1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Attr.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/ADT/Hashing.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/Support/ConvertUTF.h"
32
33using namespace clang;
34using namespace CodeGen;
35
36//===--------------------------------------------------------------------===//
37//                        Miscellaneous Helper Methods
38//===--------------------------------------------------------------------===//
39
40llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41  unsigned addressSpace =
42    cast<llvm::PointerType>(value->getType())->getAddressSpace();
43
44  llvm::PointerType *destType = Int8PtrTy;
45  if (addressSpace)
46    destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47
48  if (value->getType() == destType) return value;
49  return Builder.CreateBitCast(value, destType);
50}
51
52/// CreateTempAlloca - This creates a alloca and inserts it into the entry
53/// block.
54llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                    const Twine &Name) {
56  if (!Builder.isNamePreserving())
57    return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58  return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59}
60
61void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                     llvm::Value *Init) {
63  auto *Store = new llvm::StoreInst(Init, Var);
64  llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65  Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66}
67
68llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                const Twine &Name) {
70  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71  // FIXME: Should we prefer the preferred type alignment here?
72  CharUnits Align = getContext().getTypeAlignInChars(Ty);
73  Alloc->setAlignment(Align.getQuantity());
74  return Alloc;
75}
76
77llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                 const Twine &Name) {
79  llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80  // FIXME: Should we prefer the preferred type alignment here?
81  CharUnits Align = getContext().getTypeAlignInChars(Ty);
82  Alloc->setAlignment(Align.getQuantity());
83  return Alloc;
84}
85
86/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87/// expression and compare the result against zero, returning an Int1Ty value.
88llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89  PGO.setCurrentStmt(E);
90  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91    llvm::Value *MemPtr = EmitScalarExpr(E);
92    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93  }
94
95  QualType BoolTy = getContext().BoolTy;
96  if (!E->getType()->isAnyComplexType())
97    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98
99  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100}
101
102/// EmitIgnoredExpr - Emit code to compute the specified expression,
103/// ignoring the result.
104void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105  if (E->isRValue())
106    return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107
108  // Just emit it as an l-value and drop the result.
109  EmitLValue(E);
110}
111
112/// EmitAnyExpr - Emit code to compute the specified expression which
113/// can have any type.  The result is returned as an RValue struct.
114/// If this is an aggregate expression, AggSlot indicates where the
115/// result should be returned.
116RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                    AggValueSlot aggSlot,
118                                    bool ignoreResult) {
119  switch (getEvaluationKind(E->getType())) {
120  case TEK_Scalar:
121    return RValue::get(EmitScalarExpr(E, ignoreResult));
122  case TEK_Complex:
123    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124  case TEK_Aggregate:
125    if (!ignoreResult && aggSlot.isIgnored())
126      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127    EmitAggExpr(E, aggSlot);
128    return aggSlot.asRValue();
129  }
130  llvm_unreachable("bad evaluation kind");
131}
132
133/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134/// always be accessible even if no aggregate location is provided.
135RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136  AggValueSlot AggSlot = AggValueSlot::ignored();
137
138  if (hasAggregateEvaluationKind(E->getType()))
139    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140  return EmitAnyExpr(E, AggSlot);
141}
142
143/// EmitAnyExprToMem - Evaluate an expression into a given memory
144/// location.
145void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                       llvm::Value *Location,
147                                       Qualifiers Quals,
148                                       bool IsInit) {
149  // FIXME: This function should take an LValue as an argument.
150  switch (getEvaluationKind(E->getType())) {
151  case TEK_Complex:
152    EmitComplexExprIntoLValue(E,
153                         MakeNaturalAlignAddrLValue(Location, E->getType()),
154                              /*isInit*/ false);
155    return;
156
157  case TEK_Aggregate: {
158    CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159    EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                         AggValueSlot::IsDestructed_t(IsInit),
161                                         AggValueSlot::DoesNotNeedGCBarriers,
162                                         AggValueSlot::IsAliased_t(!IsInit)));
163    return;
164  }
165
166  case TEK_Scalar: {
167    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168    LValue LV = MakeAddrLValue(Location, E->getType());
169    EmitStoreThroughLValue(RV, LV);
170    return;
171  }
172  }
173  llvm_unreachable("bad evaluation kind");
174}
175
176static void
177pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                     const Expr *E, llvm::Value *ReferenceTemporary) {
179  // Objective-C++ ARC:
180  //   If we are binding a reference to a temporary that has ownership, we
181  //   need to perform retain/release operations on the temporary.
182  //
183  // FIXME: This should be looking at E, not M.
184  if (CGF.getLangOpts().ObjCAutoRefCount &&
185      M->getType()->isObjCLifetimeType()) {
186    QualType ObjCARCReferenceLifetimeType = M->getType();
187    switch (Qualifiers::ObjCLifetime Lifetime =
188                ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189    case Qualifiers::OCL_None:
190    case Qualifiers::OCL_ExplicitNone:
191      // Carry on to normal cleanup handling.
192      break;
193
194    case Qualifiers::OCL_Autoreleasing:
195      // Nothing to do; cleaned up by an autorelease pool.
196      return;
197
198    case Qualifiers::OCL_Strong:
199    case Qualifiers::OCL_Weak:
200      switch (StorageDuration Duration = M->getStorageDuration()) {
201      case SD_Static:
202        // Note: we intentionally do not register a cleanup to release
203        // the object on program termination.
204        return;
205
206      case SD_Thread:
207        // FIXME: We should probably register a cleanup in this case.
208        return;
209
210      case SD_Automatic:
211      case SD_FullExpression:
212        assert(!ObjCARCReferenceLifetimeType->isArrayType());
213        CodeGenFunction::Destroyer *Destroy;
214        CleanupKind CleanupKind;
215        if (Lifetime == Qualifiers::OCL_Strong) {
216          const ValueDecl *VD = M->getExtendingDecl();
217          bool Precise =
218              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219          CleanupKind = CGF.getARCCleanupKind();
220          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                            : &CodeGenFunction::destroyARCStrongImprecise;
222        } else {
223          // __weak objects always get EH cleanups; otherwise, exceptions
224          // could cause really nasty crashes instead of mere leaks.
225          CleanupKind = NormalAndEHCleanup;
226          Destroy = &CodeGenFunction::destroyARCWeak;
227        }
228        if (Duration == SD_FullExpression)
229          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                          ObjCARCReferenceLifetimeType, *Destroy,
231                          CleanupKind & EHCleanup);
232        else
233          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                          ObjCARCReferenceLifetimeType,
235                                          *Destroy, CleanupKind & EHCleanup);
236        return;
237
238      case SD_Dynamic:
239        llvm_unreachable("temporary cannot have dynamic storage duration");
240      }
241      llvm_unreachable("unknown storage duration");
242    }
243  }
244
245  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246  if (const RecordType *RT =
247          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248    // Get the destructor for the reference temporary.
249    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250    if (!ClassDecl->hasTrivialDestructor())
251      ReferenceTemporaryDtor = ClassDecl->getDestructor();
252  }
253
254  if (!ReferenceTemporaryDtor)
255    return;
256
257  // Call the destructor for the temporary.
258  switch (M->getStorageDuration()) {
259  case SD_Static:
260  case SD_Thread: {
261    llvm::Constant *CleanupFn;
262    llvm::Constant *CleanupArg;
263    if (E->getType()->isArrayType()) {
264      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265          cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269    } else {
270      CleanupFn =
271        CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272      CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273    }
274    CGF.CGM.getCXXABI().registerGlobalDtor(
275        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276    break;
277  }
278
279  case SD_FullExpression:
280    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                    CodeGenFunction::destroyCXXObject,
282                    CGF.getLangOpts().Exceptions);
283    break;
284
285  case SD_Automatic:
286    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                    ReferenceTemporary, E->getType(),
288                                    CodeGenFunction::destroyCXXObject,
289                                    CGF.getLangOpts().Exceptions);
290    break;
291
292  case SD_Dynamic:
293    llvm_unreachable("temporary cannot have dynamic storage duration");
294  }
295}
296
297static llvm::Value *
298createReferenceTemporary(CodeGenFunction &CGF,
299                         const MaterializeTemporaryExpr *M, const Expr *Inner) {
300  switch (M->getStorageDuration()) {
301  case SD_FullExpression:
302  case SD_Automatic:
303    return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304
305  case SD_Thread:
306  case SD_Static:
307    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308
309  case SD_Dynamic:
310    llvm_unreachable("temporary can't have dynamic storage duration");
311  }
312  llvm_unreachable("unknown storage duration");
313}
314
315LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                           const MaterializeTemporaryExpr *M) {
317  const Expr *E = M->GetTemporaryExpr();
318
319  if (getLangOpts().ObjCAutoRefCount &&
320      M->getType()->isObjCLifetimeType() &&
321      M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322      M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323    // FIXME: Fold this into the general case below.
324    llvm::Value *Object = createReferenceTemporary(*this, M, E);
325    LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326
327    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328      // We should not have emitted the initializer for this temporary as a
329      // constant.
330      assert(!Var->hasInitializer());
331      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332    }
333
334    EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335
336    pushTemporaryCleanup(*this, M, E, Object);
337    return RefTempDst;
338  }
339
340  SmallVector<const Expr *, 2> CommaLHSs;
341  SmallVector<SubobjectAdjustment, 2> Adjustments;
342  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343
344  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345    EmitIgnoredExpr(CommaLHSs[I]);
346
347  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348    if (opaque->getType()->isRecordType()) {
349      assert(Adjustments.empty());
350      return EmitOpaqueValueLValue(opaque);
351    }
352  }
353
354  // Create and initialize the reference temporary.
355  llvm::Value *Object = createReferenceTemporary(*this, M, E);
356  if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357    // If the temporary is a global and has a constant initializer, we may
358    // have already initialized it.
359    if (!Var->hasInitializer()) {
360      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362    }
363  } else {
364    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365  }
366  pushTemporaryCleanup(*this, M, E, Object);
367
368  // Perform derived-to-base casts and/or field accesses, to get from the
369  // temporary object we created (and, potentially, for which we extended
370  // the lifetime) to the subobject we're binding the reference to.
371  for (unsigned I = Adjustments.size(); I != 0; --I) {
372    SubobjectAdjustment &Adjustment = Adjustments[I-1];
373    switch (Adjustment.Kind) {
374    case SubobjectAdjustment::DerivedToBaseAdjustment:
375      Object =
376          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                Adjustment.DerivedToBase.BasePath->path_begin(),
378                                Adjustment.DerivedToBase.BasePath->path_end(),
379                                /*NullCheckValue=*/ false);
380      break;
381
382    case SubobjectAdjustment::FieldAdjustment: {
383      LValue LV = MakeAddrLValue(Object, E->getType());
384      LV = EmitLValueForField(LV, Adjustment.Field);
385      assert(LV.isSimple() &&
386             "materialized temporary field is not a simple lvalue");
387      Object = LV.getAddress();
388      break;
389    }
390
391    case SubobjectAdjustment::MemberPointerAdjustment: {
392      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393      Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394          *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395      break;
396    }
397    }
398  }
399
400  return MakeAddrLValue(Object, M->getType());
401}
402
403RValue
404CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405  // Emit the expression as an lvalue.
406  LValue LV = EmitLValue(E);
407  assert(LV.isSimple());
408  llvm::Value *Value = LV.getAddress();
409
410  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411    // C++11 [dcl.ref]p5 (as amended by core issue 453):
412    //   If a glvalue to which a reference is directly bound designates neither
413    //   an existing object or function of an appropriate type nor a region of
414    //   storage of suitable size and alignment to contain an object of the
415    //   reference's type, the behavior is undefined.
416    QualType Ty = E->getType();
417    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418  }
419
420  return RValue::get(Value);
421}
422
423
424/// getAccessedFieldNo - Given an encoded value and a result number, return the
425/// input field number being accessed.
426unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                             const llvm::Constant *Elts) {
428  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429      ->getZExtValue();
430}
431
432/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                    llvm::Value *High) {
435  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436  llvm::Value *K47 = Builder.getInt64(47);
437  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441  return Builder.CreateMul(B1, KMul);
442}
443
444bool CodeGenFunction::sanitizePerformTypeCheck() const {
445  return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446         SanOpts->Vptr;
447}
448
449void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450                                    llvm::Value *Address,
451                                    QualType Ty, CharUnits Alignment) {
452  if (!sanitizePerformTypeCheck())
453    return;
454
455  // Don't check pointers outside the default address space. The null check
456  // isn't correct, the object-size check isn't supported by LLVM, and we can't
457  // communicate the addresses to the runtime handler for the vptr check.
458  if (Address->getType()->getPointerAddressSpace())
459    return;
460
461  llvm::Value *Cond = nullptr;
462  llvm::BasicBlock *Done = nullptr;
463
464  if (SanOpts->Null) {
465    // The glvalue must not be an empty glvalue.
466    Cond = Builder.CreateICmpNE(
467        Address, llvm::Constant::getNullValue(Address->getType()));
468
469    if (TCK == TCK_DowncastPointer) {
470      // When performing a pointer downcast, it's OK if the value is null.
471      // Skip the remaining checks in that case.
472      Done = createBasicBlock("null");
473      llvm::BasicBlock *Rest = createBasicBlock("not.null");
474      Builder.CreateCondBr(Cond, Rest, Done);
475      EmitBlock(Rest);
476      Cond = nullptr;
477    }
478  }
479
480  if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
481    uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
482
483    // The glvalue must refer to a large enough storage region.
484    // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
485    //        to check this.
486    // FIXME: Get object address space
487    llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
488    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
489    llvm::Value *Min = Builder.getFalse();
490    llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
491    llvm::Value *LargeEnough =
492        Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
493                              llvm::ConstantInt::get(IntPtrTy, Size));
494    Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
495  }
496
497  uint64_t AlignVal = 0;
498
499  if (SanOpts->Alignment) {
500    AlignVal = Alignment.getQuantity();
501    if (!Ty->isIncompleteType() && !AlignVal)
502      AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
503
504    // The glvalue must be suitably aligned.
505    if (AlignVal) {
506      llvm::Value *Align =
507          Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
508                            llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
509      llvm::Value *Aligned =
510        Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
511      Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
512    }
513  }
514
515  if (Cond) {
516    llvm::Constant *StaticData[] = {
517      EmitCheckSourceLocation(Loc),
518      EmitCheckTypeDescriptor(Ty),
519      llvm::ConstantInt::get(SizeTy, AlignVal),
520      llvm::ConstantInt::get(Int8Ty, TCK)
521    };
522    EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
523  }
524
525  // If possible, check that the vptr indicates that there is a subobject of
526  // type Ty at offset zero within this object.
527  //
528  // C++11 [basic.life]p5,6:
529  //   [For storage which does not refer to an object within its lifetime]
530  //   The program has undefined behavior if:
531  //    -- the [pointer or glvalue] is used to access a non-static data member
532  //       or call a non-static member function
533  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
534  if (SanOpts->Vptr &&
535      (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
536       TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
537      RD && RD->hasDefinition() && RD->isDynamicClass()) {
538    // Compute a hash of the mangled name of the type.
539    //
540    // FIXME: This is not guaranteed to be deterministic! Move to a
541    //        fingerprinting mechanism once LLVM provides one. For the time
542    //        being the implementation happens to be deterministic.
543    SmallString<64> MangledName;
544    llvm::raw_svector_ostream Out(MangledName);
545    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
546                                                     Out);
547    llvm::hash_code TypeHash = hash_value(Out.str());
548
549    // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
550    llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
551    llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
552    llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
553    llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
554    llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
555
556    llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
557    Hash = Builder.CreateTrunc(Hash, IntPtrTy);
558
559    // Look the hash up in our cache.
560    const int CacheSize = 128;
561    llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
562    llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
563                                                   "__ubsan_vptr_type_cache");
564    llvm::Value *Slot = Builder.CreateAnd(Hash,
565                                          llvm::ConstantInt::get(IntPtrTy,
566                                                                 CacheSize-1));
567    llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
568    llvm::Value *CacheVal =
569      Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
570
571    // If the hash isn't in the cache, call a runtime handler to perform the
572    // hard work of checking whether the vptr is for an object of the right
573    // type. This will either fill in the cache and return, or produce a
574    // diagnostic.
575    llvm::Constant *StaticData[] = {
576      EmitCheckSourceLocation(Loc),
577      EmitCheckTypeDescriptor(Ty),
578      CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
579      llvm::ConstantInt::get(Int8Ty, TCK)
580    };
581    llvm::Value *DynamicData[] = { Address, Hash };
582    EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
583              "dynamic_type_cache_miss", StaticData, DynamicData,
584              CRK_AlwaysRecoverable);
585  }
586
587  if (Done) {
588    Builder.CreateBr(Done);
589    EmitBlock(Done);
590  }
591}
592
593/// Determine whether this expression refers to a flexible array member in a
594/// struct. We disable array bounds checks for such members.
595static bool isFlexibleArrayMemberExpr(const Expr *E) {
596  // For compatibility with existing code, we treat arrays of length 0 or
597  // 1 as flexible array members.
598  const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
599  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
600    if (CAT->getSize().ugt(1))
601      return false;
602  } else if (!isa<IncompleteArrayType>(AT))
603    return false;
604
605  E = E->IgnoreParens();
606
607  // A flexible array member must be the last member in the class.
608  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
609    // FIXME: If the base type of the member expr is not FD->getParent(),
610    // this should not be treated as a flexible array member access.
611    if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
612      RecordDecl::field_iterator FI(
613          DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
614      return ++FI == FD->getParent()->field_end();
615    }
616  }
617
618  return false;
619}
620
621/// If Base is known to point to the start of an array, return the length of
622/// that array. Return 0 if the length cannot be determined.
623static llvm::Value *getArrayIndexingBound(
624    CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
625  // For the vector indexing extension, the bound is the number of elements.
626  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
627    IndexedType = Base->getType();
628    return CGF.Builder.getInt32(VT->getNumElements());
629  }
630
631  Base = Base->IgnoreParens();
632
633  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
634    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
635        !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
636      IndexedType = CE->getSubExpr()->getType();
637      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
638      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
639        return CGF.Builder.getInt(CAT->getSize());
640      else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
641        return CGF.getVLASize(VAT).first;
642    }
643  }
644
645  return nullptr;
646}
647
648void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
649                                      llvm::Value *Index, QualType IndexType,
650                                      bool Accessed) {
651  assert(SanOpts->ArrayBounds &&
652         "should not be called unless adding bounds checks");
653
654  QualType IndexedType;
655  llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
656  if (!Bound)
657    return;
658
659  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
660  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
661  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
662
663  llvm::Constant *StaticData[] = {
664    EmitCheckSourceLocation(E->getExprLoc()),
665    EmitCheckTypeDescriptor(IndexedType),
666    EmitCheckTypeDescriptor(IndexType)
667  };
668  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
669                                : Builder.CreateICmpULE(IndexVal, BoundVal);
670  EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
671}
672
673
674CodeGenFunction::ComplexPairTy CodeGenFunction::
675EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
676                         bool isInc, bool isPre) {
677  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
678
679  llvm::Value *NextVal;
680  if (isa<llvm::IntegerType>(InVal.first->getType())) {
681    uint64_t AmountVal = isInc ? 1 : -1;
682    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
683
684    // Add the inc/dec to the real part.
685    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
686  } else {
687    QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
688    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
689    if (!isInc)
690      FVal.changeSign();
691    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
692
693    // Add the inc/dec to the real part.
694    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
695  }
696
697  ComplexPairTy IncVal(NextVal, InVal.second);
698
699  // Store the updated result through the lvalue.
700  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
701
702  // If this is a postinc, return the value read from memory, otherwise use the
703  // updated value.
704  return isPre ? IncVal : InVal;
705}
706
707
708//===----------------------------------------------------------------------===//
709//                         LValue Expression Emission
710//===----------------------------------------------------------------------===//
711
712RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
713  if (Ty->isVoidType())
714    return RValue::get(nullptr);
715
716  switch (getEvaluationKind(Ty)) {
717  case TEK_Complex: {
718    llvm::Type *EltTy =
719      ConvertType(Ty->castAs<ComplexType>()->getElementType());
720    llvm::Value *U = llvm::UndefValue::get(EltTy);
721    return RValue::getComplex(std::make_pair(U, U));
722  }
723
724  // If this is a use of an undefined aggregate type, the aggregate must have an
725  // identifiable address.  Just because the contents of the value are undefined
726  // doesn't mean that the address can't be taken and compared.
727  case TEK_Aggregate: {
728    llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
729    return RValue::getAggregate(DestPtr);
730  }
731
732  case TEK_Scalar:
733    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
734  }
735  llvm_unreachable("bad evaluation kind");
736}
737
738RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
739                                              const char *Name) {
740  ErrorUnsupported(E, Name);
741  return GetUndefRValue(E->getType());
742}
743
744LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
745                                              const char *Name) {
746  ErrorUnsupported(E, Name);
747  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
748  return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
749}
750
751LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
752  LValue LV;
753  if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
754    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
755  else
756    LV = EmitLValue(E);
757  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
758    EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
759                  E->getType(), LV.getAlignment());
760  return LV;
761}
762
763/// EmitLValue - Emit code to compute a designator that specifies the location
764/// of the expression.
765///
766/// This can return one of two things: a simple address or a bitfield reference.
767/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
768/// an LLVM pointer type.
769///
770/// If this returns a bitfield reference, nothing about the pointee type of the
771/// LLVM value is known: For example, it may not be a pointer to an integer.
772///
773/// If this returns a normal address, and if the lvalue's C type is fixed size,
774/// this method guarantees that the returned pointer type will point to an LLVM
775/// type of the same size of the lvalue's type.  If the lvalue has a variable
776/// length type, this is not possible.
777///
778LValue CodeGenFunction::EmitLValue(const Expr *E) {
779  switch (E->getStmtClass()) {
780  default: return EmitUnsupportedLValue(E, "l-value expression");
781
782  case Expr::ObjCPropertyRefExprClass:
783    llvm_unreachable("cannot emit a property reference directly");
784
785  case Expr::ObjCSelectorExprClass:
786    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
787  case Expr::ObjCIsaExprClass:
788    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
789  case Expr::BinaryOperatorClass:
790    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
791  case Expr::CompoundAssignOperatorClass:
792    if (!E->getType()->isAnyComplexType())
793      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
794    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
795  case Expr::CallExprClass:
796  case Expr::CXXMemberCallExprClass:
797  case Expr::CXXOperatorCallExprClass:
798  case Expr::UserDefinedLiteralClass:
799    return EmitCallExprLValue(cast<CallExpr>(E));
800  case Expr::VAArgExprClass:
801    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
802  case Expr::DeclRefExprClass:
803    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
804  case Expr::ParenExprClass:
805    return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
806  case Expr::GenericSelectionExprClass:
807    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
808  case Expr::PredefinedExprClass:
809    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
810  case Expr::StringLiteralClass:
811    return EmitStringLiteralLValue(cast<StringLiteral>(E));
812  case Expr::ObjCEncodeExprClass:
813    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
814  case Expr::PseudoObjectExprClass:
815    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
816  case Expr::InitListExprClass:
817    return EmitInitListLValue(cast<InitListExpr>(E));
818  case Expr::CXXTemporaryObjectExprClass:
819  case Expr::CXXConstructExprClass:
820    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
821  case Expr::CXXBindTemporaryExprClass:
822    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
823  case Expr::CXXUuidofExprClass:
824    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
825  case Expr::LambdaExprClass:
826    return EmitLambdaLValue(cast<LambdaExpr>(E));
827
828  case Expr::ExprWithCleanupsClass: {
829    const auto *cleanups = cast<ExprWithCleanups>(E);
830    enterFullExpression(cleanups);
831    RunCleanupsScope Scope(*this);
832    return EmitLValue(cleanups->getSubExpr());
833  }
834
835  case Expr::CXXDefaultArgExprClass:
836    return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
837  case Expr::CXXDefaultInitExprClass: {
838    CXXDefaultInitExprScope Scope(*this);
839    return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
840  }
841  case Expr::CXXTypeidExprClass:
842    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
843
844  case Expr::ObjCMessageExprClass:
845    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
846  case Expr::ObjCIvarRefExprClass:
847    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
848  case Expr::StmtExprClass:
849    return EmitStmtExprLValue(cast<StmtExpr>(E));
850  case Expr::UnaryOperatorClass:
851    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
852  case Expr::ArraySubscriptExprClass:
853    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
854  case Expr::ExtVectorElementExprClass:
855    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
856  case Expr::MemberExprClass:
857    return EmitMemberExpr(cast<MemberExpr>(E));
858  case Expr::CompoundLiteralExprClass:
859    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
860  case Expr::ConditionalOperatorClass:
861    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
862  case Expr::BinaryConditionalOperatorClass:
863    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
864  case Expr::ChooseExprClass:
865    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
866  case Expr::OpaqueValueExprClass:
867    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
868  case Expr::SubstNonTypeTemplateParmExprClass:
869    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
870  case Expr::ImplicitCastExprClass:
871  case Expr::CStyleCastExprClass:
872  case Expr::CXXFunctionalCastExprClass:
873  case Expr::CXXStaticCastExprClass:
874  case Expr::CXXDynamicCastExprClass:
875  case Expr::CXXReinterpretCastExprClass:
876  case Expr::CXXConstCastExprClass:
877  case Expr::ObjCBridgedCastExprClass:
878    return EmitCastLValue(cast<CastExpr>(E));
879
880  case Expr::MaterializeTemporaryExprClass:
881    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
882  }
883}
884
885/// Given an object of the given canonical type, can we safely copy a
886/// value out of it based on its initializer?
887static bool isConstantEmittableObjectType(QualType type) {
888  assert(type.isCanonical());
889  assert(!type->isReferenceType());
890
891  // Must be const-qualified but non-volatile.
892  Qualifiers qs = type.getLocalQualifiers();
893  if (!qs.hasConst() || qs.hasVolatile()) return false;
894
895  // Otherwise, all object types satisfy this except C++ classes with
896  // mutable subobjects or non-trivial copy/destroy behavior.
897  if (const auto *RT = dyn_cast<RecordType>(type))
898    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
899      if (RD->hasMutableFields() || !RD->isTrivial())
900        return false;
901
902  return true;
903}
904
905/// Can we constant-emit a load of a reference to a variable of the
906/// given type?  This is different from predicates like
907/// Decl::isUsableInConstantExpressions because we do want it to apply
908/// in situations that don't necessarily satisfy the language's rules
909/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
910/// to do this with const float variables even if those variables
911/// aren't marked 'constexpr'.
912enum ConstantEmissionKind {
913  CEK_None,
914  CEK_AsReferenceOnly,
915  CEK_AsValueOrReference,
916  CEK_AsValueOnly
917};
918static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
919  type = type.getCanonicalType();
920  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
921    if (isConstantEmittableObjectType(ref->getPointeeType()))
922      return CEK_AsValueOrReference;
923    return CEK_AsReferenceOnly;
924  }
925  if (isConstantEmittableObjectType(type))
926    return CEK_AsValueOnly;
927  return CEK_None;
928}
929
930/// Try to emit a reference to the given value without producing it as
931/// an l-value.  This is actually more than an optimization: we can't
932/// produce an l-value for variables that we never actually captured
933/// in a block or lambda, which means const int variables or constexpr
934/// literals or similar.
935CodeGenFunction::ConstantEmission
936CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
937  ValueDecl *value = refExpr->getDecl();
938
939  // The value needs to be an enum constant or a constant variable.
940  ConstantEmissionKind CEK;
941  if (isa<ParmVarDecl>(value)) {
942    CEK = CEK_None;
943  } else if (auto *var = dyn_cast<VarDecl>(value)) {
944    CEK = checkVarTypeForConstantEmission(var->getType());
945  } else if (isa<EnumConstantDecl>(value)) {
946    CEK = CEK_AsValueOnly;
947  } else {
948    CEK = CEK_None;
949  }
950  if (CEK == CEK_None) return ConstantEmission();
951
952  Expr::EvalResult result;
953  bool resultIsReference;
954  QualType resultType;
955
956  // It's best to evaluate all the way as an r-value if that's permitted.
957  if (CEK != CEK_AsReferenceOnly &&
958      refExpr->EvaluateAsRValue(result, getContext())) {
959    resultIsReference = false;
960    resultType = refExpr->getType();
961
962  // Otherwise, try to evaluate as an l-value.
963  } else if (CEK != CEK_AsValueOnly &&
964             refExpr->EvaluateAsLValue(result, getContext())) {
965    resultIsReference = true;
966    resultType = value->getType();
967
968  // Failure.
969  } else {
970    return ConstantEmission();
971  }
972
973  // In any case, if the initializer has side-effects, abandon ship.
974  if (result.HasSideEffects)
975    return ConstantEmission();
976
977  // Emit as a constant.
978  llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
979
980  // Make sure we emit a debug reference to the global variable.
981  // This should probably fire even for
982  if (isa<VarDecl>(value)) {
983    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
984      EmitDeclRefExprDbgValue(refExpr, C);
985  } else {
986    assert(isa<EnumConstantDecl>(value));
987    EmitDeclRefExprDbgValue(refExpr, C);
988  }
989
990  // If we emitted a reference constant, we need to dereference that.
991  if (resultIsReference)
992    return ConstantEmission::forReference(C);
993
994  return ConstantEmission::forValue(C);
995}
996
997llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
998                                               SourceLocation Loc) {
999  return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1000                          lvalue.getAlignment().getQuantity(),
1001                          lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1002                          lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1003}
1004
1005static bool hasBooleanRepresentation(QualType Ty) {
1006  if (Ty->isBooleanType())
1007    return true;
1008
1009  if (const EnumType *ET = Ty->getAs<EnumType>())
1010    return ET->getDecl()->getIntegerType()->isBooleanType();
1011
1012  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1013    return hasBooleanRepresentation(AT->getValueType());
1014
1015  return false;
1016}
1017
1018static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1019                            llvm::APInt &Min, llvm::APInt &End,
1020                            bool StrictEnums) {
1021  const EnumType *ET = Ty->getAs<EnumType>();
1022  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1023                                ET && !ET->getDecl()->isFixed();
1024  bool IsBool = hasBooleanRepresentation(Ty);
1025  if (!IsBool && !IsRegularCPlusPlusEnum)
1026    return false;
1027
1028  if (IsBool) {
1029    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1030    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1031  } else {
1032    const EnumDecl *ED = ET->getDecl();
1033    llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1034    unsigned Bitwidth = LTy->getScalarSizeInBits();
1035    unsigned NumNegativeBits = ED->getNumNegativeBits();
1036    unsigned NumPositiveBits = ED->getNumPositiveBits();
1037
1038    if (NumNegativeBits) {
1039      unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1040      assert(NumBits <= Bitwidth);
1041      End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1042      Min = -End;
1043    } else {
1044      assert(NumPositiveBits <= Bitwidth);
1045      End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1046      Min = llvm::APInt(Bitwidth, 0);
1047    }
1048  }
1049  return true;
1050}
1051
1052llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1053  llvm::APInt Min, End;
1054  if (!getRangeForType(*this, Ty, Min, End,
1055                       CGM.getCodeGenOpts().StrictEnums))
1056    return nullptr;
1057
1058  llvm::MDBuilder MDHelper(getLLVMContext());
1059  return MDHelper.createRange(Min, End);
1060}
1061
1062llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1063                                               unsigned Alignment, QualType Ty,
1064                                               SourceLocation Loc,
1065                                               llvm::MDNode *TBAAInfo,
1066                                               QualType TBAABaseType,
1067                                               uint64_t TBAAOffset) {
1068  // For better performance, handle vector loads differently.
1069  if (Ty->isVectorType()) {
1070    llvm::Value *V;
1071    const llvm::Type *EltTy =
1072    cast<llvm::PointerType>(Addr->getType())->getElementType();
1073
1074    const auto *VTy = cast<llvm::VectorType>(EltTy);
1075
1076    // Handle vectors of size 3, like size 4 for better performance.
1077    if (VTy->getNumElements() == 3) {
1078
1079      // Bitcast to vec4 type.
1080      llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1081                                                         4);
1082      llvm::PointerType *ptVec4Ty =
1083      llvm::PointerType::get(vec4Ty,
1084                             (cast<llvm::PointerType>(
1085                                      Addr->getType()))->getAddressSpace());
1086      llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1087                                                "castToVec4");
1088      // Now load value.
1089      llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1090
1091      // Shuffle vector to get vec3.
1092      llvm::Constant *Mask[] = {
1093        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1094        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1095        llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1096      };
1097
1098      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1099      V = Builder.CreateShuffleVector(LoadVal,
1100                                      llvm::UndefValue::get(vec4Ty),
1101                                      MaskV, "extractVec");
1102      return EmitFromMemory(V, Ty);
1103    }
1104  }
1105
1106  // Atomic operations have to be done on integral types.
1107  if (Ty->isAtomicType()) {
1108    LValue lvalue = LValue::MakeAddr(Addr, Ty,
1109                                     CharUnits::fromQuantity(Alignment),
1110                                     getContext(), TBAAInfo);
1111    return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1112  }
1113
1114  llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1115  if (Volatile)
1116    Load->setVolatile(true);
1117  if (Alignment)
1118    Load->setAlignment(Alignment);
1119  if (TBAAInfo) {
1120    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1121                                                      TBAAOffset);
1122    if (TBAAPath)
1123      CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1124  }
1125
1126  if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1127      (SanOpts->Enum && Ty->getAs<EnumType>())) {
1128    llvm::APInt Min, End;
1129    if (getRangeForType(*this, Ty, Min, End, true)) {
1130      --End;
1131      llvm::Value *Check;
1132      if (!Min)
1133        Check = Builder.CreateICmpULE(
1134          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1135      else {
1136        llvm::Value *Upper = Builder.CreateICmpSLE(
1137          Load, llvm::ConstantInt::get(getLLVMContext(), End));
1138        llvm::Value *Lower = Builder.CreateICmpSGE(
1139          Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1140        Check = Builder.CreateAnd(Upper, Lower);
1141      }
1142      llvm::Constant *StaticArgs[] = {
1143        EmitCheckSourceLocation(Loc),
1144        EmitCheckTypeDescriptor(Ty)
1145      };
1146      EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1147                CRK_Recoverable);
1148    }
1149  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1150    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1151      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1152
1153  return EmitFromMemory(Load, Ty);
1154}
1155
1156llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1157  // Bool has a different representation in memory than in registers.
1158  if (hasBooleanRepresentation(Ty)) {
1159    // This should really always be an i1, but sometimes it's already
1160    // an i8, and it's awkward to track those cases down.
1161    if (Value->getType()->isIntegerTy(1))
1162      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1163    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1164           "wrong value rep of bool");
1165  }
1166
1167  return Value;
1168}
1169
1170llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1171  // Bool has a different representation in memory than in registers.
1172  if (hasBooleanRepresentation(Ty)) {
1173    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1174           "wrong value rep of bool");
1175    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1176  }
1177
1178  return Value;
1179}
1180
1181void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1182                                        bool Volatile, unsigned Alignment,
1183                                        QualType Ty, llvm::MDNode *TBAAInfo,
1184                                        bool isInit, QualType TBAABaseType,
1185                                        uint64_t TBAAOffset) {
1186
1187  // Handle vectors differently to get better performance.
1188  if (Ty->isVectorType()) {
1189    llvm::Type *SrcTy = Value->getType();
1190    auto *VecTy = cast<llvm::VectorType>(SrcTy);
1191    // Handle vec3 special.
1192    if (VecTy->getNumElements() == 3) {
1193      llvm::LLVMContext &VMContext = getLLVMContext();
1194
1195      // Our source is a vec3, do a shuffle vector to make it a vec4.
1196      SmallVector<llvm::Constant*, 4> Mask;
1197      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1198                                            0));
1199      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1200                                            1));
1201      Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1202                                            2));
1203      Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1204
1205      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1206      Value = Builder.CreateShuffleVector(Value,
1207                                          llvm::UndefValue::get(VecTy),
1208                                          MaskV, "extractVec");
1209      SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1210    }
1211    auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1212    if (DstPtr->getElementType() != SrcTy) {
1213      llvm::Type *MemTy =
1214      llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1215      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1216    }
1217  }
1218
1219  Value = EmitToMemory(Value, Ty);
1220
1221  if (Ty->isAtomicType()) {
1222    EmitAtomicStore(RValue::get(Value),
1223                    LValue::MakeAddr(Addr, Ty,
1224                                     CharUnits::fromQuantity(Alignment),
1225                                     getContext(), TBAAInfo),
1226                    isInit);
1227    return;
1228  }
1229
1230  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1231  if (Alignment)
1232    Store->setAlignment(Alignment);
1233  if (TBAAInfo) {
1234    llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1235                                                      TBAAOffset);
1236    if (TBAAPath)
1237      CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1238  }
1239}
1240
1241void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1242                                        bool isInit) {
1243  EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1244                    lvalue.getAlignment().getQuantity(), lvalue.getType(),
1245                    lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1246                    lvalue.getTBAAOffset());
1247}
1248
1249/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1250/// method emits the address of the lvalue, then loads the result as an rvalue,
1251/// returning the rvalue.
1252RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1253  if (LV.isObjCWeak()) {
1254    // load of a __weak object.
1255    llvm::Value *AddrWeakObj = LV.getAddress();
1256    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1257                                                             AddrWeakObj));
1258  }
1259  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1261    Object = EmitObjCConsumeObject(LV.getType(), Object);
1262    return RValue::get(Object);
1263  }
1264
1265  if (LV.isSimple()) {
1266    assert(!LV.getType()->isFunctionType());
1267
1268    // Everything needs a load.
1269    return RValue::get(EmitLoadOfScalar(LV, Loc));
1270  }
1271
1272  if (LV.isVectorElt()) {
1273    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1274                                              LV.isVolatileQualified());
1275    Load->setAlignment(LV.getAlignment().getQuantity());
1276    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1277                                                    "vecext"));
1278  }
1279
1280  // If this is a reference to a subset of the elements of a vector, either
1281  // shuffle the input or extract/insert them as appropriate.
1282  if (LV.isExtVectorElt())
1283    return EmitLoadOfExtVectorElementLValue(LV);
1284
1285  // Global Register variables always invoke intrinsics
1286  if (LV.isGlobalReg())
1287    return EmitLoadOfGlobalRegLValue(LV);
1288
1289  assert(LV.isBitField() && "Unknown LValue type!");
1290  return EmitLoadOfBitfieldLValue(LV);
1291}
1292
1293RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1294  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1295
1296  // Get the output type.
1297  llvm::Type *ResLTy = ConvertType(LV.getType());
1298
1299  llvm::Value *Ptr = LV.getBitFieldAddr();
1300  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1301                                        "bf.load");
1302  cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1303
1304  if (Info.IsSigned) {
1305    assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1306    unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1307    if (HighBits)
1308      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1309    if (Info.Offset + HighBits)
1310      Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1311  } else {
1312    if (Info.Offset)
1313      Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1314    if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1315      Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1316                                                              Info.Size),
1317                              "bf.clear");
1318  }
1319  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1320
1321  return RValue::get(Val);
1322}
1323
1324// If this is a reference to a subset of the elements of a vector, create an
1325// appropriate shufflevector.
1326RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1327  llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1328                                            LV.isVolatileQualified());
1329  Load->setAlignment(LV.getAlignment().getQuantity());
1330  llvm::Value *Vec = Load;
1331
1332  const llvm::Constant *Elts = LV.getExtVectorElts();
1333
1334  // If the result of the expression is a non-vector type, we must be extracting
1335  // a single element.  Just codegen as an extractelement.
1336  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1337  if (!ExprVT) {
1338    unsigned InIdx = getAccessedFieldNo(0, Elts);
1339    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1340    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1341  }
1342
1343  // Always use shuffle vector to try to retain the original program structure
1344  unsigned NumResultElts = ExprVT->getNumElements();
1345
1346  SmallVector<llvm::Constant*, 4> Mask;
1347  for (unsigned i = 0; i != NumResultElts; ++i)
1348    Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1349
1350  llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1351  Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1352                                    MaskV);
1353  return RValue::get(Vec);
1354}
1355
1356/// @brief Load of global gamed gegisters are always calls to intrinsics.
1357RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1358  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1359         "Bad type for register variable");
1360  llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1361  assert(RegName && "Register LValue is not metadata");
1362
1363  // We accept integer and pointer types only
1364  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1365  llvm::Type *Ty = OrigTy;
1366  if (OrigTy->isPointerTy())
1367    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1368  llvm::Type *Types[] = { Ty };
1369
1370  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1371  llvm::Value *Call = Builder.CreateCall(F, RegName);
1372  if (OrigTy->isPointerTy())
1373    Call = Builder.CreateIntToPtr(Call, OrigTy);
1374  return RValue::get(Call);
1375}
1376
1377
1378/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1379/// lvalue, where both are guaranteed to the have the same type, and that type
1380/// is 'Ty'.
1381void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1382                                             bool isInit) {
1383  if (!Dst.isSimple()) {
1384    if (Dst.isVectorElt()) {
1385      // Read/modify/write the vector, inserting the new element.
1386      llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1387                                                Dst.isVolatileQualified());
1388      Load->setAlignment(Dst.getAlignment().getQuantity());
1389      llvm::Value *Vec = Load;
1390      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1391                                        Dst.getVectorIdx(), "vecins");
1392      llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1393                                                   Dst.isVolatileQualified());
1394      Store->setAlignment(Dst.getAlignment().getQuantity());
1395      return;
1396    }
1397
1398    // If this is an update of extended vector elements, insert them as
1399    // appropriate.
1400    if (Dst.isExtVectorElt())
1401      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1402
1403    if (Dst.isGlobalReg())
1404      return EmitStoreThroughGlobalRegLValue(Src, Dst);
1405
1406    assert(Dst.isBitField() && "Unknown LValue type");
1407    return EmitStoreThroughBitfieldLValue(Src, Dst);
1408  }
1409
1410  // There's special magic for assigning into an ARC-qualified l-value.
1411  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1412    switch (Lifetime) {
1413    case Qualifiers::OCL_None:
1414      llvm_unreachable("present but none");
1415
1416    case Qualifiers::OCL_ExplicitNone:
1417      // nothing special
1418      break;
1419
1420    case Qualifiers::OCL_Strong:
1421      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1422      return;
1423
1424    case Qualifiers::OCL_Weak:
1425      EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1426      return;
1427
1428    case Qualifiers::OCL_Autoreleasing:
1429      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1430                                                     Src.getScalarVal()));
1431      // fall into the normal path
1432      break;
1433    }
1434  }
1435
1436  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1437    // load of a __weak object.
1438    llvm::Value *LvalueDst = Dst.getAddress();
1439    llvm::Value *src = Src.getScalarVal();
1440     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1441    return;
1442  }
1443
1444  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1445    // load of a __strong object.
1446    llvm::Value *LvalueDst = Dst.getAddress();
1447    llvm::Value *src = Src.getScalarVal();
1448    if (Dst.isObjCIvar()) {
1449      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1450      llvm::Type *ResultType = ConvertType(getContext().LongTy);
1451      llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1452      llvm::Value *dst = RHS;
1453      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1454      llvm::Value *LHS =
1455        Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1456      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1457      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1458                                              BytesBetween);
1459    } else if (Dst.isGlobalObjCRef()) {
1460      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1461                                                Dst.isThreadLocalRef());
1462    }
1463    else
1464      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1465    return;
1466  }
1467
1468  assert(Src.isScalar() && "Can't emit an agg store with this method");
1469  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1470}
1471
1472void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1473                                                     llvm::Value **Result) {
1474  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1475  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1476  llvm::Value *Ptr = Dst.getBitFieldAddr();
1477
1478  // Get the source value, truncated to the width of the bit-field.
1479  llvm::Value *SrcVal = Src.getScalarVal();
1480
1481  // Cast the source to the storage type and shift it into place.
1482  SrcVal = Builder.CreateIntCast(SrcVal,
1483                                 Ptr->getType()->getPointerElementType(),
1484                                 /*IsSigned=*/false);
1485  llvm::Value *MaskedVal = SrcVal;
1486
1487  // See if there are other bits in the bitfield's storage we'll need to load
1488  // and mask together with source before storing.
1489  if (Info.StorageSize != Info.Size) {
1490    assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1491    llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1492                                          "bf.load");
1493    cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1494
1495    // Mask the source value as needed.
1496    if (!hasBooleanRepresentation(Dst.getType()))
1497      SrcVal = Builder.CreateAnd(SrcVal,
1498                                 llvm::APInt::getLowBitsSet(Info.StorageSize,
1499                                                            Info.Size),
1500                                 "bf.value");
1501    MaskedVal = SrcVal;
1502    if (Info.Offset)
1503      SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1504
1505    // Mask out the original value.
1506    Val = Builder.CreateAnd(Val,
1507                            ~llvm::APInt::getBitsSet(Info.StorageSize,
1508                                                     Info.Offset,
1509                                                     Info.Offset + Info.Size),
1510                            "bf.clear");
1511
1512    // Or together the unchanged values and the source value.
1513    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1514  } else {
1515    assert(Info.Offset == 0);
1516  }
1517
1518  // Write the new value back out.
1519  llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1520                                               Dst.isVolatileQualified());
1521  Store->setAlignment(Info.StorageAlignment);
1522
1523  // Return the new value of the bit-field, if requested.
1524  if (Result) {
1525    llvm::Value *ResultVal = MaskedVal;
1526
1527    // Sign extend the value if needed.
1528    if (Info.IsSigned) {
1529      assert(Info.Size <= Info.StorageSize);
1530      unsigned HighBits = Info.StorageSize - Info.Size;
1531      if (HighBits) {
1532        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1533        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1534      }
1535    }
1536
1537    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1538                                      "bf.result.cast");
1539    *Result = EmitFromMemory(ResultVal, Dst.getType());
1540  }
1541}
1542
1543void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1544                                                               LValue Dst) {
1545  // This access turns into a read/modify/write of the vector.  Load the input
1546  // value now.
1547  llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1548                                            Dst.isVolatileQualified());
1549  Load->setAlignment(Dst.getAlignment().getQuantity());
1550  llvm::Value *Vec = Load;
1551  const llvm::Constant *Elts = Dst.getExtVectorElts();
1552
1553  llvm::Value *SrcVal = Src.getScalarVal();
1554
1555  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1556    unsigned NumSrcElts = VTy->getNumElements();
1557    unsigned NumDstElts =
1558       cast<llvm::VectorType>(Vec->getType())->getNumElements();
1559    if (NumDstElts == NumSrcElts) {
1560      // Use shuffle vector is the src and destination are the same number of
1561      // elements and restore the vector mask since it is on the side it will be
1562      // stored.
1563      SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1564      for (unsigned i = 0; i != NumSrcElts; ++i)
1565        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1566
1567      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1568      Vec = Builder.CreateShuffleVector(SrcVal,
1569                                        llvm::UndefValue::get(Vec->getType()),
1570                                        MaskV);
1571    } else if (NumDstElts > NumSrcElts) {
1572      // Extended the source vector to the same length and then shuffle it
1573      // into the destination.
1574      // FIXME: since we're shuffling with undef, can we just use the indices
1575      //        into that?  This could be simpler.
1576      SmallVector<llvm::Constant*, 4> ExtMask;
1577      for (unsigned i = 0; i != NumSrcElts; ++i)
1578        ExtMask.push_back(Builder.getInt32(i));
1579      ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1580      llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1581      llvm::Value *ExtSrcVal =
1582        Builder.CreateShuffleVector(SrcVal,
1583                                    llvm::UndefValue::get(SrcVal->getType()),
1584                                    ExtMaskV);
1585      // build identity
1586      SmallVector<llvm::Constant*, 4> Mask;
1587      for (unsigned i = 0; i != NumDstElts; ++i)
1588        Mask.push_back(Builder.getInt32(i));
1589
1590      // When the vector size is odd and .odd or .hi is used, the last element
1591      // of the Elts constant array will be one past the size of the vector.
1592      // Ignore the last element here, if it is greater than the mask size.
1593      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1594        NumSrcElts--;
1595
1596      // modify when what gets shuffled in
1597      for (unsigned i = 0; i != NumSrcElts; ++i)
1598        Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1599      llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1600      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1601    } else {
1602      // We should never shorten the vector
1603      llvm_unreachable("unexpected shorten vector length");
1604    }
1605  } else {
1606    // If the Src is a scalar (not a vector) it must be updating one element.
1607    unsigned InIdx = getAccessedFieldNo(0, Elts);
1608    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1609    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1610  }
1611
1612  llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1613                                               Dst.isVolatileQualified());
1614  Store->setAlignment(Dst.getAlignment().getQuantity());
1615}
1616
1617/// @brief Store of global named registers are always calls to intrinsics.
1618void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1619  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1620         "Bad type for register variable");
1621  llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1622  assert(RegName && "Register LValue is not metadata");
1623
1624  // We accept integer and pointer types only
1625  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1626  llvm::Type *Ty = OrigTy;
1627  if (OrigTy->isPointerTy())
1628    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1629  llvm::Type *Types[] = { Ty };
1630
1631  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1632  llvm::Value *Value = Src.getScalarVal();
1633  if (OrigTy->isPointerTy())
1634    Value = Builder.CreatePtrToInt(Value, Ty);
1635  Builder.CreateCall2(F, RegName, Value);
1636}
1637
1638// setObjCGCLValueClass - sets class of the lvalue for the purpose of
1639// generating write-barries API. It is currently a global, ivar,
1640// or neither.
1641static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1642                                 LValue &LV,
1643                                 bool IsMemberAccess=false) {
1644  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1645    return;
1646
1647  if (isa<ObjCIvarRefExpr>(E)) {
1648    QualType ExpTy = E->getType();
1649    if (IsMemberAccess && ExpTy->isPointerType()) {
1650      // If ivar is a structure pointer, assigning to field of
1651      // this struct follows gcc's behavior and makes it a non-ivar
1652      // writer-barrier conservatively.
1653      ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1654      if (ExpTy->isRecordType()) {
1655        LV.setObjCIvar(false);
1656        return;
1657      }
1658    }
1659    LV.setObjCIvar(true);
1660    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1661    LV.setBaseIvarExp(Exp->getBase());
1662    LV.setObjCArray(E->getType()->isArrayType());
1663    return;
1664  }
1665
1666  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1667    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1668      if (VD->hasGlobalStorage()) {
1669        LV.setGlobalObjCRef(true);
1670        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1671      }
1672    }
1673    LV.setObjCArray(E->getType()->isArrayType());
1674    return;
1675  }
1676
1677  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1678    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1679    return;
1680  }
1681
1682  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1683    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1684    if (LV.isObjCIvar()) {
1685      // If cast is to a structure pointer, follow gcc's behavior and make it
1686      // a non-ivar write-barrier.
1687      QualType ExpTy = E->getType();
1688      if (ExpTy->isPointerType())
1689        ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1690      if (ExpTy->isRecordType())
1691        LV.setObjCIvar(false);
1692    }
1693    return;
1694  }
1695
1696  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1697    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1698    return;
1699  }
1700
1701  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1702    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1703    return;
1704  }
1705
1706  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1707    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1708    return;
1709  }
1710
1711  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1712    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1713    return;
1714  }
1715
1716  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1717    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1718    if (LV.isObjCIvar() && !LV.isObjCArray())
1719      // Using array syntax to assigning to what an ivar points to is not
1720      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1721      LV.setObjCIvar(false);
1722    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1723      // Using array syntax to assigning to what global points to is not
1724      // same as assigning to the global itself. {id *G;} G[i] = 0;
1725      LV.setGlobalObjCRef(false);
1726    return;
1727  }
1728
1729  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1730    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1731    // We don't know if member is an 'ivar', but this flag is looked at
1732    // only in the context of LV.isObjCIvar().
1733    LV.setObjCArray(E->getType()->isArrayType());
1734    return;
1735  }
1736}
1737
1738static llvm::Value *
1739EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1740                                llvm::Value *V, llvm::Type *IRType,
1741                                StringRef Name = StringRef()) {
1742  unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1743  return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1744}
1745
1746static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1747                                      const Expr *E, const VarDecl *VD) {
1748  QualType T = E->getType();
1749
1750  // If it's thread_local, emit a call to its wrapper function instead.
1751  if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1752    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1753
1754  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1755  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1756  V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1757  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1758  LValue LV;
1759  if (VD->getType()->isReferenceType()) {
1760    llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1761    LI->setAlignment(Alignment.getQuantity());
1762    V = LI;
1763    LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1764  } else {
1765    LV = CGF.MakeAddrLValue(V, T, Alignment);
1766  }
1767  setObjCGCLValueClass(CGF.getContext(), E, LV);
1768  return LV;
1769}
1770
1771static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1772                                     const Expr *E, const FunctionDecl *FD) {
1773  llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1774  if (!FD->hasPrototype()) {
1775    if (const FunctionProtoType *Proto =
1776            FD->getType()->getAs<FunctionProtoType>()) {
1777      // Ugly case: for a K&R-style definition, the type of the definition
1778      // isn't the same as the type of a use.  Correct for this with a
1779      // bitcast.
1780      QualType NoProtoType =
1781          CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1782      NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1783      V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1784    }
1785  }
1786  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1787  return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1788}
1789
1790static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1791                                      llvm::Value *ThisValue) {
1792  QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1793  LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1794  return CGF.EmitLValueForField(LV, FD);
1795}
1796
1797/// Named Registers are named metadata pointing to the register name
1798/// which will be read from/written to as an argument to the intrinsic
1799/// @llvm.read/write_register.
1800/// So far, only the name is being passed down, but other options such as
1801/// register type, allocation type or even optimization options could be
1802/// passed down via the metadata node.
1803static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1804                                      CodeGenModule &CGM,
1805                                      CharUnits Alignment) {
1806  SmallString<64> Name("llvm.named.register.");
1807  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1808  assert(Asm->getLabel().size() < 64-Name.size() &&
1809      "Register name too big");
1810  Name.append(Asm->getLabel());
1811  llvm::NamedMDNode *M =
1812    CGM.getModule().getOrInsertNamedMetadata(Name);
1813  if (M->getNumOperands() == 0) {
1814    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1815                                              Asm->getLabel());
1816    llvm::Value *Ops[] = { Str };
1817    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1818  }
1819  return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1820}
1821
1822LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1823  const NamedDecl *ND = E->getDecl();
1824  CharUnits Alignment = getContext().getDeclAlign(ND);
1825  QualType T = E->getType();
1826
1827  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1828    // Global Named registers access via intrinsics only
1829    if (VD->getStorageClass() == SC_Register &&
1830        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1831      return EmitGlobalNamedRegister(VD, CGM, Alignment);
1832
1833    // A DeclRefExpr for a reference initialized by a constant expression can
1834    // appear without being odr-used. Directly emit the constant initializer.
1835    const Expr *Init = VD->getAnyInitializer(VD);
1836    if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1837        VD->isUsableInConstantExpressions(getContext()) &&
1838        VD->checkInitIsICE()) {
1839      llvm::Constant *Val =
1840        CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1841      assert(Val && "failed to emit reference constant expression");
1842      // FIXME: Eventually we will want to emit vector element references.
1843      return MakeAddrLValue(Val, T, Alignment);
1844    }
1845  }
1846
1847  // FIXME: We should be able to assert this for FunctionDecls as well!
1848  // FIXME: We should be able to assert this for all DeclRefExprs, not just
1849  // those with a valid source location.
1850  assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1851          !E->getLocation().isValid()) &&
1852         "Should not use decl without marking it used!");
1853
1854  if (ND->hasAttr<WeakRefAttr>()) {
1855    const auto *VD = cast<ValueDecl>(ND);
1856    llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1857    return MakeAddrLValue(Aliasee, T, Alignment);
1858  }
1859
1860  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1861    // Check if this is a global variable.
1862    if (VD->hasLinkage() || VD->isStaticDataMember())
1863      return EmitGlobalVarDeclLValue(*this, E, VD);
1864
1865    bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1866
1867    llvm::Value *V = LocalDeclMap.lookup(VD);
1868    if (!V && VD->isStaticLocal())
1869      V = CGM.getStaticLocalDeclAddress(VD);
1870
1871    // Use special handling for lambdas.
1872    if (!V) {
1873      if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1874        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1875      } else if (CapturedStmtInfo) {
1876        if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1877          return EmitCapturedFieldLValue(*this, FD,
1878                                         CapturedStmtInfo->getContextValue());
1879      }
1880
1881      assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1882      return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1883                            T, Alignment);
1884    }
1885
1886    assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1887
1888    if (isBlockVariable)
1889      V = BuildBlockByrefAddress(V, VD);
1890
1891    LValue LV;
1892    if (VD->getType()->isReferenceType()) {
1893      llvm::LoadInst *LI = Builder.CreateLoad(V);
1894      LI->setAlignment(Alignment.getQuantity());
1895      V = LI;
1896      LV = MakeNaturalAlignAddrLValue(V, T);
1897    } else {
1898      LV = MakeAddrLValue(V, T, Alignment);
1899    }
1900
1901    bool isLocalStorage = VD->hasLocalStorage();
1902
1903    bool NonGCable = isLocalStorage &&
1904                     !VD->getType()->isReferenceType() &&
1905                     !isBlockVariable;
1906    if (NonGCable) {
1907      LV.getQuals().removeObjCGCAttr();
1908      LV.setNonGC(true);
1909    }
1910
1911    bool isImpreciseLifetime =
1912      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1913    if (isImpreciseLifetime)
1914      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1915    setObjCGCLValueClass(getContext(), E, LV);
1916    return LV;
1917  }
1918
1919  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1920    return EmitFunctionDeclLValue(*this, E, FD);
1921
1922  llvm_unreachable("Unhandled DeclRefExpr");
1923}
1924
1925LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1926  // __extension__ doesn't affect lvalue-ness.
1927  if (E->getOpcode() == UO_Extension)
1928    return EmitLValue(E->getSubExpr());
1929
1930  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1931  switch (E->getOpcode()) {
1932  default: llvm_unreachable("Unknown unary operator lvalue!");
1933  case UO_Deref: {
1934    QualType T = E->getSubExpr()->getType()->getPointeeType();
1935    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1936
1937    LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1938    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1939
1940    // We should not generate __weak write barrier on indirect reference
1941    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1942    // But, we continue to generate __strong write barrier on indirect write
1943    // into a pointer to object.
1944    if (getLangOpts().ObjC1 &&
1945        getLangOpts().getGC() != LangOptions::NonGC &&
1946        LV.isObjCWeak())
1947      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1948    return LV;
1949  }
1950  case UO_Real:
1951  case UO_Imag: {
1952    LValue LV = EmitLValue(E->getSubExpr());
1953    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1954    llvm::Value *Addr = LV.getAddress();
1955
1956    // __real is valid on scalars.  This is a faster way of testing that.
1957    // __imag can only produce an rvalue on scalars.
1958    if (E->getOpcode() == UO_Real &&
1959        !cast<llvm::PointerType>(Addr->getType())
1960           ->getElementType()->isStructTy()) {
1961      assert(E->getSubExpr()->getType()->isArithmeticType());
1962      return LV;
1963    }
1964
1965    assert(E->getSubExpr()->getType()->isAnyComplexType());
1966
1967    unsigned Idx = E->getOpcode() == UO_Imag;
1968    return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1969                                                  Idx, "idx"),
1970                          ExprTy);
1971  }
1972  case UO_PreInc:
1973  case UO_PreDec: {
1974    LValue LV = EmitLValue(E->getSubExpr());
1975    bool isInc = E->getOpcode() == UO_PreInc;
1976
1977    if (E->getType()->isAnyComplexType())
1978      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1979    else
1980      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1981    return LV;
1982  }
1983  }
1984}
1985
1986LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1987  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1988                        E->getType());
1989}
1990
1991LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1992  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1993                        E->getType());
1994}
1995
1996static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1997                                    SmallString<32>& Target) {
1998  Target.resize(CharByteWidth * (Source.size() + 1));
1999  char *ResultPtr = &Target[0];
2000  const UTF8 *ErrorPtr;
2001  bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2002  (void)success;
2003  assert(success);
2004  Target.resize(ResultPtr - &Target[0]);
2005}
2006
2007LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2008  switch (E->getIdentType()) {
2009  default:
2010    return EmitUnsupportedLValue(E, "predefined expression");
2011
2012  case PredefinedExpr::Func:
2013  case PredefinedExpr::Function:
2014  case PredefinedExpr::LFunction:
2015  case PredefinedExpr::FuncDName:
2016  case PredefinedExpr::FuncSig:
2017  case PredefinedExpr::PrettyFunction: {
2018    PredefinedExpr::IdentType IdentType = E->getIdentType();
2019    std::string GVName;
2020
2021    // FIXME: We should use the string literal mangling for the Microsoft C++
2022    // ABI so that strings get merged.
2023    switch (IdentType) {
2024    default: llvm_unreachable("Invalid type");
2025    case PredefinedExpr::Func:           GVName = "__func__."; break;
2026    case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2027    case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2028    case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2029    case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2030    case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2031    }
2032
2033    StringRef FnName = CurFn->getName();
2034    if (FnName.startswith("\01"))
2035      FnName = FnName.substr(1);
2036    GVName += FnName;
2037
2038    // If this is outside of a function use the top level decl.
2039    const Decl *CurDecl = CurCodeDecl;
2040    if (!CurDecl || isa<VarDecl>(CurDecl))
2041      CurDecl = getContext().getTranslationUnitDecl();
2042
2043    const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2044    std::string FunctionName;
2045    if (isa<BlockDecl>(CurDecl)) {
2046      // Blocks use the mangled function name.
2047      // FIXME: ComputeName should handle blocks.
2048      FunctionName = FnName.str();
2049    } else if (isa<CapturedDecl>(CurDecl)) {
2050      // For a captured statement, the function name is its enclosing
2051      // function name not the one compiler generated.
2052      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2053    } else {
2054      FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2055      assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2056                 FunctionName.size() &&
2057             "Computed __func__ length differs from type!");
2058    }
2059
2060    llvm::Constant *C;
2061    if (ElemType->isWideCharType()) {
2062      SmallString<32> RawChars;
2063      ConvertUTF8ToWideString(
2064          getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2065          RawChars);
2066      StringLiteral *SL = StringLiteral::Create(
2067          getContext(), RawChars, StringLiteral::Wide,
2068          /*Pascal = */ false, E->getType(), E->getLocation());
2069      C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2070    } else {
2071      C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2072    }
2073    return MakeAddrLValue(C, E->getType());
2074  }
2075  }
2076}
2077
2078/// Emit a type description suitable for use by a runtime sanitizer library. The
2079/// format of a type descriptor is
2080///
2081/// \code
2082///   { i16 TypeKind, i16 TypeInfo }
2083/// \endcode
2084///
2085/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2086/// integer, 1 for a floating point value, and -1 for anything else.
2087llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2088  // Only emit each type's descriptor once.
2089  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2090    return C;
2091
2092  uint16_t TypeKind = -1;
2093  uint16_t TypeInfo = 0;
2094
2095  if (T->isIntegerType()) {
2096    TypeKind = 0;
2097    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2098               (T->isSignedIntegerType() ? 1 : 0);
2099  } else if (T->isFloatingType()) {
2100    TypeKind = 1;
2101    TypeInfo = getContext().getTypeSize(T);
2102  }
2103
2104  // Format the type name as if for a diagnostic, including quotes and
2105  // optionally an 'aka'.
2106  SmallString<32> Buffer;
2107  CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2108                                    (intptr_t)T.getAsOpaquePtr(),
2109                                    StringRef(), StringRef(), None, Buffer,
2110                                    ArrayRef<intptr_t>());
2111
2112  llvm::Constant *Components[] = {
2113    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2114    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2115  };
2116  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2117
2118  auto *GV = new llvm::GlobalVariable(
2119      CGM.getModule(), Descriptor->getType(),
2120      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2121  GV->setUnnamedAddr(true);
2122
2123  // Remember the descriptor for this type.
2124  CGM.setTypeDescriptorInMap(T, GV);
2125
2126  return GV;
2127}
2128
2129llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2130  llvm::Type *TargetTy = IntPtrTy;
2131
2132  // Floating-point types which fit into intptr_t are bitcast to integers
2133  // and then passed directly (after zero-extension, if necessary).
2134  if (V->getType()->isFloatingPointTy()) {
2135    unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2136    if (Bits <= TargetTy->getIntegerBitWidth())
2137      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2138                                                         Bits));
2139  }
2140
2141  // Integers which fit in intptr_t are zero-extended and passed directly.
2142  if (V->getType()->isIntegerTy() &&
2143      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2144    return Builder.CreateZExt(V, TargetTy);
2145
2146  // Pointers are passed directly, everything else is passed by address.
2147  if (!V->getType()->isPointerTy()) {
2148    llvm::Value *Ptr = CreateTempAlloca(V->getType());
2149    Builder.CreateStore(V, Ptr);
2150    V = Ptr;
2151  }
2152  return Builder.CreatePtrToInt(V, TargetTy);
2153}
2154
2155/// \brief Emit a representation of a SourceLocation for passing to a handler
2156/// in a sanitizer runtime library. The format for this data is:
2157/// \code
2158///   struct SourceLocation {
2159///     const char *Filename;
2160///     int32_t Line, Column;
2161///   };
2162/// \endcode
2163/// For an invalid SourceLocation, the Filename pointer is null.
2164llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2165  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2166
2167  llvm::Constant *Data[] = {
2168    PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2169                   : llvm::Constant::getNullValue(Int8PtrTy),
2170    Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2171    Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2172  };
2173
2174  return llvm::ConstantStruct::getAnon(Data);
2175}
2176
2177void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2178                                ArrayRef<llvm::Constant *> StaticArgs,
2179                                ArrayRef<llvm::Value *> DynamicArgs,
2180                                CheckRecoverableKind RecoverKind) {
2181  assert(SanOpts != &SanitizerOptions::Disabled);
2182
2183  if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2184    assert (RecoverKind != CRK_AlwaysRecoverable &&
2185            "Runtime call required for AlwaysRecoverable kind!");
2186    return EmitTrapCheck(Checked);
2187  }
2188
2189  llvm::BasicBlock *Cont = createBasicBlock("cont");
2190
2191  llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2192
2193  llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2194
2195  // Give hint that we very much don't expect to execute the handler
2196  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2197  llvm::MDBuilder MDHelper(getLLVMContext());
2198  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2199  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2200
2201  EmitBlock(Handler);
2202
2203  llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2204  auto *InfoPtr =
2205      new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2206                               llvm::GlobalVariable::PrivateLinkage, Info);
2207  InfoPtr->setUnnamedAddr(true);
2208
2209  SmallVector<llvm::Value *, 4> Args;
2210  SmallVector<llvm::Type *, 4> ArgTypes;
2211  Args.reserve(DynamicArgs.size() + 1);
2212  ArgTypes.reserve(DynamicArgs.size() + 1);
2213
2214  // Handler functions take an i8* pointing to the (handler-specific) static
2215  // information block, followed by a sequence of intptr_t arguments
2216  // representing operand values.
2217  Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2218  ArgTypes.push_back(Int8PtrTy);
2219  for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2220    Args.push_back(EmitCheckValue(DynamicArgs[i]));
2221    ArgTypes.push_back(IntPtrTy);
2222  }
2223
2224  bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2225                 (RecoverKind == CRK_Recoverable &&
2226                  CGM.getCodeGenOpts().SanitizeRecover);
2227
2228  llvm::FunctionType *FnType =
2229    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2230  llvm::AttrBuilder B;
2231  if (!Recover) {
2232    B.addAttribute(llvm::Attribute::NoReturn)
2233     .addAttribute(llvm::Attribute::NoUnwind);
2234  }
2235  B.addAttribute(llvm::Attribute::UWTable);
2236
2237  // Checks that have two variants use a suffix to differentiate them
2238  bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2239                          !CGM.getCodeGenOpts().SanitizeRecover;
2240  std::string FunctionName = ("__ubsan_handle_" + CheckName +
2241                              (NeedsAbortSuffix? "_abort" : "")).str();
2242  llvm::Value *Fn = CGM.CreateRuntimeFunction(
2243      FnType, FunctionName,
2244      llvm::AttributeSet::get(getLLVMContext(),
2245                              llvm::AttributeSet::FunctionIndex, B));
2246  llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2247  if (Recover) {
2248    Builder.CreateBr(Cont);
2249  } else {
2250    HandlerCall->setDoesNotReturn();
2251    Builder.CreateUnreachable();
2252  }
2253
2254  EmitBlock(Cont);
2255}
2256
2257void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2258  llvm::BasicBlock *Cont = createBasicBlock("cont");
2259
2260  // If we're optimizing, collapse all calls to trap down to just one per
2261  // function to save on code size.
2262  if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2263    TrapBB = createBasicBlock("trap");
2264    Builder.CreateCondBr(Checked, Cont, TrapBB);
2265    EmitBlock(TrapBB);
2266    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2267    llvm::CallInst *TrapCall = Builder.CreateCall(F);
2268    TrapCall->setDoesNotReturn();
2269    TrapCall->setDoesNotThrow();
2270    Builder.CreateUnreachable();
2271  } else {
2272    Builder.CreateCondBr(Checked, Cont, TrapBB);
2273  }
2274
2275  EmitBlock(Cont);
2276}
2277
2278/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2279/// array to pointer, return the array subexpression.
2280static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2281  // If this isn't just an array->pointer decay, bail out.
2282  const auto *CE = dyn_cast<CastExpr>(E);
2283  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2284    return nullptr;
2285
2286  // If this is a decay from variable width array, bail out.
2287  const Expr *SubExpr = CE->getSubExpr();
2288  if (SubExpr->getType()->isVariableArrayType())
2289    return nullptr;
2290
2291  return SubExpr;
2292}
2293
2294LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2295                                               bool Accessed) {
2296  // The index must always be an integer, which is not an aggregate.  Emit it.
2297  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2298  QualType IdxTy  = E->getIdx()->getType();
2299  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2300
2301  if (SanOpts->ArrayBounds)
2302    EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2303
2304  // If the base is a vector type, then we are forming a vector element lvalue
2305  // with this subscript.
2306  if (E->getBase()->getType()->isVectorType()) {
2307    // Emit the vector as an lvalue to get its address.
2308    LValue LHS = EmitLValue(E->getBase());
2309    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2310    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2311                                 E->getBase()->getType(), LHS.getAlignment());
2312  }
2313
2314  // Extend or truncate the index type to 32 or 64-bits.
2315  if (Idx->getType() != IntPtrTy)
2316    Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2317
2318  // We know that the pointer points to a type of the correct size, unless the
2319  // size is a VLA or Objective-C interface.
2320  llvm::Value *Address = nullptr;
2321  CharUnits ArrayAlignment;
2322  if (const VariableArrayType *vla =
2323        getContext().getAsVariableArrayType(E->getType())) {
2324    // The base must be a pointer, which is not an aggregate.  Emit
2325    // it.  It needs to be emitted first in case it's what captures
2326    // the VLA bounds.
2327    Address = EmitScalarExpr(E->getBase());
2328
2329    // The element count here is the total number of non-VLA elements.
2330    llvm::Value *numElements = getVLASize(vla).first;
2331
2332    // Effectively, the multiply by the VLA size is part of the GEP.
2333    // GEP indexes are signed, and scaling an index isn't permitted to
2334    // signed-overflow, so we use the same semantics for our explicit
2335    // multiply.  We suppress this if overflow is not undefined behavior.
2336    if (getLangOpts().isSignedOverflowDefined()) {
2337      Idx = Builder.CreateMul(Idx, numElements);
2338      Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2339    } else {
2340      Idx = Builder.CreateNSWMul(Idx, numElements);
2341      Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2342    }
2343  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2344    // Indexing over an interface, as in "NSString *P; P[4];"
2345    llvm::Value *InterfaceSize =
2346      llvm::ConstantInt::get(Idx->getType(),
2347          getContext().getTypeSizeInChars(OIT).getQuantity());
2348
2349    Idx = Builder.CreateMul(Idx, InterfaceSize);
2350
2351    // The base must be a pointer, which is not an aggregate.  Emit it.
2352    llvm::Value *Base = EmitScalarExpr(E->getBase());
2353    Address = EmitCastToVoidPtr(Base);
2354    Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2355    Address = Builder.CreateBitCast(Address, Base->getType());
2356  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2357    // If this is A[i] where A is an array, the frontend will have decayed the
2358    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2359    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2360    // "gep x, i" here.  Emit one "gep A, 0, i".
2361    assert(Array->getType()->isArrayType() &&
2362           "Array to pointer decay must have array source type!");
2363    LValue ArrayLV;
2364    // For simple multidimensional array indexing, set the 'accessed' flag for
2365    // better bounds-checking of the base expression.
2366    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2367      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2368    else
2369      ArrayLV = EmitLValue(Array);
2370    llvm::Value *ArrayPtr = ArrayLV.getAddress();
2371    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2372    llvm::Value *Args[] = { Zero, Idx };
2373
2374    // Propagate the alignment from the array itself to the result.
2375    ArrayAlignment = ArrayLV.getAlignment();
2376
2377    if (getLangOpts().isSignedOverflowDefined())
2378      Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2379    else
2380      Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2381  } else {
2382    // The base must be a pointer, which is not an aggregate.  Emit it.
2383    llvm::Value *Base = EmitScalarExpr(E->getBase());
2384    if (getLangOpts().isSignedOverflowDefined())
2385      Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2386    else
2387      Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2388  }
2389
2390  QualType T = E->getBase()->getType()->getPointeeType();
2391  assert(!T.isNull() &&
2392         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2393
2394
2395  // Limit the alignment to that of the result type.
2396  LValue LV;
2397  if (!ArrayAlignment.isZero()) {
2398    CharUnits Align = getContext().getTypeAlignInChars(T);
2399    ArrayAlignment = std::min(Align, ArrayAlignment);
2400    LV = MakeAddrLValue(Address, T, ArrayAlignment);
2401  } else {
2402    LV = MakeNaturalAlignAddrLValue(Address, T);
2403  }
2404
2405  LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2406
2407  if (getLangOpts().ObjC1 &&
2408      getLangOpts().getGC() != LangOptions::NonGC) {
2409    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2410    setObjCGCLValueClass(getContext(), E, LV);
2411  }
2412  return LV;
2413}
2414
2415static
2416llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2417                                       SmallVectorImpl<unsigned> &Elts) {
2418  SmallVector<llvm::Constant*, 4> CElts;
2419  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2420    CElts.push_back(Builder.getInt32(Elts[i]));
2421
2422  return llvm::ConstantVector::get(CElts);
2423}
2424
2425LValue CodeGenFunction::
2426EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2427  // Emit the base vector as an l-value.
2428  LValue Base;
2429
2430  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2431  if (E->isArrow()) {
2432    // If it is a pointer to a vector, emit the address and form an lvalue with
2433    // it.
2434    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2435    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2436    Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2437    Base.getQuals().removeObjCGCAttr();
2438  } else if (E->getBase()->isGLValue()) {
2439    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2440    // emit the base as an lvalue.
2441    assert(E->getBase()->getType()->isVectorType());
2442    Base = EmitLValue(E->getBase());
2443  } else {
2444    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2445    assert(E->getBase()->getType()->isVectorType() &&
2446           "Result must be a vector");
2447    llvm::Value *Vec = EmitScalarExpr(E->getBase());
2448
2449    // Store the vector to memory (because LValue wants an address).
2450    llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2451    Builder.CreateStore(Vec, VecMem);
2452    Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2453  }
2454
2455  QualType type =
2456    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2457
2458  // Encode the element access list into a vector of unsigned indices.
2459  SmallVector<unsigned, 4> Indices;
2460  E->getEncodedElementAccess(Indices);
2461
2462  if (Base.isSimple()) {
2463    llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2464    return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2465                                    Base.getAlignment());
2466  }
2467  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2468
2469  llvm::Constant *BaseElts = Base.getExtVectorElts();
2470  SmallVector<llvm::Constant *, 4> CElts;
2471
2472  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2473    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2474  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2475  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2476                                  Base.getAlignment());
2477}
2478
2479LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2480  Expr *BaseExpr = E->getBase();
2481
2482  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2483  LValue BaseLV;
2484  if (E->isArrow()) {
2485    llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2486    QualType PtrTy = BaseExpr->getType()->getPointeeType();
2487    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2488    BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2489  } else
2490    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2491
2492  NamedDecl *ND = E->getMemberDecl();
2493  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2494    LValue LV = EmitLValueForField(BaseLV, Field);
2495    setObjCGCLValueClass(getContext(), E, LV);
2496    return LV;
2497  }
2498
2499  if (auto *VD = dyn_cast<VarDecl>(ND))
2500    return EmitGlobalVarDeclLValue(*this, E, VD);
2501
2502  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2503    return EmitFunctionDeclLValue(*this, E, FD);
2504
2505  llvm_unreachable("Unhandled member declaration!");
2506}
2507
2508/// Given that we are currently emitting a lambda, emit an l-value for
2509/// one of its members.
2510LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2511  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2512  assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2513  QualType LambdaTagType =
2514    getContext().getTagDeclType(Field->getParent());
2515  LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2516  return EmitLValueForField(LambdaLV, Field);
2517}
2518
2519LValue CodeGenFunction::EmitLValueForField(LValue base,
2520                                           const FieldDecl *field) {
2521  if (field->isBitField()) {
2522    const CGRecordLayout &RL =
2523      CGM.getTypes().getCGRecordLayout(field->getParent());
2524    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2525    llvm::Value *Addr = base.getAddress();
2526    unsigned Idx = RL.getLLVMFieldNo(field);
2527    if (Idx != 0)
2528      // For structs, we GEP to the field that the record layout suggests.
2529      Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2530    // Get the access type.
2531    llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2532      getLLVMContext(), Info.StorageSize,
2533      CGM.getContext().getTargetAddressSpace(base.getType()));
2534    if (Addr->getType() != PtrTy)
2535      Addr = Builder.CreateBitCast(Addr, PtrTy);
2536
2537    QualType fieldType =
2538      field->getType().withCVRQualifiers(base.getVRQualifiers());
2539    return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2540  }
2541
2542  const RecordDecl *rec = field->getParent();
2543  QualType type = field->getType();
2544  CharUnits alignment = getContext().getDeclAlign(field);
2545
2546  // FIXME: It should be impossible to have an LValue without alignment for a
2547  // complete type.
2548  if (!base.getAlignment().isZero())
2549    alignment = std::min(alignment, base.getAlignment());
2550
2551  bool mayAlias = rec->hasAttr<MayAliasAttr>();
2552
2553  llvm::Value *addr = base.getAddress();
2554  unsigned cvr = base.getVRQualifiers();
2555  bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2556  if (rec->isUnion()) {
2557    // For unions, there is no pointer adjustment.
2558    assert(!type->isReferenceType() && "union has reference member");
2559    // TODO: handle path-aware TBAA for union.
2560    TBAAPath = false;
2561  } else {
2562    // For structs, we GEP to the field that the record layout suggests.
2563    unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2564    addr = Builder.CreateStructGEP(addr, idx, field->getName());
2565
2566    // If this is a reference field, load the reference right now.
2567    if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2568      llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2569      if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2570      load->setAlignment(alignment.getQuantity());
2571
2572      // Loading the reference will disable path-aware TBAA.
2573      TBAAPath = false;
2574      if (CGM.shouldUseTBAA()) {
2575        llvm::MDNode *tbaa;
2576        if (mayAlias)
2577          tbaa = CGM.getTBAAInfo(getContext().CharTy);
2578        else
2579          tbaa = CGM.getTBAAInfo(type);
2580        if (tbaa)
2581          CGM.DecorateInstruction(load, tbaa);
2582      }
2583
2584      addr = load;
2585      mayAlias = false;
2586      type = refType->getPointeeType();
2587      if (type->isIncompleteType())
2588        alignment = CharUnits();
2589      else
2590        alignment = getContext().getTypeAlignInChars(type);
2591      cvr = 0; // qualifiers don't recursively apply to referencee
2592    }
2593  }
2594
2595  // Make sure that the address is pointing to the right type.  This is critical
2596  // for both unions and structs.  A union needs a bitcast, a struct element
2597  // will need a bitcast if the LLVM type laid out doesn't match the desired
2598  // type.
2599  addr = EmitBitCastOfLValueToProperType(*this, addr,
2600                                         CGM.getTypes().ConvertTypeForMem(type),
2601                                         field->getName());
2602
2603  if (field->hasAttr<AnnotateAttr>())
2604    addr = EmitFieldAnnotations(field, addr);
2605
2606  LValue LV = MakeAddrLValue(addr, type, alignment);
2607  LV.getQuals().addCVRQualifiers(cvr);
2608  if (TBAAPath) {
2609    const ASTRecordLayout &Layout =
2610        getContext().getASTRecordLayout(field->getParent());
2611    // Set the base type to be the base type of the base LValue and
2612    // update offset to be relative to the base type.
2613    LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2614    LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2615                     Layout.getFieldOffset(field->getFieldIndex()) /
2616                                           getContext().getCharWidth());
2617  }
2618
2619  // __weak attribute on a field is ignored.
2620  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2621    LV.getQuals().removeObjCGCAttr();
2622
2623  // Fields of may_alias structs act like 'char' for TBAA purposes.
2624  // FIXME: this should get propagated down through anonymous structs
2625  // and unions.
2626  if (mayAlias && LV.getTBAAInfo())
2627    LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2628
2629  return LV;
2630}
2631
2632LValue
2633CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2634                                                  const FieldDecl *Field) {
2635  QualType FieldType = Field->getType();
2636
2637  if (!FieldType->isReferenceType())
2638    return EmitLValueForField(Base, Field);
2639
2640  const CGRecordLayout &RL =
2641    CGM.getTypes().getCGRecordLayout(Field->getParent());
2642  unsigned idx = RL.getLLVMFieldNo(Field);
2643  llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2644  assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2645
2646  // Make sure that the address is pointing to the right type.  This is critical
2647  // for both unions and structs.  A union needs a bitcast, a struct element
2648  // will need a bitcast if the LLVM type laid out doesn't match the desired
2649  // type.
2650  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2651  V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2652
2653  CharUnits Alignment = getContext().getDeclAlign(Field);
2654
2655  // FIXME: It should be impossible to have an LValue without alignment for a
2656  // complete type.
2657  if (!Base.getAlignment().isZero())
2658    Alignment = std::min(Alignment, Base.getAlignment());
2659
2660  return MakeAddrLValue(V, FieldType, Alignment);
2661}
2662
2663LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2664  if (E->isFileScope()) {
2665    llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2666    return MakeAddrLValue(GlobalPtr, E->getType());
2667  }
2668  if (E->getType()->isVariablyModifiedType())
2669    // make sure to emit the VLA size.
2670    EmitVariablyModifiedType(E->getType());
2671
2672  llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2673  const Expr *InitExpr = E->getInitializer();
2674  LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2675
2676  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2677                   /*Init*/ true);
2678
2679  return Result;
2680}
2681
2682LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2683  if (!E->isGLValue())
2684    // Initializing an aggregate temporary in C++11: T{...}.
2685    return EmitAggExprToLValue(E);
2686
2687  // An lvalue initializer list must be initializing a reference.
2688  assert(E->getNumInits() == 1 && "reference init with multiple values");
2689  return EmitLValue(E->getInit(0));
2690}
2691
2692/// Emit the operand of a glvalue conditional operator. This is either a glvalue
2693/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2694/// LValue is returned and the current block has been terminated.
2695static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2696                                                    const Expr *Operand) {
2697  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2698    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2699    return None;
2700  }
2701
2702  return CGF.EmitLValue(Operand);
2703}
2704
2705LValue CodeGenFunction::
2706EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2707  if (!expr->isGLValue()) {
2708    // ?: here should be an aggregate.
2709    assert(hasAggregateEvaluationKind(expr->getType()) &&
2710           "Unexpected conditional operator!");
2711    return EmitAggExprToLValue(expr);
2712  }
2713
2714  OpaqueValueMapping binding(*this, expr);
2715  RegionCounter Cnt = getPGORegionCounter(expr);
2716
2717  const Expr *condExpr = expr->getCond();
2718  bool CondExprBool;
2719  if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2720    const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2721    if (!CondExprBool) std::swap(live, dead);
2722
2723    if (!ContainsLabel(dead)) {
2724      // If the true case is live, we need to track its region.
2725      if (CondExprBool)
2726        Cnt.beginRegion(Builder);
2727      return EmitLValue(live);
2728    }
2729  }
2730
2731  llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2732  llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2733  llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2734
2735  ConditionalEvaluation eval(*this);
2736  EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2737
2738  // Any temporaries created here are conditional.
2739  EmitBlock(lhsBlock);
2740  Cnt.beginRegion(Builder);
2741  eval.begin(*this);
2742  Optional<LValue> lhs =
2743      EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2744  eval.end(*this);
2745
2746  if (lhs && !lhs->isSimple())
2747    return EmitUnsupportedLValue(expr, "conditional operator");
2748
2749  lhsBlock = Builder.GetInsertBlock();
2750  if (lhs)
2751    Builder.CreateBr(contBlock);
2752
2753  // Any temporaries created here are conditional.
2754  EmitBlock(rhsBlock);
2755  eval.begin(*this);
2756  Optional<LValue> rhs =
2757      EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2758  eval.end(*this);
2759  if (rhs && !rhs->isSimple())
2760    return EmitUnsupportedLValue(expr, "conditional operator");
2761  rhsBlock = Builder.GetInsertBlock();
2762
2763  EmitBlock(contBlock);
2764
2765  if (lhs && rhs) {
2766    llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2767                                           2, "cond-lvalue");
2768    phi->addIncoming(lhs->getAddress(), lhsBlock);
2769    phi->addIncoming(rhs->getAddress(), rhsBlock);
2770    return MakeAddrLValue(phi, expr->getType());
2771  } else {
2772    assert((lhs || rhs) &&
2773           "both operands of glvalue conditional are throw-expressions?");
2774    return lhs ? *lhs : *rhs;
2775  }
2776}
2777
2778/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2779/// type. If the cast is to a reference, we can have the usual lvalue result,
2780/// otherwise if a cast is needed by the code generator in an lvalue context,
2781/// then it must mean that we need the address of an aggregate in order to
2782/// access one of its members.  This can happen for all the reasons that casts
2783/// are permitted with aggregate result, including noop aggregate casts, and
2784/// cast from scalar to union.
2785LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2786  switch (E->getCastKind()) {
2787  case CK_ToVoid:
2788  case CK_BitCast:
2789  case CK_ArrayToPointerDecay:
2790  case CK_FunctionToPointerDecay:
2791  case CK_NullToMemberPointer:
2792  case CK_NullToPointer:
2793  case CK_IntegralToPointer:
2794  case CK_PointerToIntegral:
2795  case CK_PointerToBoolean:
2796  case CK_VectorSplat:
2797  case CK_IntegralCast:
2798  case CK_IntegralToBoolean:
2799  case CK_IntegralToFloating:
2800  case CK_FloatingToIntegral:
2801  case CK_FloatingToBoolean:
2802  case CK_FloatingCast:
2803  case CK_FloatingRealToComplex:
2804  case CK_FloatingComplexToReal:
2805  case CK_FloatingComplexToBoolean:
2806  case CK_FloatingComplexCast:
2807  case CK_FloatingComplexToIntegralComplex:
2808  case CK_IntegralRealToComplex:
2809  case CK_IntegralComplexToReal:
2810  case CK_IntegralComplexToBoolean:
2811  case CK_IntegralComplexCast:
2812  case CK_IntegralComplexToFloatingComplex:
2813  case CK_DerivedToBaseMemberPointer:
2814  case CK_BaseToDerivedMemberPointer:
2815  case CK_MemberPointerToBoolean:
2816  case CK_ReinterpretMemberPointer:
2817  case CK_AnyPointerToBlockPointerCast:
2818  case CK_ARCProduceObject:
2819  case CK_ARCConsumeObject:
2820  case CK_ARCReclaimReturnedObject:
2821  case CK_ARCExtendBlockObject:
2822  case CK_CopyAndAutoreleaseBlockObject:
2823  case CK_AddressSpaceConversion:
2824    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2825
2826  case CK_Dependent:
2827    llvm_unreachable("dependent cast kind in IR gen!");
2828
2829  case CK_BuiltinFnToFnPtr:
2830    llvm_unreachable("builtin functions are handled elsewhere");
2831
2832  // These are never l-values; just use the aggregate emission code.
2833  case CK_NonAtomicToAtomic:
2834  case CK_AtomicToNonAtomic:
2835    return EmitAggExprToLValue(E);
2836
2837  case CK_Dynamic: {
2838    LValue LV = EmitLValue(E->getSubExpr());
2839    llvm::Value *V = LV.getAddress();
2840    const auto *DCE = cast<CXXDynamicCastExpr>(E);
2841    return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2842  }
2843
2844  case CK_ConstructorConversion:
2845  case CK_UserDefinedConversion:
2846  case CK_CPointerToObjCPointerCast:
2847  case CK_BlockPointerToObjCPointerCast:
2848  case CK_NoOp:
2849  case CK_LValueToRValue:
2850    return EmitLValue(E->getSubExpr());
2851
2852  case CK_UncheckedDerivedToBase:
2853  case CK_DerivedToBase: {
2854    const RecordType *DerivedClassTy =
2855      E->getSubExpr()->getType()->getAs<RecordType>();
2856    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2857
2858    LValue LV = EmitLValue(E->getSubExpr());
2859    llvm::Value *This = LV.getAddress();
2860
2861    // Perform the derived-to-base conversion
2862    llvm::Value *Base =
2863      GetAddressOfBaseClass(This, DerivedClassDecl,
2864                            E->path_begin(), E->path_end(),
2865                            /*NullCheckValue=*/false);
2866
2867    return MakeAddrLValue(Base, E->getType());
2868  }
2869  case CK_ToUnion:
2870    return EmitAggExprToLValue(E);
2871  case CK_BaseToDerived: {
2872    const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2873    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2874
2875    LValue LV = EmitLValue(E->getSubExpr());
2876
2877    // Perform the base-to-derived conversion
2878    llvm::Value *Derived =
2879      GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2880                               E->path_begin(), E->path_end(),
2881                               /*NullCheckValue=*/false);
2882
2883    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2884    // performed and the object is not of the derived type.
2885    if (sanitizePerformTypeCheck())
2886      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2887                    Derived, E->getType());
2888
2889    return MakeAddrLValue(Derived, E->getType());
2890  }
2891  case CK_LValueBitCast: {
2892    // This must be a reinterpret_cast (or c-style equivalent).
2893    const auto *CE = cast<ExplicitCastExpr>(E);
2894
2895    LValue LV = EmitLValue(E->getSubExpr());
2896    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2897                                           ConvertType(CE->getTypeAsWritten()));
2898    return MakeAddrLValue(V, E->getType());
2899  }
2900  case CK_ObjCObjectLValueCast: {
2901    LValue LV = EmitLValue(E->getSubExpr());
2902    QualType ToType = getContext().getLValueReferenceType(E->getType());
2903    llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2904                                           ConvertType(ToType));
2905    return MakeAddrLValue(V, E->getType());
2906  }
2907  case CK_ZeroToOCLEvent:
2908    llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2909  }
2910
2911  llvm_unreachable("Unhandled lvalue cast kind?");
2912}
2913
2914LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2915  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2916  return getOpaqueLValueMapping(e);
2917}
2918
2919RValue CodeGenFunction::EmitRValueForField(LValue LV,
2920                                           const FieldDecl *FD,
2921                                           SourceLocation Loc) {
2922  QualType FT = FD->getType();
2923  LValue FieldLV = EmitLValueForField(LV, FD);
2924  switch (getEvaluationKind(FT)) {
2925  case TEK_Complex:
2926    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2927  case TEK_Aggregate:
2928    return FieldLV.asAggregateRValue();
2929  case TEK_Scalar:
2930    return EmitLoadOfLValue(FieldLV, Loc);
2931  }
2932  llvm_unreachable("bad evaluation kind");
2933}
2934
2935//===--------------------------------------------------------------------===//
2936//                             Expression Emission
2937//===--------------------------------------------------------------------===//
2938
2939RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2940                                     ReturnValueSlot ReturnValue) {
2941  if (CGDebugInfo *DI = getDebugInfo()) {
2942    SourceLocation Loc = E->getLocStart();
2943    // Force column info to be generated so we can differentiate
2944    // multiple call sites on the same line in the debug info.
2945    // FIXME: This is insufficient. Two calls coming from the same macro
2946    // expansion will still get the same line/column and break debug info. It's
2947    // possible that LLVM can be fixed to not rely on this uniqueness, at which
2948    // point this workaround can be removed.
2949    const FunctionDecl* Callee = E->getDirectCallee();
2950    bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2951    DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2952  }
2953
2954  // Builtins never have block type.
2955  if (E->getCallee()->getType()->isBlockPointerType())
2956    return EmitBlockCallExpr(E, ReturnValue);
2957
2958  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2959    return EmitCXXMemberCallExpr(CE, ReturnValue);
2960
2961  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2962    return EmitCUDAKernelCallExpr(CE, ReturnValue);
2963
2964  const Decl *TargetDecl = E->getCalleeDecl();
2965  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2966    if (unsigned builtinID = FD->getBuiltinID())
2967      return EmitBuiltinExpr(FD, builtinID, E);
2968  }
2969
2970  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2971    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2972      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2973
2974  if (const auto *PseudoDtor =
2975          dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2976    QualType DestroyedType = PseudoDtor->getDestroyedType();
2977    if (getLangOpts().ObjCAutoRefCount &&
2978        DestroyedType->isObjCLifetimeType() &&
2979        (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2980         DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2981      // Automatic Reference Counting:
2982      //   If the pseudo-expression names a retainable object with weak or
2983      //   strong lifetime, the object shall be released.
2984      Expr *BaseExpr = PseudoDtor->getBase();
2985      llvm::Value *BaseValue = nullptr;
2986      Qualifiers BaseQuals;
2987
2988      // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2989      if (PseudoDtor->isArrow()) {
2990        BaseValue = EmitScalarExpr(BaseExpr);
2991        const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2992        BaseQuals = PTy->getPointeeType().getQualifiers();
2993      } else {
2994        LValue BaseLV = EmitLValue(BaseExpr);
2995        BaseValue = BaseLV.getAddress();
2996        QualType BaseTy = BaseExpr->getType();
2997        BaseQuals = BaseTy.getQualifiers();
2998      }
2999
3000      switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3001      case Qualifiers::OCL_None:
3002      case Qualifiers::OCL_ExplicitNone:
3003      case Qualifiers::OCL_Autoreleasing:
3004        break;
3005
3006      case Qualifiers::OCL_Strong:
3007        EmitARCRelease(Builder.CreateLoad(BaseValue,
3008                          PseudoDtor->getDestroyedType().isVolatileQualified()),
3009                       ARCPreciseLifetime);
3010        break;
3011
3012      case Qualifiers::OCL_Weak:
3013        EmitARCDestroyWeak(BaseValue);
3014        break;
3015      }
3016    } else {
3017      // C++ [expr.pseudo]p1:
3018      //   The result shall only be used as the operand for the function call
3019      //   operator (), and the result of such a call has type void. The only
3020      //   effect is the evaluation of the postfix-expression before the dot or
3021      //   arrow.
3022      EmitScalarExpr(E->getCallee());
3023    }
3024
3025    return RValue::get(nullptr);
3026  }
3027
3028  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3029  return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3030                  ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3031}
3032
3033LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3034  // Comma expressions just emit their LHS then their RHS as an l-value.
3035  if (E->getOpcode() == BO_Comma) {
3036    EmitIgnoredExpr(E->getLHS());
3037    EnsureInsertPoint();
3038    return EmitLValue(E->getRHS());
3039  }
3040
3041  if (E->getOpcode() == BO_PtrMemD ||
3042      E->getOpcode() == BO_PtrMemI)
3043    return EmitPointerToDataMemberBinaryExpr(E);
3044
3045  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3046
3047  // Note that in all of these cases, __block variables need the RHS
3048  // evaluated first just in case the variable gets moved by the RHS.
3049
3050  switch (getEvaluationKind(E->getType())) {
3051  case TEK_Scalar: {
3052    switch (E->getLHS()->getType().getObjCLifetime()) {
3053    case Qualifiers::OCL_Strong:
3054      return EmitARCStoreStrong(E, /*ignored*/ false).first;
3055
3056    case Qualifiers::OCL_Autoreleasing:
3057      return EmitARCStoreAutoreleasing(E).first;
3058
3059    // No reason to do any of these differently.
3060    case Qualifiers::OCL_None:
3061    case Qualifiers::OCL_ExplicitNone:
3062    case Qualifiers::OCL_Weak:
3063      break;
3064    }
3065
3066    RValue RV = EmitAnyExpr(E->getRHS());
3067    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3068    EmitStoreThroughLValue(RV, LV);
3069    return LV;
3070  }
3071
3072  case TEK_Complex:
3073    return EmitComplexAssignmentLValue(E);
3074
3075  case TEK_Aggregate:
3076    return EmitAggExprToLValue(E);
3077  }
3078  llvm_unreachable("bad evaluation kind");
3079}
3080
3081LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3082  RValue RV = EmitCallExpr(E);
3083
3084  if (!RV.isScalar())
3085    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3086
3087  assert(E->getCallReturnType()->isReferenceType() &&
3088         "Can't have a scalar return unless the return type is a "
3089         "reference type!");
3090
3091  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3092}
3093
3094LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3095  // FIXME: This shouldn't require another copy.
3096  return EmitAggExprToLValue(E);
3097}
3098
3099LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3100  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3101         && "binding l-value to type which needs a temporary");
3102  AggValueSlot Slot = CreateAggTemp(E->getType());
3103  EmitCXXConstructExpr(E, Slot);
3104  return MakeAddrLValue(Slot.getAddr(), E->getType());
3105}
3106
3107LValue
3108CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3109  return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3110}
3111
3112llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3113  return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3114                               ConvertType(E->getType())->getPointerTo());
3115}
3116
3117LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3118  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3119}
3120
3121LValue
3122CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3123  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3124  Slot.setExternallyDestructed();
3125  EmitAggExpr(E->getSubExpr(), Slot);
3126  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3127  return MakeAddrLValue(Slot.getAddr(), E->getType());
3128}
3129
3130LValue
3131CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3132  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3133  EmitLambdaExpr(E, Slot);
3134  return MakeAddrLValue(Slot.getAddr(), E->getType());
3135}
3136
3137LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3138  RValue RV = EmitObjCMessageExpr(E);
3139
3140  if (!RV.isScalar())
3141    return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3142
3143  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3144         "Can't have a scalar return unless the return type is a "
3145         "reference type!");
3146
3147  return MakeAddrLValue(RV.getScalarVal(), E->getType());
3148}
3149
3150LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3151  llvm::Value *V =
3152    CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3153  return MakeAddrLValue(V, E->getType());
3154}
3155
3156llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3157                                             const ObjCIvarDecl *Ivar) {
3158  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3159}
3160
3161LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3162                                          llvm::Value *BaseValue,
3163                                          const ObjCIvarDecl *Ivar,
3164                                          unsigned CVRQualifiers) {
3165  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3166                                                   Ivar, CVRQualifiers);
3167}
3168
3169LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3170  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3171  llvm::Value *BaseValue = nullptr;
3172  const Expr *BaseExpr = E->getBase();
3173  Qualifiers BaseQuals;
3174  QualType ObjectTy;
3175  if (E->isArrow()) {
3176    BaseValue = EmitScalarExpr(BaseExpr);
3177    ObjectTy = BaseExpr->getType()->getPointeeType();
3178    BaseQuals = ObjectTy.getQualifiers();
3179  } else {
3180    LValue BaseLV = EmitLValue(BaseExpr);
3181    // FIXME: this isn't right for bitfields.
3182    BaseValue = BaseLV.getAddress();
3183    ObjectTy = BaseExpr->getType();
3184    BaseQuals = ObjectTy.getQualifiers();
3185  }
3186
3187  LValue LV =
3188    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3189                      BaseQuals.getCVRQualifiers());
3190  setObjCGCLValueClass(getContext(), E, LV);
3191  return LV;
3192}
3193
3194LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3195  // Can only get l-value for message expression returning aggregate type
3196  RValue RV = EmitAnyExprToTemp(E);
3197  return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3198}
3199
3200RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3201                                 SourceLocation CallLoc,
3202                                 ReturnValueSlot ReturnValue,
3203                                 CallExpr::const_arg_iterator ArgBeg,
3204                                 CallExpr::const_arg_iterator ArgEnd,
3205                                 const Decl *TargetDecl) {
3206  // Get the actual function type. The callee type will always be a pointer to
3207  // function type or a block pointer type.
3208  assert(CalleeType->isFunctionPointerType() &&
3209         "Call must have function pointer type!");
3210
3211  CalleeType = getContext().getCanonicalType(CalleeType);
3212
3213  const auto *FnType =
3214      cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3215
3216  // Force column info to differentiate multiple inlined call sites on
3217  // the same line, analoguous to EmitCallExpr.
3218  // FIXME: This is insufficient. Two calls coming from the same macro expansion
3219  // will still get the same line/column and break debug info. It's possible
3220  // that LLVM can be fixed to not rely on this uniqueness, at which point this
3221  // workaround can be removed.
3222  bool ForceColumnInfo = false;
3223  if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3224    ForceColumnInfo = FD->isInlineSpecified();
3225
3226  if (getLangOpts().CPlusPlus && SanOpts->Function &&
3227      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3228    if (llvm::Constant *PrefixSig =
3229            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3230      llvm::Constant *FTRTTIConst =
3231          CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3232      llvm::Type *PrefixStructTyElems[] = {
3233        PrefixSig->getType(),
3234        FTRTTIConst->getType()
3235      };
3236      llvm::StructType *PrefixStructTy = llvm::StructType::get(
3237          CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3238
3239      llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3240          Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3241      llvm::Value *CalleeSigPtr =
3242          Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3243      llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3244      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3245
3246      llvm::BasicBlock *Cont = createBasicBlock("cont");
3247      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3248      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3249
3250      EmitBlock(TypeCheck);
3251      llvm::Value *CalleeRTTIPtr =
3252          Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3253      llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3254      llvm::Value *CalleeRTTIMatch =
3255          Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3256      llvm::Constant *StaticData[] = {
3257        EmitCheckSourceLocation(CallLoc),
3258        EmitCheckTypeDescriptor(CalleeType)
3259      };
3260      EmitCheck(CalleeRTTIMatch,
3261                "function_type_mismatch",
3262                StaticData,
3263                Callee,
3264                CRK_Recoverable);
3265
3266      Builder.CreateBr(Cont);
3267      EmitBlock(Cont);
3268    }
3269  }
3270
3271  CallArgList Args;
3272  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3273               ForceColumnInfo);
3274
3275  const CGFunctionInfo &FnInfo =
3276    CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3277
3278  // C99 6.5.2.2p6:
3279  //   If the expression that denotes the called function has a type
3280  //   that does not include a prototype, [the default argument
3281  //   promotions are performed]. If the number of arguments does not
3282  //   equal the number of parameters, the behavior is undefined. If
3283  //   the function is defined with a type that includes a prototype,
3284  //   and either the prototype ends with an ellipsis (, ...) or the
3285  //   types of the arguments after promotion are not compatible with
3286  //   the types of the parameters, the behavior is undefined. If the
3287  //   function is defined with a type that does not include a
3288  //   prototype, and the types of the arguments after promotion are
3289  //   not compatible with those of the parameters after promotion,
3290  //   the behavior is undefined [except in some trivial cases].
3291  // That is, in the general case, we should assume that a call
3292  // through an unprototyped function type works like a *non-variadic*
3293  // call.  The way we make this work is to cast to the exact type
3294  // of the promoted arguments.
3295  if (isa<FunctionNoProtoType>(FnType)) {
3296    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3297    CalleeTy = CalleeTy->getPointerTo();
3298    Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3299  }
3300
3301  return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3302}
3303
3304LValue CodeGenFunction::
3305EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3306  llvm::Value *BaseV;
3307  if (E->getOpcode() == BO_PtrMemI)
3308    BaseV = EmitScalarExpr(E->getLHS());
3309  else
3310    BaseV = EmitLValue(E->getLHS()).getAddress();
3311
3312  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3313
3314  const MemberPointerType *MPT
3315    = E->getRHS()->getType()->getAs<MemberPointerType>();
3316
3317  llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3318      *this, E, BaseV, OffsetV, MPT);
3319
3320  return MakeAddrLValue(AddV, MPT->getPointeeType());
3321}
3322
3323/// Given the address of a temporary variable, produce an r-value of
3324/// its type.
3325RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3326                                            QualType type,
3327                                            SourceLocation loc) {
3328  LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3329  switch (getEvaluationKind(type)) {
3330  case TEK_Complex:
3331    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3332  case TEK_Aggregate:
3333    return lvalue.asAggregateRValue();
3334  case TEK_Scalar:
3335    return RValue::get(EmitLoadOfScalar(lvalue, loc));
3336  }
3337  llvm_unreachable("bad evaluation kind");
3338}
3339
3340void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3341  assert(Val->getType()->isFPOrFPVectorTy());
3342  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3343    return;
3344
3345  llvm::MDBuilder MDHelper(getLLVMContext());
3346  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3347
3348  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3349}
3350
3351namespace {
3352  struct LValueOrRValue {
3353    LValue LV;
3354    RValue RV;
3355  };
3356}
3357
3358static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3359                                           const PseudoObjectExpr *E,
3360                                           bool forLValue,
3361                                           AggValueSlot slot) {
3362  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3363
3364  // Find the result expression, if any.
3365  const Expr *resultExpr = E->getResultExpr();
3366  LValueOrRValue result;
3367
3368  for (PseudoObjectExpr::const_semantics_iterator
3369         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3370    const Expr *semantic = *i;
3371
3372    // If this semantic expression is an opaque value, bind it
3373    // to the result of its source expression.
3374    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3375
3376      // If this is the result expression, we may need to evaluate
3377      // directly into the slot.
3378      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3379      OVMA opaqueData;
3380      if (ov == resultExpr && ov->isRValue() && !forLValue &&
3381          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3382        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3383
3384        LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3385        opaqueData = OVMA::bind(CGF, ov, LV);
3386        result.RV = slot.asRValue();
3387
3388      // Otherwise, emit as normal.
3389      } else {
3390        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3391
3392        // If this is the result, also evaluate the result now.
3393        if (ov == resultExpr) {
3394          if (forLValue)
3395            result.LV = CGF.EmitLValue(ov);
3396          else
3397            result.RV = CGF.EmitAnyExpr(ov, slot);
3398        }
3399      }
3400
3401      opaques.push_back(opaqueData);
3402
3403    // Otherwise, if the expression is the result, evaluate it
3404    // and remember the result.
3405    } else if (semantic == resultExpr) {
3406      if (forLValue)
3407        result.LV = CGF.EmitLValue(semantic);
3408      else
3409        result.RV = CGF.EmitAnyExpr(semantic, slot);
3410
3411    // Otherwise, evaluate the expression in an ignored context.
3412    } else {
3413      CGF.EmitIgnoredExpr(semantic);
3414    }
3415  }
3416
3417  // Unbind all the opaques now.
3418  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3419    opaques[i].unbind(CGF);
3420
3421  return result;
3422}
3423
3424RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3425                                               AggValueSlot slot) {
3426  return emitPseudoObjectExpr(*this, E, false, slot).RV;
3427}
3428
3429LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3430  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3431}
3432