ThreadSafety.cpp revision df49782c54802ca1a4c1d36d66186aa039f32aec
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include <algorithm>
36#include <vector>
37
38using namespace clang;
39using namespace thread_safety;
40
41// Key method definition
42ThreadSafetyHandler::~ThreadSafetyHandler() {}
43
44namespace {
45
46/// \brief A MutexID object uniquely identifies a particular mutex, and
47/// is built from an Expr* (i.e. calling a lock function).
48///
49/// Thread-safety analysis works by comparing lock expressions.  Within the
50/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
51/// a particular mutex object at run-time.  Subsequent occurrences of the same
52/// expression (where "same" means syntactic equality) will refer to the same
53/// run-time object if three conditions hold:
54/// (1) Local variables in the expression, such as "x" have not changed.
55/// (2) Values on the heap that affect the expression have not changed.
56/// (3) The expression involves only pure function calls.
57///
58/// The current implementation assumes, but does not verify, that multiple uses
59/// of the same lock expression satisfies these criteria.
60///
61/// Clang introduces an additional wrinkle, which is that it is difficult to
62/// derive canonical expressions, or compare expressions directly for equality.
63/// Thus, we identify a mutex not by an Expr, but by the set of named
64/// declarations that are referenced by the Expr.  In other words,
65/// x->foo->bar.mu will be a four element vector with the Decls for
66/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
67/// for all practical purposes.
68///
69/// Note we will need to perform substitution on "this" and function parameter
70/// names when constructing a lock expression.
71///
72/// For example:
73/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
74/// void myFunc(C *X) { ... X->lock() ... }
75/// The original expression for the mutex acquired by myFunc is "this->Mu", but
76/// "X" is substituted for "this" so we get X->Mu();
77///
78/// For another example:
79/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
80/// MyList *MyL;
81/// foo(MyL);  // requires lock MyL->Mu to be held
82class MutexID {
83  SmallVector<NamedDecl*, 2> DeclSeq;
84
85  /// Build a Decl sequence representing the lock from the given expression.
86  /// Recursive function that terminates on DeclRefExpr.
87  /// Note: this function merely creates a MutexID; it does not check to
88  /// ensure that the original expression is a valid mutex expression.
89  void buildMutexID(Expr *Exp, Expr *Parent, int NumArgs,
90                    const NamedDecl **FunArgDecls, Expr **FunArgs) {
91    if (!Exp) {
92      DeclSeq.clear();
93      return;
94    }
95
96    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
97      if (FunArgDecls) {
98        // Substitute call arguments for references to function parameters
99        for (int i = 0; i < NumArgs; ++i) {
100          if (DRE->getDecl() == FunArgDecls[i]) {
101            buildMutexID(FunArgs[i], 0, 0, 0, 0);
102            return;
103          }
104        }
105      }
106      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
107      DeclSeq.push_back(ND);
108    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
109      NamedDecl *ND = ME->getMemberDecl();
110      DeclSeq.push_back(ND);
111      buildMutexID(ME->getBase(), Parent, NumArgs, FunArgDecls, FunArgs);
112    } else if (isa<CXXThisExpr>(Exp)) {
113      if (Parent)
114        buildMutexID(Parent, 0, 0, 0, 0);
115      else
116        return;  // mutexID is still valid in this case
117    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
118      buildMutexID(UOE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
119    else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
120      buildMutexID(CE->getSubExpr(), Parent, NumArgs, FunArgDecls, FunArgs);
121    else
122      DeclSeq.clear(); // Mark as invalid lock expression.
123  }
124
125  /// \brief Construct a MutexID from an expression.
126  /// \param MutexExp The original mutex expression within an attribute
127  /// \param DeclExp An expression involving the Decl on which the attribute
128  ///        occurs.
129  /// \param D  The declaration to which the lock/unlock attribute is attached.
130  void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
131    Expr *Parent = 0;
132    unsigned NumArgs = 0;
133    Expr **FunArgs = 0;
134    SmallVector<const NamedDecl*, 8> FunArgDecls;
135
136    // If we are processing a raw attribute expression, with no substitutions.
137    if (DeclExp == 0) {
138      buildMutexID(MutexExp, 0, 0, 0, 0);
139      return;
140    }
141
142    // Examine DeclExp to find Parent and FunArgs, which are used to substitute
143    // for formal parameters when we call buildMutexID later.
144    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
145      Parent = ME->getBase();
146    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
147      Parent = CE->getImplicitObjectArgument();
148      NumArgs = CE->getNumArgs();
149      FunArgs = CE->getArgs();
150    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
151      NumArgs = CE->getNumArgs();
152      FunArgs = CE->getArgs();
153    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
154      Parent = 0;  // FIXME -- get the parent from DeclStmt
155      NumArgs = CE->getNumArgs();
156      FunArgs = CE->getArgs();
157    } else if (D && isa<CXXDestructorDecl>(D)) {
158      // There's no such thing as a "destructor call" in the AST.
159      Parent = DeclExp;
160    }
161
162    // If the attribute has no arguments, then assume the argument is "this".
163    if (MutexExp == 0) {
164      buildMutexID(Parent, 0, 0, 0, 0);
165      return;
166    }
167
168    // FIXME: handle default arguments
169    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
170      for (unsigned i = 0, ni = FD->getNumParams(); i < ni && i < NumArgs; ++i) {
171        FunArgDecls.push_back(FD->getParamDecl(i));
172      }
173    }
174    buildMutexID(MutexExp, Parent, NumArgs, &FunArgDecls.front(), FunArgs);
175  }
176
177public:
178  explicit MutexID(clang::Decl::EmptyShell e) {
179    DeclSeq.clear();
180  }
181
182  /// \param MutexExp The original mutex expression within an attribute
183  /// \param DeclExp An expression involving the Decl on which the attribute
184  ///        occurs.
185  /// \param D  The declaration to which the lock/unlock attribute is attached.
186  /// Caller must check isValid() after construction.
187  MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
188    buildMutexIDFromExp(MutexExp, DeclExp, D);
189  }
190
191  /// Return true if this is a valid decl sequence.
192  /// Caller must call this by hand after construction to handle errors.
193  bool isValid() const {
194    return !DeclSeq.empty();
195  }
196
197  /// Issue a warning about an invalid lock expression
198  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
199                              Expr *DeclExp, const NamedDecl* D) {
200    SourceLocation Loc;
201    if (DeclExp)
202      Loc = DeclExp->getExprLoc();
203
204    // FIXME: add a note about the attribute location in MutexExp or D
205    if (Loc.isValid())
206      Handler.handleInvalidLockExp(Loc);
207  }
208
209  bool operator==(const MutexID &other) const {
210    return DeclSeq == other.DeclSeq;
211  }
212
213  bool operator!=(const MutexID &other) const {
214    return !(*this == other);
215  }
216
217  // SmallVector overloads Operator< to do lexicographic ordering. Note that
218  // we use pointer equality (and <) to compare NamedDecls. This means the order
219  // of MutexIDs in a lockset is nondeterministic. In order to output
220  // diagnostics in a deterministic ordering, we must order all diagnostics to
221  // output by SourceLocation when iterating through this lockset.
222  bool operator<(const MutexID &other) const {
223    return DeclSeq < other.DeclSeq;
224  }
225
226  /// \brief Returns the name of the first Decl in the list for a given MutexID;
227  /// e.g. the lock expression foo.bar() has name "bar".
228  /// The caret will point unambiguously to the lock expression, so using this
229  /// name in diagnostics is a way to get simple, and consistent, mutex names.
230  /// We do not want to output the entire expression text for security reasons.
231  StringRef getName() const {
232    assert(isValid());
233    return DeclSeq.front()->getName();
234  }
235
236  void Profile(llvm::FoldingSetNodeID &ID) const {
237    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
238         E = DeclSeq.end(); I != E; ++I) {
239      ID.AddPointer(*I);
240    }
241  }
242};
243
244
245/// \brief This is a helper class that stores info about the most recent
246/// accquire of a Lock.
247///
248/// The main body of the analysis maps MutexIDs to LockDatas.
249struct LockData {
250  SourceLocation AcquireLoc;
251
252  /// \brief LKind stores whether a lock is held shared or exclusively.
253  /// Note that this analysis does not currently support either re-entrant
254  /// locking or lock "upgrading" and "downgrading" between exclusive and
255  /// shared.
256  ///
257  /// FIXME: add support for re-entrant locking and lock up/downgrading
258  LockKind LKind;
259  MutexID UnderlyingMutex;  // for ScopedLockable objects
260
261  LockData(SourceLocation AcquireLoc, LockKind LKind)
262    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
263  {}
264
265  LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
266    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
267
268  bool operator==(const LockData &other) const {
269    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
270  }
271
272  bool operator!=(const LockData &other) const {
273    return !(*this == other);
274  }
275
276  void Profile(llvm::FoldingSetNodeID &ID) const {
277    ID.AddInteger(AcquireLoc.getRawEncoding());
278    ID.AddInteger(LKind);
279  }
280};
281
282
283/// A Lockset maps each MutexID (defined above) to information about how it has
284/// been locked.
285typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
286
287/// \brief We use this class to visit different types of expressions in
288/// CFGBlocks, and build up the lockset.
289/// An expression may cause us to add or remove locks from the lockset, or else
290/// output error messages related to missing locks.
291/// FIXME: In future, we may be able to not inherit from a visitor.
292class BuildLockset : public StmtVisitor<BuildLockset> {
293  friend class ThreadSafetyAnalyzer;
294
295  ThreadSafetyHandler &Handler;
296  Lockset LSet;
297  Lockset::Factory &LocksetFactory;
298
299  // Helper functions
300  void addLock(const MutexID &Mutex, const LockData &LDat);
301  void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
302
303  template <class AttrType>
304  void addLocksToSet(LockKind LK, AttrType *Attr,
305                     Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
306  void removeLocksFromSet(UnlockFunctionAttr *Attr,
307                          Expr *Exp, NamedDecl* FunDecl);
308
309  const ValueDecl *getValueDecl(Expr *Exp);
310  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
311                           Expr *MutexExp, ProtectedOperationKind POK);
312  void checkAccess(Expr *Exp, AccessKind AK);
313  void checkDereference(Expr *Exp, AccessKind AK);
314  void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
315
316  /// \brief Returns true if the lockset contains a lock, regardless of whether
317  /// the lock is held exclusively or shared.
318  bool locksetContains(const MutexID &Lock) const {
319    return LSet.lookup(Lock);
320  }
321
322  /// \brief Returns true if the lockset contains a lock with the passed in
323  /// locktype.
324  bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
325    const LockData *LockHeld = LSet.lookup(Lock);
326    return (LockHeld && KindRequested == LockHeld->LKind);
327  }
328
329  /// \brief Returns true if the lockset contains a lock with at least the
330  /// passed in locktype. So for example, if we pass in LK_Shared, this function
331  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
332  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
333  bool locksetContainsAtLeast(const MutexID &Lock,
334                              LockKind KindRequested) const {
335    switch (KindRequested) {
336      case LK_Shared:
337        return locksetContains(Lock);
338      case LK_Exclusive:
339        return locksetContains(Lock, KindRequested);
340    }
341    llvm_unreachable("Unknown LockKind");
342  }
343
344public:
345  BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
346    : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
347      LocksetFactory(F) {}
348
349  Lockset getLockset() {
350    return LSet;
351  }
352
353  void VisitUnaryOperator(UnaryOperator *UO);
354  void VisitBinaryOperator(BinaryOperator *BO);
355  void VisitCastExpr(CastExpr *CE);
356  void VisitCallExpr(CallExpr *Exp);
357  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
358  void VisitDeclStmt(DeclStmt *S);
359};
360
361/// \brief Add a new lock to the lockset, warning if the lock is already there.
362/// \param Mutex -- the Mutex expression for the lock
363/// \param LDat  -- the LockData for the lock
364void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
365  // FIXME: deal with acquired before/after annotations.
366  // FIXME: Don't always warn when we have support for reentrant locks.
367  if (locksetContains(Mutex))
368    Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
369  else
370    LSet = LocksetFactory.add(LSet, Mutex, LDat);
371}
372
373/// \brief Remove a lock from the lockset, warning if the lock is not there.
374/// \param LockExp The lock expression corresponding to the lock to be removed
375/// \param UnlockLoc The source location of the unlock (only used in error msg)
376void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
377  const LockData *LDat = LSet.lookup(Mutex);
378  if (!LDat)
379    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
380  else {
381    // For scoped-lockable vars, remove the mutex associated with this var.
382    if (LDat->UnderlyingMutex.isValid())
383      removeLock(LDat->UnderlyingMutex, UnlockLoc);
384    LSet = LocksetFactory.remove(LSet, Mutex);
385  }
386}
387
388/// \brief This function, parameterized by an attribute type, is used to add a
389/// set of locks specified as attribute arguments to the lockset.
390template <typename AttrType>
391void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
392                                 Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
393  typedef typename AttrType::args_iterator iterator_type;
394
395  SourceLocation ExpLocation = Exp->getExprLoc();
396
397  // Figure out if we're calling the constructor of scoped lockable class
398  bool isScopedVar = false;
399  if (VD) {
400    if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
401      CXXRecordDecl* PD = CD->getParent();
402      if (PD && PD->getAttr<ScopedLockableAttr>())
403        isScopedVar = true;
404    }
405  }
406
407  if (Attr->args_size() == 0) {
408    // The mutex held is the "this" object.
409    MutexID Mutex(0, Exp, FunDecl);
410    if (!Mutex.isValid())
411      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
412    else
413      addLock(Mutex, LockData(ExpLocation, LK));
414    return;
415  }
416
417  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
418    MutexID Mutex(*I, Exp, FunDecl);
419    if (!Mutex.isValid())
420      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
421    else {
422      addLock(Mutex, LockData(ExpLocation, LK));
423      if (isScopedVar) {
424        // For scoped lockable vars, map this var to its underlying mutex.
425        DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
426        MutexID SMutex(&DRE, 0, 0);
427        addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
428      }
429    }
430  }
431}
432
433/// \brief This function removes a set of locks specified as attribute
434/// arguments from the lockset.
435void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
436                                      Expr *Exp, NamedDecl* FunDecl) {
437  SourceLocation ExpLocation;
438  if (Exp) ExpLocation = Exp->getExprLoc();
439
440  if (Attr->args_size() == 0) {
441    // The mutex held is the "this" object.
442    MutexID Mu(0, Exp, FunDecl);
443    if (!Mu.isValid())
444      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
445    else
446      removeLock(Mu, ExpLocation);
447    return;
448  }
449
450  for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
451       E = Attr->args_end(); I != E; ++I) {
452    MutexID Mutex(*I, Exp, FunDecl);
453    if (!Mutex.isValid())
454      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
455    else
456      removeLock(Mutex, ExpLocation);
457  }
458}
459
460/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
461const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
462  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
463    return DR->getDecl();
464
465  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
466    return ME->getMemberDecl();
467
468  return 0;
469}
470
471/// \brief Warn if the LSet does not contain a lock sufficient to protect access
472/// of at least the passed in AccessKind.
473void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
474                                      AccessKind AK, Expr *MutexExp,
475                                      ProtectedOperationKind POK) {
476  LockKind LK = getLockKindFromAccessKind(AK);
477
478  MutexID Mutex(MutexExp, Exp, D);
479  if (!Mutex.isValid())
480    MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
481  else if (!locksetContainsAtLeast(Mutex, LK))
482    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
483}
484
485/// \brief This method identifies variable dereferences and checks pt_guarded_by
486/// and pt_guarded_var annotations. Note that we only check these annotations
487/// at the time a pointer is dereferenced.
488/// FIXME: We need to check for other types of pointer dereferences
489/// (e.g. [], ->) and deal with them here.
490/// \param Exp An expression that has been read or written.
491void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
492  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
493  if (!UO || UO->getOpcode() != clang::UO_Deref)
494    return;
495  Exp = UO->getSubExpr()->IgnoreParenCasts();
496
497  const ValueDecl *D = getValueDecl(Exp);
498  if(!D || !D->hasAttrs())
499    return;
500
501  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
502    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
503
504  const AttrVec &ArgAttrs = D->getAttrs();
505  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
506    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
507      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
508}
509
510/// \brief Checks guarded_by and guarded_var attributes.
511/// Whenever we identify an access (read or write) of a DeclRefExpr or
512/// MemberExpr, we need to check whether there are any guarded_by or
513/// guarded_var attributes, and make sure we hold the appropriate mutexes.
514void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
515  const ValueDecl *D = getValueDecl(Exp);
516  if(!D || !D->hasAttrs())
517    return;
518
519  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
520    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
521
522  const AttrVec &ArgAttrs = D->getAttrs();
523  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
524    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
525      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
526}
527
528/// \brief Process a function call, method call, constructor call,
529/// or destructor call.  This involves looking at the attributes on the
530/// corresponding function/method/constructor/destructor, issuing warnings,
531/// and updating the locksets accordingly.
532///
533/// FIXME: For classes annotated with one of the guarded annotations, we need
534/// to treat const method calls as reads and non-const method calls as writes,
535/// and check that the appropriate locks are held. Non-const method calls with
536/// the same signature as const method calls can be also treated as reads.
537///
538/// FIXME: We need to also visit CallExprs to catch/check global functions.
539///
540/// FIXME: Do not flag an error for member variables accessed in constructors/
541/// destructors
542void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
543  AttrVec &ArgAttrs = D->getAttrs();
544  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
545    Attr *Attr = ArgAttrs[i];
546    switch (Attr->getKind()) {
547      // When we encounter an exclusive lock function, we need to add the lock
548      // to our lockset with kind exclusive.
549      case attr::ExclusiveLockFunction: {
550        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
551        addLocksToSet(LK_Exclusive, A, Exp, D, VD);
552        break;
553      }
554
555      // When we encounter a shared lock function, we need to add the lock
556      // to our lockset with kind shared.
557      case attr::SharedLockFunction: {
558        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
559        addLocksToSet(LK_Shared, A, Exp, D, VD);
560        break;
561      }
562
563      // When we encounter an unlock function, we need to remove unlocked
564      // mutexes from the lockset, and flag a warning if they are not there.
565      case attr::UnlockFunction: {
566        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
567        removeLocksFromSet(UFAttr, Exp, D);
568        break;
569      }
570
571      case attr::ExclusiveLocksRequired: {
572        ExclusiveLocksRequiredAttr *ELRAttr =
573            cast<ExclusiveLocksRequiredAttr>(Attr);
574
575        for (ExclusiveLocksRequiredAttr::args_iterator
576             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
577          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
578        break;
579      }
580
581      case attr::SharedLocksRequired: {
582        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
583
584        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
585             E = SLRAttr->args_end(); I != E; ++I)
586          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
587        break;
588      }
589
590      case attr::LocksExcluded: {
591        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
592        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
593            E = LEAttr->args_end(); I != E; ++I) {
594          MutexID Mutex(*I, Exp, D);
595          if (!Mutex.isValid())
596            MutexID::warnInvalidLock(Handler, *I, Exp, D);
597          else if (locksetContains(Mutex))
598            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
599                                          Exp->getExprLoc());
600        }
601        break;
602      }
603
604      // Ignore other (non thread-safety) attributes
605      default:
606        break;
607    }
608  }
609}
610
611/// \brief For unary operations which read and write a variable, we need to
612/// check whether we hold any required mutexes. Reads are checked in
613/// VisitCastExpr.
614void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
615  switch (UO->getOpcode()) {
616    case clang::UO_PostDec:
617    case clang::UO_PostInc:
618    case clang::UO_PreDec:
619    case clang::UO_PreInc: {
620      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
621      checkAccess(SubExp, AK_Written);
622      checkDereference(SubExp, AK_Written);
623      break;
624    }
625    default:
626      break;
627  }
628}
629
630/// For binary operations which assign to a variable (writes), we need to check
631/// whether we hold any required mutexes.
632/// FIXME: Deal with non-primitive types.
633void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
634  if (!BO->isAssignmentOp())
635    return;
636  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
637  checkAccess(LHSExp, AK_Written);
638  checkDereference(LHSExp, AK_Written);
639}
640
641/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
642/// need to ensure we hold any required mutexes.
643/// FIXME: Deal with non-primitive types.
644void BuildLockset::VisitCastExpr(CastExpr *CE) {
645  if (CE->getCastKind() != CK_LValueToRValue)
646    return;
647  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
648  checkAccess(SubExp, AK_Read);
649  checkDereference(SubExp, AK_Read);
650}
651
652
653void BuildLockset::VisitCallExpr(CallExpr *Exp) {
654  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
655  if(!D || !D->hasAttrs())
656    return;
657  handleCall(Exp, D);
658}
659
660void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
661  // FIXME -- only handles constructors in DeclStmt below.
662}
663
664void BuildLockset::VisitDeclStmt(DeclStmt *S) {
665  DeclGroupRef DGrp = S->getDeclGroup();
666  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
667    Decl *D = *I;
668    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
669      Expr *E = VD->getInit();
670      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
671        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
672        if (!CtorD || !CtorD->hasAttrs())
673          return;
674        handleCall(CE, CtorD, VD);
675      }
676    }
677  }
678}
679
680
681/// \brief Class which implements the core thread safety analysis routines.
682class ThreadSafetyAnalyzer {
683  ThreadSafetyHandler &Handler;
684  Lockset::Factory    LocksetFactory;
685
686public:
687  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
688
689  Lockset intersectAndWarn(const Lockset LSet1, const Lockset LSet2,
690                           LockErrorKind LEK);
691
692  Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
693                  LockKind LK, SourceLocation Loc);
694
695  void runAnalysis(AnalysisDeclContext &AC);
696};
697
698/// \brief Compute the intersection of two locksets and issue warnings for any
699/// locks in the symmetric difference.
700///
701/// This function is used at a merge point in the CFG when comparing the lockset
702/// of each branch being merged. For example, given the following sequence:
703/// A; if () then B; else C; D; we need to check that the lockset after B and C
704/// are the same. In the event of a difference, we use the intersection of these
705/// two locksets at the start of D.
706Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset LSet1,
707                                               const Lockset LSet2,
708                                               LockErrorKind LEK) {
709  Lockset Intersection = LSet1;
710  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
711    const MutexID &LSet2Mutex = I.getKey();
712    const LockData &LSet2LockData = I.getData();
713    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
714      if (LD->LKind != LSet2LockData.LKind) {
715        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
716                                         LSet2LockData.AcquireLoc,
717                                         LD->AcquireLoc);
718        if (LD->LKind != LK_Exclusive)
719          Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
720                                            LSet2LockData);
721      }
722    } else {
723      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
724                                        LSet2LockData.AcquireLoc, LEK);
725    }
726  }
727
728  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
729    if (!LSet2.contains(I.getKey())) {
730      const MutexID &Mutex = I.getKey();
731      const LockData &MissingLock = I.getData();
732      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
733                                        MissingLock.AcquireLoc, LEK);
734      Intersection = LocksetFactory.remove(Intersection, Mutex);
735    }
736  }
737  return Intersection;
738}
739
740Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
741                                      const NamedDecl *D,
742                                      LockKind LK, SourceLocation Loc) {
743  MutexID Mutex(MutexExp, 0, D);
744  if (!Mutex.isValid()) {
745    MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
746    return LSet;
747  }
748  LockData NewLock(Loc, LK);
749  return LocksetFactory.add(LSet, Mutex, NewLock);
750}
751
752/// \brief Check a function's CFG for thread-safety violations.
753///
754/// We traverse the blocks in the CFG, compute the set of mutexes that are held
755/// at the end of each block, and issue warnings for thread safety violations.
756/// Each block in the CFG is traversed exactly once.
757void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
758  CFG *CFGraph = AC.getCFG();
759  if (!CFGraph) return;
760  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
761
762  if (!D)
763    return;  // Ignore anonymous functions for now.
764  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
765    return;
766
767  // FIXME: Switch to SmallVector? Otherwise improve performance impact?
768  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
769                                     LocksetFactory.getEmptyMap());
770  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
771                                    LocksetFactory.getEmptyMap());
772
773  // We need to explore the CFG via a "topological" ordering.
774  // That way, we will be guaranteed to have information about required
775  // predecessor locksets when exploring a new block.
776  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
777  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
778
779  // Add locks from exclusive_locks_required and shared_locks_required
780  // to initial lockset.
781  if (!SortedGraph->empty() && D->hasAttrs()) {
782    const CFGBlock *FirstBlock = *SortedGraph->begin();
783    Lockset &InitialLockset = EntryLocksets[FirstBlock->getBlockID()];
784    const AttrVec &ArgAttrs = D->getAttrs();
785    for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
786      Attr *Attr = ArgAttrs[i];
787      SourceLocation AttrLoc = Attr->getLocation();
788      if (SharedLocksRequiredAttr *SLRAttr
789            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
790        for (SharedLocksRequiredAttr::args_iterator
791            SLRIter = SLRAttr->args_begin(),
792            SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
793          InitialLockset = addLock(InitialLockset,
794                                   *SLRIter, D, LK_Shared,
795                                   AttrLoc);
796      } else if (ExclusiveLocksRequiredAttr *ELRAttr
797                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
798        for (ExclusiveLocksRequiredAttr::args_iterator
799            ELRIter = ELRAttr->args_begin(),
800            ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
801          InitialLockset = addLock(InitialLockset,
802                                   *ELRIter, D, LK_Exclusive,
803                                   AttrLoc);
804      }
805    }
806  }
807
808  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
809       E = SortedGraph->end(); I!= E; ++I) {
810    const CFGBlock *CurrBlock = *I;
811    int CurrBlockID = CurrBlock->getBlockID();
812
813    VisitedBlocks.insert(CurrBlock);
814
815    // Use the default initial lockset in case there are no predecessors.
816    Lockset &Entryset = EntryLocksets[CurrBlockID];
817    Lockset &Exitset = ExitLocksets[CurrBlockID];
818
819    // Iterate through the predecessor blocks and warn if the lockset for all
820    // predecessors is not the same. We take the entry lockset of the current
821    // block to be the intersection of all previous locksets.
822    // FIXME: By keeping the intersection, we may output more errors in future
823    // for a lock which is not in the intersection, but was in the union. We
824    // may want to also keep the union in future. As an example, let's say
825    // the intersection contains Mutex L, and the union contains L and M.
826    // Later we unlock M. At this point, we would output an error because we
827    // never locked M; although the real error is probably that we forgot to
828    // lock M on all code paths. Conversely, let's say that later we lock M.
829    // In this case, we should compare against the intersection instead of the
830    // union because the real error is probably that we forgot to unlock M on
831    // all code paths.
832    bool LocksetInitialized = false;
833    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
834         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
835
836      // if *PI -> CurrBlock is a back edge
837      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
838        continue;
839
840      int PrevBlockID = (*PI)->getBlockID();
841      if (!LocksetInitialized) {
842        Entryset = ExitLocksets[PrevBlockID];
843        LocksetInitialized = true;
844      } else {
845        Entryset = intersectAndWarn(Entryset, ExitLocksets[PrevBlockID],
846                                    LEK_LockedSomePredecessors);
847      }
848    }
849
850    BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
851    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
852         BE = CurrBlock->end(); BI != BE; ++BI) {
853      switch (BI->getKind()) {
854        case CFGElement::Statement: {
855          const CFGStmt *CS = cast<CFGStmt>(&*BI);
856          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
857          break;
858        }
859        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
860        case CFGElement::AutomaticObjectDtor: {
861          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
862          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
863            AD->getDestructorDecl(AC.getASTContext()));
864          if (!DD->hasAttrs())
865            break;
866
867          // Create a dummy expression,
868          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
869          DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
870                          AD->getTriggerStmt()->getLocEnd());
871          LocksetBuilder.handleCall(&DRE, DD);
872          break;
873        }
874        default:
875          break;
876      }
877    }
878    Exitset = LocksetBuilder.getLockset();
879
880    // For every back edge from CurrBlock (the end of the loop) to another block
881    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
882    // the one held at the beginning of FirstLoopBlock. We can look up the
883    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
884    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
885         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
886
887      // if CurrBlock -> *SI is *not* a back edge
888      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
889        continue;
890
891      CFGBlock *FirstLoopBlock = *SI;
892      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
893      Lockset LoopEnd = ExitLocksets[CurrBlockID];
894      intersectAndWarn(LoopEnd, PreLoop, LEK_LockedSomeLoopIterations);
895    }
896  }
897
898  Lockset InitialLockset = EntryLocksets[CFGraph->getEntry().getBlockID()];
899  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
900
901  // FIXME: Should we call this function for all blocks which exit the function?
902  intersectAndWarn(InitialLockset, FinalLockset, LEK_LockedAtEndOfFunction);
903}
904
905} // end anonymous namespace
906
907
908namespace clang {
909namespace thread_safety {
910
911/// \brief Check a function's CFG for thread-safety violations.
912///
913/// We traverse the blocks in the CFG, compute the set of mutexes that are held
914/// at the end of each block, and issue warnings for thread safety violations.
915/// Each block in the CFG is traversed exactly once.
916void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
917                             ThreadSafetyHandler &Handler) {
918  ThreadSafetyAnalyzer Analyzer(Handler);
919  Analyzer.runAnalysis(AC);
920}
921
922/// \brief Helper function that returns a LockKind required for the given level
923/// of access.
924LockKind getLockKindFromAccessKind(AccessKind AK) {
925  switch (AK) {
926    case AK_Read :
927      return LK_Shared;
928    case AK_Written :
929      return LK_Exclusive;
930  }
931  llvm_unreachable("Unknown AccessKind");
932}
933
934}} // end namespace clang::thread_safety
935