ThreadSafety.cpp revision f63797c741e646b9482d204c88dee02fb41d7962
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <utility>
38#include <vector>
39
40using namespace clang;
41using namespace thread_safety;
42
43// Key method definition
44ThreadSafetyHandler::~ThreadSafetyHandler() {}
45
46namespace {
47
48/// \brief A MutexID object uniquely identifies a particular mutex, and
49/// is built from an Expr* (i.e. calling a lock function).
50///
51/// Thread-safety analysis works by comparing lock expressions.  Within the
52/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
53/// a particular mutex object at run-time.  Subsequent occurrences of the same
54/// expression (where "same" means syntactic equality) will refer to the same
55/// run-time object if three conditions hold:
56/// (1) Local variables in the expression, such as "x" have not changed.
57/// (2) Values on the heap that affect the expression have not changed.
58/// (3) The expression involves only pure function calls.
59///
60/// The current implementation assumes, but does not verify, that multiple uses
61/// of the same lock expression satisfies these criteria.
62///
63/// Clang introduces an additional wrinkle, which is that it is difficult to
64/// derive canonical expressions, or compare expressions directly for equality.
65/// Thus, we identify a mutex not by an Expr, but by the list of named
66/// declarations that are referenced by the Expr.  In other words,
67/// x->foo->bar.mu will be a four element vector with the Decls for
68/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
69/// for all practical purposes.  Null is used to denote 'this'.
70///
71/// Note we will need to perform substitution on "this" and function parameter
72/// names when constructing a lock expression.
73///
74/// For example:
75/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
76/// void myFunc(C *X) { ... X->lock() ... }
77/// The original expression for the mutex acquired by myFunc is "this->Mu", but
78/// "X" is substituted for "this" so we get X->Mu();
79///
80/// For another example:
81/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
82/// MyList *MyL;
83/// foo(MyL);  // requires lock MyL->Mu to be held
84class MutexID {
85  SmallVector<NamedDecl*, 2> DeclSeq;
86
87  /// \brief Encapsulates the lexical context of a function call.  The lexical
88  /// context includes the arguments to the call, including the implicit object
89  /// argument.  When an attribute containing a mutex expression is attached to
90  /// a method, the expression may refer to formal parameters of the method.
91  /// Actual arguments must be substituted for formal parameters to derive
92  /// the appropriate mutex expression in the lexical context where the function
93  /// is called.  PrevCtx holds the context in which the arguments themselves
94  /// should be evaluated; multiple calling contexts can be chained together
95  /// by the lock_returned attribute.
96  struct CallingContext {
97    const NamedDecl* AttrDecl;  // The decl to which the attribute is attached.
98    Expr*            SelfArg;   // Implicit object argument -- e.g. 'this'
99    unsigned         NumArgs;   // Number of funArgs
100    Expr**           FunArgs;   // Function arguments
101    CallingContext*  PrevCtx;   // The previous context; or 0 if none.
102
103    CallingContext(const NamedDecl* D = 0, Expr* S = 0,
104                   unsigned N = 0, Expr** A = 0, CallingContext* P = 0)
105      : AttrDecl(D), SelfArg(S), NumArgs(N), FunArgs(A), PrevCtx(P)
106    { }
107  };
108
109  /// Build a Decl sequence representing the lock from the given expression.
110  /// Recursive function that terminates on DeclRefExpr.
111  /// Note: this function merely creates a MutexID; it does not check to
112  /// ensure that the original expression is a valid mutex expression.
113  void buildMutexID(Expr *Exp, CallingContext* CallCtx) {
114    if (!Exp) {
115      DeclSeq.clear();
116      return;
117    }
118
119    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
120      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
121      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
122      if (PV) {
123        FunctionDecl *FD =
124          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
125        unsigned i = PV->getFunctionScopeIndex();
126
127        if (CallCtx && CallCtx->FunArgs &&
128            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
129          // Substitute call arguments for references to function parameters
130          assert(i < CallCtx->NumArgs);
131          buildMutexID(CallCtx->FunArgs[i], CallCtx->PrevCtx);
132          return;
133        }
134        // Map the param back to the param of the original function declaration.
135        DeclSeq.push_back(FD->getParamDecl(i));
136        return;
137      }
138      // Not a function parameter -- just store the reference.
139      DeclSeq.push_back(ND);
140    } else if (isa<CXXThisExpr>(Exp)) {
141      // Substitute parent for 'this'
142      if (CallCtx && CallCtx->SelfArg)
143        buildMutexID(CallCtx->SelfArg, CallCtx->PrevCtx);
144      else {
145        DeclSeq.push_back(0);  // Use 0 to represent 'this'.
146        return;  // mutexID is still valid in this case
147      }
148    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
149      NamedDecl *ND = ME->getMemberDecl();
150      DeclSeq.push_back(ND);
151      buildMutexID(ME->getBase(), CallCtx);
152    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
153      // When calling a function with a lock_returned attribute, replace
154      // the function call with the expression in lock_returned.
155      if (LockReturnedAttr* At =
156            CMCE->getMethodDecl()->getAttr<LockReturnedAttr>()) {
157        CallingContext LRCallCtx(CMCE->getMethodDecl());
158        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
159        LRCallCtx.NumArgs = CMCE->getNumArgs();
160        LRCallCtx.FunArgs = CMCE->getArgs();
161        LRCallCtx.PrevCtx = CallCtx;
162        buildMutexID(At->getArg(), &LRCallCtx);
163        return;
164      }
165      DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl());
166      buildMutexID(CMCE->getImplicitObjectArgument(), CallCtx);
167      unsigned NumCallArgs = CMCE->getNumArgs();
168      Expr** CallArgs = CMCE->getArgs();
169      for (unsigned i = 0; i < NumCallArgs; ++i) {
170        buildMutexID(CallArgs[i], CallCtx);
171      }
172    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
173      if (LockReturnedAttr* At =
174            CE->getDirectCallee()->getAttr<LockReturnedAttr>()) {
175        CallingContext LRCallCtx(CE->getDirectCallee());
176        LRCallCtx.NumArgs = CE->getNumArgs();
177        LRCallCtx.FunArgs = CE->getArgs();
178        LRCallCtx.PrevCtx = CallCtx;
179        buildMutexID(At->getArg(), &LRCallCtx);
180        return;
181      }
182      buildMutexID(CE->getCallee(), CallCtx);
183      unsigned NumCallArgs = CE->getNumArgs();
184      Expr** CallArgs = CE->getArgs();
185      for (unsigned i = 0; i < NumCallArgs; ++i) {
186        buildMutexID(CallArgs[i], CallCtx);
187      }
188    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
189      buildMutexID(BOE->getLHS(), CallCtx);
190      buildMutexID(BOE->getRHS(), CallCtx);
191    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
192      buildMutexID(UOE->getSubExpr(), CallCtx);
193    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
194      buildMutexID(ASE->getBase(), CallCtx);
195      buildMutexID(ASE->getIdx(), CallCtx);
196    } else if (AbstractConditionalOperator *CE =
197                 dyn_cast<AbstractConditionalOperator>(Exp)) {
198      buildMutexID(CE->getCond(), CallCtx);
199      buildMutexID(CE->getTrueExpr(), CallCtx);
200      buildMutexID(CE->getFalseExpr(), CallCtx);
201    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
202      buildMutexID(CE->getCond(), CallCtx);
203      buildMutexID(CE->getLHS(), CallCtx);
204      buildMutexID(CE->getRHS(), CallCtx);
205    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
206      buildMutexID(CE->getSubExpr(), CallCtx);
207    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
208      buildMutexID(PE->getSubExpr(), CallCtx);
209    } else if (isa<CharacterLiteral>(Exp) ||
210             isa<CXXNullPtrLiteralExpr>(Exp) ||
211             isa<GNUNullExpr>(Exp) ||
212             isa<CXXBoolLiteralExpr>(Exp) ||
213             isa<FloatingLiteral>(Exp) ||
214             isa<ImaginaryLiteral>(Exp) ||
215             isa<IntegerLiteral>(Exp) ||
216             isa<StringLiteral>(Exp) ||
217             isa<ObjCStringLiteral>(Exp)) {
218      return;  // FIXME: Ignore literals for now
219    } else {
220      // Ignore.  FIXME: mark as invalid expression?
221    }
222  }
223
224  /// \brief Construct a MutexID from an expression.
225  /// \param MutexExp The original mutex expression within an attribute
226  /// \param DeclExp An expression involving the Decl on which the attribute
227  ///        occurs.
228  /// \param D  The declaration to which the lock/unlock attribute is attached.
229  void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
230    CallingContext CallCtx(D);
231
232    // If we are processing a raw attribute expression, with no substitutions.
233    if (DeclExp == 0) {
234      buildMutexID(MutexExp, 0);
235      return;
236    }
237
238    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
239    // for formal parameters when we call buildMutexID later.
240    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
241      CallCtx.SelfArg = ME->getBase();
242    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
243      CallCtx.SelfArg = CE->getImplicitObjectArgument();
244      CallCtx.NumArgs = CE->getNumArgs();
245      CallCtx.FunArgs = CE->getArgs();
246    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
247      CallCtx.NumArgs = CE->getNumArgs();
248      CallCtx.FunArgs = CE->getArgs();
249    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
250      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
251      CallCtx.NumArgs = CE->getNumArgs();
252      CallCtx.FunArgs = CE->getArgs();
253    } else if (D && isa<CXXDestructorDecl>(D)) {
254      // There's no such thing as a "destructor call" in the AST.
255      CallCtx.SelfArg = DeclExp;
256    }
257
258    // If the attribute has no arguments, then assume the argument is "this".
259    if (MutexExp == 0) {
260      buildMutexID(CallCtx.SelfArg, 0);
261      return;
262    }
263
264    // For most attributes.
265    buildMutexID(MutexExp, &CallCtx);
266  }
267
268public:
269  explicit MutexID(clang::Decl::EmptyShell e) {
270    DeclSeq.clear();
271  }
272
273  /// \param MutexExp The original mutex expression within an attribute
274  /// \param DeclExp An expression involving the Decl on which the attribute
275  ///        occurs.
276  /// \param D  The declaration to which the lock/unlock attribute is attached.
277  /// Caller must check isValid() after construction.
278  MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
279    buildMutexIDFromExp(MutexExp, DeclExp, D);
280  }
281
282  /// Return true if this is a valid decl sequence.
283  /// Caller must call this by hand after construction to handle errors.
284  bool isValid() const {
285    return !DeclSeq.empty();
286  }
287
288  /// Issue a warning about an invalid lock expression
289  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
290                              Expr *DeclExp, const NamedDecl* D) {
291    SourceLocation Loc;
292    if (DeclExp)
293      Loc = DeclExp->getExprLoc();
294
295    // FIXME: add a note about the attribute location in MutexExp or D
296    if (Loc.isValid())
297      Handler.handleInvalidLockExp(Loc);
298  }
299
300  bool operator==(const MutexID &other) const {
301    return DeclSeq == other.DeclSeq;
302  }
303
304  bool operator!=(const MutexID &other) const {
305    return !(*this == other);
306  }
307
308  // SmallVector overloads Operator< to do lexicographic ordering. Note that
309  // we use pointer equality (and <) to compare NamedDecls. This means the order
310  // of MutexIDs in a lockset is nondeterministic. In order to output
311  // diagnostics in a deterministic ordering, we must order all diagnostics to
312  // output by SourceLocation when iterating through this lockset.
313  bool operator<(const MutexID &other) const {
314    return DeclSeq < other.DeclSeq;
315  }
316
317  /// \brief Returns the name of the first Decl in the list for a given MutexID;
318  /// e.g. the lock expression foo.bar() has name "bar".
319  /// The caret will point unambiguously to the lock expression, so using this
320  /// name in diagnostics is a way to get simple, and consistent, mutex names.
321  /// We do not want to output the entire expression text for security reasons.
322  std::string getName() const {
323    assert(isValid());
324    if (!DeclSeq.front())
325      return "this";  // Use 0 to represent 'this'.
326    return DeclSeq.front()->getNameAsString();
327  }
328
329  void Profile(llvm::FoldingSetNodeID &ID) const {
330    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
331         E = DeclSeq.end(); I != E; ++I) {
332      ID.AddPointer(*I);
333    }
334  }
335};
336
337
338/// \brief This is a helper class that stores info about the most recent
339/// accquire of a Lock.
340///
341/// The main body of the analysis maps MutexIDs to LockDatas.
342struct LockData {
343  SourceLocation AcquireLoc;
344
345  /// \brief LKind stores whether a lock is held shared or exclusively.
346  /// Note that this analysis does not currently support either re-entrant
347  /// locking or lock "upgrading" and "downgrading" between exclusive and
348  /// shared.
349  ///
350  /// FIXME: add support for re-entrant locking and lock up/downgrading
351  LockKind LKind;
352  MutexID UnderlyingMutex;  // for ScopedLockable objects
353
354  LockData(SourceLocation AcquireLoc, LockKind LKind)
355    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
356  {}
357
358  LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
359    : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
360
361  bool operator==(const LockData &other) const {
362    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
363  }
364
365  bool operator!=(const LockData &other) const {
366    return !(*this == other);
367  }
368
369  void Profile(llvm::FoldingSetNodeID &ID) const {
370    ID.AddInteger(AcquireLoc.getRawEncoding());
371    ID.AddInteger(LKind);
372  }
373};
374
375
376/// A Lockset maps each MutexID (defined above) to information about how it has
377/// been locked.
378typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
379typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
380
381class LocalVariableMap;
382
383/// A side (entry or exit) of a CFG node.
384enum CFGBlockSide { CBS_Entry, CBS_Exit };
385
386/// CFGBlockInfo is a struct which contains all the information that is
387/// maintained for each block in the CFG.  See LocalVariableMap for more
388/// information about the contexts.
389struct CFGBlockInfo {
390  Lockset EntrySet;             // Lockset held at entry to block
391  Lockset ExitSet;              // Lockset held at exit from block
392  LocalVarContext EntryContext; // Context held at entry to block
393  LocalVarContext ExitContext;  // Context held at exit from block
394  SourceLocation EntryLoc;      // Location of first statement in block
395  SourceLocation ExitLoc;       // Location of last statement in block.
396  unsigned EntryIndex;          // Used to replay contexts later
397
398  const Lockset &getSet(CFGBlockSide Side) const {
399    return Side == CBS_Entry ? EntrySet : ExitSet;
400  }
401  SourceLocation getLocation(CFGBlockSide Side) const {
402    return Side == CBS_Entry ? EntryLoc : ExitLoc;
403  }
404
405private:
406  CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
407    : EntrySet(EmptySet), ExitSet(EmptySet),
408      EntryContext(EmptyCtx), ExitContext(EmptyCtx)
409  { }
410
411public:
412  static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
413                                        LocalVariableMap &M);
414};
415
416
417
418// A LocalVariableMap maintains a map from local variables to their currently
419// valid definitions.  It provides SSA-like functionality when traversing the
420// CFG.  Like SSA, each definition or assignment to a variable is assigned a
421// unique name (an integer), which acts as the SSA name for that definition.
422// The total set of names is shared among all CFG basic blocks.
423// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
424// with their SSA-names.  Instead, we compute a Context for each point in the
425// code, which maps local variables to the appropriate SSA-name.  This map
426// changes with each assignment.
427//
428// The map is computed in a single pass over the CFG.  Subsequent analyses can
429// then query the map to find the appropriate Context for a statement, and use
430// that Context to look up the definitions of variables.
431class LocalVariableMap {
432public:
433  typedef LocalVarContext Context;
434
435  /// A VarDefinition consists of an expression, representing the value of the
436  /// variable, along with the context in which that expression should be
437  /// interpreted.  A reference VarDefinition does not itself contain this
438  /// information, but instead contains a pointer to a previous VarDefinition.
439  struct VarDefinition {
440  public:
441    friend class LocalVariableMap;
442
443    const NamedDecl *Dec;  // The original declaration for this variable.
444    const Expr *Exp;       // The expression for this variable, OR
445    unsigned Ref;          // Reference to another VarDefinition
446    Context Ctx;           // The map with which Exp should be interpreted.
447
448    bool isReference() { return !Exp; }
449
450  private:
451    // Create ordinary variable definition
452    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
453      : Dec(D), Exp(E), Ref(0), Ctx(C)
454    { }
455
456    // Create reference to previous definition
457    VarDefinition(const NamedDecl *D, unsigned R, Context C)
458      : Dec(D), Exp(0), Ref(R), Ctx(C)
459    { }
460  };
461
462private:
463  Context::Factory ContextFactory;
464  std::vector<VarDefinition> VarDefinitions;
465  std::vector<unsigned> CtxIndices;
466  std::vector<std::pair<Stmt*, Context> > SavedContexts;
467
468public:
469  LocalVariableMap() {
470    // index 0 is a placeholder for undefined variables (aka phi-nodes).
471    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
472  }
473
474  /// Look up a definition, within the given context.
475  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
476    const unsigned *i = Ctx.lookup(D);
477    if (!i)
478      return 0;
479    assert(*i < VarDefinitions.size());
480    return &VarDefinitions[*i];
481  }
482
483  /// Look up the definition for D within the given context.  Returns
484  /// NULL if the expression is not statically known.  If successful, also
485  /// modifies Ctx to hold the context of the return Expr.
486  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
487    const unsigned *P = Ctx.lookup(D);
488    if (!P)
489      return 0;
490
491    unsigned i = *P;
492    while (i > 0) {
493      if (VarDefinitions[i].Exp) {
494        Ctx = VarDefinitions[i].Ctx;
495        return VarDefinitions[i].Exp;
496      }
497      i = VarDefinitions[i].Ref;
498    }
499    return 0;
500  }
501
502  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
503
504  /// Return the next context after processing S.  This function is used by
505  /// clients of the class to get the appropriate context when traversing the
506  /// CFG.  It must be called for every assignment or DeclStmt.
507  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
508    if (SavedContexts[CtxIndex+1].first == S) {
509      CtxIndex++;
510      Context Result = SavedContexts[CtxIndex].second;
511      return Result;
512    }
513    return C;
514  }
515
516  void dumpVarDefinitionName(unsigned i) {
517    if (i == 0) {
518      llvm::errs() << "Undefined";
519      return;
520    }
521    const NamedDecl *Dec = VarDefinitions[i].Dec;
522    if (!Dec) {
523      llvm::errs() << "<<NULL>>";
524      return;
525    }
526    Dec->printName(llvm::errs());
527    llvm::errs() << "." << i << " " << ((void*) Dec);
528  }
529
530  /// Dumps an ASCII representation of the variable map to llvm::errs()
531  void dump() {
532    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
533      const Expr *Exp = VarDefinitions[i].Exp;
534      unsigned Ref = VarDefinitions[i].Ref;
535
536      dumpVarDefinitionName(i);
537      llvm::errs() << " = ";
538      if (Exp) Exp->dump();
539      else {
540        dumpVarDefinitionName(Ref);
541        llvm::errs() << "\n";
542      }
543    }
544  }
545
546  /// Dumps an ASCII representation of a Context to llvm::errs()
547  void dumpContext(Context C) {
548    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
549      const NamedDecl *D = I.getKey();
550      D->printName(llvm::errs());
551      const unsigned *i = C.lookup(D);
552      llvm::errs() << " -> ";
553      dumpVarDefinitionName(*i);
554      llvm::errs() << "\n";
555    }
556  }
557
558  /// Builds the variable map.
559  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
560                     std::vector<CFGBlockInfo> &BlockInfo);
561
562protected:
563  // Get the current context index
564  unsigned getContextIndex() { return SavedContexts.size()-1; }
565
566  // Save the current context for later replay
567  void saveContext(Stmt *S, Context C) {
568    SavedContexts.push_back(std::make_pair(S,C));
569  }
570
571  // Adds a new definition to the given context, and returns a new context.
572  // This method should be called when declaring a new variable.
573  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
574    assert(!Ctx.contains(D));
575    unsigned newID = VarDefinitions.size();
576    Context NewCtx = ContextFactory.add(Ctx, D, newID);
577    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
578    return NewCtx;
579  }
580
581  // Add a new reference to an existing definition.
582  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
583    unsigned newID = VarDefinitions.size();
584    Context NewCtx = ContextFactory.add(Ctx, D, newID);
585    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
586    return NewCtx;
587  }
588
589  // Updates a definition only if that definition is already in the map.
590  // This method should be called when assigning to an existing variable.
591  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
592    if (Ctx.contains(D)) {
593      unsigned newID = VarDefinitions.size();
594      Context NewCtx = ContextFactory.remove(Ctx, D);
595      NewCtx = ContextFactory.add(NewCtx, D, newID);
596      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
597      return NewCtx;
598    }
599    return Ctx;
600  }
601
602  // Removes a definition from the context, but keeps the variable name
603  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
604  Context clearDefinition(const NamedDecl *D, Context Ctx) {
605    Context NewCtx = Ctx;
606    if (NewCtx.contains(D)) {
607      NewCtx = ContextFactory.remove(NewCtx, D);
608      NewCtx = ContextFactory.add(NewCtx, D, 0);
609    }
610    return NewCtx;
611  }
612
613  // Remove a definition entirely frmo the context.
614  Context removeDefinition(const NamedDecl *D, Context Ctx) {
615    Context NewCtx = Ctx;
616    if (NewCtx.contains(D)) {
617      NewCtx = ContextFactory.remove(NewCtx, D);
618    }
619    return NewCtx;
620  }
621
622  Context intersectContexts(Context C1, Context C2);
623  Context createReferenceContext(Context C);
624  void intersectBackEdge(Context C1, Context C2);
625
626  friend class VarMapBuilder;
627};
628
629
630// This has to be defined after LocalVariableMap.
631CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
632                                             LocalVariableMap &M) {
633  return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
634}
635
636
637/// Visitor which builds a LocalVariableMap
638class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
639public:
640  LocalVariableMap* VMap;
641  LocalVariableMap::Context Ctx;
642
643  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
644    : VMap(VM), Ctx(C) {}
645
646  void VisitDeclStmt(DeclStmt *S);
647  void VisitBinaryOperator(BinaryOperator *BO);
648};
649
650
651// Add new local variables to the variable map
652void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
653  bool modifiedCtx = false;
654  DeclGroupRef DGrp = S->getDeclGroup();
655  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
656    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
657      Expr *E = VD->getInit();
658
659      // Add local variables with trivial type to the variable map
660      QualType T = VD->getType();
661      if (T.isTrivialType(VD->getASTContext())) {
662        Ctx = VMap->addDefinition(VD, E, Ctx);
663        modifiedCtx = true;
664      }
665    }
666  }
667  if (modifiedCtx)
668    VMap->saveContext(S, Ctx);
669}
670
671// Update local variable definitions in variable map
672void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
673  if (!BO->isAssignmentOp())
674    return;
675
676  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
677
678  // Update the variable map and current context.
679  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
680    ValueDecl *VDec = DRE->getDecl();
681    if (Ctx.lookup(VDec)) {
682      if (BO->getOpcode() == BO_Assign)
683        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
684      else
685        // FIXME -- handle compound assignment operators
686        Ctx = VMap->clearDefinition(VDec, Ctx);
687      VMap->saveContext(BO, Ctx);
688    }
689  }
690}
691
692
693// Computes the intersection of two contexts.  The intersection is the
694// set of variables which have the same definition in both contexts;
695// variables with different definitions are discarded.
696LocalVariableMap::Context
697LocalVariableMap::intersectContexts(Context C1, Context C2) {
698  Context Result = C1;
699  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
700    const NamedDecl *Dec = I.getKey();
701    unsigned i1 = I.getData();
702    const unsigned *i2 = C2.lookup(Dec);
703    if (!i2)             // variable doesn't exist on second path
704      Result = removeDefinition(Dec, Result);
705    else if (*i2 != i1)  // variable exists, but has different definition
706      Result = clearDefinition(Dec, Result);
707  }
708  return Result;
709}
710
711// For every variable in C, create a new variable that refers to the
712// definition in C.  Return a new context that contains these new variables.
713// (We use this for a naive implementation of SSA on loop back-edges.)
714LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
715  Context Result = getEmptyContext();
716  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
717    const NamedDecl *Dec = I.getKey();
718    unsigned i = I.getData();
719    Result = addReference(Dec, i, Result);
720  }
721  return Result;
722}
723
724// This routine also takes the intersection of C1 and C2, but it does so by
725// altering the VarDefinitions.  C1 must be the result of an earlier call to
726// createReferenceContext.
727void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
728  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
729    const NamedDecl *Dec = I.getKey();
730    unsigned i1 = I.getData();
731    VarDefinition *VDef = &VarDefinitions[i1];
732    assert(VDef->isReference());
733
734    const unsigned *i2 = C2.lookup(Dec);
735    if (!i2 || (*i2 != i1))
736      VDef->Ref = 0;    // Mark this variable as undefined
737  }
738}
739
740
741// Traverse the CFG in topological order, so all predecessors of a block
742// (excluding back-edges) are visited before the block itself.  At
743// each point in the code, we calculate a Context, which holds the set of
744// variable definitions which are visible at that point in execution.
745// Visible variables are mapped to their definitions using an array that
746// contains all definitions.
747//
748// At join points in the CFG, the set is computed as the intersection of
749// the incoming sets along each edge, E.g.
750//
751//                       { Context                 | VarDefinitions }
752//   int x = 0;          { x -> x1                 | x1 = 0 }
753//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
754//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
755//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
756//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
757//
758// This is essentially a simpler and more naive version of the standard SSA
759// algorithm.  Those definitions that remain in the intersection are from blocks
760// that strictly dominate the current block.  We do not bother to insert proper
761// phi nodes, because they are not used in our analysis; instead, wherever
762// a phi node would be required, we simply remove that definition from the
763// context (E.g. x above).
764//
765// The initial traversal does not capture back-edges, so those need to be
766// handled on a separate pass.  Whenever the first pass encounters an
767// incoming back edge, it duplicates the context, creating new definitions
768// that refer back to the originals.  (These correspond to places where SSA
769// might have to insert a phi node.)  On the second pass, these definitions are
770// set to NULL if the the variable has changed on the back-edge (i.e. a phi
771// node was actually required.)  E.g.
772//
773//                       { Context           | VarDefinitions }
774//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
775//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
776//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
777//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
778//
779void LocalVariableMap::traverseCFG(CFG *CFGraph,
780                                   PostOrderCFGView *SortedGraph,
781                                   std::vector<CFGBlockInfo> &BlockInfo) {
782  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
783
784  CtxIndices.resize(CFGraph->getNumBlockIDs());
785
786  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
787       E = SortedGraph->end(); I!= E; ++I) {
788    const CFGBlock *CurrBlock = *I;
789    int CurrBlockID = CurrBlock->getBlockID();
790    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
791
792    VisitedBlocks.insert(CurrBlock);
793
794    // Calculate the entry context for the current block
795    bool HasBackEdges = false;
796    bool CtxInit = true;
797    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
798         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
799      // if *PI -> CurrBlock is a back edge, so skip it
800      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
801        HasBackEdges = true;
802        continue;
803      }
804
805      int PrevBlockID = (*PI)->getBlockID();
806      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
807
808      if (CtxInit) {
809        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
810        CtxInit = false;
811      }
812      else {
813        CurrBlockInfo->EntryContext =
814          intersectContexts(CurrBlockInfo->EntryContext,
815                            PrevBlockInfo->ExitContext);
816      }
817    }
818
819    // Duplicate the context if we have back-edges, so we can call
820    // intersectBackEdges later.
821    if (HasBackEdges)
822      CurrBlockInfo->EntryContext =
823        createReferenceContext(CurrBlockInfo->EntryContext);
824
825    // Create a starting context index for the current block
826    saveContext(0, CurrBlockInfo->EntryContext);
827    CurrBlockInfo->EntryIndex = getContextIndex();
828
829    // Visit all the statements in the basic block.
830    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
831    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
832         BE = CurrBlock->end(); BI != BE; ++BI) {
833      switch (BI->getKind()) {
834        case CFGElement::Statement: {
835          const CFGStmt *CS = cast<CFGStmt>(&*BI);
836          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
837          break;
838        }
839        default:
840          break;
841      }
842    }
843    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
844
845    // Mark variables on back edges as "unknown" if they've been changed.
846    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
847         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
848      // if CurrBlock -> *SI is *not* a back edge
849      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
850        continue;
851
852      CFGBlock *FirstLoopBlock = *SI;
853      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
854      Context LoopEnd   = CurrBlockInfo->ExitContext;
855      intersectBackEdge(LoopBegin, LoopEnd);
856    }
857  }
858
859  // Put an extra entry at the end of the indexed context array
860  unsigned exitID = CFGraph->getExit().getBlockID();
861  saveContext(0, BlockInfo[exitID].ExitContext);
862}
863
864/// Find the appropriate source locations to use when producing diagnostics for
865/// each block in the CFG.
866static void findBlockLocations(CFG *CFGraph,
867                               PostOrderCFGView *SortedGraph,
868                               std::vector<CFGBlockInfo> &BlockInfo) {
869  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
870       E = SortedGraph->end(); I!= E; ++I) {
871    const CFGBlock *CurrBlock = *I;
872    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
873
874    // Find the source location of the last statement in the block, if the
875    // block is not empty.
876    if (const Stmt *S = CurrBlock->getTerminator()) {
877      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
878    } else {
879      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
880           BE = CurrBlock->rend(); BI != BE; ++BI) {
881        // FIXME: Handle other CFGElement kinds.
882        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
883          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
884          break;
885        }
886      }
887    }
888
889    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
890      // This block contains at least one statement. Find the source location
891      // of the first statement in the block.
892      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
893           BE = CurrBlock->end(); BI != BE; ++BI) {
894        // FIXME: Handle other CFGElement kinds.
895        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
896          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
897          break;
898        }
899      }
900    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
901               CurrBlock != &CFGraph->getExit()) {
902      // The block is empty, and has a single predecessor. Use its exit
903      // location.
904      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
905          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
906    }
907  }
908}
909
910/// \brief Class which implements the core thread safety analysis routines.
911class ThreadSafetyAnalyzer {
912  friend class BuildLockset;
913
914  ThreadSafetyHandler       &Handler;
915  Lockset::Factory          LocksetFactory;
916  LocalVariableMap          LocalVarMap;
917  std::vector<CFGBlockInfo> BlockInfo;
918
919public:
920  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
921
922  Lockset addLock(const Lockset &LSet, const MutexID &Mutex,
923                  const LockData &LDat);
924  Lockset addLock(const Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
925                  const LockData &LDat);
926  Lockset removeLock(const Lockset &LSet, const MutexID &Mutex,
927                     SourceLocation UnlockLoc);
928
929  template <class AttrType>
930  Lockset addLocksToSet(const Lockset &LSet, LockKind LK, AttrType *Attr,
931                        Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
932  Lockset removeLocksFromSet(const Lockset &LSet,
933                             UnlockFunctionAttr *Attr,
934                             Expr *Exp, NamedDecl* FunDecl);
935
936  template <class AttrType>
937  Lockset addTrylock(const Lockset &LSet,
938                     LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
939                     const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
940                     Expr *BrE, bool Neg);
941  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
942                                     bool &Negate);
943
944  Lockset getEdgeLockset(const Lockset &ExitSet,
945                         const CFGBlock* PredBlock,
946                         const CFGBlock *CurrBlock);
947
948  Lockset intersectAndWarn(const Lockset &LSet1, const Lockset &LSet2,
949                           SourceLocation JoinLoc, LockErrorKind LEK);
950
951  void runAnalysis(AnalysisDeclContext &AC);
952};
953
954
955/// \brief Add a new lock to the lockset, warning if the lock is already there.
956/// \param Mutex -- the Mutex expression for the lock
957/// \param LDat  -- the LockData for the lock
958Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
959                                      const MutexID &Mutex,
960                                      const LockData &LDat) {
961  // FIXME: deal with acquired before/after annotations.
962  // FIXME: Don't always warn when we have support for reentrant locks.
963  if (LSet.lookup(Mutex)) {
964    Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
965    return LSet;
966  } else {
967    return LocksetFactory.add(LSet, Mutex, LDat);
968  }
969}
970
971/// \brief Construct a new mutex and add it to the lockset.
972Lockset ThreadSafetyAnalyzer::addLock(const Lockset &LSet,
973                                      Expr *MutexExp, const NamedDecl *D,
974                                      const LockData &LDat) {
975  MutexID Mutex(MutexExp, 0, D);
976  if (!Mutex.isValid()) {
977    MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
978    return LSet;
979  }
980  return addLock(LSet, Mutex, LDat);
981}
982
983
984/// \brief Remove a lock from the lockset, warning if the lock is not there.
985/// \param LockExp The lock expression corresponding to the lock to be removed
986/// \param UnlockLoc The source location of the unlock (only used in error msg)
987Lockset ThreadSafetyAnalyzer::removeLock(const Lockset &LSet,
988                                         const MutexID &Mutex,
989                                         SourceLocation UnlockLoc) {
990  const LockData *LDat = LSet.lookup(Mutex);
991  if (!LDat) {
992    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
993    return LSet;
994  }
995  else {
996    Lockset Result = LSet;
997    // For scoped-lockable vars, remove the mutex associated with this var.
998    if (LDat->UnderlyingMutex.isValid())
999      Result = removeLock(Result, LDat->UnderlyingMutex, UnlockLoc);
1000    return LocksetFactory.remove(Result, Mutex);
1001  }
1002}
1003
1004/// \brief This function, parameterized by an attribute type, is used to add a
1005/// set of locks specified as attribute arguments to the lockset.
1006template <typename AttrType>
1007Lockset ThreadSafetyAnalyzer::addLocksToSet(const Lockset &LSet,
1008                                            LockKind LK, AttrType *Attr,
1009                                            Expr *Exp, NamedDecl* FunDecl,
1010                                            VarDecl *VD) {
1011  typedef typename AttrType::args_iterator iterator_type;
1012
1013  SourceLocation ExpLocation = Exp->getExprLoc();
1014
1015  // Figure out if we're calling the constructor of scoped lockable class
1016  bool isScopedVar = false;
1017  if (VD) {
1018    if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
1019      CXXRecordDecl* PD = CD->getParent();
1020      if (PD && PD->getAttr<ScopedLockableAttr>())
1021        isScopedVar = true;
1022    }
1023  }
1024
1025  if (Attr->args_size() == 0) {
1026    // The mutex held is the "this" object.
1027    MutexID Mutex(0, Exp, FunDecl);
1028    if (!Mutex.isValid()) {
1029      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1030      return LSet;
1031    }
1032    else {
1033      return addLock(LSet, Mutex, LockData(ExpLocation, LK));
1034    }
1035  }
1036
1037  Lockset Result = LSet;
1038  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1039    MutexID Mutex(*I, Exp, FunDecl);
1040    if (!Mutex.isValid())
1041      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1042    else {
1043      Result = addLock(Result, Mutex, LockData(ExpLocation, LK));
1044      if (isScopedVar) {
1045        // For scoped lockable vars, map this var to its underlying mutex.
1046        DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1047        MutexID SMutex(&DRE, 0, 0);
1048        Result = addLock(Result, SMutex,
1049                         LockData(VD->getLocation(), LK, Mutex));
1050      }
1051    }
1052  }
1053  return Result;
1054}
1055
1056/// \brief This function removes a set of locks specified as attribute
1057/// arguments from the lockset.
1058Lockset ThreadSafetyAnalyzer::removeLocksFromSet(const Lockset &LSet,
1059                                                 UnlockFunctionAttr *Attr,
1060                                                 Expr *Exp, NamedDecl* FunDecl) {
1061  SourceLocation ExpLocation;
1062  if (Exp) ExpLocation = Exp->getExprLoc();
1063
1064  if (Attr->args_size() == 0) {
1065    // The mutex held is the "this" object.
1066    MutexID Mu(0, Exp, FunDecl);
1067    if (!Mu.isValid()) {
1068      MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1069      return LSet;
1070    } else {
1071      return removeLock(LSet, Mu, ExpLocation);
1072    }
1073  }
1074
1075  Lockset Result = LSet;
1076  for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
1077       E = Attr->args_end(); I != E; ++I) {
1078    MutexID Mutex(*I, Exp, FunDecl);
1079    if (!Mutex.isValid())
1080      MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1081    else
1082      Result = removeLock(Result, Mutex, ExpLocation);
1083  }
1084  return Result;
1085}
1086
1087
1088/// \brief Add lock to set, if the current block is in the taken branch of a
1089/// trylock.
1090template <class AttrType>
1091Lockset ThreadSafetyAnalyzer::addTrylock(const Lockset &LSet,
1092                                         LockKind LK, AttrType *Attr,
1093                                         Expr *Exp, NamedDecl *FunDecl,
1094                                         const CFGBlock *PredBlock,
1095                                         const CFGBlock *CurrBlock,
1096                                         Expr *BrE, bool Neg) {
1097  // Find out which branch has the lock
1098  bool branch = 0;
1099  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1100    branch = BLE->getValue();
1101  }
1102  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1103    branch = ILE->getValue().getBoolValue();
1104  }
1105  int branchnum = branch ? 0 : 1;
1106  if (Neg) branchnum = !branchnum;
1107
1108  Lockset Result = LSet;
1109  // If we've taken the trylock branch, then add the lock
1110  int i = 0;
1111  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1112       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1113    if (*SI == CurrBlock && i == branchnum) {
1114      Result = addLocksToSet(Result, LK, Attr, Exp, FunDecl, 0);
1115    }
1116  }
1117  return Result;
1118}
1119
1120
1121// If Cond can be traced back to a function call, return the call expression.
1122// The negate variable should be called with false, and will be set to true
1123// if the function call is negated, e.g. if (!mu.tryLock(...))
1124const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1125                                                         LocalVarContext C,
1126                                                         bool &Negate) {
1127  if (!Cond)
1128    return 0;
1129
1130  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1131    return CallExp;
1132  }
1133  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1134    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1135  }
1136  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1137    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1138    return getTrylockCallExpr(E, C, Negate);
1139  }
1140  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1141    if (UOP->getOpcode() == UO_LNot) {
1142      Negate = !Negate;
1143      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1144    }
1145  }
1146  // FIXME -- handle && and || as well.
1147  return NULL;
1148}
1149
1150
1151/// \brief Find the lockset that holds on the edge between PredBlock
1152/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1153/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1154Lockset ThreadSafetyAnalyzer::getEdgeLockset(const Lockset &ExitSet,
1155                                             const CFGBlock *PredBlock,
1156                                             const CFGBlock *CurrBlock) {
1157  if (!PredBlock->getTerminatorCondition())
1158    return ExitSet;
1159
1160  bool Negate = false;
1161  const Stmt *Cond = PredBlock->getTerminatorCondition();
1162  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1163  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1164
1165  CallExpr *Exp = const_cast<CallExpr*>(
1166    getTrylockCallExpr(Cond, LVarCtx, Negate));
1167  if (!Exp)
1168    return ExitSet;
1169
1170  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1171  if(!FunDecl || !FunDecl->hasAttrs())
1172    return ExitSet;
1173
1174  Lockset Result = ExitSet;
1175
1176  // If the condition is a call to a Trylock function, then grab the attributes
1177  AttrVec &ArgAttrs = FunDecl->getAttrs();
1178  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1179    Attr *Attr = ArgAttrs[i];
1180    switch (Attr->getKind()) {
1181      case attr::ExclusiveTrylockFunction: {
1182        ExclusiveTrylockFunctionAttr *A =
1183          cast<ExclusiveTrylockFunctionAttr>(Attr);
1184        Result = addTrylock(Result, LK_Exclusive, A, Exp, FunDecl,
1185                            PredBlock, CurrBlock,
1186                            A->getSuccessValue(), Negate);
1187        break;
1188      }
1189      case attr::SharedTrylockFunction: {
1190        SharedTrylockFunctionAttr *A =
1191          cast<SharedTrylockFunctionAttr>(Attr);
1192        Result = addTrylock(Result, LK_Shared, A, Exp, FunDecl,
1193                            PredBlock, CurrBlock,
1194                            A->getSuccessValue(), Negate);
1195        break;
1196      }
1197      default:
1198        break;
1199    }
1200  }
1201  return Result;
1202}
1203
1204
1205/// \brief We use this class to visit different types of expressions in
1206/// CFGBlocks, and build up the lockset.
1207/// An expression may cause us to add or remove locks from the lockset, or else
1208/// output error messages related to missing locks.
1209/// FIXME: In future, we may be able to not inherit from a visitor.
1210class BuildLockset : public StmtVisitor<BuildLockset> {
1211  friend class ThreadSafetyAnalyzer;
1212
1213  ThreadSafetyAnalyzer *Analyzer;
1214  Lockset LSet;
1215  LocalVariableMap::Context LVarCtx;
1216  unsigned CtxIndex;
1217
1218  // Helper functions
1219  const ValueDecl *getValueDecl(Expr *Exp);
1220
1221  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1222                          Expr *MutexExp, ProtectedOperationKind POK);
1223
1224  void checkAccess(Expr *Exp, AccessKind AK);
1225  void checkDereference(Expr *Exp, AccessKind AK);
1226  void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
1227
1228  /// \brief Returns true if the lockset contains a lock, regardless of whether
1229  /// the lock is held exclusively or shared.
1230  bool locksetContains(const MutexID &Lock) const {
1231    return LSet.lookup(Lock);
1232  }
1233
1234  /// \brief Returns true if the lockset contains a lock with the passed in
1235  /// locktype.
1236  bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
1237    const LockData *LockHeld = LSet.lookup(Lock);
1238    return (LockHeld && KindRequested == LockHeld->LKind);
1239  }
1240
1241  /// \brief Returns true if the lockset contains a lock with at least the
1242  /// passed in locktype. So for example, if we pass in LK_Shared, this function
1243  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
1244  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
1245  bool locksetContainsAtLeast(const MutexID &Lock,
1246                              LockKind KindRequested) const {
1247    switch (KindRequested) {
1248      case LK_Shared:
1249        return locksetContains(Lock);
1250      case LK_Exclusive:
1251        return locksetContains(Lock, KindRequested);
1252    }
1253    llvm_unreachable("Unknown LockKind");
1254  }
1255
1256public:
1257  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1258    : StmtVisitor<BuildLockset>(),
1259      Analyzer(Anlzr),
1260      LSet(Info.EntrySet),
1261      LVarCtx(Info.EntryContext),
1262      CtxIndex(Info.EntryIndex)
1263  {}
1264
1265  void VisitUnaryOperator(UnaryOperator *UO);
1266  void VisitBinaryOperator(BinaryOperator *BO);
1267  void VisitCastExpr(CastExpr *CE);
1268  void VisitCallExpr(CallExpr *Exp);
1269  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1270  void VisitDeclStmt(DeclStmt *S);
1271};
1272
1273
1274/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1275const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1276  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1277    return DR->getDecl();
1278
1279  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1280    return ME->getMemberDecl();
1281
1282  return 0;
1283}
1284
1285/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1286/// of at least the passed in AccessKind.
1287void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1288                                      AccessKind AK, Expr *MutexExp,
1289                                      ProtectedOperationKind POK) {
1290  LockKind LK = getLockKindFromAccessKind(AK);
1291
1292  MutexID Mutex(MutexExp, Exp, D);
1293  if (!Mutex.isValid())
1294    MutexID::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1295  else if (!locksetContainsAtLeast(Mutex, LK))
1296    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK,
1297                                         Exp->getExprLoc());
1298}
1299
1300/// \brief This method identifies variable dereferences and checks pt_guarded_by
1301/// and pt_guarded_var annotations. Note that we only check these annotations
1302/// at the time a pointer is dereferenced.
1303/// FIXME: We need to check for other types of pointer dereferences
1304/// (e.g. [], ->) and deal with them here.
1305/// \param Exp An expression that has been read or written.
1306void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1307  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1308  if (!UO || UO->getOpcode() != clang::UO_Deref)
1309    return;
1310  Exp = UO->getSubExpr()->IgnoreParenCasts();
1311
1312  const ValueDecl *D = getValueDecl(Exp);
1313  if(!D || !D->hasAttrs())
1314    return;
1315
1316  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
1317    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1318                                        Exp->getExprLoc());
1319
1320  const AttrVec &ArgAttrs = D->getAttrs();
1321  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1322    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1323      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1324}
1325
1326/// \brief Checks guarded_by and guarded_var attributes.
1327/// Whenever we identify an access (read or write) of a DeclRefExpr or
1328/// MemberExpr, we need to check whether there are any guarded_by or
1329/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1330void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1331  const ValueDecl *D = getValueDecl(Exp);
1332  if(!D || !D->hasAttrs())
1333    return;
1334
1335  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
1336    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1337                                        Exp->getExprLoc());
1338
1339  const AttrVec &ArgAttrs = D->getAttrs();
1340  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1341    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1342      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1343}
1344
1345/// \brief Process a function call, method call, constructor call,
1346/// or destructor call.  This involves looking at the attributes on the
1347/// corresponding function/method/constructor/destructor, issuing warnings,
1348/// and updating the locksets accordingly.
1349///
1350/// FIXME: For classes annotated with one of the guarded annotations, we need
1351/// to treat const method calls as reads and non-const method calls as writes,
1352/// and check that the appropriate locks are held. Non-const method calls with
1353/// the same signature as const method calls can be also treated as reads.
1354///
1355/// FIXME: We need to also visit CallExprs to catch/check global functions.
1356///
1357/// FIXME: Do not flag an error for member variables accessed in constructors/
1358/// destructors
1359void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
1360  AttrVec &ArgAttrs = D->getAttrs();
1361  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1362    Attr *Attr = ArgAttrs[i];
1363    switch (Attr->getKind()) {
1364      // When we encounter an exclusive lock function, we need to add the lock
1365      // to our lockset with kind exclusive.
1366      case attr::ExclusiveLockFunction: {
1367        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
1368        LSet = Analyzer->addLocksToSet(LSet, LK_Exclusive, A, Exp, D, VD);
1369        break;
1370      }
1371
1372      // When we encounter a shared lock function, we need to add the lock
1373      // to our lockset with kind shared.
1374      case attr::SharedLockFunction: {
1375        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
1376        LSet = Analyzer->addLocksToSet(LSet, LK_Shared, A, Exp, D, VD);
1377        break;
1378      }
1379
1380      // When we encounter an unlock function, we need to remove unlocked
1381      // mutexes from the lockset, and flag a warning if they are not there.
1382      case attr::UnlockFunction: {
1383        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
1384        LSet = Analyzer->removeLocksFromSet(LSet, UFAttr, Exp, D);
1385        break;
1386      }
1387
1388      case attr::ExclusiveLocksRequired: {
1389        ExclusiveLocksRequiredAttr *ELRAttr =
1390            cast<ExclusiveLocksRequiredAttr>(Attr);
1391
1392        for (ExclusiveLocksRequiredAttr::args_iterator
1393             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
1394          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1395        break;
1396      }
1397
1398      case attr::SharedLocksRequired: {
1399        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
1400
1401        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
1402             E = SLRAttr->args_end(); I != E; ++I)
1403          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1404        break;
1405      }
1406
1407      case attr::LocksExcluded: {
1408        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
1409        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
1410            E = LEAttr->args_end(); I != E; ++I) {
1411          MutexID Mutex(*I, Exp, D);
1412          if (!Mutex.isValid())
1413            MutexID::warnInvalidLock(Analyzer->Handler, *I, Exp, D);
1414          else if (locksetContains(Mutex))
1415            Analyzer->Handler.handleFunExcludesLock(D->getName(),
1416                                                    Mutex.getName(),
1417                                                    Exp->getExprLoc());
1418        }
1419        break;
1420      }
1421
1422      // Ignore other (non thread-safety) attributes
1423      default:
1424        break;
1425    }
1426  }
1427}
1428
1429
1430/// \brief For unary operations which read and write a variable, we need to
1431/// check whether we hold any required mutexes. Reads are checked in
1432/// VisitCastExpr.
1433void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1434  switch (UO->getOpcode()) {
1435    case clang::UO_PostDec:
1436    case clang::UO_PostInc:
1437    case clang::UO_PreDec:
1438    case clang::UO_PreInc: {
1439      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1440      checkAccess(SubExp, AK_Written);
1441      checkDereference(SubExp, AK_Written);
1442      break;
1443    }
1444    default:
1445      break;
1446  }
1447}
1448
1449/// For binary operations which assign to a variable (writes), we need to check
1450/// whether we hold any required mutexes.
1451/// FIXME: Deal with non-primitive types.
1452void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1453  if (!BO->isAssignmentOp())
1454    return;
1455
1456  // adjust the context
1457  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1458
1459  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1460  checkAccess(LHSExp, AK_Written);
1461  checkDereference(LHSExp, AK_Written);
1462}
1463
1464/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1465/// need to ensure we hold any required mutexes.
1466/// FIXME: Deal with non-primitive types.
1467void BuildLockset::VisitCastExpr(CastExpr *CE) {
1468  if (CE->getCastKind() != CK_LValueToRValue)
1469    return;
1470  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1471  checkAccess(SubExp, AK_Read);
1472  checkDereference(SubExp, AK_Read);
1473}
1474
1475
1476void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1477  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1478  if(!D || !D->hasAttrs())
1479    return;
1480  handleCall(Exp, D);
1481}
1482
1483void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
1484  // FIXME -- only handles constructors in DeclStmt below.
1485}
1486
1487void BuildLockset::VisitDeclStmt(DeclStmt *S) {
1488  // adjust the context
1489  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1490
1491  DeclGroupRef DGrp = S->getDeclGroup();
1492  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1493    Decl *D = *I;
1494    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1495      Expr *E = VD->getInit();
1496      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1497        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1498        if (!CtorD || !CtorD->hasAttrs())
1499          return;
1500        handleCall(CE, CtorD, VD);
1501      }
1502    }
1503  }
1504}
1505
1506
1507
1508/// \brief Compute the intersection of two locksets and issue warnings for any
1509/// locks in the symmetric difference.
1510///
1511/// This function is used at a merge point in the CFG when comparing the lockset
1512/// of each branch being merged. For example, given the following sequence:
1513/// A; if () then B; else C; D; we need to check that the lockset after B and C
1514/// are the same. In the event of a difference, we use the intersection of these
1515/// two locksets at the start of D.
1516///
1517/// \param LSet1 The first lockset.
1518/// \param LSet2 The second lockset.
1519/// \param JoinLoc The location of the join point for error reporting
1520/// \param LEK The error message to report.
1521Lockset ThreadSafetyAnalyzer::intersectAndWarn(const Lockset &LSet1,
1522                                               const Lockset &LSet2,
1523                                               SourceLocation JoinLoc,
1524                                               LockErrorKind LEK) {
1525  Lockset Intersection = LSet1;
1526
1527  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1528    const MutexID &LSet2Mutex = I.getKey();
1529    const LockData &LSet2LockData = I.getData();
1530    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
1531      if (LD->LKind != LSet2LockData.LKind) {
1532        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
1533                                         LSet2LockData.AcquireLoc,
1534                                         LD->AcquireLoc);
1535        if (LD->LKind != LK_Exclusive)
1536          Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
1537                                            LSet2LockData);
1538      }
1539    } else {
1540      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
1541                                        LSet2LockData.AcquireLoc,
1542                                        JoinLoc, LEK);
1543    }
1544  }
1545
1546  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1547    if (!LSet2.contains(I.getKey())) {
1548      const MutexID &Mutex = I.getKey();
1549      const LockData &MissingLock = I.getData();
1550      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
1551                                        MissingLock.AcquireLoc,
1552                                        JoinLoc, LEK);
1553      Intersection = LocksetFactory.remove(Intersection, Mutex);
1554    }
1555  }
1556  return Intersection;
1557}
1558
1559
1560/// \brief Check a function's CFG for thread-safety violations.
1561///
1562/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1563/// at the end of each block, and issue warnings for thread safety violations.
1564/// Each block in the CFG is traversed exactly once.
1565void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
1566  CFG *CFGraph = AC.getCFG();
1567  if (!CFGraph) return;
1568  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
1569
1570  // AC.dumpCFG(true);
1571
1572  if (!D)
1573    return;  // Ignore anonymous functions for now.
1574  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
1575    return;
1576  // FIXME: Do something a bit more intelligent inside constructor and
1577  // destructor code.  Constructors and destructors must assume unique access
1578  // to 'this', so checks on member variable access is disabled, but we should
1579  // still enable checks on other objects.
1580  if (isa<CXXConstructorDecl>(D))
1581    return;  // Don't check inside constructors.
1582  if (isa<CXXDestructorDecl>(D))
1583    return;  // Don't check inside destructors.
1584
1585  BlockInfo.resize(CFGraph->getNumBlockIDs(),
1586    CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
1587
1588  // We need to explore the CFG via a "topological" ordering.
1589  // That way, we will be guaranteed to have information about required
1590  // predecessor locksets when exploring a new block.
1591  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
1592  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1593
1594  // Compute SSA names for local variables
1595  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1596
1597  // Fill in source locations for all CFGBlocks.
1598  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1599
1600  // Add locks from exclusive_locks_required and shared_locks_required
1601  // to initial lockset. Also turn off checking for lock and unlock functions.
1602  // FIXME: is there a more intelligent way to check lock/unlock functions?
1603  if (!SortedGraph->empty() && D->hasAttrs()) {
1604    const CFGBlock *FirstBlock = *SortedGraph->begin();
1605    Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
1606    const AttrVec &ArgAttrs = D->getAttrs();
1607    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1608      Attr *Attr = ArgAttrs[i];
1609      SourceLocation AttrLoc = Attr->getLocation();
1610      if (SharedLocksRequiredAttr *SLRAttr
1611            = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
1612        for (SharedLocksRequiredAttr::args_iterator
1613             SLRIter = SLRAttr->args_begin(),
1614             SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
1615          InitialLockset = addLock(InitialLockset, *SLRIter, D,
1616                                   LockData(AttrLoc, LK_Shared));
1617      } else if (ExclusiveLocksRequiredAttr *ELRAttr
1618                   = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
1619        for (ExclusiveLocksRequiredAttr::args_iterator
1620             ELRIter = ELRAttr->args_begin(),
1621             ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
1622          InitialLockset = addLock(InitialLockset, *ELRIter, D,
1623                                   LockData(AttrLoc, LK_Exclusive));
1624      } else if (isa<UnlockFunctionAttr>(Attr)) {
1625        // Don't try to check unlock functions for now
1626        return;
1627      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
1628        // Don't try to check lock functions for now
1629        return;
1630      } else if (isa<SharedLockFunctionAttr>(Attr)) {
1631        // Don't try to check lock functions for now
1632        return;
1633      }
1634    }
1635  }
1636
1637  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1638       E = SortedGraph->end(); I!= E; ++I) {
1639    const CFGBlock *CurrBlock = *I;
1640    int CurrBlockID = CurrBlock->getBlockID();
1641    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1642
1643    // Use the default initial lockset in case there are no predecessors.
1644    VisitedBlocks.insert(CurrBlock);
1645
1646    // Iterate through the predecessor blocks and warn if the lockset for all
1647    // predecessors is not the same. We take the entry lockset of the current
1648    // block to be the intersection of all previous locksets.
1649    // FIXME: By keeping the intersection, we may output more errors in future
1650    // for a lock which is not in the intersection, but was in the union. We
1651    // may want to also keep the union in future. As an example, let's say
1652    // the intersection contains Mutex L, and the union contains L and M.
1653    // Later we unlock M. At this point, we would output an error because we
1654    // never locked M; although the real error is probably that we forgot to
1655    // lock M on all code paths. Conversely, let's say that later we lock M.
1656    // In this case, we should compare against the intersection instead of the
1657    // union because the real error is probably that we forgot to unlock M on
1658    // all code paths.
1659    bool LocksetInitialized = false;
1660    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
1661    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1662         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1663
1664      // if *PI -> CurrBlock is a back edge
1665      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1666        continue;
1667
1668      // Ignore edges from blocks that can't return.
1669      if ((*PI)->hasNoReturnElement())
1670        continue;
1671
1672      // If the previous block ended in a 'continue' or 'break' statement, then
1673      // a difference in locksets is probably due to a bug in that block, rather
1674      // than in some other predecessor. In that case, keep the other
1675      // predecessor's lockset.
1676      if (const Stmt *Terminator = (*PI)->getTerminator()) {
1677        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1678          SpecialBlocks.push_back(*PI);
1679          continue;
1680        }
1681      }
1682
1683      int PrevBlockID = (*PI)->getBlockID();
1684      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1685      Lockset PrevLockset =
1686        getEdgeLockset(PrevBlockInfo->ExitSet, *PI, CurrBlock);
1687
1688      if (!LocksetInitialized) {
1689        CurrBlockInfo->EntrySet = PrevLockset;
1690        LocksetInitialized = true;
1691      } else {
1692        CurrBlockInfo->EntrySet =
1693          intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1694                           CurrBlockInfo->EntryLoc,
1695                           LEK_LockedSomePredecessors);
1696      }
1697    }
1698
1699    // Process continue and break blocks. Assume that the lockset for the
1700    // resulting block is unaffected by any discrepancies in them.
1701    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
1702         SpecialI < SpecialN; ++SpecialI) {
1703      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
1704      int PrevBlockID = PrevBlock->getBlockID();
1705      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1706
1707      if (!LocksetInitialized) {
1708        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1709        LocksetInitialized = true;
1710      } else {
1711        // Determine whether this edge is a loop terminator for diagnostic
1712        // purposes. FIXME: A 'break' statement might be a loop terminator, but
1713        // it might also be part of a switch. Also, a subsequent destructor
1714        // might add to the lockset, in which case the real issue might be a
1715        // double lock on the other path.
1716        const Stmt *Terminator = PrevBlock->getTerminator();
1717        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1718
1719        Lockset PrevLockset =
1720          getEdgeLockset(PrevBlockInfo->ExitSet, PrevBlock, CurrBlock);
1721
1722        // Do not update EntrySet.
1723        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
1724                         PrevBlockInfo->ExitLoc,
1725                         IsLoop ? LEK_LockedSomeLoopIterations
1726                                : LEK_LockedSomePredecessors);
1727      }
1728    }
1729
1730    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
1731
1732    // Visit all the statements in the basic block.
1733    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1734         BE = CurrBlock->end(); BI != BE; ++BI) {
1735      switch (BI->getKind()) {
1736        case CFGElement::Statement: {
1737          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1738          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1739          break;
1740        }
1741        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
1742        case CFGElement::AutomaticObjectDtor: {
1743          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
1744          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
1745            AD->getDestructorDecl(AC.getASTContext()));
1746          if (!DD->hasAttrs())
1747            break;
1748
1749          // Create a dummy expression,
1750          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
1751          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
1752                          AD->getTriggerStmt()->getLocEnd());
1753          LocksetBuilder.handleCall(&DRE, DD);
1754          break;
1755        }
1756        default:
1757          break;
1758      }
1759    }
1760    CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
1761
1762    // For every back edge from CurrBlock (the end of the loop) to another block
1763    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1764    // the one held at the beginning of FirstLoopBlock. We can look up the
1765    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1766    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1767         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1768
1769      // if CurrBlock -> *SI is *not* a back edge
1770      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1771        continue;
1772
1773      CFGBlock *FirstLoopBlock = *SI;
1774      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
1775      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
1776      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
1777                       PreLoop->EntryLoc,
1778                       LEK_LockedSomeLoopIterations);
1779    }
1780  }
1781
1782  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
1783  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
1784
1785  // FIXME: Should we call this function for all blocks which exit the function?
1786  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
1787                   Final->ExitLoc,
1788                   LEK_LockedAtEndOfFunction);
1789}
1790
1791} // end anonymous namespace
1792
1793
1794namespace clang {
1795namespace thread_safety {
1796
1797/// \brief Check a function's CFG for thread-safety violations.
1798///
1799/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1800/// at the end of each block, and issue warnings for thread safety violations.
1801/// Each block in the CFG is traversed exactly once.
1802void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
1803                             ThreadSafetyHandler &Handler) {
1804  ThreadSafetyAnalyzer Analyzer(Handler);
1805  Analyzer.runAnalysis(AC);
1806}
1807
1808/// \brief Helper function that returns a LockKind required for the given level
1809/// of access.
1810LockKind getLockKindFromAccessKind(AccessKind AK) {
1811  switch (AK) {
1812    case AK_Read :
1813      return LK_Shared;
1814    case AK_Written :
1815      return LK_Exclusive;
1816  }
1817  llvm_unreachable("Unknown AccessKind");
1818}
1819
1820}} // end namespace clang::thread_safety
1821