1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Objective-C code as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/CodeGen/CGFunctionInfo.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28using namespace clang;
29using namespace CodeGen;
30
31typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32static TryEmitResult
33tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                      QualType ET,
36                                      const ObjCMethodDecl *Method,
37                                      RValue Result);
38
39/// Given the address of a variable of pointer type, find the correct
40/// null to store into it.
41static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42  llvm::Type *type =
43    cast<llvm::PointerType>(addr->getType())->getElementType();
44  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45}
46
47/// Emits an instance of NSConstantString representing the object.
48llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49{
50  llvm::Constant *C =
51      CGM.getObjCRuntime().GenerateConstantString(E->getString());
52  // FIXME: This bitcast should just be made an invariant on the Runtime.
53  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54}
55
56/// EmitObjCBoxedExpr - This routine generates code to call
57/// the appropriate expression boxing method. This will either be
58/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59///
60llvm::Value *
61CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62  // Generate the correct selector for this literal's concrete type.
63  const Expr *SubExpr = E->getSubExpr();
64  // Get the method.
65  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66  assert(BoxingMethod && "BoxingMethod is null");
67  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68  Selector Sel = BoxingMethod->getSelector();
69
70  // Generate a reference to the class pointer, which will be the receiver.
71  // Assumes that the method was introduced in the class that should be
72  // messaged (avoids pulling it out of the result type).
73  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76
77  const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78  QualType ArgQT = argDecl->getType().getUnqualifiedType();
79  RValue RV = EmitAnyExpr(SubExpr);
80  CallArgList Args;
81  Args.add(RV, ArgQT);
82
83  RValue result = Runtime.GenerateMessageSend(
84      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
85      Args, ClassDecl, BoxingMethod);
86  return Builder.CreateBitCast(result.getScalarVal(),
87                               ConvertType(E->getType()));
88}
89
90llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                    const ObjCMethodDecl *MethodWithObjects) {
92  ASTContext &Context = CGM.getContext();
93  const ObjCDictionaryLiteral *DLE = nullptr;
94  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95  if (!ALE)
96    DLE = cast<ObjCDictionaryLiteral>(E);
97
98  // Compute the type of the array we're initializing.
99  uint64_t NumElements =
100    ALE ? ALE->getNumElements() : DLE->getNumElements();
101  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                            NumElements);
103  QualType ElementType = Context.getObjCIdType().withConst();
104  QualType ElementArrayType
105    = Context.getConstantArrayType(ElementType, APNumElements,
106                                   ArrayType::Normal, /*IndexTypeQuals=*/0);
107
108  // Allocate the temporary array(s).
109  llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110  llvm::Value *Keys = nullptr;
111  if (DLE)
112    Keys = CreateMemTemp(ElementArrayType, "keys");
113
114  // In ARC, we may need to do extra work to keep all the keys and
115  // values alive until after the call.
116  SmallVector<llvm::Value *, 16> NeededObjects;
117  bool TrackNeededObjects =
118    (getLangOpts().ObjCAutoRefCount &&
119    CGM.getCodeGenOpts().OptimizationLevel != 0);
120
121  // Perform the actual initialialization of the array(s).
122  for (uint64_t i = 0; i < NumElements; i++) {
123    if (ALE) {
124      // Emit the element and store it to the appropriate array slot.
125      const Expr *Rhs = ALE->getElement(i);
126      LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                   ElementType,
128                                   Context.getTypeAlignInChars(Rhs->getType()),
129                                   Context);
130
131      llvm::Value *value = EmitScalarExpr(Rhs);
132      EmitStoreThroughLValue(RValue::get(value), LV, true);
133      if (TrackNeededObjects) {
134        NeededObjects.push_back(value);
135      }
136    } else {
137      // Emit the key and store it to the appropriate array slot.
138      const Expr *Key = DLE->getKeyValueElement(i).Key;
139      LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                      ElementType,
141                                    Context.getTypeAlignInChars(Key->getType()),
142                                      Context);
143      llvm::Value *keyValue = EmitScalarExpr(Key);
144      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145
146      // Emit the value and store it to the appropriate array slot.
147      const Expr *Value = DLE->getKeyValueElement(i).Value;
148      LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                        ElementType,
150                                  Context.getTypeAlignInChars(Value->getType()),
151                                        Context);
152      llvm::Value *valueValue = EmitScalarExpr(Value);
153      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154      if (TrackNeededObjects) {
155        NeededObjects.push_back(keyValue);
156        NeededObjects.push_back(valueValue);
157      }
158    }
159  }
160
161  // Generate the argument list.
162  CallArgList Args;
163  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164  const ParmVarDecl *argDecl = *PI++;
165  QualType ArgQT = argDecl->getType().getUnqualifiedType();
166  Args.add(RValue::get(Objects), ArgQT);
167  if (DLE) {
168    argDecl = *PI++;
169    ArgQT = argDecl->getType().getUnqualifiedType();
170    Args.add(RValue::get(Keys), ArgQT);
171  }
172  argDecl = *PI;
173  ArgQT = argDecl->getType().getUnqualifiedType();
174  llvm::Value *Count =
175    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176  Args.add(RValue::get(Count), ArgQT);
177
178  // Generate a reference to the class pointer, which will be the receiver.
179  Selector Sel = MethodWithObjects->getSelector();
180  QualType ResultType = E->getType();
181  const ObjCObjectPointerType *InterfacePointerType
182    = ResultType->getAsObjCInterfacePointerType();
183  ObjCInterfaceDecl *Class
184    = InterfacePointerType->getObjectType()->getInterface();
185  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187
188  // Generate the message send.
189  RValue result = Runtime.GenerateMessageSend(
190      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
191      Receiver, Args, Class, MethodWithObjects);
192
193  // The above message send needs these objects, but in ARC they are
194  // passed in a buffer that is essentially __unsafe_unretained.
195  // Therefore we must prevent the optimizer from releasing them until
196  // after the call.
197  if (TrackNeededObjects) {
198    EmitARCIntrinsicUse(NeededObjects);
199  }
200
201  return Builder.CreateBitCast(result.getScalarVal(),
202                               ConvertType(E->getType()));
203}
204
205llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
206  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
207}
208
209llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
210                                            const ObjCDictionaryLiteral *E) {
211  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
212}
213
214/// Emit a selector.
215llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
216  // Untyped selector.
217  // Note that this implementation allows for non-constant strings to be passed
218  // as arguments to @selector().  Currently, the only thing preventing this
219  // behaviour is the type checking in the front end.
220  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
221}
222
223llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
224  // FIXME: This should pass the Decl not the name.
225  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
226}
227
228/// \brief Adjust the type of the result of an Objective-C message send
229/// expression when the method has a related result type.
230static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
231                                      QualType ExpT,
232                                      const ObjCMethodDecl *Method,
233                                      RValue Result) {
234  if (!Method)
235    return Result;
236
237  if (!Method->hasRelatedResultType() ||
238      CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
239      !Result.isScalar())
240    return Result;
241
242  // We have applied a related result type. Cast the rvalue appropriately.
243  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
244                                               CGF.ConvertType(ExpT)));
245}
246
247/// Decide whether to extend the lifetime of the receiver of a
248/// returns-inner-pointer message.
249static bool
250shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
251  switch (message->getReceiverKind()) {
252
253  // For a normal instance message, we should extend unless the
254  // receiver is loaded from a variable with precise lifetime.
255  case ObjCMessageExpr::Instance: {
256    const Expr *receiver = message->getInstanceReceiver();
257    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
258    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
259    receiver = ice->getSubExpr()->IgnoreParens();
260
261    // Only __strong variables.
262    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
263      return true;
264
265    // All ivars and fields have precise lifetime.
266    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
267      return false;
268
269    // Otherwise, check for variables.
270    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
271    if (!declRef) return true;
272    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
273    if (!var) return true;
274
275    // All variables have precise lifetime except local variables with
276    // automatic storage duration that aren't specially marked.
277    return (var->hasLocalStorage() &&
278            !var->hasAttr<ObjCPreciseLifetimeAttr>());
279  }
280
281  case ObjCMessageExpr::Class:
282  case ObjCMessageExpr::SuperClass:
283    // It's never necessary for class objects.
284    return false;
285
286  case ObjCMessageExpr::SuperInstance:
287    // We generally assume that 'self' lives throughout a method call.
288    return false;
289  }
290
291  llvm_unreachable("invalid receiver kind");
292}
293
294RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
295                                            ReturnValueSlot Return) {
296  // Only the lookup mechanism and first two arguments of the method
297  // implementation vary between runtimes.  We can get the receiver and
298  // arguments in generic code.
299
300  bool isDelegateInit = E->isDelegateInitCall();
301
302  const ObjCMethodDecl *method = E->getMethodDecl();
303
304  // We don't retain the receiver in delegate init calls, and this is
305  // safe because the receiver value is always loaded from 'self',
306  // which we zero out.  We don't want to Block_copy block receivers,
307  // though.
308  bool retainSelf =
309    (!isDelegateInit &&
310     CGM.getLangOpts().ObjCAutoRefCount &&
311     method &&
312     method->hasAttr<NSConsumesSelfAttr>());
313
314  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
315  bool isSuperMessage = false;
316  bool isClassMessage = false;
317  ObjCInterfaceDecl *OID = nullptr;
318  // Find the receiver
319  QualType ReceiverType;
320  llvm::Value *Receiver = nullptr;
321  switch (E->getReceiverKind()) {
322  case ObjCMessageExpr::Instance:
323    ReceiverType = E->getInstanceReceiver()->getType();
324    if (retainSelf) {
325      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
326                                                   E->getInstanceReceiver());
327      Receiver = ter.getPointer();
328      if (ter.getInt()) retainSelf = false;
329    } else
330      Receiver = EmitScalarExpr(E->getInstanceReceiver());
331    break;
332
333  case ObjCMessageExpr::Class: {
334    ReceiverType = E->getClassReceiver();
335    const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
336    assert(ObjTy && "Invalid Objective-C class message send");
337    OID = ObjTy->getInterface();
338    assert(OID && "Invalid Objective-C class message send");
339    Receiver = Runtime.GetClass(*this, OID);
340    isClassMessage = true;
341    break;
342  }
343
344  case ObjCMessageExpr::SuperInstance:
345    ReceiverType = E->getSuperType();
346    Receiver = LoadObjCSelf();
347    isSuperMessage = true;
348    break;
349
350  case ObjCMessageExpr::SuperClass:
351    ReceiverType = E->getSuperType();
352    Receiver = LoadObjCSelf();
353    isSuperMessage = true;
354    isClassMessage = true;
355    break;
356  }
357
358  if (retainSelf)
359    Receiver = EmitARCRetainNonBlock(Receiver);
360
361  // In ARC, we sometimes want to "extend the lifetime"
362  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
363  // messages.
364  if (getLangOpts().ObjCAutoRefCount && method &&
365      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
366      shouldExtendReceiverForInnerPointerMessage(E))
367    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
368
369  QualType ResultType = method ? method->getReturnType() : E->getType();
370
371  CallArgList Args;
372  EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
373
374  // For delegate init calls in ARC, do an unsafe store of null into
375  // self.  This represents the call taking direct ownership of that
376  // value.  We have to do this after emitting the other call
377  // arguments because they might also reference self, but we don't
378  // have to worry about any of them modifying self because that would
379  // be an undefined read and write of an object in unordered
380  // expressions.
381  if (isDelegateInit) {
382    assert(getLangOpts().ObjCAutoRefCount &&
383           "delegate init calls should only be marked in ARC");
384
385    // Do an unsafe store of null into self.
386    llvm::Value *selfAddr =
387      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
388    assert(selfAddr && "no self entry for a delegate init call?");
389
390    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
391  }
392
393  RValue result;
394  if (isSuperMessage) {
395    // super is only valid in an Objective-C method
396    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
397    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
398    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
399                                              E->getSelector(),
400                                              OMD->getClassInterface(),
401                                              isCategoryImpl,
402                                              Receiver,
403                                              isClassMessage,
404                                              Args,
405                                              method);
406  } else {
407    result = Runtime.GenerateMessageSend(*this, Return, ResultType,
408                                         E->getSelector(),
409                                         Receiver, Args, OID,
410                                         method);
411  }
412
413  // For delegate init calls in ARC, implicitly store the result of
414  // the call back into self.  This takes ownership of the value.
415  if (isDelegateInit) {
416    llvm::Value *selfAddr =
417      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
418    llvm::Value *newSelf = result.getScalarVal();
419
420    // The delegate return type isn't necessarily a matching type; in
421    // fact, it's quite likely to be 'id'.
422    llvm::Type *selfTy =
423      cast<llvm::PointerType>(selfAddr->getType())->getElementType();
424    newSelf = Builder.CreateBitCast(newSelf, selfTy);
425
426    Builder.CreateStore(newSelf, selfAddr);
427  }
428
429  return AdjustRelatedResultType(*this, E->getType(), method, result);
430}
431
432namespace {
433struct FinishARCDealloc : EHScopeStack::Cleanup {
434  void Emit(CodeGenFunction &CGF, Flags flags) override {
435    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
436
437    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
438    const ObjCInterfaceDecl *iface = impl->getClassInterface();
439    if (!iface->getSuperClass()) return;
440
441    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
442
443    // Call [super dealloc] if we have a superclass.
444    llvm::Value *self = CGF.LoadObjCSelf();
445
446    CallArgList args;
447    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
448                                                      CGF.getContext().VoidTy,
449                                                      method->getSelector(),
450                                                      iface,
451                                                      isCategory,
452                                                      self,
453                                                      /*is class msg*/ false,
454                                                      args,
455                                                      method);
456  }
457};
458}
459
460/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
461/// the LLVM function and sets the other context used by
462/// CodeGenFunction.
463void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
464                                      const ObjCContainerDecl *CD,
465                                      SourceLocation StartLoc) {
466  FunctionArgList args;
467  // Check if we should generate debug info for this method.
468  if (OMD->hasAttr<NoDebugAttr>())
469    DebugInfo = nullptr; // disable debug info indefinitely for this function
470
471  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
472
473  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
474  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
475
476  args.push_back(OMD->getSelfDecl());
477  args.push_back(OMD->getCmdDecl());
478
479  for (const auto *PI : OMD->params())
480    args.push_back(PI);
481
482  CurGD = OMD;
483
484  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
485                OMD->getLocation(), StartLoc);
486
487  // In ARC, certain methods get an extra cleanup.
488  if (CGM.getLangOpts().ObjCAutoRefCount &&
489      OMD->isInstanceMethod() &&
490      OMD->getSelector().isUnarySelector()) {
491    const IdentifierInfo *ident =
492      OMD->getSelector().getIdentifierInfoForSlot(0);
493    if (ident->isStr("dealloc"))
494      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
495  }
496}
497
498static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
499                                              LValue lvalue, QualType type);
500
501/// Generate an Objective-C method.  An Objective-C method is a C function with
502/// its pointer, name, and types registered in the class struture.
503void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
504  StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
505  PGO.assignRegionCounters(OMD, CurFn);
506  assert(isa<CompoundStmt>(OMD->getBody()));
507  RegionCounter Cnt = getPGORegionCounter(OMD->getBody());
508  Cnt.beginRegion(Builder);
509  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
510  FinishFunction(OMD->getBodyRBrace());
511  PGO.emitInstrumentationData();
512  PGO.destroyRegionCounters();
513}
514
515/// emitStructGetterCall - Call the runtime function to load a property
516/// into the return value slot.
517static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
518                                 bool isAtomic, bool hasStrong) {
519  ASTContext &Context = CGF.getContext();
520
521  llvm::Value *src =
522    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
523                          ivar, 0).getAddress();
524
525  // objc_copyStruct (ReturnValue, &structIvar,
526  //                  sizeof (Type of Ivar), isAtomic, false);
527  CallArgList args;
528
529  llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
530  args.add(RValue::get(dest), Context.VoidPtrTy);
531
532  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
533  args.add(RValue::get(src), Context.VoidPtrTy);
534
535  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
536  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
537  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
538  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
539
540  llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
541  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
542                                                      FunctionType::ExtInfo(),
543                                                      RequiredArgs::All),
544               fn, ReturnValueSlot(), args);
545}
546
547/// Determine whether the given architecture supports unaligned atomic
548/// accesses.  They don't have to be fast, just faster than a function
549/// call and a mutex.
550static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
551  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
552  // currently supported by the backend.)
553  return 0;
554}
555
556/// Return the maximum size that permits atomic accesses for the given
557/// architecture.
558static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
559                                        llvm::Triple::ArchType arch) {
560  // ARM has 8-byte atomic accesses, but it's not clear whether we
561  // want to rely on them here.
562
563  // In the default case, just assume that any size up to a pointer is
564  // fine given adequate alignment.
565  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
566}
567
568namespace {
569  class PropertyImplStrategy {
570  public:
571    enum StrategyKind {
572      /// The 'native' strategy is to use the architecture's provided
573      /// reads and writes.
574      Native,
575
576      /// Use objc_setProperty and objc_getProperty.
577      GetSetProperty,
578
579      /// Use objc_setProperty for the setter, but use expression
580      /// evaluation for the getter.
581      SetPropertyAndExpressionGet,
582
583      /// Use objc_copyStruct.
584      CopyStruct,
585
586      /// The 'expression' strategy is to emit normal assignment or
587      /// lvalue-to-rvalue expressions.
588      Expression
589    };
590
591    StrategyKind getKind() const { return StrategyKind(Kind); }
592
593    bool hasStrongMember() const { return HasStrong; }
594    bool isAtomic() const { return IsAtomic; }
595    bool isCopy() const { return IsCopy; }
596
597    CharUnits getIvarSize() const { return IvarSize; }
598    CharUnits getIvarAlignment() const { return IvarAlignment; }
599
600    PropertyImplStrategy(CodeGenModule &CGM,
601                         const ObjCPropertyImplDecl *propImpl);
602
603  private:
604    unsigned Kind : 8;
605    unsigned IsAtomic : 1;
606    unsigned IsCopy : 1;
607    unsigned HasStrong : 1;
608
609    CharUnits IvarSize;
610    CharUnits IvarAlignment;
611  };
612}
613
614/// Pick an implementation strategy for the given property synthesis.
615PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
616                                     const ObjCPropertyImplDecl *propImpl) {
617  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
618  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
619
620  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
621  IsAtomic = prop->isAtomic();
622  HasStrong = false; // doesn't matter here.
623
624  // Evaluate the ivar's size and alignment.
625  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
626  QualType ivarType = ivar->getType();
627  std::tie(IvarSize, IvarAlignment) =
628      CGM.getContext().getTypeInfoInChars(ivarType);
629
630  // If we have a copy property, we always have to use getProperty/setProperty.
631  // TODO: we could actually use setProperty and an expression for non-atomics.
632  if (IsCopy) {
633    Kind = GetSetProperty;
634    return;
635  }
636
637  // Handle retain.
638  if (setterKind == ObjCPropertyDecl::Retain) {
639    // In GC-only, there's nothing special that needs to be done.
640    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
641      // fallthrough
642
643    // In ARC, if the property is non-atomic, use expression emission,
644    // which translates to objc_storeStrong.  This isn't required, but
645    // it's slightly nicer.
646    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
647      // Using standard expression emission for the setter is only
648      // acceptable if the ivar is __strong, which won't be true if
649      // the property is annotated with __attribute__((NSObject)).
650      // TODO: falling all the way back to objc_setProperty here is
651      // just laziness, though;  we could still use objc_storeStrong
652      // if we hacked it right.
653      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
654        Kind = Expression;
655      else
656        Kind = SetPropertyAndExpressionGet;
657      return;
658
659    // Otherwise, we need to at least use setProperty.  However, if
660    // the property isn't atomic, we can use normal expression
661    // emission for the getter.
662    } else if (!IsAtomic) {
663      Kind = SetPropertyAndExpressionGet;
664      return;
665
666    // Otherwise, we have to use both setProperty and getProperty.
667    } else {
668      Kind = GetSetProperty;
669      return;
670    }
671  }
672
673  // If we're not atomic, just use expression accesses.
674  if (!IsAtomic) {
675    Kind = Expression;
676    return;
677  }
678
679  // Properties on bitfield ivars need to be emitted using expression
680  // accesses even if they're nominally atomic.
681  if (ivar->isBitField()) {
682    Kind = Expression;
683    return;
684  }
685
686  // GC-qualified or ARC-qualified ivars need to be emitted as
687  // expressions.  This actually works out to being atomic anyway,
688  // except for ARC __strong, but that should trigger the above code.
689  if (ivarType.hasNonTrivialObjCLifetime() ||
690      (CGM.getLangOpts().getGC() &&
691       CGM.getContext().getObjCGCAttrKind(ivarType))) {
692    Kind = Expression;
693    return;
694  }
695
696  // Compute whether the ivar has strong members.
697  if (CGM.getLangOpts().getGC())
698    if (const RecordType *recordType = ivarType->getAs<RecordType>())
699      HasStrong = recordType->getDecl()->hasObjectMember();
700
701  // We can never access structs with object members with a native
702  // access, because we need to use write barriers.  This is what
703  // objc_copyStruct is for.
704  if (HasStrong) {
705    Kind = CopyStruct;
706    return;
707  }
708
709  // Otherwise, this is target-dependent and based on the size and
710  // alignment of the ivar.
711
712  // If the size of the ivar is not a power of two, give up.  We don't
713  // want to get into the business of doing compare-and-swaps.
714  if (!IvarSize.isPowerOfTwo()) {
715    Kind = CopyStruct;
716    return;
717  }
718
719  llvm::Triple::ArchType arch =
720    CGM.getTarget().getTriple().getArch();
721
722  // Most architectures require memory to fit within a single cache
723  // line, so the alignment has to be at least the size of the access.
724  // Otherwise we have to grab a lock.
725  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
726    Kind = CopyStruct;
727    return;
728  }
729
730  // If the ivar's size exceeds the architecture's maximum atomic
731  // access size, we have to use CopyStruct.
732  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
733    Kind = CopyStruct;
734    return;
735  }
736
737  // Otherwise, we can use native loads and stores.
738  Kind = Native;
739}
740
741/// \brief Generate an Objective-C property getter function.
742///
743/// The given Decl must be an ObjCImplementationDecl. \@synthesize
744/// is illegal within a category.
745void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
746                                         const ObjCPropertyImplDecl *PID) {
747  llvm::Constant *AtomicHelperFn =
748    GenerateObjCAtomicGetterCopyHelperFunction(PID);
749  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
750  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
751  assert(OMD && "Invalid call to generate getter (empty method)");
752  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
753
754  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
755
756  FinishFunction();
757}
758
759static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
760  const Expr *getter = propImpl->getGetterCXXConstructor();
761  if (!getter) return true;
762
763  // Sema only makes only of these when the ivar has a C++ class type,
764  // so the form is pretty constrained.
765
766  // If the property has a reference type, we might just be binding a
767  // reference, in which case the result will be a gl-value.  We should
768  // treat this as a non-trivial operation.
769  if (getter->isGLValue())
770    return false;
771
772  // If we selected a trivial copy-constructor, we're okay.
773  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
774    return (construct->getConstructor()->isTrivial());
775
776  // The constructor might require cleanups (in which case it's never
777  // trivial).
778  assert(isa<ExprWithCleanups>(getter));
779  return false;
780}
781
782/// emitCPPObjectAtomicGetterCall - Call the runtime function to
783/// copy the ivar into the resturn slot.
784static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
785                                          llvm::Value *returnAddr,
786                                          ObjCIvarDecl *ivar,
787                                          llvm::Constant *AtomicHelperFn) {
788  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
789  //                           AtomicHelperFn);
790  CallArgList args;
791
792  // The 1st argument is the return Slot.
793  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
794
795  // The 2nd argument is the address of the ivar.
796  llvm::Value *ivarAddr =
797  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
798                        CGF.LoadObjCSelf(), ivar, 0).getAddress();
799  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
800  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
801
802  // Third argument is the helper function.
803  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
804
805  llvm::Value *copyCppAtomicObjectFn =
806    CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
807  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
808                                                      args,
809                                                      FunctionType::ExtInfo(),
810                                                      RequiredArgs::All),
811               copyCppAtomicObjectFn, ReturnValueSlot(), args);
812}
813
814void
815CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
816                                        const ObjCPropertyImplDecl *propImpl,
817                                        const ObjCMethodDecl *GetterMethodDecl,
818                                        llvm::Constant *AtomicHelperFn) {
819  // If there's a non-trivial 'get' expression, we just have to emit that.
820  if (!hasTrivialGetExpr(propImpl)) {
821    if (!AtomicHelperFn) {
822      ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
823                     /*nrvo*/ nullptr);
824      EmitReturnStmt(ret);
825    }
826    else {
827      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
828      emitCPPObjectAtomicGetterCall(*this, ReturnValue,
829                                    ivar, AtomicHelperFn);
830    }
831    return;
832  }
833
834  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
835  QualType propType = prop->getType();
836  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
837
838  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
839
840  // Pick an implementation strategy.
841  PropertyImplStrategy strategy(CGM, propImpl);
842  switch (strategy.getKind()) {
843  case PropertyImplStrategy::Native: {
844    // We don't need to do anything for a zero-size struct.
845    if (strategy.getIvarSize().isZero())
846      return;
847
848    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
849
850    // Currently, all atomic accesses have to be through integer
851    // types, so there's no point in trying to pick a prettier type.
852    llvm::Type *bitcastType =
853      llvm::Type::getIntNTy(getLLVMContext(),
854                            getContext().toBits(strategy.getIvarSize()));
855    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
856
857    // Perform an atomic load.  This does not impose ordering constraints.
858    llvm::Value *ivarAddr = LV.getAddress();
859    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
860    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
861    load->setAlignment(strategy.getIvarAlignment().getQuantity());
862    load->setAtomic(llvm::Unordered);
863
864    // Store that value into the return address.  Doing this with a
865    // bitcast is likely to produce some pretty ugly IR, but it's not
866    // the *most* terrible thing in the world.
867    Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
868
869    // Make sure we don't do an autorelease.
870    AutoreleaseResult = false;
871    return;
872  }
873
874  case PropertyImplStrategy::GetSetProperty: {
875    llvm::Value *getPropertyFn =
876      CGM.getObjCRuntime().GetPropertyGetFunction();
877    if (!getPropertyFn) {
878      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
879      return;
880    }
881
882    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
883    // FIXME: Can't this be simpler? This might even be worse than the
884    // corresponding gcc code.
885    llvm::Value *cmd =
886      Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
887    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
888    llvm::Value *ivarOffset =
889      EmitIvarOffset(classImpl->getClassInterface(), ivar);
890
891    CallArgList args;
892    args.add(RValue::get(self), getContext().getObjCIdType());
893    args.add(RValue::get(cmd), getContext().getObjCSelType());
894    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
895    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
896             getContext().BoolTy);
897
898    // FIXME: We shouldn't need to get the function info here, the
899    // runtime already should have computed it to build the function.
900    llvm::Instruction *CallInstruction;
901    RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
902                                                       FunctionType::ExtInfo(),
903                                                            RequiredArgs::All),
904                         getPropertyFn, ReturnValueSlot(), args, nullptr,
905                         &CallInstruction);
906    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
907      call->setTailCall();
908
909    // We need to fix the type here. Ivars with copy & retain are
910    // always objects so we don't need to worry about complex or
911    // aggregates.
912    RV = RValue::get(Builder.CreateBitCast(
913        RV.getScalarVal(),
914        getTypes().ConvertType(getterMethod->getReturnType())));
915
916    EmitReturnOfRValue(RV, propType);
917
918    // objc_getProperty does an autorelease, so we should suppress ours.
919    AutoreleaseResult = false;
920
921    return;
922  }
923
924  case PropertyImplStrategy::CopyStruct:
925    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
926                         strategy.hasStrongMember());
927    return;
928
929  case PropertyImplStrategy::Expression:
930  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
931    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
932
933    QualType ivarType = ivar->getType();
934    switch (getEvaluationKind(ivarType)) {
935    case TEK_Complex: {
936      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
937      EmitStoreOfComplex(pair,
938                         MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
939                         /*init*/ true);
940      return;
941    }
942    case TEK_Aggregate:
943      // The return value slot is guaranteed to not be aliased, but
944      // that's not necessarily the same as "on the stack", so
945      // we still potentially need objc_memmove_collectable.
946      EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
947      return;
948    case TEK_Scalar: {
949      llvm::Value *value;
950      if (propType->isReferenceType()) {
951        value = LV.getAddress();
952      } else {
953        // We want to load and autoreleaseReturnValue ARC __weak ivars.
954        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
955          value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
956
957        // Otherwise we want to do a simple load, suppressing the
958        // final autorelease.
959        } else {
960          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
961          AutoreleaseResult = false;
962        }
963
964        value = Builder.CreateBitCast(value, ConvertType(propType));
965        value = Builder.CreateBitCast(
966            value, ConvertType(GetterMethodDecl->getReturnType()));
967      }
968
969      EmitReturnOfRValue(RValue::get(value), propType);
970      return;
971    }
972    }
973    llvm_unreachable("bad evaluation kind");
974  }
975
976  }
977  llvm_unreachable("bad @property implementation strategy!");
978}
979
980/// emitStructSetterCall - Call the runtime function to store the value
981/// from the first formal parameter into the given ivar.
982static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
983                                 ObjCIvarDecl *ivar) {
984  // objc_copyStruct (&structIvar, &Arg,
985  //                  sizeof (struct something), true, false);
986  CallArgList args;
987
988  // The first argument is the address of the ivar.
989  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
990                                                CGF.LoadObjCSelf(), ivar, 0)
991    .getAddress();
992  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
993  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
994
995  // The second argument is the address of the parameter variable.
996  ParmVarDecl *argVar = *OMD->param_begin();
997  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
998                     VK_LValue, SourceLocation());
999  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1000  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1001  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1002
1003  // The third argument is the sizeof the type.
1004  llvm::Value *size =
1005    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1006  args.add(RValue::get(size), CGF.getContext().getSizeType());
1007
1008  // The fourth argument is the 'isAtomic' flag.
1009  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1010
1011  // The fifth argument is the 'hasStrong' flag.
1012  // FIXME: should this really always be false?
1013  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1014
1015  llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1016  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1017                                                      args,
1018                                                      FunctionType::ExtInfo(),
1019                                                      RequiredArgs::All),
1020               copyStructFn, ReturnValueSlot(), args);
1021}
1022
1023/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1024/// the value from the first formal parameter into the given ivar, using
1025/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1026static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1027                                          ObjCMethodDecl *OMD,
1028                                          ObjCIvarDecl *ivar,
1029                                          llvm::Constant *AtomicHelperFn) {
1030  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1031  //                           AtomicHelperFn);
1032  CallArgList args;
1033
1034  // The first argument is the address of the ivar.
1035  llvm::Value *ivarAddr =
1036    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1037                          CGF.LoadObjCSelf(), ivar, 0).getAddress();
1038  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1039  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1040
1041  // The second argument is the address of the parameter variable.
1042  ParmVarDecl *argVar = *OMD->param_begin();
1043  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1044                     VK_LValue, SourceLocation());
1045  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1046  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1047  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1048
1049  // Third argument is the helper function.
1050  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1051
1052  llvm::Value *copyCppAtomicObjectFn =
1053    CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1054  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1055                                                      args,
1056                                                      FunctionType::ExtInfo(),
1057                                                      RequiredArgs::All),
1058               copyCppAtomicObjectFn, ReturnValueSlot(), args);
1059}
1060
1061
1062static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1063  Expr *setter = PID->getSetterCXXAssignment();
1064  if (!setter) return true;
1065
1066  // Sema only makes only of these when the ivar has a C++ class type,
1067  // so the form is pretty constrained.
1068
1069  // An operator call is trivial if the function it calls is trivial.
1070  // This also implies that there's nothing non-trivial going on with
1071  // the arguments, because operator= can only be trivial if it's a
1072  // synthesized assignment operator and therefore both parameters are
1073  // references.
1074  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1075    if (const FunctionDecl *callee
1076          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1077      if (callee->isTrivial())
1078        return true;
1079    return false;
1080  }
1081
1082  assert(isa<ExprWithCleanups>(setter));
1083  return false;
1084}
1085
1086static bool UseOptimizedSetter(CodeGenModule &CGM) {
1087  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1088    return false;
1089  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1090}
1091
1092void
1093CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1094                                        const ObjCPropertyImplDecl *propImpl,
1095                                        llvm::Constant *AtomicHelperFn) {
1096  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1097  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1098  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1099
1100  // Just use the setter expression if Sema gave us one and it's
1101  // non-trivial.
1102  if (!hasTrivialSetExpr(propImpl)) {
1103    if (!AtomicHelperFn)
1104      // If non-atomic, assignment is called directly.
1105      EmitStmt(propImpl->getSetterCXXAssignment());
1106    else
1107      // If atomic, assignment is called via a locking api.
1108      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1109                                    AtomicHelperFn);
1110    return;
1111  }
1112
1113  PropertyImplStrategy strategy(CGM, propImpl);
1114  switch (strategy.getKind()) {
1115  case PropertyImplStrategy::Native: {
1116    // We don't need to do anything for a zero-size struct.
1117    if (strategy.getIvarSize().isZero())
1118      return;
1119
1120    llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1121
1122    LValue ivarLValue =
1123      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1124    llvm::Value *ivarAddr = ivarLValue.getAddress();
1125
1126    // Currently, all atomic accesses have to be through integer
1127    // types, so there's no point in trying to pick a prettier type.
1128    llvm::Type *bitcastType =
1129      llvm::Type::getIntNTy(getLLVMContext(),
1130                            getContext().toBits(strategy.getIvarSize()));
1131    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1132
1133    // Cast both arguments to the chosen operation type.
1134    argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1135    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1136
1137    // This bitcast load is likely to cause some nasty IR.
1138    llvm::Value *load = Builder.CreateLoad(argAddr);
1139
1140    // Perform an atomic store.  There are no memory ordering requirements.
1141    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1142    store->setAlignment(strategy.getIvarAlignment().getQuantity());
1143    store->setAtomic(llvm::Unordered);
1144    return;
1145  }
1146
1147  case PropertyImplStrategy::GetSetProperty:
1148  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1149
1150    llvm::Value *setOptimizedPropertyFn = nullptr;
1151    llvm::Value *setPropertyFn = nullptr;
1152    if (UseOptimizedSetter(CGM)) {
1153      // 10.8 and iOS 6.0 code and GC is off
1154      setOptimizedPropertyFn =
1155        CGM.getObjCRuntime()
1156           .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1157                                            strategy.isCopy());
1158      if (!setOptimizedPropertyFn) {
1159        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1160        return;
1161      }
1162    }
1163    else {
1164      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1165      if (!setPropertyFn) {
1166        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1167        return;
1168      }
1169    }
1170
1171    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1172    //                       <is-atomic>, <is-copy>).
1173    llvm::Value *cmd =
1174      Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1175    llvm::Value *self =
1176      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1177    llvm::Value *ivarOffset =
1178      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1179    llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1180    arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1181
1182    CallArgList args;
1183    args.add(RValue::get(self), getContext().getObjCIdType());
1184    args.add(RValue::get(cmd), getContext().getObjCSelType());
1185    if (setOptimizedPropertyFn) {
1186      args.add(RValue::get(arg), getContext().getObjCIdType());
1187      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1188      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1189                                                  FunctionType::ExtInfo(),
1190                                                  RequiredArgs::All),
1191               setOptimizedPropertyFn, ReturnValueSlot(), args);
1192    } else {
1193      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1194      args.add(RValue::get(arg), getContext().getObjCIdType());
1195      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1196               getContext().BoolTy);
1197      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1198               getContext().BoolTy);
1199      // FIXME: We shouldn't need to get the function info here, the runtime
1200      // already should have computed it to build the function.
1201      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1202                                                  FunctionType::ExtInfo(),
1203                                                  RequiredArgs::All),
1204               setPropertyFn, ReturnValueSlot(), args);
1205    }
1206
1207    return;
1208  }
1209
1210  case PropertyImplStrategy::CopyStruct:
1211    emitStructSetterCall(*this, setterMethod, ivar);
1212    return;
1213
1214  case PropertyImplStrategy::Expression:
1215    break;
1216  }
1217
1218  // Otherwise, fake up some ASTs and emit a normal assignment.
1219  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1220  DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1221                   VK_LValue, SourceLocation());
1222  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1223                            selfDecl->getType(), CK_LValueToRValue, &self,
1224                            VK_RValue);
1225  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1226                          SourceLocation(), SourceLocation(),
1227                          &selfLoad, true, true);
1228
1229  ParmVarDecl *argDecl = *setterMethod->param_begin();
1230  QualType argType = argDecl->getType().getNonReferenceType();
1231  DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1232  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1233                           argType.getUnqualifiedType(), CK_LValueToRValue,
1234                           &arg, VK_RValue);
1235
1236  // The property type can differ from the ivar type in some situations with
1237  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1238  // The following absurdity is just to ensure well-formed IR.
1239  CastKind argCK = CK_NoOp;
1240  if (ivarRef.getType()->isObjCObjectPointerType()) {
1241    if (argLoad.getType()->isObjCObjectPointerType())
1242      argCK = CK_BitCast;
1243    else if (argLoad.getType()->isBlockPointerType())
1244      argCK = CK_BlockPointerToObjCPointerCast;
1245    else
1246      argCK = CK_CPointerToObjCPointerCast;
1247  } else if (ivarRef.getType()->isBlockPointerType()) {
1248     if (argLoad.getType()->isBlockPointerType())
1249      argCK = CK_BitCast;
1250    else
1251      argCK = CK_AnyPointerToBlockPointerCast;
1252  } else if (ivarRef.getType()->isPointerType()) {
1253    argCK = CK_BitCast;
1254  }
1255  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1256                           ivarRef.getType(), argCK, &argLoad,
1257                           VK_RValue);
1258  Expr *finalArg = &argLoad;
1259  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1260                                           argLoad.getType()))
1261    finalArg = &argCast;
1262
1263
1264  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1265                        ivarRef.getType(), VK_RValue, OK_Ordinary,
1266                        SourceLocation(), false);
1267  EmitStmt(&assign);
1268}
1269
1270/// \brief Generate an Objective-C property setter function.
1271///
1272/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1273/// is illegal within a category.
1274void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1275                                         const ObjCPropertyImplDecl *PID) {
1276  llvm::Constant *AtomicHelperFn =
1277    GenerateObjCAtomicSetterCopyHelperFunction(PID);
1278  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1279  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1280  assert(OMD && "Invalid call to generate setter (empty method)");
1281  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1282
1283  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1284
1285  FinishFunction();
1286}
1287
1288namespace {
1289  struct DestroyIvar : EHScopeStack::Cleanup {
1290  private:
1291    llvm::Value *addr;
1292    const ObjCIvarDecl *ivar;
1293    CodeGenFunction::Destroyer *destroyer;
1294    bool useEHCleanupForArray;
1295  public:
1296    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1297                CodeGenFunction::Destroyer *destroyer,
1298                bool useEHCleanupForArray)
1299      : addr(addr), ivar(ivar), destroyer(destroyer),
1300        useEHCleanupForArray(useEHCleanupForArray) {}
1301
1302    void Emit(CodeGenFunction &CGF, Flags flags) override {
1303      LValue lvalue
1304        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1305      CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1306                      flags.isForNormalCleanup() && useEHCleanupForArray);
1307    }
1308  };
1309}
1310
1311/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1312static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1313                                      llvm::Value *addr,
1314                                      QualType type) {
1315  llvm::Value *null = getNullForVariable(addr);
1316  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1317}
1318
1319static void emitCXXDestructMethod(CodeGenFunction &CGF,
1320                                  ObjCImplementationDecl *impl) {
1321  CodeGenFunction::RunCleanupsScope scope(CGF);
1322
1323  llvm::Value *self = CGF.LoadObjCSelf();
1324
1325  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1326  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1327       ivar; ivar = ivar->getNextIvar()) {
1328    QualType type = ivar->getType();
1329
1330    // Check whether the ivar is a destructible type.
1331    QualType::DestructionKind dtorKind = type.isDestructedType();
1332    if (!dtorKind) continue;
1333
1334    CodeGenFunction::Destroyer *destroyer = nullptr;
1335
1336    // Use a call to objc_storeStrong to destroy strong ivars, for the
1337    // general benefit of the tools.
1338    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1339      destroyer = destroyARCStrongWithStore;
1340
1341    // Otherwise use the default for the destruction kind.
1342    } else {
1343      destroyer = CGF.getDestroyer(dtorKind);
1344    }
1345
1346    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1347
1348    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1349                                         cleanupKind & EHCleanup);
1350  }
1351
1352  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1353}
1354
1355void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1356                                                 ObjCMethodDecl *MD,
1357                                                 bool ctor) {
1358  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1359  StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1360
1361  // Emit .cxx_construct.
1362  if (ctor) {
1363    // Suppress the final autorelease in ARC.
1364    AutoreleaseResult = false;
1365
1366    for (const auto *IvarInit : IMP->inits()) {
1367      FieldDecl *Field = IvarInit->getAnyMember();
1368      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1369      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1370                                    LoadObjCSelf(), Ivar, 0);
1371      EmitAggExpr(IvarInit->getInit(),
1372                  AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1373                                          AggValueSlot::DoesNotNeedGCBarriers,
1374                                          AggValueSlot::IsNotAliased));
1375    }
1376    // constructor returns 'self'.
1377    CodeGenTypes &Types = CGM.getTypes();
1378    QualType IdTy(CGM.getContext().getObjCIdType());
1379    llvm::Value *SelfAsId =
1380      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1381    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1382
1383  // Emit .cxx_destruct.
1384  } else {
1385    emitCXXDestructMethod(*this, IMP);
1386  }
1387  FinishFunction();
1388}
1389
1390bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1391  CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1392  it++; it++;
1393  const ABIArgInfo &AI = it->info;
1394  // FIXME. Is this sufficient check?
1395  return (AI.getKind() == ABIArgInfo::Indirect);
1396}
1397
1398bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1399  if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1400    return false;
1401  if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1402    return FDTTy->getDecl()->hasObjectMember();
1403  return false;
1404}
1405
1406llvm::Value *CodeGenFunction::LoadObjCSelf() {
1407  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1408  DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1409                  Self->getType(), VK_LValue, SourceLocation());
1410  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1411}
1412
1413QualType CodeGenFunction::TypeOfSelfObject() {
1414  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1415  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1416  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1417    getContext().getCanonicalType(selfDecl->getType()));
1418  return PTy->getPointeeType();
1419}
1420
1421void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1422  llvm::Constant *EnumerationMutationFn =
1423    CGM.getObjCRuntime().EnumerationMutationFunction();
1424
1425  if (!EnumerationMutationFn) {
1426    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1427    return;
1428  }
1429
1430  CGDebugInfo *DI = getDebugInfo();
1431  if (DI)
1432    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1433
1434  // The local variable comes into scope immediately.
1435  AutoVarEmission variable = AutoVarEmission::invalid();
1436  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1437    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1438
1439  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1440
1441  // Fast enumeration state.
1442  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1443  llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1444  EmitNullInitialization(StatePtr, StateTy);
1445
1446  // Number of elements in the items array.
1447  static const unsigned NumItems = 16;
1448
1449  // Fetch the countByEnumeratingWithState:objects:count: selector.
1450  IdentifierInfo *II[] = {
1451    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1452    &CGM.getContext().Idents.get("objects"),
1453    &CGM.getContext().Idents.get("count")
1454  };
1455  Selector FastEnumSel =
1456    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1457
1458  QualType ItemsTy =
1459    getContext().getConstantArrayType(getContext().getObjCIdType(),
1460                                      llvm::APInt(32, NumItems),
1461                                      ArrayType::Normal, 0);
1462  llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1463
1464  // Emit the collection pointer.  In ARC, we do a retain.
1465  llvm::Value *Collection;
1466  if (getLangOpts().ObjCAutoRefCount) {
1467    Collection = EmitARCRetainScalarExpr(S.getCollection());
1468
1469    // Enter a cleanup to do the release.
1470    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1471  } else {
1472    Collection = EmitScalarExpr(S.getCollection());
1473  }
1474
1475  // The 'continue' label needs to appear within the cleanup for the
1476  // collection object.
1477  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1478
1479  // Send it our message:
1480  CallArgList Args;
1481
1482  // The first argument is a temporary of the enumeration-state type.
1483  Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1484
1485  // The second argument is a temporary array with space for NumItems
1486  // pointers.  We'll actually be loading elements from the array
1487  // pointer written into the control state; this buffer is so that
1488  // collections that *aren't* backed by arrays can still queue up
1489  // batches of elements.
1490  Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1491
1492  // The third argument is the capacity of that temporary array.
1493  llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1494  llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1495  Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1496
1497  // Start the enumeration.
1498  RValue CountRV =
1499    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1500                                             getContext().UnsignedLongTy,
1501                                             FastEnumSel,
1502                                             Collection, Args);
1503
1504  // The initial number of objects that were returned in the buffer.
1505  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1506
1507  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1508  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1509
1510  llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1511
1512  // If the limit pointer was zero to begin with, the collection is
1513  // empty; skip all this. Set the branch weight assuming this has the same
1514  // probability of exiting the loop as any other loop exit.
1515  uint64_t EntryCount = PGO.getCurrentRegionCount();
1516  RegionCounter Cnt = getPGORegionCounter(&S);
1517  Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1518                       EmptyBB, LoopInitBB,
1519                       PGO.createBranchWeights(EntryCount, Cnt.getCount()));
1520
1521  // Otherwise, initialize the loop.
1522  EmitBlock(LoopInitBB);
1523
1524  // Save the initial mutations value.  This is the value at an
1525  // address that was written into the state object by
1526  // countByEnumeratingWithState:objects:count:.
1527  llvm::Value *StateMutationsPtrPtr =
1528    Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1529  llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1530                                                      "mutationsptr");
1531
1532  llvm::Value *initialMutations =
1533    Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1534
1535  // Start looping.  This is the point we return to whenever we have a
1536  // fresh, non-empty batch of objects.
1537  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1538  EmitBlock(LoopBodyBB);
1539
1540  // The current index into the buffer.
1541  llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1542  index->addIncoming(zero, LoopInitBB);
1543
1544  // The current buffer size.
1545  llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1546  count->addIncoming(initialBufferLimit, LoopInitBB);
1547
1548  Cnt.beginRegion(Builder);
1549
1550  // Check whether the mutations value has changed from where it was
1551  // at start.  StateMutationsPtr should actually be invariant between
1552  // refreshes.
1553  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1554  llvm::Value *currentMutations
1555    = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1556
1557  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1558  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1559
1560  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1561                       WasNotMutatedBB, WasMutatedBB);
1562
1563  // If so, call the enumeration-mutation function.
1564  EmitBlock(WasMutatedBB);
1565  llvm::Value *V =
1566    Builder.CreateBitCast(Collection,
1567                          ConvertType(getContext().getObjCIdType()));
1568  CallArgList Args2;
1569  Args2.add(RValue::get(V), getContext().getObjCIdType());
1570  // FIXME: We shouldn't need to get the function info here, the runtime already
1571  // should have computed it to build the function.
1572  EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1573                                                  FunctionType::ExtInfo(),
1574                                                  RequiredArgs::All),
1575           EnumerationMutationFn, ReturnValueSlot(), Args2);
1576
1577  // Otherwise, or if the mutation function returns, just continue.
1578  EmitBlock(WasNotMutatedBB);
1579
1580  // Initialize the element variable.
1581  RunCleanupsScope elementVariableScope(*this);
1582  bool elementIsVariable;
1583  LValue elementLValue;
1584  QualType elementType;
1585  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1586    // Initialize the variable, in case it's a __block variable or something.
1587    EmitAutoVarInit(variable);
1588
1589    const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1590    DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1591                        VK_LValue, SourceLocation());
1592    elementLValue = EmitLValue(&tempDRE);
1593    elementType = D->getType();
1594    elementIsVariable = true;
1595
1596    if (D->isARCPseudoStrong())
1597      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1598  } else {
1599    elementLValue = LValue(); // suppress warning
1600    elementType = cast<Expr>(S.getElement())->getType();
1601    elementIsVariable = false;
1602  }
1603  llvm::Type *convertedElementType = ConvertType(elementType);
1604
1605  // Fetch the buffer out of the enumeration state.
1606  // TODO: this pointer should actually be invariant between
1607  // refreshes, which would help us do certain loop optimizations.
1608  llvm::Value *StateItemsPtr =
1609    Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1610  llvm::Value *EnumStateItems =
1611    Builder.CreateLoad(StateItemsPtr, "stateitems");
1612
1613  // Fetch the value at the current index from the buffer.
1614  llvm::Value *CurrentItemPtr =
1615    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1616  llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1617
1618  // Cast that value to the right type.
1619  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1620                                      "currentitem");
1621
1622  // Make sure we have an l-value.  Yes, this gets evaluated every
1623  // time through the loop.
1624  if (!elementIsVariable) {
1625    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1626    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1627  } else {
1628    EmitScalarInit(CurrentItem, elementLValue);
1629  }
1630
1631  // If we do have an element variable, this assignment is the end of
1632  // its initialization.
1633  if (elementIsVariable)
1634    EmitAutoVarCleanups(variable);
1635
1636  // Perform the loop body, setting up break and continue labels.
1637  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1638  {
1639    RunCleanupsScope Scope(*this);
1640    EmitStmt(S.getBody());
1641  }
1642  BreakContinueStack.pop_back();
1643
1644  // Destroy the element variable now.
1645  elementVariableScope.ForceCleanup();
1646
1647  // Check whether there are more elements.
1648  EmitBlock(AfterBody.getBlock());
1649
1650  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1651
1652  // First we check in the local buffer.
1653  llvm::Value *indexPlusOne
1654    = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1655
1656  // If we haven't overrun the buffer yet, we can continue.
1657  // Set the branch weights based on the simplifying assumption that this is
1658  // like a while-loop, i.e., ignoring that the false branch fetches more
1659  // elements and then returns to the loop.
1660  Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1661                       LoopBodyBB, FetchMoreBB,
1662                       PGO.createBranchWeights(Cnt.getCount(), EntryCount));
1663
1664  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1665  count->addIncoming(count, AfterBody.getBlock());
1666
1667  // Otherwise, we have to fetch more elements.
1668  EmitBlock(FetchMoreBB);
1669
1670  CountRV =
1671    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1672                                             getContext().UnsignedLongTy,
1673                                             FastEnumSel,
1674                                             Collection, Args);
1675
1676  // If we got a zero count, we're done.
1677  llvm::Value *refetchCount = CountRV.getScalarVal();
1678
1679  // (note that the message send might split FetchMoreBB)
1680  index->addIncoming(zero, Builder.GetInsertBlock());
1681  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1682
1683  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1684                       EmptyBB, LoopBodyBB);
1685
1686  // No more elements.
1687  EmitBlock(EmptyBB);
1688
1689  if (!elementIsVariable) {
1690    // If the element was not a declaration, set it to be null.
1691
1692    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1693    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1694    EmitStoreThroughLValue(RValue::get(null), elementLValue);
1695  }
1696
1697  if (DI)
1698    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1699
1700  // Leave the cleanup we entered in ARC.
1701  if (getLangOpts().ObjCAutoRefCount)
1702    PopCleanupBlock();
1703
1704  EmitBlock(LoopEnd.getBlock());
1705}
1706
1707void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1708  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1709}
1710
1711void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1712  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1713}
1714
1715void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1716                                              const ObjCAtSynchronizedStmt &S) {
1717  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1718}
1719
1720/// Produce the code for a CK_ARCProduceObject.  Just does a
1721/// primitive retain.
1722llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1723                                                    llvm::Value *value) {
1724  return EmitARCRetain(type, value);
1725}
1726
1727namespace {
1728  struct CallObjCRelease : EHScopeStack::Cleanup {
1729    CallObjCRelease(llvm::Value *object) : object(object) {}
1730    llvm::Value *object;
1731
1732    void Emit(CodeGenFunction &CGF, Flags flags) override {
1733      // Releases at the end of the full-expression are imprecise.
1734      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1735    }
1736  };
1737}
1738
1739/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1740/// release at the end of the full-expression.
1741llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1742                                                    llvm::Value *object) {
1743  // If we're in a conditional branch, we need to make the cleanup
1744  // conditional.
1745  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1746  return object;
1747}
1748
1749llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1750                                                           llvm::Value *value) {
1751  return EmitARCRetainAutorelease(type, value);
1752}
1753
1754/// Given a number of pointers, inform the optimizer that they're
1755/// being intrinsically used up until this point in the program.
1756void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1757  llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1758  if (!fn) {
1759    llvm::FunctionType *fnType =
1760      llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1761    fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1762  }
1763
1764  // This isn't really a "runtime" function, but as an intrinsic it
1765  // doesn't really matter as long as we align things up.
1766  EmitNounwindRuntimeCall(fn, values);
1767}
1768
1769
1770static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1771                                                llvm::FunctionType *type,
1772                                                StringRef fnName) {
1773  llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1774
1775  if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1776    // If the target runtime doesn't naturally support ARC, emit weak
1777    // references to the runtime support library.  We don't really
1778    // permit this to fail, but we need a particular relocation style.
1779    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1780      f->setLinkage(llvm::Function::ExternalWeakLinkage);
1781    } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1782      // If we have Native ARC, set nonlazybind attribute for these APIs for
1783      // performance.
1784      f->addFnAttr(llvm::Attribute::NonLazyBind);
1785    }
1786  }
1787
1788  return fn;
1789}
1790
1791/// Perform an operation having the signature
1792///   i8* (i8*)
1793/// where a null input causes a no-op and returns null.
1794static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1795                                          llvm::Value *value,
1796                                          llvm::Constant *&fn,
1797                                          StringRef fnName,
1798                                          bool isTailCall = false) {
1799  if (isa<llvm::ConstantPointerNull>(value)) return value;
1800
1801  if (!fn) {
1802    llvm::FunctionType *fnType =
1803      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1804    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1805  }
1806
1807  // Cast the argument to 'id'.
1808  llvm::Type *origType = value->getType();
1809  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1810
1811  // Call the function.
1812  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1813  if (isTailCall)
1814    call->setTailCall();
1815
1816  // Cast the result back to the original type.
1817  return CGF.Builder.CreateBitCast(call, origType);
1818}
1819
1820/// Perform an operation having the following signature:
1821///   i8* (i8**)
1822static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1823                                         llvm::Value *addr,
1824                                         llvm::Constant *&fn,
1825                                         StringRef fnName) {
1826  if (!fn) {
1827    llvm::FunctionType *fnType =
1828      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1829    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1830  }
1831
1832  // Cast the argument to 'id*'.
1833  llvm::Type *origType = addr->getType();
1834  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1835
1836  // Call the function.
1837  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1838
1839  // Cast the result back to a dereference of the original type.
1840  if (origType != CGF.Int8PtrPtrTy)
1841    result = CGF.Builder.CreateBitCast(result,
1842                        cast<llvm::PointerType>(origType)->getElementType());
1843
1844  return result;
1845}
1846
1847/// Perform an operation having the following signature:
1848///   i8* (i8**, i8*)
1849static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1850                                          llvm::Value *addr,
1851                                          llvm::Value *value,
1852                                          llvm::Constant *&fn,
1853                                          StringRef fnName,
1854                                          bool ignored) {
1855  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1856           == value->getType());
1857
1858  if (!fn) {
1859    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1860
1861    llvm::FunctionType *fnType
1862      = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1863    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1864  }
1865
1866  llvm::Type *origType = value->getType();
1867
1868  llvm::Value *args[] = {
1869    CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1870    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1871  };
1872  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1873
1874  if (ignored) return nullptr;
1875
1876  return CGF.Builder.CreateBitCast(result, origType);
1877}
1878
1879/// Perform an operation having the following signature:
1880///   void (i8**, i8**)
1881static void emitARCCopyOperation(CodeGenFunction &CGF,
1882                                 llvm::Value *dst,
1883                                 llvm::Value *src,
1884                                 llvm::Constant *&fn,
1885                                 StringRef fnName) {
1886  assert(dst->getType() == src->getType());
1887
1888  if (!fn) {
1889    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1890
1891    llvm::FunctionType *fnType
1892      = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1893    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1894  }
1895
1896  llvm::Value *args[] = {
1897    CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1898    CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1899  };
1900  CGF.EmitNounwindRuntimeCall(fn, args);
1901}
1902
1903/// Produce the code to do a retain.  Based on the type, calls one of:
1904///   call i8* \@objc_retain(i8* %value)
1905///   call i8* \@objc_retainBlock(i8* %value)
1906llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1907  if (type->isBlockPointerType())
1908    return EmitARCRetainBlock(value, /*mandatory*/ false);
1909  else
1910    return EmitARCRetainNonBlock(value);
1911}
1912
1913/// Retain the given object, with normal retain semantics.
1914///   call i8* \@objc_retain(i8* %value)
1915llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1916  return emitARCValueOperation(*this, value,
1917                               CGM.getARCEntrypoints().objc_retain,
1918                               "objc_retain");
1919}
1920
1921/// Retain the given block, with _Block_copy semantics.
1922///   call i8* \@objc_retainBlock(i8* %value)
1923///
1924/// \param mandatory - If false, emit the call with metadata
1925/// indicating that it's okay for the optimizer to eliminate this call
1926/// if it can prove that the block never escapes except down the stack.
1927llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1928                                                 bool mandatory) {
1929  llvm::Value *result
1930    = emitARCValueOperation(*this, value,
1931                            CGM.getARCEntrypoints().objc_retainBlock,
1932                            "objc_retainBlock");
1933
1934  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1935  // tell the optimizer that it doesn't need to do this copy if the
1936  // block doesn't escape, where being passed as an argument doesn't
1937  // count as escaping.
1938  if (!mandatory && isa<llvm::Instruction>(result)) {
1939    llvm::CallInst *call
1940      = cast<llvm::CallInst>(result->stripPointerCasts());
1941    assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1942
1943    SmallVector<llvm::Value*,1> args;
1944    call->setMetadata("clang.arc.copy_on_escape",
1945                      llvm::MDNode::get(Builder.getContext(), args));
1946  }
1947
1948  return result;
1949}
1950
1951/// Retain the given object which is the result of a function call.
1952///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1953///
1954/// Yes, this function name is one character away from a different
1955/// call with completely different semantics.
1956llvm::Value *
1957CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1958  // Fetch the void(void) inline asm which marks that we're going to
1959  // retain the autoreleased return value.
1960  llvm::InlineAsm *&marker
1961    = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1962  if (!marker) {
1963    StringRef assembly
1964      = CGM.getTargetCodeGenInfo()
1965           .getARCRetainAutoreleasedReturnValueMarker();
1966
1967    // If we have an empty assembly string, there's nothing to do.
1968    if (assembly.empty()) {
1969
1970    // Otherwise, at -O0, build an inline asm that we're going to call
1971    // in a moment.
1972    } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1973      llvm::FunctionType *type =
1974        llvm::FunctionType::get(VoidTy, /*variadic*/false);
1975
1976      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1977
1978    // If we're at -O1 and above, we don't want to litter the code
1979    // with this marker yet, so leave a breadcrumb for the ARC
1980    // optimizer to pick up.
1981    } else {
1982      llvm::NamedMDNode *metadata =
1983        CGM.getModule().getOrInsertNamedMetadata(
1984                            "clang.arc.retainAutoreleasedReturnValueMarker");
1985      assert(metadata->getNumOperands() <= 1);
1986      if (metadata->getNumOperands() == 0) {
1987        llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1988        metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1989      }
1990    }
1991  }
1992
1993  // Call the marker asm if we made one, which we do only at -O0.
1994  if (marker) Builder.CreateCall(marker);
1995
1996  return emitARCValueOperation(*this, value,
1997                     CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1998                               "objc_retainAutoreleasedReturnValue");
1999}
2000
2001/// Release the given object.
2002///   call void \@objc_release(i8* %value)
2003void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2004                                     ARCPreciseLifetime_t precise) {
2005  if (isa<llvm::ConstantPointerNull>(value)) return;
2006
2007  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2008  if (!fn) {
2009    llvm::FunctionType *fnType =
2010      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2011    fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2012  }
2013
2014  // Cast the argument to 'id'.
2015  value = Builder.CreateBitCast(value, Int8PtrTy);
2016
2017  // Call objc_release.
2018  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2019
2020  if (precise == ARCImpreciseLifetime) {
2021    SmallVector<llvm::Value*,1> args;
2022    call->setMetadata("clang.imprecise_release",
2023                      llvm::MDNode::get(Builder.getContext(), args));
2024  }
2025}
2026
2027/// Destroy a __strong variable.
2028///
2029/// At -O0, emit a call to store 'null' into the address;
2030/// instrumenting tools prefer this because the address is exposed,
2031/// but it's relatively cumbersome to optimize.
2032///
2033/// At -O1 and above, just load and call objc_release.
2034///
2035///   call void \@objc_storeStrong(i8** %addr, i8* null)
2036void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2037                                           ARCPreciseLifetime_t precise) {
2038  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2039    llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2040    llvm::Value *null = llvm::ConstantPointerNull::get(
2041                          cast<llvm::PointerType>(addrTy->getElementType()));
2042    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2043    return;
2044  }
2045
2046  llvm::Value *value = Builder.CreateLoad(addr);
2047  EmitARCRelease(value, precise);
2048}
2049
2050/// Store into a strong object.  Always calls this:
2051///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2052llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2053                                                     llvm::Value *value,
2054                                                     bool ignored) {
2055  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2056           == value->getType());
2057
2058  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2059  if (!fn) {
2060    llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2061    llvm::FunctionType *fnType
2062      = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2063    fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2064  }
2065
2066  llvm::Value *args[] = {
2067    Builder.CreateBitCast(addr, Int8PtrPtrTy),
2068    Builder.CreateBitCast(value, Int8PtrTy)
2069  };
2070  EmitNounwindRuntimeCall(fn, args);
2071
2072  if (ignored) return nullptr;
2073  return value;
2074}
2075
2076/// Store into a strong object.  Sometimes calls this:
2077///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2078/// Other times, breaks it down into components.
2079llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2080                                                 llvm::Value *newValue,
2081                                                 bool ignored) {
2082  QualType type = dst.getType();
2083  bool isBlock = type->isBlockPointerType();
2084
2085  // Use a store barrier at -O0 unless this is a block type or the
2086  // lvalue is inadequately aligned.
2087  if (shouldUseFusedARCCalls() &&
2088      !isBlock &&
2089      (dst.getAlignment().isZero() ||
2090       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2091    return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2092  }
2093
2094  // Otherwise, split it out.
2095
2096  // Retain the new value.
2097  newValue = EmitARCRetain(type, newValue);
2098
2099  // Read the old value.
2100  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2101
2102  // Store.  We do this before the release so that any deallocs won't
2103  // see the old value.
2104  EmitStoreOfScalar(newValue, dst);
2105
2106  // Finally, release the old value.
2107  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2108
2109  return newValue;
2110}
2111
2112/// Autorelease the given object.
2113///   call i8* \@objc_autorelease(i8* %value)
2114llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2115  return emitARCValueOperation(*this, value,
2116                               CGM.getARCEntrypoints().objc_autorelease,
2117                               "objc_autorelease");
2118}
2119
2120/// Autorelease the given object.
2121///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2122llvm::Value *
2123CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2124  return emitARCValueOperation(*this, value,
2125                            CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2126                               "objc_autoreleaseReturnValue",
2127                               /*isTailCall*/ true);
2128}
2129
2130/// Do a fused retain/autorelease of the given object.
2131///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2132llvm::Value *
2133CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2134  return emitARCValueOperation(*this, value,
2135                     CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2136                               "objc_retainAutoreleaseReturnValue",
2137                               /*isTailCall*/ true);
2138}
2139
2140/// Do a fused retain/autorelease of the given object.
2141///   call i8* \@objc_retainAutorelease(i8* %value)
2142/// or
2143///   %retain = call i8* \@objc_retainBlock(i8* %value)
2144///   call i8* \@objc_autorelease(i8* %retain)
2145llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2146                                                       llvm::Value *value) {
2147  if (!type->isBlockPointerType())
2148    return EmitARCRetainAutoreleaseNonBlock(value);
2149
2150  if (isa<llvm::ConstantPointerNull>(value)) return value;
2151
2152  llvm::Type *origType = value->getType();
2153  value = Builder.CreateBitCast(value, Int8PtrTy);
2154  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2155  value = EmitARCAutorelease(value);
2156  return Builder.CreateBitCast(value, origType);
2157}
2158
2159/// Do a fused retain/autorelease of the given object.
2160///   call i8* \@objc_retainAutorelease(i8* %value)
2161llvm::Value *
2162CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2163  return emitARCValueOperation(*this, value,
2164                               CGM.getARCEntrypoints().objc_retainAutorelease,
2165                               "objc_retainAutorelease");
2166}
2167
2168/// i8* \@objc_loadWeak(i8** %addr)
2169/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2170llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2171  return emitARCLoadOperation(*this, addr,
2172                              CGM.getARCEntrypoints().objc_loadWeak,
2173                              "objc_loadWeak");
2174}
2175
2176/// i8* \@objc_loadWeakRetained(i8** %addr)
2177llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2178  return emitARCLoadOperation(*this, addr,
2179                              CGM.getARCEntrypoints().objc_loadWeakRetained,
2180                              "objc_loadWeakRetained");
2181}
2182
2183/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2184/// Returns %value.
2185llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2186                                               llvm::Value *value,
2187                                               bool ignored) {
2188  return emitARCStoreOperation(*this, addr, value,
2189                               CGM.getARCEntrypoints().objc_storeWeak,
2190                               "objc_storeWeak", ignored);
2191}
2192
2193/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2194/// Returns %value.  %addr is known to not have a current weak entry.
2195/// Essentially equivalent to:
2196///   *addr = nil; objc_storeWeak(addr, value);
2197void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2198  // If we're initializing to null, just write null to memory; no need
2199  // to get the runtime involved.  But don't do this if optimization
2200  // is enabled, because accounting for this would make the optimizer
2201  // much more complicated.
2202  if (isa<llvm::ConstantPointerNull>(value) &&
2203      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2204    Builder.CreateStore(value, addr);
2205    return;
2206  }
2207
2208  emitARCStoreOperation(*this, addr, value,
2209                        CGM.getARCEntrypoints().objc_initWeak,
2210                        "objc_initWeak", /*ignored*/ true);
2211}
2212
2213/// void \@objc_destroyWeak(i8** %addr)
2214/// Essentially objc_storeWeak(addr, nil).
2215void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2216  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2217  if (!fn) {
2218    llvm::FunctionType *fnType =
2219      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2220    fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2221  }
2222
2223  // Cast the argument to 'id*'.
2224  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2225
2226  EmitNounwindRuntimeCall(fn, addr);
2227}
2228
2229/// void \@objc_moveWeak(i8** %dest, i8** %src)
2230/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2231/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2232void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2233  emitARCCopyOperation(*this, dst, src,
2234                       CGM.getARCEntrypoints().objc_moveWeak,
2235                       "objc_moveWeak");
2236}
2237
2238/// void \@objc_copyWeak(i8** %dest, i8** %src)
2239/// Disregards the current value in %dest.  Essentially
2240///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2241void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2242  emitARCCopyOperation(*this, dst, src,
2243                       CGM.getARCEntrypoints().objc_copyWeak,
2244                       "objc_copyWeak");
2245}
2246
2247/// Produce the code to do a objc_autoreleasepool_push.
2248///   call i8* \@objc_autoreleasePoolPush(void)
2249llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2250  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2251  if (!fn) {
2252    llvm::FunctionType *fnType =
2253      llvm::FunctionType::get(Int8PtrTy, false);
2254    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2255  }
2256
2257  return EmitNounwindRuntimeCall(fn);
2258}
2259
2260/// Produce the code to do a primitive release.
2261///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2262void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2263  assert(value->getType() == Int8PtrTy);
2264
2265  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2266  if (!fn) {
2267    llvm::FunctionType *fnType =
2268      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2269
2270    // We don't want to use a weak import here; instead we should not
2271    // fall into this path.
2272    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2273  }
2274
2275  // objc_autoreleasePoolPop can throw.
2276  EmitRuntimeCallOrInvoke(fn, value);
2277}
2278
2279/// Produce the code to do an MRR version objc_autoreleasepool_push.
2280/// Which is: [[NSAutoreleasePool alloc] init];
2281/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2282/// init is declared as: - (id) init; in its NSObject super class.
2283///
2284llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2285  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2286  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2287  // [NSAutoreleasePool alloc]
2288  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2289  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2290  CallArgList Args;
2291  RValue AllocRV =
2292    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2293                                getContext().getObjCIdType(),
2294                                AllocSel, Receiver, Args);
2295
2296  // [Receiver init]
2297  Receiver = AllocRV.getScalarVal();
2298  II = &CGM.getContext().Idents.get("init");
2299  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2300  RValue InitRV =
2301    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2302                                getContext().getObjCIdType(),
2303                                InitSel, Receiver, Args);
2304  return InitRV.getScalarVal();
2305}
2306
2307/// Produce the code to do a primitive release.
2308/// [tmp drain];
2309void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2310  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2311  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2312  CallArgList Args;
2313  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2314                              getContext().VoidTy, DrainSel, Arg, Args);
2315}
2316
2317void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2318                                              llvm::Value *addr,
2319                                              QualType type) {
2320  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2321}
2322
2323void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2324                                                llvm::Value *addr,
2325                                                QualType type) {
2326  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2327}
2328
2329void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2330                                     llvm::Value *addr,
2331                                     QualType type) {
2332  CGF.EmitARCDestroyWeak(addr);
2333}
2334
2335namespace {
2336  struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2337    llvm::Value *Token;
2338
2339    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2340
2341    void Emit(CodeGenFunction &CGF, Flags flags) override {
2342      CGF.EmitObjCAutoreleasePoolPop(Token);
2343    }
2344  };
2345  struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2346    llvm::Value *Token;
2347
2348    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2349
2350    void Emit(CodeGenFunction &CGF, Flags flags) override {
2351      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2352    }
2353  };
2354}
2355
2356void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2357  if (CGM.getLangOpts().ObjCAutoRefCount)
2358    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2359  else
2360    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2361}
2362
2363static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2364                                                  LValue lvalue,
2365                                                  QualType type) {
2366  switch (type.getObjCLifetime()) {
2367  case Qualifiers::OCL_None:
2368  case Qualifiers::OCL_ExplicitNone:
2369  case Qualifiers::OCL_Strong:
2370  case Qualifiers::OCL_Autoreleasing:
2371    return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2372                                              SourceLocation()).getScalarVal(),
2373                         false);
2374
2375  case Qualifiers::OCL_Weak:
2376    return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2377                         true);
2378  }
2379
2380  llvm_unreachable("impossible lifetime!");
2381}
2382
2383static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2384                                                  const Expr *e) {
2385  e = e->IgnoreParens();
2386  QualType type = e->getType();
2387
2388  // If we're loading retained from a __strong xvalue, we can avoid
2389  // an extra retain/release pair by zeroing out the source of this
2390  // "move" operation.
2391  if (e->isXValue() &&
2392      !type.isConstQualified() &&
2393      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2394    // Emit the lvalue.
2395    LValue lv = CGF.EmitLValue(e);
2396
2397    // Load the object pointer.
2398    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2399                                               SourceLocation()).getScalarVal();
2400
2401    // Set the source pointer to NULL.
2402    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2403
2404    return TryEmitResult(result, true);
2405  }
2406
2407  // As a very special optimization, in ARC++, if the l-value is the
2408  // result of a non-volatile assignment, do a simple retain of the
2409  // result of the call to objc_storeWeak instead of reloading.
2410  if (CGF.getLangOpts().CPlusPlus &&
2411      !type.isVolatileQualified() &&
2412      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2413      isa<BinaryOperator>(e) &&
2414      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2415    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2416
2417  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2418}
2419
2420static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2421                                           llvm::Value *value);
2422
2423/// Given that the given expression is some sort of call (which does
2424/// not return retained), emit a retain following it.
2425static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2426  llvm::Value *value = CGF.EmitScalarExpr(e);
2427  return emitARCRetainAfterCall(CGF, value);
2428}
2429
2430static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2431                                           llvm::Value *value) {
2432  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2433    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2434
2435    // Place the retain immediately following the call.
2436    CGF.Builder.SetInsertPoint(call->getParent(),
2437                               ++llvm::BasicBlock::iterator(call));
2438    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2439
2440    CGF.Builder.restoreIP(ip);
2441    return value;
2442  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2443    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2444
2445    // Place the retain at the beginning of the normal destination block.
2446    llvm::BasicBlock *BB = invoke->getNormalDest();
2447    CGF.Builder.SetInsertPoint(BB, BB->begin());
2448    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2449
2450    CGF.Builder.restoreIP(ip);
2451    return value;
2452
2453  // Bitcasts can arise because of related-result returns.  Rewrite
2454  // the operand.
2455  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2456    llvm::Value *operand = bitcast->getOperand(0);
2457    operand = emitARCRetainAfterCall(CGF, operand);
2458    bitcast->setOperand(0, operand);
2459    return bitcast;
2460
2461  // Generic fall-back case.
2462  } else {
2463    // Retain using the non-block variant: we never need to do a copy
2464    // of a block that's been returned to us.
2465    return CGF.EmitARCRetainNonBlock(value);
2466  }
2467}
2468
2469/// Determine whether it might be important to emit a separate
2470/// objc_retain_block on the result of the given expression, or
2471/// whether it's okay to just emit it in a +1 context.
2472static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2473  assert(e->getType()->isBlockPointerType());
2474  e = e->IgnoreParens();
2475
2476  // For future goodness, emit block expressions directly in +1
2477  // contexts if we can.
2478  if (isa<BlockExpr>(e))
2479    return false;
2480
2481  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2482    switch (cast->getCastKind()) {
2483    // Emitting these operations in +1 contexts is goodness.
2484    case CK_LValueToRValue:
2485    case CK_ARCReclaimReturnedObject:
2486    case CK_ARCConsumeObject:
2487    case CK_ARCProduceObject:
2488      return false;
2489
2490    // These operations preserve a block type.
2491    case CK_NoOp:
2492    case CK_BitCast:
2493      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2494
2495    // These operations are known to be bad (or haven't been considered).
2496    case CK_AnyPointerToBlockPointerCast:
2497    default:
2498      return true;
2499    }
2500  }
2501
2502  return true;
2503}
2504
2505/// Try to emit a PseudoObjectExpr at +1.
2506///
2507/// This massively duplicates emitPseudoObjectRValue.
2508static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2509                                                  const PseudoObjectExpr *E) {
2510  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2511
2512  // Find the result expression.
2513  const Expr *resultExpr = E->getResultExpr();
2514  assert(resultExpr);
2515  TryEmitResult result;
2516
2517  for (PseudoObjectExpr::const_semantics_iterator
2518         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2519    const Expr *semantic = *i;
2520
2521    // If this semantic expression is an opaque value, bind it
2522    // to the result of its source expression.
2523    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2524      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2525      OVMA opaqueData;
2526
2527      // If this semantic is the result of the pseudo-object
2528      // expression, try to evaluate the source as +1.
2529      if (ov == resultExpr) {
2530        assert(!OVMA::shouldBindAsLValue(ov));
2531        result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2532        opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2533
2534      // Otherwise, just bind it.
2535      } else {
2536        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2537      }
2538      opaques.push_back(opaqueData);
2539
2540    // Otherwise, if the expression is the result, evaluate it
2541    // and remember the result.
2542    } else if (semantic == resultExpr) {
2543      result = tryEmitARCRetainScalarExpr(CGF, semantic);
2544
2545    // Otherwise, evaluate the expression in an ignored context.
2546    } else {
2547      CGF.EmitIgnoredExpr(semantic);
2548    }
2549  }
2550
2551  // Unbind all the opaques now.
2552  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2553    opaques[i].unbind(CGF);
2554
2555  return result;
2556}
2557
2558static TryEmitResult
2559tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2560  // We should *never* see a nested full-expression here, because if
2561  // we fail to emit at +1, our caller must not retain after we close
2562  // out the full-expression.
2563  assert(!isa<ExprWithCleanups>(e));
2564
2565  // The desired result type, if it differs from the type of the
2566  // ultimate opaque expression.
2567  llvm::Type *resultType = nullptr;
2568
2569  while (true) {
2570    e = e->IgnoreParens();
2571
2572    // There's a break at the end of this if-chain;  anything
2573    // that wants to keep looping has to explicitly continue.
2574    if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2575      switch (ce->getCastKind()) {
2576      // No-op casts don't change the type, so we just ignore them.
2577      case CK_NoOp:
2578        e = ce->getSubExpr();
2579        continue;
2580
2581      case CK_LValueToRValue: {
2582        TryEmitResult loadResult
2583          = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2584        if (resultType) {
2585          llvm::Value *value = loadResult.getPointer();
2586          value = CGF.Builder.CreateBitCast(value, resultType);
2587          loadResult.setPointer(value);
2588        }
2589        return loadResult;
2590      }
2591
2592      // These casts can change the type, so remember that and
2593      // soldier on.  We only need to remember the outermost such
2594      // cast, though.
2595      case CK_CPointerToObjCPointerCast:
2596      case CK_BlockPointerToObjCPointerCast:
2597      case CK_AnyPointerToBlockPointerCast:
2598      case CK_BitCast:
2599        if (!resultType)
2600          resultType = CGF.ConvertType(ce->getType());
2601        e = ce->getSubExpr();
2602        assert(e->getType()->hasPointerRepresentation());
2603        continue;
2604
2605      // For consumptions, just emit the subexpression and thus elide
2606      // the retain/release pair.
2607      case CK_ARCConsumeObject: {
2608        llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2609        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2610        return TryEmitResult(result, true);
2611      }
2612
2613      // Block extends are net +0.  Naively, we could just recurse on
2614      // the subexpression, but actually we need to ensure that the
2615      // value is copied as a block, so there's a little filter here.
2616      case CK_ARCExtendBlockObject: {
2617        llvm::Value *result; // will be a +0 value
2618
2619        // If we can't safely assume the sub-expression will produce a
2620        // block-copied value, emit the sub-expression at +0.
2621        if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2622          result = CGF.EmitScalarExpr(ce->getSubExpr());
2623
2624        // Otherwise, try to emit the sub-expression at +1 recursively.
2625        } else {
2626          TryEmitResult subresult
2627            = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2628          result = subresult.getPointer();
2629
2630          // If that produced a retained value, just use that,
2631          // possibly casting down.
2632          if (subresult.getInt()) {
2633            if (resultType)
2634              result = CGF.Builder.CreateBitCast(result, resultType);
2635            return TryEmitResult(result, true);
2636          }
2637
2638          // Otherwise it's +0.
2639        }
2640
2641        // Retain the object as a block, then cast down.
2642        result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2643        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2644        return TryEmitResult(result, true);
2645      }
2646
2647      // For reclaims, emit the subexpression as a retained call and
2648      // skip the consumption.
2649      case CK_ARCReclaimReturnedObject: {
2650        llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2651        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2652        return TryEmitResult(result, true);
2653      }
2654
2655      default:
2656        break;
2657      }
2658
2659    // Skip __extension__.
2660    } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2661      if (op->getOpcode() == UO_Extension) {
2662        e = op->getSubExpr();
2663        continue;
2664      }
2665
2666    // For calls and message sends, use the retained-call logic.
2667    // Delegate inits are a special case in that they're the only
2668    // returns-retained expression that *isn't* surrounded by
2669    // a consume.
2670    } else if (isa<CallExpr>(e) ||
2671               (isa<ObjCMessageExpr>(e) &&
2672                !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2673      llvm::Value *result = emitARCRetainCall(CGF, e);
2674      if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2675      return TryEmitResult(result, true);
2676
2677    // Look through pseudo-object expressions.
2678    } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2679      TryEmitResult result
2680        = tryEmitARCRetainPseudoObject(CGF, pseudo);
2681      if (resultType) {
2682        llvm::Value *value = result.getPointer();
2683        value = CGF.Builder.CreateBitCast(value, resultType);
2684        result.setPointer(value);
2685      }
2686      return result;
2687    }
2688
2689    // Conservatively halt the search at any other expression kind.
2690    break;
2691  }
2692
2693  // We didn't find an obvious production, so emit what we've got and
2694  // tell the caller that we didn't manage to retain.
2695  llvm::Value *result = CGF.EmitScalarExpr(e);
2696  if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2697  return TryEmitResult(result, false);
2698}
2699
2700static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2701                                                LValue lvalue,
2702                                                QualType type) {
2703  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2704  llvm::Value *value = result.getPointer();
2705  if (!result.getInt())
2706    value = CGF.EmitARCRetain(type, value);
2707  return value;
2708}
2709
2710/// EmitARCRetainScalarExpr - Semantically equivalent to
2711/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2712/// best-effort attempt to peephole expressions that naturally produce
2713/// retained objects.
2714llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2715  // The retain needs to happen within the full-expression.
2716  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2717    enterFullExpression(cleanups);
2718    RunCleanupsScope scope(*this);
2719    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2720  }
2721
2722  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2723  llvm::Value *value = result.getPointer();
2724  if (!result.getInt())
2725    value = EmitARCRetain(e->getType(), value);
2726  return value;
2727}
2728
2729llvm::Value *
2730CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2731  // The retain needs to happen within the full-expression.
2732  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2733    enterFullExpression(cleanups);
2734    RunCleanupsScope scope(*this);
2735    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2736  }
2737
2738  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2739  llvm::Value *value = result.getPointer();
2740  if (result.getInt())
2741    value = EmitARCAutorelease(value);
2742  else
2743    value = EmitARCRetainAutorelease(e->getType(), value);
2744  return value;
2745}
2746
2747llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2748  llvm::Value *result;
2749  bool doRetain;
2750
2751  if (shouldEmitSeparateBlockRetain(e)) {
2752    result = EmitScalarExpr(e);
2753    doRetain = true;
2754  } else {
2755    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2756    result = subresult.getPointer();
2757    doRetain = !subresult.getInt();
2758  }
2759
2760  if (doRetain)
2761    result = EmitARCRetainBlock(result, /*mandatory*/ true);
2762  return EmitObjCConsumeObject(e->getType(), result);
2763}
2764
2765llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2766  // In ARC, retain and autorelease the expression.
2767  if (getLangOpts().ObjCAutoRefCount) {
2768    // Do so before running any cleanups for the full-expression.
2769    // EmitARCRetainAutoreleaseScalarExpr does this for us.
2770    return EmitARCRetainAutoreleaseScalarExpr(expr);
2771  }
2772
2773  // Otherwise, use the normal scalar-expression emission.  The
2774  // exception machinery doesn't do anything special with the
2775  // exception like retaining it, so there's no safety associated with
2776  // only running cleanups after the throw has started, and when it
2777  // matters it tends to be substantially inferior code.
2778  return EmitScalarExpr(expr);
2779}
2780
2781std::pair<LValue,llvm::Value*>
2782CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2783                                    bool ignored) {
2784  // Evaluate the RHS first.
2785  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2786  llvm::Value *value = result.getPointer();
2787
2788  bool hasImmediateRetain = result.getInt();
2789
2790  // If we didn't emit a retained object, and the l-value is of block
2791  // type, then we need to emit the block-retain immediately in case
2792  // it invalidates the l-value.
2793  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2794    value = EmitARCRetainBlock(value, /*mandatory*/ false);
2795    hasImmediateRetain = true;
2796  }
2797
2798  LValue lvalue = EmitLValue(e->getLHS());
2799
2800  // If the RHS was emitted retained, expand this.
2801  if (hasImmediateRetain) {
2802    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2803    EmitStoreOfScalar(value, lvalue);
2804    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2805  } else {
2806    value = EmitARCStoreStrong(lvalue, value, ignored);
2807  }
2808
2809  return std::pair<LValue,llvm::Value*>(lvalue, value);
2810}
2811
2812std::pair<LValue,llvm::Value*>
2813CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2814  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2815  LValue lvalue = EmitLValue(e->getLHS());
2816
2817  EmitStoreOfScalar(value, lvalue);
2818
2819  return std::pair<LValue,llvm::Value*>(lvalue, value);
2820}
2821
2822void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2823                                          const ObjCAutoreleasePoolStmt &ARPS) {
2824  const Stmt *subStmt = ARPS.getSubStmt();
2825  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2826
2827  CGDebugInfo *DI = getDebugInfo();
2828  if (DI)
2829    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2830
2831  // Keep track of the current cleanup stack depth.
2832  RunCleanupsScope Scope(*this);
2833  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2834    llvm::Value *token = EmitObjCAutoreleasePoolPush();
2835    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2836  } else {
2837    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2838    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2839  }
2840
2841  for (const auto *I : S.body())
2842    EmitStmt(I);
2843
2844  if (DI)
2845    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2846}
2847
2848/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2849/// make sure it survives garbage collection until this point.
2850void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2851  // We just use an inline assembly.
2852  llvm::FunctionType *extenderType
2853    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2854  llvm::Value *extender
2855    = llvm::InlineAsm::get(extenderType,
2856                           /* assembly */ "",
2857                           /* constraints */ "r",
2858                           /* side effects */ true);
2859
2860  object = Builder.CreateBitCast(object, VoidPtrTy);
2861  EmitNounwindRuntimeCall(extender, object);
2862}
2863
2864/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2865/// non-trivial copy assignment function, produce following helper function.
2866/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2867///
2868llvm::Constant *
2869CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2870                                        const ObjCPropertyImplDecl *PID) {
2871  if (!getLangOpts().CPlusPlus ||
2872      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2873    return nullptr;
2874  QualType Ty = PID->getPropertyIvarDecl()->getType();
2875  if (!Ty->isRecordType())
2876    return nullptr;
2877  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2878  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2879    return nullptr;
2880  llvm::Constant *HelperFn = nullptr;
2881  if (hasTrivialSetExpr(PID))
2882    return nullptr;
2883  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2884  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2885    return HelperFn;
2886
2887  ASTContext &C = getContext();
2888  IdentifierInfo *II
2889    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2890  FunctionDecl *FD = FunctionDecl::Create(C,
2891                                          C.getTranslationUnitDecl(),
2892                                          SourceLocation(),
2893                                          SourceLocation(), II, C.VoidTy,
2894                                          nullptr, SC_Static,
2895                                          false,
2896                                          false);
2897
2898  QualType DestTy = C.getPointerType(Ty);
2899  QualType SrcTy = Ty;
2900  SrcTy.addConst();
2901  SrcTy = C.getPointerType(SrcTy);
2902
2903  FunctionArgList args;
2904  ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2905  args.push_back(&dstDecl);
2906  ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2907  args.push_back(&srcDecl);
2908
2909  const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2910      C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2911
2912  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2913
2914  llvm::Function *Fn =
2915    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2916                           "__assign_helper_atomic_property_",
2917                           &CGM.getModule());
2918
2919  StartFunction(FD, C.VoidTy, Fn, FI, args);
2920
2921  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2922                      VK_RValue, SourceLocation());
2923  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2924                    VK_LValue, OK_Ordinary, SourceLocation());
2925
2926  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2927                      VK_RValue, SourceLocation());
2928  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2929                    VK_LValue, OK_Ordinary, SourceLocation());
2930
2931  Expr *Args[2] = { &DST, &SRC };
2932  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2933  CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2934                              Args, DestTy->getPointeeType(),
2935                              VK_LValue, SourceLocation(), false);
2936
2937  EmitStmt(&TheCall);
2938
2939  FinishFunction();
2940  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2941  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2942  return HelperFn;
2943}
2944
2945llvm::Constant *
2946CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2947                                            const ObjCPropertyImplDecl *PID) {
2948  if (!getLangOpts().CPlusPlus ||
2949      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2950    return nullptr;
2951  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2952  QualType Ty = PD->getType();
2953  if (!Ty->isRecordType())
2954    return nullptr;
2955  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2956    return nullptr;
2957  llvm::Constant *HelperFn = nullptr;
2958
2959  if (hasTrivialGetExpr(PID))
2960    return nullptr;
2961  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2962  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2963    return HelperFn;
2964
2965
2966  ASTContext &C = getContext();
2967  IdentifierInfo *II
2968  = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2969  FunctionDecl *FD = FunctionDecl::Create(C,
2970                                          C.getTranslationUnitDecl(),
2971                                          SourceLocation(),
2972                                          SourceLocation(), II, C.VoidTy,
2973                                          nullptr, SC_Static,
2974                                          false,
2975                                          false);
2976
2977  QualType DestTy = C.getPointerType(Ty);
2978  QualType SrcTy = Ty;
2979  SrcTy.addConst();
2980  SrcTy = C.getPointerType(SrcTy);
2981
2982  FunctionArgList args;
2983  ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2984  args.push_back(&dstDecl);
2985  ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2986  args.push_back(&srcDecl);
2987
2988  const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2989      C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2990
2991  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2992
2993  llvm::Function *Fn =
2994  llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2995                         "__copy_helper_atomic_property_", &CGM.getModule());
2996
2997  StartFunction(FD, C.VoidTy, Fn, FI, args);
2998
2999  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3000                      VK_RValue, SourceLocation());
3001
3002  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3003                    VK_LValue, OK_Ordinary, SourceLocation());
3004
3005  CXXConstructExpr *CXXConstExpr =
3006    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3007
3008  SmallVector<Expr*, 4> ConstructorArgs;
3009  ConstructorArgs.push_back(&SRC);
3010  CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3011  ++A;
3012
3013  for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3014       A != AEnd; ++A)
3015    ConstructorArgs.push_back(*A);
3016
3017  CXXConstructExpr *TheCXXConstructExpr =
3018    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3019                             CXXConstExpr->getConstructor(),
3020                             CXXConstExpr->isElidable(),
3021                             ConstructorArgs,
3022                             CXXConstExpr->hadMultipleCandidates(),
3023                             CXXConstExpr->isListInitialization(),
3024                             CXXConstExpr->requiresZeroInitialization(),
3025                             CXXConstExpr->getConstructionKind(),
3026                             SourceRange());
3027
3028  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3029                      VK_RValue, SourceLocation());
3030
3031  RValue DV = EmitAnyExpr(&DstExpr);
3032  CharUnits Alignment
3033    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3034  EmitAggExpr(TheCXXConstructExpr,
3035              AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3036                                    AggValueSlot::IsDestructed,
3037                                    AggValueSlot::DoesNotNeedGCBarriers,
3038                                    AggValueSlot::IsNotAliased));
3039
3040  FinishFunction();
3041  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3042  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3043  return HelperFn;
3044}
3045
3046llvm::Value *
3047CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3048  // Get selectors for retain/autorelease.
3049  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3050  Selector CopySelector =
3051      getContext().Selectors.getNullarySelector(CopyID);
3052  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3053  Selector AutoreleaseSelector =
3054      getContext().Selectors.getNullarySelector(AutoreleaseID);
3055
3056  // Emit calls to retain/autorelease.
3057  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3058  llvm::Value *Val = Block;
3059  RValue Result;
3060  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3061                                       Ty, CopySelector,
3062                                       Val, CallArgList(), nullptr, nullptr);
3063  Val = Result.getScalarVal();
3064  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3065                                       Ty, AutoreleaseSelector,
3066                                       Val, CallArgList(), nullptr, nullptr);
3067  Val = Result.getScalarVal();
3068  return Val;
3069}
3070
3071
3072CGObjCRuntime::~CGObjCRuntime() {}
3073