ThreadSafety.cpp revision 589190b322a255c8e8b15dfde6b77ef498db7548
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/ImmutableMap.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38#include <utility>
39#include <vector>
40
41using namespace clang;
42using namespace thread_safety;
43
44// Key method definition
45ThreadSafetyHandler::~ThreadSafetyHandler() {}
46
47namespace {
48
49/// SExpr implements a simple expression language that is used to store,
50/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
51/// does not capture surface syntax, and it does not distinguish between
52/// C++ concepts, like pointers and references, that have no real semantic
53/// differences.  This simplicity allows SExprs to be meaningfully compared,
54/// e.g.
55///        (x)          =  x
56///        (*this).foo  =  this->foo
57///        *&a          =  a
58///
59/// Thread-safety analysis works by comparing lock expressions.  Within the
60/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
61/// a particular mutex object at run-time.  Subsequent occurrences of the same
62/// expression (where "same" means syntactic equality) will refer to the same
63/// run-time object if three conditions hold:
64/// (1) Local variables in the expression, such as "x" have not changed.
65/// (2) Values on the heap that affect the expression have not changed.
66/// (3) The expression involves only pure function calls.
67///
68/// The current implementation assumes, but does not verify, that multiple uses
69/// of the same lock expression satisfies these criteria.
70class SExpr {
71private:
72  enum ExprOp {
73    EOP_Nop,       ///< No-op
74    EOP_Wildcard,  ///< Matches anything.
75    EOP_Universal, ///< Universal lock.
76    EOP_This,      ///< This keyword.
77    EOP_NVar,      ///< Named variable.
78    EOP_LVar,      ///< Local variable.
79    EOP_Dot,       ///< Field access
80    EOP_Call,      ///< Function call
81    EOP_MCall,     ///< Method call
82    EOP_Index,     ///< Array index
83    EOP_Unary,     ///< Unary operation
84    EOP_Binary,    ///< Binary operation
85    EOP_Unknown    ///< Catchall for everything else
86  };
87
88
89  class SExprNode {
90   private:
91    unsigned char  Op;     ///< Opcode of the root node
92    unsigned char  Flags;  ///< Additional opcode-specific data
93    unsigned short Sz;     ///< Number of child nodes
94    const void*    Data;   ///< Additional opcode-specific data
95
96   public:
97    SExprNode(ExprOp O, unsigned F, const void* D)
98      : Op(static_cast<unsigned char>(O)),
99        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
100    { }
101
102    unsigned size() const        { return Sz; }
103    void     setSize(unsigned S) { Sz = S;    }
104
105    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
106
107    const NamedDecl* getNamedDecl() const {
108      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
109      return reinterpret_cast<const NamedDecl*>(Data);
110    }
111
112    const NamedDecl* getFunctionDecl() const {
113      assert(Op == EOP_Call || Op == EOP_MCall);
114      return reinterpret_cast<const NamedDecl*>(Data);
115    }
116
117    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
118    void setArrow(bool A) { Flags = A ? 1 : 0; }
119
120    unsigned arity() const {
121      switch (Op) {
122        case EOP_Nop:       return 0;
123        case EOP_Wildcard:  return 0;
124        case EOP_Universal: return 0;
125        case EOP_NVar:      return 0;
126        case EOP_LVar:      return 0;
127        case EOP_This:      return 0;
128        case EOP_Dot:       return 1;
129        case EOP_Call:      return Flags+1;  // First arg is function.
130        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
131        case EOP_Index:     return 2;
132        case EOP_Unary:     return 1;
133        case EOP_Binary:    return 2;
134        case EOP_Unknown:   return Flags;
135      }
136      return 0;
137    }
138
139    bool operator==(const SExprNode& Other) const {
140      // Ignore flags and size -- they don't matter.
141      return (Op == Other.Op &&
142              Data == Other.Data);
143    }
144
145    bool operator!=(const SExprNode& Other) const {
146      return !(*this == Other);
147    }
148
149    bool matches(const SExprNode& Other) const {
150      return (*this == Other) ||
151             (Op == EOP_Wildcard) ||
152             (Other.Op == EOP_Wildcard);
153    }
154  };
155
156
157  /// \brief Encapsulates the lexical context of a function call.  The lexical
158  /// context includes the arguments to the call, including the implicit object
159  /// argument.  When an attribute containing a mutex expression is attached to
160  /// a method, the expression may refer to formal parameters of the method.
161  /// Actual arguments must be substituted for formal parameters to derive
162  /// the appropriate mutex expression in the lexical context where the function
163  /// is called.  PrevCtx holds the context in which the arguments themselves
164  /// should be evaluated; multiple calling contexts can be chained together
165  /// by the lock_returned attribute.
166  struct CallingContext {
167    const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
168    Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
169    bool             SelfArrow;  // is Self referred to with -> or .?
170    unsigned         NumArgs;    // Number of funArgs
171    Expr**           FunArgs;    // Function arguments
172    CallingContext*  PrevCtx;    // The previous context; or 0 if none.
173
174    CallingContext(const NamedDecl *D = 0, Expr *S = 0,
175                   unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
176      : AttrDecl(D), SelfArg(S), SelfArrow(false),
177        NumArgs(N), FunArgs(A), PrevCtx(P)
178    { }
179  };
180
181  typedef SmallVector<SExprNode, 4> NodeVector;
182
183private:
184  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
185  // the list to be traversed as a tree.
186  NodeVector NodeVec;
187
188private:
189  unsigned makeNop() {
190    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
191    return NodeVec.size()-1;
192  }
193
194  unsigned makeWildcard() {
195    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
196    return NodeVec.size()-1;
197  }
198
199  unsigned makeUniversal() {
200    NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
201    return NodeVec.size()-1;
202  }
203
204  unsigned makeNamedVar(const NamedDecl *D) {
205    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
206    return NodeVec.size()-1;
207  }
208
209  unsigned makeLocalVar(const NamedDecl *D) {
210    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
211    return NodeVec.size()-1;
212  }
213
214  unsigned makeThis() {
215    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
216    return NodeVec.size()-1;
217  }
218
219  unsigned makeDot(const NamedDecl *D, bool Arrow) {
220    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
221    return NodeVec.size()-1;
222  }
223
224  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
225    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
226    return NodeVec.size()-1;
227  }
228
229  unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
230    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
231    return NodeVec.size()-1;
232  }
233
234  unsigned makeIndex() {
235    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
236    return NodeVec.size()-1;
237  }
238
239  unsigned makeUnary() {
240    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
241    return NodeVec.size()-1;
242  }
243
244  unsigned makeBinary() {
245    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
246    return NodeVec.size()-1;
247  }
248
249  unsigned makeUnknown(unsigned Arity) {
250    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
251    return NodeVec.size()-1;
252  }
253
254  /// Build an SExpr from the given C++ expression.
255  /// Recursive function that terminates on DeclRefExpr.
256  /// Note: this function merely creates a SExpr; it does not check to
257  /// ensure that the original expression is a valid mutex expression.
258  ///
259  /// NDeref returns the number of Derefence and AddressOf operations
260  /// preceeding the Expr; this is used to decide whether to pretty-print
261  /// SExprs with . or ->.
262  unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
263    if (!Exp)
264      return 0;
265
266    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
267      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
268      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
269      if (PV) {
270        FunctionDecl *FD =
271          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
272        unsigned i = PV->getFunctionScopeIndex();
273
274        if (CallCtx && CallCtx->FunArgs &&
275            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
276          // Substitute call arguments for references to function parameters
277          assert(i < CallCtx->NumArgs);
278          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
279        }
280        // Map the param back to the param of the original function declaration.
281        makeNamedVar(FD->getParamDecl(i));
282        return 1;
283      }
284      // Not a function parameter -- just store the reference.
285      makeNamedVar(ND);
286      return 1;
287    } else if (isa<CXXThisExpr>(Exp)) {
288      // Substitute parent for 'this'
289      if (CallCtx && CallCtx->SelfArg) {
290        if (!CallCtx->SelfArrow && NDeref)
291          // 'this' is a pointer, but self is not, so need to take address.
292          --(*NDeref);
293        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
294      }
295      else {
296        makeThis();
297        return 1;
298      }
299    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
300      NamedDecl *ND = ME->getMemberDecl();
301      int ImplicitDeref = ME->isArrow() ? 1 : 0;
302      unsigned Root = makeDot(ND, false);
303      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
304      NodeVec[Root].setArrow(ImplicitDeref > 0);
305      NodeVec[Root].setSize(Sz + 1);
306      return Sz + 1;
307    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
308      // When calling a function with a lock_returned attribute, replace
309      // the function call with the expression in lock_returned.
310      CXXMethodDecl* MD =
311        cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
312      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
313        CallingContext LRCallCtx(CMCE->getMethodDecl());
314        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
315        LRCallCtx.SelfArrow =
316          dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
317        LRCallCtx.NumArgs = CMCE->getNumArgs();
318        LRCallCtx.FunArgs = CMCE->getArgs();
319        LRCallCtx.PrevCtx = CallCtx;
320        return buildSExpr(At->getArg(), &LRCallCtx);
321      }
322      // Hack to treat smart pointers and iterators as pointers;
323      // ignore any method named get().
324      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
325          CMCE->getNumArgs() == 0) {
326        if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
327          ++(*NDeref);
328        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
329      }
330      unsigned NumCallArgs = CMCE->getNumArgs();
331      unsigned Root =
332        makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
333      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
334      Expr** CallArgs = CMCE->getArgs();
335      for (unsigned i = 0; i < NumCallArgs; ++i) {
336        Sz += buildSExpr(CallArgs[i], CallCtx);
337      }
338      NodeVec[Root].setSize(Sz + 1);
339      return Sz + 1;
340    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
341      FunctionDecl* FD =
342        cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
343      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
344        CallingContext LRCallCtx(CE->getDirectCallee());
345        LRCallCtx.NumArgs = CE->getNumArgs();
346        LRCallCtx.FunArgs = CE->getArgs();
347        LRCallCtx.PrevCtx = CallCtx;
348        return buildSExpr(At->getArg(), &LRCallCtx);
349      }
350      // Treat smart pointers and iterators as pointers;
351      // ignore the * and -> operators.
352      if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
353        OverloadedOperatorKind k = OE->getOperator();
354        if (k == OO_Star) {
355          if (NDeref) ++(*NDeref);
356          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
357        }
358        else if (k == OO_Arrow) {
359          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
360        }
361      }
362      unsigned NumCallArgs = CE->getNumArgs();
363      unsigned Root = makeCall(NumCallArgs, 0);
364      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
365      Expr** CallArgs = CE->getArgs();
366      for (unsigned i = 0; i < NumCallArgs; ++i) {
367        Sz += buildSExpr(CallArgs[i], CallCtx);
368      }
369      NodeVec[Root].setSize(Sz+1);
370      return Sz+1;
371    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
372      unsigned Root = makeBinary();
373      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
374      Sz += buildSExpr(BOE->getRHS(), CallCtx);
375      NodeVec[Root].setSize(Sz);
376      return Sz;
377    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
378      // Ignore & and * operators -- they're no-ops.
379      // However, we try to figure out whether the expression is a pointer,
380      // so we can use . and -> appropriately in error messages.
381      if (UOE->getOpcode() == UO_Deref) {
382        if (NDeref) ++(*NDeref);
383        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
384      }
385      if (UOE->getOpcode() == UO_AddrOf) {
386        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
387          if (DRE->getDecl()->isCXXInstanceMember()) {
388            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
389            // We interpret this syntax specially, as a wildcard.
390            unsigned Root = makeDot(DRE->getDecl(), false);
391            makeWildcard();
392            NodeVec[Root].setSize(2);
393            return 2;
394          }
395        }
396        if (NDeref) --(*NDeref);
397        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
398      }
399      unsigned Root = makeUnary();
400      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
401      NodeVec[Root].setSize(Sz);
402      return Sz;
403    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
404      unsigned Root = makeIndex();
405      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
406      Sz += buildSExpr(ASE->getIdx(), CallCtx);
407      NodeVec[Root].setSize(Sz);
408      return Sz;
409    } else if (AbstractConditionalOperator *CE =
410               dyn_cast<AbstractConditionalOperator>(Exp)) {
411      unsigned Root = makeUnknown(3);
412      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
413      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
414      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
415      NodeVec[Root].setSize(Sz);
416      return Sz;
417    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
418      unsigned Root = makeUnknown(3);
419      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
420      Sz += buildSExpr(CE->getLHS(), CallCtx);
421      Sz += buildSExpr(CE->getRHS(), CallCtx);
422      NodeVec[Root].setSize(Sz);
423      return Sz;
424    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
425      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
426    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
427      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
428    } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
429      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
430    } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
431      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
432    } else if (isa<CharacterLiteral>(Exp) ||
433               isa<CXXNullPtrLiteralExpr>(Exp) ||
434               isa<GNUNullExpr>(Exp) ||
435               isa<CXXBoolLiteralExpr>(Exp) ||
436               isa<FloatingLiteral>(Exp) ||
437               isa<ImaginaryLiteral>(Exp) ||
438               isa<IntegerLiteral>(Exp) ||
439               isa<StringLiteral>(Exp) ||
440               isa<ObjCStringLiteral>(Exp)) {
441      makeNop();
442      return 1;  // FIXME: Ignore literals for now
443    } else {
444      makeNop();
445      return 1;  // Ignore.  FIXME: mark as invalid expression?
446    }
447  }
448
449  /// \brief Construct a SExpr from an expression.
450  /// \param MutexExp The original mutex expression within an attribute
451  /// \param DeclExp An expression involving the Decl on which the attribute
452  ///        occurs.
453  /// \param D  The declaration to which the lock/unlock attribute is attached.
454  void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
455    CallingContext CallCtx(D);
456
457
458    if (MutexExp) {
459      if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
460        if (SLit->getString() == StringRef("*"))
461          // The "*" expr is a universal lock, which essentially turns off
462          // checks until it is removed from the lockset.
463          makeUniversal();
464        else
465          // Ignore other string literals for now.
466          makeNop();
467        return;
468      }
469    }
470
471    // If we are processing a raw attribute expression, with no substitutions.
472    if (DeclExp == 0) {
473      buildSExpr(MutexExp, 0);
474      return;
475    }
476
477    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
478    // for formal parameters when we call buildMutexID later.
479    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
480      CallCtx.SelfArg   = ME->getBase();
481      CallCtx.SelfArrow = ME->isArrow();
482    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
483      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
484      CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
485      CallCtx.NumArgs   = CE->getNumArgs();
486      CallCtx.FunArgs   = CE->getArgs();
487    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
488      CallCtx.NumArgs = CE->getNumArgs();
489      CallCtx.FunArgs = CE->getArgs();
490    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
491      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
492      CallCtx.NumArgs = CE->getNumArgs();
493      CallCtx.FunArgs = CE->getArgs();
494    } else if (D && isa<CXXDestructorDecl>(D)) {
495      // There's no such thing as a "destructor call" in the AST.
496      CallCtx.SelfArg = DeclExp;
497    }
498
499    // If the attribute has no arguments, then assume the argument is "this".
500    if (MutexExp == 0) {
501      buildSExpr(CallCtx.SelfArg, 0);
502      return;
503    }
504
505    // For most attributes.
506    buildSExpr(MutexExp, &CallCtx);
507  }
508
509  /// \brief Get index of next sibling of node i.
510  unsigned getNextSibling(unsigned i) const {
511    return i + NodeVec[i].size();
512  }
513
514public:
515  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
516
517  /// \param MutexExp The original mutex expression within an attribute
518  /// \param DeclExp An expression involving the Decl on which the attribute
519  ///        occurs.
520  /// \param D  The declaration to which the lock/unlock attribute is attached.
521  /// Caller must check isValid() after construction.
522  SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
523    buildSExprFromExpr(MutexExp, DeclExp, D);
524  }
525
526  /// Return true if this is a valid decl sequence.
527  /// Caller must call this by hand after construction to handle errors.
528  bool isValid() const {
529    return !NodeVec.empty();
530  }
531
532  bool shouldIgnore() const {
533    // Nop is a mutex that we have decided to deliberately ignore.
534    assert(NodeVec.size() > 0 && "Invalid Mutex");
535    return NodeVec[0].kind() == EOP_Nop;
536  }
537
538  bool isUniversal() const {
539    assert(NodeVec.size() > 0 && "Invalid Mutex");
540    return NodeVec[0].kind() == EOP_Universal;
541  }
542
543  /// Issue a warning about an invalid lock expression
544  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
545                              Expr *DeclExp, const NamedDecl* D) {
546    SourceLocation Loc;
547    if (DeclExp)
548      Loc = DeclExp->getExprLoc();
549
550    // FIXME: add a note about the attribute location in MutexExp or D
551    if (Loc.isValid())
552      Handler.handleInvalidLockExp(Loc);
553  }
554
555  bool operator==(const SExpr &other) const {
556    return NodeVec == other.NodeVec;
557  }
558
559  bool operator!=(const SExpr &other) const {
560    return !(*this == other);
561  }
562
563  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
564    if (NodeVec[i].matches(Other.NodeVec[j])) {
565      unsigned n = NodeVec[i].arity();
566      bool Result = true;
567      unsigned ci = i+1;  // first child of i
568      unsigned cj = j+1;  // first child of j
569      for (unsigned k = 0; k < n;
570           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
571        Result = Result && matches(Other, ci, cj);
572      }
573      return Result;
574    }
575    return false;
576  }
577
578  /// \brief Pretty print a lock expression for use in error messages.
579  std::string toString(unsigned i = 0) const {
580    assert(isValid());
581    if (i >= NodeVec.size())
582      return "";
583
584    const SExprNode* N = &NodeVec[i];
585    switch (N->kind()) {
586      case EOP_Nop:
587        return "_";
588      case EOP_Wildcard:
589        return "(?)";
590      case EOP_Universal:
591        return "*";
592      case EOP_This:
593        return "this";
594      case EOP_NVar:
595      case EOP_LVar: {
596        return N->getNamedDecl()->getNameAsString();
597      }
598      case EOP_Dot: {
599        if (NodeVec[i+1].kind() == EOP_Wildcard) {
600          std::string S = "&";
601          S += N->getNamedDecl()->getQualifiedNameAsString();
602          return S;
603        }
604        std::string FieldName = N->getNamedDecl()->getNameAsString();
605        if (NodeVec[i+1].kind() == EOP_This)
606          return FieldName;
607
608        std::string S = toString(i+1);
609        if (N->isArrow())
610          return S + "->" + FieldName;
611        else
612          return S + "." + FieldName;
613      }
614      case EOP_Call: {
615        std::string S = toString(i+1) + "(";
616        unsigned NumArgs = N->arity()-1;
617        unsigned ci = getNextSibling(i+1);
618        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
619          S += toString(ci);
620          if (k+1 < NumArgs) S += ",";
621        }
622        S += ")";
623        return S;
624      }
625      case EOP_MCall: {
626        std::string S = "";
627        if (NodeVec[i+1].kind() != EOP_This)
628          S = toString(i+1) + ".";
629        if (const NamedDecl *D = N->getFunctionDecl())
630          S += D->getNameAsString() + "(";
631        else
632          S += "#(";
633        unsigned NumArgs = N->arity()-1;
634        unsigned ci = getNextSibling(i+1);
635        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
636          S += toString(ci);
637          if (k+1 < NumArgs) S += ",";
638        }
639        S += ")";
640        return S;
641      }
642      case EOP_Index: {
643        std::string S1 = toString(i+1);
644        std::string S2 = toString(i+1 + NodeVec[i+1].size());
645        return S1 + "[" + S2 + "]";
646      }
647      case EOP_Unary: {
648        std::string S = toString(i+1);
649        return "#" + S;
650      }
651      case EOP_Binary: {
652        std::string S1 = toString(i+1);
653        std::string S2 = toString(i+1 + NodeVec[i+1].size());
654        return "(" + S1 + "#" + S2 + ")";
655      }
656      case EOP_Unknown: {
657        unsigned NumChildren = N->arity();
658        if (NumChildren == 0)
659          return "(...)";
660        std::string S = "(";
661        unsigned ci = i+1;
662        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
663          S += toString(ci);
664          if (j+1 < NumChildren) S += "#";
665        }
666        S += ")";
667        return S;
668      }
669    }
670    return "";
671  }
672};
673
674
675
676/// \brief A short list of SExprs
677class MutexIDList : public SmallVector<SExpr, 3> {
678public:
679  /// \brief Return true if the list contains the specified SExpr
680  /// Performs a linear search, because these lists are almost always very small.
681  bool contains(const SExpr& M) {
682    for (iterator I=begin(),E=end(); I != E; ++I)
683      if ((*I) == M) return true;
684    return false;
685  }
686
687  /// \brief Push M onto list, bud discard duplicates
688  void push_back_nodup(const SExpr& M) {
689    if (!contains(M)) push_back(M);
690  }
691};
692
693
694
695/// \brief This is a helper class that stores info about the most recent
696/// accquire of a Lock.
697///
698/// The main body of the analysis maps MutexIDs to LockDatas.
699struct LockData {
700  SourceLocation AcquireLoc;
701
702  /// \brief LKind stores whether a lock is held shared or exclusively.
703  /// Note that this analysis does not currently support either re-entrant
704  /// locking or lock "upgrading" and "downgrading" between exclusive and
705  /// shared.
706  ///
707  /// FIXME: add support for re-entrant locking and lock up/downgrading
708  LockKind LKind;
709  bool     Managed;            // for ScopedLockable objects
710  SExpr    UnderlyingMutex;    // for ScopedLockable objects
711
712  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
713    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
714      UnderlyingMutex(Decl::EmptyShell())
715  {}
716
717  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
718    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
719      UnderlyingMutex(Mu)
720  {}
721
722  bool operator==(const LockData &other) const {
723    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
724  }
725
726  bool operator!=(const LockData &other) const {
727    return !(*this == other);
728  }
729
730  void Profile(llvm::FoldingSetNodeID &ID) const {
731    ID.AddInteger(AcquireLoc.getRawEncoding());
732    ID.AddInteger(LKind);
733  }
734
735  bool isAtLeast(LockKind LK) {
736    return (LK == LK_Shared) || (LKind == LK_Exclusive);
737  }
738};
739
740
741/// \brief A FactEntry stores a single fact that is known at a particular point
742/// in the program execution.  Currently, this is information regarding a lock
743/// that is held at that point.
744struct FactEntry {
745  SExpr    MutID;
746  LockData LDat;
747
748  FactEntry(const SExpr& M, const LockData& L)
749    : MutID(M), LDat(L)
750  { }
751};
752
753
754typedef unsigned short FactID;
755
756/// \brief FactManager manages the memory for all facts that are created during
757/// the analysis of a single routine.
758class FactManager {
759private:
760  std::vector<FactEntry> Facts;
761
762public:
763  FactID newLock(const SExpr& M, const LockData& L) {
764    Facts.push_back(FactEntry(M,L));
765    return static_cast<unsigned short>(Facts.size() - 1);
766  }
767
768  const FactEntry& operator[](FactID F) const { return Facts[F]; }
769  FactEntry&       operator[](FactID F)       { return Facts[F]; }
770};
771
772
773/// \brief A FactSet is the set of facts that are known to be true at a
774/// particular program point.  FactSets must be small, because they are
775/// frequently copied, and are thus implemented as a set of indices into a
776/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
777/// locks, so we can get away with doing a linear search for lookup.  Note
778/// that a hashtable or map is inappropriate in this case, because lookups
779/// may involve partial pattern matches, rather than exact matches.
780class FactSet {
781private:
782  typedef SmallVector<FactID, 4> FactVec;
783
784  FactVec FactIDs;
785
786public:
787  typedef FactVec::iterator       iterator;
788  typedef FactVec::const_iterator const_iterator;
789
790  iterator       begin()       { return FactIDs.begin(); }
791  const_iterator begin() const { return FactIDs.begin(); }
792
793  iterator       end()       { return FactIDs.end(); }
794  const_iterator end() const { return FactIDs.end(); }
795
796  bool isEmpty() const { return FactIDs.size() == 0; }
797
798  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
799    FactID F = FM.newLock(M, L);
800    FactIDs.push_back(F);
801    return F;
802  }
803
804  bool removeLock(FactManager& FM, const SExpr& M) {
805    unsigned n = FactIDs.size();
806    if (n == 0)
807      return false;
808
809    for (unsigned i = 0; i < n-1; ++i) {
810      if (FM[FactIDs[i]].MutID.matches(M)) {
811        FactIDs[i] = FactIDs[n-1];
812        FactIDs.pop_back();
813        return true;
814      }
815    }
816    if (FM[FactIDs[n-1]].MutID.matches(M)) {
817      FactIDs.pop_back();
818      return true;
819    }
820    return false;
821  }
822
823  LockData* findLock(FactManager& FM, const SExpr& M) const {
824    for (const_iterator I = begin(), E = end(); I != E; ++I) {
825      const SExpr &Exp = FM[*I].MutID;
826      if (Exp.matches(M))
827        return &FM[*I].LDat;
828    }
829    return 0;
830  }
831
832  LockData* findLockUniv(FactManager& FM, const SExpr& M) const {
833    for (const_iterator I = begin(), E = end(); I != E; ++I) {
834      const SExpr &Exp = FM[*I].MutID;
835      if (Exp.matches(M) || Exp.isUniversal())
836        return &FM[*I].LDat;
837    }
838    return 0;
839  }
840};
841
842
843
844/// A Lockset maps each SExpr (defined above) to information about how it has
845/// been locked.
846typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
847typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
848
849class LocalVariableMap;
850
851/// A side (entry or exit) of a CFG node.
852enum CFGBlockSide { CBS_Entry, CBS_Exit };
853
854/// CFGBlockInfo is a struct which contains all the information that is
855/// maintained for each block in the CFG.  See LocalVariableMap for more
856/// information about the contexts.
857struct CFGBlockInfo {
858  FactSet EntrySet;             // Lockset held at entry to block
859  FactSet ExitSet;              // Lockset held at exit from block
860  LocalVarContext EntryContext; // Context held at entry to block
861  LocalVarContext ExitContext;  // Context held at exit from block
862  SourceLocation EntryLoc;      // Location of first statement in block
863  SourceLocation ExitLoc;       // Location of last statement in block.
864  unsigned EntryIndex;          // Used to replay contexts later
865
866  const FactSet &getSet(CFGBlockSide Side) const {
867    return Side == CBS_Entry ? EntrySet : ExitSet;
868  }
869  SourceLocation getLocation(CFGBlockSide Side) const {
870    return Side == CBS_Entry ? EntryLoc : ExitLoc;
871  }
872
873private:
874  CFGBlockInfo(LocalVarContext EmptyCtx)
875    : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
876  { }
877
878public:
879  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
880};
881
882
883
884// A LocalVariableMap maintains a map from local variables to their currently
885// valid definitions.  It provides SSA-like functionality when traversing the
886// CFG.  Like SSA, each definition or assignment to a variable is assigned a
887// unique name (an integer), which acts as the SSA name for that definition.
888// The total set of names is shared among all CFG basic blocks.
889// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
890// with their SSA-names.  Instead, we compute a Context for each point in the
891// code, which maps local variables to the appropriate SSA-name.  This map
892// changes with each assignment.
893//
894// The map is computed in a single pass over the CFG.  Subsequent analyses can
895// then query the map to find the appropriate Context for a statement, and use
896// that Context to look up the definitions of variables.
897class LocalVariableMap {
898public:
899  typedef LocalVarContext Context;
900
901  /// A VarDefinition consists of an expression, representing the value of the
902  /// variable, along with the context in which that expression should be
903  /// interpreted.  A reference VarDefinition does not itself contain this
904  /// information, but instead contains a pointer to a previous VarDefinition.
905  struct VarDefinition {
906  public:
907    friend class LocalVariableMap;
908
909    const NamedDecl *Dec;  // The original declaration for this variable.
910    const Expr *Exp;       // The expression for this variable, OR
911    unsigned Ref;          // Reference to another VarDefinition
912    Context Ctx;           // The map with which Exp should be interpreted.
913
914    bool isReference() { return !Exp; }
915
916  private:
917    // Create ordinary variable definition
918    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
919      : Dec(D), Exp(E), Ref(0), Ctx(C)
920    { }
921
922    // Create reference to previous definition
923    VarDefinition(const NamedDecl *D, unsigned R, Context C)
924      : Dec(D), Exp(0), Ref(R), Ctx(C)
925    { }
926  };
927
928private:
929  Context::Factory ContextFactory;
930  std::vector<VarDefinition> VarDefinitions;
931  std::vector<unsigned> CtxIndices;
932  std::vector<std::pair<Stmt*, Context> > SavedContexts;
933
934public:
935  LocalVariableMap() {
936    // index 0 is a placeholder for undefined variables (aka phi-nodes).
937    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
938  }
939
940  /// Look up a definition, within the given context.
941  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
942    const unsigned *i = Ctx.lookup(D);
943    if (!i)
944      return 0;
945    assert(*i < VarDefinitions.size());
946    return &VarDefinitions[*i];
947  }
948
949  /// Look up the definition for D within the given context.  Returns
950  /// NULL if the expression is not statically known.  If successful, also
951  /// modifies Ctx to hold the context of the return Expr.
952  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
953    const unsigned *P = Ctx.lookup(D);
954    if (!P)
955      return 0;
956
957    unsigned i = *P;
958    while (i > 0) {
959      if (VarDefinitions[i].Exp) {
960        Ctx = VarDefinitions[i].Ctx;
961        return VarDefinitions[i].Exp;
962      }
963      i = VarDefinitions[i].Ref;
964    }
965    return 0;
966  }
967
968  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
969
970  /// Return the next context after processing S.  This function is used by
971  /// clients of the class to get the appropriate context when traversing the
972  /// CFG.  It must be called for every assignment or DeclStmt.
973  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
974    if (SavedContexts[CtxIndex+1].first == S) {
975      CtxIndex++;
976      Context Result = SavedContexts[CtxIndex].second;
977      return Result;
978    }
979    return C;
980  }
981
982  void dumpVarDefinitionName(unsigned i) {
983    if (i == 0) {
984      llvm::errs() << "Undefined";
985      return;
986    }
987    const NamedDecl *Dec = VarDefinitions[i].Dec;
988    if (!Dec) {
989      llvm::errs() << "<<NULL>>";
990      return;
991    }
992    Dec->printName(llvm::errs());
993    llvm::errs() << "." << i << " " << ((const void*) Dec);
994  }
995
996  /// Dumps an ASCII representation of the variable map to llvm::errs()
997  void dump() {
998    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
999      const Expr *Exp = VarDefinitions[i].Exp;
1000      unsigned Ref = VarDefinitions[i].Ref;
1001
1002      dumpVarDefinitionName(i);
1003      llvm::errs() << " = ";
1004      if (Exp) Exp->dump();
1005      else {
1006        dumpVarDefinitionName(Ref);
1007        llvm::errs() << "\n";
1008      }
1009    }
1010  }
1011
1012  /// Dumps an ASCII representation of a Context to llvm::errs()
1013  void dumpContext(Context C) {
1014    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1015      const NamedDecl *D = I.getKey();
1016      D->printName(llvm::errs());
1017      const unsigned *i = C.lookup(D);
1018      llvm::errs() << " -> ";
1019      dumpVarDefinitionName(*i);
1020      llvm::errs() << "\n";
1021    }
1022  }
1023
1024  /// Builds the variable map.
1025  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1026                     std::vector<CFGBlockInfo> &BlockInfo);
1027
1028protected:
1029  // Get the current context index
1030  unsigned getContextIndex() { return SavedContexts.size()-1; }
1031
1032  // Save the current context for later replay
1033  void saveContext(Stmt *S, Context C) {
1034    SavedContexts.push_back(std::make_pair(S,C));
1035  }
1036
1037  // Adds a new definition to the given context, and returns a new context.
1038  // This method should be called when declaring a new variable.
1039  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1040    assert(!Ctx.contains(D));
1041    unsigned newID = VarDefinitions.size();
1042    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1043    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1044    return NewCtx;
1045  }
1046
1047  // Add a new reference to an existing definition.
1048  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1049    unsigned newID = VarDefinitions.size();
1050    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1051    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1052    return NewCtx;
1053  }
1054
1055  // Updates a definition only if that definition is already in the map.
1056  // This method should be called when assigning to an existing variable.
1057  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1058    if (Ctx.contains(D)) {
1059      unsigned newID = VarDefinitions.size();
1060      Context NewCtx = ContextFactory.remove(Ctx, D);
1061      NewCtx = ContextFactory.add(NewCtx, D, newID);
1062      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1063      return NewCtx;
1064    }
1065    return Ctx;
1066  }
1067
1068  // Removes a definition from the context, but keeps the variable name
1069  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1070  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1071    Context NewCtx = Ctx;
1072    if (NewCtx.contains(D)) {
1073      NewCtx = ContextFactory.remove(NewCtx, D);
1074      NewCtx = ContextFactory.add(NewCtx, D, 0);
1075    }
1076    return NewCtx;
1077  }
1078
1079  // Remove a definition entirely frmo the context.
1080  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1081    Context NewCtx = Ctx;
1082    if (NewCtx.contains(D)) {
1083      NewCtx = ContextFactory.remove(NewCtx, D);
1084    }
1085    return NewCtx;
1086  }
1087
1088  Context intersectContexts(Context C1, Context C2);
1089  Context createReferenceContext(Context C);
1090  void intersectBackEdge(Context C1, Context C2);
1091
1092  friend class VarMapBuilder;
1093};
1094
1095
1096// This has to be defined after LocalVariableMap.
1097CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1098  return CFGBlockInfo(M.getEmptyContext());
1099}
1100
1101
1102/// Visitor which builds a LocalVariableMap
1103class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1104public:
1105  LocalVariableMap* VMap;
1106  LocalVariableMap::Context Ctx;
1107
1108  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1109    : VMap(VM), Ctx(C) {}
1110
1111  void VisitDeclStmt(DeclStmt *S);
1112  void VisitBinaryOperator(BinaryOperator *BO);
1113};
1114
1115
1116// Add new local variables to the variable map
1117void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1118  bool modifiedCtx = false;
1119  DeclGroupRef DGrp = S->getDeclGroup();
1120  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1121    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1122      Expr *E = VD->getInit();
1123
1124      // Add local variables with trivial type to the variable map
1125      QualType T = VD->getType();
1126      if (T.isTrivialType(VD->getASTContext())) {
1127        Ctx = VMap->addDefinition(VD, E, Ctx);
1128        modifiedCtx = true;
1129      }
1130    }
1131  }
1132  if (modifiedCtx)
1133    VMap->saveContext(S, Ctx);
1134}
1135
1136// Update local variable definitions in variable map
1137void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1138  if (!BO->isAssignmentOp())
1139    return;
1140
1141  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1142
1143  // Update the variable map and current context.
1144  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1145    ValueDecl *VDec = DRE->getDecl();
1146    if (Ctx.lookup(VDec)) {
1147      if (BO->getOpcode() == BO_Assign)
1148        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1149      else
1150        // FIXME -- handle compound assignment operators
1151        Ctx = VMap->clearDefinition(VDec, Ctx);
1152      VMap->saveContext(BO, Ctx);
1153    }
1154  }
1155}
1156
1157
1158// Computes the intersection of two contexts.  The intersection is the
1159// set of variables which have the same definition in both contexts;
1160// variables with different definitions are discarded.
1161LocalVariableMap::Context
1162LocalVariableMap::intersectContexts(Context C1, Context C2) {
1163  Context Result = C1;
1164  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1165    const NamedDecl *Dec = I.getKey();
1166    unsigned i1 = I.getData();
1167    const unsigned *i2 = C2.lookup(Dec);
1168    if (!i2)             // variable doesn't exist on second path
1169      Result = removeDefinition(Dec, Result);
1170    else if (*i2 != i1)  // variable exists, but has different definition
1171      Result = clearDefinition(Dec, Result);
1172  }
1173  return Result;
1174}
1175
1176// For every variable in C, create a new variable that refers to the
1177// definition in C.  Return a new context that contains these new variables.
1178// (We use this for a naive implementation of SSA on loop back-edges.)
1179LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1180  Context Result = getEmptyContext();
1181  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1182    const NamedDecl *Dec = I.getKey();
1183    unsigned i = I.getData();
1184    Result = addReference(Dec, i, Result);
1185  }
1186  return Result;
1187}
1188
1189// This routine also takes the intersection of C1 and C2, but it does so by
1190// altering the VarDefinitions.  C1 must be the result of an earlier call to
1191// createReferenceContext.
1192void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1193  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1194    const NamedDecl *Dec = I.getKey();
1195    unsigned i1 = I.getData();
1196    VarDefinition *VDef = &VarDefinitions[i1];
1197    assert(VDef->isReference());
1198
1199    const unsigned *i2 = C2.lookup(Dec);
1200    if (!i2 || (*i2 != i1))
1201      VDef->Ref = 0;    // Mark this variable as undefined
1202  }
1203}
1204
1205
1206// Traverse the CFG in topological order, so all predecessors of a block
1207// (excluding back-edges) are visited before the block itself.  At
1208// each point in the code, we calculate a Context, which holds the set of
1209// variable definitions which are visible at that point in execution.
1210// Visible variables are mapped to their definitions using an array that
1211// contains all definitions.
1212//
1213// At join points in the CFG, the set is computed as the intersection of
1214// the incoming sets along each edge, E.g.
1215//
1216//                       { Context                 | VarDefinitions }
1217//   int x = 0;          { x -> x1                 | x1 = 0 }
1218//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1219//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1220//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1221//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1222//
1223// This is essentially a simpler and more naive version of the standard SSA
1224// algorithm.  Those definitions that remain in the intersection are from blocks
1225// that strictly dominate the current block.  We do not bother to insert proper
1226// phi nodes, because they are not used in our analysis; instead, wherever
1227// a phi node would be required, we simply remove that definition from the
1228// context (E.g. x above).
1229//
1230// The initial traversal does not capture back-edges, so those need to be
1231// handled on a separate pass.  Whenever the first pass encounters an
1232// incoming back edge, it duplicates the context, creating new definitions
1233// that refer back to the originals.  (These correspond to places where SSA
1234// might have to insert a phi node.)  On the second pass, these definitions are
1235// set to NULL if the variable has changed on the back-edge (i.e. a phi
1236// node was actually required.)  E.g.
1237//
1238//                       { Context           | VarDefinitions }
1239//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1240//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1241//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1242//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1243//
1244void LocalVariableMap::traverseCFG(CFG *CFGraph,
1245                                   PostOrderCFGView *SortedGraph,
1246                                   std::vector<CFGBlockInfo> &BlockInfo) {
1247  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1248
1249  CtxIndices.resize(CFGraph->getNumBlockIDs());
1250
1251  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1252       E = SortedGraph->end(); I!= E; ++I) {
1253    const CFGBlock *CurrBlock = *I;
1254    int CurrBlockID = CurrBlock->getBlockID();
1255    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1256
1257    VisitedBlocks.insert(CurrBlock);
1258
1259    // Calculate the entry context for the current block
1260    bool HasBackEdges = false;
1261    bool CtxInit = true;
1262    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1263         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1264      // if *PI -> CurrBlock is a back edge, so skip it
1265      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1266        HasBackEdges = true;
1267        continue;
1268      }
1269
1270      int PrevBlockID = (*PI)->getBlockID();
1271      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1272
1273      if (CtxInit) {
1274        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1275        CtxInit = false;
1276      }
1277      else {
1278        CurrBlockInfo->EntryContext =
1279          intersectContexts(CurrBlockInfo->EntryContext,
1280                            PrevBlockInfo->ExitContext);
1281      }
1282    }
1283
1284    // Duplicate the context if we have back-edges, so we can call
1285    // intersectBackEdges later.
1286    if (HasBackEdges)
1287      CurrBlockInfo->EntryContext =
1288        createReferenceContext(CurrBlockInfo->EntryContext);
1289
1290    // Create a starting context index for the current block
1291    saveContext(0, CurrBlockInfo->EntryContext);
1292    CurrBlockInfo->EntryIndex = getContextIndex();
1293
1294    // Visit all the statements in the basic block.
1295    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1296    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1297         BE = CurrBlock->end(); BI != BE; ++BI) {
1298      switch (BI->getKind()) {
1299        case CFGElement::Statement: {
1300          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1301          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1302          break;
1303        }
1304        default:
1305          break;
1306      }
1307    }
1308    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1309
1310    // Mark variables on back edges as "unknown" if they've been changed.
1311    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1312         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1313      // if CurrBlock -> *SI is *not* a back edge
1314      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1315        continue;
1316
1317      CFGBlock *FirstLoopBlock = *SI;
1318      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1319      Context LoopEnd   = CurrBlockInfo->ExitContext;
1320      intersectBackEdge(LoopBegin, LoopEnd);
1321    }
1322  }
1323
1324  // Put an extra entry at the end of the indexed context array
1325  unsigned exitID = CFGraph->getExit().getBlockID();
1326  saveContext(0, BlockInfo[exitID].ExitContext);
1327}
1328
1329/// Find the appropriate source locations to use when producing diagnostics for
1330/// each block in the CFG.
1331static void findBlockLocations(CFG *CFGraph,
1332                               PostOrderCFGView *SortedGraph,
1333                               std::vector<CFGBlockInfo> &BlockInfo) {
1334  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1335       E = SortedGraph->end(); I!= E; ++I) {
1336    const CFGBlock *CurrBlock = *I;
1337    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1338
1339    // Find the source location of the last statement in the block, if the
1340    // block is not empty.
1341    if (const Stmt *S = CurrBlock->getTerminator()) {
1342      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1343    } else {
1344      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1345           BE = CurrBlock->rend(); BI != BE; ++BI) {
1346        // FIXME: Handle other CFGElement kinds.
1347        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1348          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1349          break;
1350        }
1351      }
1352    }
1353
1354    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1355      // This block contains at least one statement. Find the source location
1356      // of the first statement in the block.
1357      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1358           BE = CurrBlock->end(); BI != BE; ++BI) {
1359        // FIXME: Handle other CFGElement kinds.
1360        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1361          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1362          break;
1363        }
1364      }
1365    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1366               CurrBlock != &CFGraph->getExit()) {
1367      // The block is empty, and has a single predecessor. Use its exit
1368      // location.
1369      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1370          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1371    }
1372  }
1373}
1374
1375/// \brief Class which implements the core thread safety analysis routines.
1376class ThreadSafetyAnalyzer {
1377  friend class BuildLockset;
1378
1379  ThreadSafetyHandler       &Handler;
1380  LocalVariableMap          LocalVarMap;
1381  FactManager               FactMan;
1382  std::vector<CFGBlockInfo> BlockInfo;
1383
1384public:
1385  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1386
1387  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1388  void removeLock(FactSet &FSet, const SExpr &Mutex,
1389                  SourceLocation UnlockLoc, bool FullyRemove=false);
1390
1391  template <typename AttrType>
1392  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1393                   const NamedDecl *D);
1394
1395  template <class AttrType>
1396  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1397                   const NamedDecl *D,
1398                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1399                   Expr *BrE, bool Neg);
1400
1401  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1402                                     bool &Negate);
1403
1404  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1405                      const CFGBlock* PredBlock,
1406                      const CFGBlock *CurrBlock);
1407
1408  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1409                        SourceLocation JoinLoc,
1410                        LockErrorKind LEK1, LockErrorKind LEK2,
1411                        bool Modify=true);
1412
1413  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1414                        SourceLocation JoinLoc, LockErrorKind LEK1,
1415                        bool Modify=true) {
1416    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1417  }
1418
1419  void runAnalysis(AnalysisDeclContext &AC);
1420};
1421
1422
1423/// \brief Add a new lock to the lockset, warning if the lock is already there.
1424/// \param Mutex -- the Mutex expression for the lock
1425/// \param LDat  -- the LockData for the lock
1426void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1427                                   const LockData &LDat) {
1428  // FIXME: deal with acquired before/after annotations.
1429  // FIXME: Don't always warn when we have support for reentrant locks.
1430  if (Mutex.shouldIgnore())
1431    return;
1432
1433  if (FSet.findLock(FactMan, Mutex)) {
1434    Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1435  } else {
1436    FSet.addLock(FactMan, Mutex, LDat);
1437  }
1438}
1439
1440
1441/// \brief Remove a lock from the lockset, warning if the lock is not there.
1442/// \param Mutex The lock expression corresponding to the lock to be removed
1443/// \param UnlockLoc The source location of the unlock (only used in error msg)
1444void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1445                                      const SExpr &Mutex,
1446                                      SourceLocation UnlockLoc,
1447                                      bool FullyRemove) {
1448  if (Mutex.shouldIgnore())
1449    return;
1450
1451  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1452  if (!LDat) {
1453    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1454    return;
1455  }
1456
1457  if (LDat->UnderlyingMutex.isValid()) {
1458    // This is scoped lockable object, which manages the real mutex.
1459    if (FullyRemove) {
1460      // We're destroying the managing object.
1461      // Remove the underlying mutex if it exists; but don't warn.
1462      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1463        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1464    } else {
1465      // We're releasing the underlying mutex, but not destroying the
1466      // managing object.  Warn on dual release.
1467      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1468        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1469                                      UnlockLoc);
1470      }
1471      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1472      return;
1473    }
1474  }
1475  FSet.removeLock(FactMan, Mutex);
1476}
1477
1478
1479/// \brief Extract the list of mutexIDs from the attribute on an expression,
1480/// and push them onto Mtxs, discarding any duplicates.
1481template <typename AttrType>
1482void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1483                                       Expr *Exp, const NamedDecl *D) {
1484  typedef typename AttrType::args_iterator iterator_type;
1485
1486  if (Attr->args_size() == 0) {
1487    // The mutex held is the "this" object.
1488    SExpr Mu(0, Exp, D);
1489    if (!Mu.isValid())
1490      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1491    else
1492      Mtxs.push_back_nodup(Mu);
1493    return;
1494  }
1495
1496  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1497    SExpr Mu(*I, Exp, D);
1498    if (!Mu.isValid())
1499      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1500    else
1501      Mtxs.push_back_nodup(Mu);
1502  }
1503}
1504
1505
1506/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1507/// trylock applies to the given edge, then push them onto Mtxs, discarding
1508/// any duplicates.
1509template <class AttrType>
1510void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1511                                       Expr *Exp, const NamedDecl *D,
1512                                       const CFGBlock *PredBlock,
1513                                       const CFGBlock *CurrBlock,
1514                                       Expr *BrE, bool Neg) {
1515  // Find out which branch has the lock
1516  bool branch = 0;
1517  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1518    branch = BLE->getValue();
1519  }
1520  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1521    branch = ILE->getValue().getBoolValue();
1522  }
1523  int branchnum = branch ? 0 : 1;
1524  if (Neg) branchnum = !branchnum;
1525
1526  // If we've taken the trylock branch, then add the lock
1527  int i = 0;
1528  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1529       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1530    if (*SI == CurrBlock && i == branchnum) {
1531      getMutexIDs(Mtxs, Attr, Exp, D);
1532    }
1533  }
1534}
1535
1536
1537bool getStaticBooleanValue(Expr* E, bool& TCond) {
1538  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1539    TCond = false;
1540    return true;
1541  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1542    TCond = BLE->getValue();
1543    return true;
1544  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1545    TCond = ILE->getValue().getBoolValue();
1546    return true;
1547  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1548    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1549  }
1550  return false;
1551}
1552
1553
1554// If Cond can be traced back to a function call, return the call expression.
1555// The negate variable should be called with false, and will be set to true
1556// if the function call is negated, e.g. if (!mu.tryLock(...))
1557const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1558                                                         LocalVarContext C,
1559                                                         bool &Negate) {
1560  if (!Cond)
1561    return 0;
1562
1563  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1564    return CallExp;
1565  }
1566  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1567    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1568  }
1569  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1570    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1571  }
1572  else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1573    return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1574  }
1575  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1576    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1577    return getTrylockCallExpr(E, C, Negate);
1578  }
1579  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1580    if (UOP->getOpcode() == UO_LNot) {
1581      Negate = !Negate;
1582      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1583    }
1584    return 0;
1585  }
1586  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1587    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1588      if (BOP->getOpcode() == BO_NE)
1589        Negate = !Negate;
1590
1591      bool TCond = false;
1592      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1593        if (!TCond) Negate = !Negate;
1594        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1595      }
1596      else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1597        if (!TCond) Negate = !Negate;
1598        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1599      }
1600      return 0;
1601    }
1602    return 0;
1603  }
1604  // FIXME -- handle && and || as well.
1605  return 0;
1606}
1607
1608
1609/// \brief Find the lockset that holds on the edge between PredBlock
1610/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1611/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1612void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1613                                          const FactSet &ExitSet,
1614                                          const CFGBlock *PredBlock,
1615                                          const CFGBlock *CurrBlock) {
1616  Result = ExitSet;
1617
1618  if (!PredBlock->getTerminatorCondition())
1619    return;
1620
1621  bool Negate = false;
1622  const Stmt *Cond = PredBlock->getTerminatorCondition();
1623  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1624  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1625
1626  CallExpr *Exp =
1627    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1628  if (!Exp)
1629    return;
1630
1631  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1632  if(!FunDecl || !FunDecl->hasAttrs())
1633    return;
1634
1635
1636  MutexIDList ExclusiveLocksToAdd;
1637  MutexIDList SharedLocksToAdd;
1638
1639  // If the condition is a call to a Trylock function, then grab the attributes
1640  AttrVec &ArgAttrs = FunDecl->getAttrs();
1641  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1642    Attr *Attr = ArgAttrs[i];
1643    switch (Attr->getKind()) {
1644      case attr::ExclusiveTrylockFunction: {
1645        ExclusiveTrylockFunctionAttr *A =
1646          cast<ExclusiveTrylockFunctionAttr>(Attr);
1647        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1648                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1649        break;
1650      }
1651      case attr::SharedTrylockFunction: {
1652        SharedTrylockFunctionAttr *A =
1653          cast<SharedTrylockFunctionAttr>(Attr);
1654        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1655                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1656        break;
1657      }
1658      default:
1659        break;
1660    }
1661  }
1662
1663  // Add and remove locks.
1664  SourceLocation Loc = Exp->getExprLoc();
1665  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1666    addLock(Result, ExclusiveLocksToAdd[i],
1667            LockData(Loc, LK_Exclusive));
1668  }
1669  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1670    addLock(Result, SharedLocksToAdd[i],
1671            LockData(Loc, LK_Shared));
1672  }
1673}
1674
1675
1676/// \brief We use this class to visit different types of expressions in
1677/// CFGBlocks, and build up the lockset.
1678/// An expression may cause us to add or remove locks from the lockset, or else
1679/// output error messages related to missing locks.
1680/// FIXME: In future, we may be able to not inherit from a visitor.
1681class BuildLockset : public StmtVisitor<BuildLockset> {
1682  friend class ThreadSafetyAnalyzer;
1683
1684  ThreadSafetyAnalyzer *Analyzer;
1685  FactSet FSet;
1686  LocalVariableMap::Context LVarCtx;
1687  unsigned CtxIndex;
1688
1689  // Helper functions
1690  const ValueDecl *getValueDecl(Expr *Exp);
1691
1692  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1693                          Expr *MutexExp, ProtectedOperationKind POK);
1694  void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
1695
1696  void checkAccess(Expr *Exp, AccessKind AK);
1697  void checkDereference(Expr *Exp, AccessKind AK);
1698  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1699
1700public:
1701  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1702    : StmtVisitor<BuildLockset>(),
1703      Analyzer(Anlzr),
1704      FSet(Info.EntrySet),
1705      LVarCtx(Info.EntryContext),
1706      CtxIndex(Info.EntryIndex)
1707  {}
1708
1709  void VisitUnaryOperator(UnaryOperator *UO);
1710  void VisitBinaryOperator(BinaryOperator *BO);
1711  void VisitCastExpr(CastExpr *CE);
1712  void VisitCallExpr(CallExpr *Exp);
1713  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1714  void VisitDeclStmt(DeclStmt *S);
1715};
1716
1717
1718/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1719const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1720  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1721    return DR->getDecl();
1722
1723  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1724    return ME->getMemberDecl();
1725
1726  return 0;
1727}
1728
1729/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1730/// of at least the passed in AccessKind.
1731void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1732                                      AccessKind AK, Expr *MutexExp,
1733                                      ProtectedOperationKind POK) {
1734  LockKind LK = getLockKindFromAccessKind(AK);
1735
1736  SExpr Mutex(MutexExp, Exp, D);
1737  if (!Mutex.isValid()) {
1738    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1739    return;
1740  } else if (Mutex.shouldIgnore()) {
1741    return;
1742  }
1743
1744  LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1745  if (!LDat || !LDat->isAtLeast(LK))
1746    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1747                                         Exp->getExprLoc());
1748}
1749
1750/// \brief Warn if the LSet contains the given lock.
1751void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
1752                                   Expr *MutexExp) {
1753  SExpr Mutex(MutexExp, Exp, D);
1754  if (!Mutex.isValid()) {
1755    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1756    return;
1757  }
1758
1759  LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1760  if (LDat)
1761    Analyzer->Handler.handleFunExcludesLock(D->getName(), Mutex.toString(),
1762                                            Exp->getExprLoc());
1763}
1764
1765
1766/// \brief This method identifies variable dereferences and checks pt_guarded_by
1767/// and pt_guarded_var annotations. Note that we only check these annotations
1768/// at the time a pointer is dereferenced.
1769/// FIXME: We need to check for other types of pointer dereferences
1770/// (e.g. [], ->) and deal with them here.
1771/// \param Exp An expression that has been read or written.
1772void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1773  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1774  if (!UO || UO->getOpcode() != clang::UO_Deref)
1775    return;
1776  Exp = UO->getSubExpr()->IgnoreParenCasts();
1777
1778  const ValueDecl *D = getValueDecl(Exp);
1779  if(!D || !D->hasAttrs())
1780    return;
1781
1782  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1783    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1784                                        Exp->getExprLoc());
1785
1786  const AttrVec &ArgAttrs = D->getAttrs();
1787  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1788    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1789      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1790}
1791
1792/// \brief Checks guarded_by and guarded_var attributes.
1793/// Whenever we identify an access (read or write) of a DeclRefExpr or
1794/// MemberExpr, we need to check whether there are any guarded_by or
1795/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1796void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1797  const ValueDecl *D = getValueDecl(Exp);
1798  if(!D || !D->hasAttrs())
1799    return;
1800
1801  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1802    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1803                                        Exp->getExprLoc());
1804
1805  const AttrVec &ArgAttrs = D->getAttrs();
1806  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1807    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1808      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1809}
1810
1811/// \brief Process a function call, method call, constructor call,
1812/// or destructor call.  This involves looking at the attributes on the
1813/// corresponding function/method/constructor/destructor, issuing warnings,
1814/// and updating the locksets accordingly.
1815///
1816/// FIXME: For classes annotated with one of the guarded annotations, we need
1817/// to treat const method calls as reads and non-const method calls as writes,
1818/// and check that the appropriate locks are held. Non-const method calls with
1819/// the same signature as const method calls can be also treated as reads.
1820///
1821void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1822  const AttrVec &ArgAttrs = D->getAttrs();
1823  MutexIDList ExclusiveLocksToAdd;
1824  MutexIDList SharedLocksToAdd;
1825  MutexIDList LocksToRemove;
1826
1827  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1828    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1829    switch (At->getKind()) {
1830      // When we encounter an exclusive lock function, we need to add the lock
1831      // to our lockset with kind exclusive.
1832      case attr::ExclusiveLockFunction: {
1833        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1834        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
1835        break;
1836      }
1837
1838      // When we encounter a shared lock function, we need to add the lock
1839      // to our lockset with kind shared.
1840      case attr::SharedLockFunction: {
1841        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1842        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
1843        break;
1844      }
1845
1846      // When we encounter an unlock function, we need to remove unlocked
1847      // mutexes from the lockset, and flag a warning if they are not there.
1848      case attr::UnlockFunction: {
1849        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1850        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
1851        break;
1852      }
1853
1854      case attr::ExclusiveLocksRequired: {
1855        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1856
1857        for (ExclusiveLocksRequiredAttr::args_iterator
1858             I = A->args_begin(), E = A->args_end(); I != E; ++I)
1859          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1860        break;
1861      }
1862
1863      case attr::SharedLocksRequired: {
1864        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1865
1866        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1867             E = A->args_end(); I != E; ++I)
1868          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1869        break;
1870      }
1871
1872      case attr::LocksExcluded: {
1873        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1874
1875        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1876            E = A->args_end(); I != E; ++I) {
1877          warnIfMutexHeld(D, Exp, *I);
1878        }
1879        break;
1880      }
1881
1882      // Ignore other (non thread-safety) attributes
1883      default:
1884        break;
1885    }
1886  }
1887
1888  // Figure out if we're calling the constructor of scoped lockable class
1889  bool isScopedVar = false;
1890  if (VD) {
1891    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1892      const CXXRecordDecl* PD = CD->getParent();
1893      if (PD && PD->getAttr<ScopedLockableAttr>())
1894        isScopedVar = true;
1895    }
1896  }
1897
1898  // Add locks.
1899  SourceLocation Loc = Exp->getExprLoc();
1900  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1901    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1902                            LockData(Loc, LK_Exclusive, isScopedVar));
1903  }
1904  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1905    Analyzer->addLock(FSet, SharedLocksToAdd[i],
1906                            LockData(Loc, LK_Shared, isScopedVar));
1907  }
1908
1909  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1910  // FIXME -- this doesn't work if we acquire multiple locks.
1911  if (isScopedVar) {
1912    SourceLocation MLoc = VD->getLocation();
1913    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1914    SExpr SMutex(&DRE, 0, 0);
1915
1916    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1917      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1918                                               ExclusiveLocksToAdd[i]));
1919    }
1920    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1921      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1922                                               SharedLocksToAdd[i]));
1923    }
1924  }
1925
1926  // Remove locks.
1927  // FIXME -- should only fully remove if the attribute refers to 'this'.
1928  bool Dtor = isa<CXXDestructorDecl>(D);
1929  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
1930    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
1931  }
1932}
1933
1934
1935/// \brief For unary operations which read and write a variable, we need to
1936/// check whether we hold any required mutexes. Reads are checked in
1937/// VisitCastExpr.
1938void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1939  switch (UO->getOpcode()) {
1940    case clang::UO_PostDec:
1941    case clang::UO_PostInc:
1942    case clang::UO_PreDec:
1943    case clang::UO_PreInc: {
1944      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1945      checkAccess(SubExp, AK_Written);
1946      checkDereference(SubExp, AK_Written);
1947      break;
1948    }
1949    default:
1950      break;
1951  }
1952}
1953
1954/// For binary operations which assign to a variable (writes), we need to check
1955/// whether we hold any required mutexes.
1956/// FIXME: Deal with non-primitive types.
1957void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1958  if (!BO->isAssignmentOp())
1959    return;
1960
1961  // adjust the context
1962  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1963
1964  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1965  checkAccess(LHSExp, AK_Written);
1966  checkDereference(LHSExp, AK_Written);
1967}
1968
1969/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1970/// need to ensure we hold any required mutexes.
1971/// FIXME: Deal with non-primitive types.
1972void BuildLockset::VisitCastExpr(CastExpr *CE) {
1973  if (CE->getCastKind() != CK_LValueToRValue)
1974    return;
1975  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1976  checkAccess(SubExp, AK_Read);
1977  checkDereference(SubExp, AK_Read);
1978}
1979
1980
1981void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1982  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1983  if(!D || !D->hasAttrs())
1984    return;
1985  handleCall(Exp, D);
1986}
1987
1988void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1989  // FIXME -- only handles constructors in DeclStmt below.
1990}
1991
1992void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1993  // adjust the context
1994  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1995
1996  DeclGroupRef DGrp = S->getDeclGroup();
1997  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1998    Decl *D = *I;
1999    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2000      Expr *E = VD->getInit();
2001      // handle constructors that involve temporaries
2002      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2003        E = EWC->getSubExpr();
2004
2005      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2006        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2007        if (!CtorD || !CtorD->hasAttrs())
2008          return;
2009        handleCall(CE, CtorD, VD);
2010      }
2011    }
2012  }
2013}
2014
2015
2016
2017/// \brief Compute the intersection of two locksets and issue warnings for any
2018/// locks in the symmetric difference.
2019///
2020/// This function is used at a merge point in the CFG when comparing the lockset
2021/// of each branch being merged. For example, given the following sequence:
2022/// A; if () then B; else C; D; we need to check that the lockset after B and C
2023/// are the same. In the event of a difference, we use the intersection of these
2024/// two locksets at the start of D.
2025///
2026/// \param FSet1 The first lockset.
2027/// \param FSet2 The second lockset.
2028/// \param JoinLoc The location of the join point for error reporting
2029/// \param LEK1 The error message to report if a mutex is missing from LSet1
2030/// \param LEK2 The error message to report if a mutex is missing from Lset2
2031void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2032                                            const FactSet &FSet2,
2033                                            SourceLocation JoinLoc,
2034                                            LockErrorKind LEK1,
2035                                            LockErrorKind LEK2,
2036                                            bool Modify) {
2037  FactSet FSet1Orig = FSet1;
2038
2039  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2040       I != E; ++I) {
2041    const SExpr &FSet2Mutex = FactMan[*I].MutID;
2042    const LockData &LDat2 = FactMan[*I].LDat;
2043
2044    if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2045      if (LDat1->LKind != LDat2.LKind) {
2046        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2047                                         LDat2.AcquireLoc,
2048                                         LDat1->AcquireLoc);
2049        if (Modify && LDat1->LKind != LK_Exclusive) {
2050          FSet1.removeLock(FactMan, FSet2Mutex);
2051          FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2052        }
2053      }
2054    } else {
2055      if (LDat2.UnderlyingMutex.isValid()) {
2056        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2057          // If this is a scoped lock that manages another mutex, and if the
2058          // underlying mutex is still held, then warn about the underlying
2059          // mutex.
2060          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2061                                            LDat2.AcquireLoc,
2062                                            JoinLoc, LEK1);
2063        }
2064      }
2065      else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2066        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2067                                          LDat2.AcquireLoc,
2068                                          JoinLoc, LEK1);
2069    }
2070  }
2071
2072  for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2073       I != E; ++I) {
2074    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2075    const LockData &LDat1 = FactMan[*I].LDat;
2076
2077    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2078      if (LDat1.UnderlyingMutex.isValid()) {
2079        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2080          // If this is a scoped lock that manages another mutex, and if the
2081          // underlying mutex is still held, then warn about the underlying
2082          // mutex.
2083          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2084                                            LDat1.AcquireLoc,
2085                                            JoinLoc, LEK1);
2086        }
2087      }
2088      else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2089        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2090                                          LDat1.AcquireLoc,
2091                                          JoinLoc, LEK2);
2092      if (Modify)
2093        FSet1.removeLock(FactMan, FSet1Mutex);
2094    }
2095  }
2096}
2097
2098
2099
2100/// \brief Check a function's CFG for thread-safety violations.
2101///
2102/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2103/// at the end of each block, and issue warnings for thread safety violations.
2104/// Each block in the CFG is traversed exactly once.
2105void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2106  CFG *CFGraph = AC.getCFG();
2107  if (!CFGraph) return;
2108  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2109
2110  // AC.dumpCFG(true);
2111
2112  if (!D)
2113    return;  // Ignore anonymous functions for now.
2114  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2115    return;
2116  // FIXME: Do something a bit more intelligent inside constructor and
2117  // destructor code.  Constructors and destructors must assume unique access
2118  // to 'this', so checks on member variable access is disabled, but we should
2119  // still enable checks on other objects.
2120  if (isa<CXXConstructorDecl>(D))
2121    return;  // Don't check inside constructors.
2122  if (isa<CXXDestructorDecl>(D))
2123    return;  // Don't check inside destructors.
2124
2125  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2126    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2127
2128  // We need to explore the CFG via a "topological" ordering.
2129  // That way, we will be guaranteed to have information about required
2130  // predecessor locksets when exploring a new block.
2131  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2132  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2133
2134  // Compute SSA names for local variables
2135  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2136
2137  // Fill in source locations for all CFGBlocks.
2138  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2139
2140  // Add locks from exclusive_locks_required and shared_locks_required
2141  // to initial lockset. Also turn off checking for lock and unlock functions.
2142  // FIXME: is there a more intelligent way to check lock/unlock functions?
2143  if (!SortedGraph->empty() && D->hasAttrs()) {
2144    const CFGBlock *FirstBlock = *SortedGraph->begin();
2145    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2146    const AttrVec &ArgAttrs = D->getAttrs();
2147
2148    MutexIDList ExclusiveLocksToAdd;
2149    MutexIDList SharedLocksToAdd;
2150
2151    SourceLocation Loc = D->getLocation();
2152    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2153      Attr *Attr = ArgAttrs[i];
2154      Loc = Attr->getLocation();
2155      if (ExclusiveLocksRequiredAttr *A
2156            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2157        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2158      } else if (SharedLocksRequiredAttr *A
2159                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2160        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2161      } else if (isa<UnlockFunctionAttr>(Attr)) {
2162        // Don't try to check unlock functions for now
2163        return;
2164      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2165        // Don't try to check lock functions for now
2166        return;
2167      } else if (isa<SharedLockFunctionAttr>(Attr)) {
2168        // Don't try to check lock functions for now
2169        return;
2170      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2171        // Don't try to check trylock functions for now
2172        return;
2173      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2174        // Don't try to check trylock functions for now
2175        return;
2176      }
2177    }
2178
2179    // FIXME -- Loc can be wrong here.
2180    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2181      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2182              LockData(Loc, LK_Exclusive));
2183    }
2184    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2185      addLock(InitialLockset, SharedLocksToAdd[i],
2186              LockData(Loc, LK_Shared));
2187    }
2188  }
2189
2190  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2191       E = SortedGraph->end(); I!= E; ++I) {
2192    const CFGBlock *CurrBlock = *I;
2193    int CurrBlockID = CurrBlock->getBlockID();
2194    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2195
2196    // Use the default initial lockset in case there are no predecessors.
2197    VisitedBlocks.insert(CurrBlock);
2198
2199    // Iterate through the predecessor blocks and warn if the lockset for all
2200    // predecessors is not the same. We take the entry lockset of the current
2201    // block to be the intersection of all previous locksets.
2202    // FIXME: By keeping the intersection, we may output more errors in future
2203    // for a lock which is not in the intersection, but was in the union. We
2204    // may want to also keep the union in future. As an example, let's say
2205    // the intersection contains Mutex L, and the union contains L and M.
2206    // Later we unlock M. At this point, we would output an error because we
2207    // never locked M; although the real error is probably that we forgot to
2208    // lock M on all code paths. Conversely, let's say that later we lock M.
2209    // In this case, we should compare against the intersection instead of the
2210    // union because the real error is probably that we forgot to unlock M on
2211    // all code paths.
2212    bool LocksetInitialized = false;
2213    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
2214    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2215         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2216
2217      // if *PI -> CurrBlock is a back edge
2218      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2219        continue;
2220
2221      // Ignore edges from blocks that can't return.
2222      if ((*PI)->hasNoReturnElement())
2223        continue;
2224
2225      // If the previous block ended in a 'continue' or 'break' statement, then
2226      // a difference in locksets is probably due to a bug in that block, rather
2227      // than in some other predecessor. In that case, keep the other
2228      // predecessor's lockset.
2229      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2230        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2231          SpecialBlocks.push_back(*PI);
2232          continue;
2233        }
2234      }
2235
2236      int PrevBlockID = (*PI)->getBlockID();
2237      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2238      FactSet PrevLockset;
2239      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2240
2241      if (!LocksetInitialized) {
2242        CurrBlockInfo->EntrySet = PrevLockset;
2243        LocksetInitialized = true;
2244      } else {
2245        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2246                         CurrBlockInfo->EntryLoc,
2247                         LEK_LockedSomePredecessors);
2248      }
2249    }
2250
2251    // Process continue and break blocks. Assume that the lockset for the
2252    // resulting block is unaffected by any discrepancies in them.
2253    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2254         SpecialI < SpecialN; ++SpecialI) {
2255      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2256      int PrevBlockID = PrevBlock->getBlockID();
2257      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2258
2259      if (!LocksetInitialized) {
2260        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2261        LocksetInitialized = true;
2262      } else {
2263        // Determine whether this edge is a loop terminator for diagnostic
2264        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2265        // it might also be part of a switch. Also, a subsequent destructor
2266        // might add to the lockset, in which case the real issue might be a
2267        // double lock on the other path.
2268        const Stmt *Terminator = PrevBlock->getTerminator();
2269        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2270
2271        FactSet PrevLockset;
2272        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2273                       PrevBlock, CurrBlock);
2274
2275        // Do not update EntrySet.
2276        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2277                         PrevBlockInfo->ExitLoc,
2278                         IsLoop ? LEK_LockedSomeLoopIterations
2279                                : LEK_LockedSomePredecessors,
2280                         false);
2281      }
2282    }
2283
2284    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2285
2286    // Visit all the statements in the basic block.
2287    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2288         BE = CurrBlock->end(); BI != BE; ++BI) {
2289      switch (BI->getKind()) {
2290        case CFGElement::Statement: {
2291          const CFGStmt *CS = cast<CFGStmt>(&*BI);
2292          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2293          break;
2294        }
2295        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2296        case CFGElement::AutomaticObjectDtor: {
2297          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2298          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2299            AD->getDestructorDecl(AC.getASTContext()));
2300          if (!DD->hasAttrs())
2301            break;
2302
2303          // Create a dummy expression,
2304          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
2305          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2306                          AD->getTriggerStmt()->getLocEnd());
2307          LocksetBuilder.handleCall(&DRE, DD);
2308          break;
2309        }
2310        default:
2311          break;
2312      }
2313    }
2314    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2315
2316    // For every back edge from CurrBlock (the end of the loop) to another block
2317    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2318    // the one held at the beginning of FirstLoopBlock. We can look up the
2319    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2320    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2321         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2322
2323      // if CurrBlock -> *SI is *not* a back edge
2324      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2325        continue;
2326
2327      CFGBlock *FirstLoopBlock = *SI;
2328      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2329      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2330      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2331                       PreLoop->EntryLoc,
2332                       LEK_LockedSomeLoopIterations,
2333                       false);
2334    }
2335  }
2336
2337  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2338  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2339
2340  // FIXME: Should we call this function for all blocks which exit the function?
2341  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2342                   Final->ExitLoc,
2343                   LEK_LockedAtEndOfFunction,
2344                   LEK_NotLockedAtEndOfFunction,
2345                   false);
2346}
2347
2348} // end anonymous namespace
2349
2350
2351namespace clang {
2352namespace thread_safety {
2353
2354/// \brief Check a function's CFG for thread-safety violations.
2355///
2356/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2357/// at the end of each block, and issue warnings for thread safety violations.
2358/// Each block in the CFG is traversed exactly once.
2359void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2360                             ThreadSafetyHandler &Handler) {
2361  ThreadSafetyAnalyzer Analyzer(Handler);
2362  Analyzer.runAnalysis(AC);
2363}
2364
2365/// \brief Helper function that returns a LockKind required for the given level
2366/// of access.
2367LockKind getLockKindFromAccessKind(AccessKind AK) {
2368  switch (AK) {
2369    case AK_Read :
2370      return LK_Shared;
2371    case AK_Written :
2372      return LK_Exclusive;
2373  }
2374  llvm_unreachable("Unknown AccessKind");
2375}
2376
2377}} // end namespace clang::thread_safety
2378