1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Module.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  bool FPContractable;
49  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50};
51
52static bool MustVisitNullValue(const Expr *E) {
53  // If a null pointer expression's type is the C++0x nullptr_t, then
54  // it's not necessarily a simple constant and it must be evaluated
55  // for its potential side effects.
56  return E->getType()->isNullPtrType();
57}
58
59class ScalarExprEmitter
60  : public StmtVisitor<ScalarExprEmitter, Value*> {
61  CodeGenFunction &CGF;
62  CGBuilderTy &Builder;
63  bool IgnoreResultAssign;
64  llvm::LLVMContext &VMContext;
65public:
66
67  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69      VMContext(cgf.getLLVMContext()) {
70  }
71
72  //===--------------------------------------------------------------------===//
73  //                               Utilities
74  //===--------------------------------------------------------------------===//
75
76  bool TestAndClearIgnoreResultAssign() {
77    bool I = IgnoreResultAssign;
78    IgnoreResultAssign = false;
79    return I;
80  }
81
82  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85    return CGF.EmitCheckedLValue(E, TCK);
86  }
87
88  void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89
90  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
91    return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
92  }
93
94  /// EmitLoadOfLValue - Given an expression with complex type that represents a
95  /// value l-value, this method emits the address of the l-value, then loads
96  /// and returns the result.
97  Value *EmitLoadOfLValue(const Expr *E) {
98    return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
99                            E->getExprLoc());
100  }
101
102  /// EmitConversionToBool - Convert the specified expression value to a
103  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
104  Value *EmitConversionToBool(Value *Src, QualType DstTy);
105
106  /// \brief Emit a check that a conversion to or from a floating-point type
107  /// does not overflow.
108  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
109                                Value *Src, QualType SrcType,
110                                QualType DstType, llvm::Type *DstTy);
111
112  /// EmitScalarConversion - Emit a conversion from the specified type to the
113  /// specified destination type, both of which are LLVM scalar types.
114  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
115
116  /// EmitComplexToScalarConversion - Emit a conversion from the specified
117  /// complex type to the specified destination type, where the destination type
118  /// is an LLVM scalar type.
119  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
120                                       QualType SrcTy, QualType DstTy);
121
122  /// EmitNullValue - Emit a value that corresponds to null for the given type.
123  Value *EmitNullValue(QualType Ty);
124
125  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
126  Value *EmitFloatToBoolConversion(Value *V) {
127    // Compare against 0.0 for fp scalars.
128    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
129    return Builder.CreateFCmpUNE(V, Zero, "tobool");
130  }
131
132  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
133  Value *EmitPointerToBoolConversion(Value *V) {
134    Value *Zero = llvm::ConstantPointerNull::get(
135                                      cast<llvm::PointerType>(V->getType()));
136    return Builder.CreateICmpNE(V, Zero, "tobool");
137  }
138
139  Value *EmitIntToBoolConversion(Value *V) {
140    // Because of the type rules of C, we often end up computing a
141    // logical value, then zero extending it to int, then wanting it
142    // as a logical value again.  Optimize this common case.
143    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
144      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
145        Value *Result = ZI->getOperand(0);
146        // If there aren't any more uses, zap the instruction to save space.
147        // Note that there can be more uses, for example if this
148        // is the result of an assignment.
149        if (ZI->use_empty())
150          ZI->eraseFromParent();
151        return Result;
152      }
153    }
154
155    return Builder.CreateIsNotNull(V, "tobool");
156  }
157
158  //===--------------------------------------------------------------------===//
159  //                            Visitor Methods
160  //===--------------------------------------------------------------------===//
161
162  Value *Visit(Expr *E) {
163    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
164  }
165
166  Value *VisitStmt(Stmt *S) {
167    S->dump(CGF.getContext().getSourceManager());
168    llvm_unreachable("Stmt can't have complex result type!");
169  }
170  Value *VisitExpr(Expr *S);
171
172  Value *VisitParenExpr(ParenExpr *PE) {
173    return Visit(PE->getSubExpr());
174  }
175  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
176    return Visit(E->getReplacement());
177  }
178  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
179    return Visit(GE->getResultExpr());
180  }
181
182  // Leaves.
183  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
184    return Builder.getInt(E->getValue());
185  }
186  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
187    return llvm::ConstantFP::get(VMContext, E->getValue());
188  }
189  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
190    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
191  }
192  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
193    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
194  }
195  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
196    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
197  }
198  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
199    return EmitNullValue(E->getType());
200  }
201  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
202    return EmitNullValue(E->getType());
203  }
204  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
205  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
206  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
207    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
208    return Builder.CreateBitCast(V, ConvertType(E->getType()));
209  }
210
211  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
212    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
213  }
214
215  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
216    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
217  }
218
219  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
220    if (E->isGLValue())
221      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
222
223    // Otherwise, assume the mapping is the scalar directly.
224    return CGF.getOpaqueRValueMapping(E).getScalarVal();
225  }
226
227  // l-values.
228  Value *VisitDeclRefExpr(DeclRefExpr *E) {
229    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
230      if (result.isReference())
231        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
232                                E->getExprLoc());
233      return result.getValue();
234    }
235    return EmitLoadOfLValue(E);
236  }
237
238  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239    return CGF.EmitObjCSelectorExpr(E);
240  }
241  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242    return CGF.EmitObjCProtocolExpr(E);
243  }
244  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getReturnType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
263  Value *VisitMemberExpr(MemberExpr *E);
264  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
265  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266    return EmitLoadOfLValue(E);
267  }
268
269  Value *VisitInitListExpr(InitListExpr *E);
270
271  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272    return EmitNullValue(E->getType());
273  }
274  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275    if (E->getType()->isVariablyModifiedType())
276      CGF.EmitVariablyModifiedType(E->getType());
277    return VisitCastExpr(E);
278  }
279  Value *VisitCastExpr(CastExpr *E);
280
281  Value *VisitCallExpr(const CallExpr *E) {
282    if (E->getCallReturnType()->isReferenceType())
283      return EmitLoadOfLValue(E);
284
285    return CGF.EmitCallExpr(E).getScalarVal();
286  }
287
288  Value *VisitStmtExpr(const StmtExpr *E);
289
290  // Unary Operators.
291  Value *VisitUnaryPostDec(const UnaryOperator *E) {
292    LValue LV = EmitLValue(E->getSubExpr());
293    return EmitScalarPrePostIncDec(E, LV, false, false);
294  }
295  Value *VisitUnaryPostInc(const UnaryOperator *E) {
296    LValue LV = EmitLValue(E->getSubExpr());
297    return EmitScalarPrePostIncDec(E, LV, true, false);
298  }
299  Value *VisitUnaryPreDec(const UnaryOperator *E) {
300    LValue LV = EmitLValue(E->getSubExpr());
301    return EmitScalarPrePostIncDec(E, LV, false, true);
302  }
303  Value *VisitUnaryPreInc(const UnaryOperator *E) {
304    LValue LV = EmitLValue(E->getSubExpr());
305    return EmitScalarPrePostIncDec(E, LV, true, true);
306  }
307
308  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
309                                               llvm::Value *InVal,
310                                               llvm::Value *NextVal,
311                                               bool IsInc);
312
313  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
314                                       bool isInc, bool isPre);
315
316
317  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
318    if (isa<MemberPointerType>(E->getType())) // never sugared
319      return CGF.CGM.getMemberPointerConstant(E);
320
321    return EmitLValue(E->getSubExpr()).getAddress();
322  }
323  Value *VisitUnaryDeref(const UnaryOperator *E) {
324    if (E->getType()->isVoidType())
325      return Visit(E->getSubExpr()); // the actual value should be unused
326    return EmitLoadOfLValue(E);
327  }
328  Value *VisitUnaryPlus(const UnaryOperator *E) {
329    // This differs from gcc, though, most likely due to a bug in gcc.
330    TestAndClearIgnoreResultAssign();
331    return Visit(E->getSubExpr());
332  }
333  Value *VisitUnaryMinus    (const UnaryOperator *E);
334  Value *VisitUnaryNot      (const UnaryOperator *E);
335  Value *VisitUnaryLNot     (const UnaryOperator *E);
336  Value *VisitUnaryReal     (const UnaryOperator *E);
337  Value *VisitUnaryImag     (const UnaryOperator *E);
338  Value *VisitUnaryExtension(const UnaryOperator *E) {
339    return Visit(E->getSubExpr());
340  }
341
342  // C++
343  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
344    return EmitLoadOfLValue(E);
345  }
346
347  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
348    return Visit(DAE->getExpr());
349  }
350  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
351    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
352    return Visit(DIE->getExpr());
353  }
354  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
355    return CGF.LoadCXXThis();
356  }
357
358  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
359    CGF.enterFullExpression(E);
360    CodeGenFunction::RunCleanupsScope Scope(CGF);
361    auto *V = Visit(E->getSubExpr());
362    if (CGDebugInfo *DI = CGF.getDebugInfo())
363      DI->EmitLocation(Builder, E->getLocEnd(), false);
364    return V;
365  }
366  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
367    return CGF.EmitCXXNewExpr(E);
368  }
369  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
370    CGF.EmitCXXDeleteExpr(E);
371    return nullptr;
372  }
373
374  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
375    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
376  }
377
378  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
379    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
380  }
381
382  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
383    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
384  }
385
386  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
387    // C++ [expr.pseudo]p1:
388    //   The result shall only be used as the operand for the function call
389    //   operator (), and the result of such a call has type void. The only
390    //   effect is the evaluation of the postfix-expression before the dot or
391    //   arrow.
392    CGF.EmitScalarExpr(E->getBase());
393    return nullptr;
394  }
395
396  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
397    return EmitNullValue(E->getType());
398  }
399
400  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
401    CGF.EmitCXXThrowExpr(E);
402    return nullptr;
403  }
404
405  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
406    return Builder.getInt1(E->getValue());
407  }
408
409  // Binary Operators.
410  Value *EmitMul(const BinOpInfo &Ops) {
411    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
412      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
413      case LangOptions::SOB_Defined:
414        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
415      case LangOptions::SOB_Undefined:
416        if (!CGF.SanOpts->SignedIntegerOverflow)
417          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
418        // Fall through.
419      case LangOptions::SOB_Trapping:
420        return EmitOverflowCheckedBinOp(Ops);
421      }
422    }
423
424    if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
425      return EmitOverflowCheckedBinOp(Ops);
426
427    if (Ops.LHS->getType()->isFPOrFPVectorTy())
428      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
429    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
430  }
431  /// Create a binary op that checks for overflow.
432  /// Currently only supports +, - and *.
433  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
434
435  // Check for undefined division and modulus behaviors.
436  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
437                                                  llvm::Value *Zero,bool isDiv);
438  // Common helper for getting how wide LHS of shift is.
439  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
440  Value *EmitDiv(const BinOpInfo &Ops);
441  Value *EmitRem(const BinOpInfo &Ops);
442  Value *EmitAdd(const BinOpInfo &Ops);
443  Value *EmitSub(const BinOpInfo &Ops);
444  Value *EmitShl(const BinOpInfo &Ops);
445  Value *EmitShr(const BinOpInfo &Ops);
446  Value *EmitAnd(const BinOpInfo &Ops) {
447    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448  }
449  Value *EmitXor(const BinOpInfo &Ops) {
450    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451  }
452  Value *EmitOr (const BinOpInfo &Ops) {
453    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454  }
455
456  BinOpInfo EmitBinOps(const BinaryOperator *E);
457  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                  Value *&Result);
460
461  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463
464  // Binary operators and binary compound assignment operators.
465#define HANDLEBINOP(OP) \
466  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467    return Emit ## OP(EmitBinOps(E));                                      \
468  }                                                                        \
469  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471  }
472  HANDLEBINOP(Mul)
473  HANDLEBINOP(Div)
474  HANDLEBINOP(Rem)
475  HANDLEBINOP(Add)
476  HANDLEBINOP(Sub)
477  HANDLEBINOP(Shl)
478  HANDLEBINOP(Shr)
479  HANDLEBINOP(And)
480  HANDLEBINOP(Xor)
481  HANDLEBINOP(Or)
482#undef HANDLEBINOP
483
484  // Comparisons.
485  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                     unsigned SICmpOpc, unsigned FCmpOpc);
487#define VISITCOMP(CODE, UI, SI, FP) \
488    Value *VisitBin##CODE(const BinaryOperator *E) { \
489      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                         llvm::FCmpInst::FP); }
491  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497#undef VISITCOMP
498
499  Value *VisitBinAssign     (const BinaryOperator *E);
500
501  Value *VisitBinLAnd       (const BinaryOperator *E);
502  Value *VisitBinLOr        (const BinaryOperator *E);
503  Value *VisitBinComma      (const BinaryOperator *E);
504
505  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507
508  // Other Operators.
509  Value *VisitBlockExpr(const BlockExpr *BE);
510  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511  Value *VisitChooseExpr(ChooseExpr *CE);
512  Value *VisitVAArgExpr(VAArgExpr *VE);
513  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514    return CGF.EmitObjCStringLiteral(E);
515  }
516  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
517    return CGF.EmitObjCBoxedExpr(E);
518  }
519  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
520    return CGF.EmitObjCArrayLiteral(E);
521  }
522  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
523    return CGF.EmitObjCDictionaryLiteral(E);
524  }
525  Value *VisitAsTypeExpr(AsTypeExpr *CE);
526  Value *VisitAtomicExpr(AtomicExpr *AE);
527};
528}  // end anonymous namespace.
529
530//===----------------------------------------------------------------------===//
531//                                Utilities
532//===----------------------------------------------------------------------===//
533
534/// EmitConversionToBool - Convert the specified expression value to a
535/// boolean (i1) truth value.  This is equivalent to "Val != 0".
536Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
537  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
538
539  if (SrcType->isRealFloatingType())
540    return EmitFloatToBoolConversion(Src);
541
542  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
543    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
544
545  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
546         "Unknown scalar type to convert");
547
548  if (isa<llvm::IntegerType>(Src->getType()))
549    return EmitIntToBoolConversion(Src);
550
551  assert(isa<llvm::PointerType>(Src->getType()));
552  return EmitPointerToBoolConversion(Src);
553}
554
555void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
556                                                 QualType OrigSrcType,
557                                                 Value *Src, QualType SrcType,
558                                                 QualType DstType,
559                                                 llvm::Type *DstTy) {
560  using llvm::APFloat;
561  using llvm::APSInt;
562
563  llvm::Type *SrcTy = Src->getType();
564
565  llvm::Value *Check = nullptr;
566  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
567    // Integer to floating-point. This can fail for unsigned short -> __half
568    // or unsigned __int128 -> float.
569    assert(DstType->isFloatingType());
570    bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
571
572    APFloat LargestFloat =
573      APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
574    APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
575
576    bool IsExact;
577    if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
578                                      &IsExact) != APFloat::opOK)
579      // The range of representable values of this floating point type includes
580      // all values of this integer type. Don't need an overflow check.
581      return;
582
583    llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
584    if (SrcIsUnsigned)
585      Check = Builder.CreateICmpULE(Src, Max);
586    else {
587      llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
588      llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
589      llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
590      Check = Builder.CreateAnd(GE, LE);
591    }
592  } else {
593    const llvm::fltSemantics &SrcSema =
594      CGF.getContext().getFloatTypeSemantics(OrigSrcType);
595    if (isa<llvm::IntegerType>(DstTy)) {
596      // Floating-point to integer. This has undefined behavior if the source is
597      // +-Inf, NaN, or doesn't fit into the destination type (after truncation
598      // to an integer).
599      unsigned Width = CGF.getContext().getIntWidth(DstType);
600      bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
601
602      APSInt Min = APSInt::getMinValue(Width, Unsigned);
603      APFloat MinSrc(SrcSema, APFloat::uninitialized);
604      if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
605          APFloat::opOverflow)
606        // Don't need an overflow check for lower bound. Just check for
607        // -Inf/NaN.
608        MinSrc = APFloat::getInf(SrcSema, true);
609      else
610        // Find the largest value which is too small to represent (before
611        // truncation toward zero).
612        MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
613
614      APSInt Max = APSInt::getMaxValue(Width, Unsigned);
615      APFloat MaxSrc(SrcSema, APFloat::uninitialized);
616      if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
617          APFloat::opOverflow)
618        // Don't need an overflow check for upper bound. Just check for
619        // +Inf/NaN.
620        MaxSrc = APFloat::getInf(SrcSema, false);
621      else
622        // Find the smallest value which is too large to represent (before
623        // truncation toward zero).
624        MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
625
626      // If we're converting from __half, convert the range to float to match
627      // the type of src.
628      if (OrigSrcType->isHalfType()) {
629        const llvm::fltSemantics &Sema =
630          CGF.getContext().getFloatTypeSemantics(SrcType);
631        bool IsInexact;
632        MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
633        MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
634      }
635
636      llvm::Value *GE =
637        Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
638      llvm::Value *LE =
639        Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
640      Check = Builder.CreateAnd(GE, LE);
641    } else {
642      // FIXME: Maybe split this sanitizer out from float-cast-overflow.
643      //
644      // Floating-point to floating-point. This has undefined behavior if the
645      // source is not in the range of representable values of the destination
646      // type. The C and C++ standards are spectacularly unclear here. We
647      // diagnose finite out-of-range conversions, but allow infinities and NaNs
648      // to convert to the corresponding value in the smaller type.
649      //
650      // C11 Annex F gives all such conversions defined behavior for IEC 60559
651      // conforming implementations. Unfortunately, LLVM's fptrunc instruction
652      // does not.
653
654      // Converting from a lower rank to a higher rank can never have
655      // undefined behavior, since higher-rank types must have a superset
656      // of values of lower-rank types.
657      if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
658        return;
659
660      assert(!OrigSrcType->isHalfType() &&
661             "should not check conversion from __half, it has the lowest rank");
662
663      const llvm::fltSemantics &DstSema =
664        CGF.getContext().getFloatTypeSemantics(DstType);
665      APFloat MinBad = APFloat::getLargest(DstSema, false);
666      APFloat MaxBad = APFloat::getInf(DstSema, false);
667
668      bool IsInexact;
669      MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
670      MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
671
672      Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
673        CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
674      llvm::Value *GE =
675        Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
676      llvm::Value *LE =
677        Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
678      Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
679    }
680  }
681
682  // FIXME: Provide a SourceLocation.
683  llvm::Constant *StaticArgs[] = {
684    CGF.EmitCheckTypeDescriptor(OrigSrcType),
685    CGF.EmitCheckTypeDescriptor(DstType)
686  };
687  CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
688                CodeGenFunction::CRK_Recoverable);
689}
690
691/// EmitScalarConversion - Emit a conversion from the specified type to the
692/// specified destination type, both of which are LLVM scalar types.
693Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
694                                               QualType DstType) {
695  SrcType = CGF.getContext().getCanonicalType(SrcType);
696  DstType = CGF.getContext().getCanonicalType(DstType);
697  if (SrcType == DstType) return Src;
698
699  if (DstType->isVoidType()) return nullptr;
700
701  llvm::Value *OrigSrc = Src;
702  QualType OrigSrcType = SrcType;
703  llvm::Type *SrcTy = Src->getType();
704
705  // If casting to/from storage-only half FP, use special intrinsics.
706  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
707    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
708    SrcType = CGF.getContext().FloatTy;
709    SrcTy = CGF.FloatTy;
710  }
711
712  // Handle conversions to bool first, they are special: comparisons against 0.
713  if (DstType->isBooleanType())
714    return EmitConversionToBool(Src, SrcType);
715
716  llvm::Type *DstTy = ConvertType(DstType);
717
718  // Ignore conversions like int -> uint.
719  if (SrcTy == DstTy)
720    return Src;
721
722  // Handle pointer conversions next: pointers can only be converted to/from
723  // other pointers and integers. Check for pointer types in terms of LLVM, as
724  // some native types (like Obj-C id) may map to a pointer type.
725  if (isa<llvm::PointerType>(DstTy)) {
726    // The source value may be an integer, or a pointer.
727    if (isa<llvm::PointerType>(SrcTy))
728      return Builder.CreateBitCast(Src, DstTy, "conv");
729
730    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
731    // First, convert to the correct width so that we control the kind of
732    // extension.
733    llvm::Type *MiddleTy = CGF.IntPtrTy;
734    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
735    llvm::Value* IntResult =
736        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
737    // Then, cast to pointer.
738    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
739  }
740
741  if (isa<llvm::PointerType>(SrcTy)) {
742    // Must be an ptr to int cast.
743    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
744    return Builder.CreatePtrToInt(Src, DstTy, "conv");
745  }
746
747  // A scalar can be splatted to an extended vector of the same element type
748  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
749    // Cast the scalar to element type
750    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
751    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
752
753    // Splat the element across to all elements
754    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
755    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
756  }
757
758  // Allow bitcast from vector to integer/fp of the same size.
759  if (isa<llvm::VectorType>(SrcTy) ||
760      isa<llvm::VectorType>(DstTy))
761    return Builder.CreateBitCast(Src, DstTy, "conv");
762
763  // Finally, we have the arithmetic types: real int/float.
764  Value *Res = nullptr;
765  llvm::Type *ResTy = DstTy;
766
767  // An overflowing conversion has undefined behavior if either the source type
768  // or the destination type is a floating-point type.
769  if (CGF.SanOpts->FloatCastOverflow &&
770      (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
771    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
772                             DstTy);
773
774  // Cast to half via float
775  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
776    DstTy = CGF.FloatTy;
777
778  if (isa<llvm::IntegerType>(SrcTy)) {
779    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
780    if (isa<llvm::IntegerType>(DstTy))
781      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
782    else if (InputSigned)
783      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
784    else
785      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
786  } else if (isa<llvm::IntegerType>(DstTy)) {
787    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
788    if (DstType->isSignedIntegerOrEnumerationType())
789      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
790    else
791      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
792  } else {
793    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
794           "Unknown real conversion");
795    if (DstTy->getTypeID() < SrcTy->getTypeID())
796      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
797    else
798      Res = Builder.CreateFPExt(Src, DstTy, "conv");
799  }
800
801  if (DstTy != ResTy) {
802    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
803    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
804  }
805
806  return Res;
807}
808
809/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
810/// type to the specified destination type, where the destination type is an
811/// LLVM scalar type.
812Value *ScalarExprEmitter::
813EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
814                              QualType SrcTy, QualType DstTy) {
815  // Get the source element type.
816  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
817
818  // Handle conversions to bool first, they are special: comparisons against 0.
819  if (DstTy->isBooleanType()) {
820    //  Complex != 0  -> (Real != 0) | (Imag != 0)
821    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
822    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
823    return Builder.CreateOr(Src.first, Src.second, "tobool");
824  }
825
826  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
827  // the imaginary part of the complex value is discarded and the value of the
828  // real part is converted according to the conversion rules for the
829  // corresponding real type.
830  return EmitScalarConversion(Src.first, SrcTy, DstTy);
831}
832
833Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
834  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
835}
836
837/// \brief Emit a sanitization check for the given "binary" operation (which
838/// might actually be a unary increment which has been lowered to a binary
839/// operation). The check passes if \p Check, which is an \c i1, is \c true.
840void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
841  StringRef CheckName;
842  SmallVector<llvm::Constant *, 4> StaticData;
843  SmallVector<llvm::Value *, 2> DynamicData;
844
845  BinaryOperatorKind Opcode = Info.Opcode;
846  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
847    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
848
849  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
850  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
851  if (UO && UO->getOpcode() == UO_Minus) {
852    CheckName = "negate_overflow";
853    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
854    DynamicData.push_back(Info.RHS);
855  } else {
856    if (BinaryOperator::isShiftOp(Opcode)) {
857      // Shift LHS negative or too large, or RHS out of bounds.
858      CheckName = "shift_out_of_bounds";
859      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
860      StaticData.push_back(
861        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
862      StaticData.push_back(
863        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
864    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
865      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
866      CheckName = "divrem_overflow";
867      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
868    } else {
869      // Signed arithmetic overflow (+, -, *).
870      switch (Opcode) {
871      case BO_Add: CheckName = "add_overflow"; break;
872      case BO_Sub: CheckName = "sub_overflow"; break;
873      case BO_Mul: CheckName = "mul_overflow"; break;
874      default: llvm_unreachable("unexpected opcode for bin op check");
875      }
876      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
877    }
878    DynamicData.push_back(Info.LHS);
879    DynamicData.push_back(Info.RHS);
880  }
881
882  CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
883                CodeGenFunction::CRK_Recoverable);
884}
885
886//===----------------------------------------------------------------------===//
887//                            Visitor Methods
888//===----------------------------------------------------------------------===//
889
890Value *ScalarExprEmitter::VisitExpr(Expr *E) {
891  CGF.ErrorUnsupported(E, "scalar expression");
892  if (E->getType()->isVoidType())
893    return nullptr;
894  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
895}
896
897Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
898  // Vector Mask Case
899  if (E->getNumSubExprs() == 2 ||
900      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
901    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
902    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
903    Value *Mask;
904
905    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
906    unsigned LHSElts = LTy->getNumElements();
907
908    if (E->getNumSubExprs() == 3) {
909      Mask = CGF.EmitScalarExpr(E->getExpr(2));
910
911      // Shuffle LHS & RHS into one input vector.
912      SmallVector<llvm::Constant*, 32> concat;
913      for (unsigned i = 0; i != LHSElts; ++i) {
914        concat.push_back(Builder.getInt32(2*i));
915        concat.push_back(Builder.getInt32(2*i+1));
916      }
917
918      Value* CV = llvm::ConstantVector::get(concat);
919      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
920      LHSElts *= 2;
921    } else {
922      Mask = RHS;
923    }
924
925    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
926    llvm::Constant* EltMask;
927
928    EltMask = llvm::ConstantInt::get(MTy->getElementType(),
929                                     llvm::NextPowerOf2(LHSElts-1)-1);
930
931    // Mask off the high bits of each shuffle index.
932    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
933                                                     EltMask);
934    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
935
936    // newv = undef
937    // mask = mask & maskbits
938    // for each elt
939    //   n = extract mask i
940    //   x = extract val n
941    //   newv = insert newv, x, i
942    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
943                                                  MTy->getNumElements());
944    Value* NewV = llvm::UndefValue::get(RTy);
945    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
946      Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
947      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
948
949      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
950      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
951    }
952    return NewV;
953  }
954
955  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
956  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
957
958  SmallVector<llvm::Constant*, 32> indices;
959  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
960    llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
961    // Check for -1 and output it as undef in the IR.
962    if (Idx.isSigned() && Idx.isAllOnesValue())
963      indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
964    else
965      indices.push_back(Builder.getInt32(Idx.getZExtValue()));
966  }
967
968  Value *SV = llvm::ConstantVector::get(indices);
969  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
970}
971
972Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
973  QualType SrcType = E->getSrcExpr()->getType(),
974           DstType = E->getType();
975
976  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
977
978  SrcType = CGF.getContext().getCanonicalType(SrcType);
979  DstType = CGF.getContext().getCanonicalType(DstType);
980  if (SrcType == DstType) return Src;
981
982  assert(SrcType->isVectorType() &&
983         "ConvertVector source type must be a vector");
984  assert(DstType->isVectorType() &&
985         "ConvertVector destination type must be a vector");
986
987  llvm::Type *SrcTy = Src->getType();
988  llvm::Type *DstTy = ConvertType(DstType);
989
990  // Ignore conversions like int -> uint.
991  if (SrcTy == DstTy)
992    return Src;
993
994  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
995           DstEltType = DstType->getAs<VectorType>()->getElementType();
996
997  assert(SrcTy->isVectorTy() &&
998         "ConvertVector source IR type must be a vector");
999  assert(DstTy->isVectorTy() &&
1000         "ConvertVector destination IR type must be a vector");
1001
1002  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1003             *DstEltTy = DstTy->getVectorElementType();
1004
1005  if (DstEltType->isBooleanType()) {
1006    assert((SrcEltTy->isFloatingPointTy() ||
1007            isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1008
1009    llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1010    if (SrcEltTy->isFloatingPointTy()) {
1011      return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1012    } else {
1013      return Builder.CreateICmpNE(Src, Zero, "tobool");
1014    }
1015  }
1016
1017  // We have the arithmetic types: real int/float.
1018  Value *Res = nullptr;
1019
1020  if (isa<llvm::IntegerType>(SrcEltTy)) {
1021    bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1022    if (isa<llvm::IntegerType>(DstEltTy))
1023      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1024    else if (InputSigned)
1025      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1026    else
1027      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1028  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1029    assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1030    if (DstEltType->isSignedIntegerOrEnumerationType())
1031      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1032    else
1033      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1034  } else {
1035    assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1036           "Unknown real conversion");
1037    if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1038      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1039    else
1040      Res = Builder.CreateFPExt(Src, DstTy, "conv");
1041  }
1042
1043  return Res;
1044}
1045
1046Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1047  llvm::APSInt Value;
1048  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1049    if (E->isArrow())
1050      CGF.EmitScalarExpr(E->getBase());
1051    else
1052      EmitLValue(E->getBase());
1053    return Builder.getInt(Value);
1054  }
1055
1056  return EmitLoadOfLValue(E);
1057}
1058
1059Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1060  TestAndClearIgnoreResultAssign();
1061
1062  // Emit subscript expressions in rvalue context's.  For most cases, this just
1063  // loads the lvalue formed by the subscript expr.  However, we have to be
1064  // careful, because the base of a vector subscript is occasionally an rvalue,
1065  // so we can't get it as an lvalue.
1066  if (!E->getBase()->getType()->isVectorType())
1067    return EmitLoadOfLValue(E);
1068
1069  // Handle the vector case.  The base must be a vector, the index must be an
1070  // integer value.
1071  Value *Base = Visit(E->getBase());
1072  Value *Idx  = Visit(E->getIdx());
1073  QualType IdxTy = E->getIdx()->getType();
1074
1075  if (CGF.SanOpts->ArrayBounds)
1076    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1077
1078  return Builder.CreateExtractElement(Base, Idx, "vecext");
1079}
1080
1081static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1082                                  unsigned Off, llvm::Type *I32Ty) {
1083  int MV = SVI->getMaskValue(Idx);
1084  if (MV == -1)
1085    return llvm::UndefValue::get(I32Ty);
1086  return llvm::ConstantInt::get(I32Ty, Off+MV);
1087}
1088
1089Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1090  bool Ignore = TestAndClearIgnoreResultAssign();
1091  (void)Ignore;
1092  assert (Ignore == false && "init list ignored");
1093  unsigned NumInitElements = E->getNumInits();
1094
1095  if (E->hadArrayRangeDesignator())
1096    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1097
1098  llvm::VectorType *VType =
1099    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1100
1101  if (!VType) {
1102    if (NumInitElements == 0) {
1103      // C++11 value-initialization for the scalar.
1104      return EmitNullValue(E->getType());
1105    }
1106    // We have a scalar in braces. Just use the first element.
1107    return Visit(E->getInit(0));
1108  }
1109
1110  unsigned ResElts = VType->getNumElements();
1111
1112  // Loop over initializers collecting the Value for each, and remembering
1113  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1114  // us to fold the shuffle for the swizzle into the shuffle for the vector
1115  // initializer, since LLVM optimizers generally do not want to touch
1116  // shuffles.
1117  unsigned CurIdx = 0;
1118  bool VIsUndefShuffle = false;
1119  llvm::Value *V = llvm::UndefValue::get(VType);
1120  for (unsigned i = 0; i != NumInitElements; ++i) {
1121    Expr *IE = E->getInit(i);
1122    Value *Init = Visit(IE);
1123    SmallVector<llvm::Constant*, 16> Args;
1124
1125    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1126
1127    // Handle scalar elements.  If the scalar initializer is actually one
1128    // element of a different vector of the same width, use shuffle instead of
1129    // extract+insert.
1130    if (!VVT) {
1131      if (isa<ExtVectorElementExpr>(IE)) {
1132        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1133
1134        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1135          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1136          Value *LHS = nullptr, *RHS = nullptr;
1137          if (CurIdx == 0) {
1138            // insert into undef -> shuffle (src, undef)
1139            Args.push_back(C);
1140            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1141
1142            LHS = EI->getVectorOperand();
1143            RHS = V;
1144            VIsUndefShuffle = true;
1145          } else if (VIsUndefShuffle) {
1146            // insert into undefshuffle && size match -> shuffle (v, src)
1147            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1148            for (unsigned j = 0; j != CurIdx; ++j)
1149              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1150            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1151            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1152
1153            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1154            RHS = EI->getVectorOperand();
1155            VIsUndefShuffle = false;
1156          }
1157          if (!Args.empty()) {
1158            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1159            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1160            ++CurIdx;
1161            continue;
1162          }
1163        }
1164      }
1165      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1166                                      "vecinit");
1167      VIsUndefShuffle = false;
1168      ++CurIdx;
1169      continue;
1170    }
1171
1172    unsigned InitElts = VVT->getNumElements();
1173
1174    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1175    // input is the same width as the vector being constructed, generate an
1176    // optimized shuffle of the swizzle input into the result.
1177    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1178    if (isa<ExtVectorElementExpr>(IE)) {
1179      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1180      Value *SVOp = SVI->getOperand(0);
1181      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1182
1183      if (OpTy->getNumElements() == ResElts) {
1184        for (unsigned j = 0; j != CurIdx; ++j) {
1185          // If the current vector initializer is a shuffle with undef, merge
1186          // this shuffle directly into it.
1187          if (VIsUndefShuffle) {
1188            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1189                                      CGF.Int32Ty));
1190          } else {
1191            Args.push_back(Builder.getInt32(j));
1192          }
1193        }
1194        for (unsigned j = 0, je = InitElts; j != je; ++j)
1195          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1196        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1197
1198        if (VIsUndefShuffle)
1199          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1200
1201        Init = SVOp;
1202      }
1203    }
1204
1205    // Extend init to result vector length, and then shuffle its contribution
1206    // to the vector initializer into V.
1207    if (Args.empty()) {
1208      for (unsigned j = 0; j != InitElts; ++j)
1209        Args.push_back(Builder.getInt32(j));
1210      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1211      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1212      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1213                                         Mask, "vext");
1214
1215      Args.clear();
1216      for (unsigned j = 0; j != CurIdx; ++j)
1217        Args.push_back(Builder.getInt32(j));
1218      for (unsigned j = 0; j != InitElts; ++j)
1219        Args.push_back(Builder.getInt32(j+Offset));
1220      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221    }
1222
1223    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1224    // merging subsequent shuffles into this one.
1225    if (CurIdx == 0)
1226      std::swap(V, Init);
1227    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1228    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1229    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1230    CurIdx += InitElts;
1231  }
1232
1233  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1234  // Emit remaining default initializers.
1235  llvm::Type *EltTy = VType->getElementType();
1236
1237  // Emit remaining default initializers
1238  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1239    Value *Idx = Builder.getInt32(CurIdx);
1240    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1241    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1242  }
1243  return V;
1244}
1245
1246static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1247  const Expr *E = CE->getSubExpr();
1248
1249  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1250    return false;
1251
1252  if (isa<CXXThisExpr>(E)) {
1253    // We always assume that 'this' is never null.
1254    return false;
1255  }
1256
1257  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1258    // And that glvalue casts are never null.
1259    if (ICE->getValueKind() != VK_RValue)
1260      return false;
1261  }
1262
1263  return true;
1264}
1265
1266// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1267// have to handle a more broad range of conversions than explicit casts, as they
1268// handle things like function to ptr-to-function decay etc.
1269Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1270  Expr *E = CE->getSubExpr();
1271  QualType DestTy = CE->getType();
1272  CastKind Kind = CE->getCastKind();
1273
1274  if (!DestTy->isVoidType())
1275    TestAndClearIgnoreResultAssign();
1276
1277  // Since almost all cast kinds apply to scalars, this switch doesn't have
1278  // a default case, so the compiler will warn on a missing case.  The cases
1279  // are in the same order as in the CastKind enum.
1280  switch (Kind) {
1281  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1282  case CK_BuiltinFnToFnPtr:
1283    llvm_unreachable("builtin functions are handled elsewhere");
1284
1285  case CK_LValueBitCast:
1286  case CK_ObjCObjectLValueCast: {
1287    Value *V = EmitLValue(E).getAddress();
1288    V = Builder.CreateBitCast(V,
1289                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1290    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1291                            CE->getExprLoc());
1292  }
1293
1294  case CK_CPointerToObjCPointerCast:
1295  case CK_BlockPointerToObjCPointerCast:
1296  case CK_AnyPointerToBlockPointerCast:
1297  case CK_BitCast: {
1298    Value *Src = Visit(const_cast<Expr*>(E));
1299    llvm::Type *SrcTy = Src->getType();
1300    llvm::Type *DstTy = ConvertType(DestTy);
1301    if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1302        SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1303      llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy);
1304      return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy);
1305    }
1306    return Builder.CreateBitCast(Src, DstTy);
1307  }
1308  case CK_AddressSpaceConversion: {
1309    Value *Src = Visit(const_cast<Expr*>(E));
1310    return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1311  }
1312  case CK_AtomicToNonAtomic:
1313  case CK_NonAtomicToAtomic:
1314  case CK_NoOp:
1315  case CK_UserDefinedConversion:
1316    return Visit(const_cast<Expr*>(E));
1317
1318  case CK_BaseToDerived: {
1319    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1320    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1321
1322    llvm::Value *V = Visit(E);
1323
1324    llvm::Value *Derived =
1325      CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1326                                   CE->path_begin(), CE->path_end(),
1327                                   ShouldNullCheckClassCastValue(CE));
1328
1329    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1330    // performed and the object is not of the derived type.
1331    if (CGF.sanitizePerformTypeCheck())
1332      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1333                        Derived, DestTy->getPointeeType());
1334
1335    return Derived;
1336  }
1337  case CK_UncheckedDerivedToBase:
1338  case CK_DerivedToBase: {
1339    const CXXRecordDecl *DerivedClassDecl =
1340      E->getType()->getPointeeCXXRecordDecl();
1341    assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1342
1343    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1344                                     CE->path_begin(), CE->path_end(),
1345                                     ShouldNullCheckClassCastValue(CE));
1346  }
1347  case CK_Dynamic: {
1348    Value *V = Visit(const_cast<Expr*>(E));
1349    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1350    return CGF.EmitDynamicCast(V, DCE);
1351  }
1352
1353  case CK_ArrayToPointerDecay: {
1354    assert(E->getType()->isArrayType() &&
1355           "Array to pointer decay must have array source type!");
1356
1357    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1358
1359    // Note that VLA pointers are always decayed, so we don't need to do
1360    // anything here.
1361    if (!E->getType()->isVariableArrayType()) {
1362      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1363      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1364                                 ->getElementType()) &&
1365             "Expected pointer to array");
1366      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1367    }
1368
1369    // Make sure the array decay ends up being the right type.  This matters if
1370    // the array type was of an incomplete type.
1371    return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1372  }
1373  case CK_FunctionToPointerDecay:
1374    return EmitLValue(E).getAddress();
1375
1376  case CK_NullToPointer:
1377    if (MustVisitNullValue(E))
1378      (void) Visit(E);
1379
1380    return llvm::ConstantPointerNull::get(
1381                               cast<llvm::PointerType>(ConvertType(DestTy)));
1382
1383  case CK_NullToMemberPointer: {
1384    if (MustVisitNullValue(E))
1385      (void) Visit(E);
1386
1387    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1388    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1389  }
1390
1391  case CK_ReinterpretMemberPointer:
1392  case CK_BaseToDerivedMemberPointer:
1393  case CK_DerivedToBaseMemberPointer: {
1394    Value *Src = Visit(E);
1395
1396    // Note that the AST doesn't distinguish between checked and
1397    // unchecked member pointer conversions, so we always have to
1398    // implement checked conversions here.  This is inefficient when
1399    // actual control flow may be required in order to perform the
1400    // check, which it is for data member pointers (but not member
1401    // function pointers on Itanium and ARM).
1402    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1403  }
1404
1405  case CK_ARCProduceObject:
1406    return CGF.EmitARCRetainScalarExpr(E);
1407  case CK_ARCConsumeObject:
1408    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1409  case CK_ARCReclaimReturnedObject: {
1410    llvm::Value *value = Visit(E);
1411    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1412    return CGF.EmitObjCConsumeObject(E->getType(), value);
1413  }
1414  case CK_ARCExtendBlockObject:
1415    return CGF.EmitARCExtendBlockObject(E);
1416
1417  case CK_CopyAndAutoreleaseBlockObject:
1418    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1419
1420  case CK_FloatingRealToComplex:
1421  case CK_FloatingComplexCast:
1422  case CK_IntegralRealToComplex:
1423  case CK_IntegralComplexCast:
1424  case CK_IntegralComplexToFloatingComplex:
1425  case CK_FloatingComplexToIntegralComplex:
1426  case CK_ConstructorConversion:
1427  case CK_ToUnion:
1428    llvm_unreachable("scalar cast to non-scalar value");
1429
1430  case CK_LValueToRValue:
1431    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1432    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1433    return Visit(const_cast<Expr*>(E));
1434
1435  case CK_IntegralToPointer: {
1436    Value *Src = Visit(const_cast<Expr*>(E));
1437
1438    // First, convert to the correct width so that we control the kind of
1439    // extension.
1440    llvm::Type *MiddleTy = CGF.IntPtrTy;
1441    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1442    llvm::Value* IntResult =
1443      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1444
1445    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1446  }
1447  case CK_PointerToIntegral:
1448    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1449    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1450
1451  case CK_ToVoid: {
1452    CGF.EmitIgnoredExpr(E);
1453    return nullptr;
1454  }
1455  case CK_VectorSplat: {
1456    llvm::Type *DstTy = ConvertType(DestTy);
1457    Value *Elt = Visit(const_cast<Expr*>(E));
1458    Elt = EmitScalarConversion(Elt, E->getType(),
1459                               DestTy->getAs<VectorType>()->getElementType());
1460
1461    // Splat the element across to all elements
1462    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1463    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1464  }
1465
1466  case CK_IntegralCast:
1467  case CK_IntegralToFloating:
1468  case CK_FloatingToIntegral:
1469  case CK_FloatingCast:
1470    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1471  case CK_IntegralToBoolean:
1472    return EmitIntToBoolConversion(Visit(E));
1473  case CK_PointerToBoolean:
1474    return EmitPointerToBoolConversion(Visit(E));
1475  case CK_FloatingToBoolean:
1476    return EmitFloatToBoolConversion(Visit(E));
1477  case CK_MemberPointerToBoolean: {
1478    llvm::Value *MemPtr = Visit(E);
1479    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1480    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1481  }
1482
1483  case CK_FloatingComplexToReal:
1484  case CK_IntegralComplexToReal:
1485    return CGF.EmitComplexExpr(E, false, true).first;
1486
1487  case CK_FloatingComplexToBoolean:
1488  case CK_IntegralComplexToBoolean: {
1489    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1490
1491    // TODO: kill this function off, inline appropriate case here
1492    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1493  }
1494
1495  case CK_ZeroToOCLEvent: {
1496    assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1497    return llvm::Constant::getNullValue(ConvertType(DestTy));
1498  }
1499
1500  }
1501
1502  llvm_unreachable("unknown scalar cast");
1503}
1504
1505Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1506  CodeGenFunction::StmtExprEvaluation eval(CGF);
1507  llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1508                                                !E->getType()->isVoidType());
1509  if (!RetAlloca)
1510    return nullptr;
1511  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1512                              E->getExprLoc());
1513}
1514
1515//===----------------------------------------------------------------------===//
1516//                             Unary Operators
1517//===----------------------------------------------------------------------===//
1518
1519llvm::Value *ScalarExprEmitter::
1520EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1521                                llvm::Value *InVal,
1522                                llvm::Value *NextVal, bool IsInc) {
1523  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1524  case LangOptions::SOB_Defined:
1525    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1526  case LangOptions::SOB_Undefined:
1527    if (!CGF.SanOpts->SignedIntegerOverflow)
1528      return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1529    // Fall through.
1530  case LangOptions::SOB_Trapping:
1531    BinOpInfo BinOp;
1532    BinOp.LHS = InVal;
1533    BinOp.RHS = NextVal;
1534    BinOp.Ty = E->getType();
1535    BinOp.Opcode = BO_Add;
1536    BinOp.FPContractable = false;
1537    BinOp.E = E;
1538    return EmitOverflowCheckedBinOp(BinOp);
1539  }
1540  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1541}
1542
1543llvm::Value *
1544ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1545                                           bool isInc, bool isPre) {
1546
1547  QualType type = E->getSubExpr()->getType();
1548  llvm::PHINode *atomicPHI = nullptr;
1549  llvm::Value *value;
1550  llvm::Value *input;
1551
1552  int amount = (isInc ? 1 : -1);
1553
1554  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1555    type = atomicTy->getValueType();
1556    if (isInc && type->isBooleanType()) {
1557      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1558      if (isPre) {
1559        Builder.Insert(new llvm::StoreInst(True,
1560              LV.getAddress(), LV.isVolatileQualified(),
1561              LV.getAlignment().getQuantity(),
1562              llvm::SequentiallyConsistent));
1563        return Builder.getTrue();
1564      }
1565      // For atomic bool increment, we just store true and return it for
1566      // preincrement, do an atomic swap with true for postincrement
1567        return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1568            LV.getAddress(), True, llvm::SequentiallyConsistent);
1569    }
1570    // Special case for atomic increment / decrement on integers, emit
1571    // atomicrmw instructions.  We skip this if we want to be doing overflow
1572    // checking, and fall into the slow path with the atomic cmpxchg loop.
1573    if (!type->isBooleanType() && type->isIntegerType() &&
1574        !(type->isUnsignedIntegerType() &&
1575         CGF.SanOpts->UnsignedIntegerOverflow) &&
1576        CGF.getLangOpts().getSignedOverflowBehavior() !=
1577         LangOptions::SOB_Trapping) {
1578      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1579        llvm::AtomicRMWInst::Sub;
1580      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1581        llvm::Instruction::Sub;
1582      llvm::Value *amt = CGF.EmitToMemory(
1583          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1584      llvm::Value *old = Builder.CreateAtomicRMW(aop,
1585          LV.getAddress(), amt, llvm::SequentiallyConsistent);
1586      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1587    }
1588    value = EmitLoadOfLValue(LV, E->getExprLoc());
1589    input = value;
1590    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1591    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1592    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1593    value = CGF.EmitToMemory(value, type);
1594    Builder.CreateBr(opBB);
1595    Builder.SetInsertPoint(opBB);
1596    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1597    atomicPHI->addIncoming(value, startBB);
1598    value = atomicPHI;
1599  } else {
1600    value = EmitLoadOfLValue(LV, E->getExprLoc());
1601    input = value;
1602  }
1603
1604  // Special case of integer increment that we have to check first: bool++.
1605  // Due to promotion rules, we get:
1606  //   bool++ -> bool = bool + 1
1607  //          -> bool = (int)bool + 1
1608  //          -> bool = ((int)bool + 1 != 0)
1609  // An interesting aspect of this is that increment is always true.
1610  // Decrement does not have this property.
1611  if (isInc && type->isBooleanType()) {
1612    value = Builder.getTrue();
1613
1614  // Most common case by far: integer increment.
1615  } else if (type->isIntegerType()) {
1616
1617    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1618
1619    // Note that signed integer inc/dec with width less than int can't
1620    // overflow because of promotion rules; we're just eliding a few steps here.
1621    bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1622                       CGF.IntTy->getIntegerBitWidth();
1623    if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1624      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1625    } else if (CanOverflow && type->isUnsignedIntegerType() &&
1626               CGF.SanOpts->UnsignedIntegerOverflow) {
1627      BinOpInfo BinOp;
1628      BinOp.LHS = value;
1629      BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1630      BinOp.Ty = E->getType();
1631      BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1632      BinOp.FPContractable = false;
1633      BinOp.E = E;
1634      value = EmitOverflowCheckedBinOp(BinOp);
1635    } else
1636      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1637
1638  // Next most common: pointer increment.
1639  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1640    QualType type = ptr->getPointeeType();
1641
1642    // VLA types don't have constant size.
1643    if (const VariableArrayType *vla
1644          = CGF.getContext().getAsVariableArrayType(type)) {
1645      llvm::Value *numElts = CGF.getVLASize(vla).first;
1646      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1647      if (CGF.getLangOpts().isSignedOverflowDefined())
1648        value = Builder.CreateGEP(value, numElts, "vla.inc");
1649      else
1650        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1651
1652    // Arithmetic on function pointers (!) is just +-1.
1653    } else if (type->isFunctionType()) {
1654      llvm::Value *amt = Builder.getInt32(amount);
1655
1656      value = CGF.EmitCastToVoidPtr(value);
1657      if (CGF.getLangOpts().isSignedOverflowDefined())
1658        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1659      else
1660        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1661      value = Builder.CreateBitCast(value, input->getType());
1662
1663    // For everything else, we can just do a simple increment.
1664    } else {
1665      llvm::Value *amt = Builder.getInt32(amount);
1666      if (CGF.getLangOpts().isSignedOverflowDefined())
1667        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1668      else
1669        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1670    }
1671
1672  // Vector increment/decrement.
1673  } else if (type->isVectorType()) {
1674    if (type->hasIntegerRepresentation()) {
1675      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1676
1677      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1678    } else {
1679      value = Builder.CreateFAdd(
1680                  value,
1681                  llvm::ConstantFP::get(value->getType(), amount),
1682                  isInc ? "inc" : "dec");
1683    }
1684
1685  // Floating point.
1686  } else if (type->isRealFloatingType()) {
1687    // Add the inc/dec to the real part.
1688    llvm::Value *amt;
1689
1690    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1691      // Another special case: half FP increment should be done via float
1692      value =
1693    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1694                       input);
1695    }
1696
1697    if (value->getType()->isFloatTy())
1698      amt = llvm::ConstantFP::get(VMContext,
1699                                  llvm::APFloat(static_cast<float>(amount)));
1700    else if (value->getType()->isDoubleTy())
1701      amt = llvm::ConstantFP::get(VMContext,
1702                                  llvm::APFloat(static_cast<double>(amount)));
1703    else {
1704      llvm::APFloat F(static_cast<float>(amount));
1705      bool ignored;
1706      F.convert(CGF.getTarget().getLongDoubleFormat(),
1707                llvm::APFloat::rmTowardZero, &ignored);
1708      amt = llvm::ConstantFP::get(VMContext, F);
1709    }
1710    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1711
1712    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1713      value =
1714       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1715                          value);
1716
1717  // Objective-C pointer types.
1718  } else {
1719    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1720    value = CGF.EmitCastToVoidPtr(value);
1721
1722    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1723    if (!isInc) size = -size;
1724    llvm::Value *sizeValue =
1725      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1726
1727    if (CGF.getLangOpts().isSignedOverflowDefined())
1728      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1729    else
1730      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1731    value = Builder.CreateBitCast(value, input->getType());
1732  }
1733
1734  if (atomicPHI) {
1735    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1736    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1737    llvm::Value *pair = Builder.CreateAtomicCmpXchg(
1738        LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type),
1739        llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
1740    llvm::Value *old = Builder.CreateExtractValue(pair, 0);
1741    llvm::Value *success = Builder.CreateExtractValue(pair, 1);
1742    atomicPHI->addIncoming(old, opBB);
1743    Builder.CreateCondBr(success, contBB, opBB);
1744    Builder.SetInsertPoint(contBB);
1745    return isPre ? value : input;
1746  }
1747
1748  // Store the updated result through the lvalue.
1749  if (LV.isBitField())
1750    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1751  else
1752    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1753
1754  // If this is a postinc, return the value read from memory, otherwise use the
1755  // updated value.
1756  return isPre ? value : input;
1757}
1758
1759
1760
1761Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1762  TestAndClearIgnoreResultAssign();
1763  // Emit unary minus with EmitSub so we handle overflow cases etc.
1764  BinOpInfo BinOp;
1765  BinOp.RHS = Visit(E->getSubExpr());
1766
1767  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1768    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1769  else
1770    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1771  BinOp.Ty = E->getType();
1772  BinOp.Opcode = BO_Sub;
1773  BinOp.FPContractable = false;
1774  BinOp.E = E;
1775  return EmitSub(BinOp);
1776}
1777
1778Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1779  TestAndClearIgnoreResultAssign();
1780  Value *Op = Visit(E->getSubExpr());
1781  return Builder.CreateNot(Op, "neg");
1782}
1783
1784Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1785  // Perform vector logical not on comparison with zero vector.
1786  if (E->getType()->isExtVectorType()) {
1787    Value *Oper = Visit(E->getSubExpr());
1788    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1789    Value *Result;
1790    if (Oper->getType()->isFPOrFPVectorTy())
1791      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1792    else
1793      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1794    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1795  }
1796
1797  // Compare operand to zero.
1798  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1799
1800  // Invert value.
1801  // TODO: Could dynamically modify easy computations here.  For example, if
1802  // the operand is an icmp ne, turn into icmp eq.
1803  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1804
1805  // ZExt result to the expr type.
1806  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1807}
1808
1809Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1810  // Try folding the offsetof to a constant.
1811  llvm::APSInt Value;
1812  if (E->EvaluateAsInt(Value, CGF.getContext()))
1813    return Builder.getInt(Value);
1814
1815  // Loop over the components of the offsetof to compute the value.
1816  unsigned n = E->getNumComponents();
1817  llvm::Type* ResultType = ConvertType(E->getType());
1818  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1819  QualType CurrentType = E->getTypeSourceInfo()->getType();
1820  for (unsigned i = 0; i != n; ++i) {
1821    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1822    llvm::Value *Offset = nullptr;
1823    switch (ON.getKind()) {
1824    case OffsetOfExpr::OffsetOfNode::Array: {
1825      // Compute the index
1826      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1827      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1828      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1829      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1830
1831      // Save the element type
1832      CurrentType =
1833          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1834
1835      // Compute the element size
1836      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1837          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1838
1839      // Multiply out to compute the result
1840      Offset = Builder.CreateMul(Idx, ElemSize);
1841      break;
1842    }
1843
1844    case OffsetOfExpr::OffsetOfNode::Field: {
1845      FieldDecl *MemberDecl = ON.getField();
1846      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1847      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1848
1849      // Compute the index of the field in its parent.
1850      unsigned i = 0;
1851      // FIXME: It would be nice if we didn't have to loop here!
1852      for (RecordDecl::field_iterator Field = RD->field_begin(),
1853                                      FieldEnd = RD->field_end();
1854           Field != FieldEnd; ++Field, ++i) {
1855        if (*Field == MemberDecl)
1856          break;
1857      }
1858      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1859
1860      // Compute the offset to the field
1861      int64_t OffsetInt = RL.getFieldOffset(i) /
1862                          CGF.getContext().getCharWidth();
1863      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1864
1865      // Save the element type.
1866      CurrentType = MemberDecl->getType();
1867      break;
1868    }
1869
1870    case OffsetOfExpr::OffsetOfNode::Identifier:
1871      llvm_unreachable("dependent __builtin_offsetof");
1872
1873    case OffsetOfExpr::OffsetOfNode::Base: {
1874      if (ON.getBase()->isVirtual()) {
1875        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1876        continue;
1877      }
1878
1879      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1880      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1881
1882      // Save the element type.
1883      CurrentType = ON.getBase()->getType();
1884
1885      // Compute the offset to the base.
1886      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1887      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1888      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1889      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1890      break;
1891    }
1892    }
1893    Result = Builder.CreateAdd(Result, Offset);
1894  }
1895  return Result;
1896}
1897
1898/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1899/// argument of the sizeof expression as an integer.
1900Value *
1901ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1902                              const UnaryExprOrTypeTraitExpr *E) {
1903  QualType TypeToSize = E->getTypeOfArgument();
1904  if (E->getKind() == UETT_SizeOf) {
1905    if (const VariableArrayType *VAT =
1906          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1907      if (E->isArgumentType()) {
1908        // sizeof(type) - make sure to emit the VLA size.
1909        CGF.EmitVariablyModifiedType(TypeToSize);
1910      } else {
1911        // C99 6.5.3.4p2: If the argument is an expression of type
1912        // VLA, it is evaluated.
1913        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1914      }
1915
1916      QualType eltType;
1917      llvm::Value *numElts;
1918      std::tie(numElts, eltType) = CGF.getVLASize(VAT);
1919
1920      llvm::Value *size = numElts;
1921
1922      // Scale the number of non-VLA elements by the non-VLA element size.
1923      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1924      if (!eltSize.isOne())
1925        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1926
1927      return size;
1928    }
1929  }
1930
1931  // If this isn't sizeof(vla), the result must be constant; use the constant
1932  // folding logic so we don't have to duplicate it here.
1933  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1934}
1935
1936Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1937  Expr *Op = E->getSubExpr();
1938  if (Op->getType()->isAnyComplexType()) {
1939    // If it's an l-value, load through the appropriate subobject l-value.
1940    // Note that we have to ask E because Op might be an l-value that
1941    // this won't work for, e.g. an Obj-C property.
1942    if (E->isGLValue())
1943      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1944                                  E->getExprLoc()).getScalarVal();
1945
1946    // Otherwise, calculate and project.
1947    return CGF.EmitComplexExpr(Op, false, true).first;
1948  }
1949
1950  return Visit(Op);
1951}
1952
1953Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1954  Expr *Op = E->getSubExpr();
1955  if (Op->getType()->isAnyComplexType()) {
1956    // If it's an l-value, load through the appropriate subobject l-value.
1957    // Note that we have to ask E because Op might be an l-value that
1958    // this won't work for, e.g. an Obj-C property.
1959    if (Op->isGLValue())
1960      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1961                                  E->getExprLoc()).getScalarVal();
1962
1963    // Otherwise, calculate and project.
1964    return CGF.EmitComplexExpr(Op, true, false).second;
1965  }
1966
1967  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1968  // effects are evaluated, but not the actual value.
1969  if (Op->isGLValue())
1970    CGF.EmitLValue(Op);
1971  else
1972    CGF.EmitScalarExpr(Op, true);
1973  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1974}
1975
1976//===----------------------------------------------------------------------===//
1977//                           Binary Operators
1978//===----------------------------------------------------------------------===//
1979
1980BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1981  TestAndClearIgnoreResultAssign();
1982  BinOpInfo Result;
1983  Result.LHS = Visit(E->getLHS());
1984  Result.RHS = Visit(E->getRHS());
1985  Result.Ty  = E->getType();
1986  Result.Opcode = E->getOpcode();
1987  Result.FPContractable = E->isFPContractable();
1988  Result.E = E;
1989  return Result;
1990}
1991
1992LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1993                                              const CompoundAssignOperator *E,
1994                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1995                                                   Value *&Result) {
1996  QualType LHSTy = E->getLHS()->getType();
1997  BinOpInfo OpInfo;
1998
1999  if (E->getComputationResultType()->isAnyComplexType())
2000    return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
2001
2002  // Emit the RHS first.  __block variables need to have the rhs evaluated
2003  // first, plus this should improve codegen a little.
2004  OpInfo.RHS = Visit(E->getRHS());
2005  OpInfo.Ty = E->getComputationResultType();
2006  OpInfo.Opcode = E->getOpcode();
2007  OpInfo.FPContractable = false;
2008  OpInfo.E = E;
2009  // Load/convert the LHS.
2010  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2011
2012  llvm::PHINode *atomicPHI = nullptr;
2013  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2014    QualType type = atomicTy->getValueType();
2015    if (!type->isBooleanType() && type->isIntegerType() &&
2016         !(type->isUnsignedIntegerType() &&
2017          CGF.SanOpts->UnsignedIntegerOverflow) &&
2018         CGF.getLangOpts().getSignedOverflowBehavior() !=
2019          LangOptions::SOB_Trapping) {
2020      llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2021      switch (OpInfo.Opcode) {
2022        // We don't have atomicrmw operands for *, %, /, <<, >>
2023        case BO_MulAssign: case BO_DivAssign:
2024        case BO_RemAssign:
2025        case BO_ShlAssign:
2026        case BO_ShrAssign:
2027          break;
2028        case BO_AddAssign:
2029          aop = llvm::AtomicRMWInst::Add;
2030          break;
2031        case BO_SubAssign:
2032          aop = llvm::AtomicRMWInst::Sub;
2033          break;
2034        case BO_AndAssign:
2035          aop = llvm::AtomicRMWInst::And;
2036          break;
2037        case BO_XorAssign:
2038          aop = llvm::AtomicRMWInst::Xor;
2039          break;
2040        case BO_OrAssign:
2041          aop = llvm::AtomicRMWInst::Or;
2042          break;
2043        default:
2044          llvm_unreachable("Invalid compound assignment type");
2045      }
2046      if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2047        llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2048              E->getRHS()->getType(), LHSTy), LHSTy);
2049        Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2050            llvm::SequentiallyConsistent);
2051        return LHSLV;
2052      }
2053    }
2054    // FIXME: For floating point types, we should be saving and restoring the
2055    // floating point environment in the loop.
2056    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2057    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2058    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2059    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2060    Builder.CreateBr(opBB);
2061    Builder.SetInsertPoint(opBB);
2062    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2063    atomicPHI->addIncoming(OpInfo.LHS, startBB);
2064    OpInfo.LHS = atomicPHI;
2065  }
2066  else
2067    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2068
2069  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2070                                    E->getComputationLHSType());
2071
2072  // Expand the binary operator.
2073  Result = (this->*Func)(OpInfo);
2074
2075  // Convert the result back to the LHS type.
2076  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2077
2078  if (atomicPHI) {
2079    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2080    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2081    llvm::Value *pair = Builder.CreateAtomicCmpXchg(
2082        LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy),
2083        llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
2084    llvm::Value *old = Builder.CreateExtractValue(pair, 0);
2085    llvm::Value *success = Builder.CreateExtractValue(pair, 1);
2086    atomicPHI->addIncoming(old, opBB);
2087    Builder.CreateCondBr(success, contBB, opBB);
2088    Builder.SetInsertPoint(contBB);
2089    return LHSLV;
2090  }
2091
2092  // Store the result value into the LHS lvalue. Bit-fields are handled
2093  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2094  // 'An assignment expression has the value of the left operand after the
2095  // assignment...'.
2096  if (LHSLV.isBitField())
2097    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2098  else
2099    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2100
2101  return LHSLV;
2102}
2103
2104Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2105                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2106  bool Ignore = TestAndClearIgnoreResultAssign();
2107  Value *RHS;
2108  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2109
2110  // If the result is clearly ignored, return now.
2111  if (Ignore)
2112    return nullptr;
2113
2114  // The result of an assignment in C is the assigned r-value.
2115  if (!CGF.getLangOpts().CPlusPlus)
2116    return RHS;
2117
2118  // If the lvalue is non-volatile, return the computed value of the assignment.
2119  if (!LHS.isVolatileQualified())
2120    return RHS;
2121
2122  // Otherwise, reload the value.
2123  return EmitLoadOfLValue(LHS, E->getExprLoc());
2124}
2125
2126void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2127    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2128  llvm::Value *Cond = nullptr;
2129
2130  if (CGF.SanOpts->IntegerDivideByZero)
2131    Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2132
2133  if (CGF.SanOpts->SignedIntegerOverflow &&
2134      Ops.Ty->hasSignedIntegerRepresentation()) {
2135    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2136
2137    llvm::Value *IntMin =
2138      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2139    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2140
2141    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2142    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2143    llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2144    Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2145  }
2146
2147  if (Cond)
2148    EmitBinOpCheck(Cond, Ops);
2149}
2150
2151Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2152  if ((CGF.SanOpts->IntegerDivideByZero ||
2153       CGF.SanOpts->SignedIntegerOverflow) &&
2154      Ops.Ty->isIntegerType()) {
2155    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2156    EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2157  } else if (CGF.SanOpts->FloatDivideByZero &&
2158             Ops.Ty->isRealFloatingType()) {
2159    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2160    EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2161  }
2162
2163  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2164    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2165    if (CGF.getLangOpts().OpenCL) {
2166      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2167      llvm::Type *ValTy = Val->getType();
2168      if (ValTy->isFloatTy() ||
2169          (isa<llvm::VectorType>(ValTy) &&
2170           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2171        CGF.SetFPAccuracy(Val, 2.5);
2172    }
2173    return Val;
2174  }
2175  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2176    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2177  else
2178    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2179}
2180
2181Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2182  // Rem in C can't be a floating point type: C99 6.5.5p2.
2183  if (CGF.SanOpts->IntegerDivideByZero) {
2184    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2185
2186    if (Ops.Ty->isIntegerType())
2187      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2188  }
2189
2190  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2191    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2192  else
2193    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2194}
2195
2196Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2197  unsigned IID;
2198  unsigned OpID = 0;
2199
2200  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2201  switch (Ops.Opcode) {
2202  case BO_Add:
2203  case BO_AddAssign:
2204    OpID = 1;
2205    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2206                     llvm::Intrinsic::uadd_with_overflow;
2207    break;
2208  case BO_Sub:
2209  case BO_SubAssign:
2210    OpID = 2;
2211    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2212                     llvm::Intrinsic::usub_with_overflow;
2213    break;
2214  case BO_Mul:
2215  case BO_MulAssign:
2216    OpID = 3;
2217    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2218                     llvm::Intrinsic::umul_with_overflow;
2219    break;
2220  default:
2221    llvm_unreachable("Unsupported operation for overflow detection");
2222  }
2223  OpID <<= 1;
2224  if (isSigned)
2225    OpID |= 1;
2226
2227  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2228
2229  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2230
2231  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2232  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2233  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2234
2235  // Handle overflow with llvm.trap if no custom handler has been specified.
2236  const std::string *handlerName =
2237    &CGF.getLangOpts().OverflowHandler;
2238  if (handlerName->empty()) {
2239    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2240    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2241    if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2242      EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2243    else
2244      CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2245    return result;
2246  }
2247
2248  // Branch in case of overflow.
2249  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2250  llvm::Function::iterator insertPt = initialBB;
2251  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2252                                                      std::next(insertPt));
2253  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2254
2255  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2256
2257  // If an overflow handler is set, then we want to call it and then use its
2258  // result, if it returns.
2259  Builder.SetInsertPoint(overflowBB);
2260
2261  // Get the overflow handler.
2262  llvm::Type *Int8Ty = CGF.Int8Ty;
2263  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2264  llvm::FunctionType *handlerTy =
2265      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2266  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2267
2268  // Sign extend the args to 64-bit, so that we can use the same handler for
2269  // all types of overflow.
2270  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2271  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2272
2273  // Call the handler with the two arguments, the operation, and the size of
2274  // the result.
2275  llvm::Value *handlerArgs[] = {
2276    lhs,
2277    rhs,
2278    Builder.getInt8(OpID),
2279    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2280  };
2281  llvm::Value *handlerResult =
2282    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2283
2284  // Truncate the result back to the desired size.
2285  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2286  Builder.CreateBr(continueBB);
2287
2288  Builder.SetInsertPoint(continueBB);
2289  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2290  phi->addIncoming(result, initialBB);
2291  phi->addIncoming(handlerResult, overflowBB);
2292
2293  return phi;
2294}
2295
2296/// Emit pointer + index arithmetic.
2297static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2298                                    const BinOpInfo &op,
2299                                    bool isSubtraction) {
2300  // Must have binary (not unary) expr here.  Unary pointer
2301  // increment/decrement doesn't use this path.
2302  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2303
2304  Value *pointer = op.LHS;
2305  Expr *pointerOperand = expr->getLHS();
2306  Value *index = op.RHS;
2307  Expr *indexOperand = expr->getRHS();
2308
2309  // In a subtraction, the LHS is always the pointer.
2310  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2311    std::swap(pointer, index);
2312    std::swap(pointerOperand, indexOperand);
2313  }
2314
2315  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2316  if (width != CGF.PointerWidthInBits) {
2317    // Zero-extend or sign-extend the pointer value according to
2318    // whether the index is signed or not.
2319    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2320    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2321                                      "idx.ext");
2322  }
2323
2324  // If this is subtraction, negate the index.
2325  if (isSubtraction)
2326    index = CGF.Builder.CreateNeg(index, "idx.neg");
2327
2328  if (CGF.SanOpts->ArrayBounds)
2329    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2330                        /*Accessed*/ false);
2331
2332  const PointerType *pointerType
2333    = pointerOperand->getType()->getAs<PointerType>();
2334  if (!pointerType) {
2335    QualType objectType = pointerOperand->getType()
2336                                        ->castAs<ObjCObjectPointerType>()
2337                                        ->getPointeeType();
2338    llvm::Value *objectSize
2339      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2340
2341    index = CGF.Builder.CreateMul(index, objectSize);
2342
2343    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2344    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2345    return CGF.Builder.CreateBitCast(result, pointer->getType());
2346  }
2347
2348  QualType elementType = pointerType->getPointeeType();
2349  if (const VariableArrayType *vla
2350        = CGF.getContext().getAsVariableArrayType(elementType)) {
2351    // The element count here is the total number of non-VLA elements.
2352    llvm::Value *numElements = CGF.getVLASize(vla).first;
2353
2354    // Effectively, the multiply by the VLA size is part of the GEP.
2355    // GEP indexes are signed, and scaling an index isn't permitted to
2356    // signed-overflow, so we use the same semantics for our explicit
2357    // multiply.  We suppress this if overflow is not undefined behavior.
2358    if (CGF.getLangOpts().isSignedOverflowDefined()) {
2359      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2360      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2361    } else {
2362      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2363      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2364    }
2365    return pointer;
2366  }
2367
2368  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2369  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2370  // future proof.
2371  if (elementType->isVoidType() || elementType->isFunctionType()) {
2372    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2373    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2374    return CGF.Builder.CreateBitCast(result, pointer->getType());
2375  }
2376
2377  if (CGF.getLangOpts().isSignedOverflowDefined())
2378    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2379
2380  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2381}
2382
2383// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2384// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2385// the add operand respectively. This allows fmuladd to represent a*b-c, or
2386// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2387// efficient operations.
2388static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2389                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
2390                           bool negMul, bool negAdd) {
2391  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2392
2393  Value *MulOp0 = MulOp->getOperand(0);
2394  Value *MulOp1 = MulOp->getOperand(1);
2395  if (negMul) {
2396    MulOp0 =
2397      Builder.CreateFSub(
2398        llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2399        "neg");
2400  } else if (negAdd) {
2401    Addend =
2402      Builder.CreateFSub(
2403        llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2404        "neg");
2405  }
2406
2407  Value *FMulAdd =
2408    Builder.CreateCall3(
2409      CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2410                           MulOp0, MulOp1, Addend);
2411   MulOp->eraseFromParent();
2412
2413   return FMulAdd;
2414}
2415
2416// Check whether it would be legal to emit an fmuladd intrinsic call to
2417// represent op and if so, build the fmuladd.
2418//
2419// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2420// Does NOT check the type of the operation - it's assumed that this function
2421// will be called from contexts where it's known that the type is contractable.
2422static Value* tryEmitFMulAdd(const BinOpInfo &op,
2423                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
2424                         bool isSub=false) {
2425
2426  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2427          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2428         "Only fadd/fsub can be the root of an fmuladd.");
2429
2430  // Check whether this op is marked as fusable.
2431  if (!op.FPContractable)
2432    return nullptr;
2433
2434  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2435  // either disabled, or handled entirely by the LLVM backend).
2436  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2437    return nullptr;
2438
2439  // We have a potentially fusable op. Look for a mul on one of the operands.
2440  if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2441    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2442      assert(LHSBinOp->getNumUses() == 0 &&
2443             "Operations with multiple uses shouldn't be contracted.");
2444      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2445    }
2446  } else if (llvm::BinaryOperator* RHSBinOp =
2447               dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2448    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2449      assert(RHSBinOp->getNumUses() == 0 &&
2450             "Operations with multiple uses shouldn't be contracted.");
2451      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2452    }
2453  }
2454
2455  return nullptr;
2456}
2457
2458Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2459  if (op.LHS->getType()->isPointerTy() ||
2460      op.RHS->getType()->isPointerTy())
2461    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2462
2463  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2464    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2465    case LangOptions::SOB_Defined:
2466      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2467    case LangOptions::SOB_Undefined:
2468      if (!CGF.SanOpts->SignedIntegerOverflow)
2469        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2470      // Fall through.
2471    case LangOptions::SOB_Trapping:
2472      return EmitOverflowCheckedBinOp(op);
2473    }
2474  }
2475
2476  if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2477    return EmitOverflowCheckedBinOp(op);
2478
2479  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2480    // Try to form an fmuladd.
2481    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2482      return FMulAdd;
2483
2484    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2485  }
2486
2487  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2488}
2489
2490Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2491  // The LHS is always a pointer if either side is.
2492  if (!op.LHS->getType()->isPointerTy()) {
2493    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2494      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2495      case LangOptions::SOB_Defined:
2496        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2497      case LangOptions::SOB_Undefined:
2498        if (!CGF.SanOpts->SignedIntegerOverflow)
2499          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2500        // Fall through.
2501      case LangOptions::SOB_Trapping:
2502        return EmitOverflowCheckedBinOp(op);
2503      }
2504    }
2505
2506    if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2507      return EmitOverflowCheckedBinOp(op);
2508
2509    if (op.LHS->getType()->isFPOrFPVectorTy()) {
2510      // Try to form an fmuladd.
2511      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2512        return FMulAdd;
2513      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2514    }
2515
2516    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2517  }
2518
2519  // If the RHS is not a pointer, then we have normal pointer
2520  // arithmetic.
2521  if (!op.RHS->getType()->isPointerTy())
2522    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2523
2524  // Otherwise, this is a pointer subtraction.
2525
2526  // Do the raw subtraction part.
2527  llvm::Value *LHS
2528    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2529  llvm::Value *RHS
2530    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2531  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2532
2533  // Okay, figure out the element size.
2534  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2535  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2536
2537  llvm::Value *divisor = nullptr;
2538
2539  // For a variable-length array, this is going to be non-constant.
2540  if (const VariableArrayType *vla
2541        = CGF.getContext().getAsVariableArrayType(elementType)) {
2542    llvm::Value *numElements;
2543    std::tie(numElements, elementType) = CGF.getVLASize(vla);
2544
2545    divisor = numElements;
2546
2547    // Scale the number of non-VLA elements by the non-VLA element size.
2548    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2549    if (!eltSize.isOne())
2550      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2551
2552  // For everything elese, we can just compute it, safe in the
2553  // assumption that Sema won't let anything through that we can't
2554  // safely compute the size of.
2555  } else {
2556    CharUnits elementSize;
2557    // Handle GCC extension for pointer arithmetic on void* and
2558    // function pointer types.
2559    if (elementType->isVoidType() || elementType->isFunctionType())
2560      elementSize = CharUnits::One();
2561    else
2562      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2563
2564    // Don't even emit the divide for element size of 1.
2565    if (elementSize.isOne())
2566      return diffInChars;
2567
2568    divisor = CGF.CGM.getSize(elementSize);
2569  }
2570
2571  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2572  // pointer difference in C is only defined in the case where both operands
2573  // are pointing to elements of an array.
2574  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2575}
2576
2577Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2578  llvm::IntegerType *Ty;
2579  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2580    Ty = cast<llvm::IntegerType>(VT->getElementType());
2581  else
2582    Ty = cast<llvm::IntegerType>(LHS->getType());
2583  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2584}
2585
2586Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2587  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2588  // RHS to the same size as the LHS.
2589  Value *RHS = Ops.RHS;
2590  if (Ops.LHS->getType() != RHS->getType())
2591    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2592
2593  if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2594      isa<llvm::IntegerType>(Ops.LHS->getType())) {
2595    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2596    llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2597
2598    if (Ops.Ty->hasSignedIntegerRepresentation()) {
2599      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2600      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2601      llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2602      Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2603
2604      // Check whether we are shifting any non-zero bits off the top of the
2605      // integer.
2606      CGF.EmitBlock(CheckBitsShifted);
2607      llvm::Value *BitsShiftedOff =
2608        Builder.CreateLShr(Ops.LHS,
2609                           Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2610                                             /*NUW*/true, /*NSW*/true),
2611                           "shl.check");
2612      if (CGF.getLangOpts().CPlusPlus) {
2613        // In C99, we are not permitted to shift a 1 bit into the sign bit.
2614        // Under C++11's rules, shifting a 1 bit into the sign bit is
2615        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2616        // define signed left shifts, so we use the C99 and C++11 rules there).
2617        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2618        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2619      }
2620      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2621      llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2622      CGF.EmitBlock(Cont);
2623      llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2624      P->addIncoming(Valid, Orig);
2625      P->addIncoming(SecondCheck, CheckBitsShifted);
2626      Valid = P;
2627    }
2628
2629    EmitBinOpCheck(Valid, Ops);
2630  }
2631  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2632  if (CGF.getLangOpts().OpenCL)
2633    RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2634
2635  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2636}
2637
2638Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2639  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2640  // RHS to the same size as the LHS.
2641  Value *RHS = Ops.RHS;
2642  if (Ops.LHS->getType() != RHS->getType())
2643    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2644
2645  if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2646      isa<llvm::IntegerType>(Ops.LHS->getType()))
2647    EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2648
2649  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2650  if (CGF.getLangOpts().OpenCL)
2651    RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2652
2653  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2654    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2655  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2656}
2657
2658enum IntrinsicType { VCMPEQ, VCMPGT };
2659// return corresponding comparison intrinsic for given vector type
2660static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2661                                        BuiltinType::Kind ElemKind) {
2662  switch (ElemKind) {
2663  default: llvm_unreachable("unexpected element type");
2664  case BuiltinType::Char_U:
2665  case BuiltinType::UChar:
2666    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2667                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2668  case BuiltinType::Char_S:
2669  case BuiltinType::SChar:
2670    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2671                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2672  case BuiltinType::UShort:
2673    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2674                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2675  case BuiltinType::Short:
2676    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2677                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2678  case BuiltinType::UInt:
2679  case BuiltinType::ULong:
2680    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2681                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2682  case BuiltinType::Int:
2683  case BuiltinType::Long:
2684    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2685                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2686  case BuiltinType::Float:
2687    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2688                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2689  }
2690}
2691
2692Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2693                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2694  TestAndClearIgnoreResultAssign();
2695  Value *Result;
2696  QualType LHSTy = E->getLHS()->getType();
2697  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2698    assert(E->getOpcode() == BO_EQ ||
2699           E->getOpcode() == BO_NE);
2700    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2701    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2702    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2703                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2704  } else if (!LHSTy->isAnyComplexType()) {
2705    Value *LHS = Visit(E->getLHS());
2706    Value *RHS = Visit(E->getRHS());
2707
2708    // If AltiVec, the comparison results in a numeric type, so we use
2709    // intrinsics comparing vectors and giving 0 or 1 as a result
2710    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2711      // constants for mapping CR6 register bits to predicate result
2712      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2713
2714      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2715
2716      // in several cases vector arguments order will be reversed
2717      Value *FirstVecArg = LHS,
2718            *SecondVecArg = RHS;
2719
2720      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2721      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2722      BuiltinType::Kind ElementKind = BTy->getKind();
2723
2724      switch(E->getOpcode()) {
2725      default: llvm_unreachable("is not a comparison operation");
2726      case BO_EQ:
2727        CR6 = CR6_LT;
2728        ID = GetIntrinsic(VCMPEQ, ElementKind);
2729        break;
2730      case BO_NE:
2731        CR6 = CR6_EQ;
2732        ID = GetIntrinsic(VCMPEQ, ElementKind);
2733        break;
2734      case BO_LT:
2735        CR6 = CR6_LT;
2736        ID = GetIntrinsic(VCMPGT, ElementKind);
2737        std::swap(FirstVecArg, SecondVecArg);
2738        break;
2739      case BO_GT:
2740        CR6 = CR6_LT;
2741        ID = GetIntrinsic(VCMPGT, ElementKind);
2742        break;
2743      case BO_LE:
2744        if (ElementKind == BuiltinType::Float) {
2745          CR6 = CR6_LT;
2746          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2747          std::swap(FirstVecArg, SecondVecArg);
2748        }
2749        else {
2750          CR6 = CR6_EQ;
2751          ID = GetIntrinsic(VCMPGT, ElementKind);
2752        }
2753        break;
2754      case BO_GE:
2755        if (ElementKind == BuiltinType::Float) {
2756          CR6 = CR6_LT;
2757          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2758        }
2759        else {
2760          CR6 = CR6_EQ;
2761          ID = GetIntrinsic(VCMPGT, ElementKind);
2762          std::swap(FirstVecArg, SecondVecArg);
2763        }
2764        break;
2765      }
2766
2767      Value *CR6Param = Builder.getInt32(CR6);
2768      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2769      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2770      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2771    }
2772
2773    if (LHS->getType()->isFPOrFPVectorTy()) {
2774      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2775                                  LHS, RHS, "cmp");
2776    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2777      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2778                                  LHS, RHS, "cmp");
2779    } else {
2780      // Unsigned integers and pointers.
2781      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2782                                  LHS, RHS, "cmp");
2783    }
2784
2785    // If this is a vector comparison, sign extend the result to the appropriate
2786    // vector integer type and return it (don't convert to bool).
2787    if (LHSTy->isVectorType())
2788      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2789
2790  } else {
2791    // Complex Comparison: can only be an equality comparison.
2792    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2793    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2794
2795    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2796
2797    Value *ResultR, *ResultI;
2798    if (CETy->isRealFloatingType()) {
2799      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2800                                   LHS.first, RHS.first, "cmp.r");
2801      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2802                                   LHS.second, RHS.second, "cmp.i");
2803    } else {
2804      // Complex comparisons can only be equality comparisons.  As such, signed
2805      // and unsigned opcodes are the same.
2806      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2807                                   LHS.first, RHS.first, "cmp.r");
2808      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2809                                   LHS.second, RHS.second, "cmp.i");
2810    }
2811
2812    if (E->getOpcode() == BO_EQ) {
2813      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2814    } else {
2815      assert(E->getOpcode() == BO_NE &&
2816             "Complex comparison other than == or != ?");
2817      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2818    }
2819  }
2820
2821  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2822}
2823
2824Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2825  bool Ignore = TestAndClearIgnoreResultAssign();
2826
2827  Value *RHS;
2828  LValue LHS;
2829
2830  switch (E->getLHS()->getType().getObjCLifetime()) {
2831  case Qualifiers::OCL_Strong:
2832    std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2833    break;
2834
2835  case Qualifiers::OCL_Autoreleasing:
2836    std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2837    break;
2838
2839  case Qualifiers::OCL_Weak:
2840    RHS = Visit(E->getRHS());
2841    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2842    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2843    break;
2844
2845  // No reason to do any of these differently.
2846  case Qualifiers::OCL_None:
2847  case Qualifiers::OCL_ExplicitNone:
2848    // __block variables need to have the rhs evaluated first, plus
2849    // this should improve codegen just a little.
2850    RHS = Visit(E->getRHS());
2851    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2852
2853    // Store the value into the LHS.  Bit-fields are handled specially
2854    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2855    // 'An assignment expression has the value of the left operand after
2856    // the assignment...'.
2857    if (LHS.isBitField())
2858      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2859    else
2860      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2861  }
2862
2863  // If the result is clearly ignored, return now.
2864  if (Ignore)
2865    return nullptr;
2866
2867  // The result of an assignment in C is the assigned r-value.
2868  if (!CGF.getLangOpts().CPlusPlus)
2869    return RHS;
2870
2871  // If the lvalue is non-volatile, return the computed value of the assignment.
2872  if (!LHS.isVolatileQualified())
2873    return RHS;
2874
2875  // Otherwise, reload the value.
2876  return EmitLoadOfLValue(LHS, E->getExprLoc());
2877}
2878
2879Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2880  RegionCounter Cnt = CGF.getPGORegionCounter(E);
2881
2882  // Perform vector logical and on comparisons with zero vectors.
2883  if (E->getType()->isVectorType()) {
2884    Cnt.beginRegion(Builder);
2885
2886    Value *LHS = Visit(E->getLHS());
2887    Value *RHS = Visit(E->getRHS());
2888    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2889    if (LHS->getType()->isFPOrFPVectorTy()) {
2890      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2891      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2892    } else {
2893      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2894      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2895    }
2896    Value *And = Builder.CreateAnd(LHS, RHS);
2897    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2898  }
2899
2900  llvm::Type *ResTy = ConvertType(E->getType());
2901
2902  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2903  // If we have 1 && X, just emit X without inserting the control flow.
2904  bool LHSCondVal;
2905  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2906    if (LHSCondVal) { // If we have 1 && X, just emit X.
2907      Cnt.beginRegion(Builder);
2908
2909      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2910      // ZExt result to int or bool.
2911      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2912    }
2913
2914    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2915    if (!CGF.ContainsLabel(E->getRHS()))
2916      return llvm::Constant::getNullValue(ResTy);
2917  }
2918
2919  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2920  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2921
2922  CodeGenFunction::ConditionalEvaluation eval(CGF);
2923
2924  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2925  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
2926
2927  // Any edges into the ContBlock are now from an (indeterminate number of)
2928  // edges from this first condition.  All of these values will be false.  Start
2929  // setting up the PHI node in the Cont Block for this.
2930  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2931                                            "", ContBlock);
2932  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2933       PI != PE; ++PI)
2934    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2935
2936  eval.begin(CGF);
2937  CGF.EmitBlock(RHSBlock);
2938  Cnt.beginRegion(Builder);
2939  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2940  eval.end(CGF);
2941
2942  // Reaquire the RHS block, as there may be subblocks inserted.
2943  RHSBlock = Builder.GetInsertBlock();
2944
2945  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2946  // into the phi node for the edge with the value of RHSCond.
2947  if (CGF.getDebugInfo())
2948    // There is no need to emit line number for unconditional branch.
2949    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2950  CGF.EmitBlock(ContBlock);
2951  PN->addIncoming(RHSCond, RHSBlock);
2952
2953  // ZExt result to int.
2954  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2955}
2956
2957Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2958  RegionCounter Cnt = CGF.getPGORegionCounter(E);
2959
2960  // Perform vector logical or on comparisons with zero vectors.
2961  if (E->getType()->isVectorType()) {
2962    Cnt.beginRegion(Builder);
2963
2964    Value *LHS = Visit(E->getLHS());
2965    Value *RHS = Visit(E->getRHS());
2966    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2967    if (LHS->getType()->isFPOrFPVectorTy()) {
2968      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2969      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2970    } else {
2971      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2972      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2973    }
2974    Value *Or = Builder.CreateOr(LHS, RHS);
2975    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2976  }
2977
2978  llvm::Type *ResTy = ConvertType(E->getType());
2979
2980  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2981  // If we have 0 || X, just emit X without inserting the control flow.
2982  bool LHSCondVal;
2983  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2984    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2985      Cnt.beginRegion(Builder);
2986
2987      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2988      // ZExt result to int or bool.
2989      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2990    }
2991
2992    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2993    if (!CGF.ContainsLabel(E->getRHS()))
2994      return llvm::ConstantInt::get(ResTy, 1);
2995  }
2996
2997  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2998  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2999
3000  CodeGenFunction::ConditionalEvaluation eval(CGF);
3001
3002  // Branch on the LHS first.  If it is true, go to the success (cont) block.
3003  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3004                           Cnt.getParentCount() - Cnt.getCount());
3005
3006  // Any edges into the ContBlock are now from an (indeterminate number of)
3007  // edges from this first condition.  All of these values will be true.  Start
3008  // setting up the PHI node in the Cont Block for this.
3009  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3010                                            "", ContBlock);
3011  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3012       PI != PE; ++PI)
3013    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3014
3015  eval.begin(CGF);
3016
3017  // Emit the RHS condition as a bool value.
3018  CGF.EmitBlock(RHSBlock);
3019  Cnt.beginRegion(Builder);
3020  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3021
3022  eval.end(CGF);
3023
3024  // Reaquire the RHS block, as there may be subblocks inserted.
3025  RHSBlock = Builder.GetInsertBlock();
3026
3027  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3028  // into the phi node for the edge with the value of RHSCond.
3029  CGF.EmitBlock(ContBlock);
3030  PN->addIncoming(RHSCond, RHSBlock);
3031
3032  // ZExt result to int.
3033  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3034}
3035
3036Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3037  CGF.EmitIgnoredExpr(E->getLHS());
3038  CGF.EnsureInsertPoint();
3039  return Visit(E->getRHS());
3040}
3041
3042//===----------------------------------------------------------------------===//
3043//                             Other Operators
3044//===----------------------------------------------------------------------===//
3045
3046/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3047/// expression is cheap enough and side-effect-free enough to evaluate
3048/// unconditionally instead of conditionally.  This is used to convert control
3049/// flow into selects in some cases.
3050static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3051                                                   CodeGenFunction &CGF) {
3052  // Anything that is an integer or floating point constant is fine.
3053  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3054
3055  // Even non-volatile automatic variables can't be evaluated unconditionally.
3056  // Referencing a thread_local may cause non-trivial initialization work to
3057  // occur. If we're inside a lambda and one of the variables is from the scope
3058  // outside the lambda, that function may have returned already. Reading its
3059  // locals is a bad idea. Also, these reads may introduce races there didn't
3060  // exist in the source-level program.
3061}
3062
3063
3064Value *ScalarExprEmitter::
3065VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3066  TestAndClearIgnoreResultAssign();
3067
3068  // Bind the common expression if necessary.
3069  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3070  RegionCounter Cnt = CGF.getPGORegionCounter(E);
3071
3072  Expr *condExpr = E->getCond();
3073  Expr *lhsExpr = E->getTrueExpr();
3074  Expr *rhsExpr = E->getFalseExpr();
3075
3076  // If the condition constant folds and can be elided, try to avoid emitting
3077  // the condition and the dead arm.
3078  bool CondExprBool;
3079  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3080    Expr *live = lhsExpr, *dead = rhsExpr;
3081    if (!CondExprBool) std::swap(live, dead);
3082
3083    // If the dead side doesn't have labels we need, just emit the Live part.
3084    if (!CGF.ContainsLabel(dead)) {
3085      if (CondExprBool)
3086        Cnt.beginRegion(Builder);
3087      Value *Result = Visit(live);
3088
3089      // If the live part is a throw expression, it acts like it has a void
3090      // type, so evaluating it returns a null Value*.  However, a conditional
3091      // with non-void type must return a non-null Value*.
3092      if (!Result && !E->getType()->isVoidType())
3093        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3094
3095      return Result;
3096    }
3097  }
3098
3099  // OpenCL: If the condition is a vector, we can treat this condition like
3100  // the select function.
3101  if (CGF.getLangOpts().OpenCL
3102      && condExpr->getType()->isVectorType()) {
3103    Cnt.beginRegion(Builder);
3104
3105    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3106    llvm::Value *LHS = Visit(lhsExpr);
3107    llvm::Value *RHS = Visit(rhsExpr);
3108
3109    llvm::Type *condType = ConvertType(condExpr->getType());
3110    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3111
3112    unsigned numElem = vecTy->getNumElements();
3113    llvm::Type *elemType = vecTy->getElementType();
3114
3115    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3116    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3117    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3118                                          llvm::VectorType::get(elemType,
3119                                                                numElem),
3120                                          "sext");
3121    llvm::Value *tmp2 = Builder.CreateNot(tmp);
3122
3123    // Cast float to int to perform ANDs if necessary.
3124    llvm::Value *RHSTmp = RHS;
3125    llvm::Value *LHSTmp = LHS;
3126    bool wasCast = false;
3127    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3128    if (rhsVTy->getElementType()->isFloatingPointTy()) {
3129      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3130      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3131      wasCast = true;
3132    }
3133
3134    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3135    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3136    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3137    if (wasCast)
3138      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3139
3140    return tmp5;
3141  }
3142
3143  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3144  // select instead of as control flow.  We can only do this if it is cheap and
3145  // safe to evaluate the LHS and RHS unconditionally.
3146  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3147      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3148    Cnt.beginRegion(Builder);
3149
3150    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3151    llvm::Value *LHS = Visit(lhsExpr);
3152    llvm::Value *RHS = Visit(rhsExpr);
3153    if (!LHS) {
3154      // If the conditional has void type, make sure we return a null Value*.
3155      assert(!RHS && "LHS and RHS types must match");
3156      return nullptr;
3157    }
3158    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3159  }
3160
3161  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3162  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3163  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3164
3165  CodeGenFunction::ConditionalEvaluation eval(CGF);
3166  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3167
3168  CGF.EmitBlock(LHSBlock);
3169  Cnt.beginRegion(Builder);
3170  eval.begin(CGF);
3171  Value *LHS = Visit(lhsExpr);
3172  eval.end(CGF);
3173
3174  LHSBlock = Builder.GetInsertBlock();
3175  Builder.CreateBr(ContBlock);
3176
3177  CGF.EmitBlock(RHSBlock);
3178  eval.begin(CGF);
3179  Value *RHS = Visit(rhsExpr);
3180  eval.end(CGF);
3181
3182  RHSBlock = Builder.GetInsertBlock();
3183  CGF.EmitBlock(ContBlock);
3184
3185  // If the LHS or RHS is a throw expression, it will be legitimately null.
3186  if (!LHS)
3187    return RHS;
3188  if (!RHS)
3189    return LHS;
3190
3191  // Create a PHI node for the real part.
3192  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3193  PN->addIncoming(LHS, LHSBlock);
3194  PN->addIncoming(RHS, RHSBlock);
3195  return PN;
3196}
3197
3198Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3199  return Visit(E->getChosenSubExpr());
3200}
3201
3202Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3203  QualType Ty = VE->getType();
3204  if (Ty->isVariablyModifiedType())
3205    CGF.EmitVariablyModifiedType(Ty);
3206
3207  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3208  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3209
3210  // If EmitVAArg fails, we fall back to the LLVM instruction.
3211  if (!ArgPtr)
3212    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3213
3214  // FIXME Volatility.
3215  return Builder.CreateLoad(ArgPtr);
3216}
3217
3218Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3219  return CGF.EmitBlockLiteral(block);
3220}
3221
3222Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3223  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3224  llvm::Type *DstTy = ConvertType(E->getType());
3225
3226  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3227  // a shuffle vector instead of a bitcast.
3228  llvm::Type *SrcTy = Src->getType();
3229  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3230    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3231    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3232    if ((numElementsDst == 3 && numElementsSrc == 4)
3233        || (numElementsDst == 4 && numElementsSrc == 3)) {
3234
3235
3236      // In the case of going from int4->float3, a bitcast is needed before
3237      // doing a shuffle.
3238      llvm::Type *srcElemTy =
3239      cast<llvm::VectorType>(SrcTy)->getElementType();
3240      llvm::Type *dstElemTy =
3241      cast<llvm::VectorType>(DstTy)->getElementType();
3242
3243      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3244          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3245        // Create a float type of the same size as the source or destination.
3246        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3247                                                                 numElementsSrc);
3248
3249        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3250      }
3251
3252      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3253
3254      SmallVector<llvm::Constant*, 3> Args;
3255      Args.push_back(Builder.getInt32(0));
3256      Args.push_back(Builder.getInt32(1));
3257      Args.push_back(Builder.getInt32(2));
3258
3259      if (numElementsDst == 4)
3260        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3261
3262      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3263
3264      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3265    }
3266  }
3267
3268  return Builder.CreateBitCast(Src, DstTy, "astype");
3269}
3270
3271Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3272  return CGF.EmitAtomicExpr(E).getScalarVal();
3273}
3274
3275//===----------------------------------------------------------------------===//
3276//                         Entry Point into this File
3277//===----------------------------------------------------------------------===//
3278
3279/// EmitScalarExpr - Emit the computation of the specified expression of scalar
3280/// type, ignoring the result.
3281Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3282  assert(E && hasScalarEvaluationKind(E->getType()) &&
3283         "Invalid scalar expression to emit");
3284
3285  if (isa<CXXDefaultArgExpr>(E))
3286    disableDebugInfo();
3287  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3288    .Visit(const_cast<Expr*>(E));
3289  if (isa<CXXDefaultArgExpr>(E))
3290    enableDebugInfo();
3291  return V;
3292}
3293
3294/// EmitScalarConversion - Emit a conversion from the specified type to the
3295/// specified destination type, both of which are LLVM scalar types.
3296Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3297                                             QualType DstTy) {
3298  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3299         "Invalid scalar expression to emit");
3300  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3301}
3302
3303/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3304/// type to the specified destination type, where the destination type is an
3305/// LLVM scalar type.
3306Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3307                                                      QualType SrcTy,
3308                                                      QualType DstTy) {
3309  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3310         "Invalid complex -> scalar conversion");
3311  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3312                                                                DstTy);
3313}
3314
3315
3316llvm::Value *CodeGenFunction::
3317EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3318                        bool isInc, bool isPre) {
3319  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3320}
3321
3322LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3323  llvm::Value *V;
3324  // object->isa or (*object).isa
3325  // Generate code as for: *(Class*)object
3326  // build Class* type
3327  llvm::Type *ClassPtrTy = ConvertType(E->getType());
3328
3329  Expr *BaseExpr = E->getBase();
3330  if (BaseExpr->isRValue()) {
3331    V = CreateMemTemp(E->getType(), "resval");
3332    llvm::Value *Src = EmitScalarExpr(BaseExpr);
3333    Builder.CreateStore(Src, V);
3334    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3335      MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3336  } else {
3337    if (E->isArrow())
3338      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3339    else
3340      V = EmitLValue(BaseExpr).getAddress();
3341  }
3342
3343  // build Class* type
3344  ClassPtrTy = ClassPtrTy->getPointerTo();
3345  V = Builder.CreateBitCast(V, ClassPtrTy);
3346  return MakeNaturalAlignAddrLValue(V, E->getType());
3347}
3348
3349
3350LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3351                                            const CompoundAssignOperator *E) {
3352  ScalarExprEmitter Scalar(*this);
3353  Value *Result = nullptr;
3354  switch (E->getOpcode()) {
3355#define COMPOUND_OP(Op)                                                       \
3356    case BO_##Op##Assign:                                                     \
3357      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3358                                             Result)
3359  COMPOUND_OP(Mul);
3360  COMPOUND_OP(Div);
3361  COMPOUND_OP(Rem);
3362  COMPOUND_OP(Add);
3363  COMPOUND_OP(Sub);
3364  COMPOUND_OP(Shl);
3365  COMPOUND_OP(Shr);
3366  COMPOUND_OP(And);
3367  COMPOUND_OP(Xor);
3368  COMPOUND_OP(Or);
3369#undef COMPOUND_OP
3370
3371  case BO_PtrMemD:
3372  case BO_PtrMemI:
3373  case BO_Mul:
3374  case BO_Div:
3375  case BO_Rem:
3376  case BO_Add:
3377  case BO_Sub:
3378  case BO_Shl:
3379  case BO_Shr:
3380  case BO_LT:
3381  case BO_GT:
3382  case BO_LE:
3383  case BO_GE:
3384  case BO_EQ:
3385  case BO_NE:
3386  case BO_And:
3387  case BO_Xor:
3388  case BO_Or:
3389  case BO_LAnd:
3390  case BO_LOr:
3391  case BO_Assign:
3392  case BO_Comma:
3393    llvm_unreachable("Not valid compound assignment operators");
3394  }
3395
3396  llvm_unreachable("Unhandled compound assignment operator");
3397}
3398