< Local variable.
80    EOP_Dot,       ///< Field access
81    EOP_Call,      ///< Function call
82    EOP_MCall,     ///< Method call
83    EOP_Index,     ///< Array index
84    EOP_Unary,     ///< Unary operation
85    EOP_Binary,    ///< Binary operation
86    EOP_Unknown    ///< Catchall for everything else
87  };
88
89
90  class SExprNode {
91   private:
92    unsigned char  Op;     ///< Opcode of the root node
93    unsigned char  Flags;  ///< Additional opcode-specific data
94    unsigned short Sz;     ///< Number of child nodes
95    const void*    Data;   ///< Additional opcode-specific data
96
97   public:
98    SExprNode(ExprOp O, unsigned F, const void* D)
99      : Op(static_cast<unsigned char>(O)),
100        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
101    { }
102
103    unsigned size() const        { return Sz; }
104    void     setSize(unsigned S) { Sz = S;    }
105
106    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
107
108    const NamedDecl* getNamedDecl() const {
109      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
110      return reinterpret_cast<const NamedDecl*>(Data);
111    }
112
113    const NamedDecl* getFunctionDecl() const {
114      assert(Op == EOP_Call || Op == EOP_MCall);
115      return reinterpret_cast<const NamedDecl*>(Data);
116    }
117
118    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
119    void setArrow(bool A) { Flags = A ? 1 : 0; }
120
121    unsigned arity() const {
122      switch (Op) {
123        case EOP_Nop:       return 0;
124        case EOP_Wildcard:  return 0;
125        case EOP_Universal: return 0;
126        case EOP_NVar:      return 0;
127        case EOP_LVar:      return 0;
128        case EOP_This:      return 0;
129        case EOP_Dot:       return 1;
130        case EOP_Call:      return Flags+1;  // First arg is function.
131        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
132        case EOP_Index:     return 2;
133        case EOP_Unary:     return 1;
134        case EOP_Binary:    return 2;
135        case EOP_Unknown:   return Flags;
136      }
137      return 0;
138    }
139
140    bool operator==(const SExprNode& Other) const {
141      // Ignore flags and size -- they don't matter.
142      return (Op == Other.Op &&
143              Data == Other.Data);
144    }
145
146    bool operator!=(const SExprNode& Other) const {
147      return !(*this == Other);
148    }
149
150    bool matches(const SExprNode& Other) const {
151      return (*this == Other) ||
152             (Op == EOP_Wildcard) ||
153             (Other.Op == EOP_Wildcard);
154    }
155  };
156
157
158  /// \brief Encapsulates the lexical context of a function call.  The lexical
159  /// context includes the arguments to the call, including the implicit object
160  /// argument.  When an attribute containing a mutex expression is attached to
161  /// a method, the expression may refer to formal parameters of the method.
162  /// Actual arguments must be substituted for formal parameters to derive
163  /// the appropriate mutex expression in the lexical context where the function
164  /// is called.  PrevCtx holds the context in which the arguments themselves
165  /// should be evaluated; multiple calling contexts can be chained together
166  /// by the lock_returned attribute.
167  struct CallingContext {
168    const NamedDecl*   AttrDecl;   // The decl to which the attribute is attached.
169    const Expr*        SelfArg;    // Implicit object argument -- e.g. 'this'
170    bool               SelfArrow;  // is Self referred to with -> or .?
171    unsigned           NumArgs;    // Number of funArgs
172    const Expr* const* FunArgs;    // Function arguments
173    CallingContext*    PrevCtx;    // The previous context; or 0 if none.
174
175    CallingContext(const NamedDecl *D = 0, const Expr *S = 0,
176                   unsigned N = 0, const Expr* const *A = 0,
177                   CallingContext *P = 0)
178      : AttrDecl(D), SelfArg(S), SelfArrow(false),
179        NumArgs(N), FunArgs(A), PrevCtx(P)
180    { }
181  };
182
183  typedef SmallVector<SExprNode, 4> NodeVector;
184
185private:
186  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
187  // the list to be traversed as a tree.
188  NodeVector NodeVec;
189
190private:
191  unsigned makeNop() {
192    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
193    return NodeVec.size()-1;
194  }
195
196  unsigned makeWildcard() {
197    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
198    return NodeVec.size()-1;
199  }
200
201  unsigned makeUniversal() {
202    NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
203    return NodeVec.size()-1;
204  }
205
206  unsigned makeNamedVar(const NamedDecl *D) {
207    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
208    return NodeVec.size()-1;
209  }
210
211  unsigned makeLocalVar(const NamedDecl *D) {
212    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
213    return NodeVec.size()-1;
214  }
215
216  unsigned makeThis() {
217    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
218    return NodeVec.size()-1;
219  }
220
221  unsigned makeDot(const NamedDecl *D, bool Arrow) {
222    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
223    return NodeVec.size()-1;
224  }
225
226  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
227    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
228    return NodeVec.size()-1;
229  }
230
231  // Grab the very first declaration of virtual method D
232  const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
233    while (true) {
234      D = D->getCanonicalDecl();
235      CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
236                                     E = D->end_overridden_methods();
237      if (I == E)
238        return D;  // Method does not override anything
239      D = *I;      // FIXME: this does not work with multiple inheritance.
240    }
241    return 0;
242  }
243
244  unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
245    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
246    return NodeVec.size()-1;
247  }
248
249  unsigned makeIndex() {
250    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
251    return NodeVec.size()-1;
252  }
253
254  unsigned makeUnary() {
255    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
256    return NodeVec.size()-1;
257  }
258
259  unsigned makeBinary() {
260    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
261    return NodeVec.size()-1;
262  }
263
264  unsigned makeUnknown(unsigned Arity) {
265    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
266    return NodeVec.size()-1;
267  }
268
269  inline bool isCalleeArrow(const Expr *E) {
270    const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
271    return ME ? ME->isArrow() : false;
272  }
273
274  /// Build an SExpr from the given C++ expression.
275  /// Recursive function that terminates on DeclRefExpr.
276  /// Note: this function merely creates a SExpr; it does not check to
277  /// ensure that the original expression is a valid mutex expression.
278  ///
279  /// NDeref returns the number of Derefence and AddressOf operations
280  /// preceeding the Expr; this is used to decide whether to pretty-print
281  /// SExprs with . or ->.
282  unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx,
283                      int* NDeref = 0) {
284    if (!Exp)
285      return 0;
286
287    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
288      const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
289      const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
290      if (PV) {
291        const FunctionDecl *FD =
292          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
293        unsigned i = PV->getFunctionScopeIndex();
294
295        if (CallCtx && CallCtx->FunArgs &&
296            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
297          // Substitute call arguments for references to function parameters
298          assert(i < CallCtx->NumArgs);
299          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
300        }
301        // Map the param back to the param of the original function declaration.
302        makeNamedVar(FD->getParamDecl(i));
303        return 1;
304      }
305      // Not a function parameter -- just store the reference.
306      makeNamedVar(ND);
307      return 1;
308    } else if (isa<CXXThisExpr>(Exp)) {
309      // Substitute parent for 'this'
310      if (CallCtx && CallCtx->SelfArg) {
311        if (!CallCtx->SelfArrow && NDeref)
312          // 'this' is a pointer, but self is not, so need to take address.
313          --(*NDeref);
314        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
315      }
316      else {
317        makeThis();
318        return 1;
319      }
320    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
321      const NamedDecl *ND = ME->getMemberDecl();
322      int ImplicitDeref = ME->isArrow() ? 1 : 0;
323      unsigned Root = makeDot(ND, false);
324      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
325      NodeVec[Root].setArrow(ImplicitDeref > 0);
326      NodeVec[Root].setSize(Sz + 1);
327      return Sz + 1;
328    } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
329      // When calling a function with a lock_returned attribute, replace
330      // the function call with the expression in lock_returned.
331      const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl();
332      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
333        CallingContext LRCallCtx(CMCE->getMethodDecl());
334        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
335        LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee());
336        LRCallCtx.NumArgs = CMCE->getNumArgs();
337        LRCallCtx.FunArgs = CMCE->getArgs();
338        LRCallCtx.PrevCtx = CallCtx;
339        return buildSExpr(At->getArg(), &LRCallCtx);
340      }
341      // Hack to treat smart pointers and iterators as pointers;
342      // ignore any method named get().
343      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
344          CMCE->getNumArgs() == 0) {
345        if (NDeref && isCalleeArrow(CMCE->getCallee()))
346          ++(*NDeref);
347        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
348      }
349      unsigned NumCallArgs = CMCE->getNumArgs();
350      unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
351      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
352      const Expr* const* CallArgs = CMCE->getArgs();
353      for (unsigned i = 0; i < NumCallArgs; ++i) {
354        Sz += buildSExpr(CallArgs[i], CallCtx);
355      }
356      NodeVec[Root].setSize(Sz + 1);
357      return Sz + 1;
358    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
359      const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
360      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
361        CallingContext LRCallCtx(CE->getDirectCallee());
362        LRCallCtx.NumArgs = CE->getNumArgs();
363        LRCallCtx.FunArgs = CE->getArgs();
364        LRCallCtx.PrevCtx = CallCtx;
365        return buildSExpr(At->getArg(), &LRCallCtx);
366      }
367      // Treat smart pointers and iterators as pointers;
368      // ignore the * and -> operators.
369      if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
370        OverloadedOperatorKind k = OE->getOperator();
371        if (k == OO_Star) {
372          if (NDeref) ++(*NDeref);
373          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
374        }
375        else if (k == OO_Arrow) {
376          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
377        }
378      }
379      unsigned NumCallArgs = CE->getNumArgs();
380      unsigned Root = makeCall(NumCallArgs, 0);
381      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
382      const Expr* const* CallArgs = CE->getArgs();
383      for (unsigned i = 0; i < NumCallArgs; ++i) {
384        Sz += buildSExpr(CallArgs[i], CallCtx);
385      }
386      NodeVec[Root].setSize(Sz+1);
387      return Sz+1;
388    } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
389      unsigned Root = makeBinary();
390      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
391      Sz += buildSExpr(BOE->getRHS(), CallCtx);
392      NodeVec[Root].setSize(Sz);
393      return Sz;
394    } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
395      // Ignore & and * operators -- they're no-ops.
396      // However, we try to figure out whether the expression is a pointer,
397      // so we can use . and -> appropriately in error messages.
398      if (UOE->getOpcode() == UO_Deref) {
399        if (NDeref) ++(*NDeref);
400        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
401      }
402      if (UOE->getOpcode() == UO_AddrOf) {
403        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
404          if (DRE->getDecl()->isCXXInstanceMember()) {
405            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
406            // We interpret this syntax specially, as a wildcard.
407            unsigned Root = makeDot(DRE->getDecl(), false);
408            makeWildcard();
409            NodeVec[Root].setSize(2);
410            return 2;
411          }
412        }
413        if (NDeref) --(*NDeref);
414        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
415      }
416      unsigned Root = makeUnary();
417      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
418      NodeVec[Root].setSize(Sz);
419      return Sz;
420    } else if (const ArraySubscriptExpr *ASE =
421               dyn_cast<ArraySubscriptExpr>(Exp)) {
422      unsigned Root = makeIndex();
423      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
424      Sz += buildSExpr(ASE->getIdx(), CallCtx);
425      NodeVec[Root].setSize(Sz);
426      return Sz;
427    } else if (const AbstractConditionalOperator *CE =
428               dyn_cast<AbstractConditionalOperator>(Exp)) {
429      unsigned Root = makeUnknown(3);
430      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
431      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
432      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
433      NodeVec[Root].setSize(Sz);
434      return Sz;
435    } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
436      unsigned Root = makeUnknown(3);
437      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
438      Sz += buildSExpr(CE->getLHS(), CallCtx);
439      Sz += buildSExpr(CE->getRHS(), CallCtx);
440      NodeVec[Root].setSize(Sz);
441      return Sz;
442    } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
443      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
444    } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
445      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
446    } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
447      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
448    } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
449      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
450    } else if (isa<CharacterLiteral>(Exp) ||
451               isa<CXXNullPtrLiteralExpr>(Exp) ||
452               isa<GNUNullExpr>(Exp) ||
453               isa<CXXBoolLiteralExpr>(Exp) ||
454               isa<FloatingLiteral>(Exp) ||
455               isa<ImaginaryLiteral>(Exp) ||
456               isa<IntegerLiteral>(Exp) ||
457               isa<StringLiteral>(Exp) ||
458               isa<ObjCStringLiteral>(Exp)) {
459      makeNop();
460      return 1;  // FIXME: Ignore literals for now
461    } else {
462      makeNop();
463      return 1;  // Ignore.  FIXME: mark as invalid expression?
464    }
465  }
466
467  /// \brief Construct a SExpr from an expression.
468  /// \param MutexExp The original mutex expression within an attribute
469  /// \param DeclExp An expression involving the Decl on which the attribute
470  ///        occurs.
471  /// \param D  The declaration to which the lock/unlock attribute is attached.
472  void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
473                          const NamedDecl *D, VarDecl *SelfDecl = 0) {
474    CallingContext CallCtx(D);
475
476    if (MutexExp) {
477      if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
478        if (SLit->getString() == StringRef("*"))
479          // The "*" expr is a universal lock, which essentially turns off
480          // checks until it is removed from the lockset.
481          makeUniversal();
482        else
483          // Ignore other string literals for now.
484          makeNop();
485        return;
486      }
487    }
488
489    // If we are processing a raw attribute expression, with no substitutions.
490    if (DeclExp == 0) {
491      buildSExpr(MutexExp, 0);
492      return;
493    }
494
495    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
496    // for formal parameters when we call buildMutexID later.
497    if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
498      CallCtx.SelfArg   = ME->getBase();
499      CallCtx.SelfArrow = ME->isArrow();
500    } else if (const CXXMemberCallExpr *CE =
501               dyn_cast<CXXMemberCallExpr>(DeclExp)) {
502      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
503      CallCtx.SelfArrow = isCalleeArrow(CE->getCallee());
504      CallCtx.NumArgs   = CE->getNumArgs();
505      CallCtx.FunArgs   = CE->getArgs();
506    } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
507      CallCtx.NumArgs = CE->getNumArgs();
508      CallCtx.FunArgs = CE->getArgs();
509    } else if (const CXXConstructExpr *CE =
510               dyn_cast<CXXConstructExpr>(DeclExp)) {
511      CallCtx.SelfArg = 0;  // Will be set below
512      CallCtx.NumArgs = CE->getNumArgs();
513      CallCtx.FunArgs = CE->getArgs();
514    } else if (D && isa<CXXDestructorDecl>(D)) {
515      // There's no such thing as a "destructor call" in the AST.
516      CallCtx.SelfArg = DeclExp;
517    }
518
519    // Hack to handle constructors, where self cannot be recovered from
520    // the expression.
521    if (SelfDecl && !CallCtx.SelfArg) {
522      DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
523                          SelfDecl->getLocation());
524      CallCtx.SelfArg = &SelfDRE;
525
526      // If the attribute has no arguments, then assume the argument is "this".
527      if (MutexExp == 0)
528        buildSExpr(CallCtx.SelfArg, 0);
529      else  // For most attributes.
530        buildSExpr(MutexExp, &CallCtx);
531      return;
532    }
533
534    // If the attribute has no arguments, then assume the argument is "this".
535    if (MutexExp == 0)
536      buildSExpr(CallCtx.SelfArg, 0);
537    else  // For most attributes.
538      buildSExpr(MutexExp, &CallCtx);
539  }
540
541  /// \brief Get index of next sibling of node i.
542  unsigned getNextSibling(unsigned i) const {
543    return i + NodeVec[i].size();
544  }
545
546public:
547  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
548
549  /// \param MutexExp The original mutex expression within an attribute
550  /// \param DeclExp An expression involving the Decl on which the attribute
551  ///        occurs.
552  /// \param D  The declaration to which the lock/unlock attribute is attached.
553  /// Caller must check isValid() after construction.
554  SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D,
555        VarDecl *SelfDecl=0) {
556    buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
557  }
558
559  /// Return true if this is a valid decl sequence.
560  /// Caller must call this by hand after construction to handle errors.
561  bool isValid() const {
562    return !NodeVec.empty();
563  }
564
565  bool shouldIgnore() const {
566    // Nop is a mutex that we have decided to deliberately ignore.
567    assert(NodeVec.size() > 0 && "Invalid Mutex");
568    return NodeVec[0].kind() == EOP_Nop;
569  }
570
571  bool isUniversal() const {
572    assert(NodeVec.size() > 0 && "Invalid Mutex");
573    return NodeVec[0].kind() == EOP_Universal;
574  }
575
576  /// Issue a warning about an invalid lock expression
577  static void warnInvalidLock(ThreadSafetyHandler &Handler,
578                              const Expr *MutexExp,
579                              const Expr *DeclExp, const NamedDecl* D) {
580    SourceLocation Loc;
581    if (DeclExp)
582      Loc = DeclExp->getExprLoc();
583
584    // FIXME: add a note about the attribute location in MutexExp or D
585    if (Loc.isValid())
586      Handler.handleInvalidLockExp(Loc);
587  }
588
589  bool operator==(const SExpr &other) const {
590    return NodeVec == other.NodeVec;
591  }
592
593  bool operator!=(const SExpr &other) const {
594    return !(*this == other);
595  }
596
597  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
598    if (NodeVec[i].matches(Other.NodeVec[j])) {
599      unsigned ni = NodeVec[i].arity();
600      unsigned nj = Other.NodeVec[j].arity();
601      unsigned n = (ni < nj) ? ni : nj;
602      bool Result = true;
603      unsigned ci = i+1;  // first child of i
604      unsigned cj = j+1;  // first child of j
605      for (unsigned k = 0; k < n;
606           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
607        Result = Result && matches(Other, ci, cj);
608      }
609      return Result;
610    }
611    return false;
612  }
613
614  // A partial match between a.mu and b.mu returns true a and b have the same
615  // type (and thus mu refers to the same mutex declaration), regardless of
616  // whether a and b are different objects or not.
617  bool partiallyMatches(const SExpr &Other) const {
618    if (NodeVec[0].kind() == EOP_Dot)
619      return NodeVec[0].matches(Other.NodeVec[0]);
620    return false;
621  }
622
623  /// \brief Pretty print a lock expression for use in error messages.
624  std::string toString(unsigned i = 0) const {
625    assert(isValid());
626    if (i >= NodeVec.size())
627      return "";
628
629    const SExprNode* N = &NodeVec[i];
630    switch (N->kind()) {
631      case EOP_Nop:
632        return "_";
633      case EOP_Wildcard:
634        return "(?)";
635      case EOP_Universal:
636        return "*";
637      case EOP_This:
638        return "this";
639      case EOP_NVar:
640      case EOP_LVar: {
641        return N->getNamedDecl()->getNameAsString();
642      }
643      case EOP_Dot: {
644        if (NodeVec[i+1].kind() == EOP_Wildcard) {
645          std::string S = "&";
646          S += N->getNamedDecl()->getQualifiedNameAsString();
647          return S;
648        }
649        std::string FieldName = N->getNamedDecl()->getNameAsString();
650        if (NodeVec[i+1].kind() == EOP_This)
651          return FieldName;
652
653        std::string S = toString(i+1);
654        if (N->isArrow())
655          return S + "->" + FieldName;
656        else
657          return S + "." + FieldName;
658      }
659      case EOP_Call: {
660        std::string S = toString(i+1) + "(";
661        unsigned NumArgs = N->arity()-1;
662        unsigned ci = getNextSibling(i+1);
663        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
664          S += toString(ci);
665          if (k+1 < NumArgs) S += ",";
666        }
667        S += ")";
668        return S;
669      }
670      case EOP_MCall: {
671        std::string S = "";
672        if (NodeVec[i+1].kind() != EOP_This)
673          S = toString(i+1) + ".";
674        if (const NamedDecl *D = N->getFunctionDecl())
675          S += D->getNameAsString() + "(";
676        else
677          S += "#(";
678        unsigned NumArgs = N->arity()-1;
679        unsigned ci = getNextSibling(i+1);
680        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
681          S += toString(ci);
682          if (k+1 < NumArgs) S += ",";
683        }
684        S += ")";
685        return S;
686      }
687      case EOP_Index: {
688        std::string S1 = toString(i+1);
689        std::string S2 = toString(i+1 + NodeVec[i+1].size());
690        return S1 + "[" + S2 + "]";
691      }
692      case EOP_Unary: {
693        std::string S = toString(i+1);
694        return "#" + S;
695      }
696      case EOP_Binary: {
697        std::string S1 = toString(i+1);
698        std::string S2 = toString(i+1 + NodeVec[i+1].size());
699        return "(" + S1 + "#" + S2 + ")";
700      }
701      case EOP_Unknown: {
702        unsigned NumChildren = N->arity();
703        if (NumChildren == 0)
704          return "(...)";
705        std::string S = "(";
706        unsigned ci = i+1;
707        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
708          S += toString(ci);
709          if (j+1 < NumChildren) S += "#";
710        }
711        S += ")";
712        return S;
713      }
714    }
715    return "";
716  }
717};
718
719
720
721/// \brief A short list of SExprs
722class MutexIDList : public SmallVector<SExpr, 3> {
723public:
724  /// \brief Return true if the list contains the specified SExpr
725  /// Performs a linear search, because these lists are almost always very small.
726  bool contains(const SExpr& M) {
727    for (iterator I=begin(),E=end(); I != E; ++I)
728      if ((*I) == M) return true;
729    return false;
730  }
731
732  /// \brief Push M onto list, bud discard duplicates
733  void push_back_nodup(const SExpr& M) {
734    if (!contains(M)) push_back(M);
735  }
736};
737
738
739
740/// \brief This is a helper class that stores info about the most recent
741/// accquire of a Lock.
742///
743/// The main body of the analysis maps MutexIDs to LockDatas.
744struct LockData {
745  SourceLocation AcquireLoc;
746
747  /// \brief LKind stores whether a lock is held shared or exclusively.
748  /// Note that this analysis does not currently support either re-entrant
749  /// locking or lock "upgrading" and "downgrading" between exclusive and
750  /// shared.
751  ///
752  /// FIXME: add support for re-entrant locking and lock up/downgrading
753  LockKind LKind;
754  bool     Asserted;           // for asserted locks
755  bool     Managed;            // for ScopedLockable objects
756  SExpr    UnderlyingMutex;    // for ScopedLockable objects
757
758  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
759           bool Asrt=false)
760    : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
761      UnderlyingMutex(Decl::EmptyShell())
762  {}
763
764  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
765    : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false),
766      UnderlyingMutex(Mu)
767  {}
768
769  bool operator==(const LockData &other) const {
770    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
771  }
772
773  bool operator!=(const LockData &other) const {
774    return !(*this == other);
775  }
776
777  void Profile(llvm::FoldingSetNodeID &ID) const {
778    ID.AddInteger(AcquireLoc.getRawEncoding());
779    ID.AddInteger(LKind);
780  }
781
782  bool isAtLeast(LockKind LK) {
783    return (LK == LK_Shared) || (LKind == LK_Exclusive);
784  }
785};
786
787
788/// \brief A FactEntry stores a single fact that is known at a particular point
789/// in the program execution.  Currently, this is information regarding a lock
790/// that is held at that point.
791struct FactEntry {
792  SExpr    MutID;
793  LockData LDat;
794
795  FactEntry(const SExpr& M, const LockData& L)
796    : MutID(M), LDat(L)
797  { }
798};
799
800
801typedef unsigned short FactID;
802
803/// \brief FactManager manages the memory for all facts that are created during
804/// the analysis of a single routine.
805class FactManager {
806private:
807  std::vector<FactEntry> Facts;
808
809public:
810  FactID newLock(const SExpr& M, const LockData& L) {
811    Facts.push_back(FactEntry(M,L));
812    return static_cast<unsigned short>(Facts.size() - 1);
813  }
814
815  const FactEntry& operator[](FactID F) const { return Facts[F]; }
816  FactEntry&       operator[](FactID F)       { return Facts[F]; }
817};
818
819
820/// \brief A FactSet is the set of facts that are known to be true at a
821/// particular program point.  FactSets must be small, because they are
822/// frequently copied, and are thus implemented as a set of indices into a
823/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
824/// locks, so we can get away with doing a linear search for lookup.  Note
825/// that a hashtable or map is inappropriate in this case, because lookups
826/// may involve partial pattern matches, rather than exact matches.
827class FactSet {
828private:
829  typedef SmallVector<FactID, 4> FactVec;
830
831  FactVec FactIDs;
832
833public:
834  typedef FactVec::iterator       iterator;
835  typedef FactVec::const_iterator const_iterator;
836
837  iterator       begin()       { return FactIDs.begin(); }
838  const_iterator begin() const { return FactIDs.begin(); }
839
840  iterator       end()       { return FactIDs.end(); }
841  const_iterator end() const { return FactIDs.end(); }
842
843  bool isEmpty() const { return FactIDs.size() == 0; }
844
845  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
846    FactID F = FM.newLock(M, L);
847    FactIDs.push_back(F);
848    return F;
849  }
850
851  bool removeLock(FactManager& FM, const SExpr& M) {
852    unsigned n = FactIDs.size();
853    if (n == 0)
854      return false;
855
856    for (unsigned i = 0; i < n-1; ++i) {
857      if (FM[FactIDs[i]].MutID.matches(M)) {
858        FactIDs[i] = FactIDs[n-1];
859        FactIDs.pop_back();
860        return true;
861      }
862    }
863    if (FM[FactIDs[n-1]].MutID.matches(M)) {
864      FactIDs.pop_back();
865      return true;
866    }
867    return false;
868  }
869
870  // Returns an iterator
871  iterator findLockIter(FactManager &FM, const SExpr &M) {
872    for (iterator I = begin(), E = end(); I != E; ++I) {
873      const SExpr &Exp = FM[*I].MutID;
874      if (Exp.matches(M))
875        return I;
876    }
877    return end();
878  }
879
880  LockData* findLock(FactManager &FM, const SExpr &M) const {
881    for (const_iterator I = begin(), E = end(); I != E; ++I) {
882      const SExpr &Exp = FM[*I].MutID;
883      if (Exp.matches(M))
884        return &FM[*I].LDat;
885    }
886    return 0;
887  }
888
889  LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
890    for (const_iterator I = begin(), E = end(); I != E; ++I) {
891      const SExpr &Exp = FM[*I].MutID;
892      if (Exp.matches(M) || Exp.isUniversal())
893        return &FM[*I].LDat;
894    }
895    return 0;
896  }
897
898  FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
899    for (const_iterator I=begin(), E=end(); I != E; ++I) {
900      const SExpr& Exp = FM[*I].MutID;
901      if (Exp.partiallyMatches(M)) return &FM[*I];
902    }
903    return 0;
904  }
905};
906
907
908
909/// A Lockset maps each SExpr (defined above) to information about how it has
910/// been locked.
911typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
912typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
913
914class LocalVariableMap;
915
916/// A side (entry or exit) of a CFG node.
917enum CFGBlockSide { CBS_Entry, CBS_Exit };
918
919/// CFGBlockInfo is a struct which contains all the information that is
920/// maintained for each block in the CFG.  See LocalVariableMap for more
921/// information about the contexts.
922struct CFGBlockInfo {
923  FactSet EntrySet;             // Lockset held at entry to block
924  FactSet ExitSet;              // Lockset held at exit from block
925  LocalVarContext EntryContext; // Context held at entry to block
926  LocalVarContext ExitContext;  // Context held at exit from block
927  SourceLocation EntryLoc;      // Location of first statement in block
928  SourceLocation ExitLoc;       // Location of last statement in block.
929  unsigned EntryIndex;          // Used to replay contexts later
930  bool Reachable;               // Is this block reachable?
931
932  const FactSet &getSet(CFGBlockSide Side) const {
933    return Side == CBS_Entry ? EntrySet : ExitSet;
934  }
935  SourceLocation getLocation(CFGBlockSide Side) const {
936    return Side == CBS_Entry ? EntryLoc : ExitLoc;
937  }
938
939private:
940  CFGBlockInfo(LocalVarContext EmptyCtx)
941    : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
942  { }
943
944public:
945  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
946};
947
948
949
950// A LocalVariableMap maintains a map from local variables to their currently
951// valid definitions.  It provides SSA-like functionality when traversing the
952// CFG.  Like SSA, each definition or assignment to a variable is assigned a
953// unique name (an integer), which acts as the SSA name for that definition.
954// The total set of names is shared among all CFG basic blocks.
955// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
956// with their SSA-names.  Instead, we compute a Context for each point in the
957// code, which maps local variables to the appropriate SSA-name.  This map
958// changes with each assignment.
959//
960// The map is computed in a single pass over the CFG.  Subsequent analyses can
961// then query the map to find the appropriate Context for a statement, and use
962// that Context to look up the definitions of variables.
963class LocalVariableMap {
964public:
965  typedef LocalVarContext Context;
966
967  /// A VarDefinition consists of an expression, representing the value of the
968  /// variable, along with the context in which that expression should be
969  /// interpreted.  A reference VarDefinition does not itself contain this
970  /// information, but instead contains a pointer to a previous VarDefinition.
971  struct VarDefinition {
972  public:
973    friend class LocalVariableMap;
974
975    const NamedDecl *Dec;  // The original declaration for this variable.
976    const Expr *Exp;       // The expression for this variable, OR
977    unsigned Ref;          // Reference to another VarDefinition
978    Context Ctx;           // The map with which Exp should be interpreted.
979
980    bool isReference() { return !Exp; }
981
982  private:
983    // Create ordinary variable definition
984    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
985      : Dec(D), Exp(E), Ref(0), Ctx(C)
986    { }
987
988    // Create reference to previous definition
989    VarDefinition(const NamedDecl *D, unsigned R, Context C)
990      : Dec(D), Exp(0), Ref(R), Ctx(C)
991    { }
992  };
993
994private:
995  Context::Factory ContextFactory;
996  std::vector<VarDefinition> VarDefinitions;
997  std::vector<unsigned> CtxIndices;
998  std::vector<std::pair<Stmt*, Context> > SavedContexts;
999
1000public:
1001  LocalVariableMap() {
1002    // index 0 is a placeholder for undefined variables (aka phi-nodes).
1003    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
1004  }
1005
1006  /// Look up a definition, within the given context.
1007  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
1008    const unsigned *i = Ctx.lookup(D);
1009    if (!i)
1010      return 0;
1011    assert(*i < VarDefinitions.size());
1012    return &VarDefinitions[*i];
1013  }
1014
1015  /// Look up the definition for D within the given context.  Returns
1016  /// NULL if the expression is not statically known.  If successful, also
1017  /// modifies Ctx to hold the context of the return Expr.
1018  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
1019    const unsigned *P = Ctx.lookup(D);
1020    if (!P)
1021      return 0;
1022
1023    unsigned i = *P;
1024    while (i > 0) {
1025      if (VarDefinitions[i].Exp) {
1026        Ctx = VarDefinitions[i].Ctx;
1027        return VarDefinitions[i].Exp;
1028      }
1029      i = VarDefinitions[i].Ref;
1030    }
1031    return 0;
1032  }
1033
1034  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
1035
1036  /// Return the next context after processing S.  This function is used by
1037  /// clients of the class to get the appropriate context when traversing the
1038  /// CFG.  It must be called for every assignment or DeclStmt.
1039  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
1040    if (SavedContexts[CtxIndex+1].first == S) {
1041      CtxIndex++;
1042      Context Result = SavedContexts[CtxIndex].second;
1043      return Result;
1044    }
1045    return C;
1046  }
1047
1048  void dumpVarDefinitionName(unsigned i) {
1049    if (i == 0) {
1050      llvm::errs() << "Undefined";
1051      return;
1052    }
1053    const NamedDecl *Dec = VarDefinitions[i].Dec;
1054    if (!Dec) {
1055      llvm::errs() << "<<NULL>>";
1056      return;
1057    }
1058    Dec->printName(llvm::errs());
1059    llvm::errs() << "." << i << " " << ((const void*) Dec);
1060  }
1061
1062  /// Dumps an ASCII representation of the variable map to llvm::errs()
1063  void dump() {
1064    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1065      const Expr *Exp = VarDefinitions[i].Exp;
1066      unsigned Ref = VarDefinitions[i].Ref;
1067
1068      dumpVarDefinitionName(i);
1069      llvm::errs() << " = ";
1070      if (Exp) Exp->dump();
1071      else {
1072        dumpVarDefinitionName(Ref);
1073        llvm::errs() << "\n";
1074      }
1075    }
1076  }
1077
1078  /// Dumps an ASCII representation of a Context to llvm::errs()
1079  void dumpContext(Context C) {
1080    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1081      const NamedDecl *D = I.getKey();
1082      D->printName(llvm::errs());
1083      const unsigned *i = C.lookup(D);
1084      llvm::errs() << " -> ";
1085      dumpVarDefinitionName(*i);
1086      llvm::errs() << "\n";
1087    }
1088  }
1089
1090  /// Builds the variable map.
1091  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1092                     std::vector<CFGBlockInfo> &BlockInfo);
1093
1094protected:
1095  // Get the current context index
1096  unsigned getContextIndex() { return SavedContexts.size()-1; }
1097
1098  // Save the current context for later replay
1099  void saveContext(Stmt *S, Context C) {
1100    SavedContexts.push_back(std::make_pair(S,C));
1101  }
1102
1103  // Adds a new definition to the given context, and returns a new context.
1104  // This method should be called when declaring a new variable.
1105  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1106    assert(!Ctx.contains(D));
1107    unsigned newID = VarDefinitions.size();
1108    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1109    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1110    return NewCtx;
1111  }
1112
1113  // Add a new reference to an existing definition.
1114  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1115    unsigned newID = VarDefinitions.size();
1116    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1117    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1118    return NewCtx;
1119  }
1120
1121  // Updates a definition only if that definition is already in the map.
1122  // This method should be called when assigning to an existing variable.
1123  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1124    if (Ctx.contains(D)) {
1125      unsigned newID = VarDefinitions.size();
1126      Context NewCtx = ContextFactory.remove(Ctx, D);
1127      NewCtx = ContextFactory.add(NewCtx, D, newID);
1128      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1129      return NewCtx;
1130    }
1131    return Ctx;
1132  }
1133
1134  // Removes a definition from the context, but keeps the variable name
1135  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1136  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1137    Context NewCtx = Ctx;
1138    if (NewCtx.contains(D)) {
1139      NewCtx = ContextFactory.remove(NewCtx, D);
1140      NewCtx = ContextFactory.add(NewCtx, D, 0);
1141    }
1142    return NewCtx;
1143  }
1144
1145  // Remove a definition entirely frmo the context.
1146  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1147    Context NewCtx = Ctx;
1148    if (NewCtx.contains(D)) {
1149      NewCtx = ContextFactory.remove(NewCtx, D);
1150    }
1151    return NewCtx;
1152  }
1153
1154  Context intersectContexts(Context C1, Context C2);
1155  Context createReferenceContext(Context C);
1156  void intersectBackEdge(Context C1, Context C2);
1157
1158  friend class VarMapBuilder;
1159};
1160
1161
1162// This has to be defined after LocalVariableMap.
1163CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1164  return CFGBlockInfo(M.getEmptyContext());
1165}
1166
1167
1168/// Visitor which builds a LocalVariableMap
1169class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1170public:
1171  LocalVariableMap* VMap;
1172  LocalVariableMap::Context Ctx;
1173
1174  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1175    : VMap(VM), Ctx(C) {}
1176
1177  void VisitDeclStmt(DeclStmt *S);
1178  void VisitBinaryOperator(BinaryOperator *BO);
1179};
1180
1181
1182// Add new local variables to the variable map
1183void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1184  bool modifiedCtx = false;
1185  DeclGroupRef DGrp = S->getDeclGroup();
1186  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1187    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1188      Expr *E = VD->getInit();
1189
1190      // Add local variables with trivial type to the variable map
1191      QualType T = VD->getType();
1192      if (T.isTrivialType(VD->getASTContext())) {
1193        Ctx = VMap->addDefinition(VD, E, Ctx);
1194        modifiedCtx = true;
1195      }
1196    }
1197  }
1198  if (modifiedCtx)
1199    VMap->saveContext(S, Ctx);
1200}
1201
1202// Update local variable definitions in variable map
1203void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1204  if (!BO->isAssignmentOp())
1205    return;
1206
1207  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1208
1209  // Update the variable map and current context.
1210  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1211    ValueDecl *VDec = DRE->getDecl();
1212    if (Ctx.lookup(VDec)) {
1213      if (BO->getOpcode() == BO_Assign)
1214        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1215      else
1216        // FIXME -- handle compound assignment operators
1217        Ctx = VMap->clearDefinition(VDec, Ctx);
1218      VMap->saveContext(BO, Ctx);
1219    }
1220  }
1221}
1222
1223
1224// Computes the intersection of two contexts.  The intersection is the
1225// set of variables which have the same definition in both contexts;
1226// variables with different definitions are discarded.
1227LocalVariableMap::Context
1228LocalVariableMap::intersectContexts(Context C1, Context C2) {
1229  Context Result = C1;
1230  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1231    const NamedDecl *Dec = I.getKey();
1232    unsigned i1 = I.getData();
1233    const unsigned *i2 = C2.lookup(Dec);
1234    if (!i2)             // variable doesn't exist on second path
1235      Result = removeDefinition(Dec, Result);
1236    else if (*i2 != i1)  // variable exists, but has different definition
1237      Result = clearDefinition(Dec, Result);
1238  }
1239  return Result;
1240}
1241
1242// For every variable in C, create a new variable that refers to the
1243// definition in C.  Return a new context that contains these new variables.
1244// (We use this for a naive implementation of SSA on loop back-edges.)
1245LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1246  Context Result = getEmptyContext();
1247  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1248    const NamedDecl *Dec = I.getKey();
1249    unsigned i = I.getData();
1250    Result = addReference(Dec, i, Result);
1251  }
1252  return Result;
1253}
1254
1255// This routine also takes the intersection of C1 and C2, but it does so by
1256// altering the VarDefinitions.  C1 must be the result of an earlier call to
1257// createReferenceContext.
1258void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1259  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1260    const NamedDecl *Dec = I.getKey();
1261    unsigned i1 = I.getData();
1262    VarDefinition *VDef = &VarDefinitions[i1];
1263    assert(VDef->isReference());
1264
1265    const unsigned *i2 = C2.lookup(Dec);
1266    if (!i2 || (*i2 != i1))
1267      VDef->Ref = 0;    // Mark this variable as undefined
1268  }
1269}
1270
1271
1272// Traverse the CFG in topological order, so all predecessors of a block
1273// (excluding back-edges) are visited before the block itself.  At
1274// each point in the code, we calculate a Context, which holds the set of
1275// variable definitions which are visible at that point in execution.
1276// Visible variables are mapped to their definitions using an array that
1277// contains all definitions.
1278//
1279// At join points in the CFG, the set is computed as the intersection of
1280// the incoming sets along each edge, E.g.
1281//
1282//                       { Context                 | VarDefinitions }
1283//   int x = 0;          { x -> x1                 | x1 = 0 }
1284//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1285//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1286//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1287//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1288//
1289// This is essentially a simpler and more naive version of the standard SSA
1290// algorithm.  Those definitions that remain in the intersection are from blocks
1291// that strictly dominate the current block.  We do not bother to insert proper
1292// phi nodes, because they are not used in our analysis; instead, wherever
1293// a phi node would be required, we simply remove that definition from the
1294// context (E.g. x above).
1295//
1296// The initial traversal does not capture back-edges, so those need to be
1297// handled on a separate pass.  Whenever the first pass encounters an
1298// incoming back edge, it duplicates the context, creating new definitions
1299// that refer back to the originals.  (These correspond to places where SSA
1300// might have to insert a phi node.)  On the second pass, these definitions are
1301// set to NULL if the variable has changed on the back-edge (i.e. a phi
1302// node was actually required.)  E.g.
1303//
1304//                       { Context           | VarDefinitions }
1305//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1306//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1307//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1308//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1309//
1310void LocalVariableMap::traverseCFG(CFG *CFGraph,
1311                                   PostOrderCFGView *SortedGraph,
1312                                   std::vector<CFGBlockInfo> &BlockInfo) {
1313  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1314
1315  CtxIndices.resize(CFGraph->getNumBlockIDs());
1316
1317  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1318       E = SortedGraph->end(); I!= E; ++I) {
1319    const CFGBlock *CurrBlock = *I;
1320    int CurrBlockID = CurrBlock->getBlockID();
1321    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1322
1323    VisitedBlocks.insert(CurrBlock);
1324
1325    // Calculate the entry context for the current block
1326    bool HasBackEdges = false;
1327    bool CtxInit = true;
1328    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1329         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1330      // if *PI -> CurrBlock is a back edge, so skip it
1331      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1332        HasBackEdges = true;
1333        continue;
1334      }
1335
1336      int PrevBlockID = (*PI)->getBlockID();
1337      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1338
1339      if (CtxInit) {
1340        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1341        CtxInit = false;
1342      }
1343      else {
1344        CurrBlockInfo->EntryContext =
1345          intersectContexts(CurrBlockInfo->EntryContext,
1346                            PrevBlockInfo->ExitContext);
1347      }
1348    }
1349
1350    // Duplicate the context if we have back-edges, so we can call
1351    // intersectBackEdges later.
1352    if (HasBackEdges)
1353      CurrBlockInfo->EntryContext =
1354        createReferenceContext(CurrBlockInfo->EntryContext);
1355
1356    // Create a starting context index for the current block
1357    saveContext(0, CurrBlockInfo->EntryContext);
1358    CurrBlockInfo->EntryIndex = getContextIndex();
1359
1360    // Visit all the statements in the basic block.
1361    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1362    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1363         BE = CurrBlock->end(); BI != BE; ++BI) {
1364      switch (BI->getKind()) {
1365        case CFGElement::Statement: {
1366          CFGStmt CS = BI->castAs<CFGStmt>();
1367          VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
1368          break;
1369        }
1370        default:
1371          break;
1372      }
1373    }
1374    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1375
1376    // Mark variables on back edges as "unknown" if they've been changed.
1377    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1378         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1379      // if CurrBlock -> *SI is *not* a back edge
1380      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1381        continue;
1382
1383      CFGBlock *FirstLoopBlock = *SI;
1384      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1385      Context LoopEnd   = CurrBlockInfo->ExitContext;
1386      intersectBackEdge(LoopBegin, LoopEnd);
1387    }
1388  }
1389
1390  // Put an extra entry at the end of the indexed context array
1391  unsigned exitID = CFGraph->getExit().getBlockID();
1392  saveContext(0, BlockInfo[exitID].ExitContext);
1393}
1394
1395/// Find the appropriate source locations to use when producing diagnostics for
1396/// each block in the CFG.
1397static void findBlockLocations(CFG *CFGraph,
1398                               PostOrderCFGView *SortedGraph,
1399                               std::vector<CFGBlockInfo> &BlockInfo) {
1400  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1401       E = SortedGraph->end(); I!= E; ++I) {
1402    const CFGBlock *CurrBlock = *I;
1403    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1404
1405    // Find the source location of the last statement in the block, if the
1406    // block is not empty.
1407    if (const Stmt *S = CurrBlock->getTerminator()) {
1408      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1409    } else {
1410      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1411           BE = CurrBlock->rend(); BI != BE; ++BI) {
1412        // FIXME: Handle other CFGElement kinds.
1413        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1414          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1415          break;
1416        }
1417      }
1418    }
1419
1420    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1421      // This block contains at least one statement. Find the source location
1422      // of the first statement in the block.
1423      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1424           BE = CurrBlock->end(); BI != BE; ++BI) {
1425        // FIXME: Handle other CFGElement kinds.
1426        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
1427          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1428          break;
1429        }
1430      }
1431    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1432               CurrBlock != &CFGraph->getExit()) {
1433      // The block is empty, and has a single predecessor. Use its exit
1434      // location.
1435      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1436          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1437    }
1438  }
1439}
1440
1441/// \brief Class which implements the core thread safety analysis routines.
1442class ThreadSafetyAnalyzer {
1443  friend class BuildLockset;
1444
1445  ThreadSafetyHandler       &Handler;
1446  LocalVariableMap          LocalVarMap;
1447  FactManager               FactMan;
1448  std::vector<CFGBlockInfo> BlockInfo;
1449
1450public:
1451  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1452
1453  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1454  void removeLock(FactSet &FSet, const SExpr &Mutex,
1455                  SourceLocation UnlockLoc, bool FullyRemove=false);
1456
1457  template <typename AttrType>
1458  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1459                   const NamedDecl *D, VarDecl *SelfDecl=0);
1460
1461  template <class AttrType>
1462  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1463                   const NamedDecl *D,
1464                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1465                   Expr *BrE, bool Neg);
1466
1467  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1468                                     bool &Negate);
1469
1470  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1471                      const CFGBlock* PredBlock,
1472                      const CFGBlock *CurrBlock);
1473
1474  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1475                        SourceLocation JoinLoc,
1476                        LockErrorKind LEK1, LockErrorKind LEK2,
1477                        bool Modify=true);
1478
1479  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1480                        SourceLocation JoinLoc, LockErrorKind LEK1,
1481                        bool Modify=true) {
1482    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1483  }
1484
1485  void runAnalysis(AnalysisDeclContext &AC);
1486};
1487
1488
1489/// \brief Add a new lock to the lockset, warning if the lock is already there.
1490/// \param Mutex -- the Mutex expression for the lock
1491/// \param LDat  -- the LockData for the lock
1492void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1493                                   const LockData &LDat) {
1494  // FIXME: deal with acquired before/after annotations.
1495  // FIXME: Don't always warn when we have support for reentrant locks.
1496  if (Mutex.shouldIgnore())
1497    return;
1498
1499  if (FSet.findLock(FactMan, Mutex)) {
1500    if (!LDat.Asserted)
1501      Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1502  } else {
1503    FSet.addLock(FactMan, Mutex, LDat);
1504  }
1505}
1506
1507
1508/// \brief Remove a lock from the lockset, warning if the lock is not there.
1509/// \param Mutex The lock expression corresponding to the lock to be removed
1510/// \param UnlockLoc The source location of the unlock (only used in error msg)
1511void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1512                                      const SExpr &Mutex,
1513                                      SourceLocation UnlockLoc,
1514                                      bool FullyRemove) {
1515  if (Mutex.shouldIgnore())
1516    return;
1517
1518  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1519  if (!LDat) {
1520    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1521    return;
1522  }
1523
1524  if (LDat->UnderlyingMutex.isValid()) {
1525    // This is scoped lockable object, which manages the real mutex.
1526    if (FullyRemove) {
1527      // We're destroying the managing object.
1528      // Remove the underlying mutex if it exists; but don't warn.
1529      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1530        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1531    } else {
1532      // We're releasing the underlying mutex, but not destroying the
1533      // managing object.  Warn on dual release.
1534      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1535        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1536                                      UnlockLoc);
1537      }
1538      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1539      return;
1540    }
1541  }
1542  FSet.removeLock(FactMan, Mutex);
1543}
1544
1545
1546/// \brief Extract the list of mutexIDs from the attribute on an expression,
1547/// and push them onto Mtxs, discarding any duplicates.
1548template <typename AttrType>
1549void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1550                                       Expr *Exp, const NamedDecl *D,
1551                                       VarDecl *SelfDecl) {
1552  typedef typename AttrType::args_iterator iterator_type;
1553
1554  if (Attr->args_size() == 0) {
1555    // The mutex held is the "this" object.
1556    SExpr Mu(0, Exp, D, SelfDecl);
1557    if (!Mu.isValid())
1558      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1559    else
1560      Mtxs.push_back_nodup(Mu);
1561    return;
1562  }
1563
1564  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1565    SExpr Mu(*I, Exp, D, SelfDecl);
1566    if (!Mu.isValid())
1567      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1568    else
1569      Mtxs.push_back_nodup(Mu);
1570  }
1571}
1572
1573
1574/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1575/// trylock applies to the given edge, then push them onto Mtxs, discarding
1576/// any duplicates.
1577template <class AttrType>
1578void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1579                                       Expr *Exp, const NamedDecl *D,
1580                                       const CFGBlock *PredBlock,
1581                                       const CFGBlock *CurrBlock,
1582                                       Expr *BrE, bool Neg) {
1583  // Find out which branch has the lock
1584  bool branch = 0;
1585  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1586    branch = BLE->getValue();
1587  }
1588  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1589    branch = ILE->getValue().getBoolValue();
1590  }
1591  int branchnum = branch ? 0 : 1;
1592  if (Neg) branchnum = !branchnum;
1593
1594  // If we've taken the trylock branch, then add the lock
1595  int i = 0;
1596  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1597       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1598    if (*SI == CurrBlock && i == branchnum) {
1599      getMutexIDs(Mtxs, Attr, Exp, D);
1600    }
1601  }
1602}
1603
1604
1605bool getStaticBooleanValue(Expr* E, bool& TCond) {
1606  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1607    TCond = false;
1608    return true;
1609  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1610    TCond = BLE->getValue();
1611    return true;
1612  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1613    TCond = ILE->getValue().getBoolValue();
1614    return true;
1615  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1616    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1617  }
1618  return false;
1619}
1620
1621
1622// If Cond can be traced back to a function call, return the call expression.
1623// The negate variable should be called with false, and will be set to true
1624// if the function call is negated, e.g. if (!mu.tryLock(...))
1625const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1626                                                         LocalVarContext C,
1627                                                         bool &Negate) {
1628  if (!Cond)
1629    return 0;
1630
1631  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1632    return CallExp;
1633  }
1634  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1635    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1636  }
1637  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1638    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1639  }
1640  else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1641    return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1642  }
1643  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1644    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1645    return getTrylockCallExpr(E, C, Negate);
1646  }
1647  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1648    if (UOP->getOpcode() == UO_LNot) {
1649      Negate = !Negate;
1650      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1651    }
1652    return 0;
1653  }
1654  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1655    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1656      if (BOP->getOpcode() == BO_NE)
1657        Negate = !Negate;
1658
1659      bool TCond = false;
1660      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1661        if (!TCond) Negate = !Negate;
1662        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1663      }
1664      TCond = false;
1665      if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1666        if (!TCond) Negate = !Negate;
1667        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1668      }
1669      return 0;
1670    }
1671    if (BOP->getOpcode() == BO_LAnd) {
1672      // LHS must have been evaluated in a different block.
1673      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1674    }
1675    if (BOP->getOpcode() == BO_LOr) {
1676      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1677    }
1678    return 0;
1679  }
1680  return 0;
1681}
1682
1683
1684/// \brief Find the lockset that holds on the edge between PredBlock
1685/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1686/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1687void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1688                                          const FactSet &ExitSet,
1689                                          const CFGBlock *PredBlock,
1690                                          const CFGBlock *CurrBlock) {
1691  Result = ExitSet;
1692
1693  const Stmt *Cond = PredBlock->getTerminatorCondition();
1694  if (!Cond)
1695    return;
1696
1697  bool Negate = false;
1698  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1699  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1700
1701  CallExpr *Exp =
1702    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1703  if (!Exp)
1704    return;
1705
1706  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1707  if(!FunDecl || !FunDecl->hasAttrs())
1708    return;
1709
1710  MutexIDList ExclusiveLocksToAdd;
1711  MutexIDList SharedLocksToAdd;
1712
1713  // If the condition is a call to a Trylock function, then grab the attributes
1714  AttrVec &ArgAttrs = FunDecl->getAttrs();
1715  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1716    Attr *Attr = ArgAttrs[i];
1717    switch (Attr->getKind()) {
1718      case attr::ExclusiveTrylockFunction: {
1719        ExclusiveTrylockFunctionAttr *A =
1720          cast<ExclusiveTrylockFunctionAttr>(Attr);
1721        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1722                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1723        break;
1724      }
1725      case attr::SharedTrylockFunction: {
1726        SharedTrylockFunctionAttr *A =
1727          cast<SharedTrylockFunctionAttr>(Attr);
1728        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1729                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1730        break;
1731      }
1732      default:
1733        break;
1734    }
1735  }
1736
1737  // Add and remove locks.
1738  SourceLocation Loc = Exp->getExprLoc();
1739  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1740    addLock(Result, ExclusiveLocksToAdd[i],
1741            LockData(Loc, LK_Exclusive));
1742  }
1743  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1744    addLock(Result, SharedLocksToAdd[i],
1745            LockData(Loc, LK_Shared));
1746  }
1747}
1748
1749
1750/// \brief We use this class to visit different types of expressions in
1751/// CFGBlocks, and build up the lockset.
1752/// An expression may cause us to add or remove locks from the lockset, or else
1753/// output error messages related to missing locks.
1754/// FIXME: In future, we may be able to not inherit from a visitor.
1755class BuildLockset : public StmtVisitor<BuildLockset> {
1756  friend class ThreadSafetyAnalyzer;
1757
1758  ThreadSafetyAnalyzer *Analyzer;
1759  FactSet FSet;
1760  LocalVariableMap::Context LVarCtx;
1761  unsigned CtxIndex;
1762
1763  // Helper functions
1764  const ValueDecl *getValueDecl(const Expr *Exp);
1765
1766  void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1767                          Expr *MutexExp, ProtectedOperationKind POK);
1768  void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp);
1769
1770  void checkAccess(const Expr *Exp, AccessKind AK);
1771  void checkPtAccess(const Expr *Exp, AccessKind AK);
1772
1773  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1774
1775public:
1776  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1777    : StmtVisitor<BuildLockset>(),
1778      Analyzer(Anlzr),
1779      FSet(Info.EntrySet),
1780      LVarCtx(Info.EntryContext),
1781      CtxIndex(Info.EntryIndex)
1782  {}
1783
1784  void VisitUnaryOperator(UnaryOperator *UO);
1785  void VisitBinaryOperator(BinaryOperator *BO);
1786  void VisitCastExpr(CastExpr *CE);
1787  void VisitCallExpr(CallExpr *Exp);
1788  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1789  void VisitDeclStmt(DeclStmt *S);
1790};
1791
1792
1793/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1794const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) {
1795  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp))
1796    return getValueDecl(CE->getSubExpr());
1797
1798  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1799    return DR->getDecl();
1800
1801  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1802    return ME->getMemberDecl();
1803
1804  return 0;
1805}
1806
1807/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1808/// of at least the passed in AccessKind.
1809void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1810                                      AccessKind AK, Expr *MutexExp,
1811                                      ProtectedOperationKind POK) {
1812  LockKind LK = getLockKindFromAccessKind(AK);
1813
1814  SExpr Mutex(MutexExp, Exp, D);
1815  if (!Mutex.isValid()) {
1816    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1817    return;
1818  } else if (Mutex.shouldIgnore()) {
1819    return;
1820  }
1821
1822  LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1823  bool NoError = true;
1824  if (!LDat) {
1825    // No exact match found.  Look for a partial match.
1826    FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1827    if (FEntry) {
1828      // Warn that there's no precise match.
1829      LDat = &FEntry->LDat;
1830      std::string PartMatchStr = FEntry->MutID.toString();
1831      StringRef   PartMatchName(PartMatchStr);
1832      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1833                                           Exp->getExprLoc(), &PartMatchName);
1834    } else {
1835      // Warn that there's no match at all.
1836      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1837                                           Exp->getExprLoc());
1838    }
1839    NoError = false;
1840  }
1841  // Make sure the mutex we found is the right kind.
1842  if (NoError && LDat && !LDat->isAtLeast(LK))
1843    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1844                                         Exp->getExprLoc());
1845}
1846
1847/// \brief Warn if the LSet contains the given lock.
1848void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp,
1849                                   Expr *MutexExp) {
1850  SExpr Mutex(MutexExp, Exp, D);
1851  if (!Mutex.isValid()) {
1852    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1853    return;
1854  }
1855
1856  LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1857  if (LDat) {
1858    std::string DeclName = D->getNameAsString();
1859    StringRef   DeclNameSR (DeclName);
1860    Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
1861                                            Exp->getExprLoc());
1862  }
1863}
1864
1865
1866/// \brief Checks guarded_by and pt_guarded_by attributes.
1867/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1868/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1869/// Similarly, we check if the access is to an expression that dereferences
1870/// a pointer marked with pt_guarded_by.
1871void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
1872  Exp = Exp->IgnoreParenCasts();
1873
1874  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
1875    // For dereferences
1876    if (UO->getOpcode() == clang::UO_Deref)
1877      checkPtAccess(UO->getSubExpr(), AK);
1878    return;
1879  }
1880
1881  if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1882    if (Analyzer->Handler.issueBetaWarnings()) {
1883      checkPtAccess(AE->getLHS(), AK);
1884      return;
1885    }
1886  }
1887
1888  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
1889    if (ME->isArrow())
1890      checkPtAccess(ME->getBase(), AK);
1891    else
1892      checkAccess(ME->getBase(), AK);
1893  }
1894
1895  const ValueDecl *D = getValueDecl(Exp);
1896  if (!D || !D->hasAttrs())
1897    return;
1898
1899  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1900    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1901                                        Exp->getExprLoc());
1902
1903  const AttrVec &ArgAttrs = D->getAttrs();
1904  for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1905    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1906      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1907}
1908
1909/// \brief Checks pt_guarded_by and pt_guarded_var attributes.
1910void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
1911  if (Analyzer->Handler.issueBetaWarnings()) {
1912    while (true) {
1913      if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
1914        Exp = PE->getSubExpr();
1915        continue;
1916      }
1917      if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
1918        if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1919          // If it's an actual array, and not a pointer, then it's elements
1920          // are protected by GUARDED_BY, not PT_GUARDED_BY;
1921          checkAccess(CE->getSubExpr(), AK);
1922          return;
1923        }
1924        Exp = CE->getSubExpr();
1925        continue;
1926      }
1927      break;
1928    }
1929  }
1930  else
1931    Exp = Exp->IgnoreParenCasts();
1932
1933  const ValueDecl *D = getValueDecl(Exp);
1934  if (!D || !D->hasAttrs())
1935    return;
1936
1937  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1938    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1939                                        Exp->getExprLoc());
1940
1941  const AttrVec &ArgAttrs = D->getAttrs();
1942  for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1943    if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1944      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference);
1945}
1946
1947
1948/// \brief Process a function call, method call, constructor call,
1949/// or destructor call.  This involves looking at the attributes on the
1950/// corresponding function/method/constructor/destructor, issuing warnings,
1951/// and updating the locksets accordingly.
1952///
1953/// FIXME: For classes annotated with one of the guarded annotations, we need
1954/// to treat const method calls as reads and non-const method calls as writes,
1955/// and check that the appropriate locks are held. Non-const method calls with
1956/// the same signature as const method calls can be also treated as reads.
1957///
1958void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1959  SourceLocation Loc = Exp->getExprLoc();
1960  const AttrVec &ArgAttrs = D->getAttrs();
1961  MutexIDList ExclusiveLocksToAdd;
1962  MutexIDList SharedLocksToAdd;
1963  MutexIDList LocksToRemove;
1964
1965  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1966    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1967    switch (At->getKind()) {
1968      // When we encounter an exclusive lock function, we need to add the lock
1969      // to our lockset with kind exclusive.
1970      case attr::ExclusiveLockFunction: {
1971        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1972        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
1973        break;
1974      }
1975
1976      // When we encounter a shared lock function, we need to add the lock
1977      // to our lockset with kind shared.
1978      case attr::SharedLockFunction: {
1979        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1980        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
1981        break;
1982      }
1983
1984      // An assert will add a lock to the lockset, but will not generate
1985      // a warning if it is already there, and will not generate a warning
1986      // if it is not removed.
1987      case attr::AssertExclusiveLock: {
1988        AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
1989
1990        MutexIDList AssertLocks;
1991        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1992        for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
1993          Analyzer->addLock(FSet, AssertLocks[i],
1994                            LockData(Loc, LK_Exclusive, false, true));
1995        }
1996        break;
1997      }
1998      case attr::AssertSharedLock: {
1999        AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
2000
2001        MutexIDList AssertLocks;
2002        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
2003        for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
2004          Analyzer->addLock(FSet, AssertLocks[i],
2005                            LockData(Loc, LK_Shared, false, true));
2006        }
2007        break;
2008      }
2009
2010      // When we encounter an unlock function, we need to remove unlocked
2011      // mutexes from the lockset, and flag a warning if they are not there.
2012      case attr::UnlockFunction: {
2013        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
2014        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
2015        break;
2016      }
2017
2018      case attr::ExclusiveLocksRequired: {
2019        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
2020
2021        for (ExclusiveLocksRequiredAttr::args_iterator
2022             I = A->args_begin(), E = A->args_end(); I != E; ++I)
2023          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
2024        break;
2025      }
2026
2027      case attr::SharedLocksRequired: {
2028        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
2029
2030        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
2031             E = A->args_end(); I != E; ++I)
2032          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
2033        break;
2034      }
2035
2036      case attr::LocksExcluded: {
2037        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
2038
2039        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
2040            E = A->args_end(); I != E; ++I) {
2041          warnIfMutexHeld(D, Exp, *I);
2042        }
2043        break;
2044      }
2045
2046      // Ignore other (non thread-safety) attributes
2047      default:
2048        break;
2049    }
2050  }
2051
2052  // Figure out if we're calling the constructor of scoped lockable class
2053  bool isScopedVar = false;
2054  if (VD) {
2055    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
2056      const CXXRecordDecl* PD = CD->getParent();
2057      if (PD && PD->getAttr<ScopedLockableAttr>())
2058        isScopedVar = true;
2059    }
2060  }
2061
2062  // Add locks.
2063  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2064    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
2065                            LockData(Loc, LK_Exclusive, isScopedVar));
2066  }
2067  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2068    Analyzer->addLock(FSet, SharedLocksToAdd[i],
2069                            LockData(Loc, LK_Shared, isScopedVar));
2070  }
2071
2072  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
2073  // FIXME -- this doesn't work if we acquire multiple locks.
2074  if (isScopedVar) {
2075    SourceLocation MLoc = VD->getLocation();
2076    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
2077    SExpr SMutex(&DRE, 0, 0);
2078
2079    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2080      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
2081                                               ExclusiveLocksToAdd[i]));
2082    }
2083    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2084      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
2085                                               SharedLocksToAdd[i]));
2086    }
2087  }
2088
2089  // Remove locks.
2090  // FIXME -- should only fully remove if the attribute refers to 'this'.
2091  bool Dtor = isa<CXXDestructorDecl>(D);
2092  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
2093    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
2094  }
2095}
2096
2097
2098/// \brief For unary operations which read and write a variable, we need to
2099/// check whether we hold any required mutexes. Reads are checked in
2100/// VisitCastExpr.
2101void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
2102  switch (UO->getOpcode()) {
2103    case clang::UO_PostDec:
2104    case clang::UO_PostInc:
2105    case clang::UO_PreDec:
2106    case clang::UO_PreInc: {
2107      checkAccess(UO->getSubExpr(), AK_Written);
2108      break;
2109    }
2110    default:
2111      break;
2112  }
2113}
2114
2115/// For binary operations which assign to a variable (writes), we need to check
2116/// whether we hold any required mutexes.
2117/// FIXME: Deal with non-primitive types.
2118void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
2119  if (!BO->isAssignmentOp())
2120    return;
2121
2122  // adjust the context
2123  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2124
2125  checkAccess(BO->getLHS(), AK_Written);
2126}
2127
2128
2129/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2130/// need to ensure we hold any required mutexes.
2131/// FIXME: Deal with non-primitive types.
2132void BuildLockset::VisitCastExpr(CastExpr *CE) {
2133  if (CE->getCastKind() != CK_LValueToRValue)
2134    return;
2135  checkAccess(CE->getSubExpr(), AK_Read);
2136}
2137
2138
2139void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2140  if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2141    MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
2142    // ME can be null when calling a method pointer
2143    CXXMethodDecl *MD = CE->getMethodDecl();
2144
2145    if (ME && MD) {
2146      if (ME->isArrow()) {
2147        if (MD->isConst()) {
2148          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2149        } else {  // FIXME -- should be AK_Written
2150          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2151        }
2152      } else {
2153        if (MD->isConst())
2154          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2155        else     // FIXME -- should be AK_Written
2156          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2157      }
2158    }
2159  } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2160    switch (OE->getOperator()) {
2161      case OO_Equal: {
2162        const Expr *Target = OE->getArg(0);
2163        const Expr *Source = OE->getArg(1);
2164        checkAccess(Target, AK_Written);
2165        checkAccess(Source, AK_Read);
2166        break;
2167      }
2168      case OO_Star:
2169      case OO_Arrow:
2170      case OO_Subscript: {
2171        if (Analyzer->Handler.issueBetaWarnings()) {
2172          const Expr *Obj = OE->getArg(0);
2173          checkAccess(Obj, AK_Read);
2174          checkPtAccess(Obj, AK_Read);
2175        }
2176        break;
2177      }
2178      default: {
2179        const Expr *Obj = OE->getArg(0);
2180        checkAccess(Obj, AK_Read);
2181        break;
2182      }
2183    }
2184  }
2185  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2186  if(!D || !D->hasAttrs())
2187    return;
2188  handleCall(Exp, D);
2189}
2190
2191void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2192  const CXXConstructorDecl *D = Exp->getConstructor();
2193  if (D && D->isCopyConstructor()) {
2194    const Expr* Source = Exp->getArg(0);
2195    checkAccess(Source, AK_Read);
2196  }
2197  // FIXME -- only handles constructors in DeclStmt below.
2198}
2199
2200void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2201  // adjust the context
2202  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2203
2204  DeclGroupRef DGrp = S->getDeclGroup();
2205  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2206    Decl *D = *I;
2207    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2208      Expr *E = VD->getInit();
2209      // handle constructors that involve temporaries
2210      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2211        E = EWC->getSubExpr();
2212
2213      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2214        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2215        if (!CtorD || !CtorD->hasAttrs())
2216          return;
2217        handleCall(CE, CtorD, VD);
2218      }
2219    }
2220  }
2221}
2222
2223
2224
2225/// \brief Compute the intersection of two locksets and issue warnings for any
2226/// locks in the symmetric difference.
2227///
2228/// This function is used at a merge point in the CFG when comparing the lockset
2229/// of each branch being merged. For example, given the following sequence:
2230/// A; if () then B; else C; D; we need to check that the lockset after B and C
2231/// are the same. In the event of a difference, we use the intersection of these
2232/// two locksets at the start of D.
2233///
2234/// \param FSet1 The first lockset.
2235/// \param FSet2 The second lockset.
2236/// \param JoinLoc The location of the join point for error reporting
2237/// \param LEK1 The error message to report if a mutex is missing from LSet1
2238/// \param LEK2 The error message to report if a mutex is missing from Lset2
2239void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2240                                            const FactSet &FSet2,
2241                                            SourceLocation JoinLoc,
2242                                            LockErrorKind LEK1,
2243                                            LockErrorKind LEK2,
2244                                            bool Modify) {
2245  FactSet FSet1Orig = FSet1;
2246
2247  // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2248  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2249       I != E; ++I) {
2250    const SExpr &FSet2Mutex = FactMan[*I].MutID;
2251    const LockData &LDat2 = FactMan[*I].LDat;
2252    FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
2253
2254    if (I1 != FSet1.end()) {
2255      const LockData* LDat1 = &FactMan[*I1].LDat;
2256      if (LDat1->LKind != LDat2.LKind) {
2257        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2258                                         LDat2.AcquireLoc,
2259                                         LDat1->AcquireLoc);
2260        if (Modify && LDat1->LKind != LK_Exclusive) {
2261          // Take the exclusive lock, which is the one in FSet2.
2262          *I1 = *I;
2263        }
2264      }
2265      else if (LDat1->Asserted && !LDat2.Asserted) {
2266        // The non-asserted lock in FSet2 is the one we want to track.
2267        *I1 = *I;
2268      }
2269    } else {
2270      if (LDat2.UnderlyingMutex.isValid()) {
2271        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2272          // If this is a scoped lock that manages another mutex, and if the
2273          // underlying mutex is still held, then warn about the underlying
2274          // mutex.
2275          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2276                                            LDat2.AcquireLoc,
2277                                            JoinLoc, LEK1);
2278        }
2279      }
2280      else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted)
2281        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2282                                          LDat2.AcquireLoc,
2283                                          JoinLoc, LEK1);
2284    }
2285  }
2286
2287  // Find locks in FSet1 that are not in FSet2, and remove them.
2288  for (FactSet::const_iterator I = FSet1Orig.begin(), E = FSet1Orig.end();
2289       I != E; ++I) {
2290    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2291    const LockData &LDat1 = FactMan[*I].LDat;
2292
2293    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2294      if (LDat1.UnderlyingMutex.isValid()) {
2295        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2296          // If this is a scoped lock that manages another mutex, and if the
2297          // underlying mutex is still held, then warn about the underlying
2298          // mutex.
2299          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2300                                            LDat1.AcquireLoc,
2301                                            JoinLoc, LEK1);
2302        }
2303      }
2304      else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted)
2305        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2306                                          LDat1.AcquireLoc,
2307                                          JoinLoc, LEK2);
2308      if (Modify)
2309        FSet1.removeLock(FactMan, FSet1Mutex);
2310    }
2311  }
2312}
2313
2314
2315// Return true if block B never continues to its successors.
2316inline bool neverReturns(const CFGBlock* B) {
2317  if (B->hasNoReturnElement())
2318    return true;
2319  if (B->empty())
2320    return false;
2321
2322  CFGElement Last = B->back();
2323  if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2324    if (isa<CXXThrowExpr>(S->getStmt()))
2325      return true;
2326  }
2327  return false;
2328}
2329
2330
2331/// \brief Check a function's CFG for thread-safety violations.
2332///
2333/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2334/// at the end of each block, and issue warnings for thread safety violations.
2335/// Each block in the CFG is traversed exactly once.
2336void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2337  CFG *CFGraph = AC.getCFG();
2338  if (!CFGraph) return;
2339  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2340
2341  // AC.dumpCFG(true);
2342
2343  if (!D)
2344    return;  // Ignore anonymous functions for now.
2345  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2346    return;
2347  // FIXME: Do something a bit more intelligent inside constructor and
2348  // destructor code.  Constructors and destructors must assume unique access
2349  // to 'this', so checks on member variable access is disabled, but we should
2350  // still enable checks on other objects.
2351  if (isa<CXXConstructorDecl>(D))
2352    return;  // Don't check inside constructors.
2353  if (isa<CXXDestructorDecl>(D))
2354    return;  // Don't check inside destructors.
2355
2356  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2357    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2358
2359  // We need to explore the CFG via a "topological" ordering.
2360  // That way, we will be guaranteed to have information about required
2361  // predecessor locksets when exploring a new block.
2362  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2363  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2364
2365  // Mark entry block as reachable
2366  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2367
2368  // Compute SSA names for local variables
2369  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2370
2371  // Fill in source locations for all CFGBlocks.
2372  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2373
2374  MutexIDList ExclusiveLocksAcquired;
2375  MutexIDList SharedLocksAcquired;
2376  MutexIDList LocksReleased;
2377
2378  // Add locks from exclusive_locks_required and shared_locks_required
2379  // to initial lockset. Also turn off checking for lock and unlock functions.
2380  // FIXME: is there a more intelligent way to check lock/unlock functions?
2381  if (!SortedGraph->empty() && D->hasAttrs()) {
2382    const CFGBlock *FirstBlock = *SortedGraph->begin();
2383    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2384    const AttrVec &ArgAttrs = D->getAttrs();
2385
2386    MutexIDList ExclusiveLocksToAdd;
2387    MutexIDList SharedLocksToAdd;
2388
2389    SourceLocation Loc = D->getLocation();
2390    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2391      Attr *Attr = ArgAttrs[i];
2392      Loc = Attr->getLocation();
2393      if (ExclusiveLocksRequiredAttr *A
2394            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2395        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2396      } else if (SharedLocksRequiredAttr *A
2397                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2398        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2399      } else if (UnlockFunctionAttr *A = dyn_cast<UnlockFunctionAttr>(Attr)) {
2400        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2401        // We must ignore such methods.
2402        if (A->args_size() == 0)
2403          return;
2404        // FIXME -- deal with exclusive vs. shared unlock functions?
2405        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2406        getMutexIDs(LocksReleased, A, (Expr*) 0, D);
2407      } else if (ExclusiveLockFunctionAttr *A
2408                   = dyn_cast<ExclusiveLockFunctionAttr>(Attr)) {
2409        if (A->args_size() == 0)
2410          return;
2411        getMutexIDs(ExclusiveLocksAcquired, A, (Expr*) 0, D);
2412      } else if (SharedLockFunctionAttr *A
2413                   = dyn_cast<SharedLockFunctionAttr>(Attr)) {
2414        if (A->args_size() == 0)
2415          return;
2416        getMutexIDs(SharedLocksAcquired, A, (Expr*) 0, D);
2417      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2418        // Don't try to check trylock functions for now
2419        return;
2420      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2421        // Don't try to check trylock functions for now
2422        return;
2423      }
2424    }
2425
2426    // FIXME -- Loc can be wrong here.
2427    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2428      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2429              LockData(Loc, LK_Exclusive));
2430    }
2431    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2432      addLock(InitialLockset, SharedLocksToAdd[i],
2433              LockData(Loc, LK_Shared));
2434    }
2435  }
2436
2437  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2438       E = SortedGraph->end(); I!= E; ++I) {
2439    const CFGBlock *CurrBlock = *I;
2440    int CurrBlockID = CurrBlock->getBlockID();
2441    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2442
2443    // Use the default initial lockset in case there are no predecessors.
2444    VisitedBlocks.insert(CurrBlock);
2445
2446    // Iterate through the predecessor blocks and warn if the lockset for all
2447    // predecessors is not the same. We take the entry lockset of the current
2448    // block to be the intersection of all previous locksets.
2449    // FIXME: By keeping the intersection, we may output more errors in future
2450    // for a lock which is not in the intersection, but was in the union. We
2451    // may want to also keep the union in future. As an example, let's say
2452    // the intersection contains Mutex L, and the union contains L and M.
2453    // Later we unlock M. At this point, we would output an error because we
2454    // never locked M; although the real error is probably that we forgot to
2455    // lock M on all code paths. Conversely, let's say that later we lock M.
2456    // In this case, we should compare against the intersection instead of the
2457    // union because the real error is probably that we forgot to unlock M on
2458    // all code paths.
2459    bool LocksetInitialized = false;
2460    SmallVector<CFGBlock *, 8> SpecialBlocks;
2461    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2462         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2463
2464      // if *PI -> CurrBlock is a back edge
2465      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2466        continue;
2467
2468      int PrevBlockID = (*PI)->getBlockID();
2469      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2470
2471      // Ignore edges from blocks that can't return.
2472      if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2473        continue;
2474
2475      // Okay, we can reach this block from the entry.
2476      CurrBlockInfo->Reachable = true;
2477
2478      // If the previous block ended in a 'continue' or 'break' statement, then
2479      // a difference in locksets is probably due to a bug in that block, rather
2480      // than in some other predecessor. In that case, keep the other
2481      // predecessor's lockset.
2482      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2483        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2484          SpecialBlocks.push_back(*PI);
2485          continue;
2486        }
2487      }
2488
2489      FactSet PrevLockset;
2490      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2491
2492      if (!LocksetInitialized) {
2493        CurrBlockInfo->EntrySet = PrevLockset;
2494        LocksetInitialized = true;
2495      } else {
2496        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2497                         CurrBlockInfo->EntryLoc,
2498                         LEK_LockedSomePredecessors);
2499      }
2500    }
2501
2502    // Skip rest of block if it's not reachable.
2503    if (!CurrBlockInfo->Reachable)
2504      continue;
2505
2506    // Process continue and break blocks. Assume that the lockset for the
2507    // resulting block is unaffected by any discrepancies in them.
2508    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2509         SpecialI < SpecialN; ++SpecialI) {
2510      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2511      int PrevBlockID = PrevBlock->getBlockID();
2512      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2513
2514      if (!LocksetInitialized) {
2515        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2516        LocksetInitialized = true;
2517      } else {
2518        // Determine whether this edge is a loop terminator for diagnostic
2519        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2520        // it might also be part of a switch. Also, a subsequent destructor
2521        // might add to the lockset, in which case the real issue might be a
2522        // double lock on the other path.
2523        const Stmt *Terminator = PrevBlock->getTerminator();
2524        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2525
2526        FactSet PrevLockset;
2527        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2528                       PrevBlock, CurrBlock);
2529
2530        // Do not update EntrySet.
2531        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2532                         PrevBlockInfo->ExitLoc,
2533                         IsLoop ? LEK_LockedSomeLoopIterations
2534                                : LEK_LockedSomePredecessors,
2535                         false);
2536      }
2537    }
2538
2539    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2540
2541    // Visit all the statements in the basic block.
2542    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2543         BE = CurrBlock->end(); BI != BE; ++BI) {
2544      switch (BI->getKind()) {
2545        case CFGElement::Statement: {
2546          CFGStmt CS = BI->castAs<CFGStmt>();
2547          LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
2548          break;
2549        }
2550        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2551        case CFGElement::AutomaticObjectDtor: {
2552          CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
2553          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
2554              AD.getDestructorDecl(AC.getASTContext()));
2555          if (!DD->hasAttrs())
2556            break;
2557
2558          // Create a dummy expression,
2559          VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
2560          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2561                          AD.getTriggerStmt()->getLocEnd());
2562          LocksetBuilder.handleCall(&DRE, DD);
2563          break;
2564        }
2565        default:
2566          break;
2567      }
2568    }
2569    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2570
2571    // For every back edge from CurrBlock (the end of the loop) to another block
2572    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2573    // the one held at the beginning of FirstLoopBlock. We can look up the
2574    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2575    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2576         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2577
2578      // if CurrBlock -> *SI is *not* a back edge
2579      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2580        continue;
2581
2582      CFGBlock *FirstLoopBlock = *SI;
2583      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2584      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2585      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2586                       PreLoop->EntryLoc,
2587                       LEK_LockedSomeLoopIterations,
2588                       false);
2589    }
2590  }
2591
2592  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2593  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2594
2595  // Skip the final check if the exit block is unreachable.
2596  if (!Final->Reachable)
2597    return;
2598
2599  // By default, we expect all locks held on entry to be held on exit.
2600  FactSet ExpectedExitSet = Initial->EntrySet;
2601
2602  // Adjust the expected exit set by adding or removing locks, as declared
2603  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2604  // issue the appropriate warning.
2605  // FIXME: the location here is not quite right.
2606  for (unsigned i=0,n=ExclusiveLocksAcquired.size(); i<n; ++i) {
2607    ExpectedExitSet.addLock(FactMan, ExclusiveLocksAcquired[i],
2608                            LockData(D->getLocation(), LK_Exclusive));
2609  }
2610  for (unsigned i=0,n=SharedLocksAcquired.size(); i<n; ++i) {
2611    ExpectedExitSet.addLock(FactMan, SharedLocksAcquired[i],
2612                            LockData(D->getLocation(), LK_Shared));
2613  }
2614  for (unsigned i=0,n=LocksReleased.size(); i<n; ++i) {
2615    ExpectedExitSet.removeLock(FactMan, LocksReleased[i]);
2616  }
2617
2618  // FIXME: Should we call this function for all blocks which exit the function?
2619  intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2620                   Final->ExitLoc,
2621                   LEK_LockedAtEndOfFunction,
2622                   LEK_NotLockedAtEndOfFunction,
2623                   false);
2624}
2625
2626} // end anonymous namespace
2627
2628
2629namespace clang {
2630namespace thread_safety {
2631
2632/// \brief Check a function's CFG for thread-safety violations.
2633///
2634/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2635/// at the end of each block, and issue warnings for thread safety violations.
2636/// Each block in the CFG is traversed exactly once.
2637void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2638                             ThreadSafetyHandler &Handler) {
2639  ThreadSafetyAnalyzer Analyzer(Handler);
2640  Analyzer.runAnalysis(AC);
2641}
2642
2643/// \brief Helper function that returns a LockKind required for the given level
2644/// of access.
2645LockKind getLockKindFromAccessKind(AccessKind AK) {
2646  switch (AK) {
2647    case AK_Read :
2648      return LK_Shared;
2649    case AK_Written :
2650      return LK_Exclusive;
2651  }
2652  llvm_unreachable("Unknown AccessKind");
2653}
2654
2655}} // end namespace clang::thread_safety
2656