CGExprConstant.cpp revision 21cde050b64eefbb5094af67985752eee42d00e2
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Constant Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenModule.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalVariable.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                            ConstStructBuilder
33//===----------------------------------------------------------------------===//
34
35namespace {
36class ConstStructBuilder {
37  CodeGenModule &CGM;
38  CodeGenFunction *CGF;
39
40  bool Packed;
41  CharUnits NextFieldOffsetInChars;
42  CharUnits LLVMStructAlignment;
43  SmallVector<llvm::Constant *, 32> Elements;
44public:
45  static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                     InitListExpr *ILE);
47  static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                     const APValue &Value, QualType ValTy);
49
50private:
51  ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52    : CGM(CGM), CGF(CGF), Packed(false),
53    NextFieldOffsetInChars(CharUnits::Zero()),
54    LLVMStructAlignment(CharUnits::One()) { }
55
56  void AppendVTablePointer(BaseSubobject Base, llvm::Constant *VTable,
57                           const CXXRecordDecl *VTableClass);
58
59  void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
60                   llvm::Constant *InitExpr);
61
62  void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
63
64  void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
65                      llvm::ConstantInt *InitExpr);
66
67  void AppendPadding(CharUnits PadSize);
68
69  void AppendTailPadding(CharUnits RecordSize);
70
71  void ConvertStructToPacked();
72
73  bool Build(InitListExpr *ILE);
74  void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
75             llvm::Constant *VTable, const CXXRecordDecl *VTableClass,
76             CharUnits BaseOffset);
77  llvm::Constant *Finalize(QualType Ty);
78
79  CharUnits getAlignment(const llvm::Constant *C) const {
80    if (Packed)  return CharUnits::One();
81    return CharUnits::fromQuantity(
82        CGM.getDataLayout().getABITypeAlignment(C->getType()));
83  }
84
85  CharUnits getSizeInChars(const llvm::Constant *C) const {
86    return CharUnits::fromQuantity(
87        CGM.getDataLayout().getTypeAllocSize(C->getType()));
88  }
89};
90
91void ConstStructBuilder::AppendVTablePointer(BaseSubobject Base,
92                                             llvm::Constant *VTable,
93                                             const CXXRecordDecl *VTableClass) {
94  // Find the appropriate vtable within the vtable group.
95  uint64_t AddressPoint =
96    CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
97  llvm::Value *Indices[] = {
98    llvm::ConstantInt::get(CGM.Int64Ty, 0),
99    llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
100  };
101  llvm::Constant *VTableAddressPoint =
102    llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
103
104  // Add the vtable at the start of the object.
105  AppendBytes(Base.getBaseOffset(), VTableAddressPoint);
106}
107
108void ConstStructBuilder::
109AppendField(const FieldDecl *Field, uint64_t FieldOffset,
110            llvm::Constant *InitCst) {
111  const ASTContext &Context = CGM.getContext();
112
113  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
114
115  AppendBytes(FieldOffsetInChars, InitCst);
116}
117
118void ConstStructBuilder::
119AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
120
121  assert(NextFieldOffsetInChars <= FieldOffsetInChars
122         && "Field offset mismatch!");
123
124  CharUnits FieldAlignment = getAlignment(InitCst);
125
126  // Round up the field offset to the alignment of the field type.
127  CharUnits AlignedNextFieldOffsetInChars =
128    NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
129
130  if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
131    assert(!Packed && "Alignment is wrong even with a packed struct!");
132
133    // Convert the struct to a packed struct.
134    ConvertStructToPacked();
135
136    AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
137  }
138
139  if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
140    // We need to append padding.
141    AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
142
143    assert(NextFieldOffsetInChars == FieldOffsetInChars &&
144           "Did not add enough padding!");
145
146    AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
147  }
148
149  // Add the field.
150  Elements.push_back(InitCst);
151  NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
152                           getSizeInChars(InitCst);
153
154  if (Packed)
155    assert(LLVMStructAlignment == CharUnits::One() &&
156           "Packed struct not byte-aligned!");
157  else
158    LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
159}
160
161void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
162                                        uint64_t FieldOffset,
163                                        llvm::ConstantInt *CI) {
164  const ASTContext &Context = CGM.getContext();
165  const uint64_t CharWidth = Context.getCharWidth();
166  uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
167  if (FieldOffset > NextFieldOffsetInBits) {
168    // We need to add padding.
169    CharUnits PadSize = Context.toCharUnitsFromBits(
170      llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
171                               Context.getTargetInfo().getCharAlign()));
172
173    AppendPadding(PadSize);
174  }
175
176  uint64_t FieldSize = Field->getBitWidthValue(Context);
177
178  llvm::APInt FieldValue = CI->getValue();
179
180  // Promote the size of FieldValue if necessary
181  // FIXME: This should never occur, but currently it can because initializer
182  // constants are cast to bool, and because clang is not enforcing bitfield
183  // width limits.
184  if (FieldSize > FieldValue.getBitWidth())
185    FieldValue = FieldValue.zext(FieldSize);
186
187  // Truncate the size of FieldValue to the bit field size.
188  if (FieldSize < FieldValue.getBitWidth())
189    FieldValue = FieldValue.trunc(FieldSize);
190
191  NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
192  if (FieldOffset < NextFieldOffsetInBits) {
193    // Either part of the field or the entire field can go into the previous
194    // byte.
195    assert(!Elements.empty() && "Elements can't be empty!");
196
197    unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
198
199    bool FitsCompletelyInPreviousByte =
200      BitsInPreviousByte >= FieldValue.getBitWidth();
201
202    llvm::APInt Tmp = FieldValue;
203
204    if (!FitsCompletelyInPreviousByte) {
205      unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
206
207      if (CGM.getDataLayout().isBigEndian()) {
208        Tmp = Tmp.lshr(NewFieldWidth);
209        Tmp = Tmp.trunc(BitsInPreviousByte);
210
211        // We want the remaining high bits.
212        FieldValue = FieldValue.trunc(NewFieldWidth);
213      } else {
214        Tmp = Tmp.trunc(BitsInPreviousByte);
215
216        // We want the remaining low bits.
217        FieldValue = FieldValue.lshr(BitsInPreviousByte);
218        FieldValue = FieldValue.trunc(NewFieldWidth);
219      }
220    }
221
222    Tmp = Tmp.zext(CharWidth);
223    if (CGM.getDataLayout().isBigEndian()) {
224      if (FitsCompletelyInPreviousByte)
225        Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
226    } else {
227      Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
228    }
229
230    // 'or' in the bits that go into the previous byte.
231    llvm::Value *LastElt = Elements.back();
232    if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
233      Tmp |= Val->getValue();
234    else {
235      assert(isa<llvm::UndefValue>(LastElt));
236      // If there is an undef field that we're adding to, it can either be a
237      // scalar undef (in which case, we just replace it with our field) or it
238      // is an array.  If it is an array, we have to pull one byte off the
239      // array so that the other undef bytes stay around.
240      if (!isa<llvm::IntegerType>(LastElt->getType())) {
241        // The undef padding will be a multibyte array, create a new smaller
242        // padding and then an hole for our i8 to get plopped into.
243        assert(isa<llvm::ArrayType>(LastElt->getType()) &&
244               "Expected array padding of undefs");
245        llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
246        assert(AT->getElementType()->isIntegerTy(CharWidth) &&
247               AT->getNumElements() != 0 &&
248               "Expected non-empty array padding of undefs");
249
250        // Remove the padding array.
251        NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
252        Elements.pop_back();
253
254        // Add the padding back in two chunks.
255        AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
256        AppendPadding(CharUnits::One());
257        assert(isa<llvm::UndefValue>(Elements.back()) &&
258               Elements.back()->getType()->isIntegerTy(CharWidth) &&
259               "Padding addition didn't work right");
260      }
261    }
262
263    Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
264
265    if (FitsCompletelyInPreviousByte)
266      return;
267  }
268
269  while (FieldValue.getBitWidth() > CharWidth) {
270    llvm::APInt Tmp;
271
272    if (CGM.getDataLayout().isBigEndian()) {
273      // We want the high bits.
274      Tmp =
275        FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
276    } else {
277      // We want the low bits.
278      Tmp = FieldValue.trunc(CharWidth);
279
280      FieldValue = FieldValue.lshr(CharWidth);
281    }
282
283    Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
284    ++NextFieldOffsetInChars;
285
286    FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
287  }
288
289  assert(FieldValue.getBitWidth() > 0 &&
290         "Should have at least one bit left!");
291  assert(FieldValue.getBitWidth() <= CharWidth &&
292         "Should not have more than a byte left!");
293
294  if (FieldValue.getBitWidth() < CharWidth) {
295    if (CGM.getDataLayout().isBigEndian()) {
296      unsigned BitWidth = FieldValue.getBitWidth();
297
298      FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
299    } else
300      FieldValue = FieldValue.zext(CharWidth);
301  }
302
303  // Append the last element.
304  Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
305                                            FieldValue));
306  ++NextFieldOffsetInChars;
307}
308
309void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
310  if (PadSize.isZero())
311    return;
312
313  llvm::Type *Ty = CGM.Int8Ty;
314  if (PadSize > CharUnits::One())
315    Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
316
317  llvm::Constant *C = llvm::UndefValue::get(Ty);
318  Elements.push_back(C);
319  assert(getAlignment(C) == CharUnits::One() &&
320         "Padding must have 1 byte alignment!");
321
322  NextFieldOffsetInChars += getSizeInChars(C);
323}
324
325void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
326  assert(NextFieldOffsetInChars <= RecordSize &&
327         "Size mismatch!");
328
329  AppendPadding(RecordSize - NextFieldOffsetInChars);
330}
331
332void ConstStructBuilder::ConvertStructToPacked() {
333  SmallVector<llvm::Constant *, 16> PackedElements;
334  CharUnits ElementOffsetInChars = CharUnits::Zero();
335
336  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
337    llvm::Constant *C = Elements[i];
338
339    CharUnits ElementAlign = CharUnits::fromQuantity(
340      CGM.getDataLayout().getABITypeAlignment(C->getType()));
341    CharUnits AlignedElementOffsetInChars =
342      ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
343
344    if (AlignedElementOffsetInChars > ElementOffsetInChars) {
345      // We need some padding.
346      CharUnits NumChars =
347        AlignedElementOffsetInChars - ElementOffsetInChars;
348
349      llvm::Type *Ty = CGM.Int8Ty;
350      if (NumChars > CharUnits::One())
351        Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
352
353      llvm::Constant *Padding = llvm::UndefValue::get(Ty);
354      PackedElements.push_back(Padding);
355      ElementOffsetInChars += getSizeInChars(Padding);
356    }
357
358    PackedElements.push_back(C);
359    ElementOffsetInChars += getSizeInChars(C);
360  }
361
362  assert(ElementOffsetInChars == NextFieldOffsetInChars &&
363         "Packing the struct changed its size!");
364
365  Elements.swap(PackedElements);
366  LLVMStructAlignment = CharUnits::One();
367  Packed = true;
368}
369
370bool ConstStructBuilder::Build(InitListExpr *ILE) {
371  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
372  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
373
374  unsigned FieldNo = 0;
375  unsigned ElementNo = 0;
376
377  for (RecordDecl::field_iterator Field = RD->field_begin(),
378       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
379    // If this is a union, skip all the fields that aren't being initialized.
380    if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
381      continue;
382
383    // Don't emit anonymous bitfields, they just affect layout.
384    if (Field->isUnnamedBitfield())
385      continue;
386
387    // Get the initializer.  A struct can include fields without initializers,
388    // we just use explicit null values for them.
389    llvm::Constant *EltInit;
390    if (ElementNo < ILE->getNumInits())
391      EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
392                                     Field->getType(), CGF);
393    else
394      EltInit = CGM.EmitNullConstant(Field->getType());
395
396    if (!EltInit)
397      return false;
398
399    if (!Field->isBitField()) {
400      // Handle non-bitfield members.
401      AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
402    } else {
403      // Otherwise we have a bitfield.
404      AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
405                     cast<llvm::ConstantInt>(EltInit));
406    }
407  }
408
409  return true;
410}
411
412namespace {
413struct BaseInfo {
414  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
415    : Decl(Decl), Offset(Offset), Index(Index) {
416  }
417
418  const CXXRecordDecl *Decl;
419  CharUnits Offset;
420  unsigned Index;
421
422  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
423};
424}
425
426void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
427                               bool IsPrimaryBase, llvm::Constant *VTable,
428                               const CXXRecordDecl *VTableClass,
429                               CharUnits Offset) {
430  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
431
432  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
433    // Add a vtable pointer, if we need one and it hasn't already been added.
434    if (CD->isDynamicClass() && !IsPrimaryBase)
435      AppendVTablePointer(BaseSubobject(CD, Offset), VTable, VTableClass);
436
437    // Accumulate and sort bases, in order to visit them in address order, which
438    // may not be the same as declaration order.
439    SmallVector<BaseInfo, 8> Bases;
440    Bases.reserve(CD->getNumBases());
441    unsigned BaseNo = 0;
442    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
443         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
444      assert(!Base->isVirtual() && "should not have virtual bases here");
445      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
446      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
447      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
448    }
449    std::stable_sort(Bases.begin(), Bases.end());
450
451    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
452      BaseInfo &Base = Bases[I];
453
454      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
455      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
456            VTable, VTableClass, Offset + Base.Offset);
457    }
458  }
459
460  unsigned FieldNo = 0;
461  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
462
463  for (RecordDecl::field_iterator Field = RD->field_begin(),
464       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
465    // If this is a union, skip all the fields that aren't being initialized.
466    if (RD->isUnion() && Val.getUnionField() != *Field)
467      continue;
468
469    // Don't emit anonymous bitfields, they just affect layout.
470    if (Field->isUnnamedBitfield())
471      continue;
472
473    // Emit the value of the initializer.
474    const APValue &FieldValue =
475      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
476    llvm::Constant *EltInit =
477      CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
478    assert(EltInit && "EmitConstantValue can't fail");
479
480    if (!Field->isBitField()) {
481      // Handle non-bitfield members.
482      AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
483    } else {
484      // Otherwise we have a bitfield.
485      AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
486                     cast<llvm::ConstantInt>(EltInit));
487    }
488  }
489}
490
491llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
492  RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
493  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
494
495  CharUnits LayoutSizeInChars = Layout.getSize();
496
497  if (NextFieldOffsetInChars > LayoutSizeInChars) {
498    // If the struct is bigger than the size of the record type,
499    // we must have a flexible array member at the end.
500    assert(RD->hasFlexibleArrayMember() &&
501           "Must have flexible array member if struct is bigger than type!");
502
503    // No tail padding is necessary.
504  } else {
505    // Append tail padding if necessary.
506    AppendTailPadding(LayoutSizeInChars);
507
508    CharUnits LLVMSizeInChars =
509      NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
510
511    // Check if we need to convert the struct to a packed struct.
512    if (NextFieldOffsetInChars <= LayoutSizeInChars &&
513        LLVMSizeInChars > LayoutSizeInChars) {
514      assert(!Packed && "Size mismatch!");
515
516      ConvertStructToPacked();
517      assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
518             "Converting to packed did not help!");
519    }
520
521    assert(LayoutSizeInChars == NextFieldOffsetInChars &&
522           "Tail padding mismatch!");
523  }
524
525  // Pick the type to use.  If the type is layout identical to the ConvertType
526  // type then use it, otherwise use whatever the builder produced for us.
527  llvm::StructType *STy =
528      llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
529                                               Elements, Packed);
530  llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
531  if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
532    if (ValSTy->isLayoutIdentical(STy))
533      STy = ValSTy;
534  }
535
536  llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
537
538  assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
539         getSizeInChars(Result) && "Size mismatch!");
540
541  return Result;
542}
543
544llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
545                                                CodeGenFunction *CGF,
546                                                InitListExpr *ILE) {
547  ConstStructBuilder Builder(CGM, CGF);
548
549  if (!Builder.Build(ILE))
550    return 0;
551
552  return Builder.Finalize(ILE->getType());
553}
554
555llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
556                                                CodeGenFunction *CGF,
557                                                const APValue &Val,
558                                                QualType ValTy) {
559  ConstStructBuilder Builder(CGM, CGF);
560
561  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
562  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
563  llvm::Constant *VTable = 0;
564  if (CD && CD->isDynamicClass())
565    VTable = CGM.getVTables().GetAddrOfVTable(CD);
566
567  Builder.Build(Val, RD, false, VTable, CD, CharUnits::Zero());
568
569  return Builder.Finalize(ValTy);
570}
571
572
573//===----------------------------------------------------------------------===//
574//                             ConstExprEmitter
575//===----------------------------------------------------------------------===//
576
577/// This class only needs to handle two cases:
578/// 1) Literals (this is used by APValue emission to emit literals).
579/// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
580///    constant fold these types).
581class ConstExprEmitter :
582  public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
583  CodeGenModule &CGM;
584  CodeGenFunction *CGF;
585  llvm::LLVMContext &VMContext;
586public:
587  ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
588    : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
589  }
590
591  //===--------------------------------------------------------------------===//
592  //                            Visitor Methods
593  //===--------------------------------------------------------------------===//
594
595  llvm::Constant *VisitStmt(Stmt *S) {
596    return 0;
597  }
598
599  llvm::Constant *VisitParenExpr(ParenExpr *PE) {
600    return Visit(PE->getSubExpr());
601  }
602
603  llvm::Constant *
604  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
605    return Visit(PE->getReplacement());
606  }
607
608  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
609    return Visit(GE->getResultExpr());
610  }
611
612  llvm::Constant *VisitChooseExpr(ChooseExpr *CE) {
613    return Visit(CE->getChosenSubExpr(CGM.getContext()));
614  }
615
616  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
617    return Visit(E->getInitializer());
618  }
619
620  llvm::Constant *VisitCastExpr(CastExpr* E) {
621    Expr *subExpr = E->getSubExpr();
622    llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
623    if (!C) return 0;
624
625    llvm::Type *destType = ConvertType(E->getType());
626
627    switch (E->getCastKind()) {
628    case CK_ToUnion: {
629      // GCC cast to union extension
630      assert(E->getType()->isUnionType() &&
631             "Destination type is not union type!");
632
633      // Build a struct with the union sub-element as the first member,
634      // and padded to the appropriate size
635      SmallVector<llvm::Constant*, 2> Elts;
636      SmallVector<llvm::Type*, 2> Types;
637      Elts.push_back(C);
638      Types.push_back(C->getType());
639      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
640      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType);
641
642      assert(CurSize <= TotalSize && "Union size mismatch!");
643      if (unsigned NumPadBytes = TotalSize - CurSize) {
644        llvm::Type *Ty = CGM.Int8Ty;
645        if (NumPadBytes > 1)
646          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
647
648        Elts.push_back(llvm::UndefValue::get(Ty));
649        Types.push_back(Ty);
650      }
651
652      llvm::StructType* STy =
653        llvm::StructType::get(C->getType()->getContext(), Types, false);
654      return llvm::ConstantStruct::get(STy, Elts);
655    }
656
657    case CK_LValueToRValue:
658    case CK_AtomicToNonAtomic:
659    case CK_NonAtomicToAtomic:
660    case CK_NoOp:
661    case CK_ConstructorConversion:
662      return C;
663
664    case CK_Dependent: llvm_unreachable("saw dependent cast!");
665
666    case CK_BuiltinFnToFnPtr:
667      llvm_unreachable("builtin functions are handled elsewhere");
668
669    case CK_ReinterpretMemberPointer:
670    case CK_DerivedToBaseMemberPointer:
671    case CK_BaseToDerivedMemberPointer:
672      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
673
674    // These will never be supported.
675    case CK_ObjCObjectLValueCast:
676    case CK_ARCProduceObject:
677    case CK_ARCConsumeObject:
678    case CK_ARCReclaimReturnedObject:
679    case CK_ARCExtendBlockObject:
680    case CK_CopyAndAutoreleaseBlockObject:
681      return 0;
682
683    // These don't need to be handled here because Evaluate knows how to
684    // evaluate them in the cases where they can be folded.
685    case CK_BitCast:
686    case CK_ToVoid:
687    case CK_Dynamic:
688    case CK_LValueBitCast:
689    case CK_NullToMemberPointer:
690    case CK_UserDefinedConversion:
691    case CK_CPointerToObjCPointerCast:
692    case CK_BlockPointerToObjCPointerCast:
693    case CK_AnyPointerToBlockPointerCast:
694    case CK_ArrayToPointerDecay:
695    case CK_FunctionToPointerDecay:
696    case CK_BaseToDerived:
697    case CK_DerivedToBase:
698    case CK_UncheckedDerivedToBase:
699    case CK_MemberPointerToBoolean:
700    case CK_VectorSplat:
701    case CK_FloatingRealToComplex:
702    case CK_FloatingComplexToReal:
703    case CK_FloatingComplexToBoolean:
704    case CK_FloatingComplexCast:
705    case CK_FloatingComplexToIntegralComplex:
706    case CK_IntegralRealToComplex:
707    case CK_IntegralComplexToReal:
708    case CK_IntegralComplexToBoolean:
709    case CK_IntegralComplexCast:
710    case CK_IntegralComplexToFloatingComplex:
711    case CK_PointerToIntegral:
712    case CK_PointerToBoolean:
713    case CK_NullToPointer:
714    case CK_IntegralCast:
715    case CK_IntegralToPointer:
716    case CK_IntegralToBoolean:
717    case CK_IntegralToFloating:
718    case CK_FloatingToIntegral:
719    case CK_FloatingToBoolean:
720    case CK_FloatingCast:
721    case CK_ZeroToOCLEvent:
722      return 0;
723    }
724    llvm_unreachable("Invalid CastKind");
725  }
726
727  llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
728    return Visit(DAE->getExpr());
729  }
730
731  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
732    // No need for a DefaultInitExprScope: we don't handle 'this' in a
733    // constant expression.
734    return Visit(DIE->getExpr());
735  }
736
737  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
738    return Visit(E->GetTemporaryExpr());
739  }
740
741  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
742    if (ILE->isStringLiteralInit())
743      return Visit(ILE->getInit(0));
744
745    llvm::ArrayType *AType =
746        cast<llvm::ArrayType>(ConvertType(ILE->getType()));
747    llvm::Type *ElemTy = AType->getElementType();
748    unsigned NumInitElements = ILE->getNumInits();
749    unsigned NumElements = AType->getNumElements();
750
751    // Initialising an array requires us to automatically
752    // initialise any elements that have not been initialised explicitly
753    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
754
755    // Copy initializer elements.
756    std::vector<llvm::Constant*> Elts;
757    Elts.reserve(NumInitableElts + NumElements);
758
759    bool RewriteType = false;
760    for (unsigned i = 0; i < NumInitableElts; ++i) {
761      Expr *Init = ILE->getInit(i);
762      llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
763      if (!C)
764        return 0;
765      RewriteType |= (C->getType() != ElemTy);
766      Elts.push_back(C);
767    }
768
769    // Initialize remaining array elements.
770    // FIXME: This doesn't handle member pointers correctly!
771    llvm::Constant *fillC;
772    if (Expr *filler = ILE->getArrayFiller())
773      fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
774    else
775      fillC = llvm::Constant::getNullValue(ElemTy);
776    if (!fillC)
777      return 0;
778    RewriteType |= (fillC->getType() != ElemTy);
779    Elts.resize(NumElements, fillC);
780
781    if (RewriteType) {
782      // FIXME: Try to avoid packing the array
783      std::vector<llvm::Type*> Types;
784      Types.reserve(NumInitableElts + NumElements);
785      for (unsigned i = 0, e = Elts.size(); i < e; ++i)
786        Types.push_back(Elts[i]->getType());
787      llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
788                                                            Types, true);
789      return llvm::ConstantStruct::get(SType, Elts);
790    }
791
792    return llvm::ConstantArray::get(AType, Elts);
793  }
794
795  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) {
796    return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
797  }
798
799  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
800    return CGM.EmitNullConstant(E->getType());
801  }
802
803  llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
804    if (ILE->getType()->isArrayType())
805      return EmitArrayInitialization(ILE);
806
807    if (ILE->getType()->isRecordType())
808      return EmitRecordInitialization(ILE);
809
810    return 0;
811  }
812
813  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
814    if (!E->getConstructor()->isTrivial())
815      return 0;
816
817    QualType Ty = E->getType();
818
819    // FIXME: We should not have to call getBaseElementType here.
820    const RecordType *RT =
821      CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
822    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
823
824    // If the class doesn't have a trivial destructor, we can't emit it as a
825    // constant expr.
826    if (!RD->hasTrivialDestructor())
827      return 0;
828
829    // Only copy and default constructors can be trivial.
830
831
832    if (E->getNumArgs()) {
833      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
834      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
835             "trivial ctor has argument but isn't a copy/move ctor");
836
837      Expr *Arg = E->getArg(0);
838      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
839             "argument to copy ctor is of wrong type");
840
841      return Visit(Arg);
842    }
843
844    return CGM.EmitNullConstant(Ty);
845  }
846
847  llvm::Constant *VisitStringLiteral(StringLiteral *E) {
848    return CGM.GetConstantArrayFromStringLiteral(E);
849  }
850
851  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
852    // This must be an @encode initializing an array in a static initializer.
853    // Don't emit it as the address of the string, emit the string data itself
854    // as an inline array.
855    std::string Str;
856    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
857    const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
858
859    // Resize the string to the right size, adding zeros at the end, or
860    // truncating as needed.
861    Str.resize(CAT->getSize().getZExtValue(), '\0');
862    return llvm::ConstantDataArray::getString(VMContext, Str, false);
863  }
864
865  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
866    return Visit(E->getSubExpr());
867  }
868
869  // Utility methods
870  llvm::Type *ConvertType(QualType T) {
871    return CGM.getTypes().ConvertType(T);
872  }
873
874public:
875  llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
876    if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
877      if (Decl->hasAttr<WeakRefAttr>())
878        return CGM.GetWeakRefReference(Decl);
879      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
880        return CGM.GetAddrOfFunction(FD);
881      if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
882        // We can never refer to a variable with local storage.
883        if (!VD->hasLocalStorage()) {
884          if (VD->isFileVarDecl() || VD->hasExternalStorage())
885            return CGM.GetAddrOfGlobalVar(VD);
886          else if (VD->isLocalVarDecl())
887            return CGM.getStaticLocalDeclAddress(VD);
888        }
889      }
890      return 0;
891    }
892
893    Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
894    switch (E->getStmtClass()) {
895    default: break;
896    case Expr::CompoundLiteralExprClass: {
897      // Note that due to the nature of compound literals, this is guaranteed
898      // to be the only use of the variable, so we just generate it here.
899      CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
900      llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
901                                               CLE->getType(), CGF);
902      // FIXME: "Leaked" on failure.
903      if (C)
904        C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
905                                     E->getType().isConstant(CGM.getContext()),
906                                     llvm::GlobalValue::InternalLinkage,
907                                     C, ".compoundliteral", 0,
908                                     llvm::GlobalVariable::NotThreadLocal,
909                          CGM.getContext().getTargetAddressSpace(E->getType()));
910      return C;
911    }
912    case Expr::StringLiteralClass:
913      return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
914    case Expr::ObjCEncodeExprClass:
915      return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
916    case Expr::ObjCStringLiteralClass: {
917      ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
918      llvm::Constant *C =
919          CGM.getObjCRuntime().GenerateConstantString(SL->getString());
920      return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
921    }
922    case Expr::PredefinedExprClass: {
923      unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
924      if (CGF) {
925        LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
926        return cast<llvm::Constant>(Res.getAddress());
927      } else if (Type == PredefinedExpr::PrettyFunction) {
928        return CGM.GetAddrOfConstantCString("top level", ".tmp");
929      }
930
931      return CGM.GetAddrOfConstantCString("", ".tmp");
932    }
933    case Expr::AddrLabelExprClass: {
934      assert(CGF && "Invalid address of label expression outside function.");
935      llvm::Constant *Ptr =
936        CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
937      return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
938    }
939    case Expr::CallExprClass: {
940      CallExpr* CE = cast<CallExpr>(E);
941      unsigned builtin = CE->isBuiltinCall();
942      if (builtin !=
943            Builtin::BI__builtin___CFStringMakeConstantString &&
944          builtin !=
945            Builtin::BI__builtin___NSStringMakeConstantString)
946        break;
947      const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
948      const StringLiteral *Literal = cast<StringLiteral>(Arg);
949      if (builtin ==
950            Builtin::BI__builtin___NSStringMakeConstantString) {
951        return CGM.getObjCRuntime().GenerateConstantString(Literal);
952      }
953      // FIXME: need to deal with UCN conversion issues.
954      return CGM.GetAddrOfConstantCFString(Literal);
955    }
956    case Expr::BlockExprClass: {
957      std::string FunctionName;
958      if (CGF)
959        FunctionName = CGF->CurFn->getName();
960      else
961        FunctionName = "global";
962
963      return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
964    }
965    case Expr::CXXTypeidExprClass: {
966      CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
967      QualType T;
968      if (Typeid->isTypeOperand())
969        T = Typeid->getTypeOperand();
970      else
971        T = Typeid->getExprOperand()->getType();
972      return CGM.GetAddrOfRTTIDescriptor(T);
973    }
974    case Expr::CXXUuidofExprClass: {
975      return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E));
976    }
977    case Expr::MaterializeTemporaryExprClass: {
978      MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
979      assert(MTE->getStorageDuration() == SD_Static);
980      SmallVector<const Expr *, 2> CommaLHSs;
981      SmallVector<SubobjectAdjustment, 2> Adjustments;
982      const Expr *Inner = MTE->GetTemporaryExpr()
983          ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
984      return CGM.GetAddrOfGlobalTemporary(MTE, Inner);
985    }
986    }
987
988    return 0;
989  }
990};
991
992}  // end anonymous namespace.
993
994llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
995                                                CodeGenFunction *CGF) {
996  // Make a quick check if variable can be default NULL initialized
997  // and avoid going through rest of code which may do, for c++11,
998  // initialization of memory to all NULLs.
999  if (!D.hasLocalStorage()) {
1000    QualType Ty = D.getType();
1001    if (Ty->isArrayType())
1002      Ty = Context.getBaseElementType(Ty);
1003    if (Ty->isRecordType())
1004      if (const CXXConstructExpr *E =
1005          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1006        const CXXConstructorDecl *CD = E->getConstructor();
1007        if (CD->isTrivial() && CD->isDefaultConstructor())
1008          return EmitNullConstant(D.getType());
1009      }
1010  }
1011
1012  if (const APValue *Value = D.evaluateValue())
1013    return EmitConstantValueForMemory(*Value, D.getType(), CGF);
1014
1015  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1016  // reference is a constant expression, and the reference binds to a temporary,
1017  // then constant initialization is performed. ConstExprEmitter will
1018  // incorrectly emit a prvalue constant in this case, and the calling code
1019  // interprets that as the (pointer) value of the reference, rather than the
1020  // desired value of the referee.
1021  if (D.getType()->isReferenceType())
1022    return 0;
1023
1024  const Expr *E = D.getInit();
1025  assert(E && "No initializer to emit");
1026
1027  llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1028  if (C && C->getType()->isIntegerTy(1)) {
1029    llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1030    C = llvm::ConstantExpr::getZExt(C, BoolTy);
1031  }
1032  return C;
1033}
1034
1035llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
1036                                                QualType DestType,
1037                                                CodeGenFunction *CGF) {
1038  Expr::EvalResult Result;
1039
1040  bool Success = false;
1041
1042  if (DestType->isReferenceType())
1043    Success = E->EvaluateAsLValue(Result, Context);
1044  else
1045    Success = E->EvaluateAsRValue(Result, Context);
1046
1047  llvm::Constant *C = 0;
1048  if (Success && !Result.HasSideEffects)
1049    C = EmitConstantValue(Result.Val, DestType, CGF);
1050  else
1051    C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
1052
1053  if (C && C->getType()->isIntegerTy(1)) {
1054    llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
1055    C = llvm::ConstantExpr::getZExt(C, BoolTy);
1056  }
1057  return C;
1058}
1059
1060llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
1061                                                 QualType DestType,
1062                                                 CodeGenFunction *CGF) {
1063  switch (Value.getKind()) {
1064  case APValue::Uninitialized:
1065    llvm_unreachable("Constant expressions should be initialized.");
1066  case APValue::LValue: {
1067    llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
1068    llvm::Constant *Offset =
1069      llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
1070
1071    llvm::Constant *C;
1072    if (APValue::LValueBase LVBase = Value.getLValueBase()) {
1073      // An array can be represented as an lvalue referring to the base.
1074      if (isa<llvm::ArrayType>(DestTy)) {
1075        assert(Offset->isNullValue() && "offset on array initializer");
1076        return ConstExprEmitter(*this, CGF).Visit(
1077          const_cast<Expr*>(LVBase.get<const Expr*>()));
1078      }
1079
1080      C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
1081
1082      // Apply offset if necessary.
1083      if (!Offset->isNullValue()) {
1084        llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1085        Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1086        C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1087      }
1088
1089      // Convert to the appropriate type; this could be an lvalue for
1090      // an integer.
1091      if (isa<llvm::PointerType>(DestTy))
1092        return llvm::ConstantExpr::getBitCast(C, DestTy);
1093
1094      return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1095    } else {
1096      C = Offset;
1097
1098      // Convert to the appropriate type; this could be an lvalue for
1099      // an integer.
1100      if (isa<llvm::PointerType>(DestTy))
1101        return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1102
1103      // If the types don't match this should only be a truncate.
1104      if (C->getType() != DestTy)
1105        return llvm::ConstantExpr::getTrunc(C, DestTy);
1106
1107      return C;
1108    }
1109  }
1110  case APValue::Int:
1111    return llvm::ConstantInt::get(VMContext, Value.getInt());
1112  case APValue::ComplexInt: {
1113    llvm::Constant *Complex[2];
1114
1115    Complex[0] = llvm::ConstantInt::get(VMContext,
1116                                        Value.getComplexIntReal());
1117    Complex[1] = llvm::ConstantInt::get(VMContext,
1118                                        Value.getComplexIntImag());
1119
1120    // FIXME: the target may want to specify that this is packed.
1121    llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1122                                                  Complex[1]->getType(),
1123                                                  NULL);
1124    return llvm::ConstantStruct::get(STy, Complex);
1125  }
1126  case APValue::Float: {
1127    const llvm::APFloat &Init = Value.getFloat();
1128    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf &&
1129         !Context.getLangOpts().NativeHalfType)
1130      return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1131    else
1132      return llvm::ConstantFP::get(VMContext, Init);
1133  }
1134  case APValue::ComplexFloat: {
1135    llvm::Constant *Complex[2];
1136
1137    Complex[0] = llvm::ConstantFP::get(VMContext,
1138                                       Value.getComplexFloatReal());
1139    Complex[1] = llvm::ConstantFP::get(VMContext,
1140                                       Value.getComplexFloatImag());
1141
1142    // FIXME: the target may want to specify that this is packed.
1143    llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1144                                                  Complex[1]->getType(),
1145                                                  NULL);
1146    return llvm::ConstantStruct::get(STy, Complex);
1147  }
1148  case APValue::Vector: {
1149    SmallVector<llvm::Constant *, 4> Inits;
1150    unsigned NumElts = Value.getVectorLength();
1151
1152    for (unsigned i = 0; i != NumElts; ++i) {
1153      const APValue &Elt = Value.getVectorElt(i);
1154      if (Elt.isInt())
1155        Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1156      else
1157        Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1158    }
1159    return llvm::ConstantVector::get(Inits);
1160  }
1161  case APValue::AddrLabelDiff: {
1162    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1163    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1164    llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1165    llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1166
1167    // Compute difference
1168    llvm::Type *ResultType = getTypes().ConvertType(DestType);
1169    LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1170    RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1171    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1172
1173    // LLVM is a bit sensitive about the exact format of the
1174    // address-of-label difference; make sure to truncate after
1175    // the subtraction.
1176    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1177  }
1178  case APValue::Struct:
1179  case APValue::Union:
1180    return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1181  case APValue::Array: {
1182    const ArrayType *CAT = Context.getAsArrayType(DestType);
1183    unsigned NumElements = Value.getArraySize();
1184    unsigned NumInitElts = Value.getArrayInitializedElts();
1185
1186    std::vector<llvm::Constant*> Elts;
1187    Elts.reserve(NumElements);
1188
1189    // Emit array filler, if there is one.
1190    llvm::Constant *Filler = 0;
1191    if (Value.hasArrayFiller())
1192      Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
1193                                          CAT->getElementType(), CGF);
1194
1195    // Emit initializer elements.
1196    llvm::Type *CommonElementType = 0;
1197    for (unsigned I = 0; I < NumElements; ++I) {
1198      llvm::Constant *C = Filler;
1199      if (I < NumInitElts)
1200        C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
1201                                       CAT->getElementType(), CGF);
1202      else
1203        assert(Filler && "Missing filler for implicit elements of initializer");
1204      if (I == 0)
1205        CommonElementType = C->getType();
1206      else if (C->getType() != CommonElementType)
1207        CommonElementType = 0;
1208      Elts.push_back(C);
1209    }
1210
1211    if (!CommonElementType) {
1212      // FIXME: Try to avoid packing the array
1213      std::vector<llvm::Type*> Types;
1214      Types.reserve(NumElements);
1215      for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1216        Types.push_back(Elts[i]->getType());
1217      llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1218      return llvm::ConstantStruct::get(SType, Elts);
1219    }
1220
1221    llvm::ArrayType *AType =
1222      llvm::ArrayType::get(CommonElementType, NumElements);
1223    return llvm::ConstantArray::get(AType, Elts);
1224  }
1225  case APValue::MemberPointer:
1226    return getCXXABI().EmitMemberPointer(Value, DestType);
1227  }
1228  llvm_unreachable("Unknown APValue kind");
1229}
1230
1231llvm::Constant *
1232CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
1233                                          QualType DestType,
1234                                          CodeGenFunction *CGF) {
1235  llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
1236  if (C->getType()->isIntegerTy(1)) {
1237    llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1238    C = llvm::ConstantExpr::getZExt(C, BoolTy);
1239  }
1240  return C;
1241}
1242
1243llvm::Constant *
1244CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1245  assert(E->isFileScope() && "not a file-scope compound literal expr");
1246  return ConstExprEmitter(*this, 0).EmitLValue(E);
1247}
1248
1249llvm::Constant *
1250CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1251  // Member pointer constants always have a very particular form.
1252  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1253  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1254
1255  // A member function pointer.
1256  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1257    return getCXXABI().EmitMemberPointer(method);
1258
1259  // Otherwise, a member data pointer.
1260  uint64_t fieldOffset = getContext().getFieldOffset(decl);
1261  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1262  return getCXXABI().EmitMemberDataPointer(type, chars);
1263}
1264
1265static void
1266FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1267                             SmallVectorImpl<llvm::Constant *> &Elements,
1268                             uint64_t StartOffset) {
1269  assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1270         "StartOffset not byte aligned!");
1271
1272  if (CGM.getTypes().isZeroInitializable(T))
1273    return;
1274
1275  if (const ConstantArrayType *CAT =
1276        CGM.getContext().getAsConstantArrayType(T)) {
1277    QualType ElementTy = CAT->getElementType();
1278    uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1279
1280    for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1281      FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1282                                   StartOffset + I * ElementSize);
1283    }
1284  } else if (const RecordType *RT = T->getAs<RecordType>()) {
1285    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1286    const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1287
1288    // Go through all bases and fill in any null pointer to data members.
1289    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1290         E = RD->bases_end(); I != E; ++I) {
1291      if (I->isVirtual()) {
1292        // Ignore virtual bases.
1293        continue;
1294      }
1295
1296      const CXXRecordDecl *BaseDecl =
1297      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1298
1299      // Ignore empty bases.
1300      if (BaseDecl->isEmpty())
1301        continue;
1302
1303      // Ignore bases that don't have any pointer to data members.
1304      if (CGM.getTypes().isZeroInitializable(BaseDecl))
1305        continue;
1306
1307      uint64_t BaseOffset =
1308        CGM.getContext().toBits(Layout.getBaseClassOffset(BaseDecl));
1309      FillInNullDataMemberPointers(CGM, I->getType(),
1310                                   Elements, StartOffset + BaseOffset);
1311    }
1312
1313    // Visit all fields.
1314    unsigned FieldNo = 0;
1315    for (RecordDecl::field_iterator I = RD->field_begin(),
1316         E = RD->field_end(); I != E; ++I, ++FieldNo) {
1317      QualType FieldType = I->getType();
1318
1319      if (CGM.getTypes().isZeroInitializable(FieldType))
1320        continue;
1321
1322      uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1323      FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1324    }
1325  } else {
1326    assert(T->isMemberPointerType() && "Should only see member pointers here!");
1327    assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1328           "Should only see pointers to data members here!");
1329
1330    CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1331    CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1332
1333    // FIXME: hardcodes Itanium member pointer representation!
1334    llvm::Constant *NegativeOne =
1335      llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1336
1337    // Fill in the null data member pointer.
1338    for (CharUnits I = StartIndex; I != EndIndex; ++I)
1339      Elements[I.getQuantity()] = NegativeOne;
1340  }
1341}
1342
1343static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1344                                               llvm::Type *baseType,
1345                                               const CXXRecordDecl *base);
1346
1347static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1348                                        const CXXRecordDecl *record,
1349                                        bool asCompleteObject) {
1350  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1351  llvm::StructType *structure =
1352    (asCompleteObject ? layout.getLLVMType()
1353                      : layout.getBaseSubobjectLLVMType());
1354
1355  unsigned numElements = structure->getNumElements();
1356  std::vector<llvm::Constant *> elements(numElements);
1357
1358  // Fill in all the bases.
1359  for (CXXRecordDecl::base_class_const_iterator
1360         I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1361    if (I->isVirtual()) {
1362      // Ignore virtual bases; if we're laying out for a complete
1363      // object, we'll lay these out later.
1364      continue;
1365    }
1366
1367    const CXXRecordDecl *base =
1368      cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1369
1370    // Ignore empty bases.
1371    if (base->isEmpty())
1372      continue;
1373
1374    unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1375    llvm::Type *baseType = structure->getElementType(fieldIndex);
1376    elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1377  }
1378
1379  // Fill in all the fields.
1380  for (RecordDecl::field_iterator I = record->field_begin(),
1381         E = record->field_end(); I != E; ++I) {
1382    const FieldDecl *field = *I;
1383
1384    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1385    // will fill in later.)
1386    if (!field->isBitField()) {
1387      unsigned fieldIndex = layout.getLLVMFieldNo(field);
1388      elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1389    }
1390
1391    // For unions, stop after the first named field.
1392    if (record->isUnion() && field->getDeclName())
1393      break;
1394  }
1395
1396  // Fill in the virtual bases, if we're working with the complete object.
1397  if (asCompleteObject) {
1398    for (CXXRecordDecl::base_class_const_iterator
1399           I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1400      const CXXRecordDecl *base =
1401        cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1402
1403      // Ignore empty bases.
1404      if (base->isEmpty())
1405        continue;
1406
1407      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1408
1409      // We might have already laid this field out.
1410      if (elements[fieldIndex]) continue;
1411
1412      llvm::Type *baseType = structure->getElementType(fieldIndex);
1413      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1414    }
1415  }
1416
1417  // Now go through all other fields and zero them out.
1418  for (unsigned i = 0; i != numElements; ++i) {
1419    if (!elements[i])
1420      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1421  }
1422
1423  return llvm::ConstantStruct::get(structure, elements);
1424}
1425
1426/// Emit the null constant for a base subobject.
1427static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1428                                               llvm::Type *baseType,
1429                                               const CXXRecordDecl *base) {
1430  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1431
1432  // Just zero out bases that don't have any pointer to data members.
1433  if (baseLayout.isZeroInitializableAsBase())
1434    return llvm::Constant::getNullValue(baseType);
1435
1436  // If the base type is a struct, we can just use its null constant.
1437  if (isa<llvm::StructType>(baseType)) {
1438    return EmitNullConstant(CGM, base, /*complete*/ false);
1439  }
1440
1441  // Otherwise, some bases are represented as arrays of i8 if the size
1442  // of the base is smaller than its corresponding LLVM type.  Figure
1443  // out how many elements this base array has.
1444  llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1445  unsigned numBaseElements = baseArrayType->getNumElements();
1446
1447  // Fill in null data member pointers.
1448  SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1449  FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1450                               baseElements, 0);
1451
1452  // Now go through all other elements and zero them out.
1453  if (numBaseElements) {
1454    llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1455    for (unsigned i = 0; i != numBaseElements; ++i) {
1456      if (!baseElements[i])
1457        baseElements[i] = i8_zero;
1458    }
1459  }
1460
1461  return llvm::ConstantArray::get(baseArrayType, baseElements);
1462}
1463
1464llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1465  if (getTypes().isZeroInitializable(T))
1466    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1467
1468  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1469    llvm::ArrayType *ATy =
1470      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1471
1472    QualType ElementTy = CAT->getElementType();
1473
1474    llvm::Constant *Element = EmitNullConstant(ElementTy);
1475    unsigned NumElements = CAT->getSize().getZExtValue();
1476
1477    if (Element->isNullValue())
1478      return llvm::ConstantAggregateZero::get(ATy);
1479
1480    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1481    return llvm::ConstantArray::get(ATy, Array);
1482  }
1483
1484  if (const RecordType *RT = T->getAs<RecordType>()) {
1485    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1486    return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1487  }
1488
1489  assert(T->isMemberPointerType() && "Should only see member pointers here!");
1490  assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1491         "Should only see pointers to data members here!");
1492
1493  // Itanium C++ ABI 2.3:
1494  //   A NULL pointer is represented as -1.
1495  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1496}
1497
1498llvm::Constant *
1499CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1500  return ::EmitNullConstant(*this, Record, false);
1501}
1502