ThreadSafety.cpp revision ee2f032fe0fc86762608458c2a167ae504579a64
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/ImmutableMap.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38#include <utility>
39#include <vector>
40
41using namespace clang;
42using namespace thread_safety;
43
44// Key method definition
45ThreadSafetyHandler::~ThreadSafetyHandler() {}
46
47namespace {
48
49/// SExpr implements a simple expression language that is used to store,
50/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
51/// does not capture surface syntax, and it does not distinguish between
52/// C++ concepts, like pointers and references, that have no real semantic
53/// differences.  This simplicity allows SExprs to be meaningfully compared,
54/// e.g.
55///        (x)          =  x
56///        (*this).foo  =  this->foo
57///        *&a          =  a
58///
59/// Thread-safety analysis works by comparing lock expressions.  Within the
60/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
61/// a particular mutex object at run-time.  Subsequent occurrences of the same
62/// expression (where "same" means syntactic equality) will refer to the same
63/// run-time object if three conditions hold:
64/// (1) Local variables in the expression, such as "x" have not changed.
65/// (2) Values on the heap that affect the expression have not changed.
66/// (3) The expression involves only pure function calls.
67///
68/// The current implementation assumes, but does not verify, that multiple uses
69/// of the same lock expression satisfies these criteria.
70class SExpr {
71private:
72  enum ExprOp {
73    EOP_Nop,      //< No-op
74    EOP_Wildcard, //< Matches anything.
75    EOP_This,     //< This keyword.
76    EOP_NVar,     //< Named variable.
77    EOP_LVar,     //< Local variable.
78    EOP_Dot,      //< Field access
79    EOP_Call,     //< Function call
80    EOP_MCall,    //< Method call
81    EOP_Index,    //< Array index
82    EOP_Unary,    //< Unary operation
83    EOP_Binary,   //< Binary operation
84    EOP_Unknown   //< Catchall for everything else
85  };
86
87
88  class SExprNode {
89   private:
90    unsigned char  Op;     //< Opcode of the root node
91    unsigned char  Flags;  //< Additional opcode-specific data
92    unsigned short Sz;     //< Number of child nodes
93    const void*    Data;   //< Additional opcode-specific data
94
95   public:
96    SExprNode(ExprOp O, unsigned F, const void* D)
97      : Op(static_cast<unsigned char>(O)),
98        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
99    { }
100
101    unsigned size() const        { return Sz; }
102    void     setSize(unsigned S) { Sz = S;    }
103
104    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
105
106    const NamedDecl* getNamedDecl() const {
107      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
108      return reinterpret_cast<const NamedDecl*>(Data);
109    }
110
111    const NamedDecl* getFunctionDecl() const {
112      assert(Op == EOP_Call || Op == EOP_MCall);
113      return reinterpret_cast<const NamedDecl*>(Data);
114    }
115
116    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
117    void setArrow(bool A) { Flags = A ? 1 : 0; }
118
119    unsigned arity() const {
120      switch (Op) {
121        case EOP_Nop:      return 0;
122        case EOP_Wildcard: return 0;
123        case EOP_NVar:     return 0;
124        case EOP_LVar:     return 0;
125        case EOP_This:     return 0;
126        case EOP_Dot:      return 1;
127        case EOP_Call:     return Flags+1;  // First arg is function.
128        case EOP_MCall:    return Flags+1;  // First arg is implicit obj.
129        case EOP_Index:    return 2;
130        case EOP_Unary:    return 1;
131        case EOP_Binary:   return 2;
132        case EOP_Unknown:  return Flags;
133      }
134      return 0;
135    }
136
137    bool operator==(const SExprNode& Other) const {
138      // Ignore flags and size -- they don't matter.
139      return (Op == Other.Op &&
140              Data == Other.Data);
141    }
142
143    bool operator!=(const SExprNode& Other) const {
144      return !(*this == Other);
145    }
146
147    bool matches(const SExprNode& Other) const {
148      return (*this == Other) ||
149             (Op == EOP_Wildcard) ||
150             (Other.Op == EOP_Wildcard);
151    }
152  };
153
154
155  /// \brief Encapsulates the lexical context of a function call.  The lexical
156  /// context includes the arguments to the call, including the implicit object
157  /// argument.  When an attribute containing a mutex expression is attached to
158  /// a method, the expression may refer to formal parameters of the method.
159  /// Actual arguments must be substituted for formal parameters to derive
160  /// the appropriate mutex expression in the lexical context where the function
161  /// is called.  PrevCtx holds the context in which the arguments themselves
162  /// should be evaluated; multiple calling contexts can be chained together
163  /// by the lock_returned attribute.
164  struct CallingContext {
165    const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
166    Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
167    bool             SelfArrow;  // is Self referred to with -> or .?
168    unsigned         NumArgs;    // Number of funArgs
169    Expr**           FunArgs;    // Function arguments
170    CallingContext*  PrevCtx;    // The previous context; or 0 if none.
171
172    CallingContext(const NamedDecl *D = 0, Expr *S = 0,
173                   unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
174      : AttrDecl(D), SelfArg(S), SelfArrow(false),
175        NumArgs(N), FunArgs(A), PrevCtx(P)
176    { }
177  };
178
179  typedef SmallVector<SExprNode, 4> NodeVector;
180
181private:
182  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
183  // the list to be traversed as a tree.
184  NodeVector NodeVec;
185
186private:
187  unsigned makeNop() {
188    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
189    return NodeVec.size()-1;
190  }
191
192  unsigned makeWildcard() {
193    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
194    return NodeVec.size()-1;
195  }
196
197  unsigned makeNamedVar(const NamedDecl *D) {
198    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
199    return NodeVec.size()-1;
200  }
201
202  unsigned makeLocalVar(const NamedDecl *D) {
203    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
204    return NodeVec.size()-1;
205  }
206
207  unsigned makeThis() {
208    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
209    return NodeVec.size()-1;
210  }
211
212  unsigned makeDot(const NamedDecl *D, bool Arrow) {
213    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
214    return NodeVec.size()-1;
215  }
216
217  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
218    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
219    return NodeVec.size()-1;
220  }
221
222  unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
223    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
224    return NodeVec.size()-1;
225  }
226
227  unsigned makeIndex() {
228    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
229    return NodeVec.size()-1;
230  }
231
232  unsigned makeUnary() {
233    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
234    return NodeVec.size()-1;
235  }
236
237  unsigned makeBinary() {
238    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
239    return NodeVec.size()-1;
240  }
241
242  unsigned makeUnknown(unsigned Arity) {
243    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
244    return NodeVec.size()-1;
245  }
246
247  /// Build an SExpr from the given C++ expression.
248  /// Recursive function that terminates on DeclRefExpr.
249  /// Note: this function merely creates a SExpr; it does not check to
250  /// ensure that the original expression is a valid mutex expression.
251  ///
252  /// NDeref returns the number of Derefence and AddressOf operations
253  /// preceeding the Expr; this is used to decide whether to pretty-print
254  /// SExprs with . or ->.
255  unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
256    if (!Exp)
257      return 0;
258
259    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
260      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
261      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
262      if (PV) {
263        FunctionDecl *FD =
264          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
265        unsigned i = PV->getFunctionScopeIndex();
266
267        if (CallCtx && CallCtx->FunArgs &&
268            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
269          // Substitute call arguments for references to function parameters
270          assert(i < CallCtx->NumArgs);
271          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
272        }
273        // Map the param back to the param of the original function declaration.
274        makeNamedVar(FD->getParamDecl(i));
275        return 1;
276      }
277      // Not a function parameter -- just store the reference.
278      makeNamedVar(ND);
279      return 1;
280    } else if (isa<CXXThisExpr>(Exp)) {
281      // Substitute parent for 'this'
282      if (CallCtx && CallCtx->SelfArg) {
283        if (!CallCtx->SelfArrow && NDeref)
284          // 'this' is a pointer, but self is not, so need to take address.
285          --(*NDeref);
286        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
287      }
288      else {
289        makeThis();
290        return 1;
291      }
292    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
293      NamedDecl *ND = ME->getMemberDecl();
294      int ImplicitDeref = ME->isArrow() ? 1 : 0;
295      unsigned Root = makeDot(ND, false);
296      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
297      NodeVec[Root].setArrow(ImplicitDeref > 0);
298      NodeVec[Root].setSize(Sz + 1);
299      return Sz + 1;
300    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
301      // When calling a function with a lock_returned attribute, replace
302      // the function call with the expression in lock_returned.
303      if (LockReturnedAttr* At =
304            CMCE->getMethodDecl()->getAttr<LockReturnedAttr>()) {
305        CallingContext LRCallCtx(CMCE->getMethodDecl());
306        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
307        LRCallCtx.SelfArrow =
308          dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
309        LRCallCtx.NumArgs = CMCE->getNumArgs();
310        LRCallCtx.FunArgs = CMCE->getArgs();
311        LRCallCtx.PrevCtx = CallCtx;
312        return buildSExpr(At->getArg(), &LRCallCtx);
313      }
314      // Hack to treat smart pointers and iterators as pointers;
315      // ignore any method named get().
316      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
317          CMCE->getNumArgs() == 0) {
318        if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
319          ++(*NDeref);
320        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
321      }
322      unsigned NumCallArgs = CMCE->getNumArgs();
323      unsigned Root =
324        makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
325      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
326      Expr** CallArgs = CMCE->getArgs();
327      for (unsigned i = 0; i < NumCallArgs; ++i) {
328        Sz += buildSExpr(CallArgs[i], CallCtx);
329      }
330      NodeVec[Root].setSize(Sz + 1);
331      return Sz + 1;
332    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
333      if (LockReturnedAttr* At =
334            CE->getDirectCallee()->getAttr<LockReturnedAttr>()) {
335        CallingContext LRCallCtx(CE->getDirectCallee());
336        LRCallCtx.NumArgs = CE->getNumArgs();
337        LRCallCtx.FunArgs = CE->getArgs();
338        LRCallCtx.PrevCtx = CallCtx;
339        return buildSExpr(At->getArg(), &LRCallCtx);
340      }
341      // Treat smart pointers and iterators as pointers;
342      // ignore the * and -> operators.
343      if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
344        OverloadedOperatorKind k = OE->getOperator();
345        if (k == OO_Star) {
346          if (NDeref) ++(*NDeref);
347          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
348        }
349        else if (k == OO_Arrow) {
350          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
351        }
352      }
353      unsigned NumCallArgs = CE->getNumArgs();
354      unsigned Root = makeCall(NumCallArgs, 0);
355      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
356      Expr** CallArgs = CE->getArgs();
357      for (unsigned i = 0; i < NumCallArgs; ++i) {
358        Sz += buildSExpr(CallArgs[i], CallCtx);
359      }
360      NodeVec[Root].setSize(Sz+1);
361      return Sz+1;
362    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
363      unsigned Root = makeBinary();
364      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
365      Sz += buildSExpr(BOE->getRHS(), CallCtx);
366      NodeVec[Root].setSize(Sz);
367      return Sz;
368    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
369      // Ignore & and * operators -- they're no-ops.
370      // However, we try to figure out whether the expression is a pointer,
371      // so we can use . and -> appropriately in error messages.
372      if (UOE->getOpcode() == UO_Deref) {
373        if (NDeref) ++(*NDeref);
374        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
375      }
376      if (UOE->getOpcode() == UO_AddrOf) {
377        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
378          if (DRE->getDecl()->isCXXInstanceMember()) {
379            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
380            // We interpret this syntax specially, as a wildcard.
381            unsigned Root = makeDot(DRE->getDecl(), false);
382            makeWildcard();
383            NodeVec[Root].setSize(2);
384            return 2;
385          }
386        }
387        if (NDeref) --(*NDeref);
388        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
389      }
390      unsigned Root = makeUnary();
391      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
392      NodeVec[Root].setSize(Sz);
393      return Sz;
394    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
395      unsigned Root = makeIndex();
396      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
397      Sz += buildSExpr(ASE->getIdx(), CallCtx);
398      NodeVec[Root].setSize(Sz);
399      return Sz;
400    } else if (AbstractConditionalOperator *CE =
401               dyn_cast<AbstractConditionalOperator>(Exp)) {
402      unsigned Root = makeUnknown(3);
403      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
404      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
405      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
406      NodeVec[Root].setSize(Sz);
407      return Sz;
408    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
409      unsigned Root = makeUnknown(3);
410      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
411      Sz += buildSExpr(CE->getLHS(), CallCtx);
412      Sz += buildSExpr(CE->getRHS(), CallCtx);
413      NodeVec[Root].setSize(Sz);
414      return Sz;
415    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
416      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
417    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
418      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
419    } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
420      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
421    } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
422      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
423    } else if (isa<CharacterLiteral>(Exp) ||
424               isa<CXXNullPtrLiteralExpr>(Exp) ||
425               isa<GNUNullExpr>(Exp) ||
426               isa<CXXBoolLiteralExpr>(Exp) ||
427               isa<FloatingLiteral>(Exp) ||
428               isa<ImaginaryLiteral>(Exp) ||
429               isa<IntegerLiteral>(Exp) ||
430               isa<StringLiteral>(Exp) ||
431               isa<ObjCStringLiteral>(Exp)) {
432      makeNop();
433      return 1;  // FIXME: Ignore literals for now
434    } else {
435      makeNop();
436      return 1;  // Ignore.  FIXME: mark as invalid expression?
437    }
438  }
439
440  /// \brief Construct a SExpr from an expression.
441  /// \param MutexExp The original mutex expression within an attribute
442  /// \param DeclExp An expression involving the Decl on which the attribute
443  ///        occurs.
444  /// \param D  The declaration to which the lock/unlock attribute is attached.
445  void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
446    CallingContext CallCtx(D);
447
448    // If we are processing a raw attribute expression, with no substitutions.
449    if (DeclExp == 0) {
450      buildSExpr(MutexExp, 0);
451      return;
452    }
453
454    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
455    // for formal parameters when we call buildMutexID later.
456    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
457      CallCtx.SelfArg   = ME->getBase();
458      CallCtx.SelfArrow = ME->isArrow();
459    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
460      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
461      CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
462      CallCtx.NumArgs   = CE->getNumArgs();
463      CallCtx.FunArgs   = CE->getArgs();
464    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
465      CallCtx.NumArgs = CE->getNumArgs();
466      CallCtx.FunArgs = CE->getArgs();
467    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
468      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
469      CallCtx.NumArgs = CE->getNumArgs();
470      CallCtx.FunArgs = CE->getArgs();
471    } else if (D && isa<CXXDestructorDecl>(D)) {
472      // There's no such thing as a "destructor call" in the AST.
473      CallCtx.SelfArg = DeclExp;
474    }
475
476    // If the attribute has no arguments, then assume the argument is "this".
477    if (MutexExp == 0) {
478      buildSExpr(CallCtx.SelfArg, 0);
479      return;
480    }
481
482    // For most attributes.
483    buildSExpr(MutexExp, &CallCtx);
484  }
485
486  /// \brief Get index of next sibling of node i.
487  unsigned getNextSibling(unsigned i) const {
488    return i + NodeVec[i].size();
489  }
490
491public:
492  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
493
494  /// \param MutexExp The original mutex expression within an attribute
495  /// \param DeclExp An expression involving the Decl on which the attribute
496  ///        occurs.
497  /// \param D  The declaration to which the lock/unlock attribute is attached.
498  /// Caller must check isValid() after construction.
499  SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
500    buildSExprFromExpr(MutexExp, DeclExp, D);
501  }
502
503  /// Return true if this is a valid decl sequence.
504  /// Caller must call this by hand after construction to handle errors.
505  bool isValid() const {
506    return !NodeVec.empty();
507  }
508
509  /// Issue a warning about an invalid lock expression
510  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
511                              Expr *DeclExp, const NamedDecl* D) {
512    SourceLocation Loc;
513    if (DeclExp)
514      Loc = DeclExp->getExprLoc();
515
516    // FIXME: add a note about the attribute location in MutexExp or D
517    if (Loc.isValid())
518      Handler.handleInvalidLockExp(Loc);
519  }
520
521  bool operator==(const SExpr &other) const {
522    return NodeVec == other.NodeVec;
523  }
524
525  bool operator!=(const SExpr &other) const {
526    return !(*this == other);
527  }
528
529  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
530    if (NodeVec[i].matches(Other.NodeVec[j])) {
531      unsigned n = NodeVec[i].arity();
532      bool Result = true;
533      unsigned ci = i+1;  // first child of i
534      unsigned cj = j+1;  // first child of j
535      for (unsigned k = 0; k < n;
536           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
537        Result = Result && matches(Other, ci, cj);
538      }
539      return Result;
540    }
541    return false;
542  }
543
544  /// \brief Pretty print a lock expression for use in error messages.
545  std::string toString(unsigned i = 0) const {
546    assert(isValid());
547    if (i >= NodeVec.size())
548      return "";
549
550    const SExprNode* N = &NodeVec[i];
551    switch (N->kind()) {
552      case EOP_Nop:
553        return "_";
554      case EOP_Wildcard:
555        return "(?)";
556      case EOP_This:
557        return "this";
558      case EOP_NVar:
559      case EOP_LVar: {
560        return N->getNamedDecl()->getNameAsString();
561      }
562      case EOP_Dot: {
563        if (NodeVec[i+1].kind() == EOP_Wildcard) {
564          std::string S = "&";
565          S += N->getNamedDecl()->getQualifiedNameAsString();
566          return S;
567        }
568        std::string FieldName = N->getNamedDecl()->getNameAsString();
569        if (NodeVec[i+1].kind() == EOP_This)
570          return FieldName;
571
572        std::string S = toString(i+1);
573        if (N->isArrow())
574          return S + "->" + FieldName;
575        else
576          return S + "." + FieldName;
577      }
578      case EOP_Call: {
579        std::string S = toString(i+1) + "(";
580        unsigned NumArgs = N->arity()-1;
581        unsigned ci = getNextSibling(i+1);
582        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
583          S += toString(ci);
584          if (k+1 < NumArgs) S += ",";
585        }
586        S += ")";
587        return S;
588      }
589      case EOP_MCall: {
590        std::string S = "";
591        if (NodeVec[i+1].kind() != EOP_This)
592          S = toString(i+1) + ".";
593        if (const NamedDecl *D = N->getFunctionDecl())
594          S += D->getNameAsString() + "(";
595        else
596          S += "#(";
597        unsigned NumArgs = N->arity()-1;
598        unsigned ci = getNextSibling(i+1);
599        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
600          S += toString(ci);
601          if (k+1 < NumArgs) S += ",";
602        }
603        S += ")";
604        return S;
605      }
606      case EOP_Index: {
607        std::string S1 = toString(i+1);
608        std::string S2 = toString(i+1 + NodeVec[i+1].size());
609        return S1 + "[" + S2 + "]";
610      }
611      case EOP_Unary: {
612        std::string S = toString(i+1);
613        return "#" + S;
614      }
615      case EOP_Binary: {
616        std::string S1 = toString(i+1);
617        std::string S2 = toString(i+1 + NodeVec[i+1].size());
618        return "(" + S1 + "#" + S2 + ")";
619      }
620      case EOP_Unknown: {
621        unsigned NumChildren = N->arity();
622        if (NumChildren == 0)
623          return "(...)";
624        std::string S = "(";
625        unsigned ci = i+1;
626        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
627          S += toString(ci);
628          if (j+1 < NumChildren) S += "#";
629        }
630        S += ")";
631        return S;
632      }
633    }
634    return "";
635  }
636};
637
638
639
640/// \brief A short list of SExprs
641class MutexIDList : public SmallVector<SExpr, 3> {
642public:
643  /// \brief Return true if the list contains the specified SExpr
644  /// Performs a linear search, because these lists are almost always very small.
645  bool contains(const SExpr& M) {
646    for (iterator I=begin(),E=end(); I != E; ++I)
647      if ((*I) == M) return true;
648    return false;
649  }
650
651  /// \brief Push M onto list, bud discard duplicates
652  void push_back_nodup(const SExpr& M) {
653    if (!contains(M)) push_back(M);
654  }
655};
656
657
658
659/// \brief This is a helper class that stores info about the most recent
660/// accquire of a Lock.
661///
662/// The main body of the analysis maps MutexIDs to LockDatas.
663struct LockData {
664  SourceLocation AcquireLoc;
665
666  /// \brief LKind stores whether a lock is held shared or exclusively.
667  /// Note that this analysis does not currently support either re-entrant
668  /// locking or lock "upgrading" and "downgrading" between exclusive and
669  /// shared.
670  ///
671  /// FIXME: add support for re-entrant locking and lock up/downgrading
672  LockKind LKind;
673  bool     Managed;            // for ScopedLockable objects
674  SExpr    UnderlyingMutex;    // for ScopedLockable objects
675
676  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
677    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
678      UnderlyingMutex(Decl::EmptyShell())
679  {}
680
681  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
682    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
683      UnderlyingMutex(Mu)
684  {}
685
686  bool operator==(const LockData &other) const {
687    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
688  }
689
690  bool operator!=(const LockData &other) const {
691    return !(*this == other);
692  }
693
694  void Profile(llvm::FoldingSetNodeID &ID) const {
695    ID.AddInteger(AcquireLoc.getRawEncoding());
696    ID.AddInteger(LKind);
697  }
698};
699
700
701/// \brief A FactEntry stores a single fact that is known at a particular point
702/// in the program execution.  Currently, this is information regarding a lock
703/// that is held at that point.
704struct FactEntry {
705  SExpr    MutID;
706  LockData LDat;
707
708  FactEntry(const SExpr& M, const LockData& L)
709    : MutID(M), LDat(L)
710  { }
711};
712
713
714typedef unsigned short FactID;
715
716/// \brief FactManager manages the memory for all facts that are created during
717/// the analysis of a single routine.
718class FactManager {
719private:
720  std::vector<FactEntry> Facts;
721
722public:
723  FactID newLock(const SExpr& M, const LockData& L) {
724    Facts.push_back(FactEntry(M,L));
725    return static_cast<unsigned short>(Facts.size() - 1);
726  }
727
728  const FactEntry& operator[](FactID F) const { return Facts[F]; }
729  FactEntry&       operator[](FactID F)       { return Facts[F]; }
730};
731
732
733/// \brief A FactSet is the set of facts that are known to be true at a
734/// particular program point.  FactSets must be small, because they are
735/// frequently copied, and are thus implemented as a set of indices into a
736/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
737/// locks, so we can get away with doing a linear search for lookup.  Note
738/// that a hashtable or map is inappropriate in this case, because lookups
739/// may involve partial pattern matches, rather than exact matches.
740class FactSet {
741private:
742  typedef SmallVector<FactID, 4> FactVec;
743
744  FactVec FactIDs;
745
746public:
747  typedef FactVec::iterator       iterator;
748  typedef FactVec::const_iterator const_iterator;
749
750  iterator       begin()       { return FactIDs.begin(); }
751  const_iterator begin() const { return FactIDs.begin(); }
752
753  iterator       end()       { return FactIDs.end(); }
754  const_iterator end() const { return FactIDs.end(); }
755
756  bool isEmpty() const { return FactIDs.size() == 0; }
757
758  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
759    FactID F = FM.newLock(M, L);
760    FactIDs.push_back(F);
761    return F;
762  }
763
764  bool removeLock(FactManager& FM, const SExpr& M) {
765    unsigned n = FactIDs.size();
766    if (n == 0)
767      return false;
768
769    for (unsigned i = 0; i < n-1; ++i) {
770      if (FM[FactIDs[i]].MutID.matches(M)) {
771        FactIDs[i] = FactIDs[n-1];
772        FactIDs.pop_back();
773        return true;
774      }
775    }
776    if (FM[FactIDs[n-1]].MutID.matches(M)) {
777      FactIDs.pop_back();
778      return true;
779    }
780    return false;
781  }
782
783  LockData* findLock(FactManager& FM, const SExpr& M) const {
784    for (const_iterator I=begin(), E=end(); I != E; ++I) {
785      if (FM[*I].MutID.matches(M)) return &FM[*I].LDat;
786    }
787    return 0;
788  }
789};
790
791
792
793/// A Lockset maps each SExpr (defined above) to information about how it has
794/// been locked.
795typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
796typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
797
798class LocalVariableMap;
799
800/// A side (entry or exit) of a CFG node.
801enum CFGBlockSide { CBS_Entry, CBS_Exit };
802
803/// CFGBlockInfo is a struct which contains all the information that is
804/// maintained for each block in the CFG.  See LocalVariableMap for more
805/// information about the contexts.
806struct CFGBlockInfo {
807  FactSet EntrySet;             // Lockset held at entry to block
808  FactSet ExitSet;              // Lockset held at exit from block
809  LocalVarContext EntryContext; // Context held at entry to block
810  LocalVarContext ExitContext;  // Context held at exit from block
811  SourceLocation EntryLoc;      // Location of first statement in block
812  SourceLocation ExitLoc;       // Location of last statement in block.
813  unsigned EntryIndex;          // Used to replay contexts later
814
815  const FactSet &getSet(CFGBlockSide Side) const {
816    return Side == CBS_Entry ? EntrySet : ExitSet;
817  }
818  SourceLocation getLocation(CFGBlockSide Side) const {
819    return Side == CBS_Entry ? EntryLoc : ExitLoc;
820  }
821
822private:
823  CFGBlockInfo(LocalVarContext EmptyCtx)
824    : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
825  { }
826
827public:
828  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
829};
830
831
832
833// A LocalVariableMap maintains a map from local variables to their currently
834// valid definitions.  It provides SSA-like functionality when traversing the
835// CFG.  Like SSA, each definition or assignment to a variable is assigned a
836// unique name (an integer), which acts as the SSA name for that definition.
837// The total set of names is shared among all CFG basic blocks.
838// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
839// with their SSA-names.  Instead, we compute a Context for each point in the
840// code, which maps local variables to the appropriate SSA-name.  This map
841// changes with each assignment.
842//
843// The map is computed in a single pass over the CFG.  Subsequent analyses can
844// then query the map to find the appropriate Context for a statement, and use
845// that Context to look up the definitions of variables.
846class LocalVariableMap {
847public:
848  typedef LocalVarContext Context;
849
850  /// A VarDefinition consists of an expression, representing the value of the
851  /// variable, along with the context in which that expression should be
852  /// interpreted.  A reference VarDefinition does not itself contain this
853  /// information, but instead contains a pointer to a previous VarDefinition.
854  struct VarDefinition {
855  public:
856    friend class LocalVariableMap;
857
858    const NamedDecl *Dec;  // The original declaration for this variable.
859    const Expr *Exp;       // The expression for this variable, OR
860    unsigned Ref;          // Reference to another VarDefinition
861    Context Ctx;           // The map with which Exp should be interpreted.
862
863    bool isReference() { return !Exp; }
864
865  private:
866    // Create ordinary variable definition
867    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
868      : Dec(D), Exp(E), Ref(0), Ctx(C)
869    { }
870
871    // Create reference to previous definition
872    VarDefinition(const NamedDecl *D, unsigned R, Context C)
873      : Dec(D), Exp(0), Ref(R), Ctx(C)
874    { }
875  };
876
877private:
878  Context::Factory ContextFactory;
879  std::vector<VarDefinition> VarDefinitions;
880  std::vector<unsigned> CtxIndices;
881  std::vector<std::pair<Stmt*, Context> > SavedContexts;
882
883public:
884  LocalVariableMap() {
885    // index 0 is a placeholder for undefined variables (aka phi-nodes).
886    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
887  }
888
889  /// Look up a definition, within the given context.
890  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
891    const unsigned *i = Ctx.lookup(D);
892    if (!i)
893      return 0;
894    assert(*i < VarDefinitions.size());
895    return &VarDefinitions[*i];
896  }
897
898  /// Look up the definition for D within the given context.  Returns
899  /// NULL if the expression is not statically known.  If successful, also
900  /// modifies Ctx to hold the context of the return Expr.
901  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
902    const unsigned *P = Ctx.lookup(D);
903    if (!P)
904      return 0;
905
906    unsigned i = *P;
907    while (i > 0) {
908      if (VarDefinitions[i].Exp) {
909        Ctx = VarDefinitions[i].Ctx;
910        return VarDefinitions[i].Exp;
911      }
912      i = VarDefinitions[i].Ref;
913    }
914    return 0;
915  }
916
917  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
918
919  /// Return the next context after processing S.  This function is used by
920  /// clients of the class to get the appropriate context when traversing the
921  /// CFG.  It must be called for every assignment or DeclStmt.
922  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
923    if (SavedContexts[CtxIndex+1].first == S) {
924      CtxIndex++;
925      Context Result = SavedContexts[CtxIndex].second;
926      return Result;
927    }
928    return C;
929  }
930
931  void dumpVarDefinitionName(unsigned i) {
932    if (i == 0) {
933      llvm::errs() << "Undefined";
934      return;
935    }
936    const NamedDecl *Dec = VarDefinitions[i].Dec;
937    if (!Dec) {
938      llvm::errs() << "<<NULL>>";
939      return;
940    }
941    Dec->printName(llvm::errs());
942    llvm::errs() << "." << i << " " << ((void*) Dec);
943  }
944
945  /// Dumps an ASCII representation of the variable map to llvm::errs()
946  void dump() {
947    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
948      const Expr *Exp = VarDefinitions[i].Exp;
949      unsigned Ref = VarDefinitions[i].Ref;
950
951      dumpVarDefinitionName(i);
952      llvm::errs() << " = ";
953      if (Exp) Exp->dump();
954      else {
955        dumpVarDefinitionName(Ref);
956        llvm::errs() << "\n";
957      }
958    }
959  }
960
961  /// Dumps an ASCII representation of a Context to llvm::errs()
962  void dumpContext(Context C) {
963    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
964      const NamedDecl *D = I.getKey();
965      D->printName(llvm::errs());
966      const unsigned *i = C.lookup(D);
967      llvm::errs() << " -> ";
968      dumpVarDefinitionName(*i);
969      llvm::errs() << "\n";
970    }
971  }
972
973  /// Builds the variable map.
974  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
975                     std::vector<CFGBlockInfo> &BlockInfo);
976
977protected:
978  // Get the current context index
979  unsigned getContextIndex() { return SavedContexts.size()-1; }
980
981  // Save the current context for later replay
982  void saveContext(Stmt *S, Context C) {
983    SavedContexts.push_back(std::make_pair(S,C));
984  }
985
986  // Adds a new definition to the given context, and returns a new context.
987  // This method should be called when declaring a new variable.
988  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
989    assert(!Ctx.contains(D));
990    unsigned newID = VarDefinitions.size();
991    Context NewCtx = ContextFactory.add(Ctx, D, newID);
992    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
993    return NewCtx;
994  }
995
996  // Add a new reference to an existing definition.
997  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
998    unsigned newID = VarDefinitions.size();
999    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1000    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1001    return NewCtx;
1002  }
1003
1004  // Updates a definition only if that definition is already in the map.
1005  // This method should be called when assigning to an existing variable.
1006  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1007    if (Ctx.contains(D)) {
1008      unsigned newID = VarDefinitions.size();
1009      Context NewCtx = ContextFactory.remove(Ctx, D);
1010      NewCtx = ContextFactory.add(NewCtx, D, newID);
1011      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1012      return NewCtx;
1013    }
1014    return Ctx;
1015  }
1016
1017  // Removes a definition from the context, but keeps the variable name
1018  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1019  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1020    Context NewCtx = Ctx;
1021    if (NewCtx.contains(D)) {
1022      NewCtx = ContextFactory.remove(NewCtx, D);
1023      NewCtx = ContextFactory.add(NewCtx, D, 0);
1024    }
1025    return NewCtx;
1026  }
1027
1028  // Remove a definition entirely frmo the context.
1029  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1030    Context NewCtx = Ctx;
1031    if (NewCtx.contains(D)) {
1032      NewCtx = ContextFactory.remove(NewCtx, D);
1033    }
1034    return NewCtx;
1035  }
1036
1037  Context intersectContexts(Context C1, Context C2);
1038  Context createReferenceContext(Context C);
1039  void intersectBackEdge(Context C1, Context C2);
1040
1041  friend class VarMapBuilder;
1042};
1043
1044
1045// This has to be defined after LocalVariableMap.
1046CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1047  return CFGBlockInfo(M.getEmptyContext());
1048}
1049
1050
1051/// Visitor which builds a LocalVariableMap
1052class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1053public:
1054  LocalVariableMap* VMap;
1055  LocalVariableMap::Context Ctx;
1056
1057  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1058    : VMap(VM), Ctx(C) {}
1059
1060  void VisitDeclStmt(DeclStmt *S);
1061  void VisitBinaryOperator(BinaryOperator *BO);
1062};
1063
1064
1065// Add new local variables to the variable map
1066void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1067  bool modifiedCtx = false;
1068  DeclGroupRef DGrp = S->getDeclGroup();
1069  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1070    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1071      Expr *E = VD->getInit();
1072
1073      // Add local variables with trivial type to the variable map
1074      QualType T = VD->getType();
1075      if (T.isTrivialType(VD->getASTContext())) {
1076        Ctx = VMap->addDefinition(VD, E, Ctx);
1077        modifiedCtx = true;
1078      }
1079    }
1080  }
1081  if (modifiedCtx)
1082    VMap->saveContext(S, Ctx);
1083}
1084
1085// Update local variable definitions in variable map
1086void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1087  if (!BO->isAssignmentOp())
1088    return;
1089
1090  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1091
1092  // Update the variable map and current context.
1093  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1094    ValueDecl *VDec = DRE->getDecl();
1095    if (Ctx.lookup(VDec)) {
1096      if (BO->getOpcode() == BO_Assign)
1097        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1098      else
1099        // FIXME -- handle compound assignment operators
1100        Ctx = VMap->clearDefinition(VDec, Ctx);
1101      VMap->saveContext(BO, Ctx);
1102    }
1103  }
1104}
1105
1106
1107// Computes the intersection of two contexts.  The intersection is the
1108// set of variables which have the same definition in both contexts;
1109// variables with different definitions are discarded.
1110LocalVariableMap::Context
1111LocalVariableMap::intersectContexts(Context C1, Context C2) {
1112  Context Result = C1;
1113  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1114    const NamedDecl *Dec = I.getKey();
1115    unsigned i1 = I.getData();
1116    const unsigned *i2 = C2.lookup(Dec);
1117    if (!i2)             // variable doesn't exist on second path
1118      Result = removeDefinition(Dec, Result);
1119    else if (*i2 != i1)  // variable exists, but has different definition
1120      Result = clearDefinition(Dec, Result);
1121  }
1122  return Result;
1123}
1124
1125// For every variable in C, create a new variable that refers to the
1126// definition in C.  Return a new context that contains these new variables.
1127// (We use this for a naive implementation of SSA on loop back-edges.)
1128LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1129  Context Result = getEmptyContext();
1130  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1131    const NamedDecl *Dec = I.getKey();
1132    unsigned i = I.getData();
1133    Result = addReference(Dec, i, Result);
1134  }
1135  return Result;
1136}
1137
1138// This routine also takes the intersection of C1 and C2, but it does so by
1139// altering the VarDefinitions.  C1 must be the result of an earlier call to
1140// createReferenceContext.
1141void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1142  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1143    const NamedDecl *Dec = I.getKey();
1144    unsigned i1 = I.getData();
1145    VarDefinition *VDef = &VarDefinitions[i1];
1146    assert(VDef->isReference());
1147
1148    const unsigned *i2 = C2.lookup(Dec);
1149    if (!i2 || (*i2 != i1))
1150      VDef->Ref = 0;    // Mark this variable as undefined
1151  }
1152}
1153
1154
1155// Traverse the CFG in topological order, so all predecessors of a block
1156// (excluding back-edges) are visited before the block itself.  At
1157// each point in the code, we calculate a Context, which holds the set of
1158// variable definitions which are visible at that point in execution.
1159// Visible variables are mapped to their definitions using an array that
1160// contains all definitions.
1161//
1162// At join points in the CFG, the set is computed as the intersection of
1163// the incoming sets along each edge, E.g.
1164//
1165//                       { Context                 | VarDefinitions }
1166//   int x = 0;          { x -> x1                 | x1 = 0 }
1167//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1168//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1169//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1170//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1171//
1172// This is essentially a simpler and more naive version of the standard SSA
1173// algorithm.  Those definitions that remain in the intersection are from blocks
1174// that strictly dominate the current block.  We do not bother to insert proper
1175// phi nodes, because they are not used in our analysis; instead, wherever
1176// a phi node would be required, we simply remove that definition from the
1177// context (E.g. x above).
1178//
1179// The initial traversal does not capture back-edges, so those need to be
1180// handled on a separate pass.  Whenever the first pass encounters an
1181// incoming back edge, it duplicates the context, creating new definitions
1182// that refer back to the originals.  (These correspond to places where SSA
1183// might have to insert a phi node.)  On the second pass, these definitions are
1184// set to NULL if the variable has changed on the back-edge (i.e. a phi
1185// node was actually required.)  E.g.
1186//
1187//                       { Context           | VarDefinitions }
1188//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1189//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1190//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1191//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1192//
1193void LocalVariableMap::traverseCFG(CFG *CFGraph,
1194                                   PostOrderCFGView *SortedGraph,
1195                                   std::vector<CFGBlockInfo> &BlockInfo) {
1196  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1197
1198  CtxIndices.resize(CFGraph->getNumBlockIDs());
1199
1200  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1201       E = SortedGraph->end(); I!= E; ++I) {
1202    const CFGBlock *CurrBlock = *I;
1203    int CurrBlockID = CurrBlock->getBlockID();
1204    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1205
1206    VisitedBlocks.insert(CurrBlock);
1207
1208    // Calculate the entry context for the current block
1209    bool HasBackEdges = false;
1210    bool CtxInit = true;
1211    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1212         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1213      // if *PI -> CurrBlock is a back edge, so skip it
1214      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1215        HasBackEdges = true;
1216        continue;
1217      }
1218
1219      int PrevBlockID = (*PI)->getBlockID();
1220      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1221
1222      if (CtxInit) {
1223        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1224        CtxInit = false;
1225      }
1226      else {
1227        CurrBlockInfo->EntryContext =
1228          intersectContexts(CurrBlockInfo->EntryContext,
1229                            PrevBlockInfo->ExitContext);
1230      }
1231    }
1232
1233    // Duplicate the context if we have back-edges, so we can call
1234    // intersectBackEdges later.
1235    if (HasBackEdges)
1236      CurrBlockInfo->EntryContext =
1237        createReferenceContext(CurrBlockInfo->EntryContext);
1238
1239    // Create a starting context index for the current block
1240    saveContext(0, CurrBlockInfo->EntryContext);
1241    CurrBlockInfo->EntryIndex = getContextIndex();
1242
1243    // Visit all the statements in the basic block.
1244    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1245    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1246         BE = CurrBlock->end(); BI != BE; ++BI) {
1247      switch (BI->getKind()) {
1248        case CFGElement::Statement: {
1249          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1250          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1251          break;
1252        }
1253        default:
1254          break;
1255      }
1256    }
1257    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1258
1259    // Mark variables on back edges as "unknown" if they've been changed.
1260    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1261         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1262      // if CurrBlock -> *SI is *not* a back edge
1263      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1264        continue;
1265
1266      CFGBlock *FirstLoopBlock = *SI;
1267      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1268      Context LoopEnd   = CurrBlockInfo->ExitContext;
1269      intersectBackEdge(LoopBegin, LoopEnd);
1270    }
1271  }
1272
1273  // Put an extra entry at the end of the indexed context array
1274  unsigned exitID = CFGraph->getExit().getBlockID();
1275  saveContext(0, BlockInfo[exitID].ExitContext);
1276}
1277
1278/// Find the appropriate source locations to use when producing diagnostics for
1279/// each block in the CFG.
1280static void findBlockLocations(CFG *CFGraph,
1281                               PostOrderCFGView *SortedGraph,
1282                               std::vector<CFGBlockInfo> &BlockInfo) {
1283  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1284       E = SortedGraph->end(); I!= E; ++I) {
1285    const CFGBlock *CurrBlock = *I;
1286    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1287
1288    // Find the source location of the last statement in the block, if the
1289    // block is not empty.
1290    if (const Stmt *S = CurrBlock->getTerminator()) {
1291      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1292    } else {
1293      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1294           BE = CurrBlock->rend(); BI != BE; ++BI) {
1295        // FIXME: Handle other CFGElement kinds.
1296        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1297          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1298          break;
1299        }
1300      }
1301    }
1302
1303    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1304      // This block contains at least one statement. Find the source location
1305      // of the first statement in the block.
1306      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1307           BE = CurrBlock->end(); BI != BE; ++BI) {
1308        // FIXME: Handle other CFGElement kinds.
1309        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1310          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1311          break;
1312        }
1313      }
1314    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1315               CurrBlock != &CFGraph->getExit()) {
1316      // The block is empty, and has a single predecessor. Use its exit
1317      // location.
1318      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1319          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1320    }
1321  }
1322}
1323
1324/// \brief Class which implements the core thread safety analysis routines.
1325class ThreadSafetyAnalyzer {
1326  friend class BuildLockset;
1327
1328  ThreadSafetyHandler       &Handler;
1329  LocalVariableMap          LocalVarMap;
1330  FactManager               FactMan;
1331  std::vector<CFGBlockInfo> BlockInfo;
1332
1333public:
1334  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1335
1336  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1337  void removeLock(FactSet &FSet, const SExpr &Mutex,
1338                  SourceLocation UnlockLoc, bool FullyRemove=false);
1339
1340  template <typename AttrType>
1341  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1342                   const NamedDecl *D);
1343
1344  template <class AttrType>
1345  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1346                   const NamedDecl *D,
1347                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1348                   Expr *BrE, bool Neg);
1349
1350  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1351                                     bool &Negate);
1352
1353  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1354                      const CFGBlock* PredBlock,
1355                      const CFGBlock *CurrBlock);
1356
1357  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1358                        SourceLocation JoinLoc,
1359                        LockErrorKind LEK1, LockErrorKind LEK2,
1360                        bool Modify=true);
1361
1362  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1363                        SourceLocation JoinLoc, LockErrorKind LEK1,
1364                        bool Modify=true) {
1365    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1366  }
1367
1368  void runAnalysis(AnalysisDeclContext &AC);
1369};
1370
1371
1372/// \brief Add a new lock to the lockset, warning if the lock is already there.
1373/// \param Mutex -- the Mutex expression for the lock
1374/// \param LDat  -- the LockData for the lock
1375void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1376                                   const LockData &LDat) {
1377  // FIXME: deal with acquired before/after annotations.
1378  // FIXME: Don't always warn when we have support for reentrant locks.
1379  if (FSet.findLock(FactMan, Mutex)) {
1380    Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1381  } else {
1382    FSet.addLock(FactMan, Mutex, LDat);
1383  }
1384}
1385
1386
1387/// \brief Remove a lock from the lockset, warning if the lock is not there.
1388/// \param LockExp The lock expression corresponding to the lock to be removed
1389/// \param UnlockLoc The source location of the unlock (only used in error msg)
1390void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1391                                      const SExpr &Mutex,
1392                                      SourceLocation UnlockLoc,
1393                                      bool FullyRemove) {
1394  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1395  if (!LDat) {
1396    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1397    return;
1398  }
1399
1400  if (LDat->UnderlyingMutex.isValid()) {
1401    // This is scoped lockable object, which manages the real mutex.
1402    if (FullyRemove) {
1403      // We're destroying the managing object.
1404      // Remove the underlying mutex if it exists; but don't warn.
1405      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1406        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1407    } else {
1408      // We're releasing the underlying mutex, but not destroying the
1409      // managing object.  Warn on dual release.
1410      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1411        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1412                                      UnlockLoc);
1413      }
1414      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1415      return;
1416    }
1417  }
1418  FSet.removeLock(FactMan, Mutex);
1419}
1420
1421
1422/// \brief Extract the list of mutexIDs from the attribute on an expression,
1423/// and push them onto Mtxs, discarding any duplicates.
1424template <typename AttrType>
1425void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1426                                       Expr *Exp, const NamedDecl *D) {
1427  typedef typename AttrType::args_iterator iterator_type;
1428
1429  if (Attr->args_size() == 0) {
1430    // The mutex held is the "this" object.
1431    SExpr Mu(0, Exp, D);
1432    if (!Mu.isValid())
1433      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1434    else
1435      Mtxs.push_back_nodup(Mu);
1436    return;
1437  }
1438
1439  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1440    SExpr Mu(*I, Exp, D);
1441    if (!Mu.isValid())
1442      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1443    else
1444      Mtxs.push_back_nodup(Mu);
1445  }
1446}
1447
1448
1449/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1450/// trylock applies to the given edge, then push them onto Mtxs, discarding
1451/// any duplicates.
1452template <class AttrType>
1453void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1454                                       Expr *Exp, const NamedDecl *D,
1455                                       const CFGBlock *PredBlock,
1456                                       const CFGBlock *CurrBlock,
1457                                       Expr *BrE, bool Neg) {
1458  // Find out which branch has the lock
1459  bool branch = 0;
1460  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1461    branch = BLE->getValue();
1462  }
1463  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1464    branch = ILE->getValue().getBoolValue();
1465  }
1466  int branchnum = branch ? 0 : 1;
1467  if (Neg) branchnum = !branchnum;
1468
1469  // If we've taken the trylock branch, then add the lock
1470  int i = 0;
1471  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1472       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1473    if (*SI == CurrBlock && i == branchnum) {
1474      getMutexIDs(Mtxs, Attr, Exp, D);
1475    }
1476  }
1477}
1478
1479
1480bool getStaticBooleanValue(Expr* E, bool& TCond) {
1481  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1482    TCond = false;
1483    return true;
1484  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1485    TCond = BLE->getValue();
1486    return true;
1487  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1488    TCond = ILE->getValue().getBoolValue();
1489    return true;
1490  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1491    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1492  }
1493  return false;
1494}
1495
1496
1497// If Cond can be traced back to a function call, return the call expression.
1498// The negate variable should be called with false, and will be set to true
1499// if the function call is negated, e.g. if (!mu.tryLock(...))
1500const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1501                                                         LocalVarContext C,
1502                                                         bool &Negate) {
1503  if (!Cond)
1504    return 0;
1505
1506  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1507    return CallExp;
1508  }
1509  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1510    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1511  }
1512  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1513    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1514  }
1515  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1516    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1517    return getTrylockCallExpr(E, C, Negate);
1518  }
1519  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1520    if (UOP->getOpcode() == UO_LNot) {
1521      Negate = !Negate;
1522      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1523    }
1524    return 0;
1525  }
1526  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1527    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1528      if (BOP->getOpcode() == BO_NE)
1529        Negate = !Negate;
1530
1531      bool TCond = false;
1532      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1533        if (!TCond) Negate = !Negate;
1534        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1535      }
1536      else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1537        if (!TCond) Negate = !Negate;
1538        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1539      }
1540      return 0;
1541    }
1542    return 0;
1543  }
1544  // FIXME -- handle && and || as well.
1545  return 0;
1546}
1547
1548
1549/// \brief Find the lockset that holds on the edge between PredBlock
1550/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1551/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1552void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1553                                          const FactSet &ExitSet,
1554                                          const CFGBlock *PredBlock,
1555                                          const CFGBlock *CurrBlock) {
1556  Result = ExitSet;
1557
1558  if (!PredBlock->getTerminatorCondition())
1559    return;
1560
1561  bool Negate = false;
1562  const Stmt *Cond = PredBlock->getTerminatorCondition();
1563  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1564  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1565
1566  CallExpr *Exp =
1567    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1568  if (!Exp)
1569    return;
1570
1571  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1572  if(!FunDecl || !FunDecl->hasAttrs())
1573    return;
1574
1575
1576  MutexIDList ExclusiveLocksToAdd;
1577  MutexIDList SharedLocksToAdd;
1578
1579  // If the condition is a call to a Trylock function, then grab the attributes
1580  AttrVec &ArgAttrs = FunDecl->getAttrs();
1581  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1582    Attr *Attr = ArgAttrs[i];
1583    switch (Attr->getKind()) {
1584      case attr::ExclusiveTrylockFunction: {
1585        ExclusiveTrylockFunctionAttr *A =
1586          cast<ExclusiveTrylockFunctionAttr>(Attr);
1587        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1588                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1589        break;
1590      }
1591      case attr::SharedTrylockFunction: {
1592        SharedTrylockFunctionAttr *A =
1593          cast<SharedTrylockFunctionAttr>(Attr);
1594        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1595                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1596        break;
1597      }
1598      default:
1599        break;
1600    }
1601  }
1602
1603  // Add and remove locks.
1604  SourceLocation Loc = Exp->getExprLoc();
1605  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1606    addLock(Result, ExclusiveLocksToAdd[i],
1607            LockData(Loc, LK_Exclusive));
1608  }
1609  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1610    addLock(Result, SharedLocksToAdd[i],
1611            LockData(Loc, LK_Shared));
1612  }
1613}
1614
1615
1616/// \brief We use this class to visit different types of expressions in
1617/// CFGBlocks, and build up the lockset.
1618/// An expression may cause us to add or remove locks from the lockset, or else
1619/// output error messages related to missing locks.
1620/// FIXME: In future, we may be able to not inherit from a visitor.
1621class BuildLockset : public StmtVisitor<BuildLockset> {
1622  friend class ThreadSafetyAnalyzer;
1623
1624  ThreadSafetyAnalyzer *Analyzer;
1625  FactSet FSet;
1626  LocalVariableMap::Context LVarCtx;
1627  unsigned CtxIndex;
1628
1629  // Helper functions
1630  const ValueDecl *getValueDecl(Expr *Exp);
1631
1632  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1633                          Expr *MutexExp, ProtectedOperationKind POK);
1634
1635  void checkAccess(Expr *Exp, AccessKind AK);
1636  void checkDereference(Expr *Exp, AccessKind AK);
1637  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1638
1639  /// \brief Returns true if the lockset contains a lock, regardless of whether
1640  /// the lock is held exclusively or shared.
1641  bool locksetContains(const SExpr &Mu) const {
1642    return FSet.findLock(Analyzer->FactMan, Mu);
1643  }
1644
1645  /// \brief Returns true if the lockset contains a lock with the passed in
1646  /// locktype.
1647  bool locksetContains(const SExpr &Mu, LockKind KindRequested) const {
1648    const LockData *LockHeld = FSet.findLock(Analyzer->FactMan, Mu);
1649    return (LockHeld && KindRequested == LockHeld->LKind);
1650  }
1651
1652  /// \brief Returns true if the lockset contains a lock with at least the
1653  /// passed in locktype. So for example, if we pass in LK_Shared, this function
1654  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
1655  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
1656  bool locksetContainsAtLeast(const SExpr &Lock,
1657                              LockKind KindRequested) const {
1658    switch (KindRequested) {
1659      case LK_Shared:
1660        return locksetContains(Lock);
1661      case LK_Exclusive:
1662        return locksetContains(Lock, KindRequested);
1663    }
1664    llvm_unreachable("Unknown LockKind");
1665  }
1666
1667public:
1668  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1669    : StmtVisitor<BuildLockset>(),
1670      Analyzer(Anlzr),
1671      FSet(Info.EntrySet),
1672      LVarCtx(Info.EntryContext),
1673      CtxIndex(Info.EntryIndex)
1674  {}
1675
1676  void VisitUnaryOperator(UnaryOperator *UO);
1677  void VisitBinaryOperator(BinaryOperator *BO);
1678  void VisitCastExpr(CastExpr *CE);
1679  void VisitCallExpr(CallExpr *Exp);
1680  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1681  void VisitDeclStmt(DeclStmt *S);
1682};
1683
1684
1685/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1686const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1687  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1688    return DR->getDecl();
1689
1690  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1691    return ME->getMemberDecl();
1692
1693  return 0;
1694}
1695
1696/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1697/// of at least the passed in AccessKind.
1698void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1699                                      AccessKind AK, Expr *MutexExp,
1700                                      ProtectedOperationKind POK) {
1701  LockKind LK = getLockKindFromAccessKind(AK);
1702
1703  SExpr Mutex(MutexExp, Exp, D);
1704  if (!Mutex.isValid())
1705    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1706  else if (!locksetContainsAtLeast(Mutex, LK))
1707    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1708                                         Exp->getExprLoc());
1709}
1710
1711/// \brief This method identifies variable dereferences and checks pt_guarded_by
1712/// and pt_guarded_var annotations. Note that we only check these annotations
1713/// at the time a pointer is dereferenced.
1714/// FIXME: We need to check for other types of pointer dereferences
1715/// (e.g. [], ->) and deal with them here.
1716/// \param Exp An expression that has been read or written.
1717void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1718  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1719  if (!UO || UO->getOpcode() != clang::UO_Deref)
1720    return;
1721  Exp = UO->getSubExpr()->IgnoreParenCasts();
1722
1723  const ValueDecl *D = getValueDecl(Exp);
1724  if(!D || !D->hasAttrs())
1725    return;
1726
1727  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1728    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1729                                        Exp->getExprLoc());
1730
1731  const AttrVec &ArgAttrs = D->getAttrs();
1732  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1733    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1734      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1735}
1736
1737/// \brief Checks guarded_by and guarded_var attributes.
1738/// Whenever we identify an access (read or write) of a DeclRefExpr or
1739/// MemberExpr, we need to check whether there are any guarded_by or
1740/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1741void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1742  const ValueDecl *D = getValueDecl(Exp);
1743  if(!D || !D->hasAttrs())
1744    return;
1745
1746  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1747    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1748                                        Exp->getExprLoc());
1749
1750  const AttrVec &ArgAttrs = D->getAttrs();
1751  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1752    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1753      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1754}
1755
1756/// \brief Process a function call, method call, constructor call,
1757/// or destructor call.  This involves looking at the attributes on the
1758/// corresponding function/method/constructor/destructor, issuing warnings,
1759/// and updating the locksets accordingly.
1760///
1761/// FIXME: For classes annotated with one of the guarded annotations, we need
1762/// to treat const method calls as reads and non-const method calls as writes,
1763/// and check that the appropriate locks are held. Non-const method calls with
1764/// the same signature as const method calls can be also treated as reads.
1765///
1766void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1767  const AttrVec &ArgAttrs = D->getAttrs();
1768  MutexIDList ExclusiveLocksToAdd;
1769  MutexIDList SharedLocksToAdd;
1770  MutexIDList LocksToRemove;
1771
1772  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1773    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1774    switch (At->getKind()) {
1775      // When we encounter an exclusive lock function, we need to add the lock
1776      // to our lockset with kind exclusive.
1777      case attr::ExclusiveLockFunction: {
1778        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1779        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
1780        break;
1781      }
1782
1783      // When we encounter a shared lock function, we need to add the lock
1784      // to our lockset with kind shared.
1785      case attr::SharedLockFunction: {
1786        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1787        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
1788        break;
1789      }
1790
1791      // When we encounter an unlock function, we need to remove unlocked
1792      // mutexes from the lockset, and flag a warning if they are not there.
1793      case attr::UnlockFunction: {
1794        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1795        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
1796        break;
1797      }
1798
1799      case attr::ExclusiveLocksRequired: {
1800        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1801
1802        for (ExclusiveLocksRequiredAttr::args_iterator
1803             I = A->args_begin(), E = A->args_end(); I != E; ++I)
1804          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1805        break;
1806      }
1807
1808      case attr::SharedLocksRequired: {
1809        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1810
1811        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1812             E = A->args_end(); I != E; ++I)
1813          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1814        break;
1815      }
1816
1817      case attr::LocksExcluded: {
1818        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1819        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1820            E = A->args_end(); I != E; ++I) {
1821          SExpr Mutex(*I, Exp, D);
1822          if (!Mutex.isValid())
1823            SExpr::warnInvalidLock(Analyzer->Handler, *I, Exp, D);
1824          else if (locksetContains(Mutex))
1825            Analyzer->Handler.handleFunExcludesLock(D->getName(),
1826                                                    Mutex.toString(),
1827                                                    Exp->getExprLoc());
1828        }
1829        break;
1830      }
1831
1832      // Ignore other (non thread-safety) attributes
1833      default:
1834        break;
1835    }
1836  }
1837
1838  // Figure out if we're calling the constructor of scoped lockable class
1839  bool isScopedVar = false;
1840  if (VD) {
1841    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1842      const CXXRecordDecl* PD = CD->getParent();
1843      if (PD && PD->getAttr<ScopedLockableAttr>())
1844        isScopedVar = true;
1845    }
1846  }
1847
1848  // Add locks.
1849  SourceLocation Loc = Exp->getExprLoc();
1850  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1851    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1852                            LockData(Loc, LK_Exclusive, isScopedVar));
1853  }
1854  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1855    Analyzer->addLock(FSet, SharedLocksToAdd[i],
1856                            LockData(Loc, LK_Shared, isScopedVar));
1857  }
1858
1859  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1860  // FIXME -- this doesn't work if we acquire multiple locks.
1861  if (isScopedVar) {
1862    SourceLocation MLoc = VD->getLocation();
1863    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1864    SExpr SMutex(&DRE, 0, 0);
1865
1866    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1867      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1868                                               ExclusiveLocksToAdd[i]));
1869    }
1870    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1871      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1872                                               SharedLocksToAdd[i]));
1873    }
1874  }
1875
1876  // Remove locks.
1877  // FIXME -- should only fully remove if the attribute refers to 'this'.
1878  bool Dtor = isa<CXXDestructorDecl>(D);
1879  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
1880    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
1881  }
1882}
1883
1884
1885/// \brief For unary operations which read and write a variable, we need to
1886/// check whether we hold any required mutexes. Reads are checked in
1887/// VisitCastExpr.
1888void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1889  switch (UO->getOpcode()) {
1890    case clang::UO_PostDec:
1891    case clang::UO_PostInc:
1892    case clang::UO_PreDec:
1893    case clang::UO_PreInc: {
1894      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1895      checkAccess(SubExp, AK_Written);
1896      checkDereference(SubExp, AK_Written);
1897      break;
1898    }
1899    default:
1900      break;
1901  }
1902}
1903
1904/// For binary operations which assign to a variable (writes), we need to check
1905/// whether we hold any required mutexes.
1906/// FIXME: Deal with non-primitive types.
1907void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1908  if (!BO->isAssignmentOp())
1909    return;
1910
1911  // adjust the context
1912  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1913
1914  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1915  checkAccess(LHSExp, AK_Written);
1916  checkDereference(LHSExp, AK_Written);
1917}
1918
1919/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1920/// need to ensure we hold any required mutexes.
1921/// FIXME: Deal with non-primitive types.
1922void BuildLockset::VisitCastExpr(CastExpr *CE) {
1923  if (CE->getCastKind() != CK_LValueToRValue)
1924    return;
1925  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1926  checkAccess(SubExp, AK_Read);
1927  checkDereference(SubExp, AK_Read);
1928}
1929
1930
1931void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1932  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1933  if(!D || !D->hasAttrs())
1934    return;
1935  handleCall(Exp, D);
1936}
1937
1938void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1939  // FIXME -- only handles constructors in DeclStmt below.
1940}
1941
1942void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1943  // adjust the context
1944  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1945
1946  DeclGroupRef DGrp = S->getDeclGroup();
1947  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1948    Decl *D = *I;
1949    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1950      Expr *E = VD->getInit();
1951      // handle constructors that involve temporaries
1952      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
1953        E = EWC->getSubExpr();
1954
1955      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1956        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1957        if (!CtorD || !CtorD->hasAttrs())
1958          return;
1959        handleCall(CE, CtorD, VD);
1960      }
1961    }
1962  }
1963}
1964
1965
1966
1967/// \brief Compute the intersection of two locksets and issue warnings for any
1968/// locks in the symmetric difference.
1969///
1970/// This function is used at a merge point in the CFG when comparing the lockset
1971/// of each branch being merged. For example, given the following sequence:
1972/// A; if () then B; else C; D; we need to check that the lockset after B and C
1973/// are the same. In the event of a difference, we use the intersection of these
1974/// two locksets at the start of D.
1975///
1976/// \param LSet1 The first lockset.
1977/// \param LSet2 The second lockset.
1978/// \param JoinLoc The location of the join point for error reporting
1979/// \param LEK1 The error message to report if a mutex is missing from LSet1
1980/// \param LEK2 The error message to report if a mutex is missing from Lset2
1981void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
1982                                            const FactSet &FSet2,
1983                                            SourceLocation JoinLoc,
1984                                            LockErrorKind LEK1,
1985                                            LockErrorKind LEK2,
1986                                            bool Modify) {
1987  FactSet FSet1Orig = FSet1;
1988
1989  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
1990       I != E; ++I) {
1991    const SExpr &FSet2Mutex = FactMan[*I].MutID;
1992    const LockData &LDat2 = FactMan[*I].LDat;
1993
1994    if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
1995      if (LDat1->LKind != LDat2.LKind) {
1996        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
1997                                         LDat2.AcquireLoc,
1998                                         LDat1->AcquireLoc);
1999        if (Modify && LDat1->LKind != LK_Exclusive) {
2000          FSet1.removeLock(FactMan, FSet2Mutex);
2001          FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2002        }
2003      }
2004    } else {
2005      if (LDat2.UnderlyingMutex.isValid()) {
2006        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2007          // If this is a scoped lock that manages another mutex, and if the
2008          // underlying mutex is still held, then warn about the underlying
2009          // mutex.
2010          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2011                                            LDat2.AcquireLoc,
2012                                            JoinLoc, LEK1);
2013        }
2014      }
2015      else if (!LDat2.Managed)
2016        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2017                                          LDat2.AcquireLoc,
2018                                          JoinLoc, LEK1);
2019    }
2020  }
2021
2022  for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2023       I != E; ++I) {
2024    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2025    const LockData &LDat1 = FactMan[*I].LDat;
2026
2027    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2028      if (LDat1.UnderlyingMutex.isValid()) {
2029        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2030          // If this is a scoped lock that manages another mutex, and if the
2031          // underlying mutex is still held, then warn about the underlying
2032          // mutex.
2033          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2034                                            LDat1.AcquireLoc,
2035                                            JoinLoc, LEK1);
2036        }
2037      }
2038      else if (!LDat1.Managed)
2039        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2040                                          LDat1.AcquireLoc,
2041                                          JoinLoc, LEK2);
2042      if (Modify)
2043        FSet1.removeLock(FactMan, FSet1Mutex);
2044    }
2045  }
2046}
2047
2048
2049
2050/// \brief Check a function's CFG for thread-safety violations.
2051///
2052/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2053/// at the end of each block, and issue warnings for thread safety violations.
2054/// Each block in the CFG is traversed exactly once.
2055void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2056  CFG *CFGraph = AC.getCFG();
2057  if (!CFGraph) return;
2058  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2059
2060  // AC.dumpCFG(true);
2061
2062  if (!D)
2063    return;  // Ignore anonymous functions for now.
2064  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2065    return;
2066  // FIXME: Do something a bit more intelligent inside constructor and
2067  // destructor code.  Constructors and destructors must assume unique access
2068  // to 'this', so checks on member variable access is disabled, but we should
2069  // still enable checks on other objects.
2070  if (isa<CXXConstructorDecl>(D))
2071    return;  // Don't check inside constructors.
2072  if (isa<CXXDestructorDecl>(D))
2073    return;  // Don't check inside destructors.
2074
2075  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2076    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2077
2078  // We need to explore the CFG via a "topological" ordering.
2079  // That way, we will be guaranteed to have information about required
2080  // predecessor locksets when exploring a new block.
2081  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2082  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2083
2084  // Compute SSA names for local variables
2085  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2086
2087  // Fill in source locations for all CFGBlocks.
2088  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2089
2090  // Add locks from exclusive_locks_required and shared_locks_required
2091  // to initial lockset. Also turn off checking for lock and unlock functions.
2092  // FIXME: is there a more intelligent way to check lock/unlock functions?
2093  if (!SortedGraph->empty() && D->hasAttrs()) {
2094    const CFGBlock *FirstBlock = *SortedGraph->begin();
2095    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2096    const AttrVec &ArgAttrs = D->getAttrs();
2097
2098    MutexIDList ExclusiveLocksToAdd;
2099    MutexIDList SharedLocksToAdd;
2100
2101    SourceLocation Loc = D->getLocation();
2102    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2103      Attr *Attr = ArgAttrs[i];
2104      Loc = Attr->getLocation();
2105      if (ExclusiveLocksRequiredAttr *A
2106            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2107        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2108      } else if (SharedLocksRequiredAttr *A
2109                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2110        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2111      } else if (isa<UnlockFunctionAttr>(Attr)) {
2112        // Don't try to check unlock functions for now
2113        return;
2114      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2115        // Don't try to check lock functions for now
2116        return;
2117      } else if (isa<SharedLockFunctionAttr>(Attr)) {
2118        // Don't try to check lock functions for now
2119        return;
2120      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2121        // Don't try to check trylock functions for now
2122        return;
2123      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2124        // Don't try to check trylock functions for now
2125        return;
2126      }
2127    }
2128
2129    // FIXME -- Loc can be wrong here.
2130    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2131      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2132              LockData(Loc, LK_Exclusive));
2133    }
2134    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2135      addLock(InitialLockset, SharedLocksToAdd[i],
2136              LockData(Loc, LK_Shared));
2137    }
2138  }
2139
2140  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2141       E = SortedGraph->end(); I!= E; ++I) {
2142    const CFGBlock *CurrBlock = *I;
2143    int CurrBlockID = CurrBlock->getBlockID();
2144    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2145
2146    // Use the default initial lockset in case there are no predecessors.
2147    VisitedBlocks.insert(CurrBlock);
2148
2149    // Iterate through the predecessor blocks and warn if the lockset for all
2150    // predecessors is not the same. We take the entry lockset of the current
2151    // block to be the intersection of all previous locksets.
2152    // FIXME: By keeping the intersection, we may output more errors in future
2153    // for a lock which is not in the intersection, but was in the union. We
2154    // may want to also keep the union in future. As an example, let's say
2155    // the intersection contains Mutex L, and the union contains L and M.
2156    // Later we unlock M. At this point, we would output an error because we
2157    // never locked M; although the real error is probably that we forgot to
2158    // lock M on all code paths. Conversely, let's say that later we lock M.
2159    // In this case, we should compare against the intersection instead of the
2160    // union because the real error is probably that we forgot to unlock M on
2161    // all code paths.
2162    bool LocksetInitialized = false;
2163    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
2164    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2165         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2166
2167      // if *PI -> CurrBlock is a back edge
2168      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2169        continue;
2170
2171      // Ignore edges from blocks that can't return.
2172      if ((*PI)->hasNoReturnElement())
2173        continue;
2174
2175      // If the previous block ended in a 'continue' or 'break' statement, then
2176      // a difference in locksets is probably due to a bug in that block, rather
2177      // than in some other predecessor. In that case, keep the other
2178      // predecessor's lockset.
2179      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2180        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2181          SpecialBlocks.push_back(*PI);
2182          continue;
2183        }
2184      }
2185
2186      int PrevBlockID = (*PI)->getBlockID();
2187      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2188      FactSet PrevLockset;
2189      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2190
2191      if (!LocksetInitialized) {
2192        CurrBlockInfo->EntrySet = PrevLockset;
2193        LocksetInitialized = true;
2194      } else {
2195        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2196                         CurrBlockInfo->EntryLoc,
2197                         LEK_LockedSomePredecessors);
2198      }
2199    }
2200
2201    // Process continue and break blocks. Assume that the lockset for the
2202    // resulting block is unaffected by any discrepancies in them.
2203    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2204         SpecialI < SpecialN; ++SpecialI) {
2205      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2206      int PrevBlockID = PrevBlock->getBlockID();
2207      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2208
2209      if (!LocksetInitialized) {
2210        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2211        LocksetInitialized = true;
2212      } else {
2213        // Determine whether this edge is a loop terminator for diagnostic
2214        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2215        // it might also be part of a switch. Also, a subsequent destructor
2216        // might add to the lockset, in which case the real issue might be a
2217        // double lock on the other path.
2218        const Stmt *Terminator = PrevBlock->getTerminator();
2219        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2220
2221        FactSet PrevLockset;
2222        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2223                       PrevBlock, CurrBlock);
2224
2225        // Do not update EntrySet.
2226        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2227                         PrevBlockInfo->ExitLoc,
2228                         IsLoop ? LEK_LockedSomeLoopIterations
2229                                : LEK_LockedSomePredecessors,
2230                         false);
2231      }
2232    }
2233
2234    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2235
2236    // Visit all the statements in the basic block.
2237    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2238         BE = CurrBlock->end(); BI != BE; ++BI) {
2239      switch (BI->getKind()) {
2240        case CFGElement::Statement: {
2241          const CFGStmt *CS = cast<CFGStmt>(&*BI);
2242          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2243          break;
2244        }
2245        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2246        case CFGElement::AutomaticObjectDtor: {
2247          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2248          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2249            AD->getDestructorDecl(AC.getASTContext()));
2250          if (!DD->hasAttrs())
2251            break;
2252
2253          // Create a dummy expression,
2254          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
2255          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2256                          AD->getTriggerStmt()->getLocEnd());
2257          LocksetBuilder.handleCall(&DRE, DD);
2258          break;
2259        }
2260        default:
2261          break;
2262      }
2263    }
2264    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2265
2266    // For every back edge from CurrBlock (the end of the loop) to another block
2267    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2268    // the one held at the beginning of FirstLoopBlock. We can look up the
2269    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2270    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2271         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2272
2273      // if CurrBlock -> *SI is *not* a back edge
2274      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2275        continue;
2276
2277      CFGBlock *FirstLoopBlock = *SI;
2278      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2279      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2280      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2281                       PreLoop->EntryLoc,
2282                       LEK_LockedSomeLoopIterations,
2283                       false);
2284    }
2285  }
2286
2287  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2288  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2289
2290  // FIXME: Should we call this function for all blocks which exit the function?
2291  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2292                   Final->ExitLoc,
2293                   LEK_LockedAtEndOfFunction,
2294                   LEK_NotLockedAtEndOfFunction,
2295                   false);
2296}
2297
2298} // end anonymous namespace
2299
2300
2301namespace clang {
2302namespace thread_safety {
2303
2304/// \brief Check a function's CFG for thread-safety violations.
2305///
2306/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2307/// at the end of each block, and issue warnings for thread safety violations.
2308/// Each block in the CFG is traversed exactly once.
2309void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2310                             ThreadSafetyHandler &Handler) {
2311  ThreadSafetyAnalyzer Analyzer(Handler);
2312  Analyzer.runAnalysis(AC);
2313}
2314
2315/// \brief Helper function that returns a LockKind required for the given level
2316/// of access.
2317LockKind getLockKindFromAccessKind(AccessKind AK) {
2318  switch (AK) {
2319    case AK_Read :
2320      return LK_Shared;
2321    case AK_Written :
2322      return LK_Exclusive;
2323  }
2324  llvm_unreachable("Unknown AccessKind");
2325}
2326
2327}} // end namespace clang::thread_safety
2328