ThreadSafety.cpp revision 9859ea07b55727557a201e730caf01bcd6a7566a
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/AnalysisContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/Analysis/CFGStmtMap.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/SourceLocation.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/ImmutableMap.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringRef.h"
34#include <algorithm>
35#include <vector>
36
37using namespace clang;
38using namespace thread_safety;
39
40// Key method definition
41ThreadSafetyHandler::~ThreadSafetyHandler() {}
42
43// Helper function
44static Expr *getParent(Expr *Exp) {
45  if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
46    return ME->getBase();
47  if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
48    return CE->getImplicitObjectArgument();
49  return 0;
50}
51
52namespace {
53/// \brief Implements a set of CFGBlocks using a BitVector.
54///
55/// This class contains a minimal interface, primarily dictated by the SetType
56/// template parameter of the llvm::po_iterator template, as used with external
57/// storage. We also use this set to keep track of which CFGBlocks we visit
58/// during the analysis.
59class CFGBlockSet {
60  llvm::BitVector VisitedBlockIDs;
61
62public:
63  // po_iterator requires this iterator, but the only interface needed is the
64  // value_type typedef.
65  struct iterator {
66    typedef const CFGBlock *value_type;
67  };
68
69  CFGBlockSet() {}
70  CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
71
72  /// \brief Set the bit associated with a particular CFGBlock.
73  /// This is the important method for the SetType template parameter.
74  bool insert(const CFGBlock *Block) {
75    // Note that insert() is called by po_iterator, which doesn't check to make
76    // sure that Block is non-null.  Moreover, the CFGBlock iterator will
77    // occasionally hand out null pointers for pruned edges, so we catch those
78    // here.
79    if (Block == 0)
80      return false;  // if an edge is trivially false.
81    if (VisitedBlockIDs.test(Block->getBlockID()))
82      return false;
83    VisitedBlockIDs.set(Block->getBlockID());
84    return true;
85  }
86
87  /// \brief Check if the bit for a CFGBlock has been already set.
88  /// This method is for tracking visited blocks in the main threadsafety loop.
89  /// Block must not be null.
90  bool alreadySet(const CFGBlock *Block) {
91    return VisitedBlockIDs.test(Block->getBlockID());
92  }
93};
94
95/// \brief We create a helper class which we use to iterate through CFGBlocks in
96/// the topological order.
97class TopologicallySortedCFG {
98  typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
99
100  std::vector<const CFGBlock*> Blocks;
101
102public:
103  typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
104
105  TopologicallySortedCFG(const CFG *CFGraph) {
106    Blocks.reserve(CFGraph->getNumBlockIDs());
107    CFGBlockSet BSet(CFGraph);
108
109    for (po_iterator I = po_iterator::begin(CFGraph, BSet),
110         E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
111      Blocks.push_back(*I);
112    }
113  }
114
115  iterator begin() {
116    return Blocks.rbegin();
117  }
118
119  iterator end() {
120    return Blocks.rend();
121  }
122
123  bool empty() {
124    return begin() == end();
125  }
126};
127
128/// \brief A MutexID object uniquely identifies a particular mutex, and
129/// is built from an Expr* (i.e. calling a lock function).
130///
131/// Thread-safety analysis works by comparing lock expressions.  Within the
132/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
133/// a particular mutex object at run-time.  Subsequent occurrences of the same
134/// expression (where "same" means syntactic equality) will refer to the same
135/// run-time object if three conditions hold:
136/// (1) Local variables in the expression, such as "x" have not changed.
137/// (2) Values on the heap that affect the expression have not changed.
138/// (3) The expression involves only pure function calls.
139/// The current implementation assumes, but does not verify, that multiple uses
140/// of the same lock expression satisfies these criteria.
141///
142/// Clang introduces an additional wrinkle, which is that it is difficult to
143/// derive canonical expressions, or compare expressions directly for equality.
144/// Thus, we identify a mutex not by an Expr, but by the set of named
145/// declarations that are referenced by the Expr.  In other words,
146/// x->foo->bar.mu will be a four element vector with the Decls for
147/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
148/// for all practical purposes.
149///
150/// Note we will need to perform substitution on "this" and function parameter
151/// names when constructing a lock expression.
152///
153/// For example:
154/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
155/// void myFunc(C *X) { ... X->lock() ... }
156/// The original expression for the mutex acquired by myFunc is "this->Mu", but
157/// "X" is substituted for "this" so we get X->Mu();
158///
159/// For another example:
160/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
161/// MyList *MyL;
162/// foo(MyL);  // requires lock MyL->Mu to be held
163class MutexID {
164  SmallVector<NamedDecl*, 2> DeclSeq;
165
166  /// Build a Decl sequence representing the lock from the given expression.
167  /// Recursive function that bottoms out when the final DeclRefExpr is reached.
168  // FIXME: Lock expressions that involve array indices or function calls.
169  // FIXME: Deal with LockReturned attribute.
170  void buildMutexID(Expr *Exp, Expr *Parent) {
171    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
172      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
173      DeclSeq.push_back(ND);
174    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
175      NamedDecl *ND = ME->getMemberDecl();
176      DeclSeq.push_back(ND);
177      buildMutexID(ME->getBase(), Parent);
178    } else if (isa<CXXThisExpr>(Exp)) {
179      if (Parent)
180        buildMutexID(Parent, 0);
181      else
182        return; // mutexID is still valid in this case
183    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
184      buildMutexID(CE->getSubExpr(), Parent);
185    else
186      DeclSeq.clear(); // invalid lock expression
187  }
188
189public:
190  MutexID(Expr *LExpr, Expr *ParentExpr) {
191    buildMutexID(LExpr, ParentExpr);
192  }
193
194  /// If we encounter part of a lock expression we cannot parse
195  bool isValid() const {
196    return !DeclSeq.empty();
197  }
198
199  bool operator==(const MutexID &other) const {
200    return DeclSeq == other.DeclSeq;
201  }
202
203  bool operator!=(const MutexID &other) const {
204    return !(*this == other);
205  }
206
207  // SmallVector overloads Operator< to do lexicographic ordering. Note that
208  // we use pointer equality (and <) to compare NamedDecls. This means the order
209  // of MutexIDs in a lockset is nondeterministic. In order to output
210  // diagnostics in a deterministic ordering, we must order all diagnostics to
211  // output by SourceLocation when iterating through this lockset.
212  bool operator<(const MutexID &other) const {
213    return DeclSeq < other.DeclSeq;
214  }
215
216  /// \brief Returns the name of the first Decl in the list for a given MutexID;
217  /// e.g. the lock expression foo.bar() has name "bar".
218  /// The caret will point unambiguously to the lock expression, so using this
219  /// name in diagnostics is a way to get simple, and consistent, mutex names.
220  /// We do not want to output the entire expression text for security reasons.
221  StringRef getName() const {
222    assert(isValid());
223    return DeclSeq.front()->getName();
224  }
225
226  void Profile(llvm::FoldingSetNodeID &ID) const {
227    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
228         E = DeclSeq.end(); I != E; ++I) {
229      ID.AddPointer(*I);
230    }
231  }
232};
233
234/// \brief This is a helper class that stores info about the most recent
235/// accquire of a Lock.
236///
237/// The main body of the analysis maps MutexIDs to LockDatas.
238struct LockData {
239  SourceLocation AcquireLoc;
240
241  /// \brief LKind stores whether a lock is held shared or exclusively.
242  /// Note that this analysis does not currently support either re-entrant
243  /// locking or lock "upgrading" and "downgrading" between exclusive and
244  /// shared.
245  ///
246  /// FIXME: add support for re-entrant locking and lock up/downgrading
247  LockKind LKind;
248
249  LockData(SourceLocation AcquireLoc, LockKind LKind)
250    : AcquireLoc(AcquireLoc), LKind(LKind) {}
251
252  bool operator==(const LockData &other) const {
253    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
254  }
255
256  bool operator!=(const LockData &other) const {
257    return !(*this == other);
258  }
259
260  void Profile(llvm::FoldingSetNodeID &ID) const {
261      ID.AddInteger(AcquireLoc.getRawEncoding());
262      ID.AddInteger(LKind);
263    }
264};
265
266/// A Lockset maps each MutexID (defined above) to information about how it has
267/// been locked.
268typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
269
270/// \brief We use this class to visit different types of expressions in
271/// CFGBlocks, and build up the lockset.
272/// An expression may cause us to add or remove locks from the lockset, or else
273/// output error messages related to missing locks.
274/// FIXME: In future, we may be able to not inherit from a visitor.
275class BuildLockset : public StmtVisitor<BuildLockset> {
276  ThreadSafetyHandler &Handler;
277  Lockset LSet;
278  Lockset::Factory &LocksetFactory;
279
280  // Helper functions
281  void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
282  void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
283               LockKind LK);
284  const ValueDecl *getValueDecl(Expr *Exp);
285  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
286                           Expr *MutexExp, ProtectedOperationKind POK);
287  void checkAccess(Expr *Exp, AccessKind AK);
288  void checkDereference(Expr *Exp, AccessKind AK);
289
290  template <class AttrType>
291  void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
292
293  /// \brief Returns true if the lockset contains a lock, regardless of whether
294  /// the lock is held exclusively or shared.
295  bool locksetContains(MutexID Lock) const {
296    return LSet.lookup(Lock);
297  }
298
299  /// \brief Returns true if the lockset contains a lock with the passed in
300  /// locktype.
301  bool locksetContains(MutexID Lock, LockKind KindRequested) const {
302    const LockData *LockHeld = LSet.lookup(Lock);
303    return (LockHeld && KindRequested == LockHeld->LKind);
304  }
305
306  /// \brief Returns true if the lockset contains a lock with at least the
307  /// passed in locktype. So for example, if we pass in LK_Shared, this function
308  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
309  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
310  bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
311    switch (KindRequested) {
312      case LK_Shared:
313        return locksetContains(Lock);
314      case LK_Exclusive:
315        return locksetContains(Lock, KindRequested);
316    }
317    llvm_unreachable("Unknown LockKind");
318  }
319
320public:
321  BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
322    : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
323      LocksetFactory(F) {}
324
325  Lockset getLockset() {
326    return LSet;
327  }
328
329  void VisitUnaryOperator(UnaryOperator *UO);
330  void VisitBinaryOperator(BinaryOperator *BO);
331  void VisitCastExpr(CastExpr *CE);
332  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
333};
334
335/// \brief Add a new lock to the lockset, warning if the lock is already there.
336/// \param LockLoc The source location of the acquire
337/// \param LockExp The lock expression corresponding to the lock to be added
338void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
339                           LockKind LK) {
340  // FIXME: deal with acquired before/after annotations. We can write a first
341  // pass that does the transitive lookup lazily, and refine afterwards.
342  MutexID Mutex(LockExp, Parent);
343  if (!Mutex.isValid()) {
344    Handler.handleInvalidLockExp(LockExp->getExprLoc());
345    return;
346  }
347
348  LockData NewLock(LockLoc, LK);
349
350  // FIXME: Don't always warn when we have support for reentrant locks.
351  if (locksetContains(Mutex))
352    Handler.handleDoubleLock(Mutex.getName(), LockLoc);
353  LSet = LocksetFactory.add(LSet, Mutex, NewLock);
354}
355
356/// \brief Remove a lock from the lockset, warning if the lock is not there.
357/// \param LockExp The lock expression corresponding to the lock to be removed
358/// \param UnlockLoc The source location of the unlock (only used in error msg)
359void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
360                              Expr *Parent) {
361  MutexID Mutex(LockExp, Parent);
362  if (!Mutex.isValid()) {
363    Handler.handleInvalidLockExp(LockExp->getExprLoc());
364    return;
365  }
366
367  Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
368  if(NewLSet == LSet)
369    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
370
371  LSet = NewLSet;
372}
373
374/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
375const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
376  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
377    return DR->getDecl();
378
379  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
380    return ME->getMemberDecl();
381
382  return 0;
383}
384
385/// \brief Warn if the LSet does not contain a lock sufficient to protect access
386/// of at least the passed in AccessType.
387void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
388                                      AccessKind AK, Expr *MutexExp,
389                                      ProtectedOperationKind POK) {
390  LockKind LK = getLockKindFromAccessKind(AK);
391  Expr *Parent = getParent(Exp);
392  MutexID Mutex(MutexExp, Parent);
393  if (!Mutex.isValid())
394    Handler.handleInvalidLockExp(MutexExp->getExprLoc());
395  else if (!locksetContainsAtLeast(Mutex, LK))
396    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
397}
398
399
400/// \brief This method identifies variable dereferences and checks pt_guarded_by
401/// and pt_guarded_var annotations. Note that we only check these annotations
402/// at the time a pointer is dereferenced.
403/// FIXME: We need to check for other types of pointer dereferences
404/// (e.g. [], ->) and deal with them here.
405/// \param Exp An expression that has been read or written.
406void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
407  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
408  if (!UO || UO->getOpcode() != clang::UO_Deref)
409    return;
410  Exp = UO->getSubExpr()->IgnoreParenCasts();
411
412  const ValueDecl *D = getValueDecl(Exp);
413  if(!D || !D->hasAttrs())
414    return;
415
416  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
417    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
418
419  const AttrVec &ArgAttrs = D->getAttrs();
420  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
421    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
422      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
423}
424
425/// \brief Checks guarded_by and guarded_var attributes.
426/// Whenever we identify an access (read or write) of a DeclRefExpr or
427/// MemberExpr, we need to check whether there are any guarded_by or
428/// guarded_var attributes, and make sure we hold the appropriate mutexes.
429void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
430  const ValueDecl *D = getValueDecl(Exp);
431  if(!D || !D->hasAttrs())
432    return;
433
434  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
435    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
436
437  const AttrVec &ArgAttrs = D->getAttrs();
438  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
439    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
440      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
441}
442
443/// \brief For unary operations which read and write a variable, we need to
444/// check whether we hold any required mutexes. Reads are checked in
445/// VisitCastExpr.
446void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
447  switch (UO->getOpcode()) {
448    case clang::UO_PostDec:
449    case clang::UO_PostInc:
450    case clang::UO_PreDec:
451    case clang::UO_PreInc: {
452      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
453      checkAccess(SubExp, AK_Written);
454      checkDereference(SubExp, AK_Written);
455      break;
456    }
457    default:
458      break;
459  }
460}
461
462/// For binary operations which assign to a variable (writes), we need to check
463/// whether we hold any required mutexes.
464/// FIXME: Deal with non-primitive types.
465void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
466  if (!BO->isAssignmentOp())
467    return;
468  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
469  checkAccess(LHSExp, AK_Written);
470  checkDereference(LHSExp, AK_Written);
471}
472
473/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
474/// need to ensure we hold any required mutexes.
475/// FIXME: Deal with non-primitive types.
476void BuildLockset::VisitCastExpr(CastExpr *CE) {
477  if (CE->getCastKind() != CK_LValueToRValue)
478    return;
479  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
480  checkAccess(SubExp, AK_Read);
481  checkDereference(SubExp, AK_Read);
482}
483
484/// \brief This function, parameterized by an attribute type, is used to add a
485/// set of locks specified as attribute arguments to the lockset.
486template <typename AttrType>
487void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
488                                 CXXMemberCallExpr *Exp) {
489  typedef typename AttrType::args_iterator iterator_type;
490  SourceLocation ExpLocation = Exp->getExprLoc();
491  Expr *Parent = Exp->getImplicitObjectArgument();
492  AttrType *SpecificAttr = cast<AttrType>(Attr);
493
494  if (SpecificAttr->args_size() == 0) {
495    // The mutex held is the "this" object.
496    addLock(ExpLocation, Parent, 0, LK);
497    return;
498  }
499
500  for (iterator_type I = SpecificAttr->args_begin(),
501       E = SpecificAttr->args_end(); I != E; ++I)
502    addLock(ExpLocation, *I, Parent, LK);
503}
504
505/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
506/// the method that is being called and add, remove or check locks in the
507/// lockset accordingly.
508///
509/// FIXME: For classes annotated with one of the guarded annotations, we need
510/// to treat const method calls as reads and non-const method calls as writes,
511/// and check that the appropriate locks are held. Non-const method calls with
512/// the same signature as const method calls can be also treated as reads.
513///
514/// FIXME: We need to also visit CallExprs to catch/check global functions.
515///
516/// FIXME: Do not flag an error for member variables accessed in constructors/
517/// destructors
518void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
519  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
520
521  SourceLocation ExpLocation = Exp->getExprLoc();
522  Expr *Parent = Exp->getImplicitObjectArgument();
523
524  if(!D || !D->hasAttrs())
525    return;
526
527  AttrVec &ArgAttrs = D->getAttrs();
528  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
529    Attr *Attr = ArgAttrs[i];
530    switch (Attr->getKind()) {
531      // When we encounter an exclusive lock function, we need to add the lock
532      // to our lockset with kind exclusive.
533      case attr::ExclusiveLockFunction:
534        addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
535        break;
536
537      // When we encounter a shared lock function, we need to add the lock
538      // to our lockset with kind shared.
539      case attr::SharedLockFunction:
540        addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
541        break;
542
543      // When we encounter an unlock function, we need to remove unlocked
544      // mutexes from the lockset, and flag a warning if they are not there.
545      case attr::UnlockFunction: {
546        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
547
548        if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
549          removeLock(ExpLocation, Parent, 0);
550          break;
551        }
552
553        for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
554             E = UFAttr->args_end(); I != E; ++I)
555          removeLock(ExpLocation, *I, Parent);
556        break;
557      }
558
559      case attr::ExclusiveLocksRequired: {
560        ExclusiveLocksRequiredAttr *ELRAttr =
561            cast<ExclusiveLocksRequiredAttr>(Attr);
562
563        for (ExclusiveLocksRequiredAttr::args_iterator
564             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
565          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
566        break;
567      }
568
569      case attr::SharedLocksRequired: {
570        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
571
572        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
573             E = SLRAttr->args_end(); I != E; ++I)
574          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
575        break;
576      }
577
578      case attr::LocksExcluded: {
579        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
580        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
581            E = LEAttr->args_end(); I != E; ++I) {
582          MutexID Mutex(*I, Parent);
583          if (!Mutex.isValid())
584            Handler.handleInvalidLockExp((*I)->getExprLoc());
585          else if (locksetContains(Mutex))
586            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
587                                          ExpLocation);
588        }
589        break;
590      }
591
592      // Ignore other (non thread-safety) attributes
593      default:
594        break;
595    }
596  }
597}
598
599} // end anonymous namespace
600
601/// \brief Compute the intersection of two locksets and issue warnings for any
602/// locks in the symmetric difference.
603///
604/// This function is used at a merge point in the CFG when comparing the lockset
605/// of each branch being merged. For example, given the following sequence:
606/// A; if () then B; else C; D; we need to check that the lockset after B and C
607/// are the same. In the event of a difference, we use the intersection of these
608/// two locksets at the start of D.
609static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
610                                const Lockset LSet1, const Lockset LSet2,
611                                Lockset::Factory &Fact, LockErrorKind LEK) {
612  Lockset Intersection = LSet1;
613  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
614    const MutexID &LSet2Mutex = I.getKey();
615    const LockData &LSet2LockData = I.getData();
616    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
617      if (LD->LKind != LSet2LockData.LKind) {
618        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
619                                         LSet2LockData.AcquireLoc,
620                                         LD->AcquireLoc);
621        if (LD->LKind != LK_Exclusive)
622          Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
623      }
624    } else {
625      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
626                                        LSet2LockData.AcquireLoc, LEK);
627    }
628  }
629
630  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
631    if (!LSet2.contains(I.getKey())) {
632      const MutexID &Mutex = I.getKey();
633      const LockData &MissingLock = I.getData();
634      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
635                                        MissingLock.AcquireLoc, LEK);
636      Intersection = Fact.remove(Intersection, Mutex);
637    }
638  }
639  return Intersection;
640}
641
642static Lockset addLock(ThreadSafetyHandler &Handler,
643                       Lockset::Factory &LocksetFactory,
644                       Lockset &LSet, Expr *LockExp, LockKind LK,
645                       SourceLocation Loc) {
646  MutexID Mutex(LockExp, 0);
647  if (!Mutex.isValid()) {
648    Handler.handleInvalidLockExp(LockExp->getExprLoc());
649    return LSet;
650  }
651  LockData NewLock(Loc, LK);
652  return LocksetFactory.add(LSet, Mutex, NewLock);
653}
654
655namespace clang {
656namespace thread_safety {
657/// \brief Check a function's CFG for thread-safety violations.
658///
659/// We traverse the blocks in the CFG, compute the set of mutexes that are held
660/// at the end of each block, and issue warnings for thread safety violations.
661/// Each block in the CFG is traversed exactly once.
662void runThreadSafetyAnalysis(AnalysisContext &AC,
663                             ThreadSafetyHandler &Handler) {
664  CFG *CFGraph = AC.getCFG();
665  if (!CFGraph) return;
666  const Decl *D = AC.getDecl();
667  if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
668
669  Lockset::Factory LocksetFactory;
670
671  // FIXME: Swith to SmallVector? Otherwise improve performance impact?
672  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
673                                     LocksetFactory.getEmptyMap());
674  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
675                                    LocksetFactory.getEmptyMap());
676
677  // We need to explore the CFG via a "topological" ordering.
678  // That way, we will be guaranteed to have information about required
679  // predecessor locksets when exploring a new block.
680  TopologicallySortedCFG SortedGraph(CFGraph);
681  CFGBlockSet VisitedBlocks(CFGraph);
682
683  if (!SortedGraph.empty() && D->hasAttrs()) {
684    const CFGBlock *FirstBlock = *SortedGraph.begin();
685    Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
686    const AttrVec &ArgAttrs = D->getAttrs();
687    for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
688      Attr *Attr = ArgAttrs[i];
689      SourceLocation AttrLoc = Attr->getLocation();
690      if (SharedLocksRequiredAttr *SLRAttr
691            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
692        for (SharedLocksRequiredAttr::args_iterator
693            SLRIter = SLRAttr->args_begin(),
694            SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
695          InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
696                                   *SLRIter, LK_Shared,
697                                   AttrLoc);
698      } else if (ExclusiveLocksRequiredAttr *ELRAttr
699                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
700        for (ExclusiveLocksRequiredAttr::args_iterator
701            ELRIter = ELRAttr->args_begin(),
702            ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
703          InitialLockset = addLock(Handler, LocksetFactory, InitialLockset,
704                                   *ELRIter, LK_Exclusive,
705                                   AttrLoc);
706      }
707    }
708  }
709
710  for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
711       E = SortedGraph.end(); I!= E; ++I) {
712    const CFGBlock *CurrBlock = *I;
713    int CurrBlockID = CurrBlock->getBlockID();
714
715    VisitedBlocks.insert(CurrBlock);
716
717    // Use the default initial lockset in case there are no predecessors.
718    Lockset &Entryset = EntryLocksets[CurrBlockID];
719    Lockset &Exitset = ExitLocksets[CurrBlockID];
720
721    // Iterate through the predecessor blocks and warn if the lockset for all
722    // predecessors is not the same. We take the entry lockset of the current
723    // block to be the intersection of all previous locksets.
724    // FIXME: By keeping the intersection, we may output more errors in future
725    // for a lock which is not in the intersection, but was in the union. We
726    // may want to also keep the union in future. As an example, let's say
727    // the intersection contains Mutex L, and the union contains L and M.
728    // Later we unlock M. At this point, we would output an error because we
729    // never locked M; although the real error is probably that we forgot to
730    // lock M on all code paths. Conversely, let's say that later we lock M.
731    // In this case, we should compare against the intersection instead of the
732    // union because the real error is probably that we forgot to unlock M on
733    // all code paths.
734    bool LocksetInitialized = false;
735    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
736         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
737
738      // if *PI -> CurrBlock is a back edge
739      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
740        continue;
741
742      int PrevBlockID = (*PI)->getBlockID();
743      if (!LocksetInitialized) {
744        Entryset = ExitLocksets[PrevBlockID];
745        LocksetInitialized = true;
746      } else {
747        Entryset = intersectAndWarn(Handler, Entryset,
748                                    ExitLocksets[PrevBlockID], LocksetFactory,
749                                    LEK_LockedSomePredecessors);
750      }
751    }
752
753    BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
754    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
755         BE = CurrBlock->end(); BI != BE; ++BI) {
756      if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
757        LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
758    }
759    Exitset = LocksetBuilder.getLockset();
760
761    // For every back edge from CurrBlock (the end of the loop) to another block
762    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
763    // the one held at the beginning of FirstLoopBlock. We can look up the
764    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
765    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
766         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
767
768      // if CurrBlock -> *SI is *not* a back edge
769      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
770        continue;
771
772      CFGBlock *FirstLoopBlock = *SI;
773      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
774      Lockset LoopEnd = ExitLocksets[CurrBlockID];
775      intersectAndWarn(Handler, LoopEnd, PreLoop, LocksetFactory,
776                       LEK_LockedSomeLoopIterations);
777    }
778  }
779
780  Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
781  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
782
783  // FIXME: Should we call this function for all blocks which exit the function?
784  intersectAndWarn(Handler, InitialLockset, FinalLockset, LocksetFactory,
785                   LEK_LockedAtEndOfFunction);
786}
787
788/// \brief Helper function that returns a LockKind required for the given level
789/// of access.
790LockKind getLockKindFromAccessKind(AccessKind AK) {
791  switch (AK) {
792    case AK_Read :
793      return LK_Shared;
794    case AK_Written :
795      return LK_Exclusive;
796  }
797  llvm_unreachable("Unknown AccessKind");
798}
799}} // end namespace clang::thread_safety
800