CGExprCXX.cpp revision 7c3e615f01e8f9f587315800fdaf2305ed824568
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/IR/Intrinsics.h"
21#include "llvm/Support/CallSite.h"
22
23using namespace clang;
24using namespace CodeGen;
25
26RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27                                          SourceLocation CallLoc,
28                                          llvm::Value *Callee,
29                                          ReturnValueSlot ReturnValue,
30                                          llvm::Value *This,
31                                          llvm::Value *ImplicitParam,
32                                          QualType ImplicitParamTy,
33                                          CallExpr::const_arg_iterator ArgBeg,
34                                          CallExpr::const_arg_iterator ArgEnd) {
35  assert(MD->isInstance() &&
36         "Trying to emit a member call expr on a static method!");
37
38  // C++11 [class.mfct.non-static]p2:
39  //   If a non-static member function of a class X is called for an object that
40  //   is not of type X, or of a type derived from X, the behavior is undefined.
41  EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
42                                            : TCK_MemberCall,
43                CallLoc, This, getContext().getRecordType(MD->getParent()));
44
45  CallArgList Args;
46
47  // Push the this ptr.
48  Args.add(RValue::get(This), MD->getThisType(getContext()));
49
50  // If there is an implicit parameter (e.g. VTT), emit it.
51  if (ImplicitParam) {
52    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53  }
54
55  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
58  // And the rest of the call args.
59  EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
60
61  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
62                  Callee, ReturnValue, Args, MD);
63}
64
65// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
66// quite what we want.
67static const Expr *skipNoOpCastsAndParens(const Expr *E) {
68  while (true) {
69    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
70      E = PE->getSubExpr();
71      continue;
72    }
73
74    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
75      if (CE->getCastKind() == CK_NoOp) {
76        E = CE->getSubExpr();
77        continue;
78      }
79    }
80    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
81      if (UO->getOpcode() == UO_Extension) {
82        E = UO->getSubExpr();
83        continue;
84      }
85    }
86    return E;
87  }
88}
89
90/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
91/// expr can be devirtualized.
92static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
93                                               const Expr *Base,
94                                               const CXXMethodDecl *MD) {
95
96  // When building with -fapple-kext, all calls must go through the vtable since
97  // the kernel linker can do runtime patching of vtables.
98  if (Context.getLangOpts().AppleKext)
99    return false;
100
101  // If the most derived class is marked final, we know that no subclass can
102  // override this member function and so we can devirtualize it. For example:
103  //
104  // struct A { virtual void f(); }
105  // struct B final : A { };
106  //
107  // void f(B *b) {
108  //   b->f();
109  // }
110  //
111  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
112  if (MostDerivedClassDecl->hasAttr<FinalAttr>())
113    return true;
114
115  // If the member function is marked 'final', we know that it can't be
116  // overridden and can therefore devirtualize it.
117  if (MD->hasAttr<FinalAttr>())
118    return true;
119
120  // Similarly, if the class itself is marked 'final' it can't be overridden
121  // and we can therefore devirtualize the member function call.
122  if (MD->getParent()->hasAttr<FinalAttr>())
123    return true;
124
125  Base = skipNoOpCastsAndParens(Base);
126  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
127    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
128      // This is a record decl. We know the type and can devirtualize it.
129      return VD->getType()->isRecordType();
130    }
131
132    return false;
133  }
134
135  // We can devirtualize calls on an object accessed by a class member access
136  // expression, since by C++11 [basic.life]p6 we know that it can't refer to
137  // a derived class object constructed in the same location.
138  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
139    if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
140      return VD->getType()->isRecordType();
141
142  // We can always devirtualize calls on temporary object expressions.
143  if (isa<CXXConstructExpr>(Base))
144    return true;
145
146  // And calls on bound temporaries.
147  if (isa<CXXBindTemporaryExpr>(Base))
148    return true;
149
150  // Check if this is a call expr that returns a record type.
151  if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
152    return CE->getCallReturnType()->isRecordType();
153
154  // We can't devirtualize the call.
155  return false;
156}
157
158static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161    T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164}
165
166// Note: This function also emit constructor calls to support a MSVC
167// extensions allowing explicit constructor function call.
168RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169                                              ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171
172  if (isa<BinaryOperator>(callee))
173    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177
178  CGDebugInfo *DI = getDebugInfo();
179  if (DI &&
180      CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::LimitedDebugInfo &&
181      !isa<CallExpr>(ME->getBase())) {
182    QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
183    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
184      DI->getOrCreateRecordType(PTy->getPointeeType(),
185                                MD->getParent()->getLocation());
186    }
187  }
188
189  if (MD->isStatic()) {
190    // The method is static, emit it as we would a regular call.
191    llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
192    return EmitCall(getContext().getPointerType(MD->getType()), Callee,
193                    ReturnValue, CE->arg_begin(), CE->arg_end());
194  }
195
196  // Compute the object pointer.
197  const Expr *Base = ME->getBase();
198  bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
199
200  const CXXMethodDecl *DevirtualizedMethod = NULL;
201  if (CanUseVirtualCall &&
202      canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
203    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205    assert(DevirtualizedMethod);
206    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207    const Expr *Inner = Base->ignoreParenBaseCasts();
208    if (getCXXRecord(Inner) == DevirtualizedClass)
209      // If the class of the Inner expression is where the dynamic method
210      // is defined, build the this pointer from it.
211      Base = Inner;
212    else if (getCXXRecord(Base) != DevirtualizedClass) {
213      // If the method is defined in a class that is not the best dynamic
214      // one or the one of the full expression, we would have to build
215      // a derived-to-base cast to compute the correct this pointer, but
216      // we don't have support for that yet, so do a virtual call.
217      DevirtualizedMethod = NULL;
218    }
219    // If the return types are not the same, this might be a case where more
220    // code needs to run to compensate for it. For example, the derived
221    // method might return a type that inherits form from the return
222    // type of MD and has a prefix.
223    // For now we just avoid devirtualizing these covariant cases.
224    if (DevirtualizedMethod &&
225        DevirtualizedMethod->getResultType().getCanonicalType() !=
226        MD->getResultType().getCanonicalType())
227      DevirtualizedMethod = NULL;
228  }
229
230  llvm::Value *This;
231  if (ME->isArrow())
232    This = EmitScalarExpr(Base);
233  else
234    This = EmitLValue(Base).getAddress();
235
236
237  if (MD->isTrivial()) {
238    if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
239    if (isa<CXXConstructorDecl>(MD) &&
240        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
241      return RValue::get(0);
242
243    if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
244      // We don't like to generate the trivial copy/move assignment operator
245      // when it isn't necessary; just produce the proper effect here.
246      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
247      EmitAggregateAssign(This, RHS, CE->getType());
248      return RValue::get(This);
249    }
250
251    if (isa<CXXConstructorDecl>(MD) &&
252        cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
253      // Trivial move and copy ctor are the same.
254      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
255      EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
256                                     CE->arg_begin(), CE->arg_end());
257      return RValue::get(This);
258    }
259    llvm_unreachable("unknown trivial member function");
260  }
261
262  // Compute the function type we're calling.
263  const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
264  const CGFunctionInfo *FInfo = 0;
265  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
266    FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
267                                                 Dtor_Complete);
268  else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
269    FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
270                                                             Ctor_Complete);
271  else
272    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
273
274  llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
275
276  // C++ [class.virtual]p12:
277  //   Explicit qualification with the scope operator (5.1) suppresses the
278  //   virtual call mechanism.
279  //
280  // We also don't emit a virtual call if the base expression has a record type
281  // because then we know what the type is.
282  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
283
284  llvm::Value *Callee;
285  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
286    if (UseVirtualCall) {
287      assert(CE->arg_begin() == CE->arg_end() &&
288             "Virtual destructor shouldn't have explicit parameters");
289      return CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor,
290                                                       Dtor_Complete,
291                                                       CE->getExprLoc(),
292                                                       ReturnValue, This);
293    } else {
294      if (getLangOpts().AppleKext &&
295          MD->isVirtual() &&
296          ME->hasQualifier())
297        Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
298      else if (!DevirtualizedMethod)
299        Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
300      else {
301        const CXXDestructorDecl *DDtor =
302          cast<CXXDestructorDecl>(DevirtualizedMethod);
303        Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
304      }
305    }
306  } else if (const CXXConstructorDecl *Ctor =
307               dyn_cast<CXXConstructorDecl>(MD)) {
308    Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
309  } else if (UseVirtualCall) {
310      Callee = BuildVirtualCall(MD, This, Ty);
311  } else {
312    if (getLangOpts().AppleKext &&
313        MD->isVirtual() &&
314        ME->hasQualifier())
315      Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
316    else if (!DevirtualizedMethod)
317      Callee = CGM.GetAddrOfFunction(MD, Ty);
318    else {
319      Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
320    }
321  }
322
323  return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
324                           /*ImplicitParam=*/0, QualType(),
325                           CE->arg_begin(), CE->arg_end());
326}
327
328RValue
329CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
330                                              ReturnValueSlot ReturnValue) {
331  const BinaryOperator *BO =
332      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
333  const Expr *BaseExpr = BO->getLHS();
334  const Expr *MemFnExpr = BO->getRHS();
335
336  const MemberPointerType *MPT =
337    MemFnExpr->getType()->castAs<MemberPointerType>();
338
339  const FunctionProtoType *FPT =
340    MPT->getPointeeType()->castAs<FunctionProtoType>();
341  const CXXRecordDecl *RD =
342    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
343
344  // Get the member function pointer.
345  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
346
347  // Emit the 'this' pointer.
348  llvm::Value *This;
349
350  if (BO->getOpcode() == BO_PtrMemI)
351    This = EmitScalarExpr(BaseExpr);
352  else
353    This = EmitLValue(BaseExpr).getAddress();
354
355  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
356                QualType(MPT->getClass(), 0));
357
358  // Ask the ABI to load the callee.  Note that This is modified.
359  llvm::Value *Callee =
360    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
361
362  CallArgList Args;
363
364  QualType ThisType =
365    getContext().getPointerType(getContext().getTagDeclType(RD));
366
367  // Push the this ptr.
368  Args.add(RValue::get(This), ThisType);
369
370  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
371
372  // And the rest of the call args
373  EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
374  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
375                  ReturnValue, Args);
376}
377
378RValue
379CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
380                                               const CXXMethodDecl *MD,
381                                               ReturnValueSlot ReturnValue) {
382  assert(MD->isInstance() &&
383         "Trying to emit a member call expr on a static method!");
384  LValue LV = EmitLValue(E->getArg(0));
385  llvm::Value *This = LV.getAddress();
386
387  if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
388      MD->isTrivial()) {
389    llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
390    QualType Ty = E->getType();
391    EmitAggregateAssign(This, Src, Ty);
392    return RValue::get(This);
393  }
394
395  llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
396  return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
397                           /*ImplicitParam=*/0, QualType(),
398                           E->arg_begin() + 1, E->arg_end());
399}
400
401RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
402                                               ReturnValueSlot ReturnValue) {
403  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
404}
405
406static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
407                                            llvm::Value *DestPtr,
408                                            const CXXRecordDecl *Base) {
409  if (Base->isEmpty())
410    return;
411
412  DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
413
414  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
415  CharUnits Size = Layout.getNonVirtualSize();
416  CharUnits Align = Layout.getNonVirtualAlign();
417
418  llvm::Value *SizeVal = CGF.CGM.getSize(Size);
419
420  // If the type contains a pointer to data member we can't memset it to zero.
421  // Instead, create a null constant and copy it to the destination.
422  // TODO: there are other patterns besides zero that we can usefully memset,
423  // like -1, which happens to be the pattern used by member-pointers.
424  // TODO: isZeroInitializable can be over-conservative in the case where a
425  // virtual base contains a member pointer.
426  if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
427    llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
428
429    llvm::GlobalVariable *NullVariable =
430      new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
431                               /*isConstant=*/true,
432                               llvm::GlobalVariable::PrivateLinkage,
433                               NullConstant, Twine());
434    NullVariable->setAlignment(Align.getQuantity());
435    llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
436
437    // Get and call the appropriate llvm.memcpy overload.
438    CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
439    return;
440  }
441
442  // Otherwise, just memset the whole thing to zero.  This is legal
443  // because in LLVM, all default initializers (other than the ones we just
444  // handled above) are guaranteed to have a bit pattern of all zeros.
445  CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
446                           Align.getQuantity());
447}
448
449void
450CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
451                                      AggValueSlot Dest) {
452  assert(!Dest.isIgnored() && "Must have a destination!");
453  const CXXConstructorDecl *CD = E->getConstructor();
454
455  // If we require zero initialization before (or instead of) calling the
456  // constructor, as can be the case with a non-user-provided default
457  // constructor, emit the zero initialization now, unless destination is
458  // already zeroed.
459  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
460    switch (E->getConstructionKind()) {
461    case CXXConstructExpr::CK_Delegating:
462    case CXXConstructExpr::CK_Complete:
463      EmitNullInitialization(Dest.getAddr(), E->getType());
464      break;
465    case CXXConstructExpr::CK_VirtualBase:
466    case CXXConstructExpr::CK_NonVirtualBase:
467      EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
468      break;
469    }
470  }
471
472  // If this is a call to a trivial default constructor, do nothing.
473  if (CD->isTrivial() && CD->isDefaultConstructor())
474    return;
475
476  // Elide the constructor if we're constructing from a temporary.
477  // The temporary check is required because Sema sets this on NRVO
478  // returns.
479  if (getLangOpts().ElideConstructors && E->isElidable()) {
480    assert(getContext().hasSameUnqualifiedType(E->getType(),
481                                               E->getArg(0)->getType()));
482    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
483      EmitAggExpr(E->getArg(0), Dest);
484      return;
485    }
486  }
487
488  if (const ConstantArrayType *arrayType
489        = getContext().getAsConstantArrayType(E->getType())) {
490    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
491                               E->arg_begin(), E->arg_end());
492  } else {
493    CXXCtorType Type = Ctor_Complete;
494    bool ForVirtualBase = false;
495    bool Delegating = false;
496
497    switch (E->getConstructionKind()) {
498     case CXXConstructExpr::CK_Delegating:
499      // We should be emitting a constructor; GlobalDecl will assert this
500      Type = CurGD.getCtorType();
501      Delegating = true;
502      break;
503
504     case CXXConstructExpr::CK_Complete:
505      Type = Ctor_Complete;
506      break;
507
508     case CXXConstructExpr::CK_VirtualBase:
509      ForVirtualBase = true;
510      // fall-through
511
512     case CXXConstructExpr::CK_NonVirtualBase:
513      Type = Ctor_Base;
514    }
515
516    // Call the constructor.
517    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
518                           E->arg_begin(), E->arg_end());
519  }
520}
521
522void
523CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
524                                            llvm::Value *Src,
525                                            const Expr *Exp) {
526  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
527    Exp = E->getSubExpr();
528  assert(isa<CXXConstructExpr>(Exp) &&
529         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
530  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
531  const CXXConstructorDecl *CD = E->getConstructor();
532  RunCleanupsScope Scope(*this);
533
534  // If we require zero initialization before (or instead of) calling the
535  // constructor, as can be the case with a non-user-provided default
536  // constructor, emit the zero initialization now.
537  // FIXME. Do I still need this for a copy ctor synthesis?
538  if (E->requiresZeroInitialization())
539    EmitNullInitialization(Dest, E->getType());
540
541  assert(!getContext().getAsConstantArrayType(E->getType())
542         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
543  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
544                                 E->arg_begin(), E->arg_end());
545}
546
547static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
548                                        const CXXNewExpr *E) {
549  if (!E->isArray())
550    return CharUnits::Zero();
551
552  // No cookie is required if the operator new[] being used is the
553  // reserved placement operator new[].
554  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
555    return CharUnits::Zero();
556
557  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
558}
559
560static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
561                                        const CXXNewExpr *e,
562                                        unsigned minElements,
563                                        llvm::Value *&numElements,
564                                        llvm::Value *&sizeWithoutCookie) {
565  QualType type = e->getAllocatedType();
566
567  if (!e->isArray()) {
568    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
569    sizeWithoutCookie
570      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
571    return sizeWithoutCookie;
572  }
573
574  // The width of size_t.
575  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
576
577  // Figure out the cookie size.
578  llvm::APInt cookieSize(sizeWidth,
579                         CalculateCookiePadding(CGF, e).getQuantity());
580
581  // Emit the array size expression.
582  // We multiply the size of all dimensions for NumElements.
583  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
584  numElements = CGF.EmitScalarExpr(e->getArraySize());
585  assert(isa<llvm::IntegerType>(numElements->getType()));
586
587  // The number of elements can be have an arbitrary integer type;
588  // essentially, we need to multiply it by a constant factor, add a
589  // cookie size, and verify that the result is representable as a
590  // size_t.  That's just a gloss, though, and it's wrong in one
591  // important way: if the count is negative, it's an error even if
592  // the cookie size would bring the total size >= 0.
593  bool isSigned
594    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
595  llvm::IntegerType *numElementsType
596    = cast<llvm::IntegerType>(numElements->getType());
597  unsigned numElementsWidth = numElementsType->getBitWidth();
598
599  // Compute the constant factor.
600  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
601  while (const ConstantArrayType *CAT
602             = CGF.getContext().getAsConstantArrayType(type)) {
603    type = CAT->getElementType();
604    arraySizeMultiplier *= CAT->getSize();
605  }
606
607  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
608  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
609  typeSizeMultiplier *= arraySizeMultiplier;
610
611  // This will be a size_t.
612  llvm::Value *size;
613
614  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
615  // Don't bloat the -O0 code.
616  if (llvm::ConstantInt *numElementsC =
617        dyn_cast<llvm::ConstantInt>(numElements)) {
618    const llvm::APInt &count = numElementsC->getValue();
619
620    bool hasAnyOverflow = false;
621
622    // If 'count' was a negative number, it's an overflow.
623    if (isSigned && count.isNegative())
624      hasAnyOverflow = true;
625
626    // We want to do all this arithmetic in size_t.  If numElements is
627    // wider than that, check whether it's already too big, and if so,
628    // overflow.
629    else if (numElementsWidth > sizeWidth &&
630             numElementsWidth - sizeWidth > count.countLeadingZeros())
631      hasAnyOverflow = true;
632
633    // Okay, compute a count at the right width.
634    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
635
636    // If there is a brace-initializer, we cannot allocate fewer elements than
637    // there are initializers. If we do, that's treated like an overflow.
638    if (adjustedCount.ult(minElements))
639      hasAnyOverflow = true;
640
641    // Scale numElements by that.  This might overflow, but we don't
642    // care because it only overflows if allocationSize does, too, and
643    // if that overflows then we shouldn't use this.
644    numElements = llvm::ConstantInt::get(CGF.SizeTy,
645                                         adjustedCount * arraySizeMultiplier);
646
647    // Compute the size before cookie, and track whether it overflowed.
648    bool overflow;
649    llvm::APInt allocationSize
650      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
651    hasAnyOverflow |= overflow;
652
653    // Add in the cookie, and check whether it's overflowed.
654    if (cookieSize != 0) {
655      // Save the current size without a cookie.  This shouldn't be
656      // used if there was overflow.
657      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
658
659      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
660      hasAnyOverflow |= overflow;
661    }
662
663    // On overflow, produce a -1 so operator new will fail.
664    if (hasAnyOverflow) {
665      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
666    } else {
667      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
668    }
669
670  // Otherwise, we might need to use the overflow intrinsics.
671  } else {
672    // There are up to five conditions we need to test for:
673    // 1) if isSigned, we need to check whether numElements is negative;
674    // 2) if numElementsWidth > sizeWidth, we need to check whether
675    //   numElements is larger than something representable in size_t;
676    // 3) if minElements > 0, we need to check whether numElements is smaller
677    //    than that.
678    // 4) we need to compute
679    //      sizeWithoutCookie := numElements * typeSizeMultiplier
680    //    and check whether it overflows; and
681    // 5) if we need a cookie, we need to compute
682    //      size := sizeWithoutCookie + cookieSize
683    //    and check whether it overflows.
684
685    llvm::Value *hasOverflow = 0;
686
687    // If numElementsWidth > sizeWidth, then one way or another, we're
688    // going to have to do a comparison for (2), and this happens to
689    // take care of (1), too.
690    if (numElementsWidth > sizeWidth) {
691      llvm::APInt threshold(numElementsWidth, 1);
692      threshold <<= sizeWidth;
693
694      llvm::Value *thresholdV
695        = llvm::ConstantInt::get(numElementsType, threshold);
696
697      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
698      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
699
700    // Otherwise, if we're signed, we want to sext up to size_t.
701    } else if (isSigned) {
702      if (numElementsWidth < sizeWidth)
703        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
704
705      // If there's a non-1 type size multiplier, then we can do the
706      // signedness check at the same time as we do the multiply
707      // because a negative number times anything will cause an
708      // unsigned overflow.  Otherwise, we have to do it here. But at least
709      // in this case, we can subsume the >= minElements check.
710      if (typeSizeMultiplier == 1)
711        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
712                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
713
714    // Otherwise, zext up to size_t if necessary.
715    } else if (numElementsWidth < sizeWidth) {
716      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
717    }
718
719    assert(numElements->getType() == CGF.SizeTy);
720
721    if (minElements) {
722      // Don't allow allocation of fewer elements than we have initializers.
723      if (!hasOverflow) {
724        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
725                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
726      } else if (numElementsWidth > sizeWidth) {
727        // The other existing overflow subsumes this check.
728        // We do an unsigned comparison, since any signed value < -1 is
729        // taken care of either above or below.
730        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
731                          CGF.Builder.CreateICmpULT(numElements,
732                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
733      }
734    }
735
736    size = numElements;
737
738    // Multiply by the type size if necessary.  This multiplier
739    // includes all the factors for nested arrays.
740    //
741    // This step also causes numElements to be scaled up by the
742    // nested-array factor if necessary.  Overflow on this computation
743    // can be ignored because the result shouldn't be used if
744    // allocation fails.
745    if (typeSizeMultiplier != 1) {
746      llvm::Value *umul_with_overflow
747        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
748
749      llvm::Value *tsmV =
750        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
751      llvm::Value *result =
752        CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
753
754      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
755      if (hasOverflow)
756        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
757      else
758        hasOverflow = overflowed;
759
760      size = CGF.Builder.CreateExtractValue(result, 0);
761
762      // Also scale up numElements by the array size multiplier.
763      if (arraySizeMultiplier != 1) {
764        // If the base element type size is 1, then we can re-use the
765        // multiply we just did.
766        if (typeSize.isOne()) {
767          assert(arraySizeMultiplier == typeSizeMultiplier);
768          numElements = size;
769
770        // Otherwise we need a separate multiply.
771        } else {
772          llvm::Value *asmV =
773            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
774          numElements = CGF.Builder.CreateMul(numElements, asmV);
775        }
776      }
777    } else {
778      // numElements doesn't need to be scaled.
779      assert(arraySizeMultiplier == 1);
780    }
781
782    // Add in the cookie size if necessary.
783    if (cookieSize != 0) {
784      sizeWithoutCookie = size;
785
786      llvm::Value *uadd_with_overflow
787        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
788
789      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
790      llvm::Value *result =
791        CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
792
793      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
794      if (hasOverflow)
795        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
796      else
797        hasOverflow = overflowed;
798
799      size = CGF.Builder.CreateExtractValue(result, 0);
800    }
801
802    // If we had any possibility of dynamic overflow, make a select to
803    // overwrite 'size' with an all-ones value, which should cause
804    // operator new to throw.
805    if (hasOverflow)
806      size = CGF.Builder.CreateSelect(hasOverflow,
807                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
808                                      size);
809  }
810
811  if (cookieSize == 0)
812    sizeWithoutCookie = size;
813  else
814    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
815
816  return size;
817}
818
819static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
820                                    QualType AllocType, llvm::Value *NewPtr) {
821
822  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
823  switch (CGF.getEvaluationKind(AllocType)) {
824  case TEK_Scalar:
825    CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
826                                                   Alignment),
827                       false);
828    return;
829  case TEK_Complex:
830    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
831                                                           Alignment),
832                                  /*isInit*/ true);
833    return;
834  case TEK_Aggregate: {
835    AggValueSlot Slot
836      = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
837                              AggValueSlot::IsDestructed,
838                              AggValueSlot::DoesNotNeedGCBarriers,
839                              AggValueSlot::IsNotAliased);
840    CGF.EmitAggExpr(Init, Slot);
841    return;
842  }
843  }
844  llvm_unreachable("bad evaluation kind");
845}
846
847void
848CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
849                                         QualType elementType,
850                                         llvm::Value *beginPtr,
851                                         llvm::Value *numElements) {
852  if (!E->hasInitializer())
853    return; // We have a POD type.
854
855  llvm::Value *explicitPtr = beginPtr;
856  // Find the end of the array, hoisted out of the loop.
857  llvm::Value *endPtr =
858    Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
859
860  unsigned initializerElements = 0;
861
862  const Expr *Init = E->getInitializer();
863  llvm::AllocaInst *endOfInit = 0;
864  QualType::DestructionKind dtorKind = elementType.isDestructedType();
865  EHScopeStack::stable_iterator cleanup;
866  llvm::Instruction *cleanupDominator = 0;
867  // If the initializer is an initializer list, first do the explicit elements.
868  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
869    initializerElements = ILE->getNumInits();
870
871    // Enter a partial-destruction cleanup if necessary.
872    if (needsEHCleanup(dtorKind)) {
873      // In principle we could tell the cleanup where we are more
874      // directly, but the control flow can get so varied here that it
875      // would actually be quite complex.  Therefore we go through an
876      // alloca.
877      endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
878      cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
879      pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
880                                       getDestroyer(dtorKind));
881      cleanup = EHStack.stable_begin();
882    }
883
884    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
885      // Tell the cleanup that it needs to destroy up to this
886      // element.  TODO: some of these stores can be trivially
887      // observed to be unnecessary.
888      if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
889      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
890      explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
891    }
892
893    // The remaining elements are filled with the array filler expression.
894    Init = ILE->getArrayFiller();
895  }
896
897  // Create the continuation block.
898  llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
899
900  // If the number of elements isn't constant, we have to now check if there is
901  // anything left to initialize.
902  if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
903    // If all elements have already been initialized, skip the whole loop.
904    if (constNum->getZExtValue() <= initializerElements) {
905      // If there was a cleanup, deactivate it.
906      if (cleanupDominator)
907        DeactivateCleanupBlock(cleanup, cleanupDominator);
908      return;
909    }
910  } else {
911    llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
912    llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
913                                                "array.isempty");
914    Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
915    EmitBlock(nonEmptyBB);
916  }
917
918  // Enter the loop.
919  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
920  llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
921
922  EmitBlock(loopBB);
923
924  // Set up the current-element phi.
925  llvm::PHINode *curPtr =
926    Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
927  curPtr->addIncoming(explicitPtr, entryBB);
928
929  // Store the new cleanup position for irregular cleanups.
930  if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
931
932  // Enter a partial-destruction cleanup if necessary.
933  if (!cleanupDominator && needsEHCleanup(dtorKind)) {
934    pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
935                                   getDestroyer(dtorKind));
936    cleanup = EHStack.stable_begin();
937    cleanupDominator = Builder.CreateUnreachable();
938  }
939
940  // Emit the initializer into this element.
941  StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
942
943  // Leave the cleanup if we entered one.
944  if (cleanupDominator) {
945    DeactivateCleanupBlock(cleanup, cleanupDominator);
946    cleanupDominator->eraseFromParent();
947  }
948
949  // Advance to the next element.
950  llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
951
952  // Check whether we've gotten to the end of the array and, if so,
953  // exit the loop.
954  llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
955  Builder.CreateCondBr(isEnd, contBB, loopBB);
956  curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
957
958  EmitBlock(contBB);
959}
960
961static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
962                           llvm::Value *NewPtr, llvm::Value *Size) {
963  CGF.EmitCastToVoidPtr(NewPtr);
964  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
965  CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
966                           Alignment.getQuantity(), false);
967}
968
969static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
970                               QualType ElementType,
971                               llvm::Value *NewPtr,
972                               llvm::Value *NumElements,
973                               llvm::Value *AllocSizeWithoutCookie) {
974  const Expr *Init = E->getInitializer();
975  if (E->isArray()) {
976    if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
977      CXXConstructorDecl *Ctor = CCE->getConstructor();
978      if (Ctor->isTrivial()) {
979        // If new expression did not specify value-initialization, then there
980        // is no initialization.
981        if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
982          return;
983
984        if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
985          // Optimization: since zero initialization will just set the memory
986          // to all zeroes, generate a single memset to do it in one shot.
987          EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
988          return;
989        }
990      }
991
992      CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
993                                     CCE->arg_begin(),  CCE->arg_end(),
994                                     CCE->requiresZeroInitialization());
995      return;
996    } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
997               CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
998      // Optimization: since zero initialization will just set the memory
999      // to all zeroes, generate a single memset to do it in one shot.
1000      EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
1001      return;
1002    }
1003    CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
1004    return;
1005  }
1006
1007  if (!Init)
1008    return;
1009
1010  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1011}
1012
1013namespace {
1014  /// A cleanup to call the given 'operator delete' function upon
1015  /// abnormal exit from a new expression.
1016  class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1017    size_t NumPlacementArgs;
1018    const FunctionDecl *OperatorDelete;
1019    llvm::Value *Ptr;
1020    llvm::Value *AllocSize;
1021
1022    RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1023
1024  public:
1025    static size_t getExtraSize(size_t NumPlacementArgs) {
1026      return NumPlacementArgs * sizeof(RValue);
1027    }
1028
1029    CallDeleteDuringNew(size_t NumPlacementArgs,
1030                        const FunctionDecl *OperatorDelete,
1031                        llvm::Value *Ptr,
1032                        llvm::Value *AllocSize)
1033      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1034        Ptr(Ptr), AllocSize(AllocSize) {}
1035
1036    void setPlacementArg(unsigned I, RValue Arg) {
1037      assert(I < NumPlacementArgs && "index out of range");
1038      getPlacementArgs()[I] = Arg;
1039    }
1040
1041    void Emit(CodeGenFunction &CGF, Flags flags) {
1042      const FunctionProtoType *FPT
1043        = OperatorDelete->getType()->getAs<FunctionProtoType>();
1044      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1045             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1046
1047      CallArgList DeleteArgs;
1048
1049      // The first argument is always a void*.
1050      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1051      DeleteArgs.add(RValue::get(Ptr), *AI++);
1052
1053      // A member 'operator delete' can take an extra 'size_t' argument.
1054      if (FPT->getNumArgs() == NumPlacementArgs + 2)
1055        DeleteArgs.add(RValue::get(AllocSize), *AI++);
1056
1057      // Pass the rest of the arguments, which must match exactly.
1058      for (unsigned I = 0; I != NumPlacementArgs; ++I)
1059        DeleteArgs.add(getPlacementArgs()[I], *AI++);
1060
1061      // Call 'operator delete'.
1062      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1063                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
1064                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
1065    }
1066  };
1067
1068  /// A cleanup to call the given 'operator delete' function upon
1069  /// abnormal exit from a new expression when the new expression is
1070  /// conditional.
1071  class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1072    size_t NumPlacementArgs;
1073    const FunctionDecl *OperatorDelete;
1074    DominatingValue<RValue>::saved_type Ptr;
1075    DominatingValue<RValue>::saved_type AllocSize;
1076
1077    DominatingValue<RValue>::saved_type *getPlacementArgs() {
1078      return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1079    }
1080
1081  public:
1082    static size_t getExtraSize(size_t NumPlacementArgs) {
1083      return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1084    }
1085
1086    CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1087                                   const FunctionDecl *OperatorDelete,
1088                                   DominatingValue<RValue>::saved_type Ptr,
1089                              DominatingValue<RValue>::saved_type AllocSize)
1090      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1091        Ptr(Ptr), AllocSize(AllocSize) {}
1092
1093    void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1094      assert(I < NumPlacementArgs && "index out of range");
1095      getPlacementArgs()[I] = Arg;
1096    }
1097
1098    void Emit(CodeGenFunction &CGF, Flags flags) {
1099      const FunctionProtoType *FPT
1100        = OperatorDelete->getType()->getAs<FunctionProtoType>();
1101      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1102             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1103
1104      CallArgList DeleteArgs;
1105
1106      // The first argument is always a void*.
1107      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1108      DeleteArgs.add(Ptr.restore(CGF), *AI++);
1109
1110      // A member 'operator delete' can take an extra 'size_t' argument.
1111      if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1112        RValue RV = AllocSize.restore(CGF);
1113        DeleteArgs.add(RV, *AI++);
1114      }
1115
1116      // Pass the rest of the arguments, which must match exactly.
1117      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1118        RValue RV = getPlacementArgs()[I].restore(CGF);
1119        DeleteArgs.add(RV, *AI++);
1120      }
1121
1122      // Call 'operator delete'.
1123      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
1124                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
1125                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
1126    }
1127  };
1128}
1129
1130/// Enter a cleanup to call 'operator delete' if the initializer in a
1131/// new-expression throws.
1132static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1133                                  const CXXNewExpr *E,
1134                                  llvm::Value *NewPtr,
1135                                  llvm::Value *AllocSize,
1136                                  const CallArgList &NewArgs) {
1137  // If we're not inside a conditional branch, then the cleanup will
1138  // dominate and we can do the easier (and more efficient) thing.
1139  if (!CGF.isInConditionalBranch()) {
1140    CallDeleteDuringNew *Cleanup = CGF.EHStack
1141      .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1142                                                 E->getNumPlacementArgs(),
1143                                                 E->getOperatorDelete(),
1144                                                 NewPtr, AllocSize);
1145    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1146      Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1147
1148    return;
1149  }
1150
1151  // Otherwise, we need to save all this stuff.
1152  DominatingValue<RValue>::saved_type SavedNewPtr =
1153    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1154  DominatingValue<RValue>::saved_type SavedAllocSize =
1155    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1156
1157  CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1158    .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1159                                                 E->getNumPlacementArgs(),
1160                                                 E->getOperatorDelete(),
1161                                                 SavedNewPtr,
1162                                                 SavedAllocSize);
1163  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1164    Cleanup->setPlacementArg(I,
1165                     DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1166
1167  CGF.initFullExprCleanup();
1168}
1169
1170llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1171  // The element type being allocated.
1172  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1173
1174  // 1. Build a call to the allocation function.
1175  FunctionDecl *allocator = E->getOperatorNew();
1176  const FunctionProtoType *allocatorType =
1177    allocator->getType()->castAs<FunctionProtoType>();
1178
1179  CallArgList allocatorArgs;
1180
1181  // The allocation size is the first argument.
1182  QualType sizeType = getContext().getSizeType();
1183
1184  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1185  unsigned minElements = 0;
1186  if (E->isArray() && E->hasInitializer()) {
1187    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1188      minElements = ILE->getNumInits();
1189  }
1190
1191  llvm::Value *numElements = 0;
1192  llvm::Value *allocSizeWithoutCookie = 0;
1193  llvm::Value *allocSize =
1194    EmitCXXNewAllocSize(*this, E, minElements, numElements,
1195                        allocSizeWithoutCookie);
1196
1197  allocatorArgs.add(RValue::get(allocSize), sizeType);
1198
1199  // Emit the rest of the arguments.
1200  // FIXME: Ideally, this should just use EmitCallArgs.
1201  CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1202
1203  // First, use the types from the function type.
1204  // We start at 1 here because the first argument (the allocation size)
1205  // has already been emitted.
1206  for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1207       ++i, ++placementArg) {
1208    QualType argType = allocatorType->getArgType(i);
1209
1210    assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1211                                               placementArg->getType()) &&
1212           "type mismatch in call argument!");
1213
1214    EmitCallArg(allocatorArgs, *placementArg, argType);
1215  }
1216
1217  // Either we've emitted all the call args, or we have a call to a
1218  // variadic function.
1219  assert((placementArg == E->placement_arg_end() ||
1220          allocatorType->isVariadic()) &&
1221         "Extra arguments to non-variadic function!");
1222
1223  // If we still have any arguments, emit them using the type of the argument.
1224  for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1225       placementArg != placementArgsEnd; ++placementArg) {
1226    EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1227  }
1228
1229  // Emit the allocation call.  If the allocator is a global placement
1230  // operator, just "inline" it directly.
1231  RValue RV;
1232  if (allocator->isReservedGlobalPlacementOperator()) {
1233    assert(allocatorArgs.size() == 2);
1234    RV = allocatorArgs[1].RV;
1235    // TODO: kill any unnecessary computations done for the size
1236    // argument.
1237  } else {
1238    RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs,
1239                                                         allocatorType),
1240                  CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1241                  allocatorArgs, allocator);
1242  }
1243
1244  // Emit a null check on the allocation result if the allocation
1245  // function is allowed to return null (because it has a non-throwing
1246  // exception spec; for this part, we inline
1247  // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1248  // interesting initializer.
1249  bool nullCheck = allocatorType->isNothrow(getContext()) &&
1250    (!allocType.isPODType(getContext()) || E->hasInitializer());
1251
1252  llvm::BasicBlock *nullCheckBB = 0;
1253  llvm::BasicBlock *contBB = 0;
1254
1255  llvm::Value *allocation = RV.getScalarVal();
1256  unsigned AS = allocation->getType()->getPointerAddressSpace();
1257
1258  // The null-check means that the initializer is conditionally
1259  // evaluated.
1260  ConditionalEvaluation conditional(*this);
1261
1262  if (nullCheck) {
1263    conditional.begin(*this);
1264
1265    nullCheckBB = Builder.GetInsertBlock();
1266    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1267    contBB = createBasicBlock("new.cont");
1268
1269    llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1270    Builder.CreateCondBr(isNull, contBB, notNullBB);
1271    EmitBlock(notNullBB);
1272  }
1273
1274  // If there's an operator delete, enter a cleanup to call it if an
1275  // exception is thrown.
1276  EHScopeStack::stable_iterator operatorDeleteCleanup;
1277  llvm::Instruction *cleanupDominator = 0;
1278  if (E->getOperatorDelete() &&
1279      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1280    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1281    operatorDeleteCleanup = EHStack.stable_begin();
1282    cleanupDominator = Builder.CreateUnreachable();
1283  }
1284
1285  assert((allocSize == allocSizeWithoutCookie) ==
1286         CalculateCookiePadding(*this, E).isZero());
1287  if (allocSize != allocSizeWithoutCookie) {
1288    assert(E->isArray());
1289    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1290                                                       numElements,
1291                                                       E, allocType);
1292  }
1293
1294  llvm::Type *elementPtrTy
1295    = ConvertTypeForMem(allocType)->getPointerTo(AS);
1296  llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1297
1298  EmitNewInitializer(*this, E, allocType, result, numElements,
1299                     allocSizeWithoutCookie);
1300  if (E->isArray()) {
1301    // NewPtr is a pointer to the base element type.  If we're
1302    // allocating an array of arrays, we'll need to cast back to the
1303    // array pointer type.
1304    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1305    if (result->getType() != resultType)
1306      result = Builder.CreateBitCast(result, resultType);
1307  }
1308
1309  // Deactivate the 'operator delete' cleanup if we finished
1310  // initialization.
1311  if (operatorDeleteCleanup.isValid()) {
1312    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1313    cleanupDominator->eraseFromParent();
1314  }
1315
1316  if (nullCheck) {
1317    conditional.end(*this);
1318
1319    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1320    EmitBlock(contBB);
1321
1322    llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1323    PHI->addIncoming(result, notNullBB);
1324    PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1325                     nullCheckBB);
1326
1327    result = PHI;
1328  }
1329
1330  return result;
1331}
1332
1333void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1334                                     llvm::Value *Ptr,
1335                                     QualType DeleteTy) {
1336  assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1337
1338  const FunctionProtoType *DeleteFTy =
1339    DeleteFD->getType()->getAs<FunctionProtoType>();
1340
1341  CallArgList DeleteArgs;
1342
1343  // Check if we need to pass the size to the delete operator.
1344  llvm::Value *Size = 0;
1345  QualType SizeTy;
1346  if (DeleteFTy->getNumArgs() == 2) {
1347    SizeTy = DeleteFTy->getArgType(1);
1348    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1349    Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1350                                  DeleteTypeSize.getQuantity());
1351  }
1352
1353  QualType ArgTy = DeleteFTy->getArgType(0);
1354  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1355  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1356
1357  if (Size)
1358    DeleteArgs.add(RValue::get(Size), SizeTy);
1359
1360  // Emit the call to delete.
1361  EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy),
1362           CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1363           DeleteArgs, DeleteFD);
1364}
1365
1366namespace {
1367  /// Calls the given 'operator delete' on a single object.
1368  struct CallObjectDelete : EHScopeStack::Cleanup {
1369    llvm::Value *Ptr;
1370    const FunctionDecl *OperatorDelete;
1371    QualType ElementType;
1372
1373    CallObjectDelete(llvm::Value *Ptr,
1374                     const FunctionDecl *OperatorDelete,
1375                     QualType ElementType)
1376      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1377
1378    void Emit(CodeGenFunction &CGF, Flags flags) {
1379      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1380    }
1381  };
1382}
1383
1384/// Emit the code for deleting a single object.
1385static void EmitObjectDelete(CodeGenFunction &CGF,
1386                             const FunctionDecl *OperatorDelete,
1387                             llvm::Value *Ptr,
1388                             QualType ElementType,
1389                             bool UseGlobalDelete) {
1390  // Find the destructor for the type, if applicable.  If the
1391  // destructor is virtual, we'll just emit the vcall and return.
1392  const CXXDestructorDecl *Dtor = 0;
1393  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1394    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1395    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1396      Dtor = RD->getDestructor();
1397
1398      if (Dtor->isVirtual()) {
1399        if (UseGlobalDelete) {
1400          // If we're supposed to call the global delete, make sure we do so
1401          // even if the destructor throws.
1402
1403          // Derive the complete-object pointer, which is what we need
1404          // to pass to the deallocation function.
1405          llvm::Value *completePtr =
1406            CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1407
1408          CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1409                                                    completePtr, OperatorDelete,
1410                                                    ElementType);
1411        }
1412
1413        // FIXME: Provide a source location here.
1414        CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1415        CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1416                                                      SourceLocation(),
1417                                                      ReturnValueSlot(), Ptr);
1418
1419        if (UseGlobalDelete) {
1420          CGF.PopCleanupBlock();
1421        }
1422
1423        return;
1424      }
1425    }
1426  }
1427
1428  // Make sure that we call delete even if the dtor throws.
1429  // This doesn't have to a conditional cleanup because we're going
1430  // to pop it off in a second.
1431  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1432                                            Ptr, OperatorDelete, ElementType);
1433
1434  if (Dtor)
1435    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1436                              /*ForVirtualBase=*/false,
1437                              /*Delegating=*/false,
1438                              Ptr);
1439  else if (CGF.getLangOpts().ObjCAutoRefCount &&
1440           ElementType->isObjCLifetimeType()) {
1441    switch (ElementType.getObjCLifetime()) {
1442    case Qualifiers::OCL_None:
1443    case Qualifiers::OCL_ExplicitNone:
1444    case Qualifiers::OCL_Autoreleasing:
1445      break;
1446
1447    case Qualifiers::OCL_Strong: {
1448      // Load the pointer value.
1449      llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1450                                             ElementType.isVolatileQualified());
1451
1452      CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1453      break;
1454    }
1455
1456    case Qualifiers::OCL_Weak:
1457      CGF.EmitARCDestroyWeak(Ptr);
1458      break;
1459    }
1460  }
1461
1462  CGF.PopCleanupBlock();
1463}
1464
1465namespace {
1466  /// Calls the given 'operator delete' on an array of objects.
1467  struct CallArrayDelete : EHScopeStack::Cleanup {
1468    llvm::Value *Ptr;
1469    const FunctionDecl *OperatorDelete;
1470    llvm::Value *NumElements;
1471    QualType ElementType;
1472    CharUnits CookieSize;
1473
1474    CallArrayDelete(llvm::Value *Ptr,
1475                    const FunctionDecl *OperatorDelete,
1476                    llvm::Value *NumElements,
1477                    QualType ElementType,
1478                    CharUnits CookieSize)
1479      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1480        ElementType(ElementType), CookieSize(CookieSize) {}
1481
1482    void Emit(CodeGenFunction &CGF, Flags flags) {
1483      const FunctionProtoType *DeleteFTy =
1484        OperatorDelete->getType()->getAs<FunctionProtoType>();
1485      assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1486
1487      CallArgList Args;
1488
1489      // Pass the pointer as the first argument.
1490      QualType VoidPtrTy = DeleteFTy->getArgType(0);
1491      llvm::Value *DeletePtr
1492        = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1493      Args.add(RValue::get(DeletePtr), VoidPtrTy);
1494
1495      // Pass the original requested size as the second argument.
1496      if (DeleteFTy->getNumArgs() == 2) {
1497        QualType size_t = DeleteFTy->getArgType(1);
1498        llvm::IntegerType *SizeTy
1499          = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1500
1501        CharUnits ElementTypeSize =
1502          CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1503
1504        // The size of an element, multiplied by the number of elements.
1505        llvm::Value *Size
1506          = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1507        Size = CGF.Builder.CreateMul(Size, NumElements);
1508
1509        // Plus the size of the cookie if applicable.
1510        if (!CookieSize.isZero()) {
1511          llvm::Value *CookieSizeV
1512            = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1513          Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1514        }
1515
1516        Args.add(RValue::get(Size), size_t);
1517      }
1518
1519      // Emit the call to delete.
1520      CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy),
1521                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
1522                   ReturnValueSlot(), Args, OperatorDelete);
1523    }
1524  };
1525}
1526
1527/// Emit the code for deleting an array of objects.
1528static void EmitArrayDelete(CodeGenFunction &CGF,
1529                            const CXXDeleteExpr *E,
1530                            llvm::Value *deletedPtr,
1531                            QualType elementType) {
1532  llvm::Value *numElements = 0;
1533  llvm::Value *allocatedPtr = 0;
1534  CharUnits cookieSize;
1535  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1536                                      numElements, allocatedPtr, cookieSize);
1537
1538  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1539
1540  // Make sure that we call delete even if one of the dtors throws.
1541  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1542  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1543                                           allocatedPtr, operatorDelete,
1544                                           numElements, elementType,
1545                                           cookieSize);
1546
1547  // Destroy the elements.
1548  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1549    assert(numElements && "no element count for a type with a destructor!");
1550
1551    llvm::Value *arrayEnd =
1552      CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1553
1554    // Note that it is legal to allocate a zero-length array, and we
1555    // can never fold the check away because the length should always
1556    // come from a cookie.
1557    CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1558                         CGF.getDestroyer(dtorKind),
1559                         /*checkZeroLength*/ true,
1560                         CGF.needsEHCleanup(dtorKind));
1561  }
1562
1563  // Pop the cleanup block.
1564  CGF.PopCleanupBlock();
1565}
1566
1567void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1568  const Expr *Arg = E->getArgument();
1569  llvm::Value *Ptr = EmitScalarExpr(Arg);
1570
1571  // Null check the pointer.
1572  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1573  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1574
1575  llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1576
1577  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1578  EmitBlock(DeleteNotNull);
1579
1580  // We might be deleting a pointer to array.  If so, GEP down to the
1581  // first non-array element.
1582  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1583  QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1584  if (DeleteTy->isConstantArrayType()) {
1585    llvm::Value *Zero = Builder.getInt32(0);
1586    SmallVector<llvm::Value*,8> GEP;
1587
1588    GEP.push_back(Zero); // point at the outermost array
1589
1590    // For each layer of array type we're pointing at:
1591    while (const ConstantArrayType *Arr
1592             = getContext().getAsConstantArrayType(DeleteTy)) {
1593      // 1. Unpeel the array type.
1594      DeleteTy = Arr->getElementType();
1595
1596      // 2. GEP to the first element of the array.
1597      GEP.push_back(Zero);
1598    }
1599
1600    Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1601  }
1602
1603  assert(ConvertTypeForMem(DeleteTy) ==
1604         cast<llvm::PointerType>(Ptr->getType())->getElementType());
1605
1606  if (E->isArrayForm()) {
1607    EmitArrayDelete(*this, E, Ptr, DeleteTy);
1608  } else {
1609    EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1610                     E->isGlobalDelete());
1611  }
1612
1613  EmitBlock(DeleteEnd);
1614}
1615
1616static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1617  // void __cxa_bad_typeid();
1618  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1619
1620  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1621}
1622
1623static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1624  llvm::Value *Fn = getBadTypeidFn(CGF);
1625  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1626  CGF.Builder.CreateUnreachable();
1627}
1628
1629static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1630                                         const Expr *E,
1631                                         llvm::Type *StdTypeInfoPtrTy) {
1632  // Get the vtable pointer.
1633  llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1634
1635  // C++ [expr.typeid]p2:
1636  //   If the glvalue expression is obtained by applying the unary * operator to
1637  //   a pointer and the pointer is a null pointer value, the typeid expression
1638  //   throws the std::bad_typeid exception.
1639  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1640    if (UO->getOpcode() == UO_Deref) {
1641      llvm::BasicBlock *BadTypeidBlock =
1642        CGF.createBasicBlock("typeid.bad_typeid");
1643      llvm::BasicBlock *EndBlock =
1644        CGF.createBasicBlock("typeid.end");
1645
1646      llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1647      CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1648
1649      CGF.EmitBlock(BadTypeidBlock);
1650      EmitBadTypeidCall(CGF);
1651      CGF.EmitBlock(EndBlock);
1652    }
1653  }
1654
1655  llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1656                                        StdTypeInfoPtrTy->getPointerTo());
1657
1658  // Load the type info.
1659  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1660  return CGF.Builder.CreateLoad(Value);
1661}
1662
1663llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1664  llvm::Type *StdTypeInfoPtrTy =
1665    ConvertType(E->getType())->getPointerTo();
1666
1667  if (E->isTypeOperand()) {
1668    llvm::Constant *TypeInfo =
1669      CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1670    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1671  }
1672
1673  // C++ [expr.typeid]p2:
1674  //   When typeid is applied to a glvalue expression whose type is a
1675  //   polymorphic class type, the result refers to a std::type_info object
1676  //   representing the type of the most derived object (that is, the dynamic
1677  //   type) to which the glvalue refers.
1678  if (E->isPotentiallyEvaluated())
1679    return EmitTypeidFromVTable(*this, E->getExprOperand(),
1680                                StdTypeInfoPtrTy);
1681
1682  QualType OperandTy = E->getExprOperand()->getType();
1683  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1684                               StdTypeInfoPtrTy);
1685}
1686
1687static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1688  // void *__dynamic_cast(const void *sub,
1689  //                      const abi::__class_type_info *src,
1690  //                      const abi::__class_type_info *dst,
1691  //                      std::ptrdiff_t src2dst_offset);
1692
1693  llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1694  llvm::Type *PtrDiffTy =
1695    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1696
1697  llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1698
1699  llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1700
1701  // Mark the function as nounwind readonly.
1702  llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1703                                            llvm::Attribute::ReadOnly };
1704  llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1705      CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1706
1707  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1708}
1709
1710static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1711  // void __cxa_bad_cast();
1712  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1713  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1714}
1715
1716static void EmitBadCastCall(CodeGenFunction &CGF) {
1717  llvm::Value *Fn = getBadCastFn(CGF);
1718  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1719  CGF.Builder.CreateUnreachable();
1720}
1721
1722/// \brief Compute the src2dst_offset hint as described in the
1723/// Itanium C++ ABI [2.9.7]
1724static CharUnits computeOffsetHint(ASTContext &Context,
1725                                   const CXXRecordDecl *Src,
1726                                   const CXXRecordDecl *Dst) {
1727  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1728                     /*DetectVirtual=*/false);
1729
1730  // If Dst is not derived from Src we can skip the whole computation below and
1731  // return that Src is not a public base of Dst.  Record all inheritance paths.
1732  if (!Dst->isDerivedFrom(Src, Paths))
1733    return CharUnits::fromQuantity(-2ULL);
1734
1735  unsigned NumPublicPaths = 0;
1736  CharUnits Offset;
1737
1738  // Now walk all possible inheritance paths.
1739  for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1740       I != E; ++I) {
1741    if (I->Access != AS_public) // Ignore non-public inheritance.
1742      continue;
1743
1744    ++NumPublicPaths;
1745
1746    for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1747      // If the path contains a virtual base class we can't give any hint.
1748      // -1: no hint.
1749      if (J->Base->isVirtual())
1750        return CharUnits::fromQuantity(-1ULL);
1751
1752      if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1753        continue;
1754
1755      // Accumulate the base class offsets.
1756      const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1757      Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1758    }
1759  }
1760
1761  // -2: Src is not a public base of Dst.
1762  if (NumPublicPaths == 0)
1763    return CharUnits::fromQuantity(-2ULL);
1764
1765  // -3: Src is a multiple public base type but never a virtual base type.
1766  if (NumPublicPaths > 1)
1767    return CharUnits::fromQuantity(-3ULL);
1768
1769  // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1770  // Return the offset of Src from the origin of Dst.
1771  return Offset;
1772}
1773
1774static llvm::Value *
1775EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1776                    QualType SrcTy, QualType DestTy,
1777                    llvm::BasicBlock *CastEnd) {
1778  llvm::Type *PtrDiffLTy =
1779    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1780  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1781
1782  if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1783    if (PTy->getPointeeType()->isVoidType()) {
1784      // C++ [expr.dynamic.cast]p7:
1785      //   If T is "pointer to cv void," then the result is a pointer to the
1786      //   most derived object pointed to by v.
1787
1788      // Get the vtable pointer.
1789      llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1790
1791      // Get the offset-to-top from the vtable.
1792      llvm::Value *OffsetToTop =
1793        CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1794      OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1795
1796      // Finally, add the offset to the pointer.
1797      Value = CGF.EmitCastToVoidPtr(Value);
1798      Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1799
1800      return CGF.Builder.CreateBitCast(Value, DestLTy);
1801    }
1802  }
1803
1804  QualType SrcRecordTy;
1805  QualType DestRecordTy;
1806
1807  if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1808    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1809    DestRecordTy = DestPTy->getPointeeType();
1810  } else {
1811    SrcRecordTy = SrcTy;
1812    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1813  }
1814
1815  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1816  assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1817
1818  llvm::Value *SrcRTTI =
1819    CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1820  llvm::Value *DestRTTI =
1821    CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1822
1823  // Compute the offset hint.
1824  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1825  const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1826  llvm::Value *OffsetHint =
1827    llvm::ConstantInt::get(PtrDiffLTy,
1828                           computeOffsetHint(CGF.getContext(), SrcDecl,
1829                                             DestDecl).getQuantity());
1830
1831  // Emit the call to __dynamic_cast.
1832  Value = CGF.EmitCastToVoidPtr(Value);
1833
1834  llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
1835  Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
1836  Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1837
1838  /// C++ [expr.dynamic.cast]p9:
1839  ///   A failed cast to reference type throws std::bad_cast
1840  if (DestTy->isReferenceType()) {
1841    llvm::BasicBlock *BadCastBlock =
1842      CGF.createBasicBlock("dynamic_cast.bad_cast");
1843
1844    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1845    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1846
1847    CGF.EmitBlock(BadCastBlock);
1848    EmitBadCastCall(CGF);
1849  }
1850
1851  return Value;
1852}
1853
1854static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1855                                          QualType DestTy) {
1856  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1857  if (DestTy->isPointerType())
1858    return llvm::Constant::getNullValue(DestLTy);
1859
1860  /// C++ [expr.dynamic.cast]p9:
1861  ///   A failed cast to reference type throws std::bad_cast
1862  EmitBadCastCall(CGF);
1863
1864  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1865  return llvm::UndefValue::get(DestLTy);
1866}
1867
1868llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1869                                              const CXXDynamicCastExpr *DCE) {
1870  QualType DestTy = DCE->getTypeAsWritten();
1871
1872  if (DCE->isAlwaysNull())
1873    return EmitDynamicCastToNull(*this, DestTy);
1874
1875  QualType SrcTy = DCE->getSubExpr()->getType();
1876
1877  // C++ [expr.dynamic.cast]p4:
1878  //   If the value of v is a null pointer value in the pointer case, the result
1879  //   is the null pointer value of type T.
1880  bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1881
1882  llvm::BasicBlock *CastNull = 0;
1883  llvm::BasicBlock *CastNotNull = 0;
1884  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1885
1886  if (ShouldNullCheckSrcValue) {
1887    CastNull = createBasicBlock("dynamic_cast.null");
1888    CastNotNull = createBasicBlock("dynamic_cast.notnull");
1889
1890    llvm::Value *IsNull = Builder.CreateIsNull(Value);
1891    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1892    EmitBlock(CastNotNull);
1893  }
1894
1895  Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1896
1897  if (ShouldNullCheckSrcValue) {
1898    EmitBranch(CastEnd);
1899
1900    EmitBlock(CastNull);
1901    EmitBranch(CastEnd);
1902  }
1903
1904  EmitBlock(CastEnd);
1905
1906  if (ShouldNullCheckSrcValue) {
1907    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1908    PHI->addIncoming(Value, CastNotNull);
1909    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1910
1911    Value = PHI;
1912  }
1913
1914  return Value;
1915}
1916
1917void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1918  RunCleanupsScope Scope(*this);
1919  LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1920                                 Slot.getAlignment());
1921
1922  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1923  for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1924                                         e = E->capture_init_end();
1925       i != e; ++i, ++CurField) {
1926    // Emit initialization
1927
1928    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1929    ArrayRef<VarDecl *> ArrayIndexes;
1930    if (CurField->getType()->isArrayType())
1931      ArrayIndexes = E->getCaptureInitIndexVars(i);
1932    EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1933  }
1934}
1935