CGCall.cpp revision 50e6b18f99c45b31e6216ab221f6b3911b24fa1f
1//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CGCXXABI.h"
17#include "ABIInfo.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Attributes.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/DataLayout.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace clang;
32using namespace CodeGen;
33
34/***/
35
36static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37  switch (CC) {
38  default: return llvm::CallingConv::C;
39  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44  // TODO: add support for CC_X86Pascal to llvm
45  }
46}
47
48/// Derives the 'this' type for codegen purposes, i.e. ignoring method
49/// qualification.
50/// FIXME: address space qualification?
51static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54}
55
56/// Returns the canonical formal type of the given C++ method.
57static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58  return MD->getType()->getCanonicalTypeUnqualified()
59           .getAs<FunctionProtoType>();
60}
61
62/// Returns the "extra-canonicalized" return type, which discards
63/// qualifiers on the return type.  Codegen doesn't care about them,
64/// and it makes ABI code a little easier to be able to assume that
65/// all parameter and return types are top-level unqualified.
66static CanQualType GetReturnType(QualType RetTy) {
67  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68}
69
70/// Arrange the argument and result information for a value of the given
71/// unprototyped freestanding function type.
72const CGFunctionInfo &
73CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74  // When translating an unprototyped function type, always use a
75  // variadic type.
76  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
77                                 ArrayRef<CanQualType>(),
78                                 FTNP->getExtInfo(),
79                                 RequiredArgs(0));
80}
81
82/// Arrange the LLVM function layout for a value of the given function
83/// type, on top of any implicit parameters already stored.  Use the
84/// given ExtInfo instead of the ExtInfo from the function type.
85static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
86                                       SmallVectorImpl<CanQualType> &prefix,
87                                             CanQual<FunctionProtoType> FTP,
88                                              FunctionType::ExtInfo extInfo) {
89  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
90  // FIXME: Kill copy.
91  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
92    prefix.push_back(FTP->getArgType(i));
93  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
94  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
95}
96
97/// Arrange the argument and result information for a free function (i.e.
98/// not a C++ or ObjC instance method) of the given type.
99static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
100                                      SmallVectorImpl<CanQualType> &prefix,
101                                            CanQual<FunctionProtoType> FTP) {
102  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
103}
104
105/// Given the formal ext-info of a C++ instance method, adjust it
106/// according to the C++ ABI in effect.
107static void adjustCXXMethodInfo(CodeGenTypes &CGT,
108                                FunctionType::ExtInfo &extInfo,
109                                bool isVariadic) {
110  if (extInfo.getCC() == CC_Default) {
111    CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
112    extInfo = extInfo.withCallingConv(CC);
113  }
114}
115
116/// Arrange the argument and result information for a free function (i.e.
117/// not a C++ or ObjC instance method) of the given type.
118static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
119                                      SmallVectorImpl<CanQualType> &prefix,
120                                            CanQual<FunctionProtoType> FTP) {
121  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
122  adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
123  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
124}
125
126/// Arrange the argument and result information for a value of the
127/// given freestanding function type.
128const CGFunctionInfo &
129CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
130  SmallVector<CanQualType, 16> argTypes;
131  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
132}
133
134static CallingConv getCallingConventionForDecl(const Decl *D) {
135  // Set the appropriate calling convention for the Function.
136  if (D->hasAttr<StdCallAttr>())
137    return CC_X86StdCall;
138
139  if (D->hasAttr<FastCallAttr>())
140    return CC_X86FastCall;
141
142  if (D->hasAttr<ThisCallAttr>())
143    return CC_X86ThisCall;
144
145  if (D->hasAttr<PascalAttr>())
146    return CC_X86Pascal;
147
148  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
149    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
150
151  return CC_C;
152}
153
154/// Arrange the argument and result information for a call to an
155/// unknown C++ non-static member function of the given abstract type.
156/// The member function must be an ordinary function, i.e. not a
157/// constructor or destructor.
158const CGFunctionInfo &
159CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
160                                   const FunctionProtoType *FTP) {
161  SmallVector<CanQualType, 16> argTypes;
162
163  // Add the 'this' pointer.
164  argTypes.push_back(GetThisType(Context, RD));
165
166  return ::arrangeCXXMethodType(*this, argTypes,
167              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
168}
169
170/// Arrange the argument and result information for a declaration or
171/// definition of the given C++ non-static member function.  The
172/// member function must be an ordinary function, i.e. not a
173/// constructor or destructor.
174const CGFunctionInfo &
175CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
176  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
177  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
178
179  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
180
181  if (MD->isInstance()) {
182    // The abstract case is perfectly fine.
183    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
184  }
185
186  return arrangeFreeFunctionType(prototype);
187}
188
189/// Arrange the argument and result information for a declaration
190/// or definition to the given constructor variant.
191const CGFunctionInfo &
192CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
193                                               CXXCtorType ctorKind) {
194  SmallVector<CanQualType, 16> argTypes;
195  argTypes.push_back(GetThisType(Context, D->getParent()));
196  CanQualType resultType = Context.VoidTy;
197
198  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
199
200  CanQual<FunctionProtoType> FTP = GetFormalType(D);
201
202  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
203
204  // Add the formal parameters.
205  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
206    argTypes.push_back(FTP->getArgType(i));
207
208  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
209  adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
210  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
211}
212
213/// Arrange the argument and result information for a declaration,
214/// definition, or call to the given destructor variant.  It so
215/// happens that all three cases produce the same information.
216const CGFunctionInfo &
217CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
218                                   CXXDtorType dtorKind) {
219  SmallVector<CanQualType, 2> argTypes;
220  argTypes.push_back(GetThisType(Context, D->getParent()));
221  CanQualType resultType = Context.VoidTy;
222
223  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
224
225  CanQual<FunctionProtoType> FTP = GetFormalType(D);
226  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
227  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
228
229  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
230  adjustCXXMethodInfo(*this, extInfo, false);
231  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
232                                 RequiredArgs::All);
233}
234
235/// Arrange the argument and result information for the declaration or
236/// definition of the given function.
237const CGFunctionInfo &
238CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
239  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
240    if (MD->isInstance())
241      return arrangeCXXMethodDeclaration(MD);
242
243  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
244
245  assert(isa<FunctionType>(FTy));
246
247  // When declaring a function without a prototype, always use a
248  // non-variadic type.
249  if (isa<FunctionNoProtoType>(FTy)) {
250    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
251    return arrangeLLVMFunctionInfo(noProto->getResultType(),
252                                   ArrayRef<CanQualType>(),
253                                   noProto->getExtInfo(),
254                                   RequiredArgs::All);
255  }
256
257  assert(isa<FunctionProtoType>(FTy));
258  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
259}
260
261/// Arrange the argument and result information for the declaration or
262/// definition of an Objective-C method.
263const CGFunctionInfo &
264CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
265  // It happens that this is the same as a call with no optional
266  // arguments, except also using the formal 'self' type.
267  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
268}
269
270/// Arrange the argument and result information for the function type
271/// through which to perform a send to the given Objective-C method,
272/// using the given receiver type.  The receiver type is not always
273/// the 'self' type of the method or even an Objective-C pointer type.
274/// This is *not* the right method for actually performing such a
275/// message send, due to the possibility of optional arguments.
276const CGFunctionInfo &
277CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
278                                              QualType receiverType) {
279  SmallVector<CanQualType, 16> argTys;
280  argTys.push_back(Context.getCanonicalParamType(receiverType));
281  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
282  // FIXME: Kill copy?
283  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
284         e = MD->param_end(); i != e; ++i) {
285    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
286  }
287
288  FunctionType::ExtInfo einfo;
289  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
290
291  if (getContext().getLangOpts().ObjCAutoRefCount &&
292      MD->hasAttr<NSReturnsRetainedAttr>())
293    einfo = einfo.withProducesResult(true);
294
295  RequiredArgs required =
296    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
297
298  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
299                                 einfo, required);
300}
301
302const CGFunctionInfo &
303CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
304  // FIXME: Do we need to handle ObjCMethodDecl?
305  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
306
307  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
308    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
309
310  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
311    return arrangeCXXDestructor(DD, GD.getDtorType());
312
313  return arrangeFunctionDeclaration(FD);
314}
315
316/// Figure out the rules for calling a function with the given formal
317/// type using the given arguments.  The arguments are necessary
318/// because the function might be unprototyped, in which case it's
319/// target-dependent in crazy ways.
320const CGFunctionInfo &
321CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
322                                      const FunctionType *fnType) {
323  RequiredArgs required = RequiredArgs::All;
324  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
325    if (proto->isVariadic())
326      required = RequiredArgs(proto->getNumArgs());
327  } else if (CGM.getTargetCodeGenInfo()
328               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
329    required = RequiredArgs(0);
330  }
331
332  return arrangeFreeFunctionCall(fnType->getResultType(), args,
333                                 fnType->getExtInfo(), required);
334}
335
336const CGFunctionInfo &
337CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
338                                      const CallArgList &args,
339                                      FunctionType::ExtInfo info,
340                                      RequiredArgs required) {
341  // FIXME: Kill copy.
342  SmallVector<CanQualType, 16> argTypes;
343  for (CallArgList::const_iterator i = args.begin(), e = args.end();
344       i != e; ++i)
345    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
346  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
347                                 required);
348}
349
350/// Arrange a call to a C++ method, passing the given arguments.
351const CGFunctionInfo &
352CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
353                                   const FunctionProtoType *FPT,
354                                   RequiredArgs required) {
355  // FIXME: Kill copy.
356  SmallVector<CanQualType, 16> argTypes;
357  for (CallArgList::const_iterator i = args.begin(), e = args.end();
358       i != e; ++i)
359    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
360
361  FunctionType::ExtInfo info = FPT->getExtInfo();
362  adjustCXXMethodInfo(*this, info, FPT->isVariadic());
363  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
364                                 argTypes, info, required);
365}
366
367const CGFunctionInfo &
368CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
369                                         const FunctionArgList &args,
370                                         const FunctionType::ExtInfo &info,
371                                         bool isVariadic) {
372  // FIXME: Kill copy.
373  SmallVector<CanQualType, 16> argTypes;
374  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
375       i != e; ++i)
376    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
377
378  RequiredArgs required =
379    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
380  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
381                                 required);
382}
383
384const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
385  return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
386                                 FunctionType::ExtInfo(), RequiredArgs::All);
387}
388
389/// Arrange the argument and result information for an abstract value
390/// of a given function type.  This is the method which all of the
391/// above functions ultimately defer to.
392const CGFunctionInfo &
393CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
394                                      ArrayRef<CanQualType> argTypes,
395                                      FunctionType::ExtInfo info,
396                                      RequiredArgs required) {
397#ifndef NDEBUG
398  for (ArrayRef<CanQualType>::const_iterator
399         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
400    assert(I->isCanonicalAsParam());
401#endif
402
403  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
404
405  // Lookup or create unique function info.
406  llvm::FoldingSetNodeID ID;
407  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
408
409  void *insertPos = 0;
410  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
411  if (FI)
412    return *FI;
413
414  // Construct the function info.  We co-allocate the ArgInfos.
415  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
416  FunctionInfos.InsertNode(FI, insertPos);
417
418  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
419  assert(inserted && "Recursively being processed?");
420
421  // Compute ABI information.
422  getABIInfo().computeInfo(*FI);
423
424  // Loop over all of the computed argument and return value info.  If any of
425  // them are direct or extend without a specified coerce type, specify the
426  // default now.
427  ABIArgInfo &retInfo = FI->getReturnInfo();
428  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
429    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
430
431  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
432       I != E; ++I)
433    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
434      I->info.setCoerceToType(ConvertType(I->type));
435
436  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
437  assert(erased && "Not in set?");
438
439  return *FI;
440}
441
442CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
443                                       const FunctionType::ExtInfo &info,
444                                       CanQualType resultType,
445                                       ArrayRef<CanQualType> argTypes,
446                                       RequiredArgs required) {
447  void *buffer = operator new(sizeof(CGFunctionInfo) +
448                              sizeof(ArgInfo) * (argTypes.size() + 1));
449  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
450  FI->CallingConvention = llvmCC;
451  FI->EffectiveCallingConvention = llvmCC;
452  FI->ASTCallingConvention = info.getCC();
453  FI->NoReturn = info.getNoReturn();
454  FI->ReturnsRetained = info.getProducesResult();
455  FI->Required = required;
456  FI->HasRegParm = info.getHasRegParm();
457  FI->RegParm = info.getRegParm();
458  FI->NumArgs = argTypes.size();
459  FI->getArgsBuffer()[0].type = resultType;
460  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
461    FI->getArgsBuffer()[i + 1].type = argTypes[i];
462  return FI;
463}
464
465/***/
466
467void CodeGenTypes::GetExpandedTypes(QualType type,
468                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
469  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
470    uint64_t NumElts = AT->getSize().getZExtValue();
471    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
472      GetExpandedTypes(AT->getElementType(), expandedTypes);
473  } else if (const RecordType *RT = type->getAs<RecordType>()) {
474    const RecordDecl *RD = RT->getDecl();
475    assert(!RD->hasFlexibleArrayMember() &&
476           "Cannot expand structure with flexible array.");
477    if (RD->isUnion()) {
478      // Unions can be here only in degenerative cases - all the fields are same
479      // after flattening. Thus we have to use the "largest" field.
480      const FieldDecl *LargestFD = 0;
481      CharUnits UnionSize = CharUnits::Zero();
482
483      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
484           i != e; ++i) {
485        const FieldDecl *FD = *i;
486        assert(!FD->isBitField() &&
487               "Cannot expand structure with bit-field members.");
488        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
489        if (UnionSize < FieldSize) {
490          UnionSize = FieldSize;
491          LargestFD = FD;
492        }
493      }
494      if (LargestFD)
495        GetExpandedTypes(LargestFD->getType(), expandedTypes);
496    } else {
497      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
498           i != e; ++i) {
499        assert(!i->isBitField() &&
500               "Cannot expand structure with bit-field members.");
501        GetExpandedTypes(i->getType(), expandedTypes);
502      }
503    }
504  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
505    llvm::Type *EltTy = ConvertType(CT->getElementType());
506    expandedTypes.push_back(EltTy);
507    expandedTypes.push_back(EltTy);
508  } else
509    expandedTypes.push_back(ConvertType(type));
510}
511
512llvm::Function::arg_iterator
513CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
514                                    llvm::Function::arg_iterator AI) {
515  assert(LV.isSimple() &&
516         "Unexpected non-simple lvalue during struct expansion.");
517
518  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
519    unsigned NumElts = AT->getSize().getZExtValue();
520    QualType EltTy = AT->getElementType();
521    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
522      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
523      LValue LV = MakeAddrLValue(EltAddr, EltTy);
524      AI = ExpandTypeFromArgs(EltTy, LV, AI);
525    }
526  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
527    RecordDecl *RD = RT->getDecl();
528    if (RD->isUnion()) {
529      // Unions can be here only in degenerative cases - all the fields are same
530      // after flattening. Thus we have to use the "largest" field.
531      const FieldDecl *LargestFD = 0;
532      CharUnits UnionSize = CharUnits::Zero();
533
534      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
535           i != e; ++i) {
536        const FieldDecl *FD = *i;
537        assert(!FD->isBitField() &&
538               "Cannot expand structure with bit-field members.");
539        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
540        if (UnionSize < FieldSize) {
541          UnionSize = FieldSize;
542          LargestFD = FD;
543        }
544      }
545      if (LargestFD) {
546        // FIXME: What are the right qualifiers here?
547        LValue SubLV = EmitLValueForField(LV, LargestFD);
548        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
549      }
550    } else {
551      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
552           i != e; ++i) {
553        FieldDecl *FD = *i;
554        QualType FT = FD->getType();
555
556        // FIXME: What are the right qualifiers here?
557        LValue SubLV = EmitLValueForField(LV, FD);
558        AI = ExpandTypeFromArgs(FT, SubLV, AI);
559      }
560    }
561  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
562    QualType EltTy = CT->getElementType();
563    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
564    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
565    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
566    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
567  } else {
568    EmitStoreThroughLValue(RValue::get(AI), LV);
569    ++AI;
570  }
571
572  return AI;
573}
574
575/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
576/// accessing some number of bytes out of it, try to gep into the struct to get
577/// at its inner goodness.  Dive as deep as possible without entering an element
578/// with an in-memory size smaller than DstSize.
579static llvm::Value *
580EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
581                                   llvm::StructType *SrcSTy,
582                                   uint64_t DstSize, CodeGenFunction &CGF) {
583  // We can't dive into a zero-element struct.
584  if (SrcSTy->getNumElements() == 0) return SrcPtr;
585
586  llvm::Type *FirstElt = SrcSTy->getElementType(0);
587
588  // If the first elt is at least as large as what we're looking for, or if the
589  // first element is the same size as the whole struct, we can enter it.
590  uint64_t FirstEltSize =
591    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
592  if (FirstEltSize < DstSize &&
593      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
594    return SrcPtr;
595
596  // GEP into the first element.
597  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
598
599  // If the first element is a struct, recurse.
600  llvm::Type *SrcTy =
601    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
602  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
603    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
604
605  return SrcPtr;
606}
607
608/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
609/// are either integers or pointers.  This does a truncation of the value if it
610/// is too large or a zero extension if it is too small.
611static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
612                                             llvm::Type *Ty,
613                                             CodeGenFunction &CGF) {
614  if (Val->getType() == Ty)
615    return Val;
616
617  if (isa<llvm::PointerType>(Val->getType())) {
618    // If this is Pointer->Pointer avoid conversion to and from int.
619    if (isa<llvm::PointerType>(Ty))
620      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
621
622    // Convert the pointer to an integer so we can play with its width.
623    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
624  }
625
626  llvm::Type *DestIntTy = Ty;
627  if (isa<llvm::PointerType>(DestIntTy))
628    DestIntTy = CGF.IntPtrTy;
629
630  if (Val->getType() != DestIntTy)
631    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
632
633  if (isa<llvm::PointerType>(Ty))
634    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
635  return Val;
636}
637
638
639
640/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
641/// a pointer to an object of type \arg Ty.
642///
643/// This safely handles the case when the src type is smaller than the
644/// destination type; in this situation the values of bits which not
645/// present in the src are undefined.
646static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
647                                      llvm::Type *Ty,
648                                      CodeGenFunction &CGF) {
649  llvm::Type *SrcTy =
650    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
651
652  // If SrcTy and Ty are the same, just do a load.
653  if (SrcTy == Ty)
654    return CGF.Builder.CreateLoad(SrcPtr);
655
656  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
657
658  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
659    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
660    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
661  }
662
663  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
664
665  // If the source and destination are integer or pointer types, just do an
666  // extension or truncation to the desired type.
667  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
668      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
669    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
670    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
671  }
672
673  // If load is legal, just bitcast the src pointer.
674  if (SrcSize >= DstSize) {
675    // Generally SrcSize is never greater than DstSize, since this means we are
676    // losing bits. However, this can happen in cases where the structure has
677    // additional padding, for example due to a user specified alignment.
678    //
679    // FIXME: Assert that we aren't truncating non-padding bits when have access
680    // to that information.
681    llvm::Value *Casted =
682      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
683    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
684    // FIXME: Use better alignment / avoid requiring aligned load.
685    Load->setAlignment(1);
686    return Load;
687  }
688
689  // Otherwise do coercion through memory. This is stupid, but
690  // simple.
691  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
692  llvm::Value *Casted =
693    CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
694  llvm::StoreInst *Store =
695    CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
696  // FIXME: Use better alignment / avoid requiring aligned store.
697  Store->setAlignment(1);
698  return CGF.Builder.CreateLoad(Tmp);
699}
700
701// Function to store a first-class aggregate into memory.  We prefer to
702// store the elements rather than the aggregate to be more friendly to
703// fast-isel.
704// FIXME: Do we need to recurse here?
705static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
706                          llvm::Value *DestPtr, bool DestIsVolatile,
707                          bool LowAlignment) {
708  // Prefer scalar stores to first-class aggregate stores.
709  if (llvm::StructType *STy =
710        dyn_cast<llvm::StructType>(Val->getType())) {
711    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
712      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
713      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
714      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
715                                                    DestIsVolatile);
716      if (LowAlignment)
717        SI->setAlignment(1);
718    }
719  } else {
720    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
721    if (LowAlignment)
722      SI->setAlignment(1);
723  }
724}
725
726/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
727/// where the source and destination may have different types.
728///
729/// This safely handles the case when the src type is larger than the
730/// destination type; the upper bits of the src will be lost.
731static void CreateCoercedStore(llvm::Value *Src,
732                               llvm::Value *DstPtr,
733                               bool DstIsVolatile,
734                               CodeGenFunction &CGF) {
735  llvm::Type *SrcTy = Src->getType();
736  llvm::Type *DstTy =
737    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
738  if (SrcTy == DstTy) {
739    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
740    return;
741  }
742
743  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
744
745  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
746    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
747    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
748  }
749
750  // If the source and destination are integer or pointer types, just do an
751  // extension or truncation to the desired type.
752  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
753      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
754    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
755    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
756    return;
757  }
758
759  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
760
761  // If store is legal, just bitcast the src pointer.
762  if (SrcSize <= DstSize) {
763    llvm::Value *Casted =
764      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
765    // FIXME: Use better alignment / avoid requiring aligned store.
766    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
767  } else {
768    // Otherwise do coercion through memory. This is stupid, but
769    // simple.
770
771    // Generally SrcSize is never greater than DstSize, since this means we are
772    // losing bits. However, this can happen in cases where the structure has
773    // additional padding, for example due to a user specified alignment.
774    //
775    // FIXME: Assert that we aren't truncating non-padding bits when have access
776    // to that information.
777    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
778    CGF.Builder.CreateStore(Src, Tmp);
779    llvm::Value *Casted =
780      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
781    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
782    // FIXME: Use better alignment / avoid requiring aligned load.
783    Load->setAlignment(1);
784    CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
785  }
786}
787
788/***/
789
790bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
791  return FI.getReturnInfo().isIndirect();
792}
793
794bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
795  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
796    switch (BT->getKind()) {
797    default:
798      return false;
799    case BuiltinType::Float:
800      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
801    case BuiltinType::Double:
802      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
803    case BuiltinType::LongDouble:
804      return getContext().getTargetInfo().useObjCFPRetForRealType(
805        TargetInfo::LongDouble);
806    }
807  }
808
809  return false;
810}
811
812bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
813  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
814    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
815      if (BT->getKind() == BuiltinType::LongDouble)
816        return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
817    }
818  }
819
820  return false;
821}
822
823llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
824  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
825  return GetFunctionType(FI);
826}
827
828llvm::FunctionType *
829CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
830
831  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
832  assert(Inserted && "Recursively being processed?");
833
834  SmallVector<llvm::Type*, 8> argTypes;
835  llvm::Type *resultType = 0;
836
837  const ABIArgInfo &retAI = FI.getReturnInfo();
838  switch (retAI.getKind()) {
839  case ABIArgInfo::Expand:
840    llvm_unreachable("Invalid ABI kind for return argument");
841
842  case ABIArgInfo::Extend:
843  case ABIArgInfo::Direct:
844    resultType = retAI.getCoerceToType();
845    break;
846
847  case ABIArgInfo::Indirect: {
848    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
849    resultType = llvm::Type::getVoidTy(getLLVMContext());
850
851    QualType ret = FI.getReturnType();
852    llvm::Type *ty = ConvertType(ret);
853    unsigned addressSpace = Context.getTargetAddressSpace(ret);
854    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
855    break;
856  }
857
858  case ABIArgInfo::Ignore:
859    resultType = llvm::Type::getVoidTy(getLLVMContext());
860    break;
861  }
862
863  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
864         ie = FI.arg_end(); it != ie; ++it) {
865    const ABIArgInfo &argAI = it->info;
866
867    switch (argAI.getKind()) {
868    case ABIArgInfo::Ignore:
869      break;
870
871    case ABIArgInfo::Indirect: {
872      // indirect arguments are always on the stack, which is addr space #0.
873      llvm::Type *LTy = ConvertTypeForMem(it->type);
874      argTypes.push_back(LTy->getPointerTo());
875      break;
876    }
877
878    case ABIArgInfo::Extend:
879    case ABIArgInfo::Direct: {
880      // Insert a padding type to ensure proper alignment.
881      if (llvm::Type *PaddingType = argAI.getPaddingType())
882        argTypes.push_back(PaddingType);
883      // If the coerce-to type is a first class aggregate, flatten it.  Either
884      // way is semantically identical, but fast-isel and the optimizer
885      // generally likes scalar values better than FCAs.
886      llvm::Type *argType = argAI.getCoerceToType();
887      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
888        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
889          argTypes.push_back(st->getElementType(i));
890      } else {
891        argTypes.push_back(argType);
892      }
893      break;
894    }
895
896    case ABIArgInfo::Expand:
897      GetExpandedTypes(it->type, argTypes);
898      break;
899    }
900  }
901
902  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
903  assert(Erased && "Not in set?");
904
905  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
906}
907
908llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
909  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
910  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
911
912  if (!isFuncTypeConvertible(FPT))
913    return llvm::StructType::get(getLLVMContext());
914
915  const CGFunctionInfo *Info;
916  if (isa<CXXDestructorDecl>(MD))
917    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
918  else
919    Info = &arrangeCXXMethodDeclaration(MD);
920  return GetFunctionType(*Info);
921}
922
923void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
924                                           const Decl *TargetDecl,
925                                           AttributeListType &PAL,
926                                           unsigned &CallingConv) {
927  llvm::Attributes::Builder FuncAttrs;
928  llvm::Attributes::Builder RetAttrs;
929
930  CallingConv = FI.getEffectiveCallingConvention();
931
932  if (FI.isNoReturn())
933    FuncAttrs.addAttribute(llvm::Attributes::NoReturn);
934
935  // FIXME: handle sseregparm someday...
936  if (TargetDecl) {
937    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
938      FuncAttrs.addAttribute(llvm::Attributes::ReturnsTwice);
939    if (TargetDecl->hasAttr<NoThrowAttr>())
940      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
941    else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
942      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
943      if (FPT && FPT->isNothrow(getContext()))
944        FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
945    }
946
947    if (TargetDecl->hasAttr<NoReturnAttr>())
948      FuncAttrs.addAttribute(llvm::Attributes::NoReturn);
949
950    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
951      FuncAttrs.addAttribute(llvm::Attributes::ReturnsTwice);
952
953    // 'const' and 'pure' attribute functions are also nounwind.
954    if (TargetDecl->hasAttr<ConstAttr>()) {
955      FuncAttrs.addAttribute(llvm::Attributes::ReadNone);
956      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
957    } else if (TargetDecl->hasAttr<PureAttr>()) {
958      FuncAttrs.addAttribute(llvm::Attributes::ReadOnly);
959      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
960    }
961    if (TargetDecl->hasAttr<MallocAttr>())
962      RetAttrs.addAttribute(llvm::Attributes::NoAlias);
963  }
964
965  if (CodeGenOpts.OptimizeSize)
966    FuncAttrs.addAttribute(llvm::Attributes::OptimizeForSize);
967  if (CodeGenOpts.DisableRedZone)
968    FuncAttrs.addAttribute(llvm::Attributes::NoRedZone);
969  if (CodeGenOpts.NoImplicitFloat)
970    FuncAttrs.addAttribute(llvm::Attributes::NoImplicitFloat);
971
972  QualType RetTy = FI.getReturnType();
973  unsigned Index = 1;
974  const ABIArgInfo &RetAI = FI.getReturnInfo();
975  switch (RetAI.getKind()) {
976  case ABIArgInfo::Extend:
977   if (RetTy->hasSignedIntegerRepresentation())
978     RetAttrs.addAttribute(llvm::Attributes::SExt);
979   else if (RetTy->hasUnsignedIntegerRepresentation())
980     RetAttrs.addAttribute(llvm::Attributes::ZExt);
981    break;
982  case ABIArgInfo::Direct:
983  case ABIArgInfo::Ignore:
984    break;
985
986  case ABIArgInfo::Indirect: {
987    llvm::Attributes::Builder SRETAttrs;
988    SRETAttrs.addAttribute(llvm::Attributes::StructRet);
989    if (RetAI.getInReg())
990      SRETAttrs.addAttribute(llvm::Attributes::InReg);
991    PAL.push_back(llvm::
992                  AttributeWithIndex::get(Index,
993                                         llvm::Attributes::get(getLLVMContext(),
994                                                               SRETAttrs)));
995
996    ++Index;
997    // sret disables readnone and readonly
998    FuncAttrs.removeAttribute(llvm::Attributes::ReadOnly)
999      .removeAttribute(llvm::Attributes::ReadNone);
1000    break;
1001  }
1002
1003  case ABIArgInfo::Expand:
1004    llvm_unreachable("Invalid ABI kind for return argument");
1005  }
1006
1007  if (RetAttrs.hasAttributes())
1008    PAL.push_back(llvm::
1009                  AttributeWithIndex::get(0,
1010                                         llvm::Attributes::get(getLLVMContext(),
1011                                                               RetAttrs)));
1012
1013  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1014         ie = FI.arg_end(); it != ie; ++it) {
1015    QualType ParamType = it->type;
1016    const ABIArgInfo &AI = it->info;
1017    llvm::Attributes::Builder Attrs;
1018
1019    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1020    // have the corresponding parameter variable.  It doesn't make
1021    // sense to do it here because parameters are so messed up.
1022    switch (AI.getKind()) {
1023    case ABIArgInfo::Extend:
1024      if (ParamType->isSignedIntegerOrEnumerationType())
1025        Attrs.addAttribute(llvm::Attributes::SExt);
1026      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1027        Attrs.addAttribute(llvm::Attributes::ZExt);
1028      // FALL THROUGH
1029    case ABIArgInfo::Direct:
1030      if (AI.getInReg())
1031        Attrs.addAttribute(llvm::Attributes::InReg);
1032
1033      // FIXME: handle sseregparm someday...
1034
1035      // Increment Index if there is padding.
1036      Index += (AI.getPaddingType() != 0);
1037
1038      if (llvm::StructType *STy =
1039          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1040        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1041        if (Attrs.hasAttributes())
1042          for (unsigned I = 0; I < Extra; ++I)
1043            PAL.push_back(llvm::AttributeWithIndex::get(Index + I,
1044                                         llvm::Attributes::get(getLLVMContext(),
1045                                                               Attrs)));
1046        Index += Extra;
1047      }
1048      break;
1049
1050    case ABIArgInfo::Indirect:
1051      if (AI.getIndirectByVal())
1052        Attrs.addAttribute(llvm::Attributes::ByVal);
1053
1054      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1055
1056      // byval disables readnone and readonly.
1057      FuncAttrs.removeAttribute(llvm::Attributes::ReadOnly)
1058        .removeAttribute(llvm::Attributes::ReadNone);
1059      break;
1060
1061    case ABIArgInfo::Ignore:
1062      // Skip increment, no matching LLVM parameter.
1063      continue;
1064
1065    case ABIArgInfo::Expand: {
1066      SmallVector<llvm::Type*, 8> types;
1067      // FIXME: This is rather inefficient. Do we ever actually need to do
1068      // anything here? The result should be just reconstructed on the other
1069      // side, so extension should be a non-issue.
1070      getTypes().GetExpandedTypes(ParamType, types);
1071      Index += types.size();
1072      continue;
1073    }
1074    }
1075
1076    if (Attrs.hasAttributes())
1077      PAL.push_back(llvm::AttributeWithIndex::get(Index,
1078                                         llvm::Attributes::get(getLLVMContext(),
1079                                                               Attrs)));
1080    ++Index;
1081  }
1082  if (FuncAttrs.hasAttributes())
1083    PAL.push_back(llvm::AttributeWithIndex::get(~0,
1084                                         llvm::Attributes::get(getLLVMContext(),
1085                                                               FuncAttrs)));
1086}
1087
1088/// An argument came in as a promoted argument; demote it back to its
1089/// declared type.
1090static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1091                                         const VarDecl *var,
1092                                         llvm::Value *value) {
1093  llvm::Type *varType = CGF.ConvertType(var->getType());
1094
1095  // This can happen with promotions that actually don't change the
1096  // underlying type, like the enum promotions.
1097  if (value->getType() == varType) return value;
1098
1099  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1100         && "unexpected promotion type");
1101
1102  if (isa<llvm::IntegerType>(varType))
1103    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1104
1105  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1106}
1107
1108void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1109                                         llvm::Function *Fn,
1110                                         const FunctionArgList &Args) {
1111  // If this is an implicit-return-zero function, go ahead and
1112  // initialize the return value.  TODO: it might be nice to have
1113  // a more general mechanism for this that didn't require synthesized
1114  // return statements.
1115  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1116    if (FD->hasImplicitReturnZero()) {
1117      QualType RetTy = FD->getResultType().getUnqualifiedType();
1118      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1119      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1120      Builder.CreateStore(Zero, ReturnValue);
1121    }
1122  }
1123
1124  // FIXME: We no longer need the types from FunctionArgList; lift up and
1125  // simplify.
1126
1127  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1128  llvm::Function::arg_iterator AI = Fn->arg_begin();
1129
1130  // Name the struct return argument.
1131  if (CGM.ReturnTypeUsesSRet(FI)) {
1132    AI->setName("agg.result");
1133    llvm::Attributes::Builder B;
1134    B.addAttribute(llvm::Attributes::NoAlias);
1135    AI->addAttr(llvm::Attributes::get(getLLVMContext(), B));
1136    ++AI;
1137  }
1138
1139  assert(FI.arg_size() == Args.size() &&
1140         "Mismatch between function signature & arguments.");
1141  unsigned ArgNo = 1;
1142  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1143  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1144       i != e; ++i, ++info_it, ++ArgNo) {
1145    const VarDecl *Arg = *i;
1146    QualType Ty = info_it->type;
1147    const ABIArgInfo &ArgI = info_it->info;
1148
1149    bool isPromoted =
1150      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1151
1152    switch (ArgI.getKind()) {
1153    case ABIArgInfo::Indirect: {
1154      llvm::Value *V = AI;
1155
1156      if (hasAggregateLLVMType(Ty)) {
1157        // Aggregates and complex variables are accessed by reference.  All we
1158        // need to do is realign the value, if requested
1159        if (ArgI.getIndirectRealign()) {
1160          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1161
1162          // Copy from the incoming argument pointer to the temporary with the
1163          // appropriate alignment.
1164          //
1165          // FIXME: We should have a common utility for generating an aggregate
1166          // copy.
1167          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1168          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1169          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1170          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1171          Builder.CreateMemCpy(Dst,
1172                               Src,
1173                               llvm::ConstantInt::get(IntPtrTy,
1174                                                      Size.getQuantity()),
1175                               ArgI.getIndirectAlign(),
1176                               false);
1177          V = AlignedTemp;
1178        }
1179      } else {
1180        // Load scalar value from indirect argument.
1181        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1182        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1183
1184        if (isPromoted)
1185          V = emitArgumentDemotion(*this, Arg, V);
1186      }
1187      EmitParmDecl(*Arg, V, ArgNo);
1188      break;
1189    }
1190
1191    case ABIArgInfo::Extend:
1192    case ABIArgInfo::Direct: {
1193      // Skip the dummy padding argument.
1194      if (ArgI.getPaddingType())
1195        ++AI;
1196
1197      // If we have the trivial case, handle it with no muss and fuss.
1198      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1199          ArgI.getCoerceToType() == ConvertType(Ty) &&
1200          ArgI.getDirectOffset() == 0) {
1201        assert(AI != Fn->arg_end() && "Argument mismatch!");
1202        llvm::Value *V = AI;
1203
1204        if (Arg->getType().isRestrictQualified()) {
1205          llvm::Attributes::Builder B;
1206          B.addAttribute(llvm::Attributes::NoAlias);
1207          AI->addAttr(llvm::Attributes::get(getLLVMContext(), B));
1208        }
1209
1210        // Ensure the argument is the correct type.
1211        if (V->getType() != ArgI.getCoerceToType())
1212          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1213
1214        if (isPromoted)
1215          V = emitArgumentDemotion(*this, Arg, V);
1216
1217        EmitParmDecl(*Arg, V, ArgNo);
1218        break;
1219      }
1220
1221      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1222
1223      // The alignment we need to use is the max of the requested alignment for
1224      // the argument plus the alignment required by our access code below.
1225      unsigned AlignmentToUse =
1226        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1227      AlignmentToUse = std::max(AlignmentToUse,
1228                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1229
1230      Alloca->setAlignment(AlignmentToUse);
1231      llvm::Value *V = Alloca;
1232      llvm::Value *Ptr = V;    // Pointer to store into.
1233
1234      // If the value is offset in memory, apply the offset now.
1235      if (unsigned Offs = ArgI.getDirectOffset()) {
1236        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1237        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1238        Ptr = Builder.CreateBitCast(Ptr,
1239                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1240      }
1241
1242      // If the coerce-to type is a first class aggregate, we flatten it and
1243      // pass the elements. Either way is semantically identical, but fast-isel
1244      // and the optimizer generally likes scalar values better than FCAs.
1245      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1246      if (STy && STy->getNumElements() > 1) {
1247        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1248        llvm::Type *DstTy =
1249          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1250        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1251
1252        if (SrcSize <= DstSize) {
1253          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1254
1255          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1256            assert(AI != Fn->arg_end() && "Argument mismatch!");
1257            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1258            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1259            Builder.CreateStore(AI++, EltPtr);
1260          }
1261        } else {
1262          llvm::AllocaInst *TempAlloca =
1263            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1264          TempAlloca->setAlignment(AlignmentToUse);
1265          llvm::Value *TempV = TempAlloca;
1266
1267          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1268            assert(AI != Fn->arg_end() && "Argument mismatch!");
1269            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1270            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1271            Builder.CreateStore(AI++, EltPtr);
1272          }
1273
1274          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1275        }
1276      } else {
1277        // Simple case, just do a coerced store of the argument into the alloca.
1278        assert(AI != Fn->arg_end() && "Argument mismatch!");
1279        AI->setName(Arg->getName() + ".coerce");
1280        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1281      }
1282
1283
1284      // Match to what EmitParmDecl is expecting for this type.
1285      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1286        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1287        if (isPromoted)
1288          V = emitArgumentDemotion(*this, Arg, V);
1289      }
1290      EmitParmDecl(*Arg, V, ArgNo);
1291      continue;  // Skip ++AI increment, already done.
1292    }
1293
1294    case ABIArgInfo::Expand: {
1295      // If this structure was expanded into multiple arguments then
1296      // we need to create a temporary and reconstruct it from the
1297      // arguments.
1298      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1299      CharUnits Align = getContext().getDeclAlign(Arg);
1300      Alloca->setAlignment(Align.getQuantity());
1301      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1302      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1303      EmitParmDecl(*Arg, Alloca, ArgNo);
1304
1305      // Name the arguments used in expansion and increment AI.
1306      unsigned Index = 0;
1307      for (; AI != End; ++AI, ++Index)
1308        AI->setName(Arg->getName() + "." + Twine(Index));
1309      continue;
1310    }
1311
1312    case ABIArgInfo::Ignore:
1313      // Initialize the local variable appropriately.
1314      if (hasAggregateLLVMType(Ty))
1315        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1316      else
1317        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1318                     ArgNo);
1319
1320      // Skip increment, no matching LLVM parameter.
1321      continue;
1322    }
1323
1324    ++AI;
1325  }
1326  assert(AI == Fn->arg_end() && "Argument mismatch!");
1327}
1328
1329static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1330  while (insn->use_empty()) {
1331    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1332    if (!bitcast) return;
1333
1334    // This is "safe" because we would have used a ConstantExpr otherwise.
1335    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1336    bitcast->eraseFromParent();
1337  }
1338}
1339
1340/// Try to emit a fused autorelease of a return result.
1341static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1342                                                    llvm::Value *result) {
1343  // We must be immediately followed the cast.
1344  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1345  if (BB->empty()) return 0;
1346  if (&BB->back() != result) return 0;
1347
1348  llvm::Type *resultType = result->getType();
1349
1350  // result is in a BasicBlock and is therefore an Instruction.
1351  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1352
1353  SmallVector<llvm::Instruction*,4> insnsToKill;
1354
1355  // Look for:
1356  //  %generator = bitcast %type1* %generator2 to %type2*
1357  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1358    // We would have emitted this as a constant if the operand weren't
1359    // an Instruction.
1360    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1361
1362    // Require the generator to be immediately followed by the cast.
1363    if (generator->getNextNode() != bitcast)
1364      return 0;
1365
1366    insnsToKill.push_back(bitcast);
1367  }
1368
1369  // Look for:
1370  //   %generator = call i8* @objc_retain(i8* %originalResult)
1371  // or
1372  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1373  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1374  if (!call) return 0;
1375
1376  bool doRetainAutorelease;
1377
1378  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1379    doRetainAutorelease = true;
1380  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1381                                          .objc_retainAutoreleasedReturnValue) {
1382    doRetainAutorelease = false;
1383
1384    // If we emitted an assembly marker for this call (and the
1385    // ARCEntrypoints field should have been set if so), go looking
1386    // for that call.  If we can't find it, we can't do this
1387    // optimization.  But it should always be the immediately previous
1388    // instruction, unless we needed bitcasts around the call.
1389    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1390      llvm::Instruction *prev = call->getPrevNode();
1391      assert(prev);
1392      if (isa<llvm::BitCastInst>(prev)) {
1393        prev = prev->getPrevNode();
1394        assert(prev);
1395      }
1396      assert(isa<llvm::CallInst>(prev));
1397      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1398               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1399      insnsToKill.push_back(prev);
1400    }
1401  } else {
1402    return 0;
1403  }
1404
1405  result = call->getArgOperand(0);
1406  insnsToKill.push_back(call);
1407
1408  // Keep killing bitcasts, for sanity.  Note that we no longer care
1409  // about precise ordering as long as there's exactly one use.
1410  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1411    if (!bitcast->hasOneUse()) break;
1412    insnsToKill.push_back(bitcast);
1413    result = bitcast->getOperand(0);
1414  }
1415
1416  // Delete all the unnecessary instructions, from latest to earliest.
1417  for (SmallVectorImpl<llvm::Instruction*>::iterator
1418         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1419    (*i)->eraseFromParent();
1420
1421  // Do the fused retain/autorelease if we were asked to.
1422  if (doRetainAutorelease)
1423    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1424
1425  // Cast back to the result type.
1426  return CGF.Builder.CreateBitCast(result, resultType);
1427}
1428
1429/// If this is a +1 of the value of an immutable 'self', remove it.
1430static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1431                                          llvm::Value *result) {
1432  // This is only applicable to a method with an immutable 'self'.
1433  const ObjCMethodDecl *method =
1434    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1435  if (!method) return 0;
1436  const VarDecl *self = method->getSelfDecl();
1437  if (!self->getType().isConstQualified()) return 0;
1438
1439  // Look for a retain call.
1440  llvm::CallInst *retainCall =
1441    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1442  if (!retainCall ||
1443      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1444    return 0;
1445
1446  // Look for an ordinary load of 'self'.
1447  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1448  llvm::LoadInst *load =
1449    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1450  if (!load || load->isAtomic() || load->isVolatile() ||
1451      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1452    return 0;
1453
1454  // Okay!  Burn it all down.  This relies for correctness on the
1455  // assumption that the retain is emitted as part of the return and
1456  // that thereafter everything is used "linearly".
1457  llvm::Type *resultType = result->getType();
1458  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1459  assert(retainCall->use_empty());
1460  retainCall->eraseFromParent();
1461  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1462
1463  return CGF.Builder.CreateBitCast(load, resultType);
1464}
1465
1466/// Emit an ARC autorelease of the result of a function.
1467///
1468/// \return the value to actually return from the function
1469static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1470                                            llvm::Value *result) {
1471  // If we're returning 'self', kill the initial retain.  This is a
1472  // heuristic attempt to "encourage correctness" in the really unfortunate
1473  // case where we have a return of self during a dealloc and we desperately
1474  // need to avoid the possible autorelease.
1475  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1476    return self;
1477
1478  // At -O0, try to emit a fused retain/autorelease.
1479  if (CGF.shouldUseFusedARCCalls())
1480    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1481      return fused;
1482
1483  return CGF.EmitARCAutoreleaseReturnValue(result);
1484}
1485
1486/// Heuristically search for a dominating store to the return-value slot.
1487static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1488  // If there are multiple uses of the return-value slot, just check
1489  // for something immediately preceding the IP.  Sometimes this can
1490  // happen with how we generate implicit-returns; it can also happen
1491  // with noreturn cleanups.
1492  if (!CGF.ReturnValue->hasOneUse()) {
1493    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1494    if (IP->empty()) return 0;
1495    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1496    if (!store) return 0;
1497    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1498    assert(!store->isAtomic() && !store->isVolatile()); // see below
1499    return store;
1500  }
1501
1502  llvm::StoreInst *store =
1503    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1504  if (!store) return 0;
1505
1506  // These aren't actually possible for non-coerced returns, and we
1507  // only care about non-coerced returns on this code path.
1508  assert(!store->isAtomic() && !store->isVolatile());
1509
1510  // Now do a first-and-dirty dominance check: just walk up the
1511  // single-predecessors chain from the current insertion point.
1512  llvm::BasicBlock *StoreBB = store->getParent();
1513  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1514  while (IP != StoreBB) {
1515    if (!(IP = IP->getSinglePredecessor()))
1516      return 0;
1517  }
1518
1519  // Okay, the store's basic block dominates the insertion point; we
1520  // can do our thing.
1521  return store;
1522}
1523
1524void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1525  // Functions with no result always return void.
1526  if (ReturnValue == 0) {
1527    Builder.CreateRetVoid();
1528    return;
1529  }
1530
1531  llvm::DebugLoc RetDbgLoc;
1532  llvm::Value *RV = 0;
1533  QualType RetTy = FI.getReturnType();
1534  const ABIArgInfo &RetAI = FI.getReturnInfo();
1535
1536  switch (RetAI.getKind()) {
1537  case ABIArgInfo::Indirect: {
1538    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1539    if (RetTy->isAnyComplexType()) {
1540      ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1541      StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1542    } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1543      // Do nothing; aggregrates get evaluated directly into the destination.
1544    } else {
1545      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1546                        false, Alignment, RetTy);
1547    }
1548    break;
1549  }
1550
1551  case ABIArgInfo::Extend:
1552  case ABIArgInfo::Direct:
1553    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1554        RetAI.getDirectOffset() == 0) {
1555      // The internal return value temp always will have pointer-to-return-type
1556      // type, just do a load.
1557
1558      // If there is a dominating store to ReturnValue, we can elide
1559      // the load, zap the store, and usually zap the alloca.
1560      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1561        // Get the stored value and nuke the now-dead store.
1562        RetDbgLoc = SI->getDebugLoc();
1563        RV = SI->getValueOperand();
1564        SI->eraseFromParent();
1565
1566        // If that was the only use of the return value, nuke it as well now.
1567        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1568          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1569          ReturnValue = 0;
1570        }
1571
1572      // Otherwise, we have to do a simple load.
1573      } else {
1574        RV = Builder.CreateLoad(ReturnValue);
1575      }
1576    } else {
1577      llvm::Value *V = ReturnValue;
1578      // If the value is offset in memory, apply the offset now.
1579      if (unsigned Offs = RetAI.getDirectOffset()) {
1580        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1581        V = Builder.CreateConstGEP1_32(V, Offs);
1582        V = Builder.CreateBitCast(V,
1583                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1584      }
1585
1586      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1587    }
1588
1589    // In ARC, end functions that return a retainable type with a call
1590    // to objc_autoreleaseReturnValue.
1591    if (AutoreleaseResult) {
1592      assert(getLangOpts().ObjCAutoRefCount &&
1593             !FI.isReturnsRetained() &&
1594             RetTy->isObjCRetainableType());
1595      RV = emitAutoreleaseOfResult(*this, RV);
1596    }
1597
1598    break;
1599
1600  case ABIArgInfo::Ignore:
1601    break;
1602
1603  case ABIArgInfo::Expand:
1604    llvm_unreachable("Invalid ABI kind for return argument");
1605  }
1606
1607  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1608  if (!RetDbgLoc.isUnknown())
1609    Ret->setDebugLoc(RetDbgLoc);
1610}
1611
1612void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1613                                          const VarDecl *param) {
1614  // StartFunction converted the ABI-lowered parameter(s) into a
1615  // local alloca.  We need to turn that into an r-value suitable
1616  // for EmitCall.
1617  llvm::Value *local = GetAddrOfLocalVar(param);
1618
1619  QualType type = param->getType();
1620
1621  // For the most part, we just need to load the alloca, except:
1622  // 1) aggregate r-values are actually pointers to temporaries, and
1623  // 2) references to aggregates are pointers directly to the aggregate.
1624  // I don't know why references to non-aggregates are different here.
1625  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1626    if (hasAggregateLLVMType(ref->getPointeeType()))
1627      return args.add(RValue::getAggregate(local), type);
1628
1629    // Locals which are references to scalars are represented
1630    // with allocas holding the pointer.
1631    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1632  }
1633
1634  if (type->isAnyComplexType()) {
1635    ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1636    return args.add(RValue::getComplex(complex), type);
1637  }
1638
1639  if (hasAggregateLLVMType(type))
1640    return args.add(RValue::getAggregate(local), type);
1641
1642  unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1643  llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1644  return args.add(RValue::get(value), type);
1645}
1646
1647static bool isProvablyNull(llvm::Value *addr) {
1648  return isa<llvm::ConstantPointerNull>(addr);
1649}
1650
1651static bool isProvablyNonNull(llvm::Value *addr) {
1652  return isa<llvm::AllocaInst>(addr);
1653}
1654
1655/// Emit the actual writing-back of a writeback.
1656static void emitWriteback(CodeGenFunction &CGF,
1657                          const CallArgList::Writeback &writeback) {
1658  llvm::Value *srcAddr = writeback.Address;
1659  assert(!isProvablyNull(srcAddr) &&
1660         "shouldn't have writeback for provably null argument");
1661
1662  llvm::BasicBlock *contBB = 0;
1663
1664  // If the argument wasn't provably non-null, we need to null check
1665  // before doing the store.
1666  bool provablyNonNull = isProvablyNonNull(srcAddr);
1667  if (!provablyNonNull) {
1668    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1669    contBB = CGF.createBasicBlock("icr.done");
1670
1671    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1672    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1673    CGF.EmitBlock(writebackBB);
1674  }
1675
1676  // Load the value to writeback.
1677  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1678
1679  // Cast it back, in case we're writing an id to a Foo* or something.
1680  value = CGF.Builder.CreateBitCast(value,
1681               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1682                            "icr.writeback-cast");
1683
1684  // Perform the writeback.
1685  QualType srcAddrType = writeback.AddressType;
1686  CGF.EmitStoreThroughLValue(RValue::get(value),
1687                             CGF.MakeAddrLValue(srcAddr, srcAddrType));
1688
1689  // Jump to the continuation block.
1690  if (!provablyNonNull)
1691    CGF.EmitBlock(contBB);
1692}
1693
1694static void emitWritebacks(CodeGenFunction &CGF,
1695                           const CallArgList &args) {
1696  for (CallArgList::writeback_iterator
1697         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1698    emitWriteback(CGF, *i);
1699}
1700
1701/// Emit an argument that's being passed call-by-writeback.  That is,
1702/// we are passing the address of
1703static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1704                             const ObjCIndirectCopyRestoreExpr *CRE) {
1705  llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1706
1707  // The dest and src types don't necessarily match in LLVM terms
1708  // because of the crazy ObjC compatibility rules.
1709
1710  llvm::PointerType *destType =
1711    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1712
1713  // If the address is a constant null, just pass the appropriate null.
1714  if (isProvablyNull(srcAddr)) {
1715    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1716             CRE->getType());
1717    return;
1718  }
1719
1720  QualType srcAddrType =
1721    CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1722
1723  // Create the temporary.
1724  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1725                                           "icr.temp");
1726
1727  // Zero-initialize it if we're not doing a copy-initialization.
1728  bool shouldCopy = CRE->shouldCopy();
1729  if (!shouldCopy) {
1730    llvm::Value *null =
1731      llvm::ConstantPointerNull::get(
1732        cast<llvm::PointerType>(destType->getElementType()));
1733    CGF.Builder.CreateStore(null, temp);
1734  }
1735
1736  llvm::BasicBlock *contBB = 0;
1737
1738  // If the address is *not* known to be non-null, we need to switch.
1739  llvm::Value *finalArgument;
1740
1741  bool provablyNonNull = isProvablyNonNull(srcAddr);
1742  if (provablyNonNull) {
1743    finalArgument = temp;
1744  } else {
1745    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1746
1747    finalArgument = CGF.Builder.CreateSelect(isNull,
1748                                   llvm::ConstantPointerNull::get(destType),
1749                                             temp, "icr.argument");
1750
1751    // If we need to copy, then the load has to be conditional, which
1752    // means we need control flow.
1753    if (shouldCopy) {
1754      contBB = CGF.createBasicBlock("icr.cont");
1755      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1756      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1757      CGF.EmitBlock(copyBB);
1758    }
1759  }
1760
1761  // Perform a copy if necessary.
1762  if (shouldCopy) {
1763    LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1764    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1765    assert(srcRV.isScalar());
1766
1767    llvm::Value *src = srcRV.getScalarVal();
1768    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1769                                    "icr.cast");
1770
1771    // Use an ordinary store, not a store-to-lvalue.
1772    CGF.Builder.CreateStore(src, temp);
1773  }
1774
1775  // Finish the control flow if we needed it.
1776  if (shouldCopy && !provablyNonNull)
1777    CGF.EmitBlock(contBB);
1778
1779  args.addWriteback(srcAddr, srcAddrType, temp);
1780  args.add(RValue::get(finalArgument), CRE->getType());
1781}
1782
1783void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1784                                  QualType type) {
1785  if (const ObjCIndirectCopyRestoreExpr *CRE
1786        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1787    assert(getContext().getLangOpts().ObjCAutoRefCount);
1788    assert(getContext().hasSameType(E->getType(), type));
1789    return emitWritebackArg(*this, args, CRE);
1790  }
1791
1792  assert(type->isReferenceType() == E->isGLValue() &&
1793         "reference binding to unmaterialized r-value!");
1794
1795  if (E->isGLValue()) {
1796    assert(E->getObjectKind() == OK_Ordinary);
1797    return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1798                    type);
1799  }
1800
1801  if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1802      isa<ImplicitCastExpr>(E) &&
1803      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1804    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1805    assert(L.isSimple());
1806    args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1807    return;
1808  }
1809
1810  args.add(EmitAnyExprToTemp(E), type);
1811}
1812
1813// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1814// optimizer it can aggressively ignore unwind edges.
1815void
1816CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1817  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1818      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1819    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1820                      CGM.getNoObjCARCExceptionsMetadata());
1821}
1822
1823/// Emits a call or invoke instruction to the given function, depending
1824/// on the current state of the EH stack.
1825llvm::CallSite
1826CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1827                                  ArrayRef<llvm::Value *> Args,
1828                                  const Twine &Name) {
1829  llvm::BasicBlock *InvokeDest = getInvokeDest();
1830
1831  llvm::Instruction *Inst;
1832  if (!InvokeDest)
1833    Inst = Builder.CreateCall(Callee, Args, Name);
1834  else {
1835    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1836    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1837    EmitBlock(ContBB);
1838  }
1839
1840  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1841  // optimizer it can aggressively ignore unwind edges.
1842  if (CGM.getLangOpts().ObjCAutoRefCount)
1843    AddObjCARCExceptionMetadata(Inst);
1844
1845  return Inst;
1846}
1847
1848llvm::CallSite
1849CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1850                                  const Twine &Name) {
1851  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1852}
1853
1854static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1855                            llvm::FunctionType *FTy) {
1856  if (ArgNo < FTy->getNumParams())
1857    assert(Elt->getType() == FTy->getParamType(ArgNo));
1858  else
1859    assert(FTy->isVarArg());
1860  ++ArgNo;
1861}
1862
1863void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1864                                       SmallVector<llvm::Value*,16> &Args,
1865                                       llvm::FunctionType *IRFuncTy) {
1866  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1867    unsigned NumElts = AT->getSize().getZExtValue();
1868    QualType EltTy = AT->getElementType();
1869    llvm::Value *Addr = RV.getAggregateAddr();
1870    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1871      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1872      LValue LV = MakeAddrLValue(EltAddr, EltTy);
1873      RValue EltRV;
1874      if (EltTy->isAnyComplexType())
1875        // FIXME: Volatile?
1876        EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1877      else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1878        EltRV = LV.asAggregateRValue();
1879      else
1880        EltRV = EmitLoadOfLValue(LV);
1881      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1882    }
1883  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1884    RecordDecl *RD = RT->getDecl();
1885    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1886    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1887
1888    if (RD->isUnion()) {
1889      const FieldDecl *LargestFD = 0;
1890      CharUnits UnionSize = CharUnits::Zero();
1891
1892      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1893           i != e; ++i) {
1894        const FieldDecl *FD = *i;
1895        assert(!FD->isBitField() &&
1896               "Cannot expand structure with bit-field members.");
1897        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1898        if (UnionSize < FieldSize) {
1899          UnionSize = FieldSize;
1900          LargestFD = FD;
1901        }
1902      }
1903      if (LargestFD) {
1904        RValue FldRV = EmitRValueForField(LV, LargestFD);
1905        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1906      }
1907    } else {
1908      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1909           i != e; ++i) {
1910        FieldDecl *FD = *i;
1911
1912        RValue FldRV = EmitRValueForField(LV, FD);
1913        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1914      }
1915    }
1916  } else if (Ty->isAnyComplexType()) {
1917    ComplexPairTy CV = RV.getComplexVal();
1918    Args.push_back(CV.first);
1919    Args.push_back(CV.second);
1920  } else {
1921    assert(RV.isScalar() &&
1922           "Unexpected non-scalar rvalue during struct expansion.");
1923
1924    // Insert a bitcast as needed.
1925    llvm::Value *V = RV.getScalarVal();
1926    if (Args.size() < IRFuncTy->getNumParams() &&
1927        V->getType() != IRFuncTy->getParamType(Args.size()))
1928      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1929
1930    Args.push_back(V);
1931  }
1932}
1933
1934
1935RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1936                                 llvm::Value *Callee,
1937                                 ReturnValueSlot ReturnValue,
1938                                 const CallArgList &CallArgs,
1939                                 const Decl *TargetDecl,
1940                                 llvm::Instruction **callOrInvoke) {
1941  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1942  SmallVector<llvm::Value*, 16> Args;
1943
1944  // Handle struct-return functions by passing a pointer to the
1945  // location that we would like to return into.
1946  QualType RetTy = CallInfo.getReturnType();
1947  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1948
1949  // IRArgNo - Keep track of the argument number in the callee we're looking at.
1950  unsigned IRArgNo = 0;
1951  llvm::FunctionType *IRFuncTy =
1952    cast<llvm::FunctionType>(
1953                  cast<llvm::PointerType>(Callee->getType())->getElementType());
1954
1955  // If the call returns a temporary with struct return, create a temporary
1956  // alloca to hold the result, unless one is given to us.
1957  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1958    llvm::Value *Value = ReturnValue.getValue();
1959    if (!Value)
1960      Value = CreateMemTemp(RetTy);
1961    Args.push_back(Value);
1962    checkArgMatches(Value, IRArgNo, IRFuncTy);
1963  }
1964
1965  assert(CallInfo.arg_size() == CallArgs.size() &&
1966         "Mismatch between function signature & arguments.");
1967  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1968  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1969       I != E; ++I, ++info_it) {
1970    const ABIArgInfo &ArgInfo = info_it->info;
1971    RValue RV = I->RV;
1972
1973    unsigned TypeAlign =
1974      getContext().getTypeAlignInChars(I->Ty).getQuantity();
1975    switch (ArgInfo.getKind()) {
1976    case ABIArgInfo::Indirect: {
1977      if (RV.isScalar() || RV.isComplex()) {
1978        // Make a temporary alloca to pass the argument.
1979        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1980        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1981          AI->setAlignment(ArgInfo.getIndirectAlign());
1982        Args.push_back(AI);
1983
1984        if (RV.isScalar())
1985          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1986                            TypeAlign, I->Ty);
1987        else
1988          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1989
1990        // Validate argument match.
1991        checkArgMatches(AI, IRArgNo, IRFuncTy);
1992      } else {
1993        // We want to avoid creating an unnecessary temporary+copy here;
1994        // however, we need one in two cases:
1995        // 1. If the argument is not byval, and we are required to copy the
1996        //    source.  (This case doesn't occur on any common architecture.)
1997        // 2. If the argument is byval, RV is not sufficiently aligned, and
1998        //    we cannot force it to be sufficiently aligned.
1999        llvm::Value *Addr = RV.getAggregateAddr();
2000        unsigned Align = ArgInfo.getIndirectAlign();
2001        const llvm::DataLayout *TD = &CGM.getDataLayout();
2002        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2003            (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
2004             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
2005          // Create an aligned temporary, and copy to it.
2006          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2007          if (Align > AI->getAlignment())
2008            AI->setAlignment(Align);
2009          Args.push_back(AI);
2010          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2011
2012          // Validate argument match.
2013          checkArgMatches(AI, IRArgNo, IRFuncTy);
2014        } else {
2015          // Skip the extra memcpy call.
2016          Args.push_back(Addr);
2017
2018          // Validate argument match.
2019          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2020        }
2021      }
2022      break;
2023    }
2024
2025    case ABIArgInfo::Ignore:
2026      break;
2027
2028    case ABIArgInfo::Extend:
2029    case ABIArgInfo::Direct: {
2030      // Insert a padding argument to ensure proper alignment.
2031      if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2032        Args.push_back(llvm::UndefValue::get(PaddingType));
2033        ++IRArgNo;
2034      }
2035
2036      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2037          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2038          ArgInfo.getDirectOffset() == 0) {
2039        llvm::Value *V;
2040        if (RV.isScalar())
2041          V = RV.getScalarVal();
2042        else
2043          V = Builder.CreateLoad(RV.getAggregateAddr());
2044
2045        // If the argument doesn't match, perform a bitcast to coerce it.  This
2046        // can happen due to trivial type mismatches.
2047        if (IRArgNo < IRFuncTy->getNumParams() &&
2048            V->getType() != IRFuncTy->getParamType(IRArgNo))
2049          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2050        Args.push_back(V);
2051
2052        checkArgMatches(V, IRArgNo, IRFuncTy);
2053        break;
2054      }
2055
2056      // FIXME: Avoid the conversion through memory if possible.
2057      llvm::Value *SrcPtr;
2058      if (RV.isScalar()) {
2059        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2060        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2061      } else if (RV.isComplex()) {
2062        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2063        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2064      } else
2065        SrcPtr = RV.getAggregateAddr();
2066
2067      // If the value is offset in memory, apply the offset now.
2068      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2069        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2070        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2071        SrcPtr = Builder.CreateBitCast(SrcPtr,
2072                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2073
2074      }
2075
2076      // If the coerce-to type is a first class aggregate, we flatten it and
2077      // pass the elements. Either way is semantically identical, but fast-isel
2078      // and the optimizer generally likes scalar values better than FCAs.
2079      if (llvm::StructType *STy =
2080            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2081        llvm::Type *SrcTy =
2082          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2083        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2084        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2085
2086        // If the source type is smaller than the destination type of the
2087        // coerce-to logic, copy the source value into a temp alloca the size
2088        // of the destination type to allow loading all of it. The bits past
2089        // the source value are left undef.
2090        if (SrcSize < DstSize) {
2091          llvm::AllocaInst *TempAlloca
2092            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2093          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2094          SrcPtr = TempAlloca;
2095        } else {
2096          SrcPtr = Builder.CreateBitCast(SrcPtr,
2097                                         llvm::PointerType::getUnqual(STy));
2098        }
2099
2100        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2101          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2102          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2103          // We don't know what we're loading from.
2104          LI->setAlignment(1);
2105          Args.push_back(LI);
2106
2107          // Validate argument match.
2108          checkArgMatches(LI, IRArgNo, IRFuncTy);
2109        }
2110      } else {
2111        // In the simple case, just pass the coerced loaded value.
2112        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2113                                         *this));
2114
2115        // Validate argument match.
2116        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2117      }
2118
2119      break;
2120    }
2121
2122    case ABIArgInfo::Expand:
2123      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2124      IRArgNo = Args.size();
2125      break;
2126    }
2127  }
2128
2129  // If the callee is a bitcast of a function to a varargs pointer to function
2130  // type, check to see if we can remove the bitcast.  This handles some cases
2131  // with unprototyped functions.
2132  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2133    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2134      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2135      llvm::FunctionType *CurFT =
2136        cast<llvm::FunctionType>(CurPT->getElementType());
2137      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2138
2139      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2140          ActualFT->getReturnType() == CurFT->getReturnType() &&
2141          ActualFT->getNumParams() == CurFT->getNumParams() &&
2142          ActualFT->getNumParams() == Args.size() &&
2143          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2144        bool ArgsMatch = true;
2145        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2146          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2147            ArgsMatch = false;
2148            break;
2149          }
2150
2151        // Strip the cast if we can get away with it.  This is a nice cleanup,
2152        // but also allows us to inline the function at -O0 if it is marked
2153        // always_inline.
2154        if (ArgsMatch)
2155          Callee = CalleeF;
2156      }
2157    }
2158
2159  unsigned CallingConv;
2160  CodeGen::AttributeListType AttributeList;
2161  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2162  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
2163
2164  llvm::BasicBlock *InvokeDest = 0;
2165  if (!Attrs.getFnAttributes().hasAttribute(llvm::Attributes::NoUnwind))
2166    InvokeDest = getInvokeDest();
2167
2168  llvm::CallSite CS;
2169  if (!InvokeDest) {
2170    CS = Builder.CreateCall(Callee, Args);
2171  } else {
2172    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2173    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2174    EmitBlock(Cont);
2175  }
2176  if (callOrInvoke)
2177    *callOrInvoke = CS.getInstruction();
2178
2179  CS.setAttributes(Attrs);
2180  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2181
2182  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2183  // optimizer it can aggressively ignore unwind edges.
2184  if (CGM.getLangOpts().ObjCAutoRefCount)
2185    AddObjCARCExceptionMetadata(CS.getInstruction());
2186
2187  // If the call doesn't return, finish the basic block and clear the
2188  // insertion point; this allows the rest of IRgen to discard
2189  // unreachable code.
2190  if (CS.doesNotReturn()) {
2191    Builder.CreateUnreachable();
2192    Builder.ClearInsertionPoint();
2193
2194    // FIXME: For now, emit a dummy basic block because expr emitters in
2195    // generally are not ready to handle emitting expressions at unreachable
2196    // points.
2197    EnsureInsertPoint();
2198
2199    // Return a reasonable RValue.
2200    return GetUndefRValue(RetTy);
2201  }
2202
2203  llvm::Instruction *CI = CS.getInstruction();
2204  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2205    CI->setName("call");
2206
2207  // Emit any writebacks immediately.  Arguably this should happen
2208  // after any return-value munging.
2209  if (CallArgs.hasWritebacks())
2210    emitWritebacks(*this, CallArgs);
2211
2212  switch (RetAI.getKind()) {
2213  case ABIArgInfo::Indirect: {
2214    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2215    if (RetTy->isAnyComplexType())
2216      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2217    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2218      return RValue::getAggregate(Args[0]);
2219    return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2220  }
2221
2222  case ABIArgInfo::Ignore:
2223    // If we are ignoring an argument that had a result, make sure to
2224    // construct the appropriate return value for our caller.
2225    return GetUndefRValue(RetTy);
2226
2227  case ABIArgInfo::Extend:
2228  case ABIArgInfo::Direct: {
2229    llvm::Type *RetIRTy = ConvertType(RetTy);
2230    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2231      if (RetTy->isAnyComplexType()) {
2232        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2233        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2234        return RValue::getComplex(std::make_pair(Real, Imag));
2235      }
2236      if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2237        llvm::Value *DestPtr = ReturnValue.getValue();
2238        bool DestIsVolatile = ReturnValue.isVolatile();
2239
2240        if (!DestPtr) {
2241          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2242          DestIsVolatile = false;
2243        }
2244        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2245        return RValue::getAggregate(DestPtr);
2246      }
2247
2248      // If the argument doesn't match, perform a bitcast to coerce it.  This
2249      // can happen due to trivial type mismatches.
2250      llvm::Value *V = CI;
2251      if (V->getType() != RetIRTy)
2252        V = Builder.CreateBitCast(V, RetIRTy);
2253      return RValue::get(V);
2254    }
2255
2256    llvm::Value *DestPtr = ReturnValue.getValue();
2257    bool DestIsVolatile = ReturnValue.isVolatile();
2258
2259    if (!DestPtr) {
2260      DestPtr = CreateMemTemp(RetTy, "coerce");
2261      DestIsVolatile = false;
2262    }
2263
2264    // If the value is offset in memory, apply the offset now.
2265    llvm::Value *StorePtr = DestPtr;
2266    if (unsigned Offs = RetAI.getDirectOffset()) {
2267      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2268      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2269      StorePtr = Builder.CreateBitCast(StorePtr,
2270                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2271    }
2272    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2273
2274    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2275    if (RetTy->isAnyComplexType())
2276      return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2277    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2278      return RValue::getAggregate(DestPtr);
2279    return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2280  }
2281
2282  case ABIArgInfo::Expand:
2283    llvm_unreachable("Invalid ABI kind for return argument");
2284  }
2285
2286  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2287}
2288
2289/* VarArg handling */
2290
2291llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2292  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2293}
2294