ThreadSafety.cpp revision bbe334142b38d2f9dad3ae2eb7b332c54a5b2cc1
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <utility>
38#include <vector>
39
40using namespace clang;
41using namespace thread_safety;
42
43// Key method definition
44ThreadSafetyHandler::~ThreadSafetyHandler() {}
45
46namespace {
47
48/// \brief A MutexID object uniquely identifies a particular mutex, and
49/// is built from an Expr* (i.e. calling a lock function).
50///
51/// Thread-safety analysis works by comparing lock expressions.  Within the
52/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
53/// a particular mutex object at run-time.  Subsequent occurrences of the same
54/// expression (where "same" means syntactic equality) will refer to the same
55/// run-time object if three conditions hold:
56/// (1) Local variables in the expression, such as "x" have not changed.
57/// (2) Values on the heap that affect the expression have not changed.
58/// (3) The expression involves only pure function calls.
59///
60/// The current implementation assumes, but does not verify, that multiple uses
61/// of the same lock expression satisfies these criteria.
62///
63/// Clang introduces an additional wrinkle, which is that it is difficult to
64/// derive canonical expressions, or compare expressions directly for equality.
65/// Thus, we identify a mutex not by an Expr, but by the list of named
66/// declarations that are referenced by the Expr.  In other words,
67/// x->foo->bar.mu will be a four element vector with the Decls for
68/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
69/// for all practical purposes.  Null is used to denote 'this'.
70///
71/// Note we will need to perform substitution on "this" and function parameter
72/// names when constructing a lock expression.
73///
74/// For example:
75/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
76/// void myFunc(C *X) { ... X->lock() ... }
77/// The original expression for the mutex acquired by myFunc is "this->Mu", but
78/// "X" is substituted for "this" so we get X->Mu();
79///
80/// For another example:
81/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
82/// MyList *MyL;
83/// foo(MyL);  // requires lock MyL->Mu to be held
84class MutexID {
85  SmallVector<NamedDecl*, 2> DeclSeq;
86
87  /// \brief Encapsulates the lexical context of a function call.  The lexical
88  /// context includes the arguments to the call, including the implicit object
89  /// argument.  When an attribute containing a mutex expression is attached to
90  /// a method, the expression may refer to formal parameters of the method.
91  /// Actual arguments must be substituted for formal parameters to derive
92  /// the appropriate mutex expression in the lexical context where the function
93  /// is called.  PrevCtx holds the context in which the arguments themselves
94  /// should be evaluated; multiple calling contexts can be chained together
95  /// by the lock_returned attribute.
96  struct CallingContext {
97    const NamedDecl* AttrDecl;  // The decl to which the attribute is attached.
98    Expr*            SelfArg;   // Implicit object argument -- e.g. 'this'
99    unsigned         NumArgs;   // Number of funArgs
100    Expr**           FunArgs;   // Function arguments
101    CallingContext*  PrevCtx;   // The previous context; or 0 if none.
102
103    CallingContext(const NamedDecl* D = 0, Expr* S = 0,
104                   unsigned N = 0, Expr** A = 0, CallingContext* P = 0)
105      : AttrDecl(D), SelfArg(S), NumArgs(N), FunArgs(A), PrevCtx(P)
106    { }
107  };
108
109  /// Build a Decl sequence representing the lock from the given expression.
110  /// Recursive function that terminates on DeclRefExpr.
111  /// Note: this function merely creates a MutexID; it does not check to
112  /// ensure that the original expression is a valid mutex expression.
113  void buildMutexID(Expr *Exp, CallingContext* CallCtx) {
114    if (!Exp) {
115      DeclSeq.clear();
116      return;
117    }
118
119    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
120      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
121      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
122      if (PV) {
123        FunctionDecl *FD =
124          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
125        unsigned i = PV->getFunctionScopeIndex();
126
127        if (CallCtx && CallCtx->FunArgs &&
128            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
129          // Substitute call arguments for references to function parameters
130          assert(i < CallCtx->NumArgs);
131          buildMutexID(CallCtx->FunArgs[i], CallCtx->PrevCtx);
132          return;
133        }
134        // Map the param back to the param of the original function declaration.
135        DeclSeq.push_back(FD->getParamDecl(i));
136        return;
137      }
138      // Not a function parameter -- just store the reference.
139      DeclSeq.push_back(ND);
140    } else if (isa<CXXThisExpr>(Exp)) {
141      // Substitute parent for 'this'
142      if (CallCtx && CallCtx->SelfArg)
143        buildMutexID(CallCtx->SelfArg, CallCtx->PrevCtx);
144      else {
145        DeclSeq.push_back(0);  // Use 0 to represent 'this'.
146        return;  // mutexID is still valid in this case
147      }
148    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
149      NamedDecl *ND = ME->getMemberDecl();
150      DeclSeq.push_back(ND);
151      buildMutexID(ME->getBase(), CallCtx);
152    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
153      // When calling a function with a lock_returned attribute, replace
154      // the function call with the expression in lock_returned.
155      if (LockReturnedAttr* At =
156            CMCE->getMethodDecl()->getAttr<LockReturnedAttr>()) {
157        CallingContext LRCallCtx(CMCE->getMethodDecl());
158        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
159        LRCallCtx.NumArgs = CMCE->getNumArgs();
160        LRCallCtx.FunArgs = CMCE->getArgs();
161        LRCallCtx.PrevCtx = CallCtx;
162        buildMutexID(At->getArg(), &LRCallCtx);
163        return;
164      }
165      DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl());
166      buildMutexID(CMCE->getImplicitObjectArgument(), CallCtx);
167      unsigned NumCallArgs = CMCE->getNumArgs();
168      Expr** CallArgs = CMCE->getArgs();
169      for (unsigned i = 0; i < NumCallArgs; ++i) {
170        buildMutexID(CallArgs[i], CallCtx);
171      }
172    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
173      if (LockReturnedAttr* At =
174            CE->getDirectCallee()->getAttr<LockReturnedAttr>()) {
175        CallingContext LRCallCtx(CE->getDirectCallee());
176        LRCallCtx.NumArgs = CE->getNumArgs();
177        LRCallCtx.FunArgs = CE->getArgs();
178        LRCallCtx.PrevCtx = CallCtx;
179        buildMutexID(At->getArg(), &LRCallCtx);
180        return;
181      }
182      buildMutexID(CE->getCallee(), CallCtx);
183      unsigned NumCallArgs = CE->getNumArgs();
184      Expr** CallArgs = CE->getArgs();
185      for (unsigned i = 0; i < NumCallArgs; ++i) {
186        buildMutexID(CallArgs[i], CallCtx);
187      }
188    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
189      buildMutexID(BOE->getLHS(), CallCtx);
190      buildMutexID(BOE->getRHS(), CallCtx);
191    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
192      buildMutexID(UOE->getSubExpr(), CallCtx);
193    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
194      buildMutexID(ASE->getBase(), CallCtx);
195      buildMutexID(ASE->getIdx(), CallCtx);
196    } else if (AbstractConditionalOperator *CE =
197                 dyn_cast<AbstractConditionalOperator>(Exp)) {
198      buildMutexID(CE->getCond(), CallCtx);
199      buildMutexID(CE->getTrueExpr(), CallCtx);
200      buildMutexID(CE->getFalseExpr(), CallCtx);
201    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
202      buildMutexID(CE->getCond(), CallCtx);
203      buildMutexID(CE->getLHS(), CallCtx);
204      buildMutexID(CE->getRHS(), CallCtx);
205    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
206      buildMutexID(CE->getSubExpr(), CallCtx);
207    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
208      buildMutexID(PE->getSubExpr(), CallCtx);
209    } else if (isa<CharacterLiteral>(Exp) ||
210             isa<CXXNullPtrLiteralExpr>(Exp) ||
211             isa<GNUNullExpr>(Exp) ||
212             isa<CXXBoolLiteralExpr>(Exp) ||
213             isa<FloatingLiteral>(Exp) ||
214             isa<ImaginaryLiteral>(Exp) ||
215             isa<IntegerLiteral>(Exp) ||
216             isa<StringLiteral>(Exp) ||
217             isa<ObjCStringLiteral>(Exp)) {
218      return;  // FIXME: Ignore literals for now
219    } else {
220      // Ignore.  FIXME: mark as invalid expression?
221    }
222  }
223
224  /// \brief Construct a MutexID from an expression.
225  /// \param MutexExp The original mutex expression within an attribute
226  /// \param DeclExp An expression involving the Decl on which the attribute
227  ///        occurs.
228  /// \param D  The declaration to which the lock/unlock attribute is attached.
229  void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
230    CallingContext CallCtx(D);
231
232    // If we are processing a raw attribute expression, with no substitutions.
233    if (DeclExp == 0) {
234      buildMutexID(MutexExp, 0);
235      return;
236    }
237
238    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
239    // for formal parameters when we call buildMutexID later.
240    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
241      CallCtx.SelfArg = ME->getBase();
242    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
243      CallCtx.SelfArg = CE->getImplicitObjectArgument();
244      CallCtx.NumArgs = CE->getNumArgs();
245      CallCtx.FunArgs = CE->getArgs();
246    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
247      CallCtx.NumArgs = CE->getNumArgs();
248      CallCtx.FunArgs = CE->getArgs();
249    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
250      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
251      CallCtx.NumArgs = CE->getNumArgs();
252      CallCtx.FunArgs = CE->getArgs();
253    } else if (D && isa<CXXDestructorDecl>(D)) {
254      // There's no such thing as a "destructor call" in the AST.
255      CallCtx.SelfArg = DeclExp;
256    }
257
258    // If the attribute has no arguments, then assume the argument is "this".
259    if (MutexExp == 0) {
260      buildMutexID(CallCtx.SelfArg, 0);
261      return;
262    }
263
264    // For most attributes.
265    buildMutexID(MutexExp, &CallCtx);
266  }
267
268public:
269  explicit MutexID(clang::Decl::EmptyShell e) {
270    DeclSeq.clear();
271  }
272
273  /// \param MutexExp The original mutex expression within an attribute
274  /// \param DeclExp An expression involving the Decl on which the attribute
275  ///        occurs.
276  /// \param D  The declaration to which the lock/unlock attribute is attached.
277  /// Caller must check isValid() after construction.
278  MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
279    buildMutexIDFromExp(MutexExp, DeclExp, D);
280  }
281
282  /// Return true if this is a valid decl sequence.
283  /// Caller must call this by hand after construction to handle errors.
284  bool isValid() const {
285    return !DeclSeq.empty();
286  }
287
288  /// Issue a warning about an invalid lock expression
289  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
290                              Expr *DeclExp, const NamedDecl* D) {
291    SourceLocation Loc;
292    if (DeclExp)
293      Loc = DeclExp->getExprLoc();
294
295    // FIXME: add a note about the attribute location in MutexExp or D
296    if (Loc.isValid())
297      Handler.handleInvalidLockExp(Loc);
298  }
299
300  bool operator==(const MutexID &other) const {
301    return DeclSeq == other.DeclSeq;
302  }
303
304  bool operator!=(const MutexID &other) const {
305    return !(*this == other);
306  }
307
308  // SmallVector overloads Operator< to do lexicographic ordering. Note that
309  // we use pointer equality (and <) to compare NamedDecls. This means the order
310  // of MutexIDs in a lockset is nondeterministic. In order to output
311  // diagnostics in a deterministic ordering, we must order all diagnostics to
312  // output by SourceLocation when iterating through this lockset.
313  bool operator<(const MutexID &other) const {
314    return DeclSeq < other.DeclSeq;
315  }
316
317  /// \brief Returns the name of the first Decl in the list for a given MutexID;
318  /// e.g. the lock expression foo.bar() has name "bar".
319  /// The caret will point unambiguously to the lock expression, so using this
320  /// name in diagnostics is a way to get simple, and consistent, mutex names.
321  /// We do not want to output the entire expression text for security reasons.
322  std::string getName() const {
323    assert(isValid());
324    if (!DeclSeq.front())
325      return "this";  // Use 0 to represent 'this'.
326    return DeclSeq.front()->getNameAsString();
327  }
328
329  void Profile(llvm::FoldingSetNodeID &ID) const {
330    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
331         E = DeclSeq.end(); I != E; ++I) {
332      ID.AddPointer(*I);
333    }
334  }
335};
336
337
338/// \brief This is a helper class that stores info about the most recent
339/// accquire of a Lock.
340///
341/// The main body of the analysis maps MutexIDs to LockDatas.
342struct LockData {
343  SourceLocation AcquireLoc;
344
345  /// \brief LKind stores whether a lock is held shared or exclusively.
346  /// Note that this analysis does not currently support either re-entrant
347  /// locking or lock "upgrading" and "downgrading" between exclusive and
348  /// shared.
349  ///
350  /// FIXME: add support for re-entrant locking and lock up/downgrading
351  LockKind LKind;
352  bool     Managed;            // for ScopedLockable objects
353  MutexID  UnderlyingMutex;    // for ScopedLockable objects
354
355  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
356    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
357      UnderlyingMutex(Decl::EmptyShell())
358  {}
359
360  LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
361    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
362      UnderlyingMutex(Mu)
363  {}
364
365  bool operator==(const LockData &other) const {
366    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
367  }
368
369  bool operator!=(const LockData &other) const {
370    return !(*this == other);
371  }
372
373  void Profile(llvm::FoldingSetNodeID &ID) const {
374    ID.AddInteger(AcquireLoc.getRawEncoding());
375    ID.AddInteger(LKind);
376  }
377};
378
379
380/// A Lockset maps each MutexID (defined above) to information about how it has
381/// been locked.
382typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
383typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
384
385class LocalVariableMap;
386
387/// A side (entry or exit) of a CFG node.
388enum CFGBlockSide { CBS_Entry, CBS_Exit };
389
390/// CFGBlockInfo is a struct which contains all the information that is
391/// maintained for each block in the CFG.  See LocalVariableMap for more
392/// information about the contexts.
393struct CFGBlockInfo {
394  Lockset EntrySet;             // Lockset held at entry to block
395  Lockset ExitSet;              // Lockset held at exit from block
396  LocalVarContext EntryContext; // Context held at entry to block
397  LocalVarContext ExitContext;  // Context held at exit from block
398  SourceLocation EntryLoc;      // Location of first statement in block
399  SourceLocation ExitLoc;       // Location of last statement in block.
400  unsigned EntryIndex;          // Used to replay contexts later
401
402  const Lockset &getSet(CFGBlockSide Side) const {
403    return Side == CBS_Entry ? EntrySet : ExitSet;
404  }
405  SourceLocation getLocation(CFGBlockSide Side) const {
406    return Side == CBS_Entry ? EntryLoc : ExitLoc;
407  }
408
409private:
410  CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
411    : EntrySet(EmptySet), ExitSet(EmptySet),
412      EntryContext(EmptyCtx), ExitContext(EmptyCtx)
413  { }
414
415public:
416  static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
417                                        LocalVariableMap &M);
418};
419
420
421
422// A LocalVariableMap maintains a map from local variables to their currently
423// valid definitions.  It provides SSA-like functionality when traversing the
424// CFG.  Like SSA, each definition or assignment to a variable is assigned a
425// unique name (an integer), which acts as the SSA name for that definition.
426// The total set of names is shared among all CFG basic blocks.
427// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
428// with their SSA-names.  Instead, we compute a Context for each point in the
429// code, which maps local variables to the appropriate SSA-name.  This map
430// changes with each assignment.
431//
432// The map is computed in a single pass over the CFG.  Subsequent analyses can
433// then query the map to find the appropriate Context for a statement, and use
434// that Context to look up the definitions of variables.
435class LocalVariableMap {
436public:
437  typedef LocalVarContext Context;
438
439  /// A VarDefinition consists of an expression, representing the value of the
440  /// variable, along with the context in which that expression should be
441  /// interpreted.  A reference VarDefinition does not itself contain this
442  /// information, but instead contains a pointer to a previous VarDefinition.
443  struct VarDefinition {
444  public:
445    friend class LocalVariableMap;
446
447    const NamedDecl *Dec;  // The original declaration for this variable.
448    const Expr *Exp;       // The expression for this variable, OR
449    unsigned Ref;          // Reference to another VarDefinition
450    Context Ctx;           // The map with which Exp should be interpreted.
451
452    bool isReference() { return !Exp; }
453
454  private:
455    // Create ordinary variable definition
456    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
457      : Dec(D), Exp(E), Ref(0), Ctx(C)
458    { }
459
460    // Create reference to previous definition
461    VarDefinition(const NamedDecl *D, unsigned R, Context C)
462      : Dec(D), Exp(0), Ref(R), Ctx(C)
463    { }
464  };
465
466private:
467  Context::Factory ContextFactory;
468  std::vector<VarDefinition> VarDefinitions;
469  std::vector<unsigned> CtxIndices;
470  std::vector<std::pair<Stmt*, Context> > SavedContexts;
471
472public:
473  LocalVariableMap() {
474    // index 0 is a placeholder for undefined variables (aka phi-nodes).
475    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
476  }
477
478  /// Look up a definition, within the given context.
479  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
480    const unsigned *i = Ctx.lookup(D);
481    if (!i)
482      return 0;
483    assert(*i < VarDefinitions.size());
484    return &VarDefinitions[*i];
485  }
486
487  /// Look up the definition for D within the given context.  Returns
488  /// NULL if the expression is not statically known.  If successful, also
489  /// modifies Ctx to hold the context of the return Expr.
490  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
491    const unsigned *P = Ctx.lookup(D);
492    if (!P)
493      return 0;
494
495    unsigned i = *P;
496    while (i > 0) {
497      if (VarDefinitions[i].Exp) {
498        Ctx = VarDefinitions[i].Ctx;
499        return VarDefinitions[i].Exp;
500      }
501      i = VarDefinitions[i].Ref;
502    }
503    return 0;
504  }
505
506  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
507
508  /// Return the next context after processing S.  This function is used by
509  /// clients of the class to get the appropriate context when traversing the
510  /// CFG.  It must be called for every assignment or DeclStmt.
511  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
512    if (SavedContexts[CtxIndex+1].first == S) {
513      CtxIndex++;
514      Context Result = SavedContexts[CtxIndex].second;
515      return Result;
516    }
517    return C;
518  }
519
520  void dumpVarDefinitionName(unsigned i) {
521    if (i == 0) {
522      llvm::errs() << "Undefined";
523      return;
524    }
525    const NamedDecl *Dec = VarDefinitions[i].Dec;
526    if (!Dec) {
527      llvm::errs() << "<<NULL>>";
528      return;
529    }
530    Dec->printName(llvm::errs());
531    llvm::errs() << "." << i << " " << ((void*) Dec);
532  }
533
534  /// Dumps an ASCII representation of the variable map to llvm::errs()
535  void dump() {
536    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
537      const Expr *Exp = VarDefinitions[i].Exp;
538      unsigned Ref = VarDefinitions[i].Ref;
539
540      dumpVarDefinitionName(i);
541      llvm::errs() << " = ";
542      if (Exp) Exp->dump();
543      else {
544        dumpVarDefinitionName(Ref);
545        llvm::errs() << "\n";
546      }
547    }
548  }
549
550  /// Dumps an ASCII representation of a Context to llvm::errs()
551  void dumpContext(Context C) {
552    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
553      const NamedDecl *D = I.getKey();
554      D->printName(llvm::errs());
555      const unsigned *i = C.lookup(D);
556      llvm::errs() << " -> ";
557      dumpVarDefinitionName(*i);
558      llvm::errs() << "\n";
559    }
560  }
561
562  /// Builds the variable map.
563  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
564                     std::vector<CFGBlockInfo> &BlockInfo);
565
566protected:
567  // Get the current context index
568  unsigned getContextIndex() { return SavedContexts.size()-1; }
569
570  // Save the current context for later replay
571  void saveContext(Stmt *S, Context C) {
572    SavedContexts.push_back(std::make_pair(S,C));
573  }
574
575  // Adds a new definition to the given context, and returns a new context.
576  // This method should be called when declaring a new variable.
577  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
578    assert(!Ctx.contains(D));
579    unsigned newID = VarDefinitions.size();
580    Context NewCtx = ContextFactory.add(Ctx, D, newID);
581    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
582    return NewCtx;
583  }
584
585  // Add a new reference to an existing definition.
586  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
587    unsigned newID = VarDefinitions.size();
588    Context NewCtx = ContextFactory.add(Ctx, D, newID);
589    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
590    return NewCtx;
591  }
592
593  // Updates a definition only if that definition is already in the map.
594  // This method should be called when assigning to an existing variable.
595  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
596    if (Ctx.contains(D)) {
597      unsigned newID = VarDefinitions.size();
598      Context NewCtx = ContextFactory.remove(Ctx, D);
599      NewCtx = ContextFactory.add(NewCtx, D, newID);
600      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
601      return NewCtx;
602    }
603    return Ctx;
604  }
605
606  // Removes a definition from the context, but keeps the variable name
607  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
608  Context clearDefinition(const NamedDecl *D, Context Ctx) {
609    Context NewCtx = Ctx;
610    if (NewCtx.contains(D)) {
611      NewCtx = ContextFactory.remove(NewCtx, D);
612      NewCtx = ContextFactory.add(NewCtx, D, 0);
613    }
614    return NewCtx;
615  }
616
617  // Remove a definition entirely frmo the context.
618  Context removeDefinition(const NamedDecl *D, Context Ctx) {
619    Context NewCtx = Ctx;
620    if (NewCtx.contains(D)) {
621      NewCtx = ContextFactory.remove(NewCtx, D);
622    }
623    return NewCtx;
624  }
625
626  Context intersectContexts(Context C1, Context C2);
627  Context createReferenceContext(Context C);
628  void intersectBackEdge(Context C1, Context C2);
629
630  friend class VarMapBuilder;
631};
632
633
634// This has to be defined after LocalVariableMap.
635CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
636                                             LocalVariableMap &M) {
637  return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
638}
639
640
641/// Visitor which builds a LocalVariableMap
642class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
643public:
644  LocalVariableMap* VMap;
645  LocalVariableMap::Context Ctx;
646
647  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
648    : VMap(VM), Ctx(C) {}
649
650  void VisitDeclStmt(DeclStmt *S);
651  void VisitBinaryOperator(BinaryOperator *BO);
652};
653
654
655// Add new local variables to the variable map
656void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
657  bool modifiedCtx = false;
658  DeclGroupRef DGrp = S->getDeclGroup();
659  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
660    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
661      Expr *E = VD->getInit();
662
663      // Add local variables with trivial type to the variable map
664      QualType T = VD->getType();
665      if (T.isTrivialType(VD->getASTContext())) {
666        Ctx = VMap->addDefinition(VD, E, Ctx);
667        modifiedCtx = true;
668      }
669    }
670  }
671  if (modifiedCtx)
672    VMap->saveContext(S, Ctx);
673}
674
675// Update local variable definitions in variable map
676void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
677  if (!BO->isAssignmentOp())
678    return;
679
680  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
681
682  // Update the variable map and current context.
683  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
684    ValueDecl *VDec = DRE->getDecl();
685    if (Ctx.lookup(VDec)) {
686      if (BO->getOpcode() == BO_Assign)
687        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
688      else
689        // FIXME -- handle compound assignment operators
690        Ctx = VMap->clearDefinition(VDec, Ctx);
691      VMap->saveContext(BO, Ctx);
692    }
693  }
694}
695
696
697// Computes the intersection of two contexts.  The intersection is the
698// set of variables which have the same definition in both contexts;
699// variables with different definitions are discarded.
700LocalVariableMap::Context
701LocalVariableMap::intersectContexts(Context C1, Context C2) {
702  Context Result = C1;
703  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
704    const NamedDecl *Dec = I.getKey();
705    unsigned i1 = I.getData();
706    const unsigned *i2 = C2.lookup(Dec);
707    if (!i2)             // variable doesn't exist on second path
708      Result = removeDefinition(Dec, Result);
709    else if (*i2 != i1)  // variable exists, but has different definition
710      Result = clearDefinition(Dec, Result);
711  }
712  return Result;
713}
714
715// For every variable in C, create a new variable that refers to the
716// definition in C.  Return a new context that contains these new variables.
717// (We use this for a naive implementation of SSA on loop back-edges.)
718LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
719  Context Result = getEmptyContext();
720  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
721    const NamedDecl *Dec = I.getKey();
722    unsigned i = I.getData();
723    Result = addReference(Dec, i, Result);
724  }
725  return Result;
726}
727
728// This routine also takes the intersection of C1 and C2, but it does so by
729// altering the VarDefinitions.  C1 must be the result of an earlier call to
730// createReferenceContext.
731void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
732  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
733    const NamedDecl *Dec = I.getKey();
734    unsigned i1 = I.getData();
735    VarDefinition *VDef = &VarDefinitions[i1];
736    assert(VDef->isReference());
737
738    const unsigned *i2 = C2.lookup(Dec);
739    if (!i2 || (*i2 != i1))
740      VDef->Ref = 0;    // Mark this variable as undefined
741  }
742}
743
744
745// Traverse the CFG in topological order, so all predecessors of a block
746// (excluding back-edges) are visited before the block itself.  At
747// each point in the code, we calculate a Context, which holds the set of
748// variable definitions which are visible at that point in execution.
749// Visible variables are mapped to their definitions using an array that
750// contains all definitions.
751//
752// At join points in the CFG, the set is computed as the intersection of
753// the incoming sets along each edge, E.g.
754//
755//                       { Context                 | VarDefinitions }
756//   int x = 0;          { x -> x1                 | x1 = 0 }
757//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
758//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
759//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
760//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
761//
762// This is essentially a simpler and more naive version of the standard SSA
763// algorithm.  Those definitions that remain in the intersection are from blocks
764// that strictly dominate the current block.  We do not bother to insert proper
765// phi nodes, because they are not used in our analysis; instead, wherever
766// a phi node would be required, we simply remove that definition from the
767// context (E.g. x above).
768//
769// The initial traversal does not capture back-edges, so those need to be
770// handled on a separate pass.  Whenever the first pass encounters an
771// incoming back edge, it duplicates the context, creating new definitions
772// that refer back to the originals.  (These correspond to places where SSA
773// might have to insert a phi node.)  On the second pass, these definitions are
774// set to NULL if the the variable has changed on the back-edge (i.e. a phi
775// node was actually required.)  E.g.
776//
777//                       { Context           | VarDefinitions }
778//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
779//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
780//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
781//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
782//
783void LocalVariableMap::traverseCFG(CFG *CFGraph,
784                                   PostOrderCFGView *SortedGraph,
785                                   std::vector<CFGBlockInfo> &BlockInfo) {
786  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
787
788  CtxIndices.resize(CFGraph->getNumBlockIDs());
789
790  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
791       E = SortedGraph->end(); I!= E; ++I) {
792    const CFGBlock *CurrBlock = *I;
793    int CurrBlockID = CurrBlock->getBlockID();
794    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
795
796    VisitedBlocks.insert(CurrBlock);
797
798    // Calculate the entry context for the current block
799    bool HasBackEdges = false;
800    bool CtxInit = true;
801    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
802         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
803      // if *PI -> CurrBlock is a back edge, so skip it
804      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
805        HasBackEdges = true;
806        continue;
807      }
808
809      int PrevBlockID = (*PI)->getBlockID();
810      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
811
812      if (CtxInit) {
813        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
814        CtxInit = false;
815      }
816      else {
817        CurrBlockInfo->EntryContext =
818          intersectContexts(CurrBlockInfo->EntryContext,
819                            PrevBlockInfo->ExitContext);
820      }
821    }
822
823    // Duplicate the context if we have back-edges, so we can call
824    // intersectBackEdges later.
825    if (HasBackEdges)
826      CurrBlockInfo->EntryContext =
827        createReferenceContext(CurrBlockInfo->EntryContext);
828
829    // Create a starting context index for the current block
830    saveContext(0, CurrBlockInfo->EntryContext);
831    CurrBlockInfo->EntryIndex = getContextIndex();
832
833    // Visit all the statements in the basic block.
834    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
835    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
836         BE = CurrBlock->end(); BI != BE; ++BI) {
837      switch (BI->getKind()) {
838        case CFGElement::Statement: {
839          const CFGStmt *CS = cast<CFGStmt>(&*BI);
840          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
841          break;
842        }
843        default:
844          break;
845      }
846    }
847    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
848
849    // Mark variables on back edges as "unknown" if they've been changed.
850    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
851         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
852      // if CurrBlock -> *SI is *not* a back edge
853      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
854        continue;
855
856      CFGBlock *FirstLoopBlock = *SI;
857      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
858      Context LoopEnd   = CurrBlockInfo->ExitContext;
859      intersectBackEdge(LoopBegin, LoopEnd);
860    }
861  }
862
863  // Put an extra entry at the end of the indexed context array
864  unsigned exitID = CFGraph->getExit().getBlockID();
865  saveContext(0, BlockInfo[exitID].ExitContext);
866}
867
868/// Find the appropriate source locations to use when producing diagnostics for
869/// each block in the CFG.
870static void findBlockLocations(CFG *CFGraph,
871                               PostOrderCFGView *SortedGraph,
872                               std::vector<CFGBlockInfo> &BlockInfo) {
873  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
874       E = SortedGraph->end(); I!= E; ++I) {
875    const CFGBlock *CurrBlock = *I;
876    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
877
878    // Find the source location of the last statement in the block, if the
879    // block is not empty.
880    if (const Stmt *S = CurrBlock->getTerminator()) {
881      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
882    } else {
883      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
884           BE = CurrBlock->rend(); BI != BE; ++BI) {
885        // FIXME: Handle other CFGElement kinds.
886        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
887          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
888          break;
889        }
890      }
891    }
892
893    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
894      // This block contains at least one statement. Find the source location
895      // of the first statement in the block.
896      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
897           BE = CurrBlock->end(); BI != BE; ++BI) {
898        // FIXME: Handle other CFGElement kinds.
899        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
900          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
901          break;
902        }
903      }
904    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
905               CurrBlock != &CFGraph->getExit()) {
906      // The block is empty, and has a single predecessor. Use its exit
907      // location.
908      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
909          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
910    }
911  }
912}
913
914/// \brief Class which implements the core thread safety analysis routines.
915class ThreadSafetyAnalyzer {
916  friend class BuildLockset;
917
918  ThreadSafetyHandler       &Handler;
919  Lockset::Factory          LocksetFactory;
920  LocalVariableMap          LocalVarMap;
921  std::vector<CFGBlockInfo> BlockInfo;
922
923public:
924  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
925
926  Lockset addLock(const Lockset &LSet, const MutexID &Mutex,
927                  const LockData &LDat, bool Warn=true);
928  Lockset addLock(const Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
929                  const LockData &LDat, bool Warn=true);
930  Lockset removeLock(const Lockset &LSet, const MutexID &Mutex,
931                     SourceLocation UnlockLoc,
932                     bool Warn=true, bool FullyRemove=false);
933
934  template <class AttrType>
935  Lockset addLocksToSet(const Lockset &LSet, LockKind LK, AttrType *Attr,
936                        Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
937  Lockset removeLocksFromSet(const Lockset &LSet,
938                             UnlockFunctionAttr *Attr,
939                             Expr *Exp, NamedDecl* FunDecl);
940
941  template <class AttrType>
942  Lockset addTrylock(const Lockset &LSet,
943                     LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
944                     const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
945                     Expr *BrE, bool Neg);
946  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
947                                     bool &Negate);
948
949  Lockset getEdgeLockset(const Lockset &ExitSet,
950                         const CFGBlock* PredBlock,
951                         const CFGBlock *CurrBlock);
952
953  Lockset intersectAndWarn(const Lockset &LSet1, const Lockset &LSet2,
954                           SourceLocation JoinLoc,
955                           LockErrorKind LEK1, LockErrorKind LEK2);
956
957  Lockset intersectAndWarn(const Lockset &LSet1, const Lockset &LSet2,
958                           SourceLocation JoinLoc, LockErrorKind LEK1) {
959    return intersectAndWarn(LSet1, LSet2, JoinLoc, LEK1, LEK1);
960  }
961
962  void runAnalysis(AnalysisDeclContext &AC);
963};
964
965
966/// \brief Add a new lock to the lockset, warning if the lock is already there.
967/// \param Mutex -- the Mutex expression for the lock
968/// \param LDat  -- the LockData for the lock
969Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
970                                      const MutexID &Mutex,
971                                      const LockData &LDat,
972                                      bool Warn) {
973  // FIXME: deal with acquired before/after annotations.
974  // FIXME: Don't always warn when we have support for reentrant locks.
975  if (LSet.lookup(Mutex)) {
976    if (Warn)
977      Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
978    return LSet;
979  } else {
980    return LocksetFactory.add(LSet, Mutex, LDat);
981  }
982}
983
984/// \brief Construct a new mutex and add it to the lockset.
985Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
986                                      Expr *MutexExp, const NamedDecl *D,
987                                      const LockData &LDat,
988                                      bool Warn) {
989  MutexID Mutex(MutexExp, 0, D);
990  if (!Mutex.isValid()) {
991    MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
992    return LSet;
993  }
994  return addLock(LSet, Mutex, LDat, Warn);
995}
996
997
998/// \brief Remove a lock from the lockset, warning if the lock is not there.
999/// \param LockExp The lock expression corresponding to the lock to be removed
1000/// \param UnlockLoc The source location of the unlock (only used in error msg)
1001Lockset ThreadSafetyAnalyzer::removeLock(const Lockset &LSet,
1002                                         const MutexID &Mutex,
1003                                         SourceLocation UnlockLoc,
1004                                         bool Warn, bool FullyRemove) {
1005  const LockData *LDat = LSet.lookup(Mutex);
1006  if (!LDat) {
1007    if (Warn)
1008      Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
1009    return LSet;
1010  }
1011  else {
1012    Lockset Result = LSet;
1013    if (LDat->UnderlyingMutex.isValid()) {
1014      // For scoped-lockable vars, remove the mutex associated with this var.
1015      Result = removeLock(Result, LDat->UnderlyingMutex, UnlockLoc,
1016                          false, true);
1017      // Fully remove the object only when the destructor is called
1018      if (FullyRemove)
1019        return LocksetFactory.remove(Result, Mutex);
1020      else
1021        return Result;
1022    }
1023    return LocksetFactory.remove(Result, Mutex);
1024  }
1025}
1026
1027
1028/// \brief This function, parameterized by an attribute type, is used to add a
1029/// set of locks specified as attribute arguments to the lockset.
1030template <typename AttrType>
1031Lockset ThreadSafetyAnalyzer::addLocksToSet(const Lockset &LSet,
1032                                            LockKind LK, AttrType *Attr,
1033                                            Expr *Exp, NamedDecl* FunDecl,
1034                                            VarDecl *VD) {
1035  typedef typename AttrType::args_iterator iterator_type;
1036
1037  SourceLocation ExpLocation = Exp->getExprLoc();
1038
1039  // Figure out if we're calling the constructor of scoped lockable class
1040  bool isScopedVar = false;
1041  if (VD) {
1042    if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
1043      CXXRecordDecl* PD = CD->getParent();
1044      if (PD && PD->getAttr<ScopedLockableAttr>())
1045        isScopedVar = true;
1046    }
1047  }
1048
1049  if (Attr->args_size() == 0) {
1050    // The mutex held is the "this" object.
1051    MutexID Mutex(0, Exp, FunDecl);
1052    if (!Mutex.isValid()) {
1053      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1054      return LSet;
1055    }
1056    else {
1057      return addLock(LSet, Mutex, LockData(ExpLocation, LK));
1058    }
1059  }
1060
1061  Lockset Result = LSet;
1062  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1063    MutexID Mutex(*I, Exp, FunDecl);
1064    if (!Mutex.isValid())
1065      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1066    else {
1067      if (isScopedVar) {
1068        // Mutex is managed by scoped var -- suppress certain warnings.
1069        Result = addLock(Result, Mutex, LockData(ExpLocation, LK, true));
1070        // For scoped lockable vars, map this var to its underlying mutex.
1071        DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1072        MutexID SMutex(&DRE, 0, 0);
1073        Result = addLock(Result, SMutex,
1074                         LockData(VD->getLocation(), LK, Mutex));
1075      }
1076      else {
1077        Result = addLock(Result, Mutex, LockData(ExpLocation, LK));
1078      }
1079    }
1080  }
1081  return Result;
1082}
1083
1084/// \brief This function removes a set of locks specified as attribute
1085/// arguments from the lockset.
1086Lockset ThreadSafetyAnalyzer::removeLocksFromSet(const Lockset &LSet,
1087                                                 UnlockFunctionAttr *Attr,
1088                                                 Expr *Exp,
1089                                                 NamedDecl* FunDecl) {
1090  SourceLocation ExpLocation;
1091  if (Exp) ExpLocation = Exp->getExprLoc();
1092  bool Dtor = isa<CXXDestructorDecl>(FunDecl);
1093
1094  if (Attr->args_size() == 0) {
1095    // The mutex held is the "this" object.
1096    MutexID Mu(0, Exp, FunDecl);
1097    if (!Mu.isValid()) {
1098      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1099      return LSet;
1100    } else {
1101      return removeLock(LSet, Mu, ExpLocation, true, Dtor);
1102    }
1103  }
1104
1105  Lockset Result = LSet;
1106  for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
1107       E = Attr->args_end(); I != E; ++I) {
1108    MutexID Mutex(*I, Exp, FunDecl);
1109    if (!Mutex.isValid())
1110      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1111    else
1112      Result = removeLock(Result, Mutex, ExpLocation, true, Dtor);
1113  }
1114  return Result;
1115}
1116
1117
1118/// \brief Add lock to set, if the current block is in the taken branch of a
1119/// trylock.
1120template <class AttrType>
1121Lockset ThreadSafetyAnalyzer::addTrylock(const Lockset &LSet,
1122                                         LockKind LK, AttrType *Attr,
1123                                         Expr *Exp, NamedDecl *FunDecl,
1124                                         const CFGBlock *PredBlock,
1125                                         const CFGBlock *CurrBlock,
1126                                         Expr *BrE, bool Neg) {
1127  // Find out which branch has the lock
1128  bool branch = 0;
1129  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1130    branch = BLE->getValue();
1131  }
1132  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1133    branch = ILE->getValue().getBoolValue();
1134  }
1135  int branchnum = branch ? 0 : 1;
1136  if (Neg) branchnum = !branchnum;
1137
1138  Lockset Result = LSet;
1139  // If we've taken the trylock branch, then add the lock
1140  int i = 0;
1141  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1142       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1143    if (*SI == CurrBlock && i == branchnum) {
1144      Result = addLocksToSet(Result, LK, Attr, Exp, FunDecl, 0);
1145    }
1146  }
1147  return Result;
1148}
1149
1150
1151// If Cond can be traced back to a function call, return the call expression.
1152// The negate variable should be called with false, and will be set to true
1153// if the function call is negated, e.g. if (!mu.tryLock(...))
1154const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1155                                                         LocalVarContext C,
1156                                                         bool &Negate) {
1157  if (!Cond)
1158    return 0;
1159
1160  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1161    return CallExp;
1162  }
1163  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1164    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1165  }
1166  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1167    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1168    return getTrylockCallExpr(E, C, Negate);
1169  }
1170  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1171    if (UOP->getOpcode() == UO_LNot) {
1172      Negate = !Negate;
1173      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1174    }
1175  }
1176  // FIXME -- handle && and || as well.
1177  return NULL;
1178}
1179
1180
1181/// \brief Find the lockset that holds on the edge between PredBlock
1182/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1183/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1184Lockset ThreadSafetyAnalyzer::getEdgeLockset(const Lockset &ExitSet,
1185                                             const CFGBlock *PredBlock,
1186                                             const CFGBlock *CurrBlock) {
1187  if (!PredBlock->getTerminatorCondition())
1188    return ExitSet;
1189
1190  bool Negate = false;
1191  const Stmt *Cond = PredBlock->getTerminatorCondition();
1192  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1193  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1194
1195  CallExpr *Exp = const_cast<CallExpr*>(
1196    getTrylockCallExpr(Cond, LVarCtx, Negate));
1197  if (!Exp)
1198    return ExitSet;
1199
1200  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1201  if(!FunDecl || !FunDecl->hasAttrs())
1202    return ExitSet;
1203
1204  Lockset Result = ExitSet;
1205
1206  // If the condition is a call to a Trylock function, then grab the attributes
1207  AttrVec &ArgAttrs = FunDecl->getAttrs();
1208  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1209    Attr *Attr = ArgAttrs[i];
1210    switch (Attr->getKind()) {
1211      case attr::ExclusiveTrylockFunction: {
1212        ExclusiveTrylockFunctionAttr *A =
1213          cast<ExclusiveTrylockFunctionAttr>(Attr);
1214        Result = addTrylock(Result, LK_Exclusive, A, Exp, FunDecl,
1215                            PredBlock, CurrBlock,
1216                            A->getSuccessValue(), Negate);
1217        break;
1218      }
1219      case attr::SharedTrylockFunction: {
1220        SharedTrylockFunctionAttr *A =
1221          cast<SharedTrylockFunctionAttr>(Attr);
1222        Result = addTrylock(Result, LK_Shared, A, Exp, FunDecl,
1223                            PredBlock, CurrBlock,
1224                            A->getSuccessValue(), Negate);
1225        break;
1226      }
1227      default:
1228        break;
1229    }
1230  }
1231  return Result;
1232}
1233
1234
1235/// \brief We use this class to visit different types of expressions in
1236/// CFGBlocks, and build up the lockset.
1237/// An expression may cause us to add or remove locks from the lockset, or else
1238/// output error messages related to missing locks.
1239/// FIXME: In future, we may be able to not inherit from a visitor.
1240class BuildLockset : public StmtVisitor<BuildLockset> {
1241  friend class ThreadSafetyAnalyzer;
1242
1243  ThreadSafetyAnalyzer *Analyzer;
1244  Lockset LSet;
1245  LocalVariableMap::Context LVarCtx;
1246  unsigned CtxIndex;
1247
1248  // Helper functions
1249  const ValueDecl *getValueDecl(Expr *Exp);
1250
1251  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1252                          Expr *MutexExp, ProtectedOperationKind POK);
1253
1254  void checkAccess(Expr *Exp, AccessKind AK);
1255  void checkDereference(Expr *Exp, AccessKind AK);
1256  void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
1257
1258  /// \brief Returns true if the lockset contains a lock, regardless of whether
1259  /// the lock is held exclusively or shared.
1260  bool locksetContains(const MutexID &Lock) const {
1261    return LSet.lookup(Lock);
1262  }
1263
1264  /// \brief Returns true if the lockset contains a lock with the passed in
1265  /// locktype.
1266  bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
1267    const LockData *LockHeld = LSet.lookup(Lock);
1268    return (LockHeld && KindRequested == LockHeld->LKind);
1269  }
1270
1271  /// \brief Returns true if the lockset contains a lock with at least the
1272  /// passed in locktype. So for example, if we pass in LK_Shared, this function
1273  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
1274  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
1275  bool locksetContainsAtLeast(const MutexID &Lock,
1276                              LockKind KindRequested) const {
1277    switch (KindRequested) {
1278      case LK_Shared:
1279        return locksetContains(Lock);
1280      case LK_Exclusive:
1281        return locksetContains(Lock, KindRequested);
1282    }
1283    llvm_unreachable("Unknown LockKind");
1284  }
1285
1286public:
1287  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1288    : StmtVisitor<BuildLockset>(),
1289      Analyzer(Anlzr),
1290      LSet(Info.EntrySet),
1291      LVarCtx(Info.EntryContext),
1292      CtxIndex(Info.EntryIndex)
1293  {}
1294
1295  void VisitUnaryOperator(UnaryOperator *UO);
1296  void VisitBinaryOperator(BinaryOperator *BO);
1297  void VisitCastExpr(CastExpr *CE);
1298  void VisitCallExpr(CallExpr *Exp);
1299  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1300  void VisitDeclStmt(DeclStmt *S);
1301};
1302
1303
1304/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1305const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1306  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1307    return DR->getDecl();
1308
1309  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1310    return ME->getMemberDecl();
1311
1312  return 0;
1313}
1314
1315/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1316/// of at least the passed in AccessKind.
1317void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1318                                      AccessKind AK, Expr *MutexExp,
1319                                      ProtectedOperationKind POK) {
1320  LockKind LK = getLockKindFromAccessKind(AK);
1321
1322  MutexID Mutex(MutexExp, Exp, D);
1323  if (!Mutex.isValid())
1324    MutexID::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1325  else if (!locksetContainsAtLeast(Mutex, LK))
1326    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK,
1327                                         Exp->getExprLoc());
1328}
1329
1330/// \brief This method identifies variable dereferences and checks pt_guarded_by
1331/// and pt_guarded_var annotations. Note that we only check these annotations
1332/// at the time a pointer is dereferenced.
1333/// FIXME: We need to check for other types of pointer dereferences
1334/// (e.g. [], ->) and deal with them here.
1335/// \param Exp An expression that has been read or written.
1336void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1337  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1338  if (!UO || UO->getOpcode() != clang::UO_Deref)
1339    return;
1340  Exp = UO->getSubExpr()->IgnoreParenCasts();
1341
1342  const ValueDecl *D = getValueDecl(Exp);
1343  if(!D || !D->hasAttrs())
1344    return;
1345
1346  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
1347    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1348                                        Exp->getExprLoc());
1349
1350  const AttrVec &ArgAttrs = D->getAttrs();
1351  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1352    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1353      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1354}
1355
1356/// \brief Checks guarded_by and guarded_var attributes.
1357/// Whenever we identify an access (read or write) of a DeclRefExpr or
1358/// MemberExpr, we need to check whether there are any guarded_by or
1359/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1360void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1361  const ValueDecl *D = getValueDecl(Exp);
1362  if(!D || !D->hasAttrs())
1363    return;
1364
1365  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
1366    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1367                                        Exp->getExprLoc());
1368
1369  const AttrVec &ArgAttrs = D->getAttrs();
1370  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1371    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1372      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1373}
1374
1375/// \brief Process a function call, method call, constructor call,
1376/// or destructor call.  This involves looking at the attributes on the
1377/// corresponding function/method/constructor/destructor, issuing warnings,
1378/// and updating the locksets accordingly.
1379///
1380/// FIXME: For classes annotated with one of the guarded annotations, we need
1381/// to treat const method calls as reads and non-const method calls as writes,
1382/// and check that the appropriate locks are held. Non-const method calls with
1383/// the same signature as const method calls can be also treated as reads.
1384///
1385/// FIXME: We need to also visit CallExprs to catch/check global functions.
1386///
1387/// FIXME: Do not flag an error for member variables accessed in constructors/
1388/// destructors
1389void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
1390  AttrVec &ArgAttrs = D->getAttrs();
1391  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1392    Attr *Attr = ArgAttrs[i];
1393    switch (Attr->getKind()) {
1394      // When we encounter an exclusive lock function, we need to add the lock
1395      // to our lockset with kind exclusive.
1396      case attr::ExclusiveLockFunction: {
1397        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
1398        LSet = Analyzer->addLocksToSet(LSet, LK_Exclusive, A, Exp, D, VD);
1399        break;
1400      }
1401
1402      // When we encounter a shared lock function, we need to add the lock
1403      // to our lockset with kind shared.
1404      case attr::SharedLockFunction: {
1405        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
1406        LSet = Analyzer->addLocksToSet(LSet, LK_Shared, A, Exp, D, VD);
1407        break;
1408      }
1409
1410      // When we encounter an unlock function, we need to remove unlocked
1411      // mutexes from the lockset, and flag a warning if they are not there.
1412      case attr::UnlockFunction: {
1413        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
1414        LSet = Analyzer->removeLocksFromSet(LSet, UFAttr, Exp, D);
1415        break;
1416      }
1417
1418      case attr::ExclusiveLocksRequired: {
1419        ExclusiveLocksRequiredAttr *ELRAttr =
1420            cast<ExclusiveLocksRequiredAttr>(Attr);
1421
1422        for (ExclusiveLocksRequiredAttr::args_iterator
1423             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
1424          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1425        break;
1426      }
1427
1428      case attr::SharedLocksRequired: {
1429        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
1430
1431        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
1432             E = SLRAttr->args_end(); I != E; ++I)
1433          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1434        break;
1435      }
1436
1437      case attr::LocksExcluded: {
1438        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
1439        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
1440            E = LEAttr->args_end(); I != E; ++I) {
1441          MutexID Mutex(*I, Exp, D);
1442          if (!Mutex.isValid())
1443            MutexID::warnInvalidLock(Analyzer->Handler, *I, Exp, D);
1444          else if (locksetContains(Mutex))
1445            Analyzer->Handler.handleFunExcludesLock(D->getName(),
1446                                                    Mutex.getName(),
1447                                                    Exp->getExprLoc());
1448        }
1449        break;
1450      }
1451
1452      // Ignore other (non thread-safety) attributes
1453      default:
1454        break;
1455    }
1456  }
1457}
1458
1459
1460/// \brief For unary operations which read and write a variable, we need to
1461/// check whether we hold any required mutexes. Reads are checked in
1462/// VisitCastExpr.
1463void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1464  switch (UO->getOpcode()) {
1465    case clang::UO_PostDec:
1466    case clang::UO_PostInc:
1467    case clang::UO_PreDec:
1468    case clang::UO_PreInc: {
1469      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1470      checkAccess(SubExp, AK_Written);
1471      checkDereference(SubExp, AK_Written);
1472      break;
1473    }
1474    default:
1475      break;
1476  }
1477}
1478
1479/// For binary operations which assign to a variable (writes), we need to check
1480/// whether we hold any required mutexes.
1481/// FIXME: Deal with non-primitive types.
1482void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1483  if (!BO->isAssignmentOp())
1484    return;
1485
1486  // adjust the context
1487  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1488
1489  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1490  checkAccess(LHSExp, AK_Written);
1491  checkDereference(LHSExp, AK_Written);
1492}
1493
1494/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1495/// need to ensure we hold any required mutexes.
1496/// FIXME: Deal with non-primitive types.
1497void BuildLockset::VisitCastExpr(CastExpr *CE) {
1498  if (CE->getCastKind() != CK_LValueToRValue)
1499    return;
1500  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1501  checkAccess(SubExp, AK_Read);
1502  checkDereference(SubExp, AK_Read);
1503}
1504
1505
1506void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1507  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1508  if(!D || !D->hasAttrs())
1509    return;
1510  handleCall(Exp, D);
1511}
1512
1513void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1514  // FIXME -- only handles constructors in DeclStmt below.
1515}
1516
1517void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1518  // adjust the context
1519  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1520
1521  DeclGroupRef DGrp = S->getDeclGroup();
1522  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1523    Decl *D = *I;
1524    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1525      Expr *E = VD->getInit();
1526      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1527        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1528        if (!CtorD || !CtorD->hasAttrs())
1529          return;
1530        handleCall(CE, CtorD, VD);
1531      }
1532    }
1533  }
1534}
1535
1536
1537
1538/// \brief Compute the intersection of two locksets and issue warnings for any
1539/// locks in the symmetric difference.
1540///
1541/// This function is used at a merge point in the CFG when comparing the lockset
1542/// of each branch being merged. For example, given the following sequence:
1543/// A; if () then B; else C; D; we need to check that the lockset after B and C
1544/// are the same. In the event of a difference, we use the intersection of these
1545/// two locksets at the start of D.
1546///
1547/// \param LSet1 The first lockset.
1548/// \param LSet2 The second lockset.
1549/// \param JoinLoc The location of the join point for error reporting
1550/// \param LEK1 The error message to report if a mutex is missing from LSet1
1551/// \param LEK2 The error message to report if a mutex is missing from Lset2
1552Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset &LSet1,
1553                                               const Lockset &LSet2,
1554                                               SourceLocation JoinLoc,
1555                                               LockErrorKind LEK1,
1556                                               LockErrorKind LEK2) {
1557  Lockset Intersection = LSet1;
1558
1559  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1560    const MutexID &LSet2Mutex = I.getKey();
1561    const LockData &LDat2 = I.getData();
1562    if (const LockData *LDat1 = LSet1.lookup(LSet2Mutex)) {
1563      if (LDat1->LKind != LDat2.LKind) {
1564        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
1565                                         LDat2.AcquireLoc,
1566                                         LDat1->AcquireLoc);
1567        if (LDat1->LKind != LK_Exclusive)
1568          Intersection = LocksetFactory.add(Intersection, LSet2Mutex, LDat2);
1569      }
1570    } else {
1571      if (LDat2.UnderlyingMutex.isValid()) {
1572        if (LSet2.lookup(LDat2.UnderlyingMutex)) {
1573          // If this is a scoped lock that manages another mutex, and if the
1574          // underlying mutex is still held, then warn about the underlying
1575          // mutex.
1576          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.getName(),
1577                                            LDat2.AcquireLoc,
1578                                            JoinLoc, LEK1);
1579        }
1580      }
1581      else if (!LDat2.Managed)
1582        Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
1583                                          LDat2.AcquireLoc,
1584                                          JoinLoc, LEK1);
1585    }
1586  }
1587
1588  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1589    if (!LSet2.contains(I.getKey())) {
1590      const MutexID &Mutex = I.getKey();
1591      const LockData &LDat1 = I.getData();
1592
1593      if (LDat1.UnderlyingMutex.isValid()) {
1594        if (LSet1.lookup(LDat1.UnderlyingMutex)) {
1595          // If this is a scoped lock that manages another mutex, and if the
1596          // underlying mutex is still held, then warn about the underlying
1597          // mutex.
1598          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.getName(),
1599                                            LDat1.AcquireLoc,
1600                                            JoinLoc, LEK1);
1601        }
1602      }
1603      else if (!LDat1.Managed)
1604        Handler.handleMutexHeldEndOfScope(Mutex.getName(),
1605                                          LDat1.AcquireLoc,
1606                                          JoinLoc, LEK2);
1607      Intersection = LocksetFactory.remove(Intersection, Mutex);
1608    }
1609  }
1610  return Intersection;
1611}
1612
1613
1614/// \brief Check a function's CFG for thread-safety violations.
1615///
1616/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1617/// at the end of each block, and issue warnings for thread safety violations.
1618/// Each block in the CFG is traversed exactly once.
1619void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
1620  CFG *CFGraph = AC.getCFG();
1621  if (!CFGraph) return;
1622  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
1623
1624  // AC.dumpCFG(true);
1625
1626  if (!D)
1627    return;  // Ignore anonymous functions for now.
1628  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
1629    return;
1630  // FIXME: Do something a bit more intelligent inside constructor and
1631  // destructor code.  Constructors and destructors must assume unique access
1632  // to 'this', so checks on member variable access is disabled, but we should
1633  // still enable checks on other objects.
1634  if (isa<CXXConstructorDecl>(D))
1635    return;  // Don't check inside constructors.
1636  if (isa<CXXDestructorDecl>(D))
1637    return;  // Don't check inside destructors.
1638
1639  BlockInfo.resize(CFGraph->getNumBlockIDs(),
1640    CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
1641
1642  // We need to explore the CFG via a "topological" ordering.
1643  // That way, we will be guaranteed to have information about required
1644  // predecessor locksets when exploring a new block.
1645  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
1646  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1647
1648  // Compute SSA names for local variables
1649  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1650
1651  // Fill in source locations for all CFGBlocks.
1652  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1653
1654  // Add locks from exclusive_locks_required and shared_locks_required
1655  // to initial lockset. Also turn off checking for lock and unlock functions.
1656  // FIXME: is there a more intelligent way to check lock/unlock functions?
1657  if (!SortedGraph->empty() && D->hasAttrs()) {
1658    const CFGBlock *FirstBlock = *SortedGraph->begin();
1659    Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
1660    const AttrVec &ArgAttrs = D->getAttrs();
1661    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1662      Attr *Attr = ArgAttrs[i];
1663      SourceLocation AttrLoc = Attr->getLocation();
1664      if (SharedLocksRequiredAttr *SLRAttr
1665            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
1666        for (SharedLocksRequiredAttr::args_iterator
1667             SLRIter = SLRAttr->args_begin(),
1668             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
1669          InitialLockset = addLock(InitialLockset, *SLRIter, D,
1670                                   LockData(AttrLoc, LK_Shared), false);
1671      } else if (ExclusiveLocksRequiredAttr *ELRAttr
1672                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
1673        for (ExclusiveLocksRequiredAttr::args_iterator
1674             ELRIter = ELRAttr->args_begin(),
1675             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
1676          InitialLockset = addLock(InitialLockset, *ELRIter, D,
1677                                   LockData(AttrLoc, LK_Exclusive), false);
1678      } else if (isa<UnlockFunctionAttr>(Attr)) {
1679        // Don't try to check unlock functions for now
1680        return;
1681      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
1682        // Don't try to check lock functions for now
1683        return;
1684      } else if (isa<SharedLockFunctionAttr>(Attr)) {
1685        // Don't try to check lock functions for now
1686        return;
1687      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
1688        // Don't try to check trylock functions for now
1689        return;
1690      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
1691        // Don't try to check trylock functions for now
1692        return;
1693      }
1694    }
1695  }
1696
1697  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1698       E = SortedGraph->end(); I!= E; ++I) {
1699    const CFGBlock *CurrBlock = *I;
1700    int CurrBlockID = CurrBlock->getBlockID();
1701    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1702
1703    // Use the default initial lockset in case there are no predecessors.
1704    VisitedBlocks.insert(CurrBlock);
1705
1706    // Iterate through the predecessor blocks and warn if the lockset for all
1707    // predecessors is not the same. We take the entry lockset of the current
1708    // block to be the intersection of all previous locksets.
1709    // FIXME: By keeping the intersection, we may output more errors in future
1710    // for a lock which is not in the intersection, but was in the union. We
1711    // may want to also keep the union in future. As an example, let's say
1712    // the intersection contains Mutex L, and the union contains L and M.
1713    // Later we unlock M. At this point, we would output an error because we
1714    // never locked M; although the real error is probably that we forgot to
1715    // lock M on all code paths. Conversely, let's say that later we lock M.
1716    // In this case, we should compare against the intersection instead of the
1717    // union because the real error is probably that we forgot to unlock M on
1718    // all code paths.
1719    bool LocksetInitialized = false;
1720    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
1721    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1722         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1723
1724      // if *PI -> CurrBlock is a back edge
1725      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1726        continue;
1727
1728      // Ignore edges from blocks that can't return.
1729      if ((*PI)->hasNoReturnElement())
1730        continue;
1731
1732      // If the previous block ended in a 'continue' or 'break' statement, then
1733      // a difference in locksets is probably due to a bug in that block, rather
1734      // than in some other predecessor. In that case, keep the other
1735      // predecessor's lockset.
1736      if (const Stmt *Terminator = (*PI)->getTerminator()) {
1737        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1738          SpecialBlocks.push_back(*PI);
1739          continue;
1740        }
1741      }
1742
1743      int PrevBlockID = (*PI)->getBlockID();
1744      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1745      Lockset PrevLockset =
1746        getEdgeLockset(PrevBlockInfo->ExitSet, *PI, CurrBlock);
1747
1748      if (!LocksetInitialized) {
1749        CurrBlockInfo->EntrySet = PrevLockset;
1750        LocksetInitialized = true;
1751      } else {
1752        CurrBlockInfo->EntrySet =
1753          intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1754                           CurrBlockInfo->EntryLoc,
1755                           LEK_LockedSomePredecessors);
1756      }
1757    }
1758
1759    // Process continue and break blocks. Assume that the lockset for the
1760    // resulting block is unaffected by any discrepancies in them.
1761    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
1762         SpecialI < SpecialN; ++SpecialI) {
1763      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
1764      int PrevBlockID = PrevBlock->getBlockID();
1765      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1766
1767      if (!LocksetInitialized) {
1768        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1769        LocksetInitialized = true;
1770      } else {
1771        // Determine whether this edge is a loop terminator for diagnostic
1772        // purposes. FIXME: A 'break' statement might be a loop terminator, but
1773        // it might also be part of a switch. Also, a subsequent destructor
1774        // might add to the lockset, in which case the real issue might be a
1775        // double lock on the other path.
1776        const Stmt *Terminator = PrevBlock->getTerminator();
1777        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1778
1779        Lockset PrevLockset =
1780          getEdgeLockset(PrevBlockInfo->ExitSet, PrevBlock, CurrBlock);
1781
1782        // Do not update EntrySet.
1783        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1784                         PrevBlockInfo->ExitLoc,
1785                         IsLoop ? LEK_LockedSomeLoopIterations
1786                                : LEK_LockedSomePredecessors);
1787      }
1788    }
1789
1790    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
1791
1792    // Visit all the statements in the basic block.
1793    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1794         BE = CurrBlock->end(); BI != BE; ++BI) {
1795      switch (BI->getKind()) {
1796        case CFGElement::Statement: {
1797          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1798          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1799          break;
1800        }
1801        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
1802        case CFGElement::AutomaticObjectDtor: {
1803          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
1804          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
1805            AD->getDestructorDecl(AC.getASTContext()));
1806          if (!DD->hasAttrs())
1807            break;
1808
1809          // Create a dummy expression,
1810          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
1811          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
1812                          AD->getTriggerStmt()->getLocEnd());
1813          LocksetBuilder.handleCall(&DRE, DD);
1814          break;
1815        }
1816        default:
1817          break;
1818      }
1819    }
1820    CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
1821
1822    // For every back edge from CurrBlock (the end of the loop) to another block
1823    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1824    // the one held at the beginning of FirstLoopBlock. We can look up the
1825    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1826    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1827         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1828
1829      // if CurrBlock -> *SI is *not* a back edge
1830      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1831        continue;
1832
1833      CFGBlock *FirstLoopBlock = *SI;
1834      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
1835      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
1836      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
1837                       PreLoop->EntryLoc,
1838                       LEK_LockedSomeLoopIterations);
1839    }
1840  }
1841
1842  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
1843  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
1844
1845  // FIXME: Should we call this function for all blocks which exit the function?
1846  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
1847                   Final->ExitLoc,
1848                   LEK_LockedAtEndOfFunction,
1849                   LEK_NotLockedAtEndOfFunction);
1850}
1851
1852} // end anonymous namespace
1853
1854
1855namespace clang {
1856namespace thread_safety {
1857
1858/// \brief Check a function's CFG for thread-safety violations.
1859///
1860/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1861/// at the end of each block, and issue warnings for thread safety violations.
1862/// Each block in the CFG is traversed exactly once.
1863void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
1864                             ThreadSafetyHandler &Handler) {
1865  ThreadSafetyAnalyzer Analyzer(Handler);
1866  Analyzer.runAnalysis(AC);
1867}
1868
1869/// \brief Helper function that returns a LockKind required for the given level
1870/// of access.
1871LockKind getLockKindFromAccessKind(AccessKind AK) {
1872  switch (AK) {
1873    case AK_Read :
1874      return LK_Shared;
1875    case AK_Written :
1876      return LK_Exclusive;
1877  }
1878  llvm_unreachable("Unknown AccessKind");
1879}
1880
1881}} // end namespace clang::thread_safety
1882