ThreadSafety.cpp revision 7613c73af842a7f989968161409f53a692dc5b30
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://gcc.gnu.org/wiki/ThreadSafetyAnnotation for the gcc version.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
18#include "clang/Analysis/AnalysisContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/Analysis/CFGStmtMap.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/SourceLocation.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/ImmutableMap.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include <algorithm>
34#include <vector>
35
36using namespace clang;
37using namespace thread_safety;
38
39// Helper functions
40static Expr *getParent(Expr *Exp) {
41  if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
42    return ME->getBase();
43  if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
44    return CE->getImplicitObjectArgument();
45  return 0;
46}
47
48namespace {
49/// \brief Implements a set of CFGBlocks using a BitVector.
50///
51/// This class contains a minimal interface, primarily dictated by the SetType
52/// template parameter of the llvm::po_iterator template, as used with external
53/// storage. We also use this set to keep track of which CFGBlocks we visit
54/// during the analysis.
55class CFGBlockSet {
56  llvm::BitVector VisitedBlockIDs;
57
58public:
59  // po_iterator requires this iterator, but the only interface needed is the
60  // value_type typedef.
61  struct iterator {
62    typedef const CFGBlock *value_type;
63  };
64
65  CFGBlockSet() {}
66  CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
67
68  /// \brief Set the bit associated with a particular CFGBlock.
69  /// This is the important method for the SetType template parameter.
70  bool insert(const CFGBlock *Block) {
71    // Note that insert() is called by po_iterator, which doesn't check to make
72    // sure that Block is non-null.  Moreover, the CFGBlock iterator will
73    // occasionally hand out null pointers for pruned edges, so we catch those
74    // here.
75    if (Block == 0)
76      return false;  // if an edge is trivially false.
77    if (VisitedBlockIDs.test(Block->getBlockID()))
78      return false;
79    VisitedBlockIDs.set(Block->getBlockID());
80    return true;
81  }
82
83  /// \brief Check if the bit for a CFGBlock has been already set.
84  /// This method is for tracking visited blocks in the main threadsafety loop.
85  /// Block must not be null.
86  bool alreadySet(const CFGBlock *Block) {
87    return VisitedBlockIDs.test(Block->getBlockID());
88  }
89};
90
91/// \brief We create a helper class which we use to iterate through CFGBlocks in
92/// the topological order.
93class TopologicallySortedCFG {
94  typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
95
96  std::vector<const CFGBlock*> Blocks;
97
98public:
99  typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
100
101  TopologicallySortedCFG(const CFG *CFGraph) {
102    Blocks.reserve(CFGraph->getNumBlockIDs());
103    CFGBlockSet BSet(CFGraph);
104
105    for (po_iterator I = po_iterator::begin(CFGraph, BSet),
106         E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
107      Blocks.push_back(*I);
108    }
109  }
110
111  iterator begin() {
112    return Blocks.rbegin();
113  }
114
115  iterator end() {
116    return Blocks.rend();
117  }
118};
119
120/// \brief A MutexID object uniquely identifies a particular mutex, and
121/// is built from an Expr* (i.e. calling a lock function).
122///
123/// Thread-safety analysis works by comparing lock expressions.  Within the
124/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
125/// a particular mutex object at run-time.  Subsequent occurrences of the same
126/// expression (where "same" means syntactic equality) will refer to the same
127/// run-time object if three conditions hold:
128/// (1) Local variables in the expression, such as "x" have not changed.
129/// (2) Values on the heap that affect the expression have not changed.
130/// (3) The expression involves only pure function calls.
131/// The current implementation assumes, but does not verify, that multiple uses
132/// of the same lock expression satisfies these criteria.
133///
134/// Clang introduces an additional wrinkle, which is that it is difficult to
135/// derive canonical expressions, or compare expressions directly for equality.
136/// Thus, we identify a mutex not by an Expr, but by the set of named
137/// declarations that are referenced by the Expr.  In other words,
138/// x->foo->bar.mu will be a four element vector with the Decls for
139/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
140/// for all practical purposes.
141///
142/// Note we will need to perform substitution on "this" and function parameter
143/// names when constructing a lock expression.
144///
145/// For example:
146/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
147/// void myFunc(C *X) { ... X->lock() ... }
148/// The original expression for the mutex acquired by myFunc is "this->Mu", but
149/// "X" is substituted for "this" so we get X->Mu();
150///
151/// For another example:
152/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
153/// MyList *MyL;
154/// foo(MyL);  // requires lock MyL->Mu to be held
155class MutexID {
156  SmallVector<NamedDecl*, 2> DeclSeq;
157  ThreadSafetyHandler &Handler;
158
159  /// Build a Decl sequence representing the lock from the given expression.
160  /// Recursive function that bottoms out when the final DeclRefExpr is reached.
161  void buildMutexID(Expr *Exp, Expr *Parent) {
162    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
163      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
164      DeclSeq.push_back(ND);
165    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
166      NamedDecl *ND = ME->getMemberDecl();
167      DeclSeq.push_back(ND);
168      buildMutexID(ME->getBase(), Parent);
169    } else if (isa<CXXThisExpr>(Exp)) {
170      if (!Parent)
171        return;
172      buildMutexID(Parent, 0);
173    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
174      buildMutexID(CE->getSubExpr(), Parent);
175    else
176      Handler.handleInvalidLockExp(Exp->getExprLoc());
177  }
178
179public:
180  MutexID(ThreadSafetyHandler &Handler, Expr *LExpr, Expr *ParentExpr)
181    : Handler(Handler) {
182    buildMutexID(LExpr, ParentExpr);
183    assert(!DeclSeq.empty());
184  }
185
186  bool operator==(const MutexID &other) const {
187    return DeclSeq == other.DeclSeq;
188  }
189
190  bool operator!=(const MutexID &other) const {
191    return !(*this == other);
192  }
193
194  // SmallVector overloads Operator< to do lexicographic ordering. Note that
195  // we use pointer equality (and <) to compare NamedDecls. This means the order
196  // of MutexIDs in a lockset is nondeterministic. In order to output
197  // diagnostics in a deterministic ordering, we must order all diagnostics to
198  // output by SourceLocation when iterating through this lockset.
199  bool operator<(const MutexID &other) const {
200    return DeclSeq < other.DeclSeq;
201  }
202
203  /// \brief Returns the name of the first Decl in the list for a given MutexID;
204  /// e.g. the lock expression foo.bar() has name "bar".
205  /// The caret will point unambiguously to the lock expression, so using this
206  /// name in diagnostics is a way to get simple, and consistent, mutex names.
207  /// We do not want to output the entire expression text for security reasons.
208  StringRef getName() const {
209    return DeclSeq.front()->getName();
210  }
211
212  void Profile(llvm::FoldingSetNodeID &ID) const {
213    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
214         E = DeclSeq.end(); I != E; ++I) {
215      ID.AddPointer(*I);
216    }
217  }
218};
219
220/// \brief This is a helper class that stores info about the most recent
221/// accquire of a Lock.
222///
223/// The main body of the analysis maps MutexIDs to LockDatas.
224struct LockData {
225  SourceLocation AcquireLoc;
226
227  /// \brief LKind stores whether a lock is held shared or exclusively.
228  /// Note that this analysis does not currently support either re-entrant
229  /// locking or lock "upgrading" and "downgrading" between exclusive and
230  /// shared.
231  ///
232  /// FIXME: add support for re-entrant locking and lock up/downgrading
233  LockKind LKind;
234
235  LockData(SourceLocation AcquireLoc, LockKind LKind)
236    : AcquireLoc(AcquireLoc), LKind(LKind) {}
237
238  bool operator==(const LockData &other) const {
239    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
240  }
241
242  bool operator!=(const LockData &other) const {
243    return !(*this == other);
244  }
245
246  void Profile(llvm::FoldingSetNodeID &ID) const {
247      ID.AddInteger(AcquireLoc.getRawEncoding());
248      ID.AddInteger(LKind);
249    }
250};
251
252/// A Lockset maps each MutexID (defined above) to information about how it has
253/// been locked.
254typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
255
256/// \brief We use this class to visit different types of expressions in
257/// CFGBlocks, and build up the lockset.
258/// An expression may cause us to add or remove locks from the lockset, or else
259/// output error messages related to missing locks.
260/// FIXME: In future, we may be able to not inherit from a visitor.
261class BuildLockset : public StmtVisitor<BuildLockset> {
262  ThreadSafetyHandler &Handler;
263  Lockset LSet;
264  Lockset::Factory &LocksetFactory;
265
266  // Helper functions
267  void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
268  void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
269               LockKind LK);
270  const ValueDecl *getValueDecl(Expr *Exp);
271  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
272                           Expr *MutexExp, ProtectedOperationKind POK);
273  void checkAccess(Expr *Exp, AccessKind AK);
274  void checkDereference(Expr *Exp, AccessKind AK);
275
276  template <class AttrType>
277  void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
278
279  /// \brief Returns true if the lockset contains a lock, regardless of whether
280  /// the lock is held exclusively or shared.
281  bool locksetContains(MutexID Lock) const {
282    return LSet.lookup(Lock);
283  }
284
285  /// \brief Returns true if the lockset contains a lock with the passed in
286  /// locktype.
287  bool locksetContains(MutexID Lock, LockKind KindRequested) const {
288    const LockData *LockHeld = LSet.lookup(Lock);
289    return (LockHeld && KindRequested == LockHeld->LKind);
290  }
291
292  /// \brief Returns true if the lockset contains a lock with at least the
293  /// passed in locktype. So for example, if we pass in LK_Shared, this function
294  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
295  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
296  bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
297    switch (KindRequested) {
298      case LK_Shared:
299        return locksetContains(Lock);
300      case LK_Exclusive:
301        return locksetContains(Lock, KindRequested);
302    }
303    llvm_unreachable("Unknown LockKind");
304  }
305
306public:
307  BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
308    : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
309      LocksetFactory(F) {}
310
311  Lockset getLockset() {
312    return LSet;
313  }
314
315  void VisitUnaryOperator(UnaryOperator *UO);
316  void VisitBinaryOperator(BinaryOperator *BO);
317  void VisitCastExpr(CastExpr *CE);
318  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
319};
320
321/// \brief Add a new lock to the lockset, warning if the lock is already there.
322/// \param LockLoc The source location of the acquire
323/// \param LockExp The lock expression corresponding to the lock to be added
324void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
325                           LockKind LK) {
326  // FIXME: deal with acquired before/after annotations
327  MutexID Mutex(Handler, LockExp, Parent);
328  LockData NewLock(LockLoc, LK);
329
330  // FIXME: Don't always warn when we have support for reentrant locks.
331  if (locksetContains(Mutex))
332    Handler.handleDoubleLock(Mutex.getName(), LockLoc);
333  LSet = LocksetFactory.add(LSet, Mutex, NewLock);
334}
335
336/// \brief Remove a lock from the lockset, warning if the lock is not there.
337/// \param LockExp The lock expression corresponding to the lock to be removed
338/// \param UnlockLoc The source location of the unlock (only used in error msg)
339void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
340                              Expr *Parent) {
341  MutexID Mutex(Handler, LockExp, Parent);
342
343  Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
344  if(NewLSet == LSet)
345    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
346
347  LSet = NewLSet;
348}
349
350/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
351const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
352  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
353    return DR->getDecl();
354
355  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
356    return ME->getMemberDecl();
357
358  return 0;
359}
360
361/// \brief Warn if the LSet does not contain a lock sufficient to protect access
362/// of at least the passed in AccessType.
363void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
364                                      AccessKind AK, Expr *MutexExp,
365                                      ProtectedOperationKind POK) {
366  LockKind LK = getLockKindFromAccessKind(AK);
367  Expr *Parent = getParent(Exp);
368  MutexID Mutex(Handler, MutexExp, Parent);
369  if (!locksetContainsAtLeast(Mutex, LK))
370    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
371}
372
373
374/// \brief This method identifies variable dereferences and checks pt_guarded_by
375/// and pt_guarded_var annotations. Note that we only check these annotations
376/// at the time a pointer is dereferenced.
377/// FIXME: We need to check for other types of pointer dereferences
378/// (e.g. [], ->) and deal with them here.
379/// \param Exp An expression that has been read or written.
380void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
381  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
382  if (!UO || UO->getOpcode() != clang::UO_Deref)
383    return;
384  Exp = UO->getSubExpr()->IgnoreParenCasts();
385
386  const ValueDecl *D = getValueDecl(Exp);
387  if(!D || !D->hasAttrs())
388    return;
389
390  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
391    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
392
393  const AttrVec &ArgAttrs = D->getAttrs();
394  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
395    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
396      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
397}
398
399/// \brief Checks guarded_by and guarded_var attributes.
400/// Whenever we identify an access (read or write) of a DeclRefExpr or
401/// MemberExpr, we need to check whether there are any guarded_by or
402/// guarded_var attributes, and make sure we hold the appropriate mutexes.
403void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
404  const ValueDecl *D = getValueDecl(Exp);
405  if(!D || !D->hasAttrs())
406    return;
407
408  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
409    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
410
411  const AttrVec &ArgAttrs = D->getAttrs();
412  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
413    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
414      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
415}
416
417/// \brief For unary operations which read and write a variable, we need to
418/// check whether we hold any required mutexes. Reads are checked in
419/// VisitCastExpr.
420void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
421  switch (UO->getOpcode()) {
422    case clang::UO_PostDec:
423    case clang::UO_PostInc:
424    case clang::UO_PreDec:
425    case clang::UO_PreInc: {
426      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
427      checkAccess(SubExp, AK_Written);
428      checkDereference(SubExp, AK_Written);
429      break;
430    }
431    default:
432      break;
433  }
434}
435
436/// For binary operations which assign to a variable (writes), we need to check
437/// whether we hold any required mutexes.
438/// FIXME: Deal with non-primitive types.
439void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
440  if (!BO->isAssignmentOp())
441    return;
442  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
443  checkAccess(LHSExp, AK_Written);
444  checkDereference(LHSExp, AK_Written);
445}
446
447/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
448/// need to ensure we hold any required mutexes.
449/// FIXME: Deal with non-primitive types.
450void BuildLockset::VisitCastExpr(CastExpr *CE) {
451  if (CE->getCastKind() != CK_LValueToRValue)
452    return;
453  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
454  checkAccess(SubExp, AK_Read);
455  checkDereference(SubExp, AK_Read);
456}
457
458/// \brief This function, parameterized by an attribute type, is used to add a
459/// set of locks specified as attribute arguments to the lockset.
460template <typename AttrType>
461void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
462                                 CXXMemberCallExpr *Exp) {
463  typedef typename AttrType::args_iterator iterator_type;
464  SourceLocation ExpLocation = Exp->getExprLoc();
465  Expr *Parent = Exp->getImplicitObjectArgument();
466  AttrType *SpecificAttr = cast<AttrType>(Attr);
467
468  if (SpecificAttr->args_size() == 0) {
469    // The mutex held is the "this" object.
470    addLock(ExpLocation, Parent, Parent, LK);
471    return;
472  }
473
474  for (iterator_type I = SpecificAttr->args_begin(),
475       E = SpecificAttr->args_end(); I != E; ++I)
476    addLock(ExpLocation, *I, Parent, LK);
477}
478
479/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
480/// the method that is being called and add, remove or check locks in the
481/// lockset accordingly.
482///
483/// FIXME: For classes annotated with one of the guarded annotations, we need
484/// to treat const method calls as reads and non-const method calls as writes,
485/// and check that the appropriate locks are held. Non-const method calls with
486/// the same signature as const method calls can be also treated as reads.
487///
488/// FIXME: We need to also visit CallExprs to catch/check global functions.
489void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
490  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
491
492  SourceLocation ExpLocation = Exp->getExprLoc();
493  Expr *Parent = Exp->getImplicitObjectArgument();
494
495  if(!D || !D->hasAttrs())
496    return;
497
498  AttrVec &ArgAttrs = D->getAttrs();
499  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
500    Attr *Attr = ArgAttrs[i];
501    switch (Attr->getKind()) {
502      // When we encounter an exclusive lock function, we need to add the lock
503      // to our lockset with kind exclusive.
504      case attr::ExclusiveLockFunction:
505        addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
506        break;
507
508      // When we encounter a shared lock function, we need to add the lock
509      // to our lockset with kind shared.
510      case attr::SharedLockFunction:
511        addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
512        break;
513
514      // When we encounter an unlock function, we need to remove unlocked
515      // mutexes from the lockset, and flag a warning if they are not there.
516      case attr::UnlockFunction: {
517        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
518
519        if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
520          removeLock(ExpLocation, Parent, Parent);
521          break;
522        }
523
524        for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
525             E = UFAttr->args_end(); I != E; ++I)
526          removeLock(ExpLocation, *I, Parent);
527        break;
528      }
529
530      case attr::ExclusiveLocksRequired: {
531        // FIXME: Also use this attribute to add required locks to the initial
532        // lockset when processing a CFG for a function annotated with this
533        // attribute.
534        ExclusiveLocksRequiredAttr *ELRAttr =
535            cast<ExclusiveLocksRequiredAttr>(Attr);
536
537        for (ExclusiveLocksRequiredAttr::args_iterator
538             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
539          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
540        break;
541      }
542
543      case attr::SharedLocksRequired: {
544        // FIXME: Also use this attribute to add required locks to the initial
545        // lockset when processing a CFG for a function annotated with this
546        // attribute.
547        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
548
549        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
550             E = SLRAttr->args_end(); I != E; ++I)
551          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
552        break;
553      }
554
555      case attr::LocksExcluded: {
556        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
557        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
558            E = LEAttr->args_end(); I != E; ++I) {
559          MutexID Mutex(Handler, *I, Parent);
560          if (locksetContains(Mutex))
561            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
562                                          ExpLocation);
563        }
564        break;
565      }
566
567      case attr::LockReturned:
568        // FIXME: Deal with this attribute.
569        break;
570
571      // Ignore other (non thread-safety) attributes
572      default:
573        break;
574    }
575  }
576}
577
578} // end anonymous namespace
579
580/// \brief Flags a warning for each lock that is in LSet2 but not LSet1, or
581/// else mutexes that are held shared in one lockset and exclusive in the other.
582static Lockset warnIfNotInFirstSetOrNotSameKind(ThreadSafetyHandler &Handler,
583                                                const Lockset LSet1,
584                                                const Lockset LSet2,
585                                                Lockset Intersection,
586                                                Lockset::Factory &Fact) {
587  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
588    const MutexID &LSet2Mutex = I.getKey();
589    const LockData &LSet2LockData = I.getData();
590    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
591      if (LD->LKind != LSet2LockData.LKind) {
592        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
593                                         LSet2LockData.AcquireLoc,
594                                         LD->AcquireLoc);
595        if (LD->LKind != LK_Exclusive)
596          Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
597      }
598    } else {
599      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
600                                        LSet2LockData.AcquireLoc);
601    }
602  }
603  return Intersection;
604}
605
606
607/// \brief Compute the intersection of two locksets and issue warnings for any
608/// locks in the symmetric difference.
609///
610/// This function is used at a merge point in the CFG when comparing the lockset
611/// of each branch being merged. For example, given the following sequence:
612/// A; if () then B; else C; D; we need to check that the lockset after B and C
613/// are the same. In the event of a difference, we use the intersection of these
614/// two locksets at the start of D.
615static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
616                                const Lockset LSet1, const Lockset LSet2,
617                                Lockset::Factory &Fact) {
618  Lockset Intersection = LSet1;
619  Intersection = warnIfNotInFirstSetOrNotSameKind(Handler, LSet1, LSet2,
620                                                  Intersection, Fact);
621
622  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
623    if (!LSet2.contains(I.getKey())) {
624      const MutexID &Mutex = I.getKey();
625      const LockData &MissingLock = I.getData();
626      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
627                                        MissingLock.AcquireLoc);
628      Intersection = Fact.remove(Intersection, Mutex);
629    }
630  }
631  return Intersection;
632}
633
634/// \brief Returns the location of the first Stmt in a Block.
635static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
636  SourceLocation Loc;
637  for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
638       BI != BE; ++BI) {
639    if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
640      Loc = CfgStmt->getStmt()->getLocStart();
641      if (Loc.isValid()) return Loc;
642    }
643  }
644  if (Stmt *S = Block->getTerminator().getStmt()) {
645    Loc = S->getLocStart();
646    if (Loc.isValid()) return Loc;
647  }
648  return Loc;
649}
650
651/// \brief Warn about different locksets along backedges of loops.
652/// This function is called when we encounter a back edge. At that point,
653/// we need to verify that the lockset before taking the backedge is the
654/// same as the lockset before entering the loop.
655///
656/// \param LoopEntrySet Locks before starting the loop
657/// \param LoopReentrySet Locks in the last CFG block of the loop
658static void warnBackEdgeUnequalLocksets(ThreadSafetyHandler &Handler,
659                                        const Lockset LoopReentrySet,
660                                        const Lockset LoopEntrySet,
661                                        SourceLocation FirstLocInLoop,
662                                        Lockset::Factory &Fact) {
663  assert(FirstLocInLoop.isValid());
664  // Warn for locks held at the start of the loop, but not the end.
665  for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
666       I != E; ++I) {
667    if (!LoopReentrySet.contains(I.getKey())) {
668      // We report this error at the location of the first statement in a loop
669      Handler.handleNoLockLoopEntry(I.getKey().getName(), FirstLocInLoop);
670    }
671  }
672
673  // Warn for locks held at the end of the loop, but not at the start.
674  warnIfNotInFirstSetOrNotSameKind(Handler, LoopEntrySet, LoopReentrySet,
675                                   LoopReentrySet, Fact);
676}
677
678
679namespace clang {
680namespace thread_safety {
681/// \brief Check a function's CFG for thread-safety violations.
682///
683/// We traverse the blocks in the CFG, compute the set of mutexes that are held
684/// at the end of each block, and issue warnings for thread safety violations.
685/// Each block in the CFG is traversed exactly once.
686void runThreadSafetyAnalysis(AnalysisContext &AC,
687                             ThreadSafetyHandler &Handler) {
688  CFG *CFGraph = AC.getCFG();
689  if (!CFGraph) return;
690  const Decl *D = AC.getDecl();
691  if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
692
693  Lockset::Factory LocksetFactory;
694
695  // FIXME: Swith to SmallVector? Otherwise improve performance impact?
696  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
697                                     LocksetFactory.getEmptyMap());
698  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
699                                    LocksetFactory.getEmptyMap());
700
701  // We need to explore the CFG via a "topological" ordering.
702  // That way, we will be guaranteed to have information about required
703  // predecessor locksets when exploring a new block.
704  TopologicallySortedCFG SortedGraph(CFGraph);
705  CFGBlockSet VisitedBlocks(CFGraph);
706
707  for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
708       E = SortedGraph.end(); I!= E; ++I) {
709    const CFGBlock *CurrBlock = *I;
710    int CurrBlockID = CurrBlock->getBlockID();
711
712    VisitedBlocks.insert(CurrBlock);
713
714    // Use the default initial lockset in case there are no predecessors.
715    Lockset &Entryset = EntryLocksets[CurrBlockID];
716    Lockset &Exitset = ExitLocksets[CurrBlockID];
717
718    // Iterate through the predecessor blocks and warn if the lockset for all
719    // predecessors is not the same. We take the entry lockset of the current
720    // block to be the intersection of all previous locksets.
721    // FIXME: By keeping the intersection, we may output more errors in future
722    // for a lock which is not in the intersection, but was in the union. We
723    // may want to also keep the union in future. As an example, let's say
724    // the intersection contains Mutex L, and the union contains L and M.
725    // Later we unlock M. At this point, we would output an error because we
726    // never locked M; although the real error is probably that we forgot to
727    // lock M on all code paths. Conversely, let's say that later we lock M.
728    // In this case, we should compare against the intersection instead of the
729    // union because the real error is probably that we forgot to unlock M on
730    // all code paths.
731    bool LocksetInitialized = false;
732    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
733         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
734
735      // if *PI -> CurrBlock is a back edge
736      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
737        continue;
738
739      int PrevBlockID = (*PI)->getBlockID();
740      if (!LocksetInitialized) {
741        Entryset = ExitLocksets[PrevBlockID];
742        LocksetInitialized = true;
743      } else {
744        Entryset = intersectAndWarn(Handler, Entryset,
745                                    ExitLocksets[PrevBlockID], LocksetFactory);
746      }
747    }
748
749    BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
750    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
751         BE = CurrBlock->end(); BI != BE; ++BI) {
752      if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
753        LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
754    }
755    Exitset = LocksetBuilder.getLockset();
756
757    // For every back edge from CurrBlock (the end of the loop) to another block
758    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
759    // the one held at the beginning of FirstLoopBlock. We can look up the
760    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
761    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
762         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
763
764      // if CurrBlock -> *SI is *not* a back edge
765      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
766        continue;
767
768      CFGBlock *FirstLoopBlock = *SI;
769      SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
770
771      assert(FirstLoopLocation.isValid());
772
773      // Fail gracefully in release code.
774      if (!FirstLoopLocation.isValid())
775        continue;
776
777      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
778      Lockset LoopEnd = ExitLocksets[CurrBlockID];
779      warnBackEdgeUnequalLocksets(Handler, LoopEnd, PreLoop, FirstLoopLocation,
780                                  LocksetFactory);
781    }
782  }
783
784  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
785  if (!FinalLockset.isEmpty()) {
786    for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
787         I != E; ++I) {
788      const MutexID &Mutex = I.getKey();
789      const LockData &MissingLock = I.getData();
790
791      std::string FunName = "<unknown>";
792      if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
793        FunName = ContextDecl->getDeclName().getAsString();
794      }
795
796      Handler.handleNoUnlock(Mutex.getName(), FunName, MissingLock.AcquireLoc);
797    }
798  }
799}
800
801/// \brief Helper function that returns a LockKind required for the given level
802/// of access.
803LockKind getLockKindFromAccessKind(AccessKind AK) {
804  switch (AK) {
805    case AK_Read :
806      return LK_Shared;
807    case AK_Written :
808      return LK_Exclusive;
809  }
810  llvm_unreachable("Unknown AccessKind");
811}
812}} // end namespace clang::thread_safety
813